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Abstract

Let PX and SX be the partition monoid and symmetric group on an infinite set X.
We show that PX may be generated by SX together with two (but no fewer) additional
partitions, and we classify the pairs α, β ∈ PX for which PX is generated by SX∪{α, β}.
We also show that PX may be generated by the set EX of all idempotent partitions
together with two (but no fewer) additional partitions. In fact, PX is generated by
EX ∪{α, β} if and only if it is generated by EX ∪SX ∪{α, β}. We also classify the pairs
α, β ∈ PX for which PX is generated by EX ∪ {α, β}. Among other results, we show
that any countable subset of PX is contained in a 4-generated subsemigroup of PX ,
and that the length function on PX is bounded with respect to any generating set.

Keywords: Partition monoids, Symmetric groups, Generators, Idempotents, Semi-
group Bergman property, Sierpiński rank.

MSC: 20M20; 20M17.

1 Introduction

Diagram algebras have been the focus of intense study since the introduction of the Brauer al-
gebras [7] in 1937 and, subsequently, the Temperley-Lieb algebras [18] and Jones algebras [30].
The partition algebras, originally introduced in the context of statistical mechanics [35], con-
tain all of the above diagram algebras and so provide a unified framework in which to study
diagram algebras more generally. Partition algebras may be thought of as twisted semigroup
algebras of partition monoids, and many properties of the partition algebras may be de-
duced from corresponding properties of the associated monoids [8, 9, 19, 39]. Recent studies
have also recognised partition monoids and some of their submonoids as key objects in the
pseudovarieties of finite aperiodic monoids and semigroups with involution [2, 3, 4].
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Partition monoids were originally defined as finite structures, but the definitions work equally
well in the infinite case. Although most of the study of partition monoids so far has focused
on the finite case, there have been a number of recent works on infinite partition monoids;
for example, Green’s relations were characterized in [15], and the idempotent generated
subsemigroups were described in [11]. The purpose of this article is to continue the study of
infinite partition monoids, and we investigate a number of problems inspired by analogous
considerations in infinite transformation semigroup theory.

As noted in [8, 11], the partition monoids contain a number of important transformation semi-
groups as submonoids, including the symmetric groups, the full transformation semigroups,
and the symmetric and dual symmetric inverse monoids; see [14, 17, 24, 27, 31, 32, 33] for
background on these subsemigroups. Many studies of infinite transformation semigroups
have concentrated on features concerning generation. It seems that the earliest result in this
direction goes back to 1935, when Sierpiński [38] showed that for any infinite set X and
for any countable collection α1, α2, . . . of functions X → X , it is possible to find functions
β, γ : X → X for which each of α1, α2, . . . can be obtained by composing β and γ in some
order a certain number of times. In modern language, this result says that any countable
subset of the full transformation semigroup TX is contained in a two-generator subsemigroup,
or that the Sirepiński rank of infinite TX is equal to 2. (The Sierpiński rank of a semigroup S
is the minimal value of n such that any countable subset of S is contained in an n-generator
subsemigroup of S, if such an n exists, or ∞ otherwise.) Similar results exist for various
other transformation semigroups [10, 20, 28, 36]; see also [37] for a recent survey.

The notion of Sierpiński rank is intimately connected to the idea of relative rank. The
relative rank of a semigroup S modulo a subset T ⊆ S is defined to be the least cardinality
of a subset U of S for which S is equal to 〈T ∪ U〉, the semigroup generated by T ∪ U .
In the seminal paper on this subject [25] (see also [21]), it was shown that an infinite full
transformation semigroup TX has relative rank 2 modulo either the symmetric group SX or
the set E(TX) of all idempotents in TX . In that paper, the pairs of transformations that,
together with SX (in the case of |X| being a regular cardinal—see [13] for the singular case)
or E(TX) (for any infinite set X), generate all of TX were characterized. Again, these results
have led to similar studies of other transformation semigroups [1, 10, 20, 22, 23].

Another closely related concept is the so-called semigroup Bergman property ; a semigroup
has this property if the length function for the semigroup is bounded with respect to any
generating set (the bound may be different for different generating sets). The property is so
named because of the seminal paper of Bergman [6], in which it was shown that the infinite
symmetric groups have this property; in fact, Bergman showed that infinite symmetric groups
have the corresponding property with respect to group generating sets, and the semigroup
analogue was proved in [34]. Further studies have investigated the semigroup Bergman
property in the context of other transformation semigroups [10, 34, 36].

The goal of the present article is to investigate problems such as those above in the context
of infinite partition monoids. The article is organised as follows. In Section 2, we define
the partition monoids PX and outline some of their basic properties. In Section 3, we show
that PX has relative rank 2 modulo the symmetric group SX (Theorem 12) and then, in
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Section 4, we characterize the pairs α, β ∈ PX for which PX is generated by SX ∪ {α, β}.
This characterization depends crucially on the nature of the cardinal |X|; we have three sep-
arate characterizations, according to whether |X| is countable (Theorem 22), or regular but
uncountable (Theorem 19), or singular (Theorem 25). In Section 5, we show that the relative
rank of PX modulo the set EX of all idempotent partitions is also equal to 2 (Theorem 30);
in fact, the relative rank of PX modulo EX ∪SX is equal to 2 as well. Then, in Section 6, we
show that for any α, β ∈ PX , PX is generated by EX ∪{α, β} if and only if it is generated by
EX ∪SX ∪{α, β}, and we characterize all such pairs α, β (Theorem 36). The characterization
in this case does not depend on the cardinality of X , but relies crucially on results of [11]
describing the semigroups 〈EX〉 and 〈EX ∪ SX〉. Finally, in Section 7, we apply the above
results to show that PX has Sierpiński rank at most 4 (Theorem 37), and also satisfies the
semigroup Bergman property (Theorem 41).

All functions will be written to the right of their arguments, and functions will be composed
from left to right. We write A = B ⊔ C to indicate that A is the disjoint union of B
and C. We write N for the set of natural numbers {1, 2, 3, . . .}. Throughout, a statement
such as “Let Y = {yi : i ∈ I}” should be read as “Let Y = {yi : i ∈ I} and assume the
map I → Y : i 7→ yi is a bijection”. We assume the Axiom of Choice throughout. If X is
an infinite set, we will say a family (Xi)i∈I of subsets of X is a moiety of X if X =

⊔

i∈I Xi

and |Xi| = |X| for all i ∈ I. A cardinal µ is singular if there exists a set X such that
X =

⋃

i∈I Xi, where |I| < µ and |Xi| < µ for each i ∈ I, but |X| = µ; otherwise, µ is regular.
The only finite regular cardinals are 0, 1 and 2. The smallest infinite singular cardinal is
ℵω = ℵ0 + ℵ1 + ℵ2 + · · · . See [29] for more details on singular and regular cardinals.

2 Preliminaries

In this section, we recall the definition of the partition monoids PX , and revise some of their
basic properties. We also introduce two submonoids, LX and RX , which will play a crucial
role throughout our investigations, and we define a number of parameters associated to a
partition that will allow for convenient statements of our results.

Let X be a set, and X ′ a disjoint set in one-one correspondence with X via a mapping
X → X ′ : x 7→ x′. If A ⊆ X we will write A′ = {a′ : a ∈ A}. A partition on X is a collection
of pairwise disjoint nonempty subsets of X ∪ X ′ whose union is X ∪ X ′; these subsets are
called the blocks of the partition. The partition monoid on X is the set PX of all partitions
on X , with a natural associative binary operation defined below. A block A of a partition
α ∈ PX is said to be a transversal block if A ∩ X 6= ∅ 6= A ∩ X ′, or otherwise an upper
(respectively, lower) nontransversal block if A∩X ′ = ∅ (respectively, A∩X = ∅). If α ∈ PX ,
we will write

α =

(
Ai Cj

Bi Dk

)

i∈I, j∈J,k∈K

to indicate that α has transversal blocks Ai ∪ B′
i (i ∈ I), upper nontransversal blocks Cj

(j ∈ J), and lower nontransversal blocks D′
k (k ∈ K). The indexing sets I, J,K will some-

times be implied rather than explicit, for brevity; if they are distinct, they will generally be
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assumed to be disjoint. Sometimes we will use slight variants of this notation, but it should
always be clear what is meant.

A partition may be represented as a graph on the vertex set X ∪ X ′; edges are included
so that the connected components of the graph correspond to the blocks of the partition.
Of course such a graphical representation is not unique, but we regard two such graphs as
equivalent if they have the same connected components. We will also generally identify a
partition with any graph representing it. We think of the vertices from X (respectively, X ′)
as being the upper vertices (respectively, lower vertices), explaining our use of these words
in relation to the nontransversal blocks. An example is given in Figure 1 for the partition
α =

{
{1, 3, 4′}, {2, 4}, {5, 6, 1′, 6′}, {2′, 3′}, {5′}

}
∈ PX , where X = {1, 2, 3, 4, 5, 6}. Although

it is traditional to draw vertex x directly above vertex x′, especially in the case of finite X ,
this is not necessary; indeed, we will often be forced to abandon this tradition. It will also
be convenient to sometimes identify a partition α ∈ PX with its corresponding equivalence
relation on X ∪X ′, and write (x, y) ∈ α to indicate that x, y ∈ X ∪X ′ belong to the same
block of α.

1 2 3 4 5 6

1
′

2
′

3
′

4
′

5
′

6
′

Figure 1: A graphical representation of a partition.

The rule for multiplication of partitions is best described in terms of the graphical represen-
tations. Let α, β ∈ PX . Consider now a third set X ′′, disjoint from both X and X ′, and in
bijection with both sets via the maps X → X ′′ : x 7→ x′′ and X ′ → X ′′ : x′ 7→ x′′. Let α∨

be the graph obtained from (a graph representing) α simply by changing the label of each
lower vertex x′ to x′′. Similarly, let β∧ be the graph obtained from β by changing the label
of each upper vertex x to x′′. Consider now the graph Γ(α, β) on the vertex set X ∪X ′ ∪X ′′

obtained by joining α∨ and β∧ together so that each lower vertex x′′ of α∨ is identified with
the corresponding upper vertex x′′ of β∧. Note that Γ(α, β), which we call the product graph
of α and β, may contain multiple edges. We define αβ ∈ PX to be the partition that satisfies
the property that x, y ∈ X ∪X ′ belong to the same block of αβ if and only if there is a path
from x to y in Γ(α, β). An example calculation (with X finite) is given in Figure 2. (See
also [33] for an equivalent formulation of the product; there PX was denoted CSX , and called
the composition semigroup on X .)

This product is easily checked to be associative, and so gives PX the structure of a monoid;
the identity element is the partition

{
{x, x′} : x ∈ X

}
, which we denote by 1. A partition

α ∈ PX is a unit if and only if each block of α is of the form {x, y′} for some x, y ∈ X . So
it is clear that the group of units, which we denote by SX , is (isomorphic to) the symmetric
group on X . So, if π ∈ SX and x ∈ X , we will write xπ for “the image of x under π”, by
which we mean the unique element of X such that {x, (xπ)′} is a block of π.
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α =

β =

= αβ

Figure 2: Two partitions α, β (left), their product αβ (right), and the product graph Γ(α, β)
(centre).

A crucial aspect of the structure of PX is given by the map ∗ : PX → PX : α 7→ α∗ where α∗

is the result of “turning α upside-down”. More precisely:

α =

(
Ai Cj

Bi Dk

)

⇒ α∗ =

(
Bi Dk

Ai Cj

)

.

Note that π∗ = π−1 if π ∈ SX . The next lemma is proved easily, and collects the basic
properties of the ∗ map that we will need. Essentially it states that PX is a regular ∗-
semigroup.

Lemma 1. Let α, β ∈ PX . Then

(α∗)∗ = α, αα∗α = α, α∗αα∗ = α∗, (αβ)∗ = β∗α∗. ✷

Among other things, these properties mean that the map α 7→ α∗ is an anti-isomorphism of
PX . This duality will allow us to shorten many proofs.

Next we record some notation and terminology. With this in mind, let α ∈ PX . For
x ∈ X ∪X ′, we denote the block of α containing x by [x]α. The domain and codomain
of α are defined to be the following subsets of X :

dom(α) =
{
x ∈ X : [x]α ∩X ′ 6= ∅

}
,

codom(α) =
{
x ∈ X : [x′]α ∩X 6= ∅

}
.

We also define the kernel and cokernel of α to be the following equivalences on X :

ker(α) =
{
(x, y) ∈ X ×X : [x]α = [y]α

}
,

coker(α) =
{
(x, y) ∈ X ×X : [x′]α = [y′]α

}
.

Note that dom(α∗) = codom(α) and ker(α∗) = coker(α).
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Lemma 2. Let α, β ∈ PX . Then

(2.1) dom(αβ) ⊆ dom(α), with equality if codom(α) ⊆ dom(β),

(2.2) codom(αβ) ⊆ codom(β), with equality if dom(β) ⊆ codom(α),

(2.3) ker(αβ) ⊇ ker(α), with equality if ker(β) ⊆ coker(α), and

(2.4) coker(αβ) ⊇ coker(β), with equality if coker(α) ⊆ ker(β).

Proof We will only prove (2.1) and (2.3), since the others follow by duality. Clearly
dom(αβ) ⊆ dom(α). Suppose codom(α) ⊆ dom(β). Let x ∈ dom(α). Then (x, y′) ∈ α
for some y ∈ codom(α). Since codom(α) ⊆ dom(β), it follows that (y, z′) ∈ β for some
z ∈ codom(β). Then (x, z′) ∈ αβ, whence x ∈ dom(αβ), establishing (2.1).

Clearly ker(αβ) ⊇ ker(α). Suppose ker(β) ⊆ coker(α). Let (x, y) ∈ ker(αβ). If one of
x or y belongs to X \ dom(α), then so too does the other, and (x, y) ∈ ker(α). So sup-
pose x, y ∈ dom(α). Then (x, a′), (y, b′) ∈ α for some a, b ∈ codom(α). Since (x, y) ∈
ker(αβ), there exist x0, x1, . . . , xr ∈ X such that x0 = a, xr = b and (x0, x1) ∈ coker(α),
(x1, x2) ∈ ker(β), (x2, x3) ∈ coker(α), and so on. But, since ker(β) ⊆ coker(α), it follows
that (x0, x1), (x1, x2), . . . , (xr−1, xr) ∈ coker(α). This then implies that (a, b) ∈ coker(α), and
(x, y) ∈ ker(α). This completes the proof of (2.3). ✷

We now define two submonoids of PX that will play a crucial role in what follows. Denote
by ∆ =

{
(x, x) : x ∈ X

}
the trivial equivalence (that is, the equality relation). Let

LX = {α ∈ PX : dom(α) = X, ker(α) = ∆}, and

RX = {α ∈ PX : codom(α) = X, coker(α) = ∆}.

Note that L∗
X = RX and R∗

X = LX , and that LX ∩RX = SX .

Lemma 3. The sets LX and RX are submonoids of PX . Further, PX \ LX is a right ideal
of PX , and PX \ RX is a left ideal.

Proof We will prove the statements concerning LX , and those concerning RX will follow
by duality. Let α, β ∈ LX . Then dom(αβ) = dom(α) = X and ker(αβ) = ker(α) = ∆ by
(2.1) and (2.3), respectively, so that αβ ∈ LX .

Next, let α ∈ PX \ LX and β ∈ PX . If dom(α) 6= X , then dom(αβ) ⊆ dom(α) 6= X , so that
dom(αβ) 6= X , and αβ ∈ PX \LX . If ker(α) 6= ∆, then we similarly obtain αβ ∈ PX \LX. ✷

Remark 4. As noted in [8, 11], the submonoids {α ∈ PX : dom(α) = codom(α) = X} and
{α ∈ PX : ker(α) = coker(α) = ∆} are isomorphic to the symmetric inverse semigroup and
dual symmetric inverse semigroup on X , respectively.
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A typical element of LX has the form
(

x ∅
Ax Bi

)

x∈X,i∈I

.

In what follows, we will shorten this to (Ax|Bi)x∈X,i∈I , or just (Ax|Bi). Accordingly, we will
write (Ax|Bi)

∗ for the partition
(
Ax Bi

x ∅

)

x∈X,i∈I

from RX . Note that if α = (Ax|Bi) and β = (Cx|Dj), then αβ = (Ex|Fi, Dj), where
Ex =

⋃

y∈Ax
Cy and Fi =

⋃

y∈Bi
Cy for each x ∈ X and i ∈ I; see Figure 3. A similar rule

holds for multiplication in RX .

x

︸ ︷︷ ︸

Ex=
⋃

y∈Ax
Cy

︸ ︷︷ ︸

Fi=
⋃

y∈Bi
Cy

Bi
︷ ︸︸ ︷

α

β

Figure 3: The product αβ = (Ex|Fi, Dj) of two elements α = (Ax|Bi) and β = (Cx|Dj)
from LX , focusing on the blocks {x}∪E ′

x (left) and F
′
i (right). See text for further explanation.

We now define a number of parameters associated with a partition. With this in mind, let
α ∈ PX and write

α =

(
Ai Cj

Bi Dk

)

i∈I, j∈J,k∈K

.

For any cardinal µ ≤ |X|, we define

k(α, µ) = #
{
i ∈ I : |Ai| ≥ µ

}
, d(α, µ) = #

{
j ∈ J : |Cj| ≥ µ

}
,

k∗(α, µ) = #
{
i ∈ I : |Bi| ≥ µ

}
, d∗(α, µ) = #

{
k ∈ K : |Dk| ≥ µ

}
.

Note that k∗(α, µ) = k(α∗, µ) and d∗(α, µ) = d(α∗, µ). We also have identities such as
d(α, µ) ≥ d(α, ν) if µ ≤ ν ≤ |X|. It will also be convenient to write

d(α) = d(α, 1) = |J | and d∗(α) = d∗(α, 1) = |K|.

The above parameters are natural extensions of those introduced in the context of transfor-
mation semigroups in [26] (see also [13, 25]). These parameters should not be confused with
those introduced in [11], such as def(α), col(α), etc.
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Lemma 5. Let α, β ∈ PX . Then

(5.1) d(α) ≤ d(αβ) ≤ d(α) + d(β), and

(5.2) d∗(β) ≤ d∗(αβ) ≤ d∗(α) + d∗(β).

Proof We just prove (5.1), since (5.2) will follow by duality. Let

α =

(
Ai Cj

Bi Dk

)

i∈I, j∈J,k∈K

and β =

(
El Gm

Fl Hn

)

l∈L,m∈M,n∈N

.

Note that each Cj is an upper nontransversal block of αβ, so d(αβ) ≥ d(α). Suppose now
that P is an upper nontransversal block of αβ but that P 6= Cj for any j ∈ J . Then
P =

⋃

i∈IP
Ai for some subset IP ⊆ I. Now,

⋃

i∈IP
Bi must have trivial intersection with each

of the El, or else P would be contained in a transversal block of αβ. But this implies that
⋃

i∈IP
Bi intersects at least one of the Gm. In particular, there are at most |M | such upper

nontransversal blocks P . Thus, d(αβ) ≤ |J |+ |M | = d(α) + d(β). ✷

Remark 6. The above-mentioned rule for multiplication in LX shows that d∗(αβ) = d∗(α)+
d∗(β) if α, β ∈ LX . A dual identity holds in RX .

For the following lemmas, recall that we count 1 and 2 as regular cardinals.

Lemma 7. Let α, β ∈ LX and γ, δ ∈ RX and let µ ≤ |X| be any cardinal. Then

(7.1) k∗(α, µ) ≤ k∗(αβ, µ),

(7.2) k∗(αβ, µ) ≤ k∗(α, µ) + k∗(β, µ) if µ is regular,

(7.3) k(δ, µ) ≤ k(γδ, µ), and

(7.4) k(γδ, µ) ≤ k(γ, µ) + k(δ, µ) if µ is regular.

Proof We just prove (7.1) and (7.2), since the others will follow by duality. Let α = (Ax|Bi)
and β = (Cx|Dj). Then αβ = (Ex|Fi, Dj), where Ex =

⋃

y∈Ax
Cy and Fi =

⋃

y∈Bi
Cy for

each x ∈ X and i ∈ I. Clearly, |Ex| ≥ |Ax| for all x ∈ X , so k∗(αβ, µ) ≥ k∗(α, µ),
establishing (7.1). Next, suppose µ is regular. If |Ex| ≥ µ for some x ∈ X , then either
(i) |Ax| ≥ µ, or (ii) |Cy| ≥ µ for some y ∈ Ax. There are k∗(α, µ) values of x that satisfy (i),
and at most k∗(β, µ) values of x that satisfy (ii). Thus, k∗(αβ, µ) ≤ k∗(α, µ) + k∗(β, µ),
establishing (7.2). ✷
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Lemma 8. Let α, β ∈ LX and γ, δ ∈ RX and let µ ≤ |X| be any cardinal. Then

(8.1) d∗(β, µ) ≤ d∗(αβ, µ),

(8.2) d∗(αβ, µ) ≤ d∗(α, µ) + d∗(β, µ) + k∗(β, µ) if µ is regular,

(8.3) d(γ, µ) ≤ d(γδ, µ), and

(8.4) d(γδ, µ) ≤ d(γ, µ) + d(δ, µ) + k(γ, µ) if µ is regular.

Proof Again, it suffices to prove (8.1) and (8.2). Write α = (Ax|Bi) and β = (Cx|Dj).
Then αβ = (Ex|Fi, Dj), where Ex =

⋃

y∈Ax
Cy and Fi =

⋃

y∈Bi
Cy for each x ∈ X and i ∈ I.

There are d∗(β, µ) values of j ∈ J for which |Dj| ≥ µ. It follows that d∗(αβ, µ) ≥ d∗(β, µ).
Next, suppose µ is regular, and that i ∈ I is such that |Fi| ≥ µ. Then either (i) |Bi| ≥ µ, or
(ii) |Cy| ≥ µ for some y ∈ Bi. There are d∗(α, µ) values of i for which (i) holds, and at most
k∗(β, µ) values of i for which (ii) holds. Thus, d∗(αβ, µ) ≤ d∗(α, µ) + d∗(β, µ) + k∗(β, µ). ✷

The next lemma will be used on a number of occasions. There is a dual result, but we will
not need to state it.

Lemma 9. Let α ∈ LX with d∗(α) = |X|, and let µ ≤ |X| be any cardinal. Then there exists
β ∈ 〈SX , α〉 ⊆ LX such that d∗(β, µ) ≥ k∗(α, µ), d∗(β) = |X|, and |x|β ≥ |x|α for all x ∈ X.

Proof Let α = (Ax|Bx) and put Y = {x ∈ X : |Ax| ≥ µ}, noting that |Y | = k∗(α, µ). We
will consider two separate cases.

Case 1. First suppose |Y | < |X|. For each x ∈ Y , choose some bx ∈ Bx. Let π ∈ SX be any
permutation that extends the map {bx : x ∈ Y } → Y : bx 7→ x, and put β = απα. Then, for

each x ∈ Y ,
(
⋃

y∈Bx
Ayπ

)′

is a lower nontransversal block of β, and
∣
∣
∣
⋃

y∈Bx
Ayπ

∣
∣
∣ ≥ |Abxπ| =

|Ax| ≥ µ. Thus, d∗(β, µ) ≥ |Y |.

Case 2. Now suppose |Y | = |X|. Let (Y1, Y2) be a moiety of Y , and let π ∈ SX be any per-

mutation that extends any bijection
⋃

x∈X Bx → Y1. Then for any x ∈ X ,
(
⋃

y∈Bx
Ayπ

)′

is a

lower nontransversal block of β = απα of size at least µ. It follows that d∗(β, µ) = |X| = |Y |.

In either case, [x]β = {x} ∪
(
⋃

y∈Ax
Ayπ

)′

, so that |x|β ≥ 1 + |Ax| = |x|α for all x ∈ X . And,

in either case, d∗(β) = |X| is a consequence of (5.2). ✷

3 Relative rank of PX modulo SX

Recall that the relative rank of a semigroup S with respect to a subset T , denoted rank(S : T ),
is the minimum cardinality of a subset U ⊆ S such that S = 〈T ∪U〉. Our goal in this section
is to show that rank(PX : SX) = 2; see Theorem 12.
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Recall that for α ∈ PX and x ∈ X∪X ′, we write [x]α for the block of α containing x. We will
also write |x|α for the cardinality of [x]α. The next result shows that PX may be generated
by SX along with just two additional partitions. See [25, Theorem 3.3] for the corresponding
result for infinite transformation semigroups.

Proposition 10. Let α ∈ LX and β ∈ RX be such that d∗(α, |X|) = d(β, |X|) = |X|, and
|x|α = |x′|β = |X| for all x ∈ X. Then PX = 〈SX , α, β〉.

Proof Consider an arbitrary partition

γ =

(
Ai Cj

Bi Dk

)

i∈I, j∈J,k∈K

.

We will construct a permutation π ∈ SX such that γ = απβ. The assumptions on α, β allow
us to write α = (Ex|Fx) and β = (Gx|Hx)

∗, where |Ex| = |Gx| = |X| for all x ∈ X . See
Figure 4 for an illustration (the picture shows the basic “shape” of α and β, and is not meant
to indicate that β = α∗). Let

X1 =#
{
x ∈ X : |Fx| = |X|

}
, X3 =#

{
x ∈ X : |Hx| = |X|

}
,

X2 =#
{
x ∈ X : |Fx| < |X|

}
, X4 =#

{
x ∈ X : |Hx| < |X|

}
.

So X = X1 ⊔X2 = X3 ⊔X4. Note that |X1| = d∗(α, |X|) = |X| and, similarly, |X3| = |X|.
We now proceed to construct π ∈ SX in stages.

α =

︸ ︷︷ ︸

|X|

︸ ︷︷ ︸

|X|

︸ ︷︷ ︸

|X|

︸ ︷︷ ︸

|X|

|X|
︷ ︸︸ ︷

β =

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

|X|
︷ ︸︸ ︷

︸ ︷︷ ︸

|X|

Figure 4: The partitions α (top) and β (bottom) from the proof of Proposition 10.

Stage 1. Fix i ∈ I. For each x ∈ Ai, let Ex = E1
x ⊔ E

2
x where |E1

x| = |Bi| and |E2
x| = |X|,

and write E1
x = {exy : y ∈ Bi}. For each y ∈ Bi, let Gy = G1

y ⊔ G2
y where |G1

y| = |Ai| and
|G2

y| = |X|, and write G1
y = {gxy : x ∈ Ai}. Now let πi :

⋃

x∈Ai
Ex →

⋃

y∈Bi
Gy be any

bijection that extends the map
⋃

x∈Ai
E1

x →
⋃

y∈Bi
G1

y : exy 7→ gxy. It is easy to check that if
π ∈ SX is any permutation that extends πi, then Ai ∪B

′
i is a block of απβ. See Figure 5 for

an illustration.
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Ai
︷ ︸︸ ︷

︸ ︷︷ ︸

Bi

Cj
︷ ︸︸ ︷

︸ ︷︷ ︸

Hxj

πj

Fxk
︷ ︸︸ ︷

︸ ︷︷ ︸

Dk

πk

α

π

β

πi

Figure 5: A schematic diagram of the product απβ, focusing on a transversal block Ai ∪ B
′
i

(left), an upper nontransversal block Cj (middle), and a lower nontransversal blockD′
k (right).

See text for further explanation.

Stage 2. Let X3 = X1
3 ⊔ X2

3 where |X1
3 | = |J | and X2

3 6= ∅, and write X1
3 = {xj : j ∈ J}.

Now fix j ∈ J . Choose any bijection πj :
⋃

x∈Cj
Ex → Hxj

. Again, it is easy to check that if
π ∈ SX is any permutation that extends πj , then Cj is a block of απβ. See Figure 5.

Stage 3. Let X1 = X1
1 ⊔X

2
1 where |X1

1 | = |K| and X2
1 6= ∅, and write X1

1 = {xk : k ∈ K}.
Now fix k ∈ K. Choose any bijection πk : Fxk

→
⋃

y∈Dk
Gy. If π ∈ SX is any permutation

that extends πk, then D
′
k is a block of απβ. Again, see Figure 5.

Stage 4. So far, we have defined bijections πi (i ∈ I), πj (j ∈ J), πk (k ∈ K) whose
combined (and non-overlapping) domains and codomains are, respectively,

(
⋃

i∈I

⋃

x∈Ai

Ex

)

∪




⋃

j∈J

⋃

x∈Cj

Ex



 ∪

(
⋃

k∈K

Fxk

)

=
⋃

x∈X

Ex ∪
⋃

z∈X1

1

Fz

and (
⋃

i∈I

⋃

y∈Bi

Gy

)

∪

(
⋃

j∈J

Hxj

)

∪

(
⋃

k∈K

⋃

y∈Dk

Gy

)

=
⋃

y∈X

Gy ∪
⋃

z∈X1

3

Hz.

The complements in X of these sets have cardinality |X|, so we may extend
⋃

i∈I πi ∪⋃

j∈J πj ∪
⋃

k∈K πk arbitrarily to a permutation π ∈ SX . By the above discussion, we see
that απβ = γ. ✷

Remark 11. The above proof shows that we have the factorization PX = LXSXRX . (In
fact, since SX ⊆ LX , we have PX = LXRX .) This is reminiscent of, but quite different to,
the factorization of a finite partition monoid as Pn = LnInRn utilized in [8, 9]; there, In

is (isomorphic to) the symmetric inverse monoid, and the submonoids Ln and Rn of Pn are
defined in a very different way to the submonoids LX and RX of infinite PX used here.

11



Theorem 12. If X is any infinite set, then rank(PX : SX) = 2.

Proof Proposition 10 tells us that rank(PX : SX) ≤ 2. Let α ∈ PX . The proof will
be complete if we can show that 〈SX , α〉 is a proper subsemigroup of PX . Suppose to the
contrary that 〈SX , α〉 = PX . Let β ∈ LX \ SX , and consider an expression β = γ1 · · · γr
where γ1, . . . , γr ∈ SX ∪ {α}. Since β 6∈ SX , at least one of γ1, . . . , γr is equal to α. Suppose
γ1, . . . , γs−1 ∈ SX but γs = α. Then αγs+1 · · · γr = γ−1

s−1 · · ·γ
−1
1 β ∈ LX . Since PX \ LX

is a right ideal, it follows that α ∈ LX . A dual argument shows that α ∈ RX . But then
α ∈ LX ∩ RX = SX , so that PX = 〈SX , α〉 = SX , a contradiction. ✷

Remark 13. It follows from [8, Proposition 39] and its proof that rank(PX : SX) = 2 for
any finite set X with |X| ≥ 2.

It will be convenient to conclude this section with an extension of Proposition 10. The next
result shows (among other things) that one of the partitions α, β need not have any infinite
blocks at all.

Proposition 14. Let α ∈ LX and β ∈ RX be such that d∗(α) = d(β) = |X| and either

(i) k∗(α, 2) + d∗(α, 2) = |X| = k(β, |X|) + d(β, |X|), or

(ii) k∗(α, |X|) + d∗(α, |X|) = |X| = k(β, 2) + d(β, 2).

Then PX = 〈SX , α, β〉.

Proof Suppose (i) holds. (The other case is dual.) By Lemma 9, we may assume that
d∗(α, 2) = d(β, |X|) = |X|. Write α = (Ax|Bx) and β = (Cx|Dx)

∗. Note that

βα =

(
Cx Dx

Ax Bx

)

.

We will show that there exists a pair of partitions δ, ε ∈ 〈SX , α, β〉 that satisfy the conditions
of Proposition 10. Put

Y = {x ∈ X : |Bx| ≥ 2} and Z = {x ∈ X : |Dx| = |X|}.

Let (Y1, Y2) and (Z1, Z2) be moieties of Y and Z, respectively, and let (Ux)x∈X be a moiety
of X . Further, suppose (Y x

1 )x∈X is a moiety of Y1. Write Z1 = {zx : x ∈ X} and Y x
1 =

{yxw : w ∈ X} for each x ∈ X . Now let x ∈ X . For each w ∈ X , choose some bxw ∈ Byxw
.

Choose any embedding π1
x : Ax → Dzx such that |Dzx \Axπ

1
x| = |X|, and write Dzx \Axπ

1
x =

{dxw : w ∈ X}. Define π2
x : {bxw : w ∈ X} → Dzx \ Axπ

1
x : bxw 7→ dxw. Now choose any bijection

π3
x :
⋃

w∈X

(
Byxw

\ {bxw}
)
→
⋃

u∈Ux
Cu. Put πx = π1

x ∪ π
2
x ∪ π

3
x. So

πx : Ax ∪
⋃

y∈Y x
1

By → Dzx ∪
⋃

u∈Ux

Cu

12



︸ ︷︷ ︸
⋃

u∈Ux
Au

⋃
y∈Y x

1

By

︷ ︸︸ ︷

︸ ︷︷ ︸

Dzx

x

π1x

π2x
π3x

α

π

βα

Figure 6: A schematic diagram of the product απβα, focusing on the transversal block
{x} ∪

(⋃

u∈Ux
Au

)′
. See text for further explanation.

is a bijection. It is clear that if π ∈ SX is any permutation extending πx, then {x} ∪
(⋃

u∈Ux
Au

)′
is a block of απβα; see Figure 6 for an illustration.

The domains of the bijections πx (x ∈ X) are pairwise disjoint, and so too are the codomains.
The complements in X of the domain and codomain of

⋃

x∈X πx have cardinality |X|, so
we may extend

⋃

x∈X πx arbitrarily to a permutation π ∈ SX . By the above discussion,

{x} ∪
(⋃

u∈Ux
Au

)′
is a block of γ = απβα for all x ∈ X . It follows that γ ∈ LX , and that

|x|γ = |X| for all x ∈ X . By (5.2), we also have d∗(γ) ≥ d∗(α) = |X|. By Lemma 9, there
exists δ ∈ 〈SX , γ〉 ∩ LX such that d∗(δ, |X|) = |X| and |x|δ = |X| for all x ∈ X . Noting
that k∗(δ, |X|)+d∗(δ, |X|) = |X| = k(β, 2)+d(β, 2), a dual argument shows that there exists
ε ∈ 〈SX , δ, β〉 ⊆ 〈SX , α, β〉 such that ε ∈ RX , d(ε, |X|) = |X|, and |x′|ε = |X| for all x ∈ X .
It follows from Proposition 10 that PX = 〈SX , δ, ε〉 ⊆ 〈SX , α, β〉, and the proof is complete. ✷

4 Generating pairs for PX modulo SX

We saw in Proposition 10 that PX may be generated by the symmetric group SX along with
two other partitions. We call such a pair of partitions a generating pair for PX modulo SX .
In this section, we will classify all such generating pairs. The classification depends crucially
on the nature of the cardinal |X|, and we will obtain three separate classifications in the cases
of |X| being countable (Theorem 22), uncountable but regular (Theorem 19), and singular
(Theorem 25). We begin with a simple result that will be used in the proof of all three
classification theorems.
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Lemma 15. Suppose α, β ∈ PX are such that PX = 〈SX , α, β〉. Then (renaming α, β if
necessary) α ∈ LX and β ∈ RX and d∗(α) = d(β) = |X|.

Proof Consider an expression γ = δ1 · · · δr where γ ∈ LX \ SX and d(γ) = |X|, and
δ1, . . . , δr ∈ SX ∪ {α, β}. As in the proof of Theorem 12, it follows that one of α, β belongs
to LX . Without loss of generality, suppose α ∈ LX . A dual argument shows that one
of α, β belongs to RX . We could not have α ∈ RX or otherwise α ∈ SX , which would
imply that PX = 〈SX , β〉, contradicting Theorem 12. So β ∈ RX . By (5.1), |X| = d(γ) ≤
d(δ1) + · · · + d(δr) ≤ r · d(β). It follows that d(β) = |X|. A dual argument shows that
d∗(α) = |X|. ✷

In order to prove our classification theorems, we will need a series of technical lemmas. The
first of these will be used in the proof of all three theorems.

Lemma 16. Suppose α ∈ LX and β ∈ RX , and that k∗(α, 2)+d∗(α, 2) < |X|. If γ1, . . . , γr ∈
SX ∪ {α, β} are such that γ1 · · ·γr ∈ LX , then k

∗(γ1 · · · γr, 2) + d∗(γ1 · · · γr, 2) < |X|.

Proof Write α = (Ax|Bi) and β = (Cx|Dj)
∗. The result is clearly true if r = 1, so suppose

r ≥ 2, and put γ = γ1 · · ·γr−1. Since PX \ LX is a right ideal, it follows that γ ∈ LX . Thus,
an induction hypothesis gives k∗(γ, 2) + d∗(γ, 2) < |X|. Write γ = (Ex|Fk). We now break
the proof up into three cases.

Case 1. If γr ∈ SX , then clearly k∗(γγr, 2) = k∗(γ, 2) and d∗(γγr, 2) = d∗(γ, 2), so the
inductive step is trivial in this case.

Case 2. Next suppose γr = α. Since 2 is a regular cardinal, k∗(γα, 2) ≤ k∗(γ, 2)+k∗(α, 2) <
|X| by (7.2). We also have d∗(γα, 2) ≤ d∗(γ, 2) + d∗(α, 2) + k∗(α, 2) < |X| by (8.2).

Case 3. Finally, suppose γr = β. Write γβ = (Px|Ql). Let

Y = {x ∈ X : |Px| ≥ 2} and M = {l ∈ L : |Ql| ≥ 2}.

We must show that |Y | < |X| and |M | < |X|. We begin with Y . Put Y1 = {x ∈ Y : |Ex| = 1}
and Y2 = {x ∈ Y : |Ex| ≥ 2}. Now |Y2| ≤ k∗(γ, 2) < |X| so, to show that |Y | < |X|, it remains
to show that |Y1| < |X|. Now suppose x ∈ Y1, and write Ex = {ex}. We claim that there
exists kx ∈ K such that |Fkx| ≥ 2 and (ux, ex) ∈ ker(β) for some ux ∈ Fkx . The proof of the
claim breaks up into two subcases.

Subcase 3.1. First suppose that ex ∈ Cy for some y ∈ X . If |Cy| = 1, then we would
have Px = {y}, contradicting the fact that |Px| ≥ 2. So |Cy| ≥ 2. Now Cy \ {ex} has trivial
intersection with Ez for each z ∈ X \ {x}, or else then we would have (x, z) ∈ ker(γβ) for
some z 6= x, contradicting the fact that γβ ∈ LX . So, for all u ∈ Cy \ {ex}, we have u ∈ Fku

for some ku ∈ K. (The map u 7→ ku need not be injective.) If |Fku | = 1 for all u ∈ Cy \ {ex}
then, again, we would have Px = {y}, a contradiction. So it follows that |Fku | ≥ 2 for at
least one u ∈ Cy \ {ex}. We now choose ux to be any such u, and we put kx = kux

.

Subcase 3.2. The case in which ex ∈ Dy for some y ∈ X is similar to the previous subcase.
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With the claim established, we note that the map Y1 → K : x 7→ kx is injective. Indeed, if
kx1

= kx2
for some x1, x2 ∈ Y1, then we would have (x1, x2) ∈ ker(γβ), which implies that

x1 = x2. Now the image of Y1 under this map is contained in the set {k ∈ K : |Fk| ≥ 2}
which has cardinality d∗(γ, 2). Thus, |Y1| ≤ d∗(γ, 2) < |X| as required.

Next suppose l ∈ M . Fix some x ∈ Ql. Now Cx has trivial intersection with Ey for each y ∈ X
(or else Q′

l would not be a nontransversal block of γβ). Let N = {k ∈ K : Fk ∩ Cx 6= ∅}.
So N 6= ∅. If |Fk| = 1 for all k ∈ N , then we would have Ql = {x}, contradicting the
fact that |Ql| ≥ 2. So there exists some nl ∈ N such that |Fnl

| ≥ 2. Again, the map
M → {k ∈ K : |Fk| ≥ 2} : l 7→ nl is injective, so it follows that |M | ≤ d∗(γ, 2) < |X|, as
required. This completes the inductive step in Case 3. ✷

The next lemma will be of use in the case that X is uncountable, whether regular or singular.

Lemma 17. Suppose ℵ1 ≤ µ ≤ |X| is a regular cardinal. Suppose α ∈ LX and β ∈ RX are
such that k∗(α, µ) + d∗(α, µ) < |X| and k(β, µ) + d(β, µ) < |X|. If γ1, . . . , γr ∈ SX ∪ {α, β}
are such that γ1 · · · γr ∈ LX , then k

∗(γ1 · · ·γr, µ) + d∗(γ1 · · · γr, µ) < |X|.

Proof Write α = (Ax|Bi) and β = (Cx|Dj)
∗. Again, the r = 1 case is trivial, so suppose

r ≥ 2, and put γ = γ1 · · · γr−1 ∈ LX . An induction hypothesis gives k∗(γ, µ)+d∗(γ, µ) < |X|.
Write γ = (Ex|Fk). We now break the proof up into three cases.

Case 1. The γr ∈ SX case is trivial.

Case 2. Again, the case in which γr = α follows from (7.2) and (8.2).

Case 3. Finally, suppose γr = β. Write γβ = (Px|Ql). Let

Y = {x ∈ X : |Px| ≥ µ} and M = {l ∈ L : |Ql| ≥ µ}.

Wemust show that |Y | < |X| and |M | < |X|. We begin with Y . Put Y1 = {x ∈ Y : |Ex| < µ}
and Y2 = {x ∈ Y : |Ex| ≥ µ}. Now |Y2| ≤ k∗(γ, µ) < |X| so, to show that |Y | < |X|, it
remains to show that |Y1| < |X|. Now suppose x ∈ Y1. Consider the connected component
containing x in the product graph Γ(γ, β). The middle row of this connected component is
(omitting double dashes, for convenience)

Ex ∪
⋃

k∈Kx

Fk =
⋃

y∈Px

Cy ∪
⋃

z∈Zx

Dz

for some subsets Kx ⊆ K and Zx ⊆ X . We now claim that one of the following holds:
(i) |Fk| ≥ µ for some k ∈ Kx, (ii) |Cy| ≥ µ for some y ∈ Px, or (iii) |Dz| ≥ µ for some z ∈ Zx.
Indeed, suppose not. Put

G = {Ex} ∪ {Fk : k ∈ Kx} and H = {Cy : y ∈ Px} ∪ {Dz : z ∈ Zx}.
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Note that |G| < µ and |H| < µ for all G ∈ G and H ∈ H . Fix some a ∈ Px. For any b ∈ Px,
there exists a sequence of points c1, c2, . . . , c2s ∈ X such that

c1 ∈ Ca ∩G1 for some G1 ∈ G

c2 ∈ G1 ∩H1 for some H1 ∈ H

c3 ∈ H1 ∩G2 for some G2 ∈ G

c4 ∈ G2 ∩H2 for some H2 ∈ H

...

c2s−2 ∈ Gs−1 ∩Hs−1 for some Hs−1 ∈ H

c2s−1 ∈ Hs−1 ∩Gs for some Gs ∈ G

c2s ∈ Gs ∩ Cb.

Let ξ denote the number of such sequences, and let ξs be the number of such sequences for
fixed s. Let us give an upper bound for ξs. There are at most |Ca| choices for c1. Once c1 is
chosen, G1 is uniquely determined, and then there are at most |G1| choices for c2. Once c2 is
chosen, H1 is uniquely determined, and then there are at most |H1| choices for c3. Continuing
in this fashion, we see that ξs ≤ |Ca| × |G1| × |H1| × · · · × |Hs−1| × |Gs| < µ2s = µ. It follows
that ξ = ξ1 + ξ2 + ξ3 + · · · < µ since µ ≥ ℵ1 is regular. But this implies that there are less
than µ choices for b ∈ Px. That is, |Px| < µ, a contradiction. So, indeed, one of (i), (ii), (iii)
must hold. But this implies that |Y1| ≤ d∗(γ, µ) + k(β, µ) + d(β, µ) < |X|. This completes
the proof that |W | < |X|.

A similar argument shows that |M | ≤ d∗(γ, µ) + k(β, µ) + d(β, µ) < |X|. This completes the
inductive step in Case 3. ✷

Remark 18. The argument used in the last stage of Case 3 in the above proof is reminiscent
of the proof of [10, Lemma 27]. Everything in the above proof works for µ = ℵ0 except for
the final claim that ξ1 + ξ2 + ξ3 + · · · < µ = ℵ0, which is not the case if infinitely many
of the ξs are nonzero. It is this fact that will enable us to generate PX , for countable X ,
with SX along with two additional partitions, neither of which have any infinite blocks; see
Proposition 20 below.

The next result shows that the converse of Proposition 14 holds in the case of |X| being
regular but uncountable.

Theorem 19. Suppose |X| ≥ ℵ1 is a regular cardinal. Then PX = 〈SX , α, β〉 if and only if
(up to renaming α, β if necessary) α ∈ LX , β ∈ RX , d

∗(α) = d(β) = |X| and either

(i) k∗(α, 2) + d∗(α, 2) = |X| = k(β, |X|) + d(β, |X|), or

(ii) k∗(α, |X|) + d∗(α, |X|) = |X| = k(β, 2) + d(β, 2).

Proof The reverse implication was proved in Proposition 14. So suppose PX = 〈SX , α, β〉.
By Lemma 15, and renaming α, β if necessary, we may assume that α ∈ LX , β ∈ RX , and
d∗(α) = d(β) = |X|. Suppose that (i) and (ii) do not hold. So one of
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(I) k∗(α, 2) + d∗(α, 2) < |X|, or

(II) k(β, |X|) + d(β, |X|) < |X|

holds, and so too does one of

(III) k∗(α, |X|) + d∗(α, |X|) < |X|, or

(IV) k(β, 2) + d(β, 2) < |X|.

We will show that we obtain a contradiction in any case. If (I) holds, then Lemma 16
tells us that 〈SX , α, β〉 does not contain any γ ∈ LX with k∗(γ, 2) = |X|, contradicting the
assumption that PX = 〈SX , α, β〉. Dually, (IV) leads to a contradiction too. If (II) and
(III) both hold, then Lemma 17 (with µ = |X|) tells us that 〈SX , α, β〉 does not contain any
γ ∈ LX with k∗(γ, |X|) = |X|, a contradiction. ✷

Now that we have achieved a classification in the case of X being regular but uncountable,
we move on to the countable case. The next result shows that if X is countable, then PX

may be generated by SX along with two partitions, neither of which has any infinite blocks.

Proposition 20. Suppose |X| = ℵ0. Let α ∈ LX and β ∈ RX be such that d∗(α) = d(β) = ℵ0

and either

(i) k∗(α, 2) + d∗(α, 2) = ℵ0 = k(β, 2) + d(β, 3), or

(ii) k∗(α, 2) + d∗(α, 3) = ℵ0 = k(β, 2) + d(β, 2).

Then PX = 〈SX , α, β〉.

Proof Suppose (ii) holds. (The other case is dual.) By Proposition 14, it is enough to show
that there exists γ ∈ 〈SX , α, β〉 such that γ ∈ LX and k∗(γ,ℵ0) = d∗(γ) = ℵ0. By the dual
of Lemma 9, we may assume that d(β, 2) = ℵ0. Write α = (Ax|Bx) and β = (Cx|Dx)

∗. We
first claim that there exists δ ∈ 〈SX , α〉 such that δ ∈ LX and d∗(δ, 3) = ℵ0. Indeed, we
put δ = α if d∗(α, 3) = ℵ0. Otherwise, suppose k∗(α, 2) = ℵ0. Let (Y1, Y2) be a moiety
of Y = {x ∈ X : |Ax| ≥ 2}. Since |X \ Y1| = ℵ0 =

∣
∣X \

⋃

x∈Y1
Ax

∣
∣, we may choose a

permutation π ∈ SX such that
(⋃

x∈Y1
Ax

)
π = Y1. Then απα ∈ LX and, for each x ∈ Y1,

{x} ∪
(
⋃

y∈Ax
Ayπ

)′

is a block of απα, and
∣
∣
∣
⋃

y∈Ax
Ayπ

∣
∣
∣ ≥ 4. That is, k∗(απα, 4) = ℵ0. But

then, by Lemma 9, there exists δ ∈ 〈SX , απα〉 ⊆ LX with d∗(δ, 4) ≥ k∗(απα, 4) = ℵ0. This
completes the proof of the claim, since d∗(δ, 3) ≥ d∗(δ, 4) = ℵ0. Now write δ = (Ex|Fx). Let
U = {x ∈ X : |Fx| ≥ 3} and V = {x ∈ X : |Dx| ≥ 2}. Note that

βδ =

(
Cx Dx

Ex Fx

)

.

Our goal will be to construct a permutation σ ∈ SX such that γ = δσβδ ∈ LX and
k∗(γ,ℵ0) = ℵ0. The proof will then be complete since we will also have d∗(γ) ≥ d∗(δ) = ℵ0.
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Now let ∞ be a symbol that is not an element of X . Let (Ux)x∈X∪{∞}, (Vx)x∈X∪{∞} and
(Zx)x∈X be moieties of U , V and X , respectively. For each x ∈ X , write Ux = {urx : r ∈ N}
and Vx = {vrx : r ∈ N}. Now fix x ∈ X . We define a bijection

σx : Ex ∪
⋃

y∈Ux

Fy →
⋃

y∈Vx

Dy ∪
⋃

z∈Zx

Cz

as follows. First, choose some ex ∈ Ex and arx, b
r
x ∈ Fur

x
, crx, d

r
x ∈ Dvrx

where arx 6= brx and
crx 6= drx for each r ∈ N. We then define a bijection

σ1
x : {ex} ∪ {arx, b

r
x : r ∈ N} → {crx, d

r
x : r ∈ N}

by exσ
1
x = c1x, a

r
xσ

1
x = drx and brxσ

1
x = cr+1

x for each r ∈ N. Since |Fy| ≥ 3 for all y ∈ Ux

and since |Zx| = ℵ0, we see that the complements of the domain and codomain of σ1
x in

Ex ∪
⋃

y∈Ux
Fy and

⋃

y∈Vx
Dy ∪

⋃

z∈Zx
Cz (respectively) have cardinality ℵ0. So we extend σ1

x

arbitrarily to a bijection σx : Ex∪
⋃

y∈Ux
Fy →

⋃

y∈Vx
Dy∪

⋃

z∈Zx
Cz. It is clear that if σ ∈ SX

is any permutation that extends σx, then {x} ∪
(⋃

z∈Zx
Ez

)′
is a block of δσβδ; see Figure 7.

F
u1x
︷︸︸︷

F
u2x
︷︸︸︷

F
u3x
︷︸︸︷

︸︷︷︸

D
v1x

︸︷︷︸

D
v2x

︸︷︷︸

D
v3x

︸ ︷︷ ︸
⋃

z∈Zx
Ez

x

δ

σ

βδ

σx

Figure 7: A schematic diagram of the product δσβδ, focusing on the transversal block {x}∪
(⋃

z∈Zx
Ez

)′
. See text for further explanation.

Now,
⋃

x∈X σx has domain

⋃

x∈X

Ex ∪
⋃

x∈X

⋃

y∈Ux

Fy =
⋃

x∈X

Ex ∪
⋃

y∈U\U∞

Fy

and codomain ⋃

x∈X

⋃

y∈Vx

Dy ∪
⋃

x∈X

⋃

z∈Zx

Cz =
⋃

y∈V \V∞

Dy ∪
⋃

x∈X

Cx.
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The complements in X of these sets have cardinality ℵ0. So we extend
⋃

x∈X σx arbitrarily to

σ ∈ SX . By the above discussion, {x} ∪
(⋃

z∈Zx
Ez

)′
is a block of γ = δσβδ for each x ∈ X .

It follows that γ ∈ LX . Also, since |Zx| = ℵ0, it follows that |x|γ = ℵ0 for all x ∈ X , and so
k∗(γ,ℵ0) = ℵ0, as required. This completes the proof. ✷

We need the next lemma to show that the converse of Proposition 20 is true.

Lemma 21. Suppose |X| = ℵ0 and α ∈ LX and β ∈ RX are such that k∗(α, 2)+d∗(α, 3) < ℵ0

and k(β, 2) + d(β, 3) < ℵ0. If γ1, . . . , γr ∈ SX ∪ {α, β} are such that γ1 · · · γr ∈ LX , then
k∗(γ1 · · ·γr, 2) + d∗(γ1 · · · γr, 3) < ℵ0.

Proof Write α = (Ax|Bi) and β = (Cx|Dj)
∗. Again, the r = 1 case is trivial, so suppose

r ≥ 2, and put γ = γ1 · · ·γr−1 ∈ LX . An induction hypothesis gives k∗(γ, 2) + d∗(γ, 3) < ℵ0.
Write γ = (Ex|Fk). We now break the proof up into three cases.

Case 1. The γr ∈ SX case is trivial.

Case 2. Next suppose γr = α. Again, (7.2) gives k∗(γα, 2) ≤ k∗(γ, 2) + k∗(α, 2) < ℵ0.
But 3 is not a regular cardinal, so (8.2) is not of any use here. Now γα = (Gx|Bi, Hk),
where Gx =

⋃

y∈Ex
Ay and Hk =

⋃

y∈Fk
Ay for each x ∈ X and k ∈ K. There are d∗(α, 3)

values of i ∈ I such that |Bi| ≥ 3. Next suppose k ∈ K is such that |Hk| ≥ 3. Then either
(i) |Fk| ≥ 3, (ii) |Fk| = 2 and |Ay| ≥ 2 for some y ∈ Fk, or (iii) |Fk| = 1 and |Ay| ≥ 3 where
Fk = {y}. There are d∗(γ, 3) values of k for which (i) holds, at most k∗(α, 2) values of k
for which (ii) holds, and at most k∗(α, 3) ≤ k∗(α, 2) values of k for which (iii) holds. Thus,
d∗(γα, 3) ≤ d∗(α, 3) + d∗(γ, 3) + 2k∗(α, 2) < ℵ0. This completes the inductive step in this
case.

Case 3. Finally, suppose γr = β. Write γβ = (Px|Ql). Let

Y = {x ∈ X : |Px| ≥ 2} and M = {l ∈ L : |Ql| ≥ 3}.

We must show that |Y | < ℵ0 and |M | < ℵ0. Put Y1 = {x ∈ Y : |Ex| = 1} and Y2 = {x ∈ Y :
|Ex| ≥ 2}. Now |Y2| ≤ k∗(γ, 2) < ℵ0 so, to show that |Y | < ℵ0, it remains to show that
|Y1| < ℵ0. Now suppose x ∈ Y1. Consider the connected component containing x in the
product graph Γ(γ, β). The middle row of this connected component is (omitting double
dashes)

Ex ∪
⋃

k∈Kx

Fk =
⋃

y∈Px

Cy ∪
⋃

z∈Zx

Dz

for some subsets Kx ⊆ K and Zx ⊆ X . We now claim that one of the following holds:
(i) |Fk| ≥ 3 for some k ∈ Kx, (ii) |Cy| ≥ 2 for some y ∈ Px, or (iii) |Dz| ≥ 3 for some
z ∈ Zx. Indeed, suppose not. Write Cy = {cy} for each y ∈ Px. Choose some a ∈ Px. Now,
if ca ∈ Ex, then {x, a′} would be a block of γβ (since |Ex| = 1), contradicting the fact that
|Px| ≥ 2. So ca ∈ Fk1 for some k1 ∈ Kx. If |Fk1| = 1, then {a′} would be a block of γβ, a
contradiction. So Fk1 = {ca, w1} for some w1 ∈ X \ {ca}. If w1 ∈ Cb for some b ∈ Px, then
{a′, b′} would be a block of γβ, a contradiction. So we must have w1 ∈ Dz1 for some z1 ∈ Zx.
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If |Dz1| = 1, then {a′} would be a block of γβ, so we must have Dz1 = {w1, w2} for some
w2 ∈ X \ {ca, w1}. Continuing in this way, we see that the connected component of a′ in the
product graph Γ(γ, β) is {a′, c′′a, w

′′
1 , w

′′
2 , w

′′
3 , . . .} for some w1, w2, w3, . . . ∈ X . But this says

that {a′} is a block of γβ, contradicting the fact that x ∈ [a′]γβ . So, indeed, one of (i), (ii),
(iii) must hold. But this implies that |Y1| ≤ d∗(γ, 3) + k(β, 2) + d(β, 3) < ℵ0.

A similar argument shows that |M | ≤ d∗(γ, 3) + k(β, 2) + d(β, 3) < ℵ0. This completes the
inductive step in Case 3. ✷

The proof of the following is virtually identical to the proof of Theorem 19. Instead of
applying Lemmas 16 and 17, we apply Lemmas 16 and 21.

Theorem 22. Suppose |X| = ℵ0 and let α, β ∈ PX . Then PX = 〈SX , α, β〉 if and only if
(renaming α, β if necessary), α ∈ LX , β ∈ RX , d

∗(α) = d(β) = ℵ0 and either

(i) k∗(α, 2) + d∗(α, 2) = ℵ0 = k(β, 2) + d(β, 3), or

(ii) k∗(α, 2) + d∗(α, 3) = ℵ0 = k(β, 2) + d(β, 2). ✷

We now turn our attention to the case of X having singular cardinality.

Proposition 23. Suppose |X| is singular. Let α ∈ LX and β ∈ RX be such that d∗(α) =
d(β) = |X| and either

(i) k∗(α, 2) + d∗(α, 2) = |X| = k(β, µ) + d(β, µ) for all cardinals µ < |X|, or

(ii) k∗(α, µ) + d∗(α, µ) = |X| = k(β, 2) + d(β, 2) for all cardinals µ < |X|.

Then PX = 〈SX , α, β〉.

Proof Suppose (ii) holds. (The other case is dual.) By Proposition 14, it is enough to show
that there exists γ ∈ 〈SX , α, β〉 such that γ ∈ LX and k∗(γ, |X|) = d∗(γ) = |X|. Since |X| is
singular, we have X =

⋃

i∈I Xi, where |I| < |X| and |Xi| < |X| for all i ∈ I. Put κ = |I| and
λi = |Xi| for each i ∈ I. Write α = (Ax|Bx) and β = (Cx|Dx)

∗. In order to avoid notational
ambiguity, we will suppose that ∞ is a symbol that does not belong to X , and that I does
not contain 1 or 2.

By the dual of Lemma 9, we may suppose without loss of generality that d(β, 2) = |X|. We
claim that either

(a) k∗(α, µ) = |X| for all cardinals µ < |X|, or

(b) d∗(α, µ) = |X| for all cardinals µ < |X|.
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Indeed, suppose (a) does not hold. Then there exists ν < |X| such that k∗(α, ν) < |X|.
But then, for any ν ≤ µ < |X|, k∗(α, µ) ≤ k∗(α, ν) < |X| which, together with k∗(α, µ) +
d∗(α, µ) = |X|, implies that d∗(α, µ) = |X| holds for all ν ≤ µ < |X|. But also, for any
µ < ν, d∗(α, µ) ≥ d∗(α, ν) = |X|, so it follows that (b) holds. We will now break the proof
up into two cases, according to whether (a) or (b) holds.

Case 1. Suppose (a) holds. For each cardinal µ ≤ |X|, let Yµ = {x ∈ X : |Ax| ≥ µ}. Note
that |Yµ| = |X| for all µ < |X|, and that Yµ ⊆ Yν if ν ≤ µ ≤ |X|. For each x ∈ Yκ, choose a
subset Ex ⊆ Ax with |Ex| = κ and Ax \ Ex 6= ∅, and write Ex = {exi : i ∈ I}.

Next, suppose (X1, X2) is a moiety of X . We claim that either (1) |X1 ∩ Yµ| = |X| for all
µ < |X|, or (2) |X2∩Yµ| = |X| for all µ < |X|. Indeed, suppose (2) does not hold. Then there
exists ν < |X| such that |X2∩Yν| < |X|. Then, for any ν ≤ µ < |X|, |X2∩Yµ| ≤ |X2∩Yν | <
|X|. But for any µ ≤ |X|, Yµ = (X1 ∩ Yµ) ⊔ (X2 ∩ Yµ), so it follows that |X1 ∩ Yµ| = |X| for
all ν ≤ µ < |X|. If µ < ν, then |X1 ∩ Yµ| ≥ |X1 ∩ Yν | = |X|. So (1) holds, and the claim
is established. From now on, we fix X1, X2 as above and suppose, without loss of generality,
that (1) holds.

We will now construct, by transfinite recursion, a set Z = {dxi : x ∈ Yκ, i ∈ I} ⊆ X1 such
that dxi ∈ Yλi

for each (x, i) ∈ Yκ × I. Indeed, fix some well-ordering < on Yκ × I. Suppose
(x, i) ∈ Yκ × I and that we have already defined the elements Zxi = {dyj : (y, j) < (x, i)}.
Since this set is constructed recursively, by adding a single element at a time, we see that
|Yλi

\ Zxi| = |Yλi
| = |X|. So we define dxi to be any element of Yλi

\ Zxi. With Z so defined,
there is a natural bijection σ :

⋃

x∈Yκ
Ex → Z : exi 7→ dxi. Since the complement in X

of the domain and codomain of σ both have cardinality |X|, we may extend σ arbitrarily
to a permutation π ∈ SX . Now put γ = απα ∈ LX . Then γ = (Fx|Bx, Gx), where
Fx =

⋃

y∈Ax
Ayπ and Gx =

⋃

y∈Bx
Ayπ for each x ∈ X . Let x ∈ Yκ. Then Adxi = Aexiπ ⊆ Fx

for all i ∈ I. So Fx ⊇
⋃

i∈I Adxi, and |Fx| ≥
∑

i∈I |Adxi | ≥
∑

i∈I λi = |X|. Since |Yκ| = |X|,
it follows that k∗(γ, |X|) = |X|, as required.

Case 2. Now suppose (b) holds. By the previous case, it is sufficient to show that there
exists δ ∈ 〈SX , α, β〉 such that δ ∈ LX , d

∗(δ) = |X| and k∗(δ, µ) = |X| for all cardinals
µ < |X|.

This time, for each cardinal µ ≤ |X|, we define Zµ = {x ∈ X : |Bx| ≥ µ}. Let (W1,W2)
be a moiety of Zℵ0

= {x ∈ X : |Bx| ≥ ℵ0}. As in the previous case, we may assume that
|W1∩Zµ| = |X| for all µ < |X|. WriteW1 = {wx : x ∈ X}, and let (W x

2 )x∈X∪{∞} be a moiety
of W2. Let (U1, U2) be a moiety of {x ∈ X : |Dx| ≥ 2} and write U1 = {ux : x ∈ X}. For
each x ∈ X , choose ax ∈ Ax, bx, cx ∈ Dux

, dx ∈ Bwx
with bx 6= cx. Let (Vx)x∈X be a moiety

of X and, for each x ∈ X , let Vx = V 1
x ⊔ V 2

x where |V 1
x | = |Bwx

| and |V 2
x | = |X|. Write

V 1
x = {vxy : y ∈ Bwx

\ {dx}}, noting that |Bwx
| ≥ ℵ0. For each y ∈ Bwx

\ {dx}, choose some
exy ∈ Cvxy .

Now fix some x ∈ X . Consider the bijection

σx : {ax} ∪ Bwx
→ {bx, cx} ∪ {exy : y ∈ Bwx

\ {dx}}

defined by ax 7→ bx, dx 7→ cx, and y 7→ exy for each y ∈ Bwx
\ {dx}. The complements of the

21



domain and codomain of σx in Ax ∪Bwx
∪
⋃

w∈W x
2

Bw and Dux
∪
⋃

v∈Vx
Cv, respectively, both

have cardinality |X|, so we may extend σx arbitrarily to a bijection

πx : Ax ∪ Bwx
∪
⋃

w∈W x
2

Bw → Dux
∪
⋃

v∈Vx

Cv.

Note that if π ∈ SX is any permutation extending πx, then the block of απβα containing x
is of the form {x} ∪ E ′

x where Ex ⊇
⋃

y∈Bwx\{bx}
Avxy =

⋃

v∈V 1
x
Av; see Figure 8.

Bwx
︷ ︸︸ ︷

⋃
w∈Wx

2

Bw

︷ ︸︸ ︷

︸ ︷︷ ︸

Dux

︸ ︷︷ ︸
⋃

v∈V 1
x
Av

︸ ︷︷ ︸
⋃

v∈V 2
x
Av

x

πx

α

π

βα

Figure 8: A schematic diagram of the product απβα, focusing on the transversal block
{x} ∪ E ′

x, where
⋃

v∈V 1
x
Av ⊆ Ex ⊆

⋃

v∈Vx
Av. See text for further explanation.

Now,
⋃

x∈X πx is a bijection from
⋃

x∈X

Ax ∪
⋃

x∈X

Bwx
∪
⋃

x∈X

⋃

w∈W x
2

Bw =
⋃

x∈X

Ax ∪
⋃

z∈Zℵ0
\W∞

2

Bz

to ⋃

x∈X

Dux
∪
⋃

x∈X

⋃

v∈Vx

Cv =
⋃

u∈U1

Du ∪
⋃

x∈X

Cx.

Since the complements of these sets in X have cardinality |X|, we may extend
⋃

x∈X πx
arbitrarily to a permutation π ∈ SX . Now, δ = απβα ∈ LX satisfies d∗(δ) ≥ d∗(α) = |X|,
so we may write δ = (Ex|Fx). By the above discussion, we see that for each x ∈ X , |Ex| ≥∣
∣
∣
⋃

v∈V 1
x
Av

∣
∣
∣ ≥ |V 1

x | = |Bwx
|. It follows that, for any cardinal µ < |X|,

k∗(δ, µ) = #{x ∈ X : |Ex| ≥ µ} ≥ #{x ∈ X : |Bwx
| ≥ µ}

= #{w ∈ W1 : |Bw| ≥ µ} = |W1 ∩ Zµ| = |X|,

as required. This completes the proof. ✷
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Remark 24. Some parts of the argument in Case 1 of the above proof are similar to the
proof of [13, Lemma 6.2].

Theorem 25. Suppose |X| is singular and let α, β ∈ PX . Then PX = 〈SX , α, β〉 if and only
if (renaming α, β if necessary), α ∈ LX , β ∈ RX , d

∗(α) = d(β) = |X| and either

(i) k∗(α, 2) + d∗(α, 2) = |X| = k(β, µ) + d(β, µ) for all cardinals µ < |X|, or

(ii) k∗(α, µ) + d∗(α, µ) = |X| = k(β, 2) + d(β, 2) for all cardinals µ < |X|.

Proof The reverse implication was proved in Proposition 23. So suppose PX = 〈SX , α, β〉.
Again, we may assume that α ∈ LX , β ∈ RX , d

∗(α) = d(β) = |X|. Suppose that (i) and (ii)
do not hold. So one of

(I) k∗(α, 2) + d∗(α, 2) < |X|, or

(II) k(β, µ) + d(β, µ) < |X| for some cardinal µ < |X|

holds, and so too does one of

(III) k∗(α, ν) + d∗(α, ν) < |X| for some cardinal ν < |X|, or

(IV) k(β, 2) + d(β, 2) < |X|.

Again, Lemma 16 implies that (I) (and, dually, (IV)) cannot hold. Now suppose (II) and
(III) hold. Let λ = max(µ, ν). Whether λ is singular or regular, the successor cardinal λ+

is regular, and we still have λ+ < |X| as well as k∗(α, λ+) + d∗(α, λ+) < |X| and k(β, λ+) +
d(β, λ+) < |X|. But then Lemma 17 implies that 〈SX , α, β〉 does not contain any γ ∈ LX

with k∗(γ, λ+) = |X|, a contradiction. ✷

5 Relative rank of PX modulo EX and EX ∪ SX

We now turn to the task of calculating the relative rank of PX modulo the set of idempotent
partitions EX = E(PX) = {α ∈ PX : α = α2}. We also calculate the relative rank of PX

modulo the set EX ∪SX of idempotents and units. We must first recall some ideas from [11].
With this in mind, consider a partition

α =

(
Ai Cj

Bi Dk

)

i∈I, j∈J,k∈K

.

We define

s(α) =
∑

i∈I

(
|Ai| − 1

)
+
∑

j∈J

|Cj| and s∗(α) =
∑

i∈I

(
|Bi| − 1

)
+
∑

k∈K

|Dk|.
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These parameters, which were called the singularity and cosingularity of α and denoted
sing(α) and cosing(α) in [11], allow the alternate characterizations LX = {α ∈ PX : s(α) = 0}
and RX = {α ∈ PX : s∗(α) = 0}. Note that s∗(α) = s(α∗). We also write

sh(α) = #{i ∈ I : Ai ∩ Bi = ∅}.

This parameter was called the shift of α in [11].

For any subset Σ ⊆ PX , we write Σfin for the set of all partitions α ∈ Σ for which the set
{x ∈ X : [x]α 6= {x, x′}} is finite. In [11], this set was called the warp set of α, and the
elements of Σfin were called the finitary elements of Σ.

Theorem 26 (See [11, Theorems 30 and 33]). Let X be any infinite set. Then

(i) 〈EX〉 = {1} ∪
(
Pfin

X \ Sfin
X

)
∪
{
α ∈ PX : s(α) = s∗(α) ≥ max(ℵ0, sh(α))

}
, and

(ii) 〈EX ∪ SX〉 =
{
α ∈ PX : s(α) = s∗(α)

}
. ✷

Remark 27. In the case of finite X , we have 〈EX ∪SX〉 = PX and 〈EX〉 = {1} ∪ (PX \ SX).
See [8, Theorems 32, 36 and 41] for presentations of finite PX with respect to various gener-
ating sets consisting of idempotents and units, including a minimal generating set of size 4.
See [9, Theorem 46] for a presentation of finite PX \ SX in terms of a minimal idempotent
generating set of size 1

2
|X| · (|X|+1). The minimal generating sets (and minimal idempotent

generating sets) for finite PX \ SX and various other diagram monoids are classified and
enumerated in [12].

In what follows, if A ⊆ X is any subset, we write

idA =

(
a x
a x

)

a∈A,x∈X\A

.

Proposition 28. Let α ∈ LX and β ∈ RX be such that s∗(α) = s(β) = |X|. Then
〈EX, α, β〉 = 〈EX ∪ SX , α, β〉 = PX .

Proof Clearly it is sufficient to show that 〈EX , α, β〉 = PX . Write α = (Ax|Bi) and β =
(Cx|Dj)

∗. First we show that 〈EX, α, β〉 contains the symmetric group SX . For each x ∈ X ,
choose some ax ∈ Ax and cx ∈ Cx. Let A = {ax : x ∈ X} and C = {cx : x ∈ X}, and put

γ = α idA = (ax|y)x∈X,y∈X\A and δ = idC β = (cx|y)
∗
x∈X,y∈X\C.

Note that |A| = |B| = |X| = |X \A| = |X \C|, and that γγ∗ = 1 = δ∗δ. Now let π ∈ SX be
arbitrary. Then π = γγ∗πδ∗δ, so it suffices to show that γ∗πδ∗ ∈ 〈EX〉. Now

γ∗πδ∗ =

(
ax y
cxπ z

)

x∈X,y∈X\A,z∈X\C

.
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So s(γ∗πδ∗) = |X \ A| = |X| = |X \ C| = s∗(γ∗πδ∗), and it follows that γ∗πδ∗ ∈ 〈EX〉 by
Theorem 26(i). This completes the proof that SX ⊆ 〈EX , α, β〉.

Now let (Yx)x∈X∪{∞} be a moiety of X \A, where ∞ is a symbol that does not belong to X .
For each x ∈ X , put Ex = {ax} ∪ Yx. Let

ε =

(
Ex y
Ex y

)

x∈X,y∈Y∞

.

So ε ∈ EX , and

γε =

(
x ∅
Ex y

)

x∈X,y∈Y∞

belongs to LX and satisfies k∗(γε, |X|) = |X| = d∗(γε). Dually, there exists η ∈ EX such
that ηδ ∈ RX satisfies k(ηδ, |X|) = |X| = d(ηδ). It follows from Proposition 14 that
〈EX, α, β〉 ⊇ 〈SX , γε, ηδ〉 = PX . ✷

Lemma 29. We have LX ∩ EX = RX ∩ EX = {1}.

Proof Let α ∈ LX ∩ EX and write α = (Ax|Bi). Then α = α2 implies that Ax =
⋃

y∈Ax
Ay

for all x ∈ X . This gives Ax = {x} for all x ∈ X . It follows that I = ∅, and α = 1. A dual
argument shows that RX ∩ EX = {1}. ✷

Theorem 30. If X is any infinite set, then rank(PX : EX) = rank(PX : EX ∪ SX) = 2.

Proof Proposition 28 tells us that rank(PX : EX) ≤ 2. Since rank(PX : EX ∪ SX) ≤
rank(PX : SX), it is sufficient to show that rank(PX : EX ∪ SX) ≥ 2. Let α ∈ PX . The proof
will be complete if we can show that 〈EX ∪ SX , α〉 is a proper subsemigroup of PX . Suppose
to the contrary that 〈EX ∪ SX , α〉 = PX . Let β ∈ LX \ SX , and consider an expression
β = γ1 · · · γr where γ1, . . . , γr ∈ EX ∪SX ∪{α} and r is minimal. Now γ1 ∈ LX since PX \LX

is a right ideal. If γ1 ∈ EX , we would have γ1 = 1 by Lemma 29, contradicting either the
minimality of r or the fact that β 6= 1. So we must have γ1 ∈ SX ∪ {α}. If γ1 ∈ SX ,
then γ−1

1 β = γ2 · · · γr ∈ LX \ SX , and this expression is also of minimal length. Continuing
in this way, we see that there exists 1 ≤ s ≤ r such that γ1, . . . , γs−1 ∈ SX and γs = α.
So αγs+1 · · ·γr = γ−1

s−1 · · · γ
−1
1 β ∈ LX , and this implies α ∈ LX . A dual argument gives

α ∈ RX so that, in fact, α ∈ SX . But then PX = 〈EX ∪ SX , α〉 = 〈EX ∪ SX〉, contradicting
Theorem 26(ii). ✷

Remark 31. It follows from [8, Proposition 39] and its proof that rank(PX : EX) = 2 if X
is finite and |X| ≥ 3. Since PX = 〈EX ∪ SX〉 for any finite set X [8, Theorem 32], it follows
that rank(PX : EX ∪ SX) = 0 for finite X .
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6 Generating pairs for PX modulo EX and EX ∪ SX

In order to establish the converse of Proposition 28, we will first need to prove a series of
lemmas.

Lemma 32. Suppose α, β ∈ PX are such that PX = 〈EX ∪ SX , α, β〉. Then (renaming α, β
if necessary) α ∈ LX and β ∈ RX .

Proof A similar argument to that in the proof of Theorem 30 shows that one of α, β, say α,
belongs to LX , and a dual argument shows that one of α, β belongs to RX . If, in fact,
α ∈ RX as well, then α ∈ SX , and we would have PX = 〈EX ∪ SX , α, β〉 = 〈EX ∪ SX , β〉,
contradicting Theorem 30. So it follows that β ∈ RX . ✷

A quotient of X is a collection Y = {Ai : i ∈ I} of pairwise disjoint nonempty subsets of X
such that X =

⋃

i∈I Ai. We write Y � X to indicate that Y is a quotient of X . If Y � X
is as above, we write

idY =

(
Ai ∅
Ai ∅

)

i∈I

.

Lemma 33 (See [11, Lemma 5 and Proposition 6]). If X is any infinite set, then 〈EX〉 = 〈Σ〉,
where Σ = {idA : A ⊆ X} ∪ {idY : Y � X}. ✷

The previous result will substantially simplify the proof of the following technical lemma.

Lemma 34. Suppose α ∈ LX and β ∈ RX and that s∗(α) < |X|. If γ1, . . . , γr ∈ EX ∪ SX ∪
{α, β} are such that γ1 · · · γr ∈ LX , then s

∗(γ1 · · · γr) < |X|.

Proof Write α = (Ax|Bi) and β = (Cx|Dj)
∗. The r = 1 case is trivial, so suppose r ≥ 2

and put γ = γ1 · · · γr−1. Since γ ∈ LX , an inductive hypothesis gives s∗(γ) < |X|. Write
γ = (Ex|Fk). Since s

∗(α) < |X| and s∗(γ) < |X|, it follows that
∑

x∈X

(
|Ax| − 1

)
,
∑

i∈I |Bi|,∑

x∈X

(
|Ex| − 1

)
and

∑

k∈K |Fk| are all less than |X|. We now consider four separate cases
according to whether γr ∈ EX , γr ∈ SX , γ = α or γ = β. In each case, we must show that
s∗(γγr) < |X|.

Case 1. First suppose γr ∈ EX . In fact, by Lemma 33, we may assume that γr = idA for
some A ⊆ X or γr = idY for some Y � X .

Subcase 1.1. Suppose γr = idA for some A ⊆ X . For x ∈ X and k ∈ K, let Gx = Ex ∩ A
and Hk = Fk ∩A. Then

γγr = (Gx|Hk, y)x∈X,k∈K,y∈X\A.
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Note that some of the Hk may be empty, but all of the Gx are nonempty. Now

s∗(γγr) =
∑

x∈X

(
|Gx| − 1

)
+
∑

k∈K

|Hk|+ |X \ A|

=
∑

x∈X

(
|Gx| − 1 + |(X \A) ∩ Ex|

)
+
∑

k∈K

(
|Hk|+ |(X \ A) ∩ Fk|

)

=
∑

x∈X

(
|Ex| − 1

)
+
∑

k∈K

|Fk| = s∗(γ) < |X|.

Subcase 1.2. Suppose γr = idY for some Y � X . Let ε be the equivalence relation on X
corresponding to Y. That is, two elements of X are ε-related if and only if they belong to
the same block of Y, and we have Y = X/ε. Put η = coker(γ), and let Z = X/η. Clearly
we have γ = γ idZ. So γγr = γ idZ idY = γ idW, where W = X/(ε ∨ η); here ε ∨ η denotes
the least equivalence on X containing ε ∪ η. Since η ⊆ ε ∨ η, every block of Z is contained
in a block of W. Since γγr ∈ LX , it is not possible for a block of W to contain Ex1

and
Ex2

if x1 6= x2. So we may write W = {Ux : x ∈ X} ∪ {Vl : l ∈ L} where Ex ⊆ Ux for all
x ∈ X , and we have γγr = (Ux|Vl). Now, for each x ∈ X , there exists a subset Kx ⊆ K
such that Ux = Ex ∪

⋃

k∈Kx
Fk. And for each l ∈ L, there exists a subset Kl ⊆ K such that

Vl =
⋃

k∈Kl
Fk. Note that K =

⋃

x∈X Kx ∪
⋃

l∈LKl. Then

s∗(γγr) =
∑

x∈X

(
|Ux| − 1

)
+
∑

l∈L

|Vl| =
∑

x∈X

(

|Ex| − 1 +
∑

k∈Kx

|Fk|

)

+
∑

l∈L

∑

k∈Kl

|Fk|

=
∑

x∈X

(
|Ex| − 1

)
+
∑

k∈K

|Fk| = s∗(γ) < |X|.

Case 2. If γr ∈ SX , then clearly s∗(γγr) = s∗(γ) < |X|.

Case 3. Next suppose γr = α. Now γα = (Gx|Bi, Hk), where where Gx =
⋃

y∈Ex
Ay and

Hk =
⋃

y∈Fk
Ay for each x, k. Let Y = {x ∈ X : |Ax| ≥ 2}. Since

∑

x∈X

(
|Ax| − 1

)
< |X|, it

follows that |Y | < |X|. So
∑

x∈X |Ax| =
∑

x∈X

(
|Ax| − 1

)
+ |Y | < |X|. But then

s∗(γα) =
∑

x∈X

(
|Gx| − 1

)
+
∑

k∈K

|Hk|+
∑

i∈I

|Bi|

=
∑

x∈X

(
∑

y∈Ex

|Ay| − 1

)

+
∑

k∈K

∑

y∈Fk

|Ay|+
∑

i∈I

|Bi|

≤
∑

x∈X

∑

y∈Ex

|Ay|+
∑

k∈K

∑

y∈Fk

|Ay|+
∑

i∈I

|Bi|

=
∑

x∈X

|Ax|+
∑

i∈I

|Bi| < |X|.

Case 4. Finally, suppose γr = β. Write γβ = (Px|Ql). Let x ∈ X . The middle row of the
connected component containing x in the product graph Γ(γ, β) is (omitting double dashes)

Ex ∪
⋃

k∈Kx

Fk =
⋃

y∈Px

Cy ∪
⋃

j∈Jx

Dj
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for some subsets Kx ⊆ K and Jx ⊆ J . So |Px| ≤ |Ex|+
∑

k∈Kx
|Fk|.

Now let l ∈ L. The middle row of the connected component containing Q′
l in the product

graph Γ(γ, β) is (omitting double dashes)

⋃

k∈Kl

Fk =
⋃

y∈Ql

Cy ∪
⋃

j∈Jl

Dj

for some subsets Kl ⊆ K and Jl ⊆ J . Thus, |Ql| ≤
∑

k∈Kl
|Fk|. It follows that

s∗(γβ) =
∑

x∈X

(
|Px| − 1

)
+
∑

l∈L

|Ql| ≤
∑

x∈X

(

|Ex| − 1 +
∑

k∈Kx

|Fk|

)

+
∑

l∈L

∑

k∈Kl

|Fk|

≤
∑

x∈X

(
|Ex| − 1

)
+
∑

k∈K

|Fk| = s∗(γ) < |X|.

This completes the proof. ✷

Remark 35. Some elements of the argument from Subcase 1.2 are similar to the proof of
[11, Lemma 14].

Theorem 36. Let X be any infinite set and let α, β ∈ PX . Then PX = 〈EX , α, β〉 if and
only if PX = 〈EX ∪SX , α, β〉 if and only if (renaming α, β if necessary) α ∈ LX and β ∈ RX

satisfy s∗(α) = s(β) = |X|.

Proof In Proposition 28, we saw that if α ∈ LX and β ∈ RX satisfy s∗(α) = s(β) = |X|,
then PX = 〈EX, α, β〉. It is obvious that PX = 〈EX , α, β〉 implies PX = 〈EX ∪ SX , α, β〉.
Suppose now that PX = 〈EX ∪ SX , α, β〉. By Lemma 32, we may assume that α ∈ LX

and β ∈ RX . If s∗(α) < |X|, then Lemma 34 would imply that any element γ ∈ LX with
s∗(γ) = |X| could not belong to 〈EX ∪SX , α, β〉, a contradiction. Thus, s∗(α) = |X|. A dual
argument shows that s(β) = |X|. This completes the proof. ✷

7 Sierpiński rank and the semigroup Bergman prop-

erty

Let S be a semigroup. Recall that the Sierpiński rank of S, denoted SR(S), is the least
integer n such that every countable subset of S is contained in an n-generator subsemigroup
of S, if such an integer exists. Otherwise, we say that S has infinite Sierpiński rank.

Theorem 37. Let X be any infinite set. Then SR(PX) ≤ 4.
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Proof A general result [36, Lemma 2.3] states that if T is a subsemigroup of a semigroup S,
then SR(S) ≤ rank(S : T )+SR(T ) if rank(S : T ) and SR(T ) are finite. By Theorem 12, and
the fact that SR(SX) = 2 [16, Theorem 3.5], it immediately follows that SR(PX) ≤ 4. But
for the sake of completeness, and since it will be useful in a subsequent proof, we offer a direct
proof that is reminiscent of Banach’s proof [5] that the full transformation semigroup TX has
Sierpiński rank 2 [38], and is also similar to the proof of [20, Proposition 4.2].

With this in mind, suppose we have a countable subset Σ = {αn : n ∈ N} of PX . For n ∈ N,
write

αn =

(
An

i Cn
j

Bn
i Dn

k

)

i∈In, j∈Jn,k∈Kn

.

We will construct two partitions β, γ ∈ PX such that Σ ⊆ 〈β, β∗, γ, γ∗〉. Let (Xn)n∈N∪{0} be a
moiety ofX , and let (Yn)n∈N be a moiety ofX0. For each n ∈ N, fix bijections φn : Xn−1 → Xn

and ψn : Xn → Yn. Let φ =
⋃

n∈N φn and ψ =
⋃

n∈N ψn, noting that these are bijections
φ : X → X \X0 and ψ : X \X0 → X0. For each n ∈ N, define σn = φψφn and τn = φψφnψ,
noting that these are bijections σn : X → Xn and τn : X → Yn. For each n ∈ N, also define

δn =

(
An

i τn Cn
j τn

Bn
i σn Dn

kσn

)

i∈In, j∈Jn,k∈Kn

.

(Note that δn is not a full partition. Rather,
⋃

i∈In A
n
i τn∪

⋃

j∈Jn Cn
j τn = Yn and

⋃

i∈In B
n
i τn∪⋃

k∈Kn Dn
kτn = Xn.) Now put

β =

(
x ∅
xφ y

)

x∈X,y∈X0

and γ =
⋃

n∈N

ψn ∪
⋃

n∈N

δn.

See Figure 9. One may easily check that βγβnγ2(β∗)nγ∗β∗ = αn for each n ∈ N. ✷

...

X0 X1 X2

φ1 φ2 φ3β =

γ =

X1 X2 X3Y1 Y2 Y3

δ1 δ2 δ3

ψ1 ψ2 ψ3

Figure 9: The partitions β (top) and γ (bottom) from the proof of Theorem 37.
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Corollary 38. If Σ is any subset of PX , then rank(PX : Σ) is either uncountable or at
most 4.

Proof If rank(PX : Σ) ≤ ℵ0, then PX = 〈SX ∪ Γ〉 for some countable subset Γ ⊆ PX . But,
by Theorem 37, Γ ⊆ 〈Λ〉 for some Λ ⊆ PX with |Λ| ≤ 4. But then PX = 〈Σ ∪ Λ〉. ✷

Remark 39. A recent result of Hyde and Péresse [28, Theorem 1.4] shows that the Sierpiński
rank of an infinite symmetric inverse monoid is equal to 2, an improvement of [20, Proposition
4.2] which gave an upper bound of 4. It is anticipated that the methods of [28] may be
extended to show that SR(PX) = 2, but this is beyond the scope of the current work.
Naturally, this would show that Corollary 38 could be suitably improved too.

Recall that a semigroup S has the semigroup Bergman property [34] if the length function
of S is bounded with respect to any generating set for S. The property has this name since
Bergman showed in [6] that an infinite symmetric group SX has the property. (Actually,
Bergman showed that SX has this property with respect to group generating sets of SX , and
the semigroup analogue was shown in [34, Corollary 2.5].)

Recall from [34] that a semigroup S is said to be strongly distorted if there exists a sequence
of natural numbers (an)n∈N, and a natural number NS such that, for all sequences (sn)n∈N of
elements of S, there exist t1, . . . , tNS

∈ S such that each sn can be expressed as a product of
length at most an in the elements t1, . . . , tNS

.

Proposition 40 (See [34, Lemma 2.4 and Proposition 2.2(i)]). If S is non-finitely generated
and strongly distorted, then S has the semigroup Bergman property. ✷

Since |PX | > ℵ0 for any infinite set X , PX is clearly not finitely generated. And the proof of
Theorem 37 shows that PX is strongly distorted (we take NPX

= 4 and an = 2n + 6 for all
n ∈ N). So we immediately obtain the following.

Theorem 41. If X is any infinite set, then PX has the semigroup Bergman property. ✷
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[25] J. Howie, N. Ruškuc, and P. Higgins. On Relative Ranks of Full Transformation Semigroups. Comm.
Algebra, 26(3):733–748, 1998.

[26] J. M. Howie. The Subsemigroup Generated by the Idempotents of a Full Transformation Semigroup.
J. London Math. Soc., 41:707–716, 1966.

[27] J. M. Howie. An Introduction to Semigroup Theory. L.M.S. Monographs, No. 7. Academic Press, New
York, 1976.
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