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ASSOCIATIVE NIL-ALGEBRAS OVER FINITE FIELDS.

ARTEM A. LOPATIN AND IVAN P. SHESTAKOV

Abstract. The nilpotency degree of a relatively free finitely generated

associative algebra with the identity x
n = 0 is studied over finite fields.

Keywords: Nil-algebras, nilpotency degree, Nagata–Higman Theorem,

PI-algebras, associative algebras, finite fields.

2010 MSC: 16R10, 16R40, 16N40, 11T06.

1. Introduction

We denote by 〈X〉d ⊂ 〈X〉 the semigroups (without unity) freely generated by
letters x1, . . . , xd and x1, x2, . . ., respectively. Elements of 〈X〉 are called words. Let
F〈X〉d and F〈X〉 be the vector spaces over the field F with the bases 〈X〉d and 〈X〉,
respectively. Note that elements of F〈X〉d and F〈X〉 are finite linear combinations
of words from 〈X〉d and 〈X〉, respectively. Denote by

Nn,d =
F〈X〉d

id{xn |x ∈ F〈X〉d}

the relatively free finitely generated associative algebra with the identity xn = 0.
The connection between this algebra and analogues of the Burnside problems for
associative algebras suggested by Kurosh and Levitzky is discussed in recent sur-
vey [19] by Zelmanov. The algebra Nn,d also plays a crucial role in the construction
of minimal systems of generators for algebras of polynomial invariants of several
matrices (see [3], [9], [10], [11], [12]). It is well-known that Nn,d is a nilpotent al-
gebra. For example, it follows from the Shirshov Height Theorem [17] and the fact
that

(1) L1n(a1, . . . , an) =
∑

σ∈Sn

aσ(1) · · ·aσ(n),

the complete linearization of xn, is equal to zero in Nn,d (see below for the details).
We write

Cn,d = min{c > 0 | a1 · · · ac = 0 for all a1, . . . , ac ∈ Nn,d}

for the nilpotency degree of Nn,d. Since C1,d = 1 and Cn,1 = n, we assume that
n, d ≥ 2 unless otherwise stated. To specify the field F, we write NF

n,d, C
F

n,d for

Nn,d, Cn,d, respectively. We say that an element f of F〈X〉d is a relation for Nn,d

and write f = 0 in Nn,d if the image of f in Nn,d is zero.
In characteristic zero case of the field F we have 1

2n(n + 1) ≤ Cn,d ≤ n2, where
the lower bound was established by Kuzmin [7] and the upper bound was given
by Razmyslov [14]. Kuzmin also conjectured that Cn,d = 1

2n(n + 1), which was
shown to be true for n ≤ 4 by Vaughan–Lee [18]. The case of n = 5 and d = 2 was
considered by Shestakov and Zhukavets [15]. An English translation of Kuzmin’s
result can be found in books [1] and [5].
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The difference of the case of positive characteristic of F from the case of zero
characteristic is due to the fact that in the latter case any relation forNn,d belongs to
the ideal generated by L1n , which in general is not the case in positive characteristic.
As the result, in case 0 < charF ≤ n we have Cn,d → ∞ as d → ∞ by [3]. Recently,

Belov and Kharitonov [2] established the that Cn,d ≤ 218 · n12 log
3
(n)+28d. In the

case of an infinite field F with charF > n
2 Lopatin [13] proved that Cn,d < 4 · 2

n
2 d.

See Remark 4.8 of [13] for the comparison of these two upper bounds.
Given a field F of characteristic p ≥ 0, the nilpotency degree Cn,d is known for

n = 2 for an arbitrary F (for example, see [3]) and for n = 3 for an infinite F (see [8]
and [9]):

C2,d =

{
3, if p = 0 or p > 2

d+ 1, if p = 2
and C3,d =







6, if p = 0 or p > 3
6, if p = 2 and d = 2

d+ 3, if p = 2 and d > 2
3d+ 1, if p = 3.

.

Moreover, in case F is infinite Lopatin explicitly described an F-basis for N3,d

(see [9]) and calculated C4,d with deviation three for all d under assumption that
p 6= 2 (see [13]).

In the case of an infinite field F all partial linearizations of xn are relations for
Nn,d, which in general does not hold in the case of a finite field. For an arbitrary
field of characteristic p Eick [6] obtained the following results:

• if p > n, then Cn,d is the same as in the case of an infinite field of the same
characteristic;

• C3,d is computed for p = 2, 3 and d ≤ 4;
• C4,2 is calculated for p = 2, 3, 5 and C5,2 is calculated for p = 0, 2, 3, 5, 7.

In this paper we extend the mentioned results as follows. Let F be an arbitrary
field and L be an infinite field with charF = charL. Then

• in case #F ≥ n we have CF

n,d = CL

n,d (see Corollary 2.9);

• we completed the description of CF

3,d for all d by proving that CF

3,d = CL

3,d

(see Section 3). We also explicitly described an F-basis for NF

3,d (see Re-

mark 3.7). Note that

dimNF

3,d =

{
dimNL

3,d + d(d− 1)/2, if #F = 2

dimNL

3,d, otherwise
;

• in case #F = n− 1 we have CL

n,d ≤ CF

n,d ≤ CL

n,d + 1 (see Theorem 4.1);
• as a consequence, C4,d is described with deviation four for all d under
assumption that p 6= 2 (see Corollary 4.5).

The following conjecture holds for n = 2, 3 and all d, for n = 4, 5 and d = 2.

Conjecture 1.1. For a finite field F and an infinite field L with charF = charL
the equality CF

n,d = CL

n,d holds.

2. General case

We start with some notations. Let N = {1, 2, . . .}, N0 = N⊔{0}, Z be the ring of
integers, and F

∗ = F\{0}. For an a ∈ 〈X〉d and a letter x we denote by degx(a) the
degree of a in the letter x, by mdeg(a) = (degx1

(a), . . . , degxd
(a)) the multidegree

of a, and by deg(a) = degx1
(a) + · · · + degxd

(a) the degree of a. As usually, the
degree of f =

∑

i αiai ∈ F〈X〉d is the maximum of degrees of words ai. For short,
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we write 1n for multidegree (1, . . . , 1) (n times). Given α = (α1, . . . , αr) ∈ N
r
0, we

set #α = r, |α| = α1 + · · · + αr. Given a prime p, denote by Fp the field with p
entries. In case p = 0 we set Fp = Z.

We define 〈X〉#d = 〈X〉d ⊔ {1} and 〈X〉# = 〈X〉 ⊔ {1}. Given θ ∈ N
r
0 with

|θ| = n, denote by Lθ(x) = Lθ(x1, . . . , xr) ∈ F〈X〉 the coefficient of αθ1
1 · · ·αθr

r in
(α1x1 + · · · + αrxr)

n, where αi ∈ F. Note that Lθ(x) is a non-zero element of
F〈X〉. We say that Lθ(x) is the partial linearization of xn of multidegree θ. As an
example, see above formula (1) for L1n .

Remark 2.1. If F is infinite, then by the standard Vandermonde arguments (or
see the proof of part (a) of Theorem 2.5 below) we obtain that the ideal of relations
for Nn,d is generated by Lθ(a) for |θ| = n and ai ∈ 〈X〉d for all i.

Remark 2.2. Assume that the characteristic of F is p ≥ 0. Let A = F〈X〉d/I for
the ideal I generated by some polynomials from Fp〈X〉d. Consider a basis B of A
consisting of words. Then in the algebra A we have

(a) every w ∈ 〈X〉d belongs to the Fp-span of B in A;
(b) if w1, . . . , wr ∈ 〈X〉d are linearly dependent in A, then

∑

i αiwi = 0 in A
for such αi ∈ Fp that not all of them are equal to zero.

Remarks 2.1 and 2.2 imply that if F and L are infinite fields and charF = charL,
then

• every basis for NF

n,d consisting of words is a basis for NL

n,d;

• CF

n,d = CL

n,d.

Definition 2.3 (of Frobenius partial linearization). Assume that F is finite and
q = #F. Given δ ∈ N

r with |δ| = n, we say that the Frobenius partial linearization

of xn of multidegree δ is

Fδ(x) = Fδ(x1, . . . , xr) =
∑

Lθ(x1, . . . , xr) ∈ F〈X〉,

where θ ranges over vectors from N
r satisfying

• |θ| = n;
• θi ≡ δi (mod q − 1) for all i.

As an example, if n = 5 and #F = 3, then F41(x) = L41(x) + L23(x),
F32(x) = L32(x) + L14(x), and F311(x) = L311(x) + L131(x) + L113(x). Note that
Lθ(x1, . . . , xr) = Lσθ(xσ(1), . . . , xσ(r)) for all permutations σ ∈ Sr, where σθ stands
for (θσ(1), . . . , θσ(r)). Similar remark holds for Fδ(x). We will use these remarks
without references to them.

A vector θ ∈ N
r is called ordered if θ1 ≥ · · · ≥ θr. A vector δ ∈ N

r is called
q-maximal if δ ≥ θ for every θ ∈ N

r with |θ| = |δ| and θi ≡ δi (mod q − 1) for all i,
where ≥ stands for the usual lexicographical order on N

r.

Remark 2.4. For q = #F we have that

(a) if q ≥ n, then Fδ(x) = Lδ(x);
(b) every word a ∈ 〈X〉r of degree n, satisfying degxi

(a) > 0 for all 1 ≤ i ≤ r,
is a summand of Fδ(x) for one and only one q-maximal vector δ ∈ N

r with
|δ| = n;
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(c) for every δ ∈ N
r there exists a q-maximal ν ∈ N

r satisfying Fδ(x) = Fν(x)
and |δ| = |ν|.

Theorem 2.5. Assume F is finite and q = #F. Then the ideal of relations for Nn,d

is generated as a vector space over F by uf(a1, . . . , ar)v for all a1, . . . , ar ∈ 〈X〉d,

u, v ∈ 〈X〉#d and f ∈ S, where the set S is defined as follows:

(a) if q ≥ n, then S consists of Lθ(x) for all ordered θ with |θ| = n;
(b) if q < n, then S consists of Fδ(x) for all ordered q-maximal δ with |δ| = n.

We split the proof of the theorem into several lemmas. Given 1 ≤ r ≤ n, denote

Pr(x) = Pr(x1, . . . , xr) =
∑

Lθ(x1, . . . , xr),

where the sum ranges over all θ ∈ N
r with |θ| = n.

Lemma 2.6. We have Pr(a1, . . . , ar) = 0 in Nn,d for all 1 ≤ r ≤ n and a1, . . . , ar ∈
F〈X〉d.

Proof. We prove by the inducton on r. If r = 1, then P1(a1) = an1 = 0 in Nn,d for
all a1 ∈ F〈X〉d.

Assume that for all 1 ≤ k < r we have Pk(a1, . . . , ak) = 0 in Nn,d for all
a1, . . . , ak ∈ F〈X〉d. Since (a1 + · · ·+ ar)

n is equal to

Pr(a1, . . . , ar) +
∑

1≤k≤r−1

∑

Pk(ai1 , . . . , aik),

where the second sum ranges over all 1 ≤ i1 < · · · < ik ≤ r, the induction hypoth-
esis completes the proof. �

Lemma 2.7. Let F be finite and q = #F. Then Fδ(a) = 0 in Nn,d for every δ with

|δ| = n and ai ∈ F〈X〉d for all i. In particular, in case q ≥ n we have Lθ(a) = 0 in

Nn,d for all θ with |θ| = n and ai ∈ F〈X〉d.

Proof. By part (c) of Remark 2.4, without loss of generality we can assume that

δ ∈ N
r is a q-maximal vector, where r > 0. Let {δ = δ1, . . . , δk} be the set of all

pairwise different q-maximal vectors of Nr with |δi| = n. By part (b) of Remark 2.4,
we obtain

Pr(x) = Fδ1(x) + · · ·+ Fδk(x).

Consider vectors ν1, . . . , νk from N
r
0 such that 0 ≤ νji ≤ q−2 and νji ≡ δji (mod q−1)

for all i and j. By the equality αq−1 = α0 in F, for α1, . . . , αr from F we have

Pr(α1a1, . . . , αrar) = αν1

Fδ1(a1, . . . , ar) + · · ·+ ανk

Fδk(a1, . . . , ar)

for all a1, . . . , ar ∈ F〈X〉d, where ανj

stands for α
ν
j
1

1 · · ·α
νj
r

r . Denote by (Eα) the
following linear equation in variables y1, . . . , yk:

(Eα) : αν1

y1 + · · ·+ ανk

yk = 0.

Consider the system of all linear equations (Eα), where α1, . . . , αr range over the
set of non-zero elements of F.

Consider some non-zero elements α2, . . . , αr from F. For 0 ≤ s ≤ q − 2 denote

zs = zs(α2, . . . , αr) =
∑

j
α
ν
j
2

2 · · ·α
νj
r

r yj ,
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where the sum ranges over all 1 ≤ j ≤ k with νj1 = s. In case νj1 6= s for all j we

set zs = 0 and say that zs is trivial. Since 0 ≤ νj1 ≤ q − 2 for all j, the equation

z0+α1z1+α2
1z2+ · · ·+αq−2

1 zq−2 = 0 holds for all α1 ∈ F. Denote non-zero elements
of F by ξ1, . . . , ξq−1. Therefore, B ·(z0, . . . , zq−2)

T = 0 for the Vandermonde matrix

B =








1 ξ1 ξ21 · · · ξq−2
1

1 ξ2 ξ22 · · · ξq−2
2

...
...

...
...

1 ξq−1 ξ2q−1 · · · ξq−2
q−1








.

Then det(B) =
∏

1≤i<j<q(ξj − ξi) is not zero and z0 = · · · = zq−2 = 0 for all
α2, . . . , αr.

Then for every non-trivial zs we consider the system of linear equations
zs(α2, . . . , αr) = 0, where α2, . . . , αr range over the set of non-zero elements of
F. Note that for every 1 ≤ j ≤ k the variable yj appears in one and only one such
system of linear equations. Repeating the above reasoning for α2, α3 and so on, we
finally obtain that y1 = · · · = yk = 0. Lemma 2.6 concludes the proof of the first
part of the lemma. The second part follows from part (a) of Remark 2.4. �

Now we can proof Theorem 2.5.

Proof. By part (b) of Remark 2.4, for a1, . . . , ak from 〈X〉d and α1, . . . , αk from F

we have

(α1a1 + · · ·+ αkak)
n =

min{n,k}
∑

r=1

∑

δ

∑

ϕ

Fδ(αϕ(1)aϕ(1), . . . , αϕ(k)aϕ(k)),

where δ ranges over q-maximal vectors from N
r with |δ| = n and ϕ ranges over

strictly increasing maps 1, r → 1, k. Since

Fδ(α1a1, . . . , αrar) = αδ1
1 · · ·αδr

r Fδ(a1, . . . , ar),

Lemma 2.7 implies that the ideal of relations for Nn,d is generated by all Fδ(a) with
q-maximal δ satisfying |δ| = n and ai ∈ 〈X〉d. Parts (a) and (c) of Remark 2.4
complete the proof of parts (a) and (b) of the theorem, repectively. �

Example 2.8. In the formulation of Theorem 2.5 the set S is the following one:

• if #F = n− 1, then S consists of Ln−1,1 + L1,n−1 and Lθ for all ordered θ
with |θ| = n and θ 6= (n− 1, 1);

• if #F = 2, then S = {P1, . . . , Pn};
• if n = 5 and #F = 3, then S consists of L5, L41 +L23, L311 + L131 +L113,
L221, L2111, L15 .

Corollary 2.9. Assume F is a finite field and L is a finite or infinite field with

charF = charL = p and #F < #L.

1. Let #F < n and #L < n. If l|t for #F = pl and #L = pt, then CF

n,d ≥ CL

n,d.

2. If #F < n ≤ #L, then CF

n,d ≥ CL

n,d.

3. If #F ≥ n and #L ≥ n, then CF

n,d = CL

n,d.
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Proof. In part 1 we can assume that F ⊂ L, which implies the required. Consider
parts 2 and 3 of the theorem. Theorem 2.5 and Remark 2.1 imply that the ideal
of relations for NF

n,d (NL

n,d, respectively) is generated by some set W F ⊂ Fp〈X〉d
(a set W L ⊂ Fp〈X〉d, respectively). Moreover, W F belongs to Fp-span of W L in
part 2 and W F = W L in part 3. The proof is completed. �

3. The case of x3 = 0

In this section we investigate NF

3,d for any field F. In the case of an infinite field

F, the nilpotency degree and a basis for NF

3,d were established in [9] developing

ideas from [8]. By Theorem 2.5 and Remarks 2.1 and 2.2, in the case of #F > 2,
the nilpotency degree and a basis consisting of words are the same as in the case
of infinite field of the same characteristic. So the only case that is left to consider
is the case of F = F2.

Theorem 3.1. Let F = F2. Then for every infinite field L of characteristic 2 we

have

(a) CF

3,d = CL

3,d =

{
6, if d = 2

d+ 3, if d ≥ 3
;

(b) dimNF

3,d = dimNL

3,d + d(d − 1)/2.

The proof of this theorem is given at the end of the section.

Definition 3.2 (of ≈). Given an f ∈ F〈X〉d, we write f ≈ 0 in Nn,d if and only
if either f = 0 in Nn,d or f =

∑

i αiwi in Nn,d for αi ∈ F and wi ∈ 〈X〉 satisfying
deg(wi) > deg(f).

Remark 3.3. If f ≈ 0 in Nn,d, then ufv ≈ 0 in Nn,d for all u, v ∈ 〈X〉#d . On the
other hand, note that in case f ≈ 0 and h ≈ 0 in Nn,d we can have that f + h 6≈ 0
in Nn,d. Similarly, in case f ≈ 0 in Nn,d and f = h in Nn,d we can have that h 6≈ 0
in Nn,d.

We will use the following remark to obtain relations for Nn,d.

Remark 3.4. Define the inversion ∗ on F〈X〉 as follows: x∗
i = xi for all i, (ab)

∗ =
b∗a∗ for all a, b ∈ 〈X〉 and ∗ : F〈X〉 → F〈X〉 is a linear map. Then for any relation
f ∈ F〈X〉d for Nn,d we have that f∗ is also a relation for Nn,d.

In the rest of this section we assume that F = F2 unless otherwise stated. By
Theorem 2.5 and Example 2.8, we have

(2) L111(x, y, z) = 0 in N3,d,

(3) L21(x, y) + L12(x, y) = 0 in N3,d.

Moreover, the ideal of relations for N3,d is generated by x3 and left hand sides of
equalities (2) and (3) for x, y, z ∈ 〈X〉d. Note that L111(x, y, z) = xyz + xzy +
yxz + yzx+ zxy + zyx and L21(x, y) = x2y + xyx + yx2. By the straightforward
calculation we can see that

xL21(y, z) = L21(y, xz) + L111(x, y, yz)− yL111(x, y, z)
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holds in F〈X〉. Then equality (2) implies that

(4) xL21(y, z) = L21(y, xz) in N3,d.

By Remark 3.4, we have

(5) L21(x, y)z = L21(x, yz) in N3,d.

Lemma 3.5. We have L21(a, b) ≈ 0 in N3,d for all a, b ∈ 〈X〉d with deg(a) > 1.

Proof. In this proof we work in N3,d. It is convenient to rewrite equalities (4)
and (5) as follows

(6) xyzy = xy2z + xzy2 + L21(y, xz),

(7) xyxz = x2yz + yx2z + L21(x, yz),

respectively. Making a substitution z → yz in (7), we obtain

xyxyz = x2y2z + yx2yz + L21(x, y
2z).

Application of (7) to yx2yz gives us

(8) xyxyz = y2x2z + L21(x, y
2z) + L21(y, x

2z).

By Remark 3.4, we have

(9) zxyxy = zy2x2 + L21(y, zx
2) + L21(x, zy

2).

Making substitutions y → yz and z → y in (7), we obtain

xyzxy = x2yzy + yzx2y + L21(x, yzy).

Application of (6) to x2yzy and the equality yzx2y = y2zx2 + zx2y2 + L21(y, zx
2)

in F〈X〉 gives us
(10)
xyzxy = x2y2z + x2zy2 + zx2y2 + y2zx2 +L21(y, x

2z) + L21(y, zx
2) + L21(x, yzy).

Consider L21(xy, z) = xyxyz+ zxyxy+ xyzxy. Applying (8), (9), (10) to the first,
second and third summands of L21(xy, z), respectively, we obtain

L21(xy, z) = L111(x
2, y2, z) + L21(x, y

2z) + L21(y, x
2z) + L21(x, zy

2)
+L21(y, zx

2) + L21(y, x
2z) + L21(y, zx

2) + L21(x, yzy).

By equalities (2) and (3), L21(xy, z) = f(x, y, z) for

f(x, y, z) = L12(x, y
2z) + L12(y, x

2z) + L12(x, zy
2) + L12(y, zx

2)
+L12(y, x

2z) + L12(y, zx
2) + L12(x, yzy).

Consider a, b from the formulation of the lemma. Let us recall that deg(a) > 1.
We set a = xy for x, y ∈ 〈X〉d such that

• if deg(a) is even, then deg(x) = deg(y) = r ≥ 1;
• if deg(a) is odd, then deg(x) = r + 1 and deg(y) = r ≥ 1.

We have L21(a, b) = f(x, y, b). Note that f(x, y, b) is a sum of words of degrees
k1 = deg(x) + 4 deg(y) + 2 deg(b) and k2 = 4deg(x) + deg(y) + 2 deg(b). For
k0 = deg(L21(a, b)) = 2 deg(x) + 2 deg(y) + deg(b) we claim that

k0 < k1 and k0 < k2.
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For short, we write s for deg(b). In the case of even deg(a) we have k0 = 4r + s,
k1 = k2 = 5r + 2s and in the case of odd deg(a) we have k0 = 4r + s + 2,
k1 = 5r+2s+1, k2 = 5r+2s+4. Hence, the claim is proven and L21(a, b) ≈ 0. �

Lemma 3.6. We have uL21(a, b)v ≈ 0 in N3,d for all a, b ∈ 〈X〉d, u, v ∈ 〈X〉#d
with deg(ua2bv) ≥ 4.

Proof. Assume that u = v = 1. In case deg(a) > 1 the required statement follows
from Lemma 3.5. Let deg(a) = 1 and deg(b) ≥ 2. Then equality (3) gives us the
required stetement.

Assume that deg(u) > 0. Since the degree of the right hand side of formula (4)
is equal to the degree of its left hand side, formula (4) completes the proof. �

Now we can proof Theorem 3.1.

Proof. Denote by V F

r the F-span of all words of 〈X〉d of degree r. We write UF

r

for the image of V F

r in NF

3,d. Note that if a summand of relation (3) has degree
three, then the rest of summands of this relation have degree three. Therefore,
NF

3,d = UF

3 ⊕W F for W F =
∑

r>3U
F

r .

Let B = {b1, . . . , bs} be an L-basis for NL

3,d consisting of words. Denote by Br

the set of all b ∈ B of degree r. We claim that

(11) every w ∈ 〈X〉d with deg(w) ≥ 4 belongs to F-span of ⊔r≥4 Br in NF

3,d.

We set deg(w) = r ≥ 4. Since NL

3,d is homogeneous with respect to the degree,

we have w =
∑

i βibi in NL

3,d for some βi ∈ F and bi ∈ Br (see also Remarks 2.1

and 2.2). Thus relation (2) together with Lemma 3.6 imply that w −
∑

i βibi ≈ 0

in NF

3,d. Thus, w =
∑

i βibi +
∑

j γjwj for some γj ∈ F and wj ∈ 〈X〉d with

deg(wj) > r. Then we consider wj and so on. Since NF

3,d is nilpotent, this process

will stop at some step. The claim is proven. Similarly to part (b) of Remark 2.2,
we can see that the set ⊔r≥4Br is linearly independent in NF

3,d. Thus, ⊔r≥4Br is a

basis for W F.
Denote by B111 the set of all xixjxk with pairwise different i, j, k ∈ {1, . . . , d}

such that (i, j, k) is not ordered and denote by B21 the set of words x2
i xj with

1 ≤ i 6= j ≤ d. It is not difficult to see that the set B111 ⊔ B21 is a basis for UL

3 ;
and B111 ⊔B21 together with words xixjxi, where 1 ≤ i < j ≤ d, is a basis for UF

3 .
The theorem is proven. �

The next remark follows from the proof of Theorem 3.1.

Remark 3.7. Let F = F2 and L be an infinite field of characteristic two. If we
add elements xixjxi, 1 ≤ i < j ≤ d, to the basis for NL

3,d from Theorem 2 of [9],

then we obtain a basis for NF

3,d.

4. The case of #F = n− 1

Let us remark that the case of #F ≥ n is considered in Corollary 2.9. In this
section we investigate the case of field F with n− 1 elements.

Theorem 4.1. Let #F = n−1. Then for every infinite field L with charL = charF
we have CL

n,d ≤ CF

n,d ≤ CL

n,d + 1.
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We split the proof of the theorem into several lemmas. The following lemma is
a modification of Lemma 1 of Chapter 6 of [16].

Lemma 4.2. For every field F we have

nxyn = Ln−1,1(y, xy)− (n− 1)Ln−1,1(y, yx) + Ln−2,1,1(y, x, y
2)

in F〈X〉.

Proof. For short, we write x for x1 and y for xn+1. In Z〈X〉 holds

(12)
Ln−1,1(x, xy) =

∑n−1
i=0 xixyxn−i−1

= x
∑n−1

i=0 xiyxn−i−1 = xLn−1,1(x, y).

Note that two elements of Z〈X〉 are equal to each other if and only if its homoge-
neous components with respect to the multidegree are equal to each other. Thus,
making the substitution x → x1 + · · · + xn in the above equality and taking the
homogeneous component of multidegree 1n+1 (i.e. of degree one in each of letters
x1, . . . , xn, y), we obtain

n∑

i=1

L1n(x1, . . . , xi−1, xi+1, . . . , xn, xiy) =

n∑

i=1

xiL1n(x1, . . . , xi−1, xi+1, . . . , xn, y).

We make substitutions x2 → y, . . . , xn → y and recall that x1 = x. Thus in Z〈X〉
we have

(13)

L1n(y, . . . , y
︸ ︷︷ ︸

n−1

, xy) + (n− 1)L1n(x, y, . . . , y
︸ ︷︷ ︸

n−2

, y2)

= xL1n(y, . . . , y, y) + (n− 1) yL1n(x, y, . . . , y
︸ ︷︷ ︸

n−2

, y).

By (12), the second summand of the right hand side of (13) is equal to (n− 2)!(n−
1)2Ln−1,1(y, yx). Hence

(14)
(n− 1)!Ln−1,1(y, xy) + (n− 1)!Ln−2,1,1(y, x, y

2)
= n!xyn + (n− 2)!(n− 1)2 Ln−1,1(y, yx)

in Z〈X〉. Obviously, we can divide (14) by (n− 1)!. As the result, we obtain that
the required equality hold over Z and, therefore, it holds over F. �

In the rest of this section we assume that #F = n−1 and n ≥ 3. By Theorem 2.5
(see also Example 2.8), in Nn,d we have

(15) L1,n−1(x, y) + Ln−1,1(x, y) = 0 and

(16) Lθ(x1, . . . , xr) = 0, where #θ = r, |θ| = n and θ 6∈ {(1, n− 1), (n− 1, 1)}.

Lemma 4.3. In case #F = n− 1 the following equalities hold in Nn,d:

(a) xLn−1,1(y, z) = Ln−1,1(y, xz);
(b) Ln−1,1(x, y)z = Ln−1,1(x, yz);
(c) Ln−1,1(x, yz) = −Ln−1,1(z, yx).
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Proof. We can assume that x = x1, y = x2, and z = x3. By Lemma 4.2,

xyn = Ln−1,1(y, xy) + Ln−2,1,1(y, x, y
2)

in F〈X〉. Note that two elements of F〈X〉 are equal to each other if and only if its
homogeneous components with respect to the multidegree are equal to each other.
Thus, making the substitution y → y + z in the above equality and taking the
homogeneous component of multidegree (1, n− 1, 1) (i.e. of degree one in x, z and
degree n− 1 in y), we obtain

xLn−1,1(y, z) = Ln−1,1(y, xz) + Ln−2,1,1(y, z, xy)
+Ln−2,1,1(y, x, yz) + Ln−2,1,1(y, x, zy) + Ln−3,1,1,1(y, z, x, y

2)

in F〈X〉. Applying (16), we complete the proof of part (a) of the lemma. Part (b)
follows from Remark 3.4.

By (15), xLn−1,1(y, z) + xLn−1,1(z, y) = 0 in Nn,d. Thus part (a) of the lemma
implies part (c). �

Lemma 4.4. In case #F = n − 1 we have uLn−1,1(a, b)v ≈ 0 in Nn,d for all

a, b ∈ 〈X〉d, u, v ∈ 〈X〉#d with deg(ubv) ≥ 2.

Proof. We work in Nn,d. Note that the equalities from parts (a) and (b) of
Lemma 4.3 are homogeneous with respect to the degree. Applying these equalities,
without loss of generality we can assume that deg(b) ≥ 2. We set f = Ln−1,1(a, b)
and b = cx for a letter x and a word c ∈ 〈X〉d. Part (c) of Lemma 4.3 and (15) im-
ply that f = −Ln−1,1(x, ca) = Ln−1,1(ca, x). The inequality deg(Ln−1,1(ca, x)) >
deg(f) completes the proof. �

Now we can proof Theorem 4.1.

Proof. We set p = charF = charL. Consider a k > C = CL

n,d. Let u be a word

of 〈X〉d with deg(u) = k. We set u = vx for a letter x and a word v ∈ 〈X〉d with
deg(v) ≥ C. Since the ideal of relations for NL

n,d is generated by elements with

coefficients 0 and 1 (see Remark 2.1), we have

v =
∑

i

αiLθ
i
(ai)

in F〈X〉 for αi ∈ Fp, |θi| = n, and ai = (ai1, . . . , air), where r = #θi and
ai1, . . . , air ∈ 〈X〉d. Lemma 4.4 together with relation (16) imply u = vx ≈ 0
in NF

n,d. Thus if w = 0 in NF

n,d for all w ∈ 〈X〉d with deg(w) = k + 1, then w = 0

in NF

n,d for all w ∈ 〈X〉d with deg(w) = k. Hence CF

n,d ≤ CL

n,d + 1. The inequality

CL

n,d ≤ CF

n,d follows from part 2 of Corollary 2.9. �

Corollary 2.9, Theorem 4.1 together with Theorem 5.1 from [13] imply the fol-
lowing corollary.

Corollary 4.5. For an arbitrary field F of characteristic p and d ≥ 2 we have

• C4,d = 10, if p = 0;
• 3d < C4,d, if p = 2;
• 3d+ 1 ≤ C4,d ≤ 3d+ 5, if p = 3;
• 10 ≤ C4,d ≤ 13, if p > 3.
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