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Abstract

Let G be a word-hyperbolic group with given finite generating &t which
various standard structures and constants have beenmdted. A (non-practical)
algorithm is described that, given as input two lidtand B, each composed an
words in the generators and their inverses, determineshehet not the lists are
conjugate inG, and returns a conjugating element should one exist. The alg
rithm runs in timeO(mu), wherey is an upper bound on the lengths of elements
in the two lists. Similarly, an algorithm is outlined thateputes generators of the
centraliser ofA, with the same bound on running time.

1 Introduction

In [3], Bridson and Howie give a solution of the conjugacy lgem for finite lists
A= (ag,...,am) andB = (b,...,by) of elements in a word-hyperbolic group — in
fact, they prove that the problem is solvable in ti@gnu?) for any fixed torsion-free
word-hyperbolic group, wheneis an upper bound on the length of elements in the two
lists.

The aim here is both to improve the bound on running tim&®tow), and to tie
up the rather limp conclusion in part 2 of Theorem B of [3], ihigh their algorithm
terminates without giving any results on the conjugacy wttenlists consist entirely
of elements of finite order. The general algorithm for thejegacy problem for finite
lists described in [3] is almost certainly at least expoiatiri the input length.

The ideas used here closely relate to those in [5], in whicstétp and Holt show
that the conjugacy problem for single elements in a wordehlyplic group can be
solved in linear time if one assumes a RAM model of computirigey do so by show-
ing that infinite order elements tend to be well-behaved wiaésed to large powers,
and finite order elements can be conjugated to elements df Isihgth whose conju-
gacy can be precomputed. In fact we will adapt and make usenafrder of results
from that paper.

The results in this paper are covered in more detail in [4]. ©ain theorem is:

Theorem 1. Given a word-hyperbolic group G (X | R), there is an algorithm that,
given a number iz 1 and lists A= (ay, ..., am) and B= (b, ..., by), each containing
words in XU X1, either finds an elementgG such that A =g B or determines that
no such element exists. The algorithm runs in tinfey), whereu is an upper bound
on the lengths of elements in the lists.
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Due to the exhaustive search required to verify that twes st not conjugate, the
method will in fact enable the computation of all conjuggtelements — in particular,
a simple modification yields the following additional resul

Theorem 2. Given a word-hyperbolic group G (X | R), there is an algorithm that,
given a number iz 1and a list A= (ay, . . ., ay) containing words in XU X1, returns
a generating set for the centraliseiCA). The algorithm runs in time @), whereu
is an upper bound on the lengths of elements in the list.

As in [5], our complexity estimates are based on a RAM modaashputing, in
which the basic arithmetical operations on integers arerasd to take constant time.
An alternative model with the same complexity involves mgrimachines that have
multiple tapes, and may have multiple heads on each taph tbetnumber of tapes
and the number of heads will be @(1)). The heads are independent; that is, while
they all start in the same place, they need not behave in the say: one may be
moved and used to read and write on the tape while anotherimerstationary and
later moves to read said area of tape. This model is desdnl{éil

Throughout this paper, we assume tlats a fixed word-hyperbolic group with
fixed generating seX, where we assume for convenience tat= X~1. The pre-
computations that we need to carry ouGnwill be summarised in Section 2. All of
the constants referred to explicitly or implicitly will depd onG andX only.

The technicalities behind the proof in the case where onmesé saya;, has
infinite order are largely covered by solving the conjugau;bﬂ)emag =g by for h as
in [5]. In the process of doing so, a useful description ofredats of the centralis&
of a; is found, and then used to testif" =g B for somec € C. Of courseC is infinite,
so it is important to perform this tesffiently. Section 3 describes a way of doing so.

These methods cannot be used when both lists consist grfrrsion elements.

It is, however, possible to show that,AfandB have lengthm, then a pair of list\
andB’ can be éiciently found such thaA" =g B if and only if A" =g B, and such
that eitherA” or B’ contains an infinite order element, or each eleme#t iandB’ has
length at most a numbéi(m).

The numbet_(m) grows exponentially witlm. However, it can be shown that there
is a constanh such that, if the lists consist of distinct torsion elemetd have length
at leastn, then their centralisers are finite and of bounded order. altiqular, there
are only a bounded number of elements that can simultangoasjugate the firsh
elements ofA to the the firsinh elements ofB, and so testing each of these conjugat-
ing elements on the remainder of the elementé iand B completes the procedure.
SincelL(n) is a constant, we can use the general algorithm given ino[3ihd these
conjugating elements in constant time.

2 Notation

We shall occasionally use the notatioe? y to meanx -y < d.

A very brief introduction to hyperbolicity and some defiaits included for conve-
nience are sketched below. The reader is referred to [1]foor® detailed introductory
treatment of the theory of (word-)hyperbolic groups.

A patha : [a,b] — S is an arc-length parametrization of a connected curve in a
metric spaceS. If « is described as connecting a poito a pointy thena(a) = x
anda(b) = y; it will normally be assumed that = 0 in this case. Ik = «(t) for some
t € [a, b] then writex € a. If X = a(c) andy = a(d) for c,d € [a,b], write [x,y] to



denote the restrictioa|icq) and then definé,(x,y) = d — c. This definition is a little
loose wherex is not a simple curve; in order to deal with this ambiguityuase that
whenever a poink € « is picked, a specific valug € [a, b] with a(ty) = x is also
picked for use with these definitions.

A patha is (1, €)-quasigeodesifwith 1 > 1, ¢ > 0) if d,(X, y) < Ad(X,Y) + € for all
X,y € a. ForL > 0, the path id.-local (1, €)-quasigeodesidf all subpaths of length at
mostL are (1, €)-quasigeodesic. It igeodesidf it is (1, 0)-quasigeodesic. feodesic
metric spaces a metric space in which each pair of points is connecteddsoalesic.
A geodesic trianglén a metric space is a collection of three points (the cojredong
with three geodesic paths, one path connecting each pairoécs.

The Gromov inner product of pointsandy at a pointzin a metric space is defined

as
d(x.2) +d(y,2 — d(x.y)
> .

Suppose that, y, zare points in a geodesic metric spatand thatr andg are sides
of a geodesic triangle connecting these three points, chesé¢hata(0) = 3(0) = z
If 0 <t < (xY), then the pointsy(t) andj(t) are said tocorrespond By making
the corresponding definition at the remaining two cornesshepoint on the sides of
the triangle has a corresponding point on at least one oaithe(though in degenerate
cases, for example whénr= 0, a point may correspond to itself). The trianglé-hin
if d(r, s) < 6§ whenever andsare corresponding points. A geodesic metric sgase
é-hyperbolicif all geodesic triangles il ares-thin.

Given a groups with generating seX, the Cayley grapi of G is the graph with
vertex selG and edges connectingto gx whenevelg € G andx € X, endowed with
the metric that sets each edge to have length 1 (often cdleedword metric”). A
word-hyperbolic groups a finitely generated group in which all geodesic triangtes
its Cayley graph aré-thin for some fixed > 0. It turns out that the property of being
word-hyperbolic is independent of generating set, thohgh/alue of is not; see [1].

Throughout this paper, we assume that an ambient finitelgrgéed grous has
been fixed along with a finite inverse-closed generatinisahd that is 5-hyperbolic
for somes with respect to this generating set. For our later conver@ewe assume
thats > 1. Where a value is said to be “bounded” or @{1)”, the value is bounded
above by some constant that depends onlga@nd X.

All geometric constructions occur inside the Cayley gr&pdf G with respect to
X, inside which the vertex represents the identity element®f

A word is a finite sequence of elements Xf written as a concatenation. The
length|w]| of a wordw is the length of the sequence of generators that defindeor
each 1< a < |w|, denote thea™ letter of w by w[a]. For each 0< a < |w]|, write
w(a) = w[1]w[2] - - -w[a] to refer to the subword given by the fistetters ofw and let
w(a: b) = wla+ 1]w[a+ 2] - - -w[b] so thatw(b) = w(a)w(a : b) whenever k a< b <
[W].

One operation that we shall use frequently is tla¢f-cyclic conjugateof a word.
Given a wordw = a;---ay,, letl = {EJ letw_ = w(l) andwg := w(l : n). Then
the half-cyclic conjugate is defined ag := wgw,. For example, ifv = abcdethen
Wc = cdeab

Given a starting vertex i, a wordw uniquely labels a path ifi. By takingl as
the starting vertex, each word defines an eleménj of the group. If two wordsu
andv map to the same element Gf write u =g v. The length of an element e G,
written|g|g, is the minimum length of a word that definggand, for a woradv, we define

(X’ y)Z =



Wl := |t(W)|s. A word isgeodesidf |w| = |w|g, that is,w is a shortest representative
of T(w).

The generating seX is assumed to be ordered, so that the notion of the shortlex
least representative wore(w) for each group elemerg = 7(w) exists (that is, the
lexicographically least word among all geodesic words dedineg). A wordw is said
to beshortlex reducedf 7(w) = w. A straightwordw is one for whichw"|g = [W"|
for any positive integen. Similarly, ashortlex straightword is one for whicha" is
shortlex reduced for any positive integer

In [5], the following result due to Shapiro is proved:

Lemma 2.1. There is an algorithm that, given a word w, return@v) in time Q(|w/).

This algorithm enables a number of other operations to bgcded in linear time;
for example, testing equality of words &, and whether a given word represents the
identity.

In order to use the results from [5], it is assumed that varimnstructions related
to the group (such as the shortlex word acceptor) have beengmputed. The con-
stants defined below, which are bounded in termsanfid|X|, will be used throughout
the paper.

o L:=346+2
e V, the number of vertices in the closeé-Ball aroundl (so|V| < |X|*+2).

o M :=205%V3L2

3 The infinite order case

We shall say that a word has infinite order if the elememtw) in G that it represents
has infinite order. Recall that we are given two lists of wofds: (ay,...,ayn) and
B = (by, ..., bm) that we wish to test for conjugacy {&. The aim of the section is to
prove Theorems 1 and 2 under the additional assumptiorathes infinite order.

The method is a combination of those described in [5] andTBg following three
subsections concern testing conjugacy between singlesalisronly; Section 3.1 is just
a summary of some of [5]. The motivation here is to apply thesthods tay andbs,
since any element conjugatidgto B must necessarily conjugadg to b .

3.1 Results from [5]

Itis proved in [5, Section 3] that the conjugacy problem fogge elements is solvable
in time linear in the total input length. The proof has sel/steps. The first few will
be followed here as well; they are outlined in this subsectio

The authors of [5] first show that elements that aréfidlilt to shorten” are actually
of infinite order, and behave nicely when raised to large pewe

Proposition 3.1. [5, Lemma 3.1] Let w be a shortlex reduced word and let w(wc).
If lul > 2L, then all positive powers of u label L-locél, 26)-quasigeodesics.

Proposition 3.2. [5, Proposition 2.3] If w is an L-loca(1, 26)-quasigeodesic path in
I', and u is a geodesic path connecting its endpoints, theryg@aint on w is withirds

of a point on u, and every point on u is withda of a point on w. Also, ifw| > L then

7w
lul > 17 -



In particular, iflwc|c > 2L thenw has infinite order, since there is no bound on the
length of shortest representatives of its powers.

The next step is to show that, for such a warda conjugate of a power af that
is equal inG to a shortlex straight element can b&aently found. The following two
results summarise Section 3.2 of [5].

Proposition 3.3. Suppose u is a shortlex reduced word with > L, such that all
positive powers of u label L-locdl, 26)-quasigeodesics. Then there exists an integer
0 < k < V*and a word a witha| < 46, such thatr(a"*u*a) is shortlex straight.

In [5], k is shown to be less tha®? whereQ is the number of group elements in
the 45-ball aroundL, butQ < V2, so our statement is slightly weaker.

Proposition 3.4. Given a shortlex reduced word u, testing if u is shortlexigtiatakes
time Q(ul).

Finding the shortlex straight conjugate of a power is thgsdcase of exhaustively
testing eaclik anda as in Proposition 3.3. Once a word is shortlex straight, ézisier
to test conjugacy against it. The next result summarisesddeg. 3 of [5].

Proposition 3.5. If u is shortlex straight, v is a word withig > L, such that all positive
powers of v arg1, 25) L-local quasigeodesics, andtyg =g u for some g, then there
exists a word h witlh| < 66 such thatr(h~1vh) is a cyclic conjugate of u.

In [5], the authors test whether a woudis a cyclic conjugate of another word
v by testing ifv appears as a substring uf, using the Knuth-Morris-Pratt algorithm.
The standard implementation of this algorithm involvesaklgp table of siz&(|u|), so
might be imagined to take tinf@((|u|+|v|) log(u[)) on a Turing machine. An alternative
implementation on a multi-head Turing machine that runsme O(|u|+|v|) is presented
in [6].

A refinement of the proof of Proposition 3.5 gives a nice foondlements of the
centraliser of a shortlex straight word. This result sumsear Section 3.4 of [5].

Proposition 3.6. If z is shortlex straight and'y= z with | > 1 maximal, then g Cg(2)
implies that g=¢ y'y1h, with y a prefix of y, i€ Z and|h| < 26. The prefix y depends
only on h. Furthermore, |, y and the set of words gan be computed in time(@).

That completes the information that will be required frorf) fBe next proposition
summarises this section.

Proposition 3.7. There exists an algorithm which, given shortlex reducedisorand

v with Juclg > 2L and|v¢|s > 2L, computes words a and y, and a set S of at most V
words, such that y is shortlex straight, an®l 4 v implies that g=¢ ay's for some

s € S. All output words have length in([Q] + |v|) and the algorithm runs in time
O(lul + V).

Proof. Proposition 3.1 implies that all positive powers of bailuc) andn(vc) label
L-local (1, 25)-quasigeodesics. Applying Proposition 3.3 implies thatré is a word
a of length at most & and a positive integer < V* with z := 7(((uc)')¥) shortlex
straight. Since bothe’| andi are inO(1) and testing ifz := #(((uc))¥) is shortlex
straight takes tim&(|u]), a specifi@’ andi can be found in tim&(|ul).

Using the K-M-P algorithm from [6], we find the second instawn€z as a substring
of 2. If this match is found at positiopthenz = z(j : 12)z(j), soz = (z(j))' for somel
andl is maximal for words of this form. Let = z(j); theny is also shortlex straight.



If uis conjugate tovr thenu' is conjugate to/ and sazis conjugate tovg)'. Apply-
ing Proposition 3.5 implies that, if this is the case, theg)}° is equal inG to a cyclic
conjugate of for some word with |b| < 66. Test for all words with |b| < 66 whether
7(((vc)))P) is a substring of? using the K-M-P algorithm again. There abl) tests,
each taking timeO(Ju| + |v]), so a specifib satisfying this property, if one exists, can
be found in timeO(|u| + |Vv). If all tests fail,u andv are not conjugate so the algorithm
stops. Otherwise a subwoz(k) is found such that () )°@0 ™" =g z Letc = z(K)b™*
for the firstb found and continue.

Apply Proposition 3.6 to compute a s8t of wordsy;h such that® =g zimplies
thatd =g y"s for somen € Z ands' € S’. This again takes tim&(|u| + [v]).

Now suppose that¥ =g v. Note that

£ =g (Vo) =¢ (V)" =¢ (U)M" =g ((uc)i)(uL)’lng —g & Wt

sothat'~1(u ) *gv.c! € Cs(2), and sois equal iG to y"y;hwithn > 0, andy;h € S'.
Thereforeg =g u a’y"yshey*.
Leta:=u.a andS := {yshcy! : y;h € S’} and the proposition is proved. m]

3.2 Finding long powers of infinite order elements

The aim of this section is to show that, given a weraf infinite order, there exists
an dficiently computable shortlex reduced wavd which is equal inG to a conjugate
of a power ofw, and for whichiz(w;,)| > 2L. Given two infinite order words andyv,
finding these conjugates of powersiodindv allows Proposition 3.7 to be applied, thus
providing a description of conjugating elements for any péinfinite order words.

The next three results are reasonably well-known propedfevord-hyperbolic
groups and hyperbolic spaces; they are taken from [1] afth@imilar results appear
in many other expositions of the subject area. The valudseofbnstants in our state-
ments are derived from the proofs in [1].

Proposition 3.8. [1, Proposition 3.2] For any geodesic word w of infinite ordaH
positive powers of w lab€l, €)-quasigeodesics ifi, whered = [w|V ande = 2w?V?+
2wV.

Proposition 3.9. [1, Theorem 2.19] The function e Ry,g — Ry with 0) = 6
and €1) = 2i2forl > Ois a divergence function for any+hyperbolic space (i.e.
given geodesicg = [x,y] andy’ = [x,Z, if r,R € N with r + R < min{[y|, |y’|} and
d(y(R),y'(R)) > €0), and ifa is a path fromy(R+r) to y’(R+r) lying outside the open
ball of radius R+ r around x, therja| > &(r)).

Proposition 3.10. [1, Proposition 3.3] In a hyperbolic space with divergenaadtion

e, given constants > 1 ande > 0, there exists D= D(4, €,€) > 0 such that ife is

a (4, e)-quasigeodesic angl is a geodesic starting and ending at the same points as
a then every point ory is within a distance D of a point oa. It sufices to take D
satisfying ¢25%) > 4D + 61D + €.

These results can be used to find a powef an infinite order wordv such that
(WMl is large.

Proposition 3.11. Let w be a geodesic word of infinite order withj < 2L. Then
|(r(wW"))els > 2L.



Figure 1: Cutting across a long quasigeodesic

Proof. By Proposition 3.9, the functiog(0) = 6, &(l) = 2:-2for|l > Ois a divergence
function forT". Proposition 3.8 implies tha#™ labels a 4, €)-quasigeodesie starting
at the identity, whera = [w|V ande = 2wj?V? + 2w|V.

We show now thab := 100®5°LV is suficient to solve the equation in Proposition
3.10 with these parameters. Since egpf x°/6 for all x > 0 and 3log 2> 2, we find
that

e(D -~ 6) _ exp(500LV log 2) . 100Fs°L3V3
2 42 6482

Sincelw| < 2L, we have

4D + 64D + € = 4D + 6wV D + 2wi?V? + 2wV < 4D + 12LVD + 8L2V? + 4LV.

> 10°5°L2V2.

By considering a shortlex reduced word of length at ledst2defining a path starting
at the origin, we see that > 45 + 1 > 5, andL > 36, soLV > 180. But we also have
LV < D/1000, so

4D + 12LVD + 8L%V2 + 4LV < 13LVD = 13000°L?V?,

and hence(22) > 4D + 61D + ¢, as claimed.

Recall thatM = 2052V3L? = V2LD/50. Letu := n(WwM) and lety be a geodesic
path starting at the identity vertedxand ending at the vertgx:= 7(u). Leta be the path
between these vertices whose labeM$. By Proposition 3.10, the vertgx:= 7(u.)
onvy lies within D of some vertex’ ona.

Now leta be the label of the path alongbetweenx andp’. Let q be the vertex
representingiu. andq’ the vertex representinga. See Figure 1.

Observe that
e—2D =

lucl = d(p,q) > d(p’.q") - 2D > —e-2D.

Substituting the values dfl, D, 1 ande, and usingw| < 2L,V > 5,LV > 180, we
have

d,(p’.q) WM
pl fl

LVD/50- 2w>V2 — 2wV — 2D > LV(206°LV — 8LV — 4 — 20005?)
LV(125%LV — 4 — 20005%) > 2L.

[uc|

vV IV

O

The value ofM used above is of course by no means optimal (it is probably sub
optimal by orders of magnitude) but serves to illustraté sli@h an explicit bound can
be found.

By Proposition 3.11, short infinite order words can be raigethrge powers to
obtain words upon which Proposition 3.7 may be used. It iSulide confirm that
words that are already appropriate inputs stay appropsién raised to the power of
M.



Proposition 3.12. Suppose that w is a geodesic word, awgd|c > 2L. If n > L then
I(m((We)™)c| > 2L. In particular, |(z((we)M))c| > 2L.

Proof. Letu := n((wc)"), and lete be the path starting at:= 1 labelled byr(wc)?".
Lety := 7(u) andz := (u?). Now letp := 7(u.) and letq := 7(uu.) so thatp andq are
mid-vertices on the shortlex geodesic pathy] and [y, z] respectively andic labels
a path fromp to g. Figure 1 provides a suitable diagram once again.

Note thata is anL-local (1, 26)-quasigeodesic by Proposition 3.1, so Proposition
3.2 applies. Then there is a vertgx= x - (wc)"(i) for somei, with d(p’, p) < 46. Let
q :=y- (we)"(i) so thatd(q’, ) < 46 also. Sincel,(p’,q’) = njwc|c > L, Proposition
3.2 also gives a lower bound alfp’, ") as follows:

7 14
d(p,q) =% d(p’.q") > 1—7d (0. 0) = T5nivwcls > T5Ln.

But then

14 14
|(r((we)M)el = |ucl = d(p,q) > —Ln 86 > 1—7L x 346 - 80 > 2L

as required. m]

By the above two resultgr((uc)™))cle > 2L for any infinite order geodesic word
u. Combining this fact with Proposition 3.7, we get:

Proposition 3.13. There exists an algorithm which, given geodesic infiniteovaords
u and v, computes words a and y, and a set S of at most V wordsthautq is shortlex
straight and § =g v implies that g=g ay's for some = S and ne Z. All output
words have length in Qu| + |v{) and the algorithm runs in time Q| + |v]).

Proof. Start by replacingi andv by their shortlex reductions(u), 7(v). Letu :=
m((uc)™) andv’ := n((vc)™). Thenluzle > 2L and|vle > 2L so applying Proposition
3.7 yields words’ andy’ and a se’ of words, such thay is shortlex straight and
w9 =g v implies thaty’ := a'y"s for somes € S'. If ud =g vthenu'i'? =g v'\i' so
ug lgu. = a'y"s for somes € S’ and, after re-arranging,=c uLa’y'”s'\r,_l.
It suffices, then, to take := u &,y :=y’ andS := {sv!: § € §'}. SinceM is in
0O(2), finding these values takes tif¥|u’| + [V'|) = O(Ju| + |v|) and the proposition is
proved. m|

Corollary 3.14. There is an algorithnTestINrOrDER that runs in time @Qw|), which
tests whether an input word w has infinite order.

Proof. First replacavwith 7(w). Now if |(7((wc)™))cle > 2L then (vc)™ and therefore
w is of infinite order by Proposition 3.1 and the algorithm regiTrue. If not, w cannot
be of infinite order by Proposition 3.11 or Proposition 3.42¢ the algorithm returns
FaLsk. Since|(we)M| = M|w, this test takes time at wor€(jw)). O

Recall that our aim is to test the lishs= (a, . .., am) andB = (by, . .., by) of words
for conjugacy inG, and we are assuming in this section thahas infinite order. By
the above corollary, we may assume also thatas infinite order, since otherwige
andB cannot be conjugate.

By applying Proposition 3.13 te; andb,, and then replacing by A% and B by

" for eachs in turn, we may #ectively assume that the conjugating element has
the formy". This motivates the next subsection, which investigatestmjugation of
single words by straight powers.



Figure 3: A thin part of a quadrilateral

3.3 Conjugating by a power of a straight word

In this subsection, suppose that geodesic wgraisdy are given, and thatis straight.
The aim is to find a description of the conjugag¥sthat allows, for any’ € G, those
valuesn € Z for whichg’ =¢ @ to be dficiently found.

The following preliminary result is true of general hypelibgraphs, and will be
specialised to the situation described above afterwards.

Lemma 3.15. Leta, b, c andd be vertices i such that I:= d(a,b) = d(c,d). Let
a1 : [0,1] — T be a geodesic path fromto b and leta, : [0,I] — T be a geodesic
path fromd to c as in Figure 2.

Define the constants

K :=d(a,b) — d(b,d), N; := (a,b)g, Nz := (b, c)g.
Then, for i> 0 we have:
1. If Ny <i < Nz then daa(i), a1(i + K)) < 26.
2. IfNp + K <i < Ny + K then dez(i — K), aa(i)) < 26.
3. Ifl =i > maxN; + K, Na, Np + K} then das (i), a2(i)) =¥ d(b,c) — 2( —i).

Furthermore, if I> i > d(a, d) then at least one of these three cases applies.



Figure 4: Points after the meeting points are distant

Proof. Let y := [b, d] be a geodesic, so that there are two geodesic trianglemghar
the common sidg, one with corners, b, andd, and the other with cornebs d andc.
Also, letp := a(i) andq := a4(i).

Suppose thall; <i < N,. Thenp corresponds to some poigt ony which in turn
corresponds to some poigtona; as illustrated in Figure 3. Observe that

d(a, q’)

d(a,b) — d(b,q") = d(a, b) — d(b,q"”) = d(a, b) — d(b, d) + d(d, q")
d(a,b) —d(b,d) + d(d,p) = K+ d(d,p) = K +1i
K + d(a, g),

soq = ai(i + K), and a geodesic path betweprandqg’ has length at mosti2as
required in the first case.

For the second case, just use the first case witK in place ofi.

For the final case, note that

Ny + K = 9(d:@) + d(d.b) - d(a.b)

+d(a, b) - d(b, d)

2
_ d(a,d) +d(a, b) — d(b, d)
- 2
= (b’ d)a’ (*)

the distance frona to the meeting point on;.

Now suppose thdt> i > maxN; + K, N2, N, + K}. Lets be a geodesic fromto c.
Thend(d, p) > N2, sop corresponds to a vertgx ong. Similarly,d(a,q) > N; + K =
(b,d)4 by (x) soq corresponds to a vertex’ ony with d(d,q”) = i — K > Np, which
in turn corresponds to a vertgkonB. This is illustrated in Figure 4.

Now,

d(p’.q")

d(b,p’) — d(b,q’) = d(b,c) — d(c, p) — d(b,q')
d(b, c) - d(b, q) — d(b, q) = d(b, c) — 2d(b, q) = d(b, c) - 2( - i),

sod(a1(i), a2(i)) =% d(b, c) - 2(1 - i) as required.

For the final statement, assume that d(a, d) and that the first two cases do not
apply. Since > d(a,d) > (a,b)q = Nj, eitheri > N, or Case 1 applies. Similarlyy)Y
implies thati > d(a,d) > (b,d), = N1 + K, soi > N, + K or Case 2 applies. Therefore
i > maxN; + K, N2, N, + K} and Case 3 applies. O
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This lemma enables us to prove some results about the caeggyastudied in
this subsection. In particular, using the constructiorvatio the group for some large
power ofy provides computable estimates on the lengths of all comgsgay smaller
powers ofy, and also a constraint on the form of those conjugates teattart inG.
For the remainder of this section, the shorthadd, v) = (7(u), 7(v)); is adopted for
wordsu andv.

Lemma 3.16. Suppose that y is a straight word and that g is a geodesic wbet.
n>0,letK:=|yn-|gy'lcandletO< j <n.

1. IfAGG,gy") < IVlj < A@@Y",y") then &' =g h(y"(K))~* for some word h with

|h| < 26.

2. IFA@, 9y") + K < IWlj < Agy",y") + K then ¢’ =¢ y™"(K)h for some word h
with |h| < 26.

3.1 yin = Wi > maxA(gy",y"), A(g. 9y) + K, A(gy",y") + K} then|g”|e =%
196 - 2yi(n - j).

Furthermore, ifly|j > |g| then at least one of these three cases applies.

Proof. Leta := 7(g), b := 7(gy"), ¢ := 7(y") andd := 1, and note that the three cases
of Lemma 3.15 (with = |y|j) correspond exactly to the three cases here. Notice that
7(gy"(K)) = a1(k) andr(y"(k)) = a2(k) for eachk.

In the first cased(r(y"(i)), 7(gy'(i + K))) < 26 so there is a wordl of length at most
26 with d - y'(i)h = a - y"(i + K). By definition,y"(i) = y! andy"(i + K) =g yly"(K).
Now, ¢’ labels a path from(gy"(i)) to 7(y"(i)) sog” = h(y"(K))~* as required.

For the second casg!(i —K) =¢ yly "(K) so by a similar argumet’ =¢ y"(K)h
for some worch of length at most &as required.

For the third case, sina#{b, ¢) = |g”"|c andd(a, b) = |yin, the result follows from
the third part of Lemma 3.15.

Noting thatig| = d(a, d), the final statement again corresponds to the final statemen
of Lemma 3.15. m]

Recall that the aim is to find a convenient description of thejugatesy”. The
first step will be to determine whether a poweryofentralisesy, and thus establish
whether the set of conjugates is infinite.

Since the conjugates in the first range in Lemma 3.16 are presed by a word
of length at most &, if a large number of in this range can be found, some conjugate
will repeat and some power gfwill indeed be in the centraliser gf The next lemma
states this more precisely.

Lemma 3.17. Suppose that y is a straight word, g is a geodesic word, aadZnwith

n>0. Ifn- {%J > V then there exist constantsedwith|g — 26 < d < |g| and

1< e<V suchthat§e Cg(g) and|g’|c =% d for all k € Z.

Proof. The number off that satisfy the first case of Lemma 3.16 is at least

{A(Q)’”, y") - A@. gW)w _ ng‘le +1yin-19"le _ 191 +19y"ls — Mﬂ

1y 2yl 2lyi
FMn 19"l - |g|} . {|g| + |gy”|GJ
2lyl 2y |

11



Since the conjugatey’ for such values ofj are all of the formh(y*(K))~* for
wordsh € By;(1), if there are more thavi suchj, then there must existj withi < j,
¢’ =c ¢ ande:= j —i < V. Soy®is in the centraliser of, as required.

This implies that each conjugc’;(l;éék is equal to somg”’ wherej satisfies the first
case of Lemma 3.16, 53" =g h(y*(K))~ with h € Bys(1). Hencelg¥ | =2 |K| for
all k, and puttingk = 0 gives|g| < |K| + 2¢6. Finally, |K| = ||y|n— |gy‘|G| <gl, so taking
d = |K| completes the proof. O

The following lemma illustrates that testing whether sonogvgxr of y is in the
centraliser ofy is as simple as finding the length of a single word.

Lemma 3.18. Suppose thaty is a straight word and that g is a geodesic veord let

NeZwithN>V+ [%J Then:

N
(i) if 19| < |gl + 26 then N— {%J >V

(ii) 19" |6 < 9] + 26 if and only if some power of y centralises g.

Proof. The first part is just straightforward evaluation:

gl +19” I gl + 6 J gl +19”" I }
== - V+ —
2lyl 0y 2ly|
> Va4 |g|+6J_ 2l9l + 26 _v
0y 2ly|

For the second part, note that the first part covers the “dhbase by Lemma 3.17,
so it remains to prove the “if” case. Suppose tyfat Cs(g) for somee > 0, and let
N; := e(V + |g| + 1). Clearlyy™ € Cs(g), so in particulatg’ | = |g| < |g| + 25. Also

N, — M} =Np - {@J >eV+|ge+e—[g >V,
2lyl 2lyl
so Lemma 3.17 impIielthk|G <|gl+2s5forallk e Z. O

It remains to analyse the behaviour of the conjugates wheower ofy centralises
g. The next lemma shows that the length of conjuggtesor largen is predictable in
this situation.

Lemma 3.19. Suppose that y is a straight word and that g labels a geodedic if

N > & and|g”| > Igl + 2 then|g”|c =% 19| + 2lyi(n— N) for alln > N.

Proof. Apply Lemma 3.16 withj = N. SinceN|y| > |g|, at least one of the three cases
applies. Becauskg]VNle > gl + 26 > K + 26, the conclusions of the first two cases
cannot apply. So the third case must apply @it =¥ 1¢"'|c — 2lyl(n — N), which
implies the required equation. m|

The next result is simply a summary of the above results.

Proposition 3.20. Let g € G and let y be some straight word. Let:NV + L'g“‘;r‘sj.
Then one of the following is true:

1. Iglee < |dlc + 26 and there is som@ < e < V such that § € Cs(Q).

2. 19"l > lgl + 26 and|g’'|c =% |g”"| + 2lyi(n - N) foralln > N.

12



Given wordsu andv and a shortlex straight worg the preceding proposition can
be used to test whethaY' =g v for some integen.

Proposition 3.21. Let u v be words and let y be a straight word. In tim@+ |v| +y|)
it is possible to find,it € Z U {oo} such that either

1. 0<r<t<Vandu =g vifandonlyif j=r modt;
2. reZ,t=coandr is the unique integer such thaf u¢ v; or

3. r = oo, t = co and there is no integer n such thaf u=¢ v.

I
If I, < |ulg + 26 butly > Vg + 26 then by Proposition 3.20, the conjugat¥shave

bounded length whereas the conjugatsio not. Thus there can be moe Z such
thatw?' =g v. The same is true if these two inequalities are reversed saridv lie in
different cases of Proposition 3.20 thenrsett = co and stop. Otherwise, bothand
v lie in the same case of Proposition 3.20.

Suppose that, < |ulg + 26. By Proposition 3.20, some powgtwith 0 < e < V
centralises, so in particular Case 2 does not apply. Sikds bounded above in terms
of |X| ands, it is possible to check for eachOr’ < t' < V if w =g uor W’ =g Vin
time O(Jul + || + |y]). If nor’ is found, Case 3 holds so etz t = 0. Otherwise Case
1 holds so pick the lowest values found férandt’ asr andt respectively.

Finally, suppose thadt, > |ulg + 26. Proposition 3.20 implies that"'|c =% |, +
2lyl(n— N) for largen, so Case 1 cannot apply and no powey &f in the centraliser of
u. In fact, by Proposition 3.20, if"' =g v then, for all stfficiently largen,

Proof. First, letN := V + 1+ | Metlle*? | and letlg := |, whereg is eitheru or v.

Ly + 2+ 1 = N) =2 [W"|g = W6 =% Iy + 2lyi(n - N).

Rearranging)y — Iy =% 2jylr, so'“él+f‘5 <r < 'V’£+y+|6‘5. Because no power of
centralisesy, there can only be onesuch that¥' =g v and to find it, we must simply
check eachi in this range. If somg' conjugatesi to vthen Case 2 holds so set o
and stop, otherwise Case 3 holds sarsett = co. At most & + 1 checks of conjugates
u" need to made to distinguish between these two cases, andleack takes time

O(ul + [v| + |y]) as required. O

3.4 Testing conjugacy ofA and B

Recall thatA = (ay, ..., an) andB = (b, ..., by), thata; has infinite order, and the aim
is to test if there is an elemegte G with A% =g B. We can now present an algorithm
to carry out this test. Furthermore, it will find the set of @l G with this property.
Letu be an upper bound on the length of elements in the two lists.

Use Corollary 3.14 to test in tim@(|by|) if by is of infinite order. If it is nota; and
b; are not conjugate, so neither akendB and the algorithm returns\kse.

Next, apply Proposition 3.13 ta; andb; to obtain a wordp, a shortlex straight
wordy and a se6 of at mostV words such thaaf =g by only if g =g py'sfor some
n e Z ands € S. All returned words have lengi®(|a;| + |bs1|) and this step takes time
O(lag| + [ba]) < O(u).

The following steps are carried out for eagh S. Since|S| <V, itis suficient to
show that the time taken 3(mu) for eachs € S.

13



For each € {1,..., m}, applying Proposition 3.21 taf’ bis’1 andy provides values
r; andt; with a”' ™" =¢ bS™ for all j € Z in time O(my).

If rj = oo for somel thenaip is not conjugated tbisf1 by any power ofy, so the same
is true ofA andB, and we deletsfrom S.

Otherwise, iftj = oo for somel, theny'i is the only power of that might conjugate
AP to BS". So we test whether this is the case. If so, then wdset 0 andRs = ;.

If not, then we deletsfrom S.

The remaining case is where glandr; are finite, in which case the set of equations
j = r; modt; must be solved simultaneously. By the Chinese Remaindeoréhg
there is either no solution to these equations, or the setlofisns has the forniRs +
NnTs | n € Z}, whereTs is the least common multiple of the Sincet; <V for all i, we
haveTs < V!, so we can test whether there is a solution and, if so RgdndTs, in
time O(m). If there is no solution, then we deletdrom S.

After carrying out the above computations for eack S, we have a complete
description of the set of elemergs G for which A® =g B has been obtained: they are
precisely those elemengs=¢ py*"Tssfor se S andn € Z.

If Sis empty, then returndese. Otherwise return fue and the conjugating element
py*ss. This completes the proof of Theorem 1 under the assumgtatat has infinite
order.

3.5 Finding the centraliser ofA

Let B = A and proceed exactly as in the previous subsection, excephéofinal
paragraph. The algorithm has established that all elengentth A% =g A are of the
form py®*"Tssfor somes € S andn e Z and all elements of this form are @g(A). It
remains to find a finite generating set &g(A).

If Ts = 0forallse S, thenCg(A) is finite and the algorithm returgpy™s: se S}
as a generating set.

Otherwise,Ts > 0 for somes € S. Sincepy®s and py**Tss are both elements
of the centraliser, so ipy**Tss(pyss)* =g py"sp~L. Now, forst € S with T; > 0,
we have py"sp™)"(pyXt) =¢ py**"Tst for all n € Z, soT; dividesTs and hence alll
nonzerdl s have the same valu&, Noting that py" p=)"(py**"Ts) =¢ py*sfor any
se Sandn € Z, we see thaCg(A) is generated by the sghys: se S} U {py p~2}.
This set has size i®(1) and each element has leng¥u), so it can be computed in
time O(u). This completes the proof of Theorem 2 under the assumghiata; has
infinite order.

4 Conjugacy of general lists

The purpose of this section is to show that the conjugacylenolior finite lists is
solvable in linear time even when all elements of both listegfinite order. To do this,
we either find an infinite order element that is a product ofsofithe elements in one
of the lists, or we reduce the problem to the case in which bwHength of the lists
and the lengths of the elements in the lists are bounded bystamt.

4.1 Simple results

We start with two elementary observations.nfd-vertexon a path is defined to be a
vertex at distance at most2 from the mid-point of the path.

14



Lemma 4.1. Suppose thak, y and z are vertices inl and p is a mid-vertex of a
geodesic patlfix, y]. Then

d(p,2) < 2meAREe D) d(é’ 2} —dx ) +1 o

Proof. If p corresponds to a vertex on [x,z], thend(q,z) < d(x,z) — % o)
d(p,z) < w + 6. Similarly, if p corresponds t@ on [y, z], thend(p, z) <
w + 6. The result follows. m]

Lemma 4.2. Suppose gy, ay, by, b, € G. Then(ag, a2)? = (by, by) if and only if
(a1a2, a2)? = (biby, by).

4.2 Bounding element length in short lists

This subsection is devoted to the proof of the following tesu

Proposition 4.3. There is an algorithnSaortenWorps Which, given alist A= (ag, .. ., an)
of words, either:

e returns ce G such that, foralll <i <m,

: 1
Ictaa,1 - - - amCle < 3™ (7L +0+ 5)
or

e returns integers j and k such that< j < k < m and gaj1-- - a is of infinite
order.

This algorithm runs in time @n’u), whereu is the maximum length of the elements
in A.

Proof. The algorithm is presented below. The remainder of the pnilbbe devoted
to proving that it works as claimed.

1: function SaortenNWorbs([ay, . . ., am))

2: Co«—1

3: for k:= 1tomdo

4: for je{l,...,k} do

5: if [(m(c,a; - - - aCk-1))cle > 2L then

6: return null, j, k > aj- - - & is of infinite order
7 end if

8: end for

9: Ck «— H(Ck,l(ﬂ(Cg_llaka,l))L)

10: end for

11: return cm, null, null

12: end function

Ifthe function finds and returns integgr& on Line 6, then a conjugatgof a; - - - ax
satisfiegn(g)cl > 2L, and sog is of infinite order by Proposition 3.1. But theR- - - a
has infinite order also and the algorithm is correct to rejukn The condition on Line
5 can therefore be assumed always to fail.

We show first thalcy| < k(5 + 6 + 1). Consider a geodesic triangle with corngys
b := 7(ck_1) andc := r(akck_1). Pick shortlex reduced words to label the paths],

15



n(Ct akCi-1)

Figure 5: Extending.

[b,c] and [1,c]. Letp = r(ck,l(n(c;_llakck,l))L), which is a mid-vertex oflf, c] as
illustrated in Figure 5. Sincex is a geodesic from to p, we have by Lemma 4.1
2maxd(1,b),d(1,c)} —d(b,c) + 1 N
- 2
2 maX|ci-1l, [aCk-1lc} — 16 Y akCi-1le + 1
< > +0

|Ck] )

Supposecy-1| > |akCk-1lc. Notice thatic,’akCk-1lc > Ick-1| — |akCk-1lc by the
triangle inequality, so

2|C-1] = ICk-1| + |akCx-1lc + 1 r 6= [Ck-1] + |akCk-1lc + 1 N

ol < ) 1)
e < > >
2|Ci— 1
< %+5 slck,1|+|i2k|+6+1.

Similarly, if |ck_1] < |akCk-1lc then

2|lakCk-1le — lakCi-1le + ICk-1l +1 = [&Ck-1lc + [Ck-1 +1
+0= +
2 2
|l + 2|Ck-1] + 1
- 2

e <

0
+6s|ck,1|+|%k|+6+1.

So in either casgx| < |ck_1| + ‘L}‘ + 6 + 1, and induction otk gives|cy| < k(%‘ +6+1),
as required.
We can now show that the function completes in tid(er«). Note that

leidia - akeal < ku+ 2ol < 2K(u + 6+ 1)

so the checks on Line 5 each run in titdéku). There arek such steps per loop and
a total ofm loops, so the overall running time is @(my) for this step. Similarly,
|ck_1c;}1akck_1| € O(ku) so Line 9 runs in tim&(ku) and the overall time taken in this
step is inO(mPy). Therefore the whole algorithm runs in tifdém®y) as required.

It remains to show that the bound on the length of the elem@nts- an)™ is
satisfied. For eacke {1,...,m}, defineKx := 2L, and letK| x.1 := 3K;x+10L+25+1
for 1 <i < k. We shall use induction okto show thalc;1a4 - aCde < Ky for any
1 <i < kand then show tha(; ., is within the required bound.

In the casek = i, we havea}* =g d* =¢ dc whered = n(a*). But then Line 5
ensures thab|c < Ky = 2L.

Now suppose that, for some the inequality[c;lai -~ &l < Kk is satisfied for
all 1 <i < k. Showing thatc;jlai .. &+1Ck+1le < Kike1 for eachi will complete the
induction.
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n(ge) e

P 9

Figure 6: Boundingre,

Pick some specific, and lete := n(c*a; . .. a1Ck) andg = m(c ax.1¢). Notice
thatcy,1 = ckgL and so
(@ A1) =g €% %1 =g €% =g (ec)% I =¢ (&) %R .

The checks on Line 5 ensure thet|c < 2L, and|gclc < 2L, so we know that
|(ec)e[19§190|G < 2|greLlc + 6L. Hence the induction will be complete if it can be shown
that

3 1
lgreLlc < EKi’k +2L+68+ > (1)

Let f := n(cla...ac) =c egt and recall thatf| < Kix by the inductive as-
sumption. Consider a geodesic triangle with corrierb := 7(g) andc := 7(gea.)
illustrated in Figure 6. Note that

d(1,c) = lgals = If teals < leals + Kix = leLecls + Kik
but|eclc < 2L so

f
dl,c)<le|+Kx+2L < g +Kix+2L < LZ'gl + Kix + 2L.

Also, d(b,c) = le| < & < Iﬂ;rlg\'

Pick the mid-vertex := 7(g_) on [1,b]. Lemma 4.1 implies that
B 2maxd(1,c),d(b,c)} —d(1,b) + 1 v s

lgreLlc = d(p.c) >
2max ™19+ 21 + Ky, 219} —jg] + 1
< > +0
_ 2(2L + Kik) +|§| +|fl-1g+1 r 5= 2(2L + Ki,;)+ [fl+1 v

3 1
< zKi,k+2L+5+§,

as required by (1).

This completes the proof thifg; - - - ax)*|c < Kk for each 1< i < k < m, and
to get the required bound on the length af-( - a,)° it suffices to show thak;x <
3<I(7L + ¢ + 3), and then puk = m. But, sinceKix = 3Kix-1 + 10L + 25 + 1, a
straightforward induction ok starting ak = i yields

Kixk <3 x 2L + (3" - 1) (5|_ +6+ %)

from which the required bound follows, and the proof is costel m|
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Note that by repeated application of Lemma 4.2, we see tleatdhjugacy prob-
lems are equivalent for the listsy(...,an) and bi,...,bn), and for the lists
(@, @, ...,ap) and @}, b, ..., b)), wherea) = a; - - -an andb! = by - - - b,

4.3 Some worse than linear time algorithms

This subsection provides a toolbox of results that solvéouarproblems involving
conjugacy and centralisers of lists in worse than lineaetifihey are useful, as the
previous subsection gives a method of bounding the lendtletements in a list in
terms of the number of elements.

Proposition 4.4. [3, Corollary 3.2] Let(ay,...,am) be a list of words representing
pairwise distinct finite order elements of G. Suppose thatXsatisfies

IXig > (2K + 5Y¥*2(l + 26)

where | = max|ailc, |&]lc. - . -, |amlc, [axlc} and k is the number of generators of G.
Then m< V4.

The statement in [3] says that < (2k)®, but the proof there does in fact prove
the statement here. Proposition 4.4 implies that the disgraf a long list of distinct
finite order elements is finite. Theorem I113.2 of [2] then provides a bound on the
number of elements in a finite subgroup:

Proposition 4.5. If G is a §-hyperbolic group and H is a finite subgroup of G then
there is an element g G with HY contained entirely within a ball in the Cayley graph
of G of radius4s + 2.

Corollary 4.6. There is a constant R and an algoritffoCentraLiser Exp that takes
as input a list A consisting of & V* words, all of which represent pairwise distinct
finite order elements of G, returns the centraliser C of A, amts in time @nuR*)
wherey is an upper bound on the length of words in A. All elements odhength
in O(1) and the number of elements in C is i1

Proof. Suppose thal = (a,...,ay) is such a list. Ifx € C, thena* = & for all
1<i <n,sol = uin Proposition 4.4. Hendelg < R(u + 26), whereR := (2k + 5)%+2,
sincen > V4.

Since the elements i@ are of bounded lengtlg is finite. Proposition 4.5 implies
thatC can be conjugated into a ball ihof radius 4 + 2, and in particular the number
of elements irC is bounded by a constant depending onlyGn

Thus the algorithm kpCentraLiserExp Nnow just needs to check for each word
w of length at mosR(u + 26) whetherAY =g A. There are at mosR+? ¢ O(RY)
such words, and checking each word takes tfeu), so the algorithm runs in time
O(nuR*) as required. m|

Thus there is a method of computing the centraliser of a Isigof finite order
words of bounded length, whose complexity is linear in thgth of the list. Thus we
can compute centralisers of lists of short elements. THevlirig result enables us to
test conjugacy between lists of short elements.

Proposition 4.7. [3, Theorem 3.3] Let A= (a1, ...,am) and B= (by,...,by) be sets
of finite order elements in G. If A and B are conjugate thendlexists a word x with
A* =g B and

IXlg < (2K + 5)%*2(u + 26) + V",
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whereyu is the maximum length of an element in either list and k is theter of
generators of G.

Again, the statement in [3] usesk}®’ in place ofV4, but the proof is sfiicient
to prove the statement here. Thus by simply checking eachegieup to the above
bound onx|s, we have an algorithmekrConsucacyExp that takes as input two lists of
mwords whose elements have length less flaand returns a words with A" =g B if
one exists in time exponential in

We shall also need an algorithnmwBCenTrALISERGENERATORS that can be used on
an arbitrary list of finite order words. In order to avoid défopthe many concepts
required while covering no new ground, the reader is refetog7] for a method of
doing so even without the finite order condition: Lemma 4.4 Bnoposition 4.3 of
[7] show that the centraliseZ of a finite list in a biautomatic group (all hyperbolic
groups are biautomatic) is a regular language and providethad of computing an
automaton that accepts this language. Theorem 2.2 of [¥jaws a proof thaC is
then quasiconvex and then Proposition 2.3 of [7] providesxauticit finite generating
set forC. Each of these steps involves a potentially exponentiallp in space and
time. But we shall useikpCentraLiser GENErATORS ONlY With input of bounded length,
so it can be regarded as running in ti@¢€L).

4.4 Ensuring distinct elements

To apply Corollary 4.6 to alish = (a, . . ., an), all of the elements oA must represent
distinct elements oB. We shall eventually apply the corollary to a list of lengtimast

n = V4 + 1 that has been returned bydgTeNWorbs, SO it is necessary to ensure that
the wordg{a; - --a, | 1 < i < n} represent distinct group elements.

An algorithm ExsureDistinet will be used for this purpose. It takes as input two
lists of wordsA = (ai,...,am) andB = (by,...,by) and an integen > 1. It re-
turns either kise (in which caseA and B cannot be conjugate i) or two lists
A =(a),...,a,)andB = (bj,..., b)) with m’ < m, such that

1. Forge G, AY =g Bifand only if A9 =g B'.

2. Letn’ = min{m',n}. Then the words$a;---ay | 1 < i < n’} represent distinct
elements of5, as do the wordfh; ---by |1 <i <}

The algorithm works as follows. We start wiki := A, B’ := B, and then delete
elements fromA’ andB’ until Condition 2 holds, while maintaining Condition 1.

To do this, consider the words, = aa,, ---& andbf; := b{bf,,--- 1} with 1 <
i < j<n SinceAd =g B impliesai’jg =c bjj, if exactly one ofa); andby; is equal to
the identity inG, thenA’ andB’ cannot be conjugate, so we returade. If a{j =1
andbi’j =g 1, then we delete’ from A’ andb’ from B’, which maintains Condition 1.

We continue to do this until none of the elemeatsandb]; with1 <i < j<n
represent the identity @&, which implies that Condition 2 holds, and we are done.

If u is an upper bound on the lengths of the elements in the Iists, Wwe have to
test at most 2inelements of length at mos: for being the identity, so the algorithm
runs in timeO(mréw).

4.5 Solving the conjugacy and centraliser problems

We can now complete the proofs of Theorems 1 and 2, by desgrtbie algorithms
that solve the conjugacy and centraliser problems withélkjeired complexity. Since
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the algorithms are very similar, they will be described thge

LetA = (az,...,am) andB = (b,...,by) be lists of words. For the centraliser
problem, seB = A. For the conjugacy problem, we return eitharde or an element
of g that conjugate#\ to B. For the centraliser problem, we return a finite generating
set ofCg(A). Letu be the maximum length of the wordsAnandB.

We start by running EsureDistinet(r(A), 7(B), n) with n := min(V* + 1, m). If this
returns kLse, then the lists are not conjugate so retusnse. Otherwise, replacé
andB by the lists returned by¥sureDistineT. Sincen is bounded, this step takes time
O(mu).

The two listsA and B now consist of shortlex reduced words, such thatnfos
min{V* + 1, m} (redefiningmto be the new length ok andB, if necessary), the group
elements represented by - - a, are distinct for ali < n.

Let A’ andB’ be the sublists oA andB respectively containing the firatelements.
Apply SuorTENWORDs to A’ andB’; this takes timeD(n3u) = O(u).

SuorTENWORDs may return an infinite order elemeat: - - a; or by; - - - b; with 1 <
i < j < n Ifnot, then we sef = n and run EstINFORDER(S; - - - &,) and TestIN-
FOrDER(D; - - - by) for 1 < i < n, which takes timéO(u). In either case if, for somg j
we find one of; - - - a; orb; - - - bj has infinite order then we test whether they both have
infinite order and return4zse if not.

If we have found, j with 1 <i < j < nsuch that ---a; andb; - - - b; both have
infinite order, then we add, - - - a; to the start ofA and addb; - - - b; to the start of
B. This does not change the set@fvith A% =g B. It may increase the maximum
word length up taw, but this remains i©(u). We can now apply the special cases of
Theorems 1 and 2 proved in Section 3, to complete the algosith

We may assume from now on thatidgarenWorps applied toA’ and B’ does not
return an infinite order element, and that--a, andb; - - - b, have finite order for
1 < i £ n. So SiorteNWoRDS returns conjugating elementg andcg. We now
(re)defineA’ = (a],...,a;) wherea = n((a ---a,)*) and defineB’ in the same way
usingcg.

Note that the total lengths of the elementirandB’ are now inO(1), and hence
all of our procedures will take tim@&(1) when applied té\" andB’.

Use TestConsucacyExp to look for a wordu with AY =g B’. If no uis found then
return RALsE.

Suppose first thah = n. For the conjugacy test, retuuaucgl. For the centraliser
computation, leC be the set of generators f@g(A’) found using FNDCENTRALISER-
Generators, and returnicawucg® : w e CJ.

So suppose thah > n. Use knoCentraLiserExp to find Cg(A') as a finite se€ of
words of lengttO(u). Note thaiC| € O(1) by Proposition 4.5. Check A*"" = B for
each wordwv € C. Each check takes tim@(mu), so this part executes in tim@(mu).
For the conjugacy test, return either the first elemmqul for which this check
succeeds, or4dese if no such element exists. For the centraliser calculatieturn the
set of all elementsAwucgl for which that this check succeeds.

Since each part of the algorithm takes ti@gnu), Theorems 1 and 2 are proved.
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