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Abstract

A group G is a vGBS group if it admits a decomposition as a finite

graph of groups with all edge and vertex groups finitely generated and free

abelian. We describe the compatibility JSJ decomposition over abelian

groups. We prove that in general this decomposition is not algorithmically

computable.

1 Introduction

The theory of JSJ splittings starts with the work of Jaco-Shalen and Johans-
son on orientable irreducible closed 3-manifolds giving a canonical family of
2-dimensional tori. Kropholler first introduced the notion into group theory
giving a JSJ decomposition for some Poincaré duality groups [10]. Then Sela
gave a construction for torsion-free hyperbolic groups [13]. This notion has
been more generally developed by Rips and Sela [12], Dunwoody and Sageev
[4], Fujiwara and Papasoglu [6] for various classes of groups.

However, in general, given a group G and a class of subgroups, there is not
a unique JSJ splitting of G over these subgroups. Guirardel and Levitt define
in [8] the JSJ deformation spacse which generalize the previous notions. They
also introduce in [9] a new object called the compatibility JSJ splitting of G
over these subgroups. Unlike the usual JSJ splittings, the compatibility JSJ
splitting is unique, and so is invariant under is automorphisms. However, it is
often harder to construct it, the purpose of this article is to give some positive
and negative results about the constructibility of this object.

In this paper we focus on the construction of the compatibility JSJ tree over
abelian groups for the following class of groups. Let G be a group acting on a
simplicial tree T with free abelian vertex (and edge) stabilizers. We call such a
group a Generalized Baumslag-Solitar group of variable rank, or vGBS group,
and such a tree T a vGBS (G-)tree. We call GBSn the collection of groups
which admits an action on a simplicial tree with vertex stabilizers Zn with n a
fixed integer. This two classes of groups generalize the one of GBS1 groups (or

1

http://arxiv.org/abs/1212.3125v2


GBS groups) introduced by Forester in [5] as examples of groups for which we
do not have a canonical (usual) JSJ tree.

Recall that an element of G is elliptic if it fixes a vertex of T , and hyperbolic
otherwise. Given a hyperbolic element g ∈ G, it acts by translation on a line Ag

of T called the axis of g or its characteristic space. The characteristic space of
an elliptic element is the set of its fixed points. A subgroup of G is elliptic, if it
is included in the stabilizer of a vertex. A subgroup of G is universally elliptic
if it is elliptic in every G-tree. With no restriction on the G-trees, almost any
tree can be universally elliptic, we thus consider G-trees whose edge groups are
included in a set A of subgroups of G. We then talk about G-trees over A, and
a subgroup is A-universally elliptic if it is elliptic in every G-tree over A.

Given two G-trees T and T ′, the tree T refines T ′ if T ′ may be obtained from
T by equivariantly collapsing edges. The tree T dominates T ′ if every elliptic
group of T is elliptic in T ′. In particular, if T refines T ′ then it also dominates
it. We say that T and T ′ are compatible if there exists a G-tree T ′′ which refines
both T and T ′. A G-tree is A-universally compatible if it is compatible with
every G-tree (over A).

A G-tree over A is a JSJ tree over A if it is A-universally elliptic and domi-
nates every universally elliptic G-tree over A. A G-tree over A is a compatibility
JSJ tree overA if it is A-universally compatible and dominates every universally
compatible G-tree over A.

The present paper splits into two parts. We first describe the compatibility
JSJ tree over Zn groups of the GBSn groups. In the second part, we describe
the compatibility JSJ tree over abelian groups of the vGBS groups.

Let G be a GBSn group. We propose to describe the compatibility JSJ tree
over Zn groups in the following sense. Starting from a JSJ tree T of G over Zn

groups (except for some degenerated cases, any GBSn tree is a JSJ tree [1]), we
explicit a set of edges and a set of vertices such that the compatibility JSJ tree
is obtained by expanding (in a precise way) these vertices and collapsing these
edges in T .

The compatibility relation is very restrictive. For example, two G-trees with
an isomorphic quotient graph of groups may be not compatible. Take the GBS
group Z∗2ZZ∗4ZZ. Its JSJ deformation space contains infinitely many reduced
trees and any reduced JSJ tree of this deformation space have same isomorphic
quotient graphs of groups. However, each of these reduced JSJ tree is compatible
with exactly two others reduced JSJ trees.

Here are the two main examples of edges to collapse. The labelled graphs
represent GBS groups, and must be understood in the following manner: all
vertices and edges carry the infinite cyclic group Z, the number n at the end
of each edge indicates that the injection of the edge group into the group of its
endpoint is k 7→ nk.

In Figure 1, the two graphs of groups have isomorphic fundamental group,
and are related by a slide along the edge denoted by e. In this case, the edge e
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is called slippery (see Section 2 for the complete definition) and is collapsed in
the compatibility JSJ. In fact, after collapsing the edge e, we exactly obtain a
compatibility JSJ over group Z.

bbbb

b

e e

b

3 32 2
6 4 = 6

3 · 2

22

Figure 1: The two graphs of groups are related by a slide.

In Figure 2, the two graphs have isomorphic fundamental groups, and are
related by a deformation called induction along e (see definition in Section 2).
In this case, the edge e is called strictly ascending. Collapsing e, we obtain a
compatibility JSJ.

b b

e e

1 6 1 6

bb

5 10

2 2

Figure 2: The two graphs of groups are related by an induction.

Given a usual abelian JSJ tree of a GBSn group, we obtain a universally
compatible tree by collapsing four types of edges. The definitions of these edges
is technical and described in Section 2. .

Proposition 1.1. Let G be a GBSn group. Let T be a reduced abelian JSJ
tree of G. Let E be the set of edges containing the vanishing edges of T , the
potentially strictly ascending edges of T , the non-ascending slippery edges of T ,
the toric 2-slippery edges of T .

1. The tree T ′obtained from T by collapsing the edges of E is compatible with
every G-tree over Zn groups.

2. Let T ′′ be a collapse of T in which an edge of E is not collapsed. Then T ′′

is not compatible with every G-tree over Zn groups.
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However the tree T ′ is not always the compatibility JSJ tree: some vertices
could have to be expanded. Roughly speaking, some vertices could act as dead
end: no edge ”arriving” at this vertex by a slide may continue to slide further.
These vertices must be expanded in the compatibility JSJ tree in a precise way
called a blow up (see Section 2). The vertex v of Figure 3 is an example. The
top edge may slide along e or along f, but after performing one of these slides,
no new slide is allowed (except the converse one). The compatibility JSJ is
obtained by collapsing e and f (which are slippery) in the graph of groups on
the right. The complete description of dead ends is given in Section 2.

b

b b

b b

bb

3
3

5
5

1 1

2 27 7
14 14

2 2

e f e f

v

Figure 3: The edges e and f are slippery and v is a dead end.

Theorem 1.2. Let G be a GBSn group. Let T be a reduced abelian JSJ tree of
G. Call Tcomp the G-tree obtained from T by blowing up up the dead ends and
collapsing the vanishing edges of T , the p.s.a. edges of T , the non-ascending
slippery edges of T , the toric 2-slippery edges of T .

Then Tcomp is a compatibility JSJ tree over Zn groups.

This construction is algorithmic whenever no vertex group is conjugated
to one of its proper subgroup. In the general case, the decidability of the
construction is unknown.

The GBSn groups also admit splittings over Zn+1 groups. If for the usual
JSJ tree, this does not have any incidence - the abelian JSJ tree and the JSJ
tree over Zn are isomorphic -, it has one for the compatibility JSJ tree. For
example, applying Theorem 1.2, we may easily see that the compatibility JSJ
tree over Zn groups of BS(2, 2) = 〈a, t|ta2t−1 = a2〉 is the one associated to the
HNN extension, but this tree is not compatible with the tree associated to the
amalgamated product

BS(2, 2) = 〈a, s|sa2s−1 = a2〉 ∗a2=b,s=t2 〈b, t|bt = tb〉.

The incompatibility comes from the fact that the element t is hyperbolic in the
first splitting but stabilizes an edge in the second. Such an element is said to
be potentially bi-elliptic.
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In the case of vGBS groups, to obtain universally compatible tree over
abelian groups, it suffices to collapse in any JSJ tree the four types of edges de-
scribed previously, and every edge in the axis of a potentially bi-elliptic element.
Again, the obtained tree is not always the abelian compatibility JSJ tree, even
if we blow up the dead ends. Some other edges have to be expanded:

In some very specific cases (see description in Section 4), the axes of poten-
tially bi-elliptic elements must be separated from the rest of the tree, and then
the axes must be collapsed (see Figure 4).

b b

b

b b

v v

At At

b b

Figure 4: The axis At of a potentially bi-elliptic element t must be ”taken away”
from the rest of the tree.

These separations are called expansions (of inert edges). We obtain the
following theorem.

Theorem 1.3. Let G be a vGBS group. Let T be a reduced abelian JSJ tree of
G. Call E the set of non-ascending slippery, potentially strictly ascending and
toric 2-slippery edges.

We define Tab as the G-tree obtained by expanding inert edges, blowing up
dead ends, then collapsing every edge of E and the axes of potentially bi-elliptic
elements.

Then Tab is an abelian compatibility JSJ tree of G.

This gives a description of the abelian compatibility JSJ tree. However this
construction is not and cannot be algorithmic.

Theorem 1.4. There is no algorithm that constructs the abelian compatibility
JSJ tree of vGBS groups.

This inconstructibility follows from the fact that in vGBS trees, we may not
dectect whether an edge is slippery or not. We describe this problem in the last
section.

2 Preliminaries

Let G be a finitely generated group. A G-tree is a simplicial tree T equipped
with an action of G that we suppose without inversion (the stabilizer of an edge
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is included in the stabilizer of its endpoints) and minimal. Given an (oriented)
edge e, the opposite edge is denoted by ē. We denote by Ge the stabilizer of
e. We have Ge = Gē. The stabilizer of a vertex v is denoted byGv. The orbit
of a vertex v and an edge e is denoted by Gothic font v and e. Similarly the
opposite orbit of e is denoted by ē. The valency of a vertex v (or an orbit of
vertices v) is the number of orbits of edges with initial vertex in v.

An edge is reduced if its endpoints are in the same orbit under the action
of G or its stabilizer is strictly included in both stabilizers of its endpoints. An
orbit of edges is reduced if one (or equivalently every) representative is reduced.
A tree is reduced if all its edges are reduced. The deformation space DT of T is
the set of G-trees having the same set of elliptic subgroups as T . The reduced
deformation space of T is the subset of reduced trees of DT .

To collapse an orbit of edges e consists in collapsing every connected com-
ponent of edges in the orbit e to a point. This operation produces a new G-tree.
The converse of collapsing is called expanding. Given a G-tree T and an orbit
of edges e, the tree obtained by collapsing e is in the deformation space of T if
and only if e is not reduced. We may thus construct a reduced G-tree in the de-
formation space of T by collapsing one by one orbits of non-reduced edges until
the tree is reduced (we assume here that number of orbits of edges is finite).
Note that if we collapse at the same time all non reduced edges, the obtained
tree may be in a different deformation space.

Whitehead moves for G-trees In [3], Clay and Forester describe three de-
formation moves on G-trees such that any two reduced G-trees of a given de-
formation space are related by a finite sequence of these three moves, and every
intermediate tree in this sequence is reduced.

The first deformation move is the slide of an edge e along an edge f : if two
edges e and f are such that

• e is not in the orbit of f or f̄ ,
• the terminal vertex of e is equal to the initial vertex v of f ,
• the stabilizer of e is included in the stabilizer of f ,

then e may slide along f . Call w the terminal vertex of f . The new G-tree
is obtained by changing the terminal vertex of every vertex g · e in the orbit of
e from g · v to g · w (see Figure 5 for the changes on the associated graph of
groups). The case were v = w is not excluded. This move does not change the
stabilizers of vertices and edges. This move is fully determined by the data of e
and f . Note that the converse move is also a slide.

The slide of e along f will be denoted by e/f .

The second deformation move is the induction. Let e be an edge with initial
and terminal vertices v and w and A a subgroup of Gw such that
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Figure 5: Slide of e along f

• v and w are in the same orbit,
• the stabilizers Gv and Ge are equal,
• the group A contains Ge.

Then we may perform an induction on e with group A. We first add an edge
f with terminal vertex w, a new initial vertex v′ which is also the new terminal
vertex of e and with Gf = Gv′ = A. Every edge of another orbit with initial
vertex w keeps w as initial vertex. We then collapse e (see Figure 6). This
description is given around the edge e but must be made equivariantly.

This move does not change the underlying graph, but the edge e and the
vertex v have been replaced by an edge f and a vertex v′ with a distinct stabilizer
A. It is fully determined by the data of e and the group A.

The induction on the edge e with group A will be denoted iA(e) or e/e if we
do not precise the group.

b b b

b

w = v

e

e

w = v

f

v′ f

v′

Figure 6: Induction on e

If we have an inclusion of groups Ge ⊂ A ⊂ B ⊂ Gw, we may first perform
an induction on A and then an induction on B. The composition of these two
inductions is equal to the induction on B: iA(e) · iB(f) = iB(e) (where f is the
edge appearing in the induction on e).

The induction with A = Ge has no effect on the G-tree. We call this move a
trivial induction. At the opposite we may take A = Gw. In this case performing
the induction is the same as sliding along eevery edge f (not in the orbit of e
or ē) with terminal vertex v.

The converse move of an induction with any group is just an induction with
group Gw and slides along ē. Indeed from the first remark, we have iA(e) ·
iGw

(f) = iGw
(e). And by the second remark, the move iGw

(e) is the same as a
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finite sequence of slides.

By extension, performing the converse of an induction with group A consists
in performing an induction with group A and then sliding every edge around w
along ē. This move is possible whenever, for every edge g with initial vertex w
not in the orbit of e, the group A contains Gg.

The third move is the A±1-move. We first describe the A−1-move. Suppose
that e is an edge with initial and terminal vertices v and w, and that f is an
edge with terminal vertex w and initial vertex not in w, such that

• v and w are in the same orbit,
• the stabilizers Gv and Ge are equal,
• for every edge g with initial vertex w not in the orbit of e, the stabilizer of
f contains Gg.

We may then perform an A−1-move on e by first performing the converse of an
induction on e with group Gf and then collapsing f which is now non reduced
(see Figure 7 for the changes on the underlying graph of groups). We will say
that v (and v) is a vanishing vertex and f (and f) a vanishing edge.

For some technical reasons, the A−1-move is not exactly the same as the one
described in [3]: we allow here the vertex w to be of valence more than 3.

However the definition of an A-move remains the same: Let e be an edge
with initial and terminal vertices v and w and a ∈ G such that

• w = a · v (so v and w belong to the same orbit of edges),
• we have Ge ( aGea

−1.

Call F the set of the edges with initial vertex w not in the orbit of e or
ē. Performing a A-move consists in performing the two following deformations.
First expand w in an edge f with initial and terminal vertex w′ and w′′, with
Gf = Gw′′ = Ge and Gw′ = Gw and such that the initial vertex of e and the
new terminal vertex of a · e are w′′ and the initial vertices of the edges of F are
w′. Then perform an induction on e with group aGea

−1.

The A−1-move is determined by the data of the orbits of e and f , however
the A-move is determined by the data of two edges e and e′ in the same orbit
such that the terminal vertex of e is the initial edge of e′, and Ge ( Ge′ .

A A±1-move on e is denoted A±1(e) or e/e.

A move is admissible if we may perform it, if the obtained tree it is reduced,
and if it is not a trivial induction. A sequence of moves is admissible if after
performing the first n moves of the sequence the n+ 1th is admissible.

If S is an admissible sequence of moves on the G-tree T , the tree obtained
by applying S is denoted by S · T .
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v′

Figure 7: A−1-move

The number of orbits of vertices and edges in the G-trees of a reduced de-
formation space is not fixed. However, the only way to make a vertex or an
edge disappear is to perform an A−1-move. Thus if two G-trees T and T ′ are
related by a single move, we may identify the orbits of vertices and edges of T
with the ones of T ′, except for the one that vanish. Moreover if the move is not
an induction or an A±1-move, the edge and vertex stabilizers does not change,
we may then identify not only the orbits of edges but each edge. To be more
precise, let T be a G-tree, e an edge of T and m an admissible move on T such
that

• the move m is not an induction on the orbit e,
• the move m is not an A±1-move on the orbit e,
• if m is a A−1-move, its vanishing orbit of edges is not e.

We may then identify e with an edge ofm·T and this identification is equivariant.

By extension, an orbit of vertices or edges is vanishing if we may perform
an admissible sequence of moves ending by a A−1-move in which it vanishes. A
sequence of moves preserves an orbit e if no move of the sequence is anA−1-move
in which e vanishes.

As two reduced G-trees in the same reduced deformation space are related by
a finite admissible sequence of deformation moves, given two reduced G-trees T
and T ′ in the same deformation space, we may identify any non-vanishing orbit
of vertices or edges of T to one of T ′.

Edges properties Let T be a reduced G-tree. An orbit of edges e of T is
slippery if there exists an admissible sequence of moves on T , preserving e and
ending by a slide along e. The orbit e is 2-slippery if there exist an admissible
sequence S of moves on T , preserving e and two distinct orbits of edges f and f′

of S · T such that the slides f/e and f′/e are simultaneously admissible in S · T .
Note that f′ = f̄ is allowed.

An edge e of T is ascending if its endpoints are in the same orbit, and if its
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stabilizer is equal to the stabilizer of its initial vertex. It is strictly ascending if
moreover its stabilizer is strictly contained in the stabilizer of its terminal vertex.
An edge is toric if its stabilizer is equal to the stabilizer of both its endpoints.
The opposite edge of a (strictly) ascending edge is (strictly) descending.

An edge e is pre-ascending in T if its initial and terminal vertices v and v′ are
in the same orbit and if there exists t ∈ G such that t · v′ = v and tGet

−1 ( Ge.
The opposite edge of a pre-ascending edge is said to be pre-descending. The
edge e is potentially strictly ascending (or p.s.a.) if e is pre-ascending after a
finite admissible sequence of moves preserving e. Note that a strictly ascending
edge is also pre-ascending. If an edge e is such that e or ē is p.s.a. then e is said
to be p.s.a.d..

An orbit of edges is slippery, 2-slippery, pre-ascending, pre-descending, (po-
tentially) strictly ascending (or descending) or toric if one of its representative
is.

The inductions and A−1-moves may only be performed on strictly ascending
(or descending) edges. An A-move may only be performed on the pre-ascending
edges which are not ascending. Note that an A-move changes a pre-ascending
edge into a strictly ascending edge.

Figure 8 represent a Generalized Baumslag-Solitar group and is constructed
in the following way: all vertices and edges carry the infinite cyclic group Z, the
number n at the end of each edge indicate that the injection of the edge group
into the group of its endpoint is k 7→ nk.

In such a representation, pre-ascending edges and admissible slides may
be seen as divisibility relation. For example in Figure 8, the edge e is pre-
descending, the edges f and g are slippery since h may first slide along g then
along f, and h is p.s.a. since it is pre-ascending after sliding along g and f.

b

b

b e

f

g

h

2

12
3

5 3

212

3

Figure 8

Expansion Let T be a G-tree, and v a vertex of T . Take F a set of edges with
pairwise distinct orbits and initial vertex v, and H a subgroup of Gv containing
Gf for all f ∈ F . Then the expansion of v of group H and set F is the tree T̃
obtained from T by expanding v in an edge e of initial and terminal vertex ṽ
and ṽ′, such that Ge = Gṽ = H , Gṽ′ = Gv, the edges of F have initial vertex
ṽ, and every edge of initial vertex v in T and not in the orbit of any edge of F
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has initial vertex ṽ′ (see Figure 9 for the changes in the graph of groups). This
construction produces a non-reduced tree.

b
b b

f

f ′

f

f ′
v

ṽ ṽ′
e

Figure 9: Expansion of v of set {f, f ′}.

Dead ends Let T be a reduced G-tree. Let v be a non-vanishing vertex and
f an edge with initial vertex v. The vertex v is a dead end with wall f (or f) if

• Gf ( Gv,
• the edge f is slippery or p.s.a.d.,
• for every edge h with initial vertex v not in the orbit of f , we have the
equality 〈Gh, Gf 〉 = Gv,

• there exists an edge g not in the orbit of f , with initial vertex v, with
Gg ( Gv, such that for all edges h not in the orbit of f with initial vertex
v there exists a ∈ Gv such that Ga·h ⊂ Gg,
(we may notice that automatically g and f do not slide one along the other)

and if for every G-tree T ′ in the reduced deformation space of T and any rep-
resentative v′ of v in T ′, there exists an edge with initial edge v′ which has the
listed properties.

The orbit v of v is a dead end if v is a dead end.

If there exists two edges f and g with distinct orbits such that v is a dead end
with wall f and with wall g in T , then there are exactly two orbits of edges with
initial vertex v. However given another G-tree T ′ in the reduced deformation
space of T , the orbits of the walls of v in T and T ′ may differ.

For example, Figure 10 represents the two reduced graphs of groups of the
deformation space of a GBS decomposition. We may reach the right graph from
the left one by a slide of h2 along h̄1.

The vertex v is a dead end. In the graph on the left, h1 is the wall f and h̄1
is the edge orbit g as in the fourth point. In the one on the right, h̄1 is the wall
f and h̄1 plays the role of g. The edge orbit g may be non-unique since another
edge may have the same stabilizer as the one of g.

To blow up this dead end vertex v in T consists in expanding v with group
Gv and set {f} (note that in this case the expansion does not depends of the
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h2
h2
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v v

Figure 10: Example of dead end vertex.

choice of f ∈ f). Figure 11 represents the blow up of v in the left graph of Figure
10. Performing a blow-up does not change the deformation space. If the dead
end v has valence 2, we may choose equivalently one of the two edges to be the
wall. However the blow up does not depend on this choice.

b b

h2

h1

5 3

10 1 1

b

Figure 11: Blow up of a dead end vertex

3 Compatibility JSJ tree of GBSn groups over

Zn subgroups

3.1 Construction

Given a group G and any deformation space D of G, we may canonically con-
struct a G-tree associated to D, as follows.

Definition 3.1. Let T be a reduced G-tree in the deformation space D. Define
TD as the G-tree obtained from T by blowing up the dead ends and collapsing
the following edges:

• the vanishing edges of T
• the p.s.a. edges of T ,
• the non-ascending slippery edges of T ,
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• the toric 2-slippery edges of T .

The non-vanishing edge and vertice orbits of a reduced G-tree T may be
identified with another orbit in any G-tree T ′ in the same reduced deformation
space. Being a dead end vertex, being p.s.a., being slippery, and being 2-slippery
does not depend on the chosen tree in the deformation space. But a toric edge
may be changed in a non-ascending edge and vice-versa.

Note that as an edge is either non-ascending, strictly ascending (or descend-
ing) or toric, all 2-slippery edges are collapsed in TD.

Proposition 3.2. The tree TD does not depend on the choice of the reduced
tree in D taken for the construction.

Proof. By Clay-Forester [3, Corollaire 1.2], two reduced G-trees of D are related
by a finite sequence of deformation moves. We just have to show that we obtain
the same tree TD starting from two trees T and T ′ which differ by a single move.

For each move we proceed in three steps. We first prove that the set of orbits
we have to collapse is the same before or after performing the move. We then
prove that the move commutes with the collapses. Finally we prove that the
move commutes with the blow-ups.

For the first step as p.s.a. edges are collapsed, we have to prove that if a
non-ascending slippery edge is turned into a toric edge, then it is 2-slippery.

1. Assume that T and T ′ differ by a slide of an edge f along another edge e.

Call v the initial vertex of f . The only edge which may possibly become toric
is f . If f is non-ascending slippery, then as f is reduced we have Gf ( Gv, in
T , thus also in T ′. Then f is not toric in T ′. Thus no non-ascending slippery
edge may be turned into a toric edge. Thus the edges in T and T ′ that must
be collapsed are the same.

For the second step, it suffices to to check that either e is collapsed in TD or
T = T ′.

As f slides along e, the edge e is slippery. If e is not collapsed in TD, then e
must be toric and not 2-slippery. Then in the associated graph of group e is
a loop and f is the only edge adjacent to e (see Figure 12).This case is exactly
the rigidity case describe in [11, Theorem 1, case 3], that is, the slide leaves
T unchanged.

It remains to show that any blow-up of a dead end vertex commutes with the
slide. The only non-trivial cases is when an endpoint of e is a dead end. We
may assume that the initial vertex v of e is a dead end. As f slides along e,
neither e nor f̄ may be a wall. Thus if we blow up v, the edges e and f̄ will
be on the same side of the new edge. Hence this is equivalent to blow up a
vertex then slide f along e or slide f along e and then blow up a vertex.

2. Assume that T and T ′ differ by an induction on an orbit of edges e.

13



e
f v

Figure 12: The only orbits of edges adjacent to v are e, ē and f.

Call v the orbit of the endpoints of e.

Here e (or ē) is strictly ascending in both trees. Assume that an edge f was
non-ascending slippery and becomes toric. Then the endpoints of f are in v.
And as f is toric in T ′, the orbit of edges e and ē may slide along f in T ′.
Then f is 2-slippery. Thus the edges in T and T ′ that must be collapsed are
the same.

As e is strictly ascending in both trees, then it is collapsed in both T and T ′,
and the trees obtained are the same.. Moreover as e is ascending the vertex
orbit v is not a dead end, thus blowing up dead end vertices and performing
the induction commute.

3. Assume that T and T ′ differ by an A−1-move of an orbit of edges e with
collapse of an orbit f.

When we perform the A±1-move on the orbit of edges e, if an orbit of edges
g becomes toric (or stops beeing toric), then e, ē, g ans ḡ have same terminal
vertex orbit, thus e and ē may slide along g thus g is two slippery.

In T , the orbit e is strictly ascending and f is vanishing, thus both e and f are
collapsed in TD. In T ′, the orbit f is already collapsed and e is pre-ascending,
thus collapsed in TD. Thus the collapses commute with the move.

It remains to show that the move commutes with the blow up of dead ends.
Before performing the A−1-move the vertex of e is not a dead end, since e

is ascending. However the terminal orbit of vertices v of f (which is also the
vertex of e after performing the A−1-move) may be a dead end. This is the
only non-trivial case of commutativity. Assume v is a dead end. Call g a wall
in T . If g 6= f, then g remains the wall in T ′ and it is easy to see that the
A−1-move and the blow up commute.

Two distinct orbits may play the role of the wall if and only if the orbit of
vertices v is of valence 2. Assume that f is the unique wall of v, then v is
of valence at least 3. Let g be as in the definition of the dead end and h

another orbit of edges with initial vertex v in T . Take v a representative of v
and f , and g representatives of f, and g with initial vertex v. By assumption
Gg is maximal for inclusion and there exists h in the orbit of h with initial
vertex v such that Gh ⊂ Gg 6⊂ Gf . But in T ′, as e is pre-ascending, thus
there exists two edges e′ and e in the orbit of e such that the initial vertex
of e and the terminal vertex of e′ are v and Ge′ ⊂ Ge and we still have
Gh ⊂ Gg 6⊂ Ge(= Gf ) with Gg and Ge maximal for the inclusion among
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groups of edges adjacent to v. There is no wall to v, this is a contradiction
we the fact that v is a dead end.

We obtain the same tree TD starting from two reduced tree related by a
move. Thus the tree TD only depends from the deformation space D.

We denote by Tcomp the G-tree associated to Guirardel-Levitt’s JSJ defor-
mation space of G.

Lemma 3.3. Let T be a JSJ tree. Let T̃ be a reduced Guirardel-Levitt’s JSJ
tree refined by T . Let ẽ be an edge of T̃ with initial vertex ṽ and let H be a
subgroup of Gṽ containing Gẽ such that for every edge f̃ 6∈ ẽ with initial vertex
ṽ we have H ⊂ 〈Gẽ, Gf̃ 〉. Denote by T̃ẽ the tree obtained from T̃ by performing

an expansion of v with group H and set {ẽ}. Then T is compatible with T̃ẽ.

Proof. Let e be the lift of ẽ in T and v a lift of ṽ such that Gv = Gṽ. Such
a v exists since T and T̃ are both JSJ trees. Call [w, v] the path between the
initial vertex w of e and v. Call v1 the vertex of [w, v] the closest of w such that
H ⊂ Gv1 .

If w = v1, then the G-tree obtained by the expansion of w with group H
and set {e} obviously refines T̃ẽ.

Otherwise, denote by e1 the last edge of [w, v1]. We have Ge ⊂ Ge1 ( H .
Moreover as for every edge f̃ 6∈ ẽ of initial vertex ṽ in T̃ , we have H ⊂ 〈Gf̃ , Gẽ〉,

we obtain Gf̃ 6⊂ Ge1 . Hence for f the lift of f̃ in T , the edges e and f are in
distinct components of T \ v1. Let Te be the tree obtained by performing an
expansion of v1 with group H and set {e1}. Then Te refines T̃ẽ.

Corollary 3.4. Let T be a JSJ tree. The G-tree Tcomp is compatible with T .
Moreover there exists a common refining tree which is a JSJ tree.

Proof. For f an edge of Tcomp call Tf the tree obtained by collapsing every edge
of Tcomp except f .

By the point 1. of [9, Proposition 3.22], we have to show that T is compatible
with Tf for every edge f of Tcomp.

Call T̃ a reduced JSJ tree refined by T . By construction, T̃ refines every
tree Tf with f an edge of Tcomp not obtained by a blow-up. Thus T also refines
all these trees.

If f comes from a blow-up, then we may apply Lemma 3.3, taking T the JSJ
tree, T̃ the reduced JSJ tree, v the dead end from f comes from, e the wall of
v and H = Gv. We obtain that T is compatible with Tf .

If follows that T is compatible with Tcomp.
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3.2 Universal compatibility

Proposition 3.5. Let G be a group that admits a JSJ tree over a set of subgroup
A and such that the edge groups of every minimal G-tree over A are elliptic in
the JSJ deformation space of G. Then Tcomp is universally compatible.

Proof. From Lemma 5.3 of [8], every G-tree is refined by a JSJ tree. Thus by
Corollary 3.4, the tree Tcomp is universally compatible.

A GBSn group G is generic if the trivial G-tree is not abelian JSJ G-tree.
The description of the generic GBSn groups is given in [1]. In particular, if a
GBSn group is not isomorphic to a semi-direct product Zn⋊Z then it is generic.

Lemma 3.6. Let G be a generic GBSn group. If T is a minimal G-tree with
an edge group A ≃ Zr with r ≤ n, then r = n and A is universally elliptic over
abelian G-trees.

Proof. Since G is generic, any GBSn tree is a JSJ G-tree ([1, Theorem 1.2]).
Then all edge stabilizers of a given JSJ tree are universally elliptic and com-
mensurable. Let E be one of these stabilizers. Its commensurator is G. In
every other G-tree T over groups Zr with r ≤ n, the group E is elliptic, thus
included in the stabilizer of some vertex v. As its commensurator is G, it is
then virtually contained in every stabilizer of vertex in the orbit of v. If we
assume T is minimal, it implies that E is virtually included in every edge sta-
bilizer. Hence every edge stabilizer is a Zn which contains with finite index a
universally elliptic group. Thus every edge stabilizer is universally elliptic.

Corollary 3.7. Let G be a GBSn group. The tree Tcomp associated to the JSJ
deformation space of G is compatible with every G-tree over the subgroups of
⊂ Zn.

Proof. If G is generic, this is a direct consequence of Proposition 3.5 and Lemma
3.6.

If G is not generic, then the trivial G-tree is a JSJ decomposition. Hence
Tcomp is trivial and universally compatible.

3.3 Maximality

In this section, we prove that in the case of vGBS groups (and not only GBSn

groups), the tree Tcomp dominates every other universally compatible trees.

For this we need some technical lemmas, that we divide in three categories.
The lemmas of the first category give conditions on trees to be compatible. the
lemmas of the second category give existence of deformation sequences in the
deformation space and the lemmas of the third category give some refinement
conditions.
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Compatibility lemmas For S a set of elements of G and T a G-tree, call
ES(T ) the convex hull of all characteristic spaces of elements of S in T . Note
that if S is reduced to one element then ES(T ) is just the characteristic space
of this element.

Lemma 3.8. Let T and T ′ be two G-trees and let a, b, c, and d be four elements
of G.

• If the intersection Ea,b(T )∩Ec(T ) is empty, and the intersection Ea,b(T
′)∩

Ec(T ′) contains an edge, then T and T ′ are not compatible.
• If E{a,b}(T ) and E{c,d}(T ) are disjoint in T and E{a,c}(T

′) and E{b,d}(T
′)

are disjoint in T ′, then T and T ′ are not compatible.

Proof. First notice that if T̃ is a refinement of T , then ES(T̃ ) surjects onto ES(T )
via the natural map.

Thus for the first point, the two assumptions are stable by refinement. Hence
a common refinement should have both properties. This is impossible.

For the second point, assume there exists a common refinement T̃ . As
E{a,b}(T ) and E{c,d}(T ) are disjoint in T then E{a,b}(T̃ ) and E{c,d}(T̃ ) are also

disjoint in T̃ . Call B the bridge in T̃ between E{a,b}(T̃ ) and E{c,d}(T̃ ). Then B

is contained in E{a,c}(T̃ ) and E{b,d}(T̃ ) in T̃ . Thus E{a,c}(T̃ ) ∩ E{b,d}(T̃ ) is not

empty in T̃ , hence E{a,c}(T
′) ∩ E{b,d}(T

′) is not empty in T ′.

Lemma 3.9. Let G be a vGBS group and T be an abelian JSJ G-tree. Let e be
a reduced edge with initial vertex v in T such that Ge ( Gv. Then there exists
g ∈ Gv \Ge that centralizes Ge.

Proof. If Gv is abelian, the lemma is trivial. Otherwise by [1], the group Gv is
a semi-direct product Zn ⋊ϕ 〈t〉, with ϕ a non-trivial automorphism of Zn, and
Ge ( Zn, thus any element in Zn \Ge centralizes Ge.

Corollary 3.10. Let T be a G-tree. Let e be an orbit of reduced edges of T .
Assume e has one of the following properties:

1. e is pre-ascending in T and G is not an ascending HNN-extension,
2. e is not ascending and there exists an orbit of reduced edges f which slides
along two consecutive edges of e ∪ ē in T ,

3. T is a vGBS-tree, the orbit e is not ascending and there exists an orbit of
reduced edges f which slides along e in T .

4. e is toric of endpoint v and there exist two distinct orbits of reduced edges f

and g with terminal vertex v, distinct from the orbits e or ē.

Let T ′ be a collapse of T such that e is not collapsed in T ′. Then T ′ is not
universally compatible.

Here we do not need the slides to be admissible.
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Proof.

1. If e is pre-ascending in T , then e is pre-ascending in T ′. By [7, Proposition
7.1] the tree T ′ is not universally compatible.

2. Let e, and e′ be edges of e∪ē and f an edge of f such that f may consecutively
slide along e and ē′ in T . Let v and v′ be the initial and terminal vertices of
e, call v′′ the terminal vertex of e′ and w the initial vertex of f (note that the
terminal vertex of f is v and the initial vertex of e′ is v′).
As e is reduced and non ascending, we may find three elements b ∈ Gv \Ge,
c ∈ Gv′ \ (Ge ∪ Ge′) 6= ∅ and d ∈ Gv′′ \Ge′ . If f is not ascending let a be in
Gw \Gf . If f is ascending, let t be such that t ·w = v, an call a = t−1ct. The
sets E{a,b}(T ) and E{c,d}(T ) are separated by an edge in e. As e is not collapsed
in T ′, the sets E{a,b}(T

′) and E{c,d}(T
′) are disjoint in T ′. But making slide f

along e and ē′, we now have a new tree T ′′ in which E{b,c}(T
′′)∩E{a,d}(T

′′) = ∅
(see Figure 13). By Lemma 3.8, the tree T ′ is not universally compatible.

bb bb

b

f

e e′

a

b c d
bb bb

b

f

e e′

a

b c d

Figure 13

3. Assume that T is a vGBS-tree. Let f be an edge which slides along a reduced
non ascending edge e. Call v the terminal vertex of e. The set Gv \ Ge is
not empty since e is reduced and non-ascending. Applying Lemma 3.9, there
exists λ in this set such that Ge = Gλ·e, thus f slides consecutively on e and
λ · ē. Thus the point 3 is implied by the point 2.

4. As e is toric then f slides along two consecutive edges in e. If f 6= ḡ, collapsing
g(6= e, ē) in T , the edge e is no more ascending (and still reduced) in the new
tree T ′′, we may apply the point 2. Note that T ′′ may perhaps not refines T ′,
however it refines the tree obtained from T ′ by collapsing g, this is enough to
obtain the result.
If g is in the orbit of f̄. Let f be an edge of f. Call v its terminal vertex and
let g be an edge of g = f̄ with terminal vertex v. Let e be an edge of e with
initial vertex v (on which f may slide). Let v′ be the terminal vertex of e and
w be the initial vertex of g. Call t ∈ G an element which sends v onto v′ and
s ∈ G which sends v onto w.
As e is toric Ge = Gt·e, and f slides consecutively along e and t · e. Define
the four elements a = s−1ts, b = sts−1, c = t−1sts−1t1 and d = t−2sts−1t2

(see Figure 14). Then the sets E{a,b}(T
′) and E{c,d}(T

′) are disjoint in T ′ but
after making slide f along e, and t · e, we have E{b,c} ∩ E{a,d} = ∅. Thus by
Lemma 3.8, the tree T ′ cannot be universally compatible.

18



b b b

bb b

b
b b

b

b

v
v′ t2 · v

g

f

e

Aa

Ac Ad

bb

b
Ab

b

Figure 14

Corollary 3.11. Let T be a G-tree. Let e be an edge of T with initial and
terminal vertices v and v′. Call Te the tree obtained from T by collapsing all
orbits of edges except e.

If there are two reduced non-ascending edges, f with initial vertex v and g
with initial vertex v′, such that f 6= ḡ, Gf ⊂ Gg, and Ge 6⊂ Gg, then Te is not
universally compatible.

Here the edge e is not necessarily reduced.

Proof. As f and g are reduced and non ascending, we may take a an element
which fixes the terminal vertex of f but not f and d which fixes the terminal
vertex of g but not g. Let r be an element of Ge \ (Gg ∩Ge) and define f ′ = r ·f
and g′ = r · g. Define b = rar−1 and c = rdr−1. We are as in Figure 15.
Here E{a,b}(Te) and E{c,d}(Te) are disjoint. But f̄ may slides along e and g. By
equivariance, at the same time f̄ ′ slides along e and g′.

After performing these slides, we obtain a tree T ′ in which E{a,d}(T
′) and

E{b,c}(T
′) are disjoint. By Lemma 3.8, the tree Te is not universally compatible.
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b

bb
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Figure 15
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Lemma 3.12. Let T be a G-tree. Let e be an edge of T whose endpoints are
in distinct orbits, call v the initial vertex of e and v′ its terminal vertex. Call
Te the tree obtained from T by collapsing all orbits of edges except e. If there
exists two reduced edges f and f ′ in the same orbit f 6= e, such that the initial
vertex of f is v, the terminal vertex of f ′ is v′, and Gf ( Gf ′ , then Te is not
universally compatible.

Proof. As f and f ′ are in the same orbit we may take t ∈ G such that t ·f = f ′.
Let us define e′ = t · e and f ′′ = t · f ′.

First assume Gv = Ge ⊂ Gf ′ . As Gf ( Gf ′ , we have Gf ′ ( Gf ′′ and
Ge ( Ge′ . Thus collapsing f in T , the edge e becomes pre-ascending, hence
it stays pre-ascending in Te. By Corollary 3.10, the tree Te is not universally
compatible.

Assume now that Gv 6= Ge or Ge 6⊂ Gf ′ . We have Gf ′ ( Gf ′′ . Take a in
Gf ′′ \Gf ′ , and call f ′′′ = a · f ′. As Gv 6= Ge or Ge 6⊂ Gf ′ , as f ′ is reduced and
v 6= v′, we have Gf ′ ( Gv′ .

We may now take an element b which fixes the terminal vertex of f ′′′ but
not f ′′′ and an element c which fixes the terminal vertex of f but not f .

If Gv 6= Ge, take d in Gv \ Ge (automatically d 6∈ Gf and d 6∈ Gf ′). If

Gv = Ge then Ge 6⊂ Gf ′ . Take h ∈ Ge \ (Gf ′ ∩ Ge). Define f̃ = h · f and take

d which fixes the terminal vertex of f̃ but not f̃ .

Then E{a,b}(T ) and E{c,d}(T ) are separated at least by e. Thus E{a,b}(Te) ∩
E{c,d}(Te) is empty.

Now call T ′ the tree obtained by collapsing e in T and call w the initial
vertex of f in T ′. Perform the expansion of the vertex w with group G′

f and set{
f, f̄ ′

}
. Call g the edge obtained in this expansion, and w1 the terminal edge

of g.

We may note that:

• the element a still stabilizes f ′′ but not f ′,
• the element b stabilizes a · w1 but not a · g,
• the element c stabilizes t−1 · w1 but not t−1 · g,
• if Gv 6= Ge, the element d stabilizes w1 but not g,
• if Gv = Ge, the edge g is between f and the characteristic space of d.

Then making the edge a · g slide along f̄ ′′′ and f ′, we obtain a tree in which
E{a,d}∩E{b,c} is empty. By Lemma 3.8, the edge Te is not universally compatible
(see the two slides in Figure 16).

Deformation lemmas

Lemma 3.13. If f is slippery or p.s.a.d., up to exchanging the role of f and
f̄ , there exists an admissible sequence of moves

S = g1/h1 . . . gp/hp · f/i1 . . . f/iq
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Figure 16: The dashed edges are in the orbit g and the plain ones in the orbit f.

which preserves f with hj , ij , gj 6= f, f̄ for all j such that, after performing the
sequence, the edge F is pre-ascending or there exists an admissible slide along
f̄ .

Proof. As f is slippery or p.s.a.d., there exists an admissible sequence of moves
S′ = λ1/µ1 · · · · · λr/µr) such that after performing the sequence either f is
pre-ascending (or pre-descending) or there exists an admissible slide along f or
f̄ . We may chose S′ of minimal length.

Suppose there exists i such that µi ∈ f, f̄, then after the i − 1 first moves
either f or f̄ is pre-descending (if λi = f or f̄) or there exists an edge g which
slides along f (take g = λi if λ 6= f, f̄). As we chose S′ of minimal length, this
is impossible, thus µi 6∈ f, f̄.

Up to replacing f by f̄ , we may assume that, in S′ · T , the edge f is pre-
ascending or that the admissible slide is along f̄ .

We will first show that S′ may be changed into the product of two sequences
of move S1 and S2 such that no edge of f or f̄ occurs in S1, and S2 is a product
of slides of f and f̄ . Then it will remain to remove the slides of f̄ in S2.

If S is not already of this form there exists an i such that λi = f or f̄ and
λi+1 6= f, f̄. We only consider the case λi = f , the following formulas remain
true replacing f by f̄ . We replace the sequence f/µi · λi+1/µi+1 by a sequence
of 2, 3 or 4 terms in which f appears in the last terms.
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If λi+1 and µi+1 are not in the same orbit (it is not an induction or a A±1-
move), there are tree possibilities:

• either λi+1 is not in the orbit of µi or µ̄i, then the two slides commute,
• or λi+1 and µi are in the same orbit (we may assume λi+1 = µi), then Gf ⊂

Gµi+1
and we have the equality f/µi ·λi+1/µi+1 = λi+1/µi+1 ·f/µi ·f/µ̄i+1,

• or λi+1 and µ̄i are in the same orbit (we may assume λi+1 = µ̄i), then Gf ⊂
Gµi+1

and we have the equality f/µi ·λi+1/µi+1 = λi+1/µi+1 ·f/µi+1 ·f/µi.

If λi+1 and µi+1 are in the same orbit then the move is an induction or an
A±1-move.

If λi+1/µi+1 is an induction then the two moves f/µi and λi+1/µi+1 com-
mute.

If λi+1/µi+1 is an A±1-move we have three cases to consider:

• If λi+1 is not in the orbit of µi or µ̄i and µi does not vanish in the move
λi+1/µi+1 then the two moves commute.

• If λi+1 is not in the orbit of µi or µ̄i but µi vanishes in the move λi+1/µi+1

then f/µi · λi+1/µi+1 = λi+1/µi+1.
• If λi+1 is in the orbit of µi or µ̄i.

If λi+1/µi+1 is an A−1-move, then the two moves commute. Else it is an
A-move, then calling h the new edge we have f/µi ·λi+1/µi+1 = λi+1/µi+1 ·
f/h · f/µi · f/h̄.

Using these equalities, we may put all slides of f and f̄ at the end of the
sequence.

Let us prove that the process of transformation finishes.

First note that the number of moves not involving f stays constant. Call
n this number. Let S be the set of move sequences with exactly n terms not
involving f or f̄ . Let ϕ : S → Nn be defined as follows: for S a sequence ϕ(S) =
(k1, . . . , kn) where ki counts the number of terms involving f or f̄ appearing
before the ith term not involving f or f̄ in S. Note that ϕ(S) = (0, . . . 0) if and
only if S = S1S2 with S1 not involving f or f̄ and S2 composed of slides of f
or f̄ .

Then ϕ decreases strictly for the lexicographic order on Nn when we apply
one of the transformation described previously. Thus the process finishes.

Now, it remains to prove that we may exchange S2 by a sequence in which
only slides of f occurs. As a slide of f and a slide of f̄ commute, we may assume
that S2 is a product of S3 and S4, with S3 a sequence of slides of f and S4 a
sequence of slides of f̄ .

After performing the sequence S′, either the edge f is pre-ascending or there
exists an edge g which slides along f̄ .

First assume that after performing the sequence of moves S′, the slide g/f̄ is
admissible, and that f is not pre-ascending. If a sequence f̄ /h ·g/f̄ is admissible
in a tree T , this implies that Gg ⊂ Gf and that the terminal vertices of f and

22



g are the same in T . Thus g/f̄ is also admissible in T (the admissibility comes
from the fact that f is pre-ascending: g is still reduced after the slide). Thus
sequence S1 · S3 · g/f̄ is admissible in the initial tree, and S = S1 · S3 is as
required.

Now assume that after performing the sequence of move S, the edge f is
pre-ascending.

We now use the following simple fact.

Fact. Let T be a G-tree. Let f and g 6∈ f, f̄ be two edges of T . If the move f̄ /g
is admissible in T and f is pre-ascending in f̄/g · T , then there exists g′ ∈ g

such that f/ḡ′ is admissible in T and f is pre-ascending in f/ḡ′ · T

Proof of the fact. Call v and v′ the initial and terminal vertices of g. As f is
pre-ascending in f̄/g · T , there exists f ′ ∈ f with terminal vertex v′, such that
Gf ′ ⊂ Gf (⊂ Gg). As g 6∈ f, f̄, the slide f ′/ḡ is admissible in T and f is pre-
ascending in f ′/ḡ · T . Let a be an element such that f = a · f ′. Then the edge
g′ = a · g is as required (the moves f ′/ḡ and f/ḡ′ are equal).

Call T the tree obtained by performing S1 and S3 on the initial tree. Assume
S4 is the product

∏p
i=1 f̄/ki. We prove the lemma by recurrence. If p = 0 then

the sequence S1 · S3 is as required.

If p > 0, applying Fact 3.3, there exists k′p ∈ kp such that we may change

S4 by (
∏p−1

i=1 f̄ /ki) · f/k̄′p. Moreover the move f/k̄′p commutes with every move

(f̄ /ki). Thus S4 may be changed by f/k̄p · (
∏p−1

i=1 f̄/ki). We may conclude by
applying the recurrence hypothesis.

Lemma 3.14. Let T be a G-tree. Let f be a vanishing non-slippery edge of T .

There exists a strictly ascending orbit of edges e of T whose endpoint w is
an endpoint of f and of valence 3, and there exists an admissible sequence S of
inductions on e and slides of f along e or ē finishing by a A−1-move on e in
which f and w vanish.

Proof. As f vanishes, there exists an admissible sequence S such that there
exists an admissible A−1-move on T ′ = S · T in which f vanishes. Call w the
vanishing vertex of this move. As f is non-slippery, there are exactly three
orbits f, e, ē adjacent to w (by definition every other edge should slide along f̄),
and the sequence S does not involve slides along f or f̄.

We prove the lemma by recurrence on the length n of the sequence S. If
n = 0 then v = w, and the lemma is trivial.

Assume n ≥ 1, let g/g′ the first move of S, and S′ the sequence of the n− 1
last moves of S. Call T ′′ = g/g′ · T . By recurrence hypothesis, we may replace
S′ by a sequence S′′ of induction on e and slides along e and ē. As f is not
slippery we have g′ 6= f, f̄. If g and g′ differ from f, e and ē, then we may remove
the slide from S, without changing anything around v, thus the sequence S′′
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is admissible in T and the lemma is proven. If g = e (or ē), as the only edges
adjacent to e are in f and ē, and that f is non-slippery, then g/g′ is an induction
on e, thus the sequence g/g′ · S′′ is a sequence of inductions on e and slides of f
along e and ē. Finally, if g = f, as e, ē and f are the only three orbits adjacent
to w, we have g′ = e or ē. Thus g/g′ · S′′ is as required. That finishes the proof
on the lemma.

Lemma 3.15. Let T be a reduced G-tree, e an edge of T and m an admissible
move. If e is toric in T but not in m · T , then there exists a strictly ascending
edge f adjacent to e in T and e is p.s.a.d..

Proof. Note that a slide of a toric edge in a reduced tree must be along an
ascending edge. As e is not toric in m · T , if m is a slide, it is a slide of e along
a strictly ascending edge f , and e is strictly ascending in m ·T . In this case the
lemma is proved.

As e is toric in T , the move m is not an induction or an A±1-move on e.
The move m may not be an A-move on any edge f , since an A-move leaves
unchanged the set of toric edges.

If m is an induction or an A−1-move on an orbit of edges f, then f is strictly
ascending in T and adjacent to e. Thus sliding e along f in T , it become strictly
ascending.

Lemma 3.16. Let T be a reduced G-tree, and e be a 2-slippery toric edge. Then
there exists an admissible sequence S of moves which does not involve e and two
edges f and g of distinct orbits in S · T such that the slides f/e and g/e are
both admissible in S · T .

Proof. Note that if e is toric in a tree T ′, then there exists two admissible slides
on e if and only if the initial vertex of e is of valence at least four.

By definition of being 2-slippery there exists an admissible sequence S of
moves and two edges f and g of distinct orbits in S · T such that f/e and g/e
are both admissible in S · T . But a move involving e may occur in S. We may
assume that for every initial subsequence S1 6= S of S, the initial vertex of e in
S1 · T is of valence 3. Hence e has no adjacent strictly ascending edges, thus by
Lemma 3.15, the edge e is toric in every intermediate tree.

Recall that no induction and no A±1-move on a toric edge are admissible,
and note that if a toric edge slides along an edge f then f is strictly ascending.
Hence, no induction, no A±1-moves on e and no slide of e appears in S.

If a slide on e occurs in S, as the initial vertex of e is of valence 3, by [11,
Theorem 1, case 3] this slide may be remove from S.

Thus S may be taken as required.

Refinement lemmas
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Lemma 3.17. Let T be a G-tree, let e be an orbit of edges of T . Let Te be
the tree obtained from T by collapsing every orbit of edges except e. Let S be a
sequence of moves on T , in which no slide along e or ē , no induction and no
A±1-move on e occurs, and such that e does not vanish (all moves involving e

except slides of e and ē). Then S · T refines Te.

Proof. In [3], Clay and Forester give a description of the Whitehead moves in
terms of expansions and collapses. If a tree T̃ refines Te and if we perform
an expansion on T̃ , clearly the resulting tree also refines Te. If we perform a
collapse of an orbit distinct from e in T̃ it will still refines Te (since Te is obtained
from T̃ by collapsing all orbits of edges except e in T ).

A move which is not a slide along e or ē , not an induction or an A±1-move
on e or in which e vanishes, may be seen as expansions and collapses with no
collapse of e (see [3]). Thus S · T still refines Te.

Lemma 3.18. Let T ′ be a G-tree. Let f be an edge of T ′ with initial vertex w
and H a group such that Gf ⊂ H ⊂ Gw. Let T be a refinement of T ′ obtained
by performing an expansion on w with group H and set {f}. Call e the new
edge and v its initial vertex. Let Te be the tree obtained from T by collapsing all
orbits of edges except e.

Let m be a move of T ′ which is not a slide of f̄ , a slide along f , an induction
of f , an A±1-move of f or in which f vanishes. Then we may perform m in
T , and m · T refines both Te and m · T ′.

Moreover if m is not a slide along f̄ , then the vertex v in m · T is still of
valence two.

Proof. Call v′ the terminal vertex of e in T . Let W be the subtree of T which
collapses onto w in T ′. As Ge = Gv, for each vertex v′′ in the orbit v in T there
is only one edge in e with initial vertex v′′. This implies that W is of diameter
2 and that W ∩ v′ = {v′} (and every other vertex of W is in v).

Given g and h two edges with a common initial vertex in T ′, from the
previous remark, if g and h are not in the orbit f (but may be in f̄), their lifts
in T have a common initial vertex. Thus if the move m is an induction or an
A±1-move on an orbit of edges g 6= f, the edge g is still pre-ascending in T , and
m may be performed in T . If m is a slide, then the two concerned orbits still
have a common vertex in T and the slide may be performed.

From Lemma 3.17, the tree m · T refines Te.

As the edges of initial vertex v in T are either e or in f, if m is not a slide
along f̄ , the vertex stays of valence 2 in m · T .

Corollary 3.19. Let T ′, T and Te be as in Lemma 3.18. Let S be a sequence of
moves on T ′ in which no move is a slide of f̄ , a slide along f or f̄ , an induction
of f , an A±1-move of f or in which f vanishes, then S may be performed in T
and S · T refines Te and S · T ′.
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Proof. This is just a recurrence on the length of S, noticing that as in S no
slide along f̄ occurs, for all initial subsequence S1 of S, the valence of v in S1 ·T
remains 2, and we may apply Lemma 3.18.

Maximality

Lemma 3.20. Let Te be a universally compatible G-tree with exactly one orbit
of edges e (we choose for e an arbitrary orientation). There exists a JSJ tree T
which refines Te, such that every edge collapsed in Te is reduced.

Proof. Let T ′ be a reduced JSJ G-tree. As Te is universally compatible, there
exists a common refinement tree between Te and T ′. Call T their least common
refinement (for the existence of such a tree see [9]). As T ′ is a JSJ tree, it
dominates Te (which is universally elliptic), and thus T is also a JSJ tree (see
[9]).

Two cases may appear. Either e is reduced in T , then T ′ = T , and T is
reduced, or e is not reduced, and then T has one orbit of (unoriented) edges
more than T ′.

It remains to prove that we may assume that the only non reduced edges
orbit of T is e.

If there exists another non reduced orbit f 6= e, ē in T , then collapsing f we
obtain a JSJ tree which still refines Te. We may thus collapse one by one non-
reduced edge which are not in the orbit of e or ē until every edge except maybe
e is reduced.

Proposition 3.21. Let G be a vGBS group. Assume that G is not an ascending
HNN-extension. Let Te be a universally compatible G-tree with exactly one orbit
of edges e. If Te is refined by a reduced JSJ tree, then Tcomp dominates Te

Proof. Let T be a reduced JSJ G-tree that refines Te. Let e be the orbit of edge
of T ′ not collapsed in Te.

If e is not collapsed in Tcomp, then Tcomp refines Te thus dominates it. If
e is collapsed in Tcomp, by construction of Tcomp the orbit e is non-ascending
slippery, p.s.a.d., toric 2-slippery, or vanishing.

1. If e non-ascending and slippery or p.s.a.d. in T .

By Lemma 3.13 there exists an admissible sequence of moves S without slide
along e or ē and no induction or A±1-move of e, at the end of which either e
is pre-ascending or pre-descending, or there exists an admissible slide along e

or ē.

By Lemma 3.17, the tree S · T refines Te. By Lemma 3.15, we may assume
that e is not toric. Then by Corollary 3.10 cases 1. and 3, the tree Te is not
universally compatible. This is a contradiction.
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2. If e is 2-slippery and toric in T .

By Lemmas 3.16 and 3.17, we may assume that there exists two edges f
and g in T of distinct orbits with terminal vertices v which may (directly)
slide along e . Then by Corollary 3.10 case 3, the tree Te is not universally
compatible. This is a contradiction.

3. If e is vanishing non-slippery in T .

Take e an edge in the orbit e and call v the terminal vertex of e. By Lemma
3.14, there exists a strictly ascending edge f with initial vertex v such that
v has exactly 3 orbits of adjacent edges e, f and f̄. Moreover up to perform
inductions on f and slides of e along f, we may assume that there exists an
admissible A−1-move on f in T in which e vanishes. It implies that Gf ⊂ Ge,
and f slides along e (this slide is not admissible, since f is ascending). By
Corollary 3.10 case 3. the tree Te is not universally compatible. This is a
contradiction.

4. If e is vanishing, slippery and toric in T .

As e is vanishing there exists a tree in the deformation space of T in which e

is not ascending. Then by Lemma 3.15, the orbit e is p.s.a.d., and the case is
already done in Case 1.

Proposition 3.22. Let G be a vGBS group. Let Te be a universally compatible
tree with one orbit of edges e (whose orientation is fixed arbitrarily). If there is
a JSJ tree T which refines Te, in which the unique non-reduced orbit of edges is
the one not collapsed in Te, then Tcomp dominates Te.

Proof. The orbit of edges of T not collapsed in Te is also called e. Let T ′ be the
tree obtained by collapsing e in T . Then T ′ is a reduced JSJ tree.

If e is obtained by blowing up a dead end vertex in T ′, then e is not collapsed
in Tcomp, thus Tcomp refines (hence dominates) Te . We may assume that e is
not obtained by blowing up a dead end vertex in T ′.

Fix e a representative of e, and let v and v′ be the initial and terminal
vertices of e. Since e is not reduced, the orbits of v and v′ are distinct. We
assume Gv = Ge. Then there exists f not in the orbit e with initial vertex v
(otherwise the tree is not minimal).

Lemma 3.23. If none of the edges with initial vertex v except those in e is
collapsed in Tcomp then Tcomp dominates Te.

Proof of Lemma 3.23. Given a hyperbolic h in Te, its axis contains an edge in
the orbit e (we may assume it is e), thus in T its axis contains v. As Ge = Gv

(and e is not reduced), the edge e is the only edge of e with initial or terminal
vertex v and thus the axis of h also contains an edge which is not collapsed in
Tcomp. Then h is also hyperbolic in Tcomp. Then all hyperbolic elements of Te

are hyperbolic in Tcomp, as G is finitely generated this implies Tcomp dominates
Te.
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We may thus assume there always exists an edge of T distinct from e with
initial vertex v which is collapsed in Tcomp.

1. We first assume that Gv′ 6= Ge.

This hypothesis will not be used in the cases 1.2.1.2, 1.2.1.4 and 1.2.2.

1.1. Assume that v has at least three orbits of adjacent edges e, f, and g.

1.1.1. Assume that f (or g) is strictly ascending/descending in T . Up to taking
f̄, we may assume that f is ascending. Then ē may slide along f and becomes
a reduced edge. We obtain a reduced JSJ tree which refines Te. This case is
done in Proposition 3.21.

1.1.2. Assume that f and g are not ascending/descending in T .
Let f and g be representatives of f and g with initial vertices v.
We may take a, b, c and d as described in Figure 17: call w and w′ the
terminal vertices of f and g. Take a in Gw \ Gf , b in Gw′ \ Gg, and c in
Gv′ \Ge that centralizes Gf (it exists by Lemma 3.9). Call e′ = c · e, g′ = c · g
and w′′ = c · w′. Take d in Gw′′ \ Gg′ . The sets E{a,b}(T ) and E{c,d}(T ) are
separated by the edge e. In Te every edge is collapsed except the orbit e, thus
E{a,b}(Te) ∩ E{c,d}(Te) = ∅.
As c centralizes Gf , the group Gf is contained in Ge′ , the edge f̄ may slide
along e and ē′. We obtain a new tree T ′′ in which E{b,c}(T

′′)∩E{a,d}(T
′′) = ∅.

By Lemma 3.8, the tree Te is not universally compatible.
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Figure 17

1.1.3. Assume that f is toric in T .
We may assume g = f̄. We proceed as in Figure 18: by Lemma 3.9, we may
take a in Gv′ \ Ge that centralizes Gf , and e′ = a · e (note that Ge = Ge′

thus f̄ may slide consecutively along e and ē′). Call v′′ the initial vertex of
e′, call f ′ = a · f and g′ = a · g the edges in the orbit of f and g with initial
vertex v′′, and e′′ = a · e′ such that when f̄ slides along e and ē′, then f ′ slide
along e′ and ē′′ (note that if Ge is of index 2 in Gv′ , we have e′′ = e). Call
w the terminal vertex of f , w′ the terminal vertex of f ′ and w′′ the terminal
vertex of g′. Let t be such that t · v = w, and t′ such that t′ · v′ = w′. Define
b = tat−1, c = t′−1at′ and d = t′at′−1.
Then in T , the sets E{a,b}(T ) and E{c,d}(T ) are separated by the edge e. In
Te every edge is collapsed except the orbit e, thus E{a,b}(Te)∩ E{c,d}(Te) = ∅.
As a centralizes Gf , we have Gf ⊂ Ge′ . Making slide f̄ along e and ē′,
simultaneously f̄ ′ slides along e′ and ē′′ and g′ slides along t−1 · e′ and t−1 · ē.
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We obtain E{b,c} ∩ E{a,d} = ∅. By Lemma 3.8, the tree Te is not universally
compatible.
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Figure 18: The plain lines are in the orbit f, the dashed ones in the orbit e

1.2. Assume that v has only two orbits of adjacent edges e and f.

As f is the only orbit with initial orbit of vertices v distinct from e, we may
assume that f is collapsed in Tcomp (see Lemma 3.23). Fix f a representative
of f with initial vertex v.

As every edge of T except the ones in the orbit e is reduced and the terminal
vertex of f is not adjacent to v, we have Gf ( Ge.

As f is reduced in T , the edge f is not toric in T ′, thus it is slippery, p.s.a.d.,
or vanishing.

1.2.1. Assume that f is slippery or p.s.a.d..
From Lemma 3.13, there exists a sequence of moves S admissible in T ′ such
that either f is pre-ascending or pre-descending in S · T ′, or there exists an
admissible slide g/f or g/f̄ in S · T ′. We thus have four cases to treat here.
Moreover this sequence may be split in two subsequence S1 and S2, such that
no move involving f occurs in S1, and S2 is composed either of slides of f
or of slides of f̄ . By Corollary 3.19, the sequence S1 may be performed in T
and the tree S1 · T still refines Te. Up to replacing T by S1 · T , we may thus
assume that S = S2.

1.2.1.1. Assume that S is composed of slides of f and there exists an admissible
slide g/f̄ in S · T ′, then by Corollary 3.19 and Lemma 3.18, we may apply
the sequence S · g/f̄ to T , and obtain a tree (S · g/f̄) · T which refines Te.
Moreover v is now of valence three, we may thus apply Case 1.1.

1.2.1.2. Assume that S is composed of slides of f and f is pre-ascending in S ·T ′.
By Corollary 3.19, we may perform S in T , the tree S · T refines Te, and the
vertex v in S · T has valence 2. Thus, up to replacing T by S · T we may
assume that the sequence S is empty. Now f is pre-ascending in T ′. As in T ,
the terminal vertex of f is not in v it must be in v′, that is there exists an edge
f ′ in the orbit of f , with terminal vertex v′ and Gf ′ ( Gf . We may apply
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Lemma 3.12 (interchanging f and f ′). Thus the tree Te is not universally
compatible, which is a contradiction.

1.2.1.3. Assume here that there exists a sequence S · g/f̄ = f̄ /i1 . . . f̄/iq · g/f
admissible in T ′.
In T we may perform the sequence f̄/e ·S · g/f̄ . Up to collapsing all orbits of
edges different from e, f and g, we may assume that S is composed of slides
of f̄ along edge in g and ḡ (that is every ij is in g ∪ ḡ).

Lemma 3.24. Let T be a G-tree (not necessarily a vGBS tree). Let f and
g be two edges of T ′ verifying the following properties:

• for w′ the terminal vertex of f , there exists an edge f ′ 6= f in f with
terminal vertex w′, such that Gf = Gf ′ ,

• there exists an admissible sequence S of slides in T ′, composed of slides
of f̄ along edges in g or ḡ, ending with a slide of g along f .

Let w be the initial edge of f and let H be a subgroup such Gf ( H ( Gw,
call T the tree obtained from T ′ by performing an expansion of w with group
H and set {f} and TH the tree obtained by collapses every orbit of edges
of T except the one created in the expansion. Then TH is not universally
compatible.

This lemma proves that in Case 1.2.1.3, the tree Te is not universally com-
patible. Indeed taking H = Ge we obtain Te = TH .

Proof of Lemma 3.24. We may assume that for every slide f̄/g′ in S we have
Gf ( Gg′ , otherwise ḡ′ may slide along f , we may take g = ḡ′ and truncate
the sequence S.
Call e the edge of T ′ obtained in the expansion of w and call v and v′ the
initial and terminal vertices of e (the vertex v is the initial vertex of f in T ).
These two cases appear, depending on whether g is strictly ascending (or
descending) or not (note that g cannot be toric, otherwise g may never slide
along f).
First assume that g is not ascending. Let c such that f ′ = c · f . Let a, b and
d be three elements such that a fixes the initial vertex of g but not g (this is
possible since g is not ascending), the element b fixes v′ but not e and d fixes
c · v′ but not e′ = c · e′.
Then E{a,b}(TH)∩E{c,d}(TH) = ∅ (since E{a,b}(T ) and E{c,d}(T ) are separated
by e). Now perform the sequence of deformations f/e · S · g/f ′ in T . Let g′

be an edge on which f̄ slides in S. When g slides along f̄ and f ′, g′ slides
along an edge in f ∪ f̄. However since Gf ( Gg′ , neither g′ nor ḡ′ slides along
f when g slides along f . This ensure us that f and f ′ are between g′ and g
after performing the slides. Thus the sets E{b,c} and E{a,d} = ∅ are separated
by f ′ in the resulting tree. Hence TH is not universally compatible.

Figure 19
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If g is strictly ascending, as the sequence S is admissible in T , this implies
that f is a loop in T ′ (otherwise g becomes non-reduced after sliding along
f). Thus in T the terminal vertex of f is in v.
Take f ′′ in the orbit of f such that its terminal vertex is the initial vertex of
g. We may take a′ which fixes the initial vertex of f ′′ but not f ′′. We may
then proceed exactly as in the case where g is not ascending, replacing a by
a′. Note that a′ does not fix g since f ′′ is between g and the characteristic
space of a′.

1.2.1.4. The last possibility is when S is composed of slides of f̄ and after per-
forming the sequence f/e · S in T , the edge f is pre-descending.
Collapsing all edges along which f slides in S, we obtain a tree T̃ in which
e is not collapsed, and Te is tree obtained from T̃ by collapsing all orbits of
edges except e, the edge f has initial vertex v, there exists an edge f ′ in the
orbit f with terminal vertex v′ and Gf ⊂ Gf ′ . By Lemma 3.12, the tree T is
not universally compatible.

1.2.2. Assume that f is vanishing non-slippery.
By Lemma 3.14, the edge f is not a loop and there exists in T ′ a strictly
ascending edge g adjacent to f and we may perform an admissible sequence
S of inductions on g and slides of f (or f̄ depending on whether the vertices
of g are in the orbit of the initial or terminal vertex of f) along g or ḡ followed
by a A−1-move in which f vanishes.
If the endpoints of g are in the same orbit as the terminal vertex of f then S
is also admissible in T and by Lemma 3.17 the resulting tree still refines Te

but there is now three distinct orbits e, g, and ḡ adjacent to v, thus the case
is already treated in Case 1.1.
If g is adjacent to (the image of) v in T ′, then g and ḡ are adjacent to v′ in
T . Call ḡ′ the edge in the orbit of ḡ adjacent to v′, we have Gg′ ( Gg = Gv′ .
We prove that Te is not universally compatible by induction on the length of
S.
If the sequence S is empty, we have Gg′ ⊂ Gf ⊂ Ge ⊂ Gg = Gv′ , thus g′ may
slide consecutively along ē and f . As f is reduced, g′ may then slide along
an edge f̄ ′ in the orbit f̄ different from f̄ , and then along an edge e′ in the
orbit e (see Figure 20). Collapsing f , the obtained tree T̃ still refines Te, but
then e is reduced and non ascending in T̃ and g′ slides consecutively along
two distinct edges in the orbits e ∪ ē. By Corollary 3.10 case 2. the tree Te is
not universally compatible.
If the sequence S is not empty, let m be the first move of S. Then m is either
an induction on g or a slide of f on g or g′.
If m is an induction, then by Lemma 3.18, we may perform the induction in
T , and the obtained tree still refines Te, thus we may reduce the length of
S by one. If m is a slide of f along an edge g̃ in the orbit of g or ḡ, then
if Ge 6⊂ Gg̃, then by Lemma 3.12, the tree Te is not universally compatible.
Else Ge ⊂ Gg̃ and m · T ′ is refined by e/g̃ · T which also refines Te. Thus the
sequence S may be shortened.

2. Assume now that Gv′ = Ge.
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Let g be an edge with initial vertex v′, g 6= ē (then g is not in the orbit ē).

2.1. Assume that there exist at least three orbits of edges g, i and ē adjacent
to v′ and at least three orbits of edges f , h and e adjacent to v.

If one of the edges f , g, h or i is strictly ascending, with the same argument
of 1.1.1 the edge e (or ē) may slide along it and we are now in Case 1.2.

2.1.1. First assume none of the edges f , g, h or i is toric. We will find a
contradiction using Lemma 3.8.
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We take a, b, c and d stabilizing respectively the terminal vertices of f , h, g
and i but not stabilizing the edges (see Figure 21). In T the spaces E{a,b}(T )
and E{c,d}(T ) are separated by the edge e which is not collapsed in Te, thus
E{a,b}(Te)∩E{c,d}(Te) = ∅. But making f̄ and ḡ slide respectively along e and
ē, we obtain E{b,c} ∩ E{a,d} = ∅. Thus Te is not universally compatible.

2.1.2. Assume that g (or i) is toric and h and f are not toric. Then h̄ may
slide along e, then along g and finally along another edge ē′ in ē. Call w the
terminal vertex of h and w′ the terminal vertex of f . Then we may take a in
Gw \Gh, b in Gw′ \Gf , c which send the initial vertex of g onto its terminal
vertex and d = cbc−1 (see Figure 22).
In T the spaces E{a,b} and E{c,d} are separated by the edge e which is not col-
lapsed in T , thus E{a,b}∩E{c,d} = ∅ in Te. But making h̄ sliding consecutively
along e, g and ē′, the spaces E{b,c} and E{a,d} are separated by e′. Thus Te is
not universally compatible.

2.1.3. Up to symmetries the only case that remains is when f and g are both
toric.
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Define e′ as in Case 2.1.2. The edge f̄ may slide along e and g and ē′.
Collapsing g, we are reduced to the case where Ge ( Gv′ . The difference here
is that Gv′ is not abelian, however the argument of Case 1.1.3 only use the
fact that f̄ slides consecutively along two edges in the orbits e or ē. This is also
the case here, we thus have a contradiction with the universal compatibility
of T .

2.2. Assume that there are exactly two orbits of edges e and f adjacent to v.
(Up to symmetries, this is the last remaining case).

As f is collapsed in Tcomp but is not toric in T ′, it is slippery, p.s.a.d. or
vanishing non slippery.

If f is vanishing non-slippery, the case is already treated in 1.2.2 (which does
not use the fact that Ge ( Gv′). If f is slippery or p.s.a.d., by Lemma 3.13,
there exists a sequence of moves S admissible in T ′ such that in S · T ′, either
f is pre-ascending or pre-descending, or there exists an admissible slide g/f
or g/f̄ . Moreover this sequence may be split in two subsequences S1 and S2,
such that no move involving f occurs in S1, and such that

• either S2 is composed of slides of f , and there exists a slide along f̄ in
S · T ′,

• or S2 is composed of slides of f̄ , and there exists a slide along f in S ·T ′,
• or S2 is composed of slides of f , and f is strictly ascending in S · T ′,
• or S2 is composed of slides of f̄ , and f̄ is strictly ascending in S · T ′.

The last two cases are done in 1.2.1. It remains the first and second cases.

As before, we may assume that there is no strictly ascending edge with initial
vertex v′.

We now have to use the fact the vertex w obtained by collapsing e is not a
dead end of wall f .

Recall that in T ′, the non-vanishing vertex w is a dead of wall f if:

• the vertex group of Gf is strictly include in Gw,
• for every edge h with initial vertex w and not in f we have 〈Gf , Gh〉 = Gw,
• for every edge h with initial vertex w, we have Gh 6= Gw,
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• there exists an edge g with initial vertex w and not in f such that for
every edge h with initial vertex w and not in f we have Gh ⊂ Gg,

and if for every tree T ′′ in the deformation space there exists an edge f ′ (not
necessarily in the orbit f) with initial vertex w having these properties.

Note that we may assume that Gf is strictly include in Gw (because f is
reduced in T ).

We distinguish the cases depending on whether the fact that w is not a dead
end may be seen in T or not.

2.2.1. Assume that one of the listed properties does not hold in T ′.
There are three possibilities:

2.2.1.1. There exists an edge h of initial vertex w with 〈Gf , Gh〉 ( Gw.
Then Gh ( Gw, thus in T the edge is not ascending. Call ṽ the terminal
vertex of f and ṽ′ the terminal vertex of h. Define T̃ the tree obtained from
T ′ by performing an expansion on the vertex w with group Gw̃′ = 〈Gf , Gh〉
and set {f, h}.
Call ẽ the edge of the expansion. We prove that T̃ is not compatible with Te,
contradiction the universal compatibility of Te.
Take a ∈ Gṽ \ Gf , b ∈ Gṽ′ \ Gh and c in Gw \ 〈Gf , Gh〉. In Te, the sets

Ea,b(Te) and Ec(Te) both contain e, but in T̃ , the sets Ea,b(T̃ ) and Ec(T̃ ) are

separated be ẽ. By Lemma 3.8, the trees Te and T̃ are not compatible. We
have a contradiction.

2.2.1.2. There exists g of initial vertex w with Gg = Gw.
By Lemma 3.15, as no edge of endpoint w is strictly ascending, the edge g
is toric and remains toric with initial vertex w in any tree of the reduced
deformation space.
We use now the fact that there exists a sequence S = S1 · S2 such that S2

which is composed either of slide of f̄ , that finishes by a slide of an edge g′

along f , or of slide of f , that finishes by a slide of an edge g′ along f̄ .
In both cases we may assume that g′ 6= g. Indeed, after preforming S in T ′,
the edge g is still toric. Thus if g slides along f then f is ascending. Let S1

be the minimal initial subsequence of S such that f is ascending in S1 · T ′.
Either f is strictly ascending, or it is toric, and then by Lemma 3.15, f may
be change in a strictly ascending edge in one slide. Thus up to change S, we
may assume that f is pre-ascending, and the case is already done.
If S2 is composed of slides of f , then by Corollary 3.19 and Lemma 3.18, the
tree (S · g′/f) · T refines Te, but now there v is of valence 3 (with orbits f, ḡ′

and e) and v′ is of valence at least 3 (with orbits g, ḡ and ē). We are reduced
to Case 2.1.
If S2 is composed of slides of f̄ , as g′ 6= g, first call T1 = S1 · T . Then
collapsing in T1 the orbit g and every edge not in f, e and g′ in T , we obtain
a tree T̃ in which there still exists an admissible sequence of slides of f̄ along
edges in g′ and ḡ′, followed by a slide g′/f , but now Ge ( Gv′ . We may now
apply Lemma 3.24 in which T = T̃ and Te = TH with H = Ge.

2.2.1.3. There are two edges g and g′ such that Gg′ 6⊂ Gg and Gg 6⊂ Gg′ , and
there is no edge h such that Gg′ ⊂ Gh and Gg ⊂ Gh. If there exists an edge
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h with initial vertex v′ such that Gf ⊂ Gh, or Gf ⊂ Gh, by Lemma 3.11, the
tree Te is not universally elliptic.
Thus the case where S2 is composed of slide of f̄ is not possible. It remains
the case where S2 is composed of slide of f , and then there exists a slide h/f̄ .
By Corollary 3.19 and Lemma 3.18 we may perform (S · h/f̄) in T , and the
obtained tree still refines Te. The conditions on f , g and g′ implies, that
Gf , Gg and Gg′ are maximal for the inclusion between groups of edge with
an endpoint w. Applying [7, Proposition 4.10], there are at least 3 edges
with initial vertex w and distinct maximal edge groups in (S · h/f̄) · T ′. As
Gh ⊂ Gf , the vertex w is of valence at least 4. As in (S · h/f̄) · T the vertex
v is of valence 3 (including the one added by e), this implies that v′ is of
valences at least 3, we are thus reduced to Case 2.1.

2.2.2. Assume that there exists another tree T ′′ in which w vanishes or in which
the listed properties does not hold.
Let S′ be an admissible sequence such that at the end w vanishes, or the
listed properties does not hold in T ′′ = S′ · T ′.

2.2.2.1. Assume that no moves involving f or f̄ (except slides of f), occurs in S′.
Then by Corollary 3.19, we may apply S′ to T and the obtained tree is still
refines Te.
If one of the listed properties does not hold in T ′′, we are reduced to Case
2.2.1.
If w vanishes, it is now of valence 3 with a strictly ascending vertex g. If g
is still strictly ascending in S′ · T (that is the endpoints of g are in v′, then
e may slide along g. We obtained a new tree which still refines Te in which
Ge ( Gv′ . We may thus apply Case 1.2.
If g is no more ascending in S · T , then its endpoints are in the orbit v and
v′, and by Lemma 3.12 the tree Te is not universally elliptic.

2.2.2.2. If a move involving f or f̄ different from a slide of f occurs in S′, call S′
1

the maximal initial subsequence of S with no moves involving f and let m

be the next move. Then S′
1 · T refines Te, and the vertex v is still of valence

2. If m is a slide on f̄ , in (S′
1 ·m) · T the vertex v is now of valence 3. If v′

is of valence greater than 3 then we may apply Case 2.1, if v′ is of valence 2
in (S′

1 · m) · T , then we may exchange the role of v and v′ and continue to
preform the sequence S (which is strictly shorter).
If m is an induction or an A±1-move on f , then f is pre-ascending in S′

1 · T
′,

and the terminal vertex of f is in the orbit v′. By Lemma 3.12 the tree Te is
not universally compatible.
If m is an A−1-move in which f vanishes, if the move occurs at w, then w is
the vanishing vertex and the case is already treated in 2.2.2.1. If the move
occurs at the terminal vertex of f , then (S′

1 ·m) · T still refines Te and now
the valence of v is 3, as previously, if the valence of v′ is greater than 3, we
may apply Case 2.1, and if v′ is of valence 2 in (S′

1 · m) · T , then we may
exchange the role of v and v′ and continue to preform the sequence S′ (which
is strictly shorter).
If m is a slide of f̄ along an edge g. If Gg 6= Gw then Corollary 3.11, the tree
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Te is not universally elliptic.
If Gg = Gw then we are in Case 2.2.1.2.

Theorem 3.25. Let G be a GBSn group which is not an ascending HNN-
extension, then Tcomp is the compatibility JSJ tree for decomposition over Zn

groups.

Proof. By Proposition 3.7, the tree Tcomp is universally compatible. By Lemma
3.20, Propositions 3.21 and 3.22, the tree Tcomp dominates every universally
compatible tree with one edge. By [9, Proposition 3.22], this imply that Tcomp

dominates every universally compatible tree.

4 The Case of vGBS groups

In the previous section, we showed that Tcomp is the compatibility JSJ tree of
a GBSn group over Zn groups. However some GBSn groups may split over
Zn+1. Thus the abelian compatibility JSJ tree may be different from Tcomp.
This is actually the case even for very simple GBS1 groups such as BS(2, 2) =
〈a, t|ta2t−1 = a2〉.

Indeed, the reduced (abelian and cyclic) JSJ deformation space of BS(2, 2)
is reduced to one tree with one orbit of (non-oriented) non-ascending edges.
Thus Tcomp is also this JSJ tree.

However BS(2, 2) may split over Z2 is the following way: define

A = 〈a, s|sa2s−1 = a2〉 ≃ BS(2, 2)

and
B = 〈b, t|bt = tb〉 ≃ Z2.

Define G = A ∗a2=b,s=t2 B, then

G = 〈a, t|ta2t−1 = a2〉 ≃ BS(2, 2).

The element t2 is hyperbolic in the JSJ decomposition, but belongs to the edge
group of the decomposition A ∗a2=b,s=t2 B. Thus the tree associated to the
decomposition A ∗a2=b,s=t2 B is not compatible with the JSJ tree (which is
Tcomp). This implies that Tcomp is not the abelian compatible JSJ tree. In fact
in this case the compatibility JSJ tree is the trivial G-tree.

4.1 Definitions and construction tools

An element t ∈ G is bi-elliptic in a G-tree T if it stabilizes an edge of the
tree, potentially bi-ellipticif there exists a reduced G-tree over abelian groups in
which it is bi-elliptic. An edge is bearingif it is contained in the axis of some
hyperbolic element which is potentially bi-elliptic.
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Let T be a reduced G-tree. Let e be an edge of T with initial vertex v. Let w
be the vertex obtained by collapsing the ascending edges adjacent to v. Assume
that Gv is abelian.

Inert edges Let e be an edge of T verifying the following four properties in
every tree of the deformation space of G :

• the initial vertex v of e is of valence at least 2,
• the edge e is bearing,
• the edge e is not vanishing, not slippery and not p.s.a.d.,
• the centralizer of Ge in Gw is Gv.

The edge e is inert if furthermore it has one of the following properties:

• the group Gv/Ge is not isomorphic to Z/pkZ for any prime number p, and
for all f 6∈ e with initial vertex v, we have 〈Gf , Ge〉 = Gv,

• there exit a prime number p and an integer k such that Gv/Ge ≃ Z/pkZ,
and for all f 6∈ e of initial vertex v, we have the implication if Ge ⊂ Gf

then f is toric,

and if e has these properties in every tree of the reduced deformation space
(note that as e is not p.s.a.d., we may follow e in every tree of the reduced
deformation space).

The edge e is said to be inert of type 1 in the first case and inert of type 2
in the second.

An orbit of edge e is inert if one of its representative is inert.

The reason why we have to distinguish inert edges of type 1 and 2 comes
from the following fact:

Fact. Let Ge be a subgroup of Gv ≃ Zn. The subgroups of Gv containing Ge

are pairwise comparable for inclusion if and only if Gv/Ge ≃ Z/pkZ for some
prime number p and integer k.

Lemma 4.1. If e is inert then Gv is maximal abelian and if there exists an
edge f 6∈ e of initial vertex v such that Ge ⊂ Gf then f is toric.

Proof. Let us first prove the implication Ge ⊂ Gf ⇒ f is toric.

If e is of type 2, this point is in the definition. If e is of type 1, call v′ the
terminal vertex of f . By definition 〈Gf , Ge〉 = Gv thus the edge f is ascending
and e may slide along f , thus after sliding as e is still inert we must have
〈Ge, Gf 〉 = Gv′ , as Ge ⊂ Gf we have Gf = Gv′ and f is toric.

A consequence is that an ascending edge adjacent to v is toric. Call V the
subtree fixed by Gv. Then every vertex of V is in v and every edge of V is toric,
thus V collapses onto w. Any element that commute to Gv must either fix a
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point of V if it is elliptic, or have its axis contained in V if it is hyperbolic. In
both cases it belongs to Gw.

4.2 Compatibility JSJ tree over abelian groups

Expansion of inert edges If an edge e is inert of type 1, to expand e consists
in performing an expansion on v with group Gv and set {e} (see definition in
Section 2).

If an edge e is inert of type 2, we define He as the largest subgroup such that
for every tree in the reduced deformation space of T , and every edge f with
same initial vertex as e, we have He ⊂ 〈Ge, Gf 〉.

The edge e is also bearing, and Gv/Ge ≃ Z/pkZ. Let a be an element of
Gv whose projection into Gv/Ge is a generator. Let i be the minimal integer
such that there exist q with p 6 |q and a potentially bi-elliptic element whose axis

contains both e and ap
iq · e. Note that as ap

k

· e = e, we have i ≤ k. Define
Fe = 〈Ge, a

pi

〉

If Fe ⊂ He, to expand e consists in performing an expansion on v with group
Fe and set {e}. The expansion of e is not defined when Fe 6⊂ He

Construction of the abelian compatibility JSJ tree

Definition 4.2. Let G be a vGBS group. Let T be a reduced abelian JSJ tree
of G. Call E the set of non-ascending slippery, strictly ascending and toric
2-slippery edges.

We define Tab as the G-tree obtained by expanding inert edges, blowing up
dead ends, then collapsing simultaneously every edge of E and every bearing
edges.

Note that the wall of a dead end cannot be inert. There may be several blow
up and expansion around a vertex, but the blowing up of dead ends, and the
expansion of inert edges are made on distinct edges.

Lemma 4.3. The tree Tab does not depend on the choice of T in the reduced
JSJ deformation space of G.

Proof. We show that the tree obtained before collapsing bearing edges does not
depend on T .

Using Proposition 3.2, we just have to prove that the expansion of an inert
edge commutes with the Whitehead moves and collapses.

Let T be a reduced JSJ tree and m be an admissible move on T .

• Assume that m is a slide e/f . Let g be an inert edge. If g 6= f, f̄ , ē, then
obviously the slide commutes with the expansion. As f and f̄ are slippery,
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they are not inert. If ē is inert, by Lemma 4.1, the edge f is toric. Then
either f is 2-slippery and must be collapsed, and thus it is the same to
expand ē and collapse f than sliding e, expand ē and collapse f , or f is not
2-slippery, thus the slide has no effect on the tree [11, Theorem 1, case 3].

• If m is an induction, or an A−1-move on an edge e of initial vertex v, as
e is strictly ascending, the group Gv is not maximal abelian, thus no edge
adjacent to v is inert.

Call T̃ab the tree obtained from Tab by collapsing edges coming from an
expansion or a blow-up.

Note that T̃ab is refined by every JSJ tree.

Lemma 4.4. The tree Tab is universally elliptic.

Proof. As every edge of T̃ab comes from an edge of a reduced JSJ tree, the tree
T̃ab is universally elliptic.

We have to show that the edges obtained by a blow up or an expansion are
universally elliptic. Let TJ be an abelian JSJ tree, and let e be an edge of TJ

of initial vertex v.

If the vertex v is a dead end with wall e or if e is an inert edge of type 1,
let f 6∈ e be an edge of TJ with initial vertex v. Then Gv = 〈Ge, Gf 〉, from
[1, Theorem 7.3] this implies that Gv is abelian. The group Gv is abelian and
generated by universally elliptic elements thus universally elliptic. Thus the
edge comming from a blow up of v or an expansion of e is universally elliptic

If e is inert of type 2, call f the edge coming from the expansion. Then
Ge is universally elliptic and of finite index in Gf , thus Gf is also universally
elliptic.

4.3 Universal compatibility

Lemma 4.5. The tree Tab is compatible with every abelian JSJ tree T .

Proof. For f an edge of Tab call Tf the tree obtained by collapsing every edge
of Tab except f .

By the point 1. of [9, Proposition 3.22], we have to show that T is compatible
with Tf for every edge f of Tab.

Call T̃ a reduced JSJ tree refined by T . By construction, T̃ refines every
tree Tf with f an edge of Tab not obtained by a blow up or an expansion, thus

refines T̃ab. Hence T also refines T̃ab.

If f comes from a blow up or an expansion, then we may apply Lemma 3.3.
We obtain that T is compatible with Tf .

If follows that T is compatible with Tab.

39



Lemma 4.6. Let G be a vGBS group. Any G-tree over abelian groups is elliptic
with respect to Tab and T̃ab

Proof. Let E be an abelian subgroup of G and assume that G splits non-trivially
over E as an amalgam or an HNN extension. By definition every element of E is
potentially bi-elliptic. As every bearing edges are collapsed, every element of E
is elliptic in Tab, but as E is finitely generated, this implies that E is elliptic.

Lemma 4.7. Let T1 and T2 be two reduced universally elliptic G-trees. If every
JSJ tree refines T2 and if T1 dominates T2 then T1 refines T2.

Proof. By [8, Lemma 5.3], there exists a JSJ tree TJSJ which refines T1. As
any JSJ refines T2, the tree TJSJ also refines T2. We prove that every edge of
TJSJ collapsed in T1 is also collapsed in T2.

We may collapse one by one the non-reduced edges of TJSJ which must be
collapsed in T1. The remaining tree is still a JSJ tree, hence still refines T2. Let
e be a reduced edge that is collapsed in T1. As e is reduced, there are more
elliptic elements after collapsing e. Yet T1 dominates T2, thus elliptic of T1 are
elliptic of T2. Necessarily, the edge e is collapsed in T2.

Lemma 4.8. Let T1 and T2 be G-trees. If every JSJ tree refines T2 and if T1

is elliptic with respect to T2, then T1 and T2 are compatible.

Proof. Note that as T2 is refined by every JSJ tree it is reduced.

As T1 is elliptic with respect to T2, by [8, Lemma 3.2] there exists T ′ a
refining tree of T1 which dominates T2. As T2 is universally elliptic, the tree T ′′

obtained from T ′ by collapsing the non universally elliptic edges still dominates
T2. We may also assume that T ′′ is reduced. The trees T ′′ and T2 are universally
elliptic and reduced. By Lemma 4.7 the tree T ′′ refines T2. Thus T

′ is a common
refinement of T1 and T2.

Corollary 4.9. Let G be a vGBS group. Then T̃ab is universally compatible.

Proof. That is an immediate consequence of Lemmas 4.6 and 4.8.

Lemma 4.10. Let TJ be a reduced JSJ tree. Let e be an inert edge. Call T ′
J

the tree obtained by expending e in TJ . Call f the new edge of T ′
J adjacent to e.

Call v and v′ the initial and terminal vertices of f , and Tv and Tv′ the connected
components of v and v′ in T ′

J \ f . Then

• every t whose characteristic space is contained in Tv′ and which belongs to
the centralizer of Ge belongs to Gv′ ,

• for every edge e′ 6= f adjacent to v′ in Tv′ and every element t whose
characteristic space is contained in Tv, the group Ge′ is not contained in
the centralizer of t.
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Moreover, in both point, we may replace Ge and Ge′ by Gf .

Proof. Call w the vertex obtained by collapsing in TJ every toric edge adjacent
to the initial vertex of e. Let t be an element whose characteristic space is
contained in Tv′ . Assume that it commutes with every element of Ge. If t is
hyperbolic then Ge is contained in every edge group of it axis. But applying
Lemma 4.1, we easily see that every edge of the axis is toric, and that the whole
axis of t in TJ collapses onto w. Thus by the fourth point of the definition of
an inert edge, the element t belongs to Gv′ .

If t is elliptic, then again applying Lemma 4.1, then path between v′ and the
characteristic space of t contains only toric edges. Thus t belongs to Gw, thus
to Gv′ .

As Ge ⊂ Gf the result is also true for Gf .

Let us treat now the second point of the lemma. As e is inert, it is neither
slippery nor pre-ascending. Thus Ge′ is not include in Ge. As every edge
of Tv adjacent to v has edge group Ge, if Ge′ centralizes an element t with
characteristic space intersecting Tv, then t belongs to Gv. As Gv ⊂ Gv′ , the
characteristic space of t is not contained in Tv.

As Gf is not include in Ge, the result is also true replacing Ge′ by Gf .

Let e be an edge of Tab coming from the expansion of an inert edge or the
blow up of a dead end. Call Te the tree obtained by collapsing every edge in
Tab except the ones in e.

Lemma 4.11. Let T be an abelian G-tree which dominates Te, then T is com-
patible with Te.

Proof. The method consists in recreating the edge e in T .

Let T ′ be the G-tree obtained from T by collapsing every non-universally
elliptic edge. By Lemma 4.4 l’arbre Te is universally elliptic, thus the tree T ′

still dominates Te.

Now, T ′ is universally elliptic, thus refined by a JSJ tree. By Lemma 4.5,
the tree Te is compatible with any JSJ tree, therefore T ′ and Te are compatible.
Call T ′

e the least common refinement. The tree T ′
e is also universally elliptic.

As T ′ dominates Te, the trees T ′ and T ′
e belong to the same deformation space.

If T ′
e = T ′ then T refines Te thus is compatible with it. Otherwise, T ′

e has
one orbit of edges e more than T ′ and this orbit is not reduced. Call v and v′

the endpoints of e in T ′
e such that Gv′ = Ge ⊂ Gv.

Fix T̃e a JSJ tree refining T ′
e. We may assume that if an edge of T̃e is not

reduced, then it is not collapsed in T ′
e. Call also e the unique lift of e in T̃e. As

Ge = Gv′ , the vertex v′ as a unique preimage in T̃e. Indeed the terminal vertex
ṽ of e in T̃e has group Gv′ and collapses onto v′, if an edge adjacent to ṽ collapse

41



onto v′, as Gṽ = Gv′ , this edge may not be reduced. This is in contradiction
with the construction of T̃e.

Let T̂e be a reduced JSJ tree refined by T̃e. As e in Tab comes from an
expansion or a blow up, call v̂ the vertex on which e collapses in T̂e. Let G be
the set of edges of T̂e adjacent to v̂.

Let f 6= e, ē be an edge of T ′
e with initial vertex v′, call f̃ its lift in T̃e. Then

f̃ has initial vertex ṽ. If f̃ is reduced then it is the lift of an edge of G. If it is
not reduced, as T̃e is minimal, it is in the path of between ṽ and the lift of some
edge g of G. But Gg ⊂ Gṽ′ , thus Gg ⊂ Gf̃ . Thus in both cases there exists an
edge g ∈ G such that Gg ⊂ Gf .

Let w′ be the vertex on which e collapses in T ′. We have Gw = Gv. Call Tw

the subtree of T which collapses on w′. As Ge ⊂ Gw is universally elliptic, there
exists a vertex w of Tw fixed by Ge. We claim that w is uniquely determined.

Indeed, the tree T ′ is obtained from T by collapsing non-universally elliptic
edges. Thus Tw has no universally elliptic edges. But the centralizer of Ge in
Gw′ is Gv̂ (see Lemma 4.10) which is universally elliptic. Thus if an edge of
Tw is fixed by Ge, its stabilizer is contained in Gv̂, and thus universally elliptic.
Which is absurd.

Call F the set of edges of T ′
e with initial vertex v′. Take f ∈ F with f 6= ē

an edge of T ′
e of initial vertex v′, as f is not collapsed in T ′, it has a unique lift

in T (that we also call f), let us show that f has initial vertex w in T .

There exists g ∈ G such that Gg ⊂ Gf , now by Lemma 4.10, the element
which commutes with Gf and fixes a point in Tw belongs to Gv̂. But again, as
Gv̂ is universally elliptic, no edge of Tw has its stabilizer contained in Gŵ, thus
the initial edge of f must be w. We may thus perform and expansion on w with
group Ge, and set F .

The obtained tree refines T ′
e, thus Te.

Proposition 4.12. The tree Tab is universally compatible.

Proof. Let T̃ be an abelian G-tree. By Lemma 4.6, the tree T̃ is elliptic with
respect to Tab, applying [8, Lemma 3.2], there exists T a refining tree of T̃ which
dominates Tab. Let e be an edge of Tab, and Te the tree obtained by collapsing
every edge orbit except e.

If e is not collapsed in T̃ab, applying Corollary 4.9, the tree T is compatible
with Te. If e is collapsed in T̃ab, applying Lemma 4.11, the tree T is com-
patible with Te. From [9, Proposition 3.14], the T is compatible with T̃ , and
consequently T̃ is compatible with Tab.

4.4 Maximality

Proposition 4.13. Let G be a vGBS group. The tree Tab dominates every
universally compatible G-tree.
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Proof. Let T ′ be a universally compatible G-tree with a unique orbit of edges
e. Let T̃J be a JSJ tree which refines T ′. We may assume that T̃J has a most
one orbit of non-reduced edges and if so this orbit is e.

If T̃J is reduced, the only case not treated in Proposition 3.21, is when e is
bearing. But if e is bearing, this exactly means that there exists an hyperbolic
element of T ′ which belongs to an edge group of another abelian G-tree. This
immediately contradict the universal compatibility of T ′.

If T̃J is not reduced, recall the notation of Proposition 3.22, fix e a represen-
tative of e, call v the initial vertex of e and v′ its terminal vertex. We assume
that Gv = Ge. Call w the vertex obtained by collapsing every toric edge adja-
cent to v′. The vertex v is of valence at least 2, and f 6∈ e is an edge of initial
vertex v. The cases not treated in Proposition 3.22 are the ones where f is an
inert edge and e is not the expansion on f . To be more specific, after excluding
the subcases already treated, the remaining cases are

the valence of v is 2, the edge f is bearing but not pre-ascending, not pre-
descending, not slippery, not vanishing (and not toric) and

1. either Ge = Gv ( Gv′ and there is no prime p such that Gv′/Gf ≃ Z/pkZ,

2. or the centralizer of Ge in Gw strictly contains Gv.

3. or Ge = Gv ( Gv′ , the edge f is inert of type 2, and Ge ( Ff ,

4. or Ge = Gv ( Gv′ and f is inert of type 2, and Ff ( Ge,

5. or one of the property of inert edges does not hold for f in a reduced JSJ
tree T ′

J .

Remember that if f is inert of type 2, as Gv′/Gf ≃ Z/pkZ with p a prime
number, we must have Ge ⊂ Hf or Hf ⊂ Ge. The definition of Ff is given in
Section 4.2.

In the two first cases there exists an abelian subgroup E of Gw containing
Gf and not comparable with Ge. Let a be an element in Ge but not in E and
b an element in E but not in Ge.

Let T̂ be the tree obtained from TJ by performing an expansion on v′ with
group E, and set {f}.

Let c be an element fixing the terminal edge of f but not f (such an element
exists since f is not ascending). Then a fixes the edge e in E{c,bcb−1}(Te), but

no vertex of E{c,bcb−1}(T̂ ), by Lemma 3.8, these Te and T̂ are not compatible.
Thus Te is not universally compatible.

In the third case, by construction of Ff , there exist an element a ∈ Gv′ ( Ff

and a potentially bi-elliptic element whose axis contains f and a · f , as e is
between f and a · f this implies that e is bearing, thus Te cannot be universally
compatible.
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In the fourth case, the tree Tab obviously dominates Ge.

In the last case, call TJ the reduced JSJ obtained by collapsing e in T̃J .
There exists a sequence S of admissible moves such that S · TJ = T ′

J . We prove
that we may apply a sequence S′ at T̃J such that S · T̃J still refines T ′. As f
is not slippery, and not pre-ascending, the only way f may appear in S is in a
slide f/g or f̄/g. From Lemma 3.18, if no slide of f̄ occurs, then S is admissible
in T̃J and S · T̃J refines T ′. If a slide of f̄ along an edge g occurs, then g is toric.
Thus in T̃J it suffices to replace f/g by e/g.

5 Algorithmic construction

5.1 Inconstructibility of the abelian compatibility JSJ of

vGBS groups

In [2], Bogopolski, Martino and Ventura show that there exist four automor-
phisms (ϕi)1≤i≤4 of Z

4 such that the semi-direct product G = Z4⋊(ϕi)F4, where
F4 is the free group in four generators, has an undecidable conjugacy problem.
From this example, we give a family of vGBS groups for which it is impossible
to describe algorithmically the abelian compatibility JSJ tree.

Proposition 5.1. Let G the group described in the previous paragraph and T
be the G-tree associated to the presentation with one orbit of vertices (whose
stabilizer are all equal to Z4) and four orbits of edges. Let x1 and x2 be two
primitive elements of Z4. We build G(x1, x2) the fundamental group of the
following graph of groups Γ(x1, x2): we add to Γ two loops ℓ1 and ℓ2 whose edge
groups an both Z. The injections of Gℓi are defined by n 7→ xn

i .

The group G(x1, x2) is then isomorphic to 〈G, t1, t2|tixit
−1
i = xi〉. Then the

compatibility JSJ tree of G(x1, x2) is trivial if and only if x1 et x2 are conjugated.

Proof. Call T (x1, x2) the Bass-Serre tree associated to Γ(x1, x2). The G-tree
T (x1, x2) is an abelian JSJ tree of G(x1, x2). The four toric edges are collapsed
in Tab since they are 2-slippery, and the vertex is not a dead end. As 〈x1, x2〉
is not of finite index in the vertex group, no edge is inert. As x1 and x2 are
primitive and the ϕ are in Gln(Z), the edges li are not p.s.a.. Thus l1 and l2
are collapsed if and only if they are slippery. But the only edge which may slide
along l1 is l2. Thus l1 is collapsed if and only if x2 is conjugate to a power of
x1 in G, but again as the elements x1 and x2 are primitive elements, the edge
l1 is collapsed if and only if x1 and x2 are conjugated in G.

Corollary 5.2. There is no algorithm that permit to decide whether G(x1, x2)
has a trivial compatibility JSJ tree.

Proof. The conjugacy problem between hyperbolic elements in vGBS groups is
decidable. From [2] we may deduce that the conjugacy problem between elliptic
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elements of G is not solvable. Proposition 5.1 allows to conclude.
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