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SYNDETIC SUBMEASURES AND PARTITIONS OF G-SPACES AND GROUPS

TARAS BANAKH, IGOR PROTASOV, SERGIY SLOBODIANIUK

Abstract. We prove that for every k ∈ N each countable infinite group G admits a partition G = A ∪B into
two sets which are k-meager in the sense that for every k-element subset K ⊂ G the sets KA and KB are not
thick. The proof is based on the fact that G possesses a syndetic submeasure, i.e., a left-invariant submeasure
µ : P(G) → [0, 1] such that for each ε > 1

|G|
and subset A ⊂ G with µ(A) < 1 there is a set B ⊂ G \ A such

that µ(B) < ε and FB = G for some finite subset F ⊂ G.

In this paper we continue the studies [7]–[13] of combinatorial properties of partitions of G-spaces and
groups.

By a G-space we understand a non-empty set X endowed with a left action of a group G. The image of a
point x ∈ X under the action of an element g ∈ G is denoted by gx. For two subsets F ⊂ G and A ⊂ X we
put FA = {fa : f ∈ F, a ∈ A} ⊂ X .

1. Prethick sets in partitions of G-spaces

A subset A of a G-space X is called

• large if FA = X for some finite subset F ⊂ G;
• thick if for each finite subset F ⊂ G there is a point x ∈ X with Fx ⊂ A;
• prethick if KA is thick for some finite set K ⊂ G.

Now we insert number parameters in these definitions. Let k,m ∈ N. A subset A of a G-space X is called

• m-large if FA = X for some subset F ⊂ G of cardinality |F | ≤ m;
• m-thick if for each finite subset F ⊂ G of cardinality |F | ≤ m there is a point x ∈ X with Fx ⊂ A;
• (k,m)-prethick if KA is m-thick for some set K ⊂ G of cardinality |K| ≤ k;
• k-prethick if KA is thick for some set K ⊂ G of cardinality |K| ≤ k;
• k-meager if A is not k-prethick (i.e., KA is not thick for any subset K ⊂ G of cardinality |K| ≤ k).

In the dynamical terminology [6, 4.38], large subsets are called syndetic and prethick subsets are called
piecewise syndetic. We note also that these notions can be defined in much more general context of balleans
[11], [13].

The following proposition is well-known [6, 4.41], [9, 1.3], [11, 11.2].

Proposition 1.1. For any finite partition X = A1 ∪ · · · ∪ An of a G-space X one of the cells Ai is prethick
and hence k-prethick for some k ∈ N.

For finite groups the number k in this proposition can be bounded from above by n(ln( |G|
n
)+1). We consider

each group G as a G-space endowed the natural left action of G.

Proposition 1.2. Let G be a finite group and n, k ∈ N be numbers such that k ≥ n ·
(
ln( |G|

n
) + 1

)
. For any

n-partition G = A1 ∪ · · · ∪ An of G one of the cells Ai is k-large and hence k-prethick.

Proof. One of the cells Ai of the partition has cardinality |Ai| ≥
|G|
n
. Then by [15] or [2, 3.2], there is a subset

B ⊂ G of cardinality |B| ≤ |G|
|Ai|

(ln |Ai| + 1) ≤ n(ln( |G|
n
) + 1) ≤ k such that G = BAi. It follows that the set

Ai is k-large and hence k-prethick. �

For G-spaces we have the following quantitative version of Proposition 1.1.
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Proposition 1.3. Let m,n ∈ N. For any n-partition X = A1 ∪ · · · ∪An of a G-space X one of the cells Ai is
(mn−1,m)-prethick in X.

Proof. For n = 1 the proposition is trivial. Assume that it has been proved for some n and take any partition
X = A0 ∪ · · · ∪ An of X into (n + 1) pieces. If the cell A0 is (1,m)-prethick, then we are done. If not,
then there is a set F ⊂ G of cardinality |F | ≤ m such that Fx 6⊂ A0 for all x ∈ X . This implies that
x ∈ F−1(A1 ∪ · · · ∪ An) and then by the inductive assumption, there is an index 1 ≤ i ≤ n such that the set
F−1Ai is (m

n−1,m)-prethick. The latter means that there is a subset E ⊂ G of cardinality |E| ≤ mn−1 such
that EF−1Ai is m-thick. Since |EF−1| ≤ |E| · |F | ≤ mn−1m = mn, the set Ai is (m

n,m)-prethick. �

Looking at Proposition 1.3 it is natural to ask what happens for m = ω. Is there any hope to find for every
n ∈ N a finite number kn such that for each n-partition X = A1 ∪ · · · ∪ An some cell Ai of the partition is
kn-prethick? In fact, G-spaces with this property do exist.

Example 1.4. Let X be an infinite set endowed with the natural action of the group G = SX of all bijections
of X. Then each subset A ⊂ X of cardinality |A| = |X | is 2-large, which implies that for each finite partition
X = A1 ∪ · · · ∪ An one of the cells Ai has cardinality |Ai| = |X | and hence is 2-large and 2-prethick.

The action of the normal subgroup FSX ⊂ SX consisting of all bijections f : X → X with finite support
supp(f) = {x ∈ X : f(x) 6= x} has a similar property.

Example 1.5. Let X be an infinite set endowed with the natural action of the group G = FSX of all finitely
supported bijections of X. Then each infinite subset A ⊂ X is thick, which implies that for each finite partition
X = A1 ∪ · · · ∪ An one of the cells Ai is infinite and hence is thick and 1-prethick.

However the G-spaces described in Examples 1.4 and 1.5 are rather pathological. In the next section we
shall show that each G-space admitting a syndetic submeasure for every k ∈ N can be covered by two k-meager
(and hence not k-prethick) subsets. In Section 6 using syndetic submeasures we shall prove that each countable
infinite group admits a partition into two k-meager subsets for every k ∈ N.

2. Syndetic submeasures on G-spaces

A function µ : P(X) → [0, 1] defined on the family of all subsets of a G-space X is called

• G-invariant if µ(gA) = µ(A) for each g ∈ G and a subset A ⊂ X ;
• monotone if µ(A) ≤ µ(B) for any subsets A ⊂ B ⊂ G;
• subadditive if µ(A ∪B) ≤ µ(A) + µ(B) for any sets A,B ⊂ X ;
• additive if µ(A ∪B) = µ(A) + µ(B) for any disjoint sets A,B ⊂ X ;
• a submeasure if µ is monotone, subadditive, and µ(∅) = 0, µ(X) = 1;
• a measure if µ is an additive submeasure;
• a syndetic submeasure if µ is a G-invariant submeasure such that for each subset A ⊂ X with µ(A) < 1
and each ε > 1

|X| there is a large subset L ⊂ X \A of submeasure µ(L) < ε.

In this definition we assume that 1
|X| = 0 if the G-space X is infinite.

Proposition 2.1. A finite G-space X possesses a syndetic submeasure if and only if X is transitive.

Proof. If X is transitive, then the counting measure µ : P(X) → [0, 1], µ : A 7→ |A|/|X |, is syndetic.
Now assume conversely that a finite G-space X admits a syndetic submeasure µ : P(X) → [0, 1]. If X is

a singleton, then X is transitive. So, we assume that X contains more than one point. Since the empty set
A = ∅ has submeasure µ(A) = 0 < 1, for the number ε = 1

|X|−1 > 1
|X| there is a large subset L ⊂ X \A = X

of submeasure µ(L) < ε. It follows that L, being large in X , has non-empty intersection with each orbit Gx,
x ∈ X . Replacing L by a smaller subset we can assume that L meets each orbit in exactly one point. For every
point x ∈ L we can find a finite subset Fx ⊂ G of cardinality |Gx| − 1 such that Fxx = Gx \ {x}. Then the
set F = {1G} ∪

⋃
x∈L Fx has cardinality |F | = 1+

∑
x∈L(|Gx| − 1) = 1− |L|+

∑
x∈L |Gx| = 1− |L|+ |X | and

FL = X . By the subadditivity and the G-invariance of the submeasure µ, we get

1 = µ(FL) ≤ |F | · µ(L) < |F | · ε =
|F |

|X | − 1
=

1− |L|+X

|X | − 1
,

which implies |L| = 1. This means that X has exactly one orbit and hence is transitive. �
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For G-spaces admitting a syndetic submeasure we have the following result completing Propositions 1.1–1.3.

Theorem 2.2. Let G be a countable group and X be an infinite G-space possessing a syndetic submeasure
µ : P(X) → [0, 1]. Then for every k ∈ N there is a partition X = A ∪B of X into two k-meager subsets.

Proof. Fix any k ∈ N and choose an enumeration (Kn)
∞
n=1 of all k-element subsets of G.

Using the definition of a syndetic submeasure, we can inductively construct two sequences (An)
∞
n=1 and

(Bn)
∞
n=1 of large subsets of X satisfying the following conditions for every n ∈ N:

(1) An ⊂ X \
⋃

i<n K
−1
n KiBi;

(2) µ(An) <
1

k22n ;

(3) Bn ⊂ X \
⋃

i≤n K−1
n KiAi;

(4) µ(Bn) <
1

k22n .

At each step the choice of the set An is possible as

µ(
⋃

i<n

K−1
n KiBi) ≤

∑

i<n

∑

x∈K−1

n Ki

µ(xBi) =
∑

i<n

|K−1
n Ki| · µ(Bi) ≤

∑

i<n

k2
1

k22i
< 1

by the subadditivity of µ. By the same reason, the set Bn can be chosen.

After completing the inductive construction, we get the disjoint sets A =
⋃∞

n=1 KnAn and B =
⋃∞

n=1 KnBn.
It remains to check that the sets A and X \ A are k-meager. Given any k-element subset K ⊂ G we need

to prove that the sets KA and K(X \A) are not thick. Find n ∈ N such that Kn = K−1.
Since the set KnBn is disjoint with A, the large set Bn is disjoint with K−1

n A = KA, which implies that
X \KA is large and KA is not thick.

Next, we show that the set K(X \ A) = K−1
n (X \ A) is not thick. We claim that An ⊂ X \K−1

n (X \ A).
Assuming the converse, we can find a point a ∈ An ∩K−1

n (X \ A). Then Kna intersects X \ A, which is not
possible as Kna ⊂ KnAn ⊂ A. So, the set X \K(X \ A) ⊃ An is large, which implies that K(X \ A) is not
thick. �

3. Toposyndetic submeasures on G-spaces

In light of Theorem 2.2 it is important to detect G-spaces possessing a syndetic submeasure. We shall find
such spaces among G-spaces possessing a toposyndetic submeasure. To define such submeasures, we need to
recall some information from Measure Theory.

Let µ : P(X) → [0, 1] be a submeasure on a set X . A subset A ⊂ X is called µ-measurable if µ(B) =
µ(B ∩ A) + µ(B \ A) for each subset B ⊂ X . By (the proof of) [4, 2.1.3], the family Aµ of all µ-measurable
subsets of X is an algebra (called the measure algebra of µ) and the restriction µ|Aµ is additive in the sense
that µ(A ∪B) = µ(A) + µ(B) for any disjoint µ-measurable sets A,B ∈ Aµ.

A G-invariant submeasure µ : P(X) → [0, 1] on a G-space X will be called toposyndetic if Aµ ∩ τ is a base
of some G-bounded G-invariant regular topology τ on X . The G-boundedness of the topology τ means that
each non-empty open set U ∈ τ is large in X . The G-boundedness of τ implies the density of all orbits Gx,
x ∈ X , in the topology τ .

Theorem 3.1. If a G-space X admits a toposyndetic submeasure, then each non-empty G-invariant subspace
Y ⊂ X possesses a syndetic submeasure.

Proof. Let µ : P(X) → [0, 1] be a toposyndetic submeasure on X and τ be a G-bounded G-invariant Tychonoff
topology on X such that Aµ ∩ τ is a base of the topology τ .

Fix any non-empty G-invariant subspace Y ⊂ X . The G-boundedness of the topology τ implies that Y is
dense in the topological space (X, τ). If the regular topological space (X, τ) has an isolated point x, then by
the G-boundedness of the topology τ for the open set U = {x} there is a finite set F ⊂ G with X = FU ⊂ Gx,
which means that X is a finite transitive space. By the density of Y in X , Y = X and by Proposition 2.1, Y
possesses a syndetic submeasure.

So, we assume that the topological space (X, τ) has no isolated points. The G-invariant submeasure µ
induces a G-invariant submeasure λ : P(Y ) → [0, 1] defined by λ(A) = µ(Ā) for every subset A ⊂ Y , where
Ā is the closure of A in the topological space (X, τ). To see that the submeasure λ is syndetic, fix any
ε < 1

|Y | = 0 and any subset A ⊂ Y with λ(A) < 1. Then µ(Ā) = λ(A) < 1, which implies that X \ Ā is an
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open non-empty subset of X . Since Aµ ∩ τ is a base of the topology τ , there is a non-empty µ-measurable
open set U ⊂ X \ Ā ⊂ X \ A. Since the topological space (X, τ) has no isolated points, we can fix pairwise
disjoint non-empty open sets U1, . . . , Un ⊂ U for some integer number n > 1/ε. Since Aµ ∩ τ is a base of the
topology τ , we can additionally assume that these open sets U1, . . . , Un are µ-measurable, which implies that∑n

i=1 µ(Ui) ≤ 1 and hence µ(Ui) ≤
1
n
< ε for some i ≤ n. By the regularity of the topological space (X, τ), the

open set Ui contains the closure V̄ of some non-empty open set V ⊂ X . The G-boundedness of X guarantees
that V is large in X and hence V ∩ Y is large in Y . Also λ(V ∩ Y ) = µ(V ∩ Y ) ≤ µ(V̄ ) ⊂ µ(Ui) < ε. This
means that the submeasure λ on Y is syndetic. �

Many examples of G-spaces having a toposyndetic submeasure occur among subspaces of minimal compact
measure G-spaces. By a compact (measure) G-space we understand a G-space X endowed with a compact
Hausdorff G-invariant topology τX (and a G-invariant probability Borel σ-additive measure λX : B(X) → [0, 1]
defined on the σ-algebra B(X) of Borel subsets of X). A compact G-space X is called minimal if each orbit
Gx, x ∈ X , is dense in X .

Theorem 3.2. If (X, τX , λX) is a minimal compact measure G-space, then each non-empty G-invariant sub-
space Y of X possesses a (topo)syndetic submeasure.

Proof. By the minimality of X , the G-invariant subspace Y is dense in X . Let τ = {U ∩ Y : U ∈ τX} be
the induced topology on Y . The G-invariant measure λX : B(X) → [0, 1] induces a G-invariant submeasure
µ : P(Y ) → [0, 1] defined by the formula µ(A) = λX(Ā) for A ⊂ Y , where Ā denotes the closure of A in the
compact space (X, τX). To prove that the submeasure µ is toposyndetic, it remains to prove that the topology
τ is G-bounded and Aτ ∩ τ is a base of the topology τ .

Consider the algebra AX = {A ⊂ X : λX(∂A) = 0} consisting of subsets A ⊂ X whose boundary ∂A in
X have measure λX(∂A) = 0, and let AY = {A ∩ Y : A ∈ AX}. It can be shown that each set A ⊂ AY is
µ-measurable and AY ∩ τ ⊂ Aµ ∩ τ is a base of the topology τ . The G-boundedness of the topology τ on Y is
proved in the following lemma. Therefore, µ is a toposyndetic submeasure on X . By the proof of Theorem 3.1,
the submeasure µ is syndetic. �

Lemma 3.3. For each minimal compact G-space X, the induced topology on each G-invariant subspace Y ⊂ X
is G-bounded.

Proof. To show that the induced topology on Y is G-bounded, fix any non-empty open subset U ⊂ Y . Find

an open set Ũ ⊂ X such that Ũ ∩ Y = U . By the regularity of the compact Hausdorff space X , there is a
non-empty open subset V ⊂ X with V̄ ⊂ Ũ .

By a classical Birkhoff theorem in Topological Dynamics (see e.g. Theorem 19.26 [6]), the minimal compact
G-space X contains a uniformly recurrent point y ∈ X . The uniform recurrence of y means that for each
open neighborhood Oy ⊂ X of y the set {g ∈ G : gy ∈ Oy} is large in G. By the density of the orbit Gy
there is s ∈ G with sy ∈ V . Then s−1V is a neighborhood of y and by the uniform recurrence of y, the
set L = {g ∈ G : gy ∈ s−1V } is large in G. Consequently, we can find a finite subset F ⊂ G such that
G = FL. Then Gy = FLy ⊂ Fs−1V , which implies that the open set Fs−1V is dense in X . Consequently,
X = Fs−1V̄ ⊂ Fs−1Ũ and Y = Fs−1(Y ∩ Ũ) = Fs−1U , witnessing that the topology of Y is G-bounded. �

4. Groups possessing a toposyndetic submeasure

In this section we shall detect groups possessing a toposyndetic submeasure. Each groupG will be considered
as a G-space endowed with the natural left action of the group G. A group G is called amenable if it admits a
G-invariant additive measure µ : P(G) → [0, 1].

We shall say that a G-space X has a free orbit if for some x ∈ X the map αx : G → X , αx : g 7→ gx, is
injective.

Theorem 4.1. A group G admits a toposyndetic submeasure if one of the following conditions holds:

(1) there is a minimal compact measure G-space X with a free orbit;
(2) G is a subgroup of a compact topological group;
(3) G is countable;
(4) G is amenable.
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Proof. 1. Assume that (X, τX , λX) is a minimal compact measure G-space with a free orbit. In this case there
is a point x ∈ X for which the map αx : G → Gx ⊂ X , αx : g 7→ gx, is injective. This map allows us to define
a Tychonoff G-invariant topology

τ = {α−1
x (U) : U ∈ τX}

on the group G. By Lemma 3.3, the topology τ is G-bounded.
Since the orbit Gx is dense in X (which follows from the minimality of X), the formula

µ(A) = λ(Ax) for A ⊂ G

determines a G-invariant submeasure on G. Observe that B = {U ∈ τX : λ(Ū) = λ(U)} is a base of the
topology τX on X and A = {α−1

x (U) : U ∈ B} is a base of the topology τ on G. It can be verified that each
set A ∈ A is µ-measurable, which implies that Aµ ∩ τ ⊃ A is a base of the topology τ . This means that the
submeasure µ is toposyndetic.

2. The second statement follows immediately from the first statement and the well-known fact that each
compact topological group carries an invariant probability Borel measure (namely, the Haar measure).

3. The third statement follows from the first one an a recent deep result of B.Weiss [16] stating that for
each countable group G there is a compact minimal measure G-space with a free orbit.

4. The fourth statement follows from the first statement and the well-known fact [5, §449] stating for any
amenable group G, each compact G-space X possesses a G-invariant probability Borel measure. �

Problem 4.2. Is the class of groups admitting a toposyndetic submeasure hereditary with respect to taking
subgroups?

Problem 4.3. Has every group a toposyndetic submeasure?

Problem 4.4. Has the group SX of all bijections of an infinite set X a toposyndetic submeasure?

5. Groups possessing a syndetic submeasure

In this section we shall detect groups possessing a syndetic submeasure. By Theorem 3.1 the class of such
groups contains all groups possessing a toposyndetic submeasure, in particular, all countable groups.

Theorem 5.1. A group G possesses a syndetic submeasure if one of the following conditions is satisfied:

(1) there is an infinite transitive G-space possessing a syndetic submeasure;
(2) there is an infinite minimal compact measure G-space;
(3) G admits a homomorphism onto an infinite group possessing a (topo)syndetic submeasure;
(4) G admits a homomorphism onto a countable infinite group;
(5) G contains an amenable infinite normal subgroup.

Proof. 1. Assume that X is an infinite transitive G-space possessing a syndetic submeasure λ : P(X) → [0, 1].
Fix any point x ∈ X and consider the map αx : G → X , αx : g 7→ gx, which is surjective (by the transitivity
of the G-space X). One can check that the syndetic submeasure λ on X induces a syndetic submeasure
µ : P(G) → [0, 1] defined by µ(A) = λ(αx(A)) = λX(Ax) for A ⊂ G.

2. Let (X, τX , µX) be an infinite minimal compact measure G-space. By the minimality, the orbit Gx of
any point x ∈ X is dense in (X, τX). Then the formula µ(A) = µX(Ax), A ⊂ X , determines a G-invariant
submeasure µ : P(G) → [0, 1] on the group G. We claim that the submeasure µ is syndetic. Given any ε > 1

|G|

and a set A ⊂ G with µ(A) < 1, we should find a large set L ⊂ G\A with µ(L) < ε. Since µX(Ax) = µ(A) < 1,
the closed subset Ax is not equal to X . By the minimality, the infinite compact G-space (X, τX) has no isolated
points, which allows us to find an open non-empty set U ⊂ X \Ax such that µX(U) < ε. By Lemma 3.3, the
topology τX is G-bounded, which implies that the set U ⊂ X is large in X and hence V = α−1

x (U) ⊂ X \A is
large in G and has submeasure µ(V ) ≤ µX(Ū) < ε.

3. The third statement follows from the first statement and Theorem 3.1.

4. The fourth statement follows from the third statement and Theorem 4.1(3).

5. Suppose that the group G contains a normal infinite amenable subgroup H . Denote by Pω(H) the
set of finitely supported probability measures on H . Each measure µ ∈ Pω(H) can be written as a convex
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combination µ =
∑n

i=1 αiδxi
of Dirac measures concentrated at points xi of H . This allows us to identify

Pω(H) with a convex subset of the Banach space ℓ1(H) endowed with the norm ‖f‖ =
∑

x∈H |f(x)|.
We claim that the function

σH : P(G) → [0, 1], σH : A 7→ inf
µ∈Pω(H)

sup
y∈G

µ(Ay),

is a syndetic left-invariant submeasure on G.
First we prove that σH is left-invariant. Given any x ∈ G and A ⊂ G it suffices to check that σH(xA) ≤

σH(A)+ε for every ε > 0. The definition of σH guarantees that σH is right-invariant. Consequently, σH(xA) =
σH(xAx−1). By the definition of σH(A), there is a finitely supported probability measure µ ∈ Pω(H) such that
supy∈G µ(Ay) < σH(A) + ε. Write µ as a convex combination µ =

∑n
i=1 αiδai

of Dirac measures concentrated

at points a1, . . . , an ∈ H . Since H is a normal subgroup of G, the probability measure µ′ =
∑n

i=1 αiδxaix−1

belongs to Pω(H). Taking into account that for every y ∈ G

µ′(xAx−1y) = µ′(xAx−1yxx−1) = µ(Ax−1yx),

we conclude that

σH(xAx−1) ≤ sup
y∈G

µ′(xAx−1y) ≤ sup
y∈G

µ(Ax−1yx) < σH(A) + ε.

So, σH is left-invariant.

Next, we prove that σH is subadditive. Given two subsets A,B ⊂ G, it suffices to check that σH(A ∪B) ≤
σH(A) + σH(B) + 3ε for every ε > 0. By the definition of the numbers σH(A) and σH(B), there are finitely
supported probability measures µA, µB ∈ Pω(H) such that supy∈G µA(Ay) < σH(A)+ε and supy∈G µB(By) <
σH(By) + ε. By Emerson’s characterization of amenability [3, 1.7], for the probability measures µA and µB

there are probability measures µ′
A, µ

′
B ∈ Pω(H) such that

sup
C⊂H

|µA ∗ µ′
A(C) − µB ∗ µ′

B(C)| ≤ ‖µA ∗ µ′
A − µB ∗ µ′

B‖ < ε.

Write the measures µA, µB, µ
′
A and µ′

B as convex combinations of Dirac measures:

µA =
∑

i

αiδxi
, µ′

A =
∑

j

α′
jδx′

j
, µB =

∑

i

βiδyi
, µ′

B =
∑

j

β′
jδy′

i
.

Then µA ∗ µ′
A =

∑
i,j αiα

′
jδxix

′

j
and µB ∗ µ′

B =
∑

i,j βiβ
′
jδyiy

′

j
. For every y ∈ G we get

µA ∗ µ′
A(Ay) =

∑

i,j

αiα
′
jδxix

′

j
(Ay) =

∑

j

α′
j

∑

i

αiδxi
(Ay(x′

j)
−1) =

=
∑

j

α′
j µA(Ay(xj)

′−1) ≤
∑

j

α′
j sup
z∈G

µA(Az) = sup
z∈G

µA(Az) < σH(A) + ε.

By analogy we can prove that µB ∗ µ′
B(By) ≤ σH(B) + ε. Now consider the measure ν = µA ∗ µ′

A and observe
that for every y ∈ B we get

ν(By) = µA ∗ µ′
A(By) ≤ µB ∗ µ′

B(By) + ‖µA ∗ µ′
A − µB ∗ µ′

B‖ < σH(B) + ε+ ε.

Then

σH(A ∪B) ≤ sup
y∈G

ν((A ∪B)y) ≤ sup
y∈G

ν(Ay) + sup
y∈G

ν(By) < σH(A) + ε+ σH(B) + 2ε = σH(A) + σH(B) + 3ε,

which proves the subadditivity of σH .

Finally we prove that the left-invariant submeasure σH on G is syndetic. Fix a subset A ⊂ G of submeasure
σH(A) < 1 and take an arbitrary ε > 0. Since σH(A) < 1, there is a finitely supported measure µ ∈ Pω(H)
such that supy∈G µ(Ay) < 1. Write µ as the convex combination µ =

∑n
i=1 αiδxi

of Dirac measures. We can
assume that each coefficient αi is positive. Then the finite set F = {x1, . . . , xn} coincides with the support
supp(µ) of the measure µ.

It follows that for every y ∈ G we get µ(Ay) < 1 and hence F = supp(µ) 6⊂ Ay. This ensures that the set
Fy−1 meets the complement X \ A and hence y−1 ∈ F−1(G \ A). So, G = F−1(G \ A) and the set X \ A
is large in G. Now take any finite subset E ⊂ H of cardinality |E| > 1/ε. Using Zorn’s Lemma, choose a
maximal subset B ⊂ G\A which is E-separated in the sense that Ex∩Ey = ∅ for any distinct points x, y ∈ B.
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The maximality of the set B guarantees that for each x ∈ G \ A the set Ex meets EB, which implies that
G \A ⊂ E−1EB and G = F−1(G \A) = F−1E−1EB. This means that the set B is large in G. We claim that
|E−1 ∩By| ≤ 1 for each y ∈ G. Assume conversely that E−1 ∩By contains two distinct points by and b′y with
b, b′ ∈ B. Then b′b−1 = b′y(by)−1 ∈ E−1E and hence Eb′ ∩Eb 6= ∅, which is not possible as B is E-separated.
Now consider the uniformly distributed probability measure ν = 1

|E|

∑
x∈E−1 δx ∈ Pω(H) and observe that

σH(B) ≤ supy∈G ν(By) ≤ |E−1∩By|
|E| ≤ 1

|E| < ε, which means that the submeasure σH is syndetic. �

Remark 5.2. For an infinite amenable group G and the subgroup H = G the syndetic submeasure σH (used
in the proof of Theorem 5.1(5)) coincides with the right Solecki submeasure σR introduced in [14] and studied
in [1].

Theorem 5.1(5) implies:

Corollary 5.3. The group SX of bijections of any set X possesses a syndetic submeasure.

Proof. If X is finite, then the finite group SX has a syndetic submeasure according to proposition 2.1. So,
we assume that the set X is infinite. Observe that the subgroup FSX of finitely supported permutations of
X is locally finite and hence amenable. By Theorem 5.1(5) the group SX admits a syndetic submeasure as it
contains the infinite amenable normal subgroup FSX . �

Problem 5.4. Has every group a syndetic submeasure?

Problem 5.5. Has the quotient group Sω/FSω a syndetic submeasure?

6. Partitions of groups into k-meager pieces

Now we return to the problem of partitioning groups into k-meager pieces, which was posed and partly
resolved in [12]. Combining Theorems 2.2 and 5.1(5), we get:

Theorem 6.1. Each countable infinite group G for every k ∈ N admits a partition into two k-meager subsets.

This theorem admits a self-generalization.

Corollary 6.2. If a group G has a countable infinite quotient group, then for every k ∈ N the group G admits
a partition into two k-meager subsets.

Proof. Let h : G → H be a homomorphism of G onto a countable infinite group H . By Theorem6.1, for
every k ∈ N the countable group H admits a partition H = A ∪ B into two k-meager subsets. Then G =
h−1(A) ∪ h−1(B) is a partition of the group G into two k-meager subsets. �

Corollary 6.2 gives a partial answer to the following (still open) problem posed in and partially answered in
[12].

Problem 6.3. Is it true that each infinite group G for every k ∈ N admits a partition into two k-meager sets?
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