
COMBINATORIAL DEGREE BOUND FOR TORIC IDEALS OF
HYPERGRAPHS

ELIZABETH GROSS AND SONJA PETROVIĆ

Abstract. Associated to any hypergraph is a toric ideal encoding the algebraic relations
among its edges. We study these ideals and the combinatorics of their minimal generators,
and derive general degree bounds for both uniform and non-uniform hypergraphs in terms
of balanced hypergraph bicolorings, separators, and splitting sets. In turn, this provides
complexity bounds for algebraic statistical models associated to hypergraphs. As two main
applications, we recover a well-known complexity result for Markov bases of arbitrary 3-
way tables, and we show that the defining ideal of the tangential variety is generated by
quadratics and cubics in cumulant coordinates.

1. Introduction

The edge subring of a hypergraph H is the monomial subalgebra parametrized by the edges
of H. We derive a general degree bound for the minimal generators of its defining ideal, IH ,
in terms of the structure of the underlying hypergraph.

Let H be a hypergraph on V = {1, . . . , n} with edge set E. Each edge ei ∈ E of size d encodes
a squarefree monomial xei :=

∏
j∈ei xj of degree d in the polynomial ring k[x1, . . . , xn]. The

edge subring of the hypergraph H, denoted by k[H], is the following monomial subring:

k[H] := k[xei : ei ∈ E(H)].

The toric ideal of k[H], denoted IH , is the kernel of the monomial map φH : k[tei ] → k[H]
defined by φH(tei) = xei . The ideal IH encodes the algebraic relations among the edges of
the hypergraph. For the special case where H is a graph, generating sets of the toric ideal of
k[H] have been studied combinatorially in [12, 13], [15], [19], and [20, 21].

The motivation for studying toric ideals IH is threefold. First, explicit results that relate IH
to combinatorial properties of H have existed only for graphs. Second, IH is related to the
Rees algebra R(I(H)) of the edge ideal of H: in case when H is a graph, the presentation
ideal of R(I(H)) is completely determined by generators of IH and the syzygies of the edge
ideal I(H). Third, these toric ideals correspond to Markov bases for algebraic statistical
models; this connection is outlined at the end of the Introduction. A starting point of our
work is the fact that combinatorial signatures of generators of IH are balanced edge sets of
H. Balanced edge sets on uniform hypergraphs were introduced in [14], and are referred to
as monomial walks.

This paper is based on the fact that the ideal IH is generated by binomials fE arising from
primitive balanced edge sets E of H (See Proposition 3.1, a generalization of [14, Theorem
2.8]). A balanced edge set of H is a multiset of bicolored edges E = Eblue t Ered satisfying
the following balancing condition: for each vertex v covered by E , the number of red edges
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2 GROSS AND PETROVIĆ

containing v equals the number of blue edges containing v, that is,

(*) degblue(v) = degred(v).

A binomial fE arises from E if it can be written as

fE =
∏

e∈Eblue

te −
∏

e′∈Ered

te′ .

Note that while H is a simple hypergraph (it contains no multiple edges), E allows repetition
of edges. In addition, the balanced edge set E is primitive if there exists no other balanced
edge set E ′ = E ′blue t E ′red such that E ′blue ( Eblue and E ′red ( Ered; this is the usual definition
of an element in the Graver basis of IH . If H is a uniform hypergraph, a balanced edge set
is called a monomial walk to conform with the terminology in [20, 21] and [14].

In what follows, we give two general degree bounds for generators of IH (Section 5), study the
combinatorics of splitting sets and reducibility (defined in Section 3), and explore implications
to algebraic statistics throughout. Section 4 focuses on indispensable binomials, i.e. binomials
that are members of every minimal generating set of IH . Proposition 4.1 gives a combinatorial
sufficient condition for determining whether a binomial f ∈ IH is indispensable. Consequently,
the Graver basis is the unique minimal generating set of IH for any 2-regular hypergraph
(Proposition 4.2). In particular, this means that the Graver basis is equal to the universal
Gröbner basis, although the defining matrix need not be unimodular.

Theorem 5.1 is a combinatorial criterion for the ideal of a uniform hypergraph to be generated
in degree at most d ≥ 2. The criterion is based on decomposable balanced edge sets, sepa-
rators, and splitting sets; see Definitions 3.2 and 3.3. Our result generalizes the well-known
criterion for the toric ideal of a graph to be generated in degree 2 from [12] and [20, 21]. Split-
ting sets translate and extend the constructions used in [12] and [20, 21] to hypergraphs and
arbitrary degrees. Theorem 5.3 provides a more general result for non-uniform hypergraphs.

In algebraic statistics, any log-linear statistical model corresponds to a toric variety whose
defining ideal gives a Markov basis for the model (cf. Fundamental Theorem of Markov bases
[6], [8]). Since these varieties, by definition, have a monomial parametrization, we can also
associate to any log-linear model M with a square-free parameterization a (non-uniform)
hypergraph HM. By Proposition 3.1, Markov moves for the model M are described by
balanced edge sets of HM: if E is a balanced edge set of HM, then a Markov move on a fiber
of the model corresponds to replacing the set of red edges in E by the set of blue edges in
E . Our degree bounds give a bound for the Markov complexity (Markov width) of the model
M. For general references on Markov complexity of classes for some log-linear models, the
reader should refer to [4], [5], [8, Chapter 1, §2] and [10].

We apply our combinatorial criteria to recover a well-known result in algebraic statistics from
[4] in Corollary 4.8. Finally, we study the Markov complexity of a set of models from [18]
called hidden subset models. Namely, Theorem 5.6 says that the ideal associated to the image
of Tan((P1)n) in higher cumulants is generated by quadratics and cubics.

2. Preliminaries and notation

We remind the reader that all hypergraphs in this paper are simple, that is, they contain no
multiple edges. In contrast, balanced edge sets of hypergraphs are not, since the binomials
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arising from the sets need not be squarefree. Therefore, for the purpose of this manuscript,
we will refer to a balanced edge set as a multiset of edges, with implied vertex set; and, as
usual, V (E) denotes the vertex set contained in the edges in E .

For the remainder of this short section, we will clear the technical details and notation we
need for the proofs that follow.

A multiset, M , is an ordered pair (A, f) such that A is a set and f is a function from A
to N>0 that records the multiplicity of each of the elements of A. For example, the multiset
M = ({1, 2}, f) with f(1) = 1 and f(2) = 3 represents M = {1, 2, 2, 2} where ordering
doesn’t matter. We will commonly use the latter notation.

Given a multiset M = (A, f), the support of M is supp(M) := A, and its size is |M | :=∑
a∈A f(a). For two multisets M1 = (A, f1) and M2 = (B, f2), we say M2 ⊆ M1 if B ⊆ A

and for all b ∈ B, f2(b) ≤ f1(b). M2 is a proper submultiset of M1 if B ( A, or there exists
a b ∈ B such that f2(b) < f1(b).

Unions, intersections, and relative complements of multisets are defined in the canonical way:

M1 ∪M2 := (A ∪B, g) where g(a) =


f1(a) if a ∈ A \B,
f2(a) if a ∈ B \ A,
max(f1(a), f2(a)) if a ∈ A ∪B;

M1 ∩M2 := (A ∩B, g) where g(a) = min(f1(a), f2(a));

M1 −M2 := (C, g), where g(a) =

{
f1(a) if a ∈ A \B,
f1(a)− f2(a) otherwise.

and C = A \B ∪ {a ∈ A ∩B | f1(a)− f2(a) > 0}

Note that the support of the union (intersection) of two multisets is the union (intersection)
of their supports. Finally, we define a sum of M1 and M2:

M1 tM2 := (A ∪B, g) where g(a) =


f1(a) if a ∈ A \B,
f2(a) if a ∈ B \ A
f1(a) + f2(a) if a ∈ A ∩B

.

If M1 tM2 is a balanced edge set, then the notation M1 tb M2 will be used to record the
bicoloring of M1 tM2: edges in M1 are blue, and edges in M2 are red.

Finally, the number of edges in a hypergraph H containing a vertex v will be denoted by
deg(v;H). For a bicolored multiset M := Mblue tm Mred, the blue degree degblue(v;M) of a
vertex v is defined to be deg(v;Mblue). The red degree degred(v;M) is defined similarly.
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3. Splitting sets and reducible edge sets

The aim of this section is to lay the combinatorial groundwork for studying toric ideals of
hypergraphs. In particular, we explicitly state what it combinatorially means for a binomial
arising from a monomial walk to be generated by binomials of a smaller degree. We begin by
describing the binomial generators of IH . Unless otherwise stated, H need not be uniform.

Proposition 3.1. Every binomial in the toric ideal of a hypergraph corresponds to a balanced
edge set. In particular, the toric ideal IH is generated by primitive balanced edge sets.

Proof. Suppose E is a balanced multiset of edges over H. Define a binomial fE ∈ k[te : e ∈
E(H)] as follows:

fE =
∏

e∈Eblue

te −
∏

e′∈Ered

te′ .

The balancing condition (*) ensures that fE is in the kernel of the map φH .

The second claim is immediate. �

Motivated by the application of reducible simplicial complexes to understand the Markov
bases of hierarchical log-linear models [7], we now introduce notions of reducibility and sep-
arators for balanced edge sets. For simplicity, we will often abuse notation and use H to
denote the edge set of H.

Definition 3.2. A balanced edge set E is said to be reducible with separator S, supp(S) ⊆
supp(E), and decomposition (Γ1, S, Γ2), if there exist balanced edge sets Γ1 6= E and Γ2 6= E
with S 6= ∅ such that S = Γ1red ∩ Γ2blue , E = Γ1 t Γ2, and the following coloring conditions
hold: Γ1red , Γ2red ⊆ Ered and Γ1blue , Γ2blue ⊆ Eblue.
We say that S is proper with respect to (Γ1, S, Γ2) if S is a proper submultiset of both Γ1red

and Γ2blue .

If S is not proper, then S is said to be blue with respect to (Γ1, S, Γ2) if Γ1red = S, and red
with respect to (Γ1, S, Γ2) if Γ2blue = S.

Figure 1 shows an example of a reducible balanced edge set E . The separator is proper and
consists of the single green edge es; it appears twice in the balanced edge set E , once as a
blue edge and once as a red edge. Figure 2 shows a reducible balanced edge set where the
separator, consisting of the two green edges e1 and e2, is not proper. As before, the separator
edges appear twice in the balanced edge set.

If H is a hypergraph and E is a balanced edge set with supp(E) ⊆ H, given a multiset S
with supp(S) ⊆ H, we can construct a new balanced edge set in the following manner:

E + S := (Eblue t S) tm (Ered t S).

Definition 3.3. Let H be a hypergraph. Let E be a balanced edge set with size 2n such
that supp(E) ⊆ H. A non-empty multiset S with supp(S) ⊆ H is a splitting set of E with
decomposition (Γ1, S, Γ2) if E+S is reducible with separator S and decomposition (Γ1, S, Γ2).

S is said to be a blue (red, resp.) splitting set with respect to (Γ1, S, Γ2), if S is a blue (red,
resp.) separator of E + S with respect to (Γ1, S, Γ2).

S is a proper splitting set of E if there exists a decomposition (Γ1, S, Γ2) of E + S such that
S is a proper separator with respect to (Γ1, S, Γ2).
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!"#

Figure 1. Reducible
balanced edge set. The
green edge es is the
separator.

!"# !$#

Figure 2. Reducible balanced
edge set with an improper sepa-
rator. The separator consists of
green edges e1 and e2.

Example 3.4 (Group-based Markov model). Let V1 = {x1, x2, x3, x4}, V2 = {y1, y2, y3, y4},
and V3 = {z1, z2, z3, z4}. Let V be the disjoint union of V1, V2, and V3. Let H be the 3-uniform
hypergraph with vertex set V and edge set:

e111 = {x1, y1, z1} e122 = {x1, y2, z2} e133 = {x1, y3, z3} e144 = {x1, y4, z4}
e221 = {x2, y2, z1} e212 = {x2, y1, z2} e243 = {x2, y4, z3} e234 = {x2, y3, z4}
e331 = {x3, y3, z1} e342 = {x3, y4, z2} e313 = {x3, y1, z3} e324 = {x3, y2, z4}
e441 = {x4, y4, z1} e432 = {x4, y3, z2} e423 = {x4, y2, z3} e414 = {x4, y1, z4}

The hypergraph H has applications in algebraic phylogenetics: it represents the parametriza-
tion of a particular group-based model from [17, Example 25].

Consider the monomial walk

W = {e324, e111, e243, e432} tm {e122, e313, e234, e441}.

Let S = {e133, e212}. Then S is a splitting set of W with decomposition (Γ1, S, Γ2) where

Γ1 = {e111, e243, e432} tm {e133, e212, e441}
Γ2 = {e133, e212, e324} tm {e122, e313, e234}.

The decomposition (Γ1, S,Γ2) encodes binomials in IH that generate fW :

fW = te324(te111te243te432 − te133te212te441) + te441(te133te212te324 − te122te313te234).

The previous example illustrates the algebraic interpretation of a splitting set. Notice there
is a correspondence between monomials in k[tei ] and multisets of edges of H. We will write
E(ta1ei1 t

a2
ei2
· · · taleil ) for the multiset ({ei1 , . . . , eil}, f) where

f : {ei1 , . . . , eil} → N
eij 7→ aj.

Thus the support of E(ta1ei1 t
a2
ei2
· · · taleil ) corresponds to the support of the monomial ta1ei1 t

a2
ei2
· · · taleil .

If fE = u− v ∈ IH is the binomial arising from the balanced edge set E , then a monomial s
corresponds to a splitting set S if and only if there exist two binomials u1 − v1, u2 − v2 ∈ IH
such that us = u1u2, vs = v1v2 and s = gcd(v2, u1). In this case, the decomposition of E + S
is (Γ1, S,Γ2) where Γ1 = E(u1) tm E(v1) and Γ2 = E(u2) tm E(v2).
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For a balanced edge set, E , the existence of a spitting set determines whether the binomial
fE ∈ IH can be written as the linear combination of two binomials fΓ1 ,fΓ2 ∈ IH . While, in
general, the existence of a splitting set does not imply deg(fΓ1), deg(fΓ2) < deg(fE), if H is
uniform and the splitting set is proper, then the following lemma holds.

Lemma 3.5. Let H be a uniform hypergraph and letW be a monomial walk with supp(W) ⊆
H and |W| = 2n. If S is a proper splitting set of W, then there exists a decomposition
(Γ1, S, Γ2) of W + S such that |Γ1| < |W| and |Γ2| < |W|.

Proof. Let S be a proper splitting set of W . By definition, there exists a decomposition
(Γ1, S, Γ2) of W + S, such that S is a proper submultiset of Γ1red and Γ2blue .

Let |Γ1| = 2n1 and |Γ2| = 2n2. Since W + S = Γ1 t Γ2, it follows that |W + S| = |Γ1|+ |Γ2|.
Then, 2n + 2|S| = 2n1 + 2n2, which implies 2n − 2n1 = 2n2 − 2|S|. But S being a proper
submultiset of Γ2blue gives that n2 > |S|, which, in turn, implies that n > n1. By a similar
argument, n > n2. Thus |Γ1| < |W| and |Γ2| < |W|. �

4. Indispensable Binomials

A binomial f in a toric ideal I is indispensable if f or −f belongs to every binomial generating
set of I. Indispensable binomials of toric ideals were introduced by Takemura et al, and are
studied in [1], [2], [3], [13], [15].

Proposition 4.1. Let H be a hypergraph. Let E be a balanced edge set with supp(E) ⊆ H.
Let fE be the binomial arising from E. If there does not exist a splitting set of E, then fE is
an indispensable binomial of IH .

Proof. Suppose E is not indispensable. Then there is a binomial generating set of IH , G =
{f1, . . . , fn}, such that fE /∈ G and −fE /∈ G.

Since fE = f+
E −f

−
E ∈ IH , there is a fi = f+

i −f−i ∈ G such that f+
i or f−i divides f+

E . Without
loss of generality, assume f+

i |f+
E . Since fi is a binomial in IH , fi arises from a monomial walk

Ei on H.

Let S = Eired . Let Γ1 = Ei and Γ2 = Γ2blue tm Γ2red where

Γ2blue = ((Eblue − Eiblue) t Eired)

Γ2red = Ered.
Since f+

i |f+
E , the multiset Eiblue ⊆ Eblue, and thus Γ1 t Γ2 = E + S. By construction, Γ1red ∩

Γ2blue = S. Therefore S is a splitting set of E . �

If every Graver basis element of a binomial ideal IH is indispensable, then the Graver basis of
IH is the unique minimal generating set of IH . Propositions 4.2 and 4.6 describe two classes
of hypergraphs where this is the case. In particular, for these hypergraphs, the universal
Gröbner basis of IH is a minimal generating set.

Proposition 4.2. If H is a 2-regular uniform hypergraph, then the Graver basis of IH is the
unique minimal generating set of IH .

For the proof of Proposition 4.2, we make use of Proposition 3.2 in [14] which concerns
balanced edge sets that are pairs of perfect matchings.
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Definition 4.3. A matching on a hypergraph H = (V,E) is a subset M ⊆ E such that the
elements of M are pairwise disjoint. A matching is called perfect if V (M) = V .

Proof of Proposition 4.2. Let G be the Graver basis of IH and let f ∈ G. Since every element
of G is binomial, f arises from a primitive monomial walk W with supp(W) ⊆ H.

Let Mb = supp(Wred) and Mr = supp(Wblue). By primitivity ofW , the intersection Mr∩Mb =
∅. Since W satisfies condition (*) and H is 2-regular, if e1, e2 ∈ Mb and e1 ∩ e2 6= ∅, then
e1 ∈ Mr or e2 ∈ Mr, which would contradict the primitivity of W . So Mb and Mr are
two edge-disjoint perfect matchings on V (W). By Proposition 3.2 in [14], W contains no
multiple edges, i.e. W = Mb tm Mr. Furthermore, since H is 2-regular, the edge set of the
subhypergraph induced by V (W) is Mb ∪Mr

Suppose S is a splitting set of W with decomposition (Γ1, S, Γ2). By the correspondence
between primitive monomial walks and primitive binomials, there exists a primitive monomial
walk Γ such that Γblue ⊆ Γ1blue and Γred ⊆ Γ1red (if Γ1 is primitive, then Γ = Γ1). By
Proposition 3.2 in[14], Γ must be a pair of perfect matchings on V (Γ ). This means Γ is
a proper balanced edge set of W , a contradiction. Therefore, by Proposition 4.1, fW is
indispensable. Since every element in the Graver basis of IH is indispensable, there is no
generating set of IH strictly contained in the Graver basis, and the claim follows. �

Definition 4.4. A k-uniform hypergraph H = (V,E) is k-partite if there exists a partition
of V into k disjoint subsets, V1, . . . , Vk, such that each edge in E contains exactly one vertex
from each Vi.

Lemma 4.5. Let H = (V,E) be a k-uniform k-partite hypergraph with E = Eb t Er and
Eb ∩ Er = ∅. If there exists a Vi, 1 ≤ i ≤ k, such that deg(v;Er) = deg(v;Eb) = 1 for all
v ∈ Vi, then a monomial walk W with support E is primitive only if W contains no multiple
edges.

Proof. Follows from the proof of necessity of Proposition 3.2 in [14]. �

Proposition 4.6. Let H = (V,E) be a k-uniform k-partite hypergraph. If there exists a Vi
such that deg(v;E) = 2 where for all v ∈ Vi, then the Graver basis of IH is the unique
minimal generating set of IH .

Proof. The proof is similar to the proof of Proposition 4.2. Note that while H may not be 2-
regular, one of its parts, Vi, is ‘locally’ 2-regular, and thus restricts the structure of monomial
walks on H. In particular, Lemma 4.5 ensures that Mr and Mb, are edge-disjoint perfect
matchings on V (W)|Vi , and the rest of the proof follows immediately. �

Example 4.7 (No 3-way interaction). The toric ideal of the hypergraph H in Figure
3 corresponds to the hierarchical log-linear model for no 3-way interaction on 2 × 2 × 2
contingency tables. This statistical model is a common example in algebraic statistics [8,
Example 1.2.7]. Since there is exactly one primitive monomial walk W on H that travels
through 8 edges, IH = (fW).

For 2 × 3 × 3 contingency tables with no 3-way interaction, the hypergraph corresponding
to this log-linear model has 18 edges. The hypergraph in this case is H = (V,E) where V =
{x00, x01, x02, x10, x11, x12, y00, y01, y02, y10, y11, y12, z00, z01, z02, z10, z11, z12, z20, z21, z22} and the
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Figure 3.

edge set is:

e000 = {x00, y00, z00} e001 = {x00, y01, z01} e002 = {x00, y02, z02}
e010 = {x01, y00, z10} e011 = {x01, y01, z11} e012 = {x01, y02, z12}
e020 = {x02, y00, z20} e021 = {x02, y01, z21} e022 = {x02, y02, z22}
e100 = {x10, y10, z00} e101 = {x10, y11, z01} e102 = {x10, y12, z02}
e110 = {x11, y10, z10} e111 = {x11, y11, z11} e112 = {x11, y12, z12}
e120 = {x12, y10, z20} e121 = {x12, y11, z21} e122 = {x12, y12, z22}

Let W be the primitive monomial walk

W = {e000, e101, e011, e112, e022, e120} tm {e100, e001, e111, e012, e122, e220.}

Every remaining edge H that does not appear in W is not contained in V (W), thus it can
be easily verified that there does not exist a splitting set of W , so by Proposition 4.1, fW is
indispensable. In fact, H satisfies the condition of Proposition 4.6 and thus every binomial
in IH corresponding to a primitive monomial walk is indispensable.

From the above discussion, we can see that if a uniform hypergraph H contains an induced
subhypergraph Hs that is 2-regular and there exists a bicoloring such that with this bicoloring
Hs is also a balanced edge set, then the maximum degree of any minimal generating set of
IH is at least |E(Hs)|/2.

A similar statement holds for k-uniform, k-partite hypergraphs with vertex partition V =
∪ki=1Vi. Namely, if H contains an induced subhypergraph Hs that is 2-regular on Vi (i.e., H
satisfies the conditions of Proposition 4.6) and there exists a bicoloring such that with this
bicoloring Hs is a balanced edge set (e.g., Hs is a pair of disjoint perfect matchings), then
the maximum degree of any minimal generating set of IH is at least |E(Hs)|/2.

Recall that degree bounds on minimal generators give a Markov complexity bound for the
corresponding log-linear model in algebraic statistics. This allows us to recover a well-known
result:

Corollary 4.8 (Consequence of Theorem 1.2 in [4]; see also Theorem 1.2.17 in [8]). The
Markov complexity for the no 3-way interaction model on 3× r× c contingency tables grows
arbitrarily large as r and c increase .

Proof. For the no 3-way interaction model on 2× r× c contingency tables, we can construct
a primitive binomial fHs of degree 2 · min(r, c) in its defining toric ideal by taking a cycle
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of length min(r, c) on the bipartite graph Kr,c. (We remind the reader that this is precisely
how fW is constructed in Example 4.7). By noting that the hypergraph associated to this
binomial Hs is an induced subhypergraph of the hypergraph associated to the 3× r× c case
and that Hs is 2-regular in one of the partitions, the claim follows by Proposition 4.6. �

5. General degree bounds and an application

For uniform hypergraphs, balanced edge sets are referred to as monomial walks. In the previ-
ous sections, we saw that splitting sets ofW translate to algebraic operations on the binomials
fW , providing a general construction for rewriting a high-degree binomial in terms of bino-
mials corresponding to shorter walks. This, along with Lemma 3.5, is the key to the general
degree bound result.

Theorem 5.1. Given a k-uniform hypergraph H, the toric ideal IH is generated in degree
at most d if and only if for every primitive monomial walk W of length 2n > 2d, with
supp(W) ⊆ H, one of the following two conditions hold:

i) there exists a proper splitting set S of W,

or

ii) there is a finite sequence of pairs, (S1, R1), . . . , (SN , RN), such that

• S1 and R1 are blue and red splitting sets of W of size less than n with decompositions
(Γ11 , S1, Γ21) and (Υ11 , R1, Υ21),
• Si+1 and Ri+1 are blue and red splitting sets of Wi = Γ2iblue

tm Υ1ired
of size less than

n with decompositions (Γ1i+1
, Si+1, Γ2i+1

) and (Υ1i+1
, Ri+1,Υ2i+1

), and,
• SN ∩RN 6= ∅ or there exists a proper splitting set of WN .

Proof of necessity (⇒). Let H be a k-uniform hypergraph whose toric ideal IH is generated
in degree at most d. Let W be a primitive monomial walk of length 2n > 2d. Let pW = u− v
be the binomial that arises from W . Since IH is generated in degree at most d, there exist
primitive binomials of degree at most d, (u1 − v1), . . . , (us − vs) ∈ k[tei ], and m1, . . . ,ms ∈
k[tei ], such that

pW = m1(u1 − v1) +m2(u2 − v2) + . . .+ms(us − vs).

By expanding and reordering so that m1u1 = uw, msvs = vw, and mivi = mi+1ui+1 for all
i = 1, . . . , s− 1, we may and will assume that m1, . . . ,ms are monomials.

If gcd(mi,mi+1) 6= 1 for some i, we can add the terms mi(ui − vi) and mi+1(ui+1 − vi+1) to
get a new term, m′i(u

′
i − v′i), where m′i = gcd(mi,mi+1) and (u′i − v′i) is an binomial of IH of

degree less than n. Continuing recursively in the manner, we have

pW = m′1(u′1 − v′1) +m′2(u′2 − v′2) + . . .+m′r(u
′
r − v′r)

where m′1u
′
1 = u′w, m′rv

′
r = v′w, m′iv

′
i = m′i+1u

′
i+1, gcd(m′i,m

′
i+1) = 1 for all i = 1, . . . , r − 1,

and deg(u′i − v′i) < n for all i = 1, . . . r. For convenience, we will drop the superscripts and
write

pw = m1(u1 − v1) +m2(u2 − v2) + . . .+mr(ur − vr).
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Case 1: r = 2. In this case, pW = m1(u1 − v1) +m2(u2 − v2). Let

Γ1 := E(u1) tm E(v1)

Γ2 := E(u2) tm E(v2)

S := E(v1) ∩ E(u2) = E(gcd(v1, u2)).

We want to show (Γ1, S, Γ2) is a decomposition of W + S. Since S = Γ1red ∩ Γ2blue , Γ1blue ⊆
Wblue, and Γ2red ⊆ Wred, we only need to show W + S = Γ1 t Γ2, Γ2red ⊆ (W + S)red, and
Γ2blue ⊆ (W + S)blue. First, notice the following equalities hold:

W + S = (Wblue t S) t (Wred t S) = E(u) t S t E(v) t S
= E(m1u1) t S t E(m2v2) t S = E(m1) t E(u1) t S t E(m2) t E(v2) t S.

Let s ∈ k[tei ] be the monomial such that E(s) = S, so s = gcd(v1, u2). The equality m1v1 =
m2u2 implies m1(v1

s
) = m2(u2

s
). Now, v1

s
and u2

s
are clearly relatively prime, and by the

assumptions on pW ,m1 andm2 are relatively prime. This means the equalitym1(v1
s

) = m2(u2
s

)
implies m1 = u2

s
and m2 = v1

s
. Thus,

Γ1 t Γ2 = E(u1) t E(v1) t E(u2) t E(v2)

= E(u1) t E(
v1

s
) t S t E(v2) t E(

u2

s
) t S

= E(u1) t E(m2) t S t E(v2) t E(m1) t S.

Consequently, W + S = Γ1 t Γ2.

Notice the equality m2 = v1
s

also implies Γ1red = E(v1) = E(m2) t S. This means Γ1red ⊆
(E(m2u2) t S) = (Wred t S) = (W + S)red. By a similar observation, Γ2blue ⊆ (W + S)blue.

Case 2: r = 2N + 1. For 1 < i < N , let

Γ1i = E(ui) tm E(vi)

Γ2i = E(mi+1ui+1) tm E(m2N−i+2v2N−i+2)

Si = E(vi) ∩ E(mi+1ui+1) = E(gcd(vi,mi+1ui+1)) = E(vi).

For 1 < i < N , let

Υ1i = E(miui) tm E(m2N−i+1v2N−i+1)

Υ2i = E(u2N−i+2) tm E(v2N−i+2)

Ri = E(m2N−i+1v2N−i+1) ∩ E(u2N−i+2)

= E(gcd(m2N−i+1v2N−i+1, u2N−i+2)) = E(u2N−i+2).

One can follow the proof of Case 1) to see that S1 and R1 are splitting sets of W , and Si+1

and Ri+1 are splitting sets of Wi = E(mi+1ui+1)tmE(m2N−i+1v2N−i+1) for i = 1, . . . , N − 1.
Furthermore, by definition, they are blue and red splitting sets (resp.) of size less than 2n.

Since WN−1blue = Γ2N−1blue
and WN−1red = Υ1N−1red

, the binomial arising from the walk on
WN−1 is

mNuN −mN+2vN+2 = mN(uN − vN) +mN+1(uN+1 − vN+1) +mN+2(uN+2 − vN+2).

Choose e ∈ H such that te | mN+1, then te | vN and te | uN+2. But since SN = E(vN) and
RN = E(uN+2), e ∈ SN and e ∈ RN , so SN ∩RN 6= ∅.
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Case 3: r = 2N + 2. For 1 < i < N , let

Γ1i = E(ui) tm E(vi)

Γ2i = E(mi+1ui+1) tm E(m2N−i+3v2N−i+3)

Si = E(vi) ∩ E(mi+1ui+1) = E(gcd(vi,mi+1ui+1)) = E(vi).

For 1 < i < N , let

Υ1i = E(miui) tm E(m2N−i+2v2N−i+2)

Υ2i = E(u2N−i+3) tm E(v2N−i+3)

Ri = E(m2N−i+2v2N−i+2) ∩ E(u2N−i+3)

= E(gcd(m2N−i+2v2N−i+2, u2N−i+3)) = E(u2N−i+3).

We can follow the proof of Case 1) to see that S1 and R1 are splitting sets of W , and Si+1

and Ri+1 are splitting sets of Wi = E(mi+1ui+1)tmE(m2N−i+2v2N−i+2) for i = 1, . . . , N − 1.
Furthermore, by definition, they are blue and red (resp.) splitting sets of size less than n.
Since WNblue

= Γ2Nblue
and WNred

= Υ1Nred
, the binomial arising from WN is

mN+1uN+1 −mN+2vN+2 = mN+1(uN+1 − vN+1) +mN+2(uN+2 − vN+2)

which is exactly case 1), which means there exists a proper splitting set of WN .

�

Proof of sufficiency (⇐). Assume every primitive monomial walk W of length 2n > 2d with
supp(W) ⊂ H satisfies i) or ii). Let pW = u− v be a generator of IH which arises from the
monomial walk W on H.

To show that IH = [IH ]≤d, we proceed by induction on the degree of pW . If deg pW = 2, then
pW ∈ [IH ]≤d. So assume deg pW = n > d and every generator of IH of degree less than n is
in [IH ]≤d. Since the size of W is greater than 2d, either condition i) holds or condition ii)
holds.

Suppose i) holds. By Lemma 3.5, there exists a decomposition of W , (Γ1, S, Γ2), such that
|Γ1| < |W| and |Γ2| < |W|. Let pΓ1 = u1 − v1 (pΓ2 = u2 − v2, respectively) be the binomial
that arises from Γ1 (Γ2, respectively). Let m1 = u/u1 and m2 = v/v2.

What remains to be shown is that pW = m1pΓ1 + m2pΓ2 , that is, u − v = m1(u1 − v1) +
m2(u2 − v2). However, it is clear that u = m1u1 and v = m2v2, so it suffices to show is that
m1v1 = m2u2, or equivalently, E(m1v1) = E(m2u2).

Let s ∈ k[tei ] be the monomial such that E(s) = S. Then

Γ1 t Γ2 = (E(u1) t E(
v1

s
) t S) t (E(

u2

s
) t S t E(v2))

and
W + S = (E(m1) t E(u1) t S) t (E(m2) t E(v2) t S).

Thus, since W + S = Γ1 t Γ2,

E(m1) t E(m2) = E(
v1

s
) t E(

u2

s
),

which in turn implies

m1m2 = (
v1

s
)(
u2

s
).
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Since W is primitive and the coloring conditions on (Γ1, S, Γ2) imply E(v1
s

) ⊆ Wred and
E(m1) ⊆ Wblue, the monomials m1 and v1

s
are relatively prime. A similar argument shows

m2 and u2
s

are relatively prime. Thus, m1 = u2
s

and m2 = v1
s

, and consequently, E(m1v1) =
E(m2u2) and pw = m1pΓ1 +m2pΓ2 .

Since deg pΓ1 , deg pΓ2 < n, the induction hypothesis applied to pΓ1 and pΓ2 shows that pW ∈
[IH ]≤d.

Now suppose ii) holds. For i from 1 to N , let pΓ1i
= ui − vi and pΥ2i = yi − zi be the

binomials arising from Γ1i and Υ2i . Let wib − wir be the binomial arising from the walk Wi

and let pW = w0b − w0r . For 1 ≤ i ≤ N , let mi = w(i−1)b/ui, and qi = w(i−1)r/zi. Then

pW =
N∑
i=1

mi(ui − vi) + wNb
− wNr +

N∑
i=1

qN+1−i(yN+1−i − zN+1−i).

The preceding claim follows from three observations: (1) by construction, w0b = m1u1 and
w0r = q1z1; (2) by the definition of WN , wNb

= mNvN and wNr = qNyN ; and (3) by the
definitions of mi, qi, and the walkWi, mivi = mi+1ui+1 and qi+1zi+1 = qiyi for 1 ≤ i ≤ N−1.
As a consequence of the size conditions on the splitting sets of Wi, the linear combination∑N

i=1mi(ui − vi) ∈ [IH ]≤d and
∑N

i=1 qN+1−i(yN+1−i − zN+1−i) ∈ [IH ]≤d. So if WN satisfies
condition i), the binomial wNb

− wNr ∈ [IH ]≤d, and thus, pW ∈ [IH ]≤d.

To finish the proof, assume that SN and RN share an edge, e. Then the claim above becomes:

pW =
N∑
i=1

mi(ui − vi) + te(
mNvN
te

− qNyN
te

) +
N∑
i=1

qN+1−i(yN+1−i − zN+1−i)

and we just need to show that, in fact, te divides mNvN and qNyN . But this is clear to see
since e ∈ SN which implies te|vN and e ∈ RN which implies te|yN .

�

Example 5.2 (Independence models). Let H be the complete k-partite hypergraph with
d vertices in each partition V1, . . . , Vk. These hypergraphs correspond to the independence
model in statistics. Equivalently, the edge subring of the complete k-partite hypergraph with
d vertices in each partition parametrizes the Segre embedding of Pd× · · · ×Pd with k copies.

The ideal IH is generated by quadrics. To see this, let W , supp(W) ⊆ H, be a primitive
monomial walk of length 2n, n > 2. Choose a multiset E ′ ⊂ W consisting of n− 1 blue and
n − 1 red edges. Since each edge must contain a vertex from each Vi, for each i, there is at
most one vertex in V (E ′) ∩ Vi that is not covered by a red edge and a blue edge from E ′.
Consequently, V (E ′) contains a vertex from each Vi that belong to at least one red edge and
at least one blue edge of E ′.

For a multiset of edges, M , with supp(M) ⊆ H, we define the max degree of a vertex:

maxdeg(v;M) := max(degred(v;M), degblue(v;M)).

The partitioning of the vertices ensures that V (E ′) cannot contain more then k vertices whose
maxdeg with respect to E ′ is n − 1. Indeed, if there are more that k vertices with maxdeg
equal to n− 1, then two of those vertices must belong to the same partition, Vj. This would
imply that W contains at least 4(n− 1) edges, which is impossible when n > 2.

Next, choose n− 1 new blue edges and n− 1 red edges in the following manner:
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Figure 4.

Let db(v) := degblue(v;E ′) and dr(v) := degred(v;E ′). For i = 1, . . . , k choose a vertex from
V (E ′blue)∩ V (E ′red)∩ Vi that has the largest maxdeg with respect to E ′; let bn−1 and rn−1 be
this set of vertices. For all v ∈ bn−1, reduce db(v) and dr(v) by 1. Now choose b1, . . . , bn−2 by
the following algorithm:

for i from 1 to k do:

let Vi :=sort V (E′) ∩ Vi by db(v) in decreasing order;

for j from n− 2 down to 1 do:

(

bj := list {vi : vi is first element in Vi};
for all v ∈ bj do db(v) = db(v)− 1;

for i from 1 to k do Vi =sort Vi by db(v) in decreasing order;

).

Let R1 = {b1, . . . , bn−1} and S1 = {r1, . . . , rn−1}. Then R1 and S1 are red and blue splitting
sets of W that share an edge. Thus, condition ii) of Theorem 5.1 is met, and consequently
IH is generated in degree 2.

When H is a non-uniform hypergraph, the toric ideal IH is not necessarily homogeneous. For
example, Figure 4 supports a binomial in IH where H consists of edges of size two and four;
note that the edges still satisfy the balancing condition (*). However, we can still modify
the conditions of Theorem 5.1 to find degree bounds for the toric ideals of non-uniform
hypergraphs. Proposition 5.3 gives a prescription for determining a degree bound on the
generators of IH in terms of local structures of H.

Proposition 5.3. Given a hypergraph H and a binomial fE ∈ IH arising from the balanced
edge set E with n = |Eblue| ≥ |Ered|, fE is a linear combination of binomials in IH of degree
less than n if one of the following two conditions hold:

i) there exists a proper splitting set S of E with decomposition (Γ1, S, Γ2) where |Γiblue|, |Γired | <
n for i = 1, 2,

or

ii) there is a pair of blue and red splitting sets of E, S and R, of size less than n with
decompositions (Γ1, S, Γ2), (Υ1, R, Υ2) such that |Γ1blue |, |Υ2red | < n, |Γ2blue|, |Υ1red | ≤ n, and
S ∩R 6= ∅.

Proof. This proof follows the proof of sufficiency for Theorem 5.1. Note that in the proof,
the uniform condition doesn’t play an essential role; it is only invoked to bound the size
of the red and blue parts of each monomial hypergraph appearing in the decompositions
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involved. Thus, the hypothesis of Proposition 5.3 acts in place of the uniform condition in
Theorem 5.1. �

We close with an application.

For the remainder of this section, we will concern ourselves with the first tangential variety,
Tan((P1)n). In [18], Sturmfels and Zwiernik use cumulants to give a monomial parameteriza-
tion of Tan((P1)n). The variety Tan((P1)n) is associated to a class of hidden subset models
[18, Example 5.2], and context-specific independence models [11]. We now derive a bound
for the toric ideal of the image of Tan((P1)n) in higher cumulants and, equivalently, for the
Markov complexity of these models.

Example 5.4. Let H = (V,E) where V = {1, . . . , n} and E = {e : e ⊆ V and |e| ≥ 2}.
Then the set of polynomials vanishing on the image of Tan((P1)n) in higher cumulants is the
toric ideal IH (see [18, Theorem 4.1]).

The hypergraph in Example 5.4 is the complete hypergraph on n vertices after removing all
singleton edges. The degree bound on the generators of this hypergraph can be found by
looking at a smaller hypergraph.

Lemma 5.5. Let H1 = (V,E1) where V = {1, . . . , n} and E1 = {e : e ⊆ V and |e| ≥ 2},
and let H2 = (V,E2) where E2 = {e ⊆ V : 2 ≤ |e| ≤ 3}. If the ideal IH2 is generated in
degree at most d, then the ideal IH1 is generated in degree at most d.

Proof. Consider IH2 as an ideal in the bigger polynomial ring S := k[tei : ei ∈ H1], denoted

as ĨH2 := IH2S. Assume that IH2 , and consequently, ĨH2 , is generated in degree at most d.
Pick an arbitrary binomial

u− v = tei1 tei2 · · · tein − tej1 tej2 · · · tejm ∈ IH1 .

Since every edge e ∈ H1 is the disjoint union of a collection of edges ek1 , . . . , ekl ∈ H2, we

may write te −
∏l

i=1 teki ∈ IH1 . Noting that

te −
l∏

i=1

teki = (te − tek1 t∪li=2eki
)−

l−2∑
j=1

[(
j∏
i=1

teki

)
(t∪li=j+1eki

− tej+1
t∪li=j+2eki

)

]
,

one easily sees that the binomial te−
∏l

i=1 teki is generated by quadratics. In turn, this essen-
tially shows that relations in IH2 allow us to rewrite u−v in terms of edges ei1 , . . . , ein , ej1 , . . . , ejm ∈
E2 of size 2 and 3 only. The claim follows since u−v can be expressed as a binomial in ĨH2 . �

Theorem 5.6. Let H = (V,E) where V = {1, . . . , n} and E = {e ⊆ V : 2 ≤ |e| ≤ 3}. The
toric ideal of H is generated by quadrics and cubics.

In particular the image of Tan((P1)n) in higher cumulants is generated in degrees 2 and 3.

In the following proof, we examine the local combinatorics of H to illustrate how the structure
of a hypergraph reveals insights into the generating set of IH .

Proof. Let fE be a primitive binomial in IH with E a balanced edge set. Without loss of
generality, we will assume throughout the proof |Eblue| ≥ |Ered|. If E contains only 2-edges or
only 3-edges, then by [16, Theorem 14.1] fE is a linear combination of quadratics. So we will
assume E contains a 2-edge and a 3-edge.
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Since |Eblue| ≥ |Ered|, Eblue must contain at least as many 2-edges as Ered, and in order to
satisfy (*), the difference between the number of 3-edges in Ered and the number of 3-edges
in Eblue must be a multiple of 2.

Notice that for every pair e1, e2 of 3-edges (where e1 and e2 do not need to be unique), there
are three 2-edges in H, e3, e4, e5, such that

{e1, e2} tm {e3, e4, e5}
is a balanced edge set. Let B2,3 ⊂ IH be the set of all binomials arising from balanced edge
sets of this form. Then fE is a linear combination of binomials in B2,3 and fE ′ , where E ′blue
and E ′red contains the same number of 2-edges and exactly one 3-edge.

Since it suffices to consider primitive binomials, we will proceed inductively by showing that
every primitive degree n binomial in

Bh := {fE ∈ IH : |Eblue| = |Ered| and Eblue, Ered contain exactly one 3-edge each}
is a linear combination of binomials in Bh with degree less than n.

Let fE ∈ Bh such that degree fE = n > 3 and fE is primitive. Let e1 be the 3-edge in Ered.
Since fE is primitive, e1 must intersect a 2-edge e2 in Eblue. Let e2 = {v1, v2} where v1 ∈ e1.

The edge e2 intersects at most one other edge of Ered besides e1. We will examine the possible
intersections of e2 and Ered in order to find splitting sets of E that satisfy one of the conditions
listed in Proposition 5.3. For illustrations of Case 1 and Case 3 see Figures 5 and 6. In all three
cases, we will construct S, Γ1 and Γ2 such that S is a splitting set of E with an associated
decomposition (Γ1, S, Γ2) which satisfies the properties of condition i) in Theorem 5.3. In
fact, fE will be a linear combination of fΓ1 and fΓ2 , both of which have strictly lower degree
than fE . Furthermore, since the blue and red parts of Γ1 and Γ2 will contain the same number
of 2 and 3-edges, it follows that fΓ1 , fΓ2 ∈ Bh.
Case 1: The edge e1 = e2 ∪ {v3} = {v1, v2, v3} for some v3 ∈ V (E).
Since v3 /∈ e2 and |Eblue| = |Ered|, there must be a 2-edge e3 ∈ Ered such that v3 /∈ e3 in order
for (*) to hold. Let e3 = {v4, v5} and e4 = {v3, v4, v5}. The sets S, Γ1 and Γ2 in this case are:

S = {e4}
Γ1 = (Eblue − {e2}) tm ((Ered − {e1, e3}) t {e4})
Γ2 = {e2, e4} tm {e1, e3}.

!"#
!$#

!%# !&#

Figure 5. Case 1

!"#

!$##

!%#

!&#

Figure 6. Case 3

Case 2: The edge e1 = {v1, v3, v4} for some v3, v4 ∈ V (E) and there is a 2-edge e3 ∈ Ered such
that e3 = {v2, v3}.
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Since v3 /∈ e2, degblue(v3; E) = degred(v3; E) ≤ n− 1 and, thus, there exists a 2-edge e4 ∈ Ered
such that v3 /∈ e4. Let e4 = {v5, v6}.
Now let e5 = {v3, v4, v5} and e6 = {v3, v6}. The sets S, Γ1 and Γ2 in this case are:

S = {e5, e6}
Γ1 = (Eblue − {e2}) tm ((Ered − {e1, e3, e4}) t {e5, e6})
Γ2 = {e2, e5, e6} tm {e1, e3, e4}.

Case 3: There is a 2-edge e3 ∈ Ered such that v2 ∈ e3 and e2 ∩ e3 = ∅. In this case, let
e4 = (e1 − {v1}) ∪ (e3 − {v2}). The sets S, Γ1 and Γ2 in this case are:

S = {e4}
Γ1 = (Eblue − {e2}) tm ((Ered − {e1, e3}) t {e4})
Γ2 = {e2, e4} tm {e1, e3}.

�
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