
ar
X

iv
:1

40
3.

41
53

v3
 [

m
at

h.
G

R
]

 2
0

O
ct

 2
01

4

A FAMILY OF POLYCYCLIC GROUPS OVER WHICH THE

CONJUGACY PROBLEM IS NP-COMPLETE

BREN CAVALLO AND DELARAM KAHROBAEI

Abstract. In this paper we study the conjugacy problem in polycyclic groups.
Our main result is that we construct polycyclic groups Gn whose conjugacy
problem is at least as hard as the subset sum problem with n indeterminates.
As such, the uniform conjugacy problem over the groups Gn is NP-complete
where the parameters of the problem are taken in terms of n and the length
of the elements given on input.

1. Introduction

Given a finitely presented group G, the conjugacy decision problem for G asks
if two elements u, v ∈ G are conjugate. Along with the word problem and isomor-
phism problem, it was one of the original group theoretic problems introduced by
Dehn in 1911. In the context of non-commutative group based cryptography, one
often studies the search variant: given two conjugate elements in G, find a third
element of G conjugating one to the other. In 1999 Anshel, Anshel, and Goldfeld [1]
created a key exchange protocol that relied on solving the conjugacy search prob-
lem multiple times and proposed braid groups as the platform group. In the years
since, different parties [11, 20] have shown that heuristic attacks can in fact break
the protocol when it is done over braid groups. Other cryptographic protocols using
the conjugacy search problem include [13, 14, 15, 18].

In 2004 Eick and Kahrobaei [7] proposed polycyclic groups as a secure platform
for AAG and offered computational evidence. Later Garber, Kahrobaei, and Lam
[10] experimentally showed that polycyclic groups were resistant to many of the
heuristic attacks that are strong against braid groups. In this paper we offer the-
oretical evidence that the conjugacy decision and search problems over polycyclic
groups are difficult. We construct polycyclic groups Gn whose conjugacy search
and decision problems are at least as hard as the subset sum search and decision
problems in n indeterminates which is well known to be NP-complete. The Gn also
have the additional property that algebraic computations such as conjugation and
collection can be performed quickly when group elements are represented by expo-
nent vectors. In this way, a polynomial time algorithm that solves either conjugacy
problem in these groups would imply P = NP.

We devote Sections 2, 3, and 4 to the conjugacy problem in groups, preliminar-
ies on polycyclic groups, and the subset sum problem. In Section 5 we introduce
the twisted subset sum problem (TSSP) and discuss a dynamic programming al-
gorithm that solves it. In Section 6 we explicitly construct the groups Gn that we
will be working over and show that the TSSP reduces to the conjugacy decision

1

http://arxiv.org/abs/1403.4153v3

2 BREN CAVALLO AND DELARAM KAHROBAEI

problem in the Gn. In Section 7 we show that the conjugacy problem in the Gn

is in NP. We also note that the same computations can also be used to show that
multiplication and collection can also be performed in polynomial time. In Section

8 we reduce the subset sum problem to the TSSP which implies that the conjugacy
problem in the Gn is NP-complete.

2. The Complexity of Conjugacy Problem in Polycyclic Groups

The conjugacy problem in a finitely presented group, G, can be defined as follows:
given two elements u, v ∈ G determine if there exists x ∈ G such that xux−1 = v.
For a general group, this problem is known to be undecidable. See [3] for an
example of a group with an undecidable conjugacy problem that contains an index
2 subgroup with decidable conjugacy problem.

In the case of polycyclic groups the conjugacy problem was shown to be decid-
able independently by Formanek [9] and Remesslennikov [23]. More precisely, they
showed that any virtually polycyclic group is conjugacy separable- if u, v ∈ G are
not conjugate, then there exists a finite homomorphic image in which the images
of u and v are not conjugate. This allows us to create an algorithm for the conju-
gacy problem by performing two simultaneous tasks. We conjugate u by elements
of G and check if the conjugation is equal to v. This can be done in polycyclic
groups by comparing normal forms of elements. We also simultaneously enumerate
all homomorphisms from G into a finite group and check if the images of u and
v are conjugate. At least one of these processes will eventually terminate, and we
would have our answer. Clearly, this algorithm may take very long in general and
the nature of the algorithm does not lend itself to complexity analysis.

Later on, Eick and Ostheimer (see [6, 8]) developed a more practical algorithm
for solving the conjugacy problem in polycyclic groups, but did not perform a
complexity analysis. It was pointed out in [7] that the algorithm of Eick and
Ostheimer is likely slow since it may involve computation of the unit group of an
algebraic number field. Also in [7], Eick and Kahrobaei tested the algorithm on
metabelian polycyclic groups and noted that as the Hirsch length increased, the
average time it took to solve the conjugacy increased dramatically. In a group of
Hirsch length 14, the average time the algorithm took was over 100 hours.

More recently, Sale [24, 25] studied the geometry of conjugacy in solvable groups
and found upper bounds on the conjugacy length function for certain polycyclic
groups. The conjugacy length function, CLFG(n) of a group G is defined as follows:

CLFG(n) = max{min{|w| : wu = vw} : |u|+ |v| ≤ n, u and v are conjugate inG}

In his work, Sale specifically studied groups of the form Z
n
⋊φ Z

k with certain
technical conditions on φ. He showed that under these conditions, if k = 1 then
CLFG(n) is at most linear in n and that if k > 1, CLFG(n) is at most exponential in
n. Note that in this case |u| and |v| are the geodesic lengths of u and v respectively.
Also note that this result depends on the presentation of G, which Sale fixes.

In this vein, Sale showed that you can solve the conjugacy problem in such
groups by conjugating u by all words of length less that or equal to CLFG(|u|+ |v|)

A FAMILY OF POLYCYCLIC GROUPS OVER WHICH THE UNIFORM CONJUGACY PROBLEM IS NP-COMPLETE 3

to attempt to find an element that conjugates u to v. If no such word is found,
then u and v are not conjugate. In this case, we can also check equality of words
in G by comparing normal forms of elements. These bounds give a better idea of
how long a brute force algorithm would take in these groups would take. Namely,
we know that to perform such an algorithm, at most g(CLFG(|u|+ |v|)) potential
conjugators must be checked, where g is the growth function of G. As such, in a
polycyclic group with exponential growth, Sale’s results say that for k = 1 at most
an exponential words need to be checked while for k > 1 the upper bound is double
exponential.

Aside from Sale’s work, very little is actually known about the complexity of
the conjugacy problem in non-abelian polycyclic groups. Based on experiments
in [7, 10] it is conjectured that existing algorithms are super polynomial and that
the complexity increases with respect to Hirsch length and length of words. It is
still open whether or not there is a polynomial time algorithm for the conjugacy
with respect to Hirsch length and length of elements. Also, very little known about
the complexity of the conjugacy problem if we fix the Hirsch length and study a
single polycyclic group and no polynomial time algorithm has been found in that
case. Additionally, complexity of algorithms in the cases of variations in which the
polycyclic group is given by an arbitrary presentation is unknown.

We close this section by mentioning some recent results about the complexity of
the conjugacy problem in other solvable groups. In [26], Sale found upper bounds
for the conjugacy length functions of free solvable groups, namely that they each
have a cubic upper bound. In the same paper, he also found an upper bound for
the conjugacy length function of the wreath product of two groups in terms of their
own conjugacy length functions. Similarly, Vassileva found [27] a polynomial time
algorithm for the conjugacy problem in free solvable groups. She also found that if
two groups, A and B, have polynomial time algorithms for their conjugacy prob-
lems, and if B has a polynomial time algorithm for its power problem, then there
is a polynomial time algorithm for the conjugacy problem in A ≀B. In [4], Diekert,
Miasnikov, and Weiß studied the circuit complexity of the conjugacy problem in
the Baumslag - Solitar group, BS(1, 2) and showed that its conjugacy problem is
TC0 - complete. They also showed that the conjugacy problem in the Baumslag
- Gersten group, G(1, 2), has a polynomial time algorithm in a strongly generic
setting. Namely, they show that for almost all inputs, the conjugacy problem can
be decided in polynomial time.

3. Poly-Z Groups

A groupG is polycyclic if it has a subnormal series with cyclic quotients. Namely,
G has subgroups G0, G1, · · · , Gn such that

(1) {1} = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G

and Gi+1/Gi is a cyclic group.

4 BREN CAVALLO AND DELARAM KAHROBAEI

In this section, we will summarize a variety of results on polycyclic groups that
can be found in [5, 6] that will be used in the remainder in this paper.

Given a subnormal series as in (1), one can find a polycyclic generating set,
{g1, · · · , gn} where Gi = 〈gi, Gi−1〉 for 1 ≤ i ≤ n. With respect to this generating

set, each group element g ∈ G can be represented as gk1

1 · · · gkn
n and such a rep-

resentation is called its normal form. We also call each gki a syllable. For every
polycyclic group, there exists a polycyclic generating set such that any word has
a unique normal form. The process of converting an arbitrary word to its normal
form is called collection.

Of specific interest to us in this paper are polycyclic groups where Gi/Gi−1 ≃ Z

for each i. Such a group is called poly-Z as each quotient is isomorphic to Z. If this
is the case, then G is obtained from the final non-trivial group in the subnormal
series G1 ≃ Z by successive semi-direct products with Z as follows. It is a standard
result (see [5] for instance) that if G/Gn−1 ≃ Z then G ≃ Gn−1 ⋊φ Z. If we take
gn as the generator of Z, then φ is given by conjugating elements of Gn−1 by gn.
For reference, Gn−1 ⋊φ Z is the group with elements wgkn with w ∈ Gn−1 and
multiplication given by:

(wgkn)(w
′gln) = wφk(w′)gk+l

n

Proceeding inductively, we see that G can be written as:

(2) (· · · ((Z ⋊φ1
Z)⋊φ2

Z)⋊φ3
· · ·)⋊φn−1

Z

where φj is conjugation by gj+1.

The groups we will be interested in will be constructed in this fashion by explicitly
describing the different φi. See [2] in which the authors use the same construction
for more details. In the following, we will take gi as the generator of the i

th
Z in the

semi-direct product form. From the multiplication rules of the semi-direct product,
one can see that gjgi = φj−1(gi)gj for i < j. By using this identity, it is possible
to then put any arrangement of letters into normal form so that any gi appears to
the left of gj when i < j. We also define the Hirsch length as the number of Z’s in
the semi-direct product formulation of the poly-Z group. The Hirsch length is an
isomorphism invariant, so while different automorphisms in the construction of the
poly-Z group may lead to isomorphic groups, the number of factors is necessarily
the same.

Any word w = gk1

1 · · · gkn
n can be represented uniquely by its exponent vector,

[k1, · · · , kn]. We can then take the length of w to be the length of its corresponding
exponent vector, l(w) =

∑n

i=1 log(|ki|) = O(nlog(K)) where K is an upper bound
of the absolute value of all of the exponents. This measure of length, is somewhat
different than many of the standard ones used when studying algorithms in groups.
Most often, one would take the length of the word to be its distance from the iden-
tity in the Cayley graph equipped with the word metric. In this scenario, we are
considering normal forms of group elements, rather than geodesic forms, because

A FAMILY OF POLYCYCLIC GROUPS OVER WHICH THE UNIFORM CONJUGACY PROBLEM IS NP-COMPLETE 5

they are often used for cryptographic and other algorithmic applications in poly-
cyclic groups. For instance, in a practical setting, one cannot necessarily generate
random words that are of the shortest length and the complexity of converting a
word in a polycyclic group into a shortest length representative is unknown. Ad-
ditionally, it is more practical when possible to work with group elements as a
tuple of exponents rather than generator by generator, making the size of the ex-
ponent vector a natural measure length. In the groups we will be working with,
algebraic operations (multiplication, collection, conjugation) can be computed ef-
fectively with a Turing machine (see Section 7) when inputs are taken in terms of
exponent vectors. This is not necessarily the case in other scenarios where group
elements are dealt with generator by generator. It is also important to note that
this measure of length is necessary for the results in the following sections to hold.

4. Subset Sum Problem

The subset sum problem, or SSP , is the following: given a set of integers,
L = {k1, k2, · · · , kn}, and an integer, M , determine if there exists subset of L that
sums to M . This can also be rephrased as determining if there is a solution to the
equation:

k1x1 + · · ·+ knxn = M where xi ∈ {0, 1}.

We can bound the size of the problem from above by considering the length of
the list, n, and an upper bound on the absolute value of the entries, K. In doing
so, the length of the problem can be seen to have length O(nlog(K)). We will
also label this instance of the SSP , SSP (L,M), or just (L,M) when there is no
ambiguity.

The SSP is NP-complete, meaning that the existence of a deterministic polynomial-
time Turing machine that solves it would imply that P = NP. In fact, it was
originally introduced by Karp as one of his 21 NP-complete problems. Despite it
being NP-complete, there exists a pseudo-polynomial algorithm via dynamic pro-
gramming (see [17]). Namely there exists a deterministic algorithm that runs in
polynomial time when the length of the problem is taken in terms of the actual
numerical entries of the list rather than the number of digits needed to represent
them. As such, the existence of such an algorithm and the NP-completeness of the
problem doesn’t imply that P = NP.

For the purposes of cryptography, we consider the search version of the SSP :
given that a subset of L sums to M , actually find such a subset. From the outset, it
is not immediately clear how the two problems are related, but one can show that
a polynomial time algorithm for one would lead to a polynomial time algorithm for
the other. First we show how an algorithm for the decision problem can be applied
at most n − 1 times to make an algorithm for the search problem. This can be
done by first checking if the SSP , (L \ {kn},M) has a solution. If not, then we
know kn is a part of our solution and proceed by checking (L\{kn−1, kn},M −kn).
Otherwise, we know we can create a solution without kn and proceed by checking
(L \ {kn−1, kn},M). By doing this repeatedly, we will have eventually found a
subset summing to M . In the worst case scenario, we will have reached the end
of the list and performed the decision algorithm n − 1 times. Note that since we

6 BREN CAVALLO AND DELARAM KAHROBAEI

are in an instance of the search problem, a solution is assumed to exist, so it is not
necessary to run the decision algorithm on (L,M).

On the other hand, if there were a polynomial time algorithm that solved the
search version of the SSP , we could use it to prove existence of a polynomial time
algorithm for the decision problem. Rather than give a formal proof, we will just
sketch one omitting certain details. Given a polynomial time Turing machine, M ,
for the SSP search problem, there exists a polynomial P (n) such that for any input
x, the number of steps M takes on input x is less than or equal to P (|x|). We can
then create another Turing machine, M ′, that on input y performs the same steps
as M for P (|y|) steps. If M ′ has not yet finished, it then hits its final state and
outputs “no” as the answer. M ′ is then a polynomial time Turing machine for
any instance of the SSP decision problem. Either it terminates in less than P (|y|)
steps in which case M ′ has found a solution for y and outputs “yes” or M ′ takes
longer than M would if there were a solution, implying that there isn’t one, and so
M ′ outputs “no”. As such, a polynomial time algorithm for either the SSP or its
search variant would imply existence of a polynomial time algorithm for the other.

We also will use the notion of a polynomial time reduction. We say that a
decision problem, Q, can be reduced to a decision problem, R, in polynomial time
if there exists a polynomial time mapping, f , from instances of Q to instances of
R, such that an instance x is a “yes” instance of Q if and only if f(x) is a “yes”
instance of R. Such a mapping also must only increase the lengths of instances at
most polynomially. We also write Q ≤p R to say that Q polynomial time reduces
to R.

If such an f exists, then a polynomial time algorithm for R would imply a
polynomial time algorithm for Q. Given an instance x of Q, we can compute f(x)
and then perform our polynomial time decision algorithm for R. As such, a decision
problem, A ∈ NP, is NP-complete if B ≤p A for all B ∈ NP and one can prove
a problem C ∈ NP, is NP-complete if A ≤p C where A is NP-complete. Finally,
note that polynomial time reductions are transitive: A ≤p B and B ≤p C imply
A ≤p C.

5. The Twisted Subset Sum Problem

Given a list L = {k1, · · · , kn} and an integer M , the twisted subset sum problem
(TSSP) is determining if the following equation has a solution:

knxn(−1)x1+x2+···xn−1+kn−1xn−1(−1)x1+x2+···+xn−2+· · ·+k2x2(−1)x1+k1x1 = M

where xi ∈ {0, 1}. Note that we could trivially let xi be any number and replace
xi with xi mod 2 in the above equation. For the remainder of the paper, we write
x′

i = xi mod 2.

Before continuing, we would like to remark that dynamic programming leads to
a polynomial time solution to the TSSP when the coefficients are taken to be in
unary and briefly describe the algorithm. In short, we create an array, A, where
rows go over 1 through n and the columns go over all possible sums that can be
made by the list. At each entry in the array, A(i, j), we ask if there is a solution to

A FAMILY OF POLYCYCLIC GROUPS OVER WHICH THE UNIFORM CONJUGACY PROBLEM IS NP-COMPLETE 7

TSSP ({k1, · · · , ki}, j) and also record whether or not we achieved our sum from
adding or subtracting the final number.

Note that unlike with the standard dynamic programming algorithm for the
subset sum problem, we will potentially put more than one item into each space in
the array. This is because, the way you arrive at a sum depends on what value the
following number will be. Therefore, it may be important to distinguish between
arriving at a certain number after a subtraction versus arriving at the same number
after an addition. As such, it might be technically best to think of the array as
a multi-dimensional array, but for practicality we will consider a two dimenisonal
array of lists.

1. Create an array, A, where the rows are labeled 1 through n and the columns are
labeled −S through S where S = |k1|+ · · ·+ |kn|.

2. Set A(1, j) := (T, 1) if j = k1, otherwise, set A(1, j) to F . The 1 indicates that
the next item will be subtracted. In the future we may also see (T, 0) to indicate
that the next item will be added. This corresponds to the sum of the xi modulo
2.

3. For each A(i, j) where i > 1 do the following (we do this recursively so we
compute row 2 before row 3):
i. If ki = j add a (T, 1) into A(i, j).
ii. If (T, ǫ) ∈ A(i − 1, j) where ǫ ∈ {−1, 1}, then add a (T, ǫ) into A(i, j). As

such, A(i− 1, j) ⊂ A(i, j).
iii. If (T, 0) ∈ A(i − 1, j − ki) add (T, 1) to A(i, j).
iv. If (T, 1) ∈ A(i − 1, j + ki) add (T, 0) to A(i, j).
v. Otherwise set A(i, j) equal to F .

In order to solve TSSP ({k1, · · · , kn},M) we fill the array, A, and check if
A(n,M) contains either (T, 0) or (T, 1). Note that filling this array can be done
in polynomial time when the coefficients are taken in unary as we do polynomially
many elementary operations n × 2S times. On the other hand, if the coefficients
are taken in binary, S is exponential in the size of the coefficients and so filling the
entire array would be of exponential time complexity. We later show in Section

7 that the TSSP is NP-Complete when the entries are taken in binary, meaning
that there exists a polynomial algorithm solving it if and only if P = NP.

6. The conjugacy problem over the groups Gn

In this section, we show how any instance of the TSSP where the set of integers
has length n, can be turned into an instance of the conjugacy problem of a polycyclic
group with Hirsch length 2n+ 1. Since the reduction is polynomial, we prove that
TSSP polynomial time reduces to the conjugacy problem over the Gn.

The group Gn will be constructed as follows:

(· · · ((Z ⋊φ1
Z) ⋊φ2

Z)⋊φ3
· · ·)⋊φ2n

Z

8 BREN CAVALLO AND DELARAM KAHROBAEI

where

φ2i−1(gj) =

{

g−1
1 if j = 1

gj otherwise

and

φ2i(gj) =

{

g1gj if j = 2i

gj otherwise

The multiplicative structure of Gn can then be seen as such: if j is even, gjg1 =

g−1
1 gj and gj+1gj = g1gjgj+1. The following lemma, is a consequence of these
multiplicative identities and will assist us in collecting words throughout the paper.

Lemma 6.1. Let j be even and a, b ∈ Z. Then gaj g
b
1 = g

b(−1)a

1 gaj and gaj+1g
b
j =

gab
′

1 gbjg
a
j+1

Proof. To prove the first identity, just check that gaj g
b
1 = φa

j−1(g
b
1)g

a
j = (φa

j−1(g1))
bgaj =

(g
(−1)a

1)bgaj = g
b(−1)a

1 gaj . For the second identity, we first check the case a = 1.

We then have gj+1g
b
j = (φj(gj))

bgj+1 = (g1gj)
bgj+1. Now note that (g1gj)

2 =

g1gjg1gj = g1g
−1
1 gjgj = g2j from the first part of the lemma. Therefore if b = 2l

is even, then (g1gj)
b = ((g1gj)

2)l = (g2j)
l = gbj . Using the same logic, if b is odd,

(g1gj)
b = g1g

b
j . Therefore, gj+1g

b
j = (g1gj)

bgj+1 = gb
′

1 g
b
jgj+1.

To continue with the more general case, gaj+1g
b
j = ga−1

j+1 g
b′

1 g
b
jgj+1 = gb

′

1 g
a−1
j+1 g

b
jgj+1

and after iterating this computation one obtains gaj+1g
b
j = gab

′

1 gbjg
a
j+1.

�

We now show that the TSSP instance, TSSP ({k1, k2 · · · , kn},M), has a solu-

tion if and only if gk1

3 gk2

5 · · · gkn

2n+1 ∼ g−M
1 gk1

3 gk2

5 · · · gkn

2n+1. Our general strategy will

be as follows: conjugate gk1

3 gk2

5 · · · gkn

2n+1 by a generic word in Gn and collect. First,
note that from the multiplication rules above, it can be seen that any gi where i
is odd, commutes with gk1

3 gk2

5 · · · gkn

2n+1. It can also be seen from the lemma that
conjugating by one of the generators with even index does not introduce any gen-
erators with even index in the collected word. Therefore, without loss of generality,
we can assume that our generic word is of the form gx1

2 gx2

4 · · · gxn

2n because adding in
any generators with odd index doesn’t affect the conjugated product. In Theorem

6.2, we prove:

(gx1

2 gx2

4 · · · gxn

2n)(g
k1

3 gk2

5 · · · gkn

2n+1)(g
x1

2 gx2

4 · · · gxn

2n)
−1 =

g
−p(k1,··· ,kn,x1,x2,··· ,xn)
1 gk1

3 gk2

5 · · · gkn

2n+1

where p(k1, · · · , kn, x1, x2, · · · , xn) =

knx
′

n(−1)xn−1+xn−2+···+x1 + kn−1x
′

n−1(−1)xn−2+···+x1 + · · ·+ k2x
′

2(−1)x1 + k1x
′

1

Notice then, that finding xi such that p(k1, · · · , kn, x1, x2, · · · , xn) = M is ex-
actly the TSSP ({k1, k2 · · · , kn},M). As such, the two words are conjugate if and
only if TSSP ({k1, k2 · · · , kn},M) has a solution. Additionally, the length of the

A FAMILY OF POLYCYCLIC GROUPS OVER WHICH THE UNIFORM CONJUGACY PROBLEM IS NP-COMPLETE 9

inputs to the problems are only off by a polynomial. It can be seen that the length
of both the TSSP and the conjugacy problem are O(n log(K)) where K and n are
chosen as before. It is also clear that the transformation is efficient to compute.
Since the general conjugacy problem in Gn includes all of these instances we then
have that the conjugacy problem in Gn is polynomial time reducible to the TSSP
with n indeterminates.

It is worth noting, that here is where our measure of length of group elements is
crucial. If we had the length of elements inG be measured as |k1|+· · ·+|kn|, then the
conjugacy problem would be exponentially larger than an instance of TSSP and we
would not have a polynomial time reduction. Also, as we pointed out in Section

5, the TSSP has a polynomial time solution using dynamic programming when
the elements in the list are taken in unary, which then implies that the conjugacy
problem with the more standard measure of length of elements in normal form
would also have a polynomial time solution.

Theorem 6.2. TSSP with n indeterminates is polynomial time reducible to the

conjugacy problem in the group Gn of Hirsch length 2n+ 1.

Proof. To prove this, we show that solving the conjugacy problem, gk1

3 gk2

5 · · · gkn

2n+1 ∼

g−M
1 gk1

3 gk2

5 · · · gkn

2n+1, in Gn yields a solution to TSSP({k1, k2 · · · , kn},M).

We proceed by induction on l where we conjugate by the last l syllables of the
generic word. Rather than starting with l = 1 it may clarify the computation to
start with l = 2. In this case we collect:

(g
xn−1

2n−2g
xn

2n)(g
k1

3 gk2

5 · · · gkn

2n+1)(g
xn−1

2n−2g
xn

2n)
−1

Conjugating first by gxn

2n , we find:

gxn

2n (g
k1

3 gk2

5 · · · gkn

2n+1)g
−xn

2n =

gk1

3 gk2

5 · · · gxn

2n (g
kn

2n+1g
−xn

2n) =

gk1

3 gk2

5 · · · gxn

2n (g
knx

′

n

1 g−xn

2n gkn

2n+1) =

g
knx

′

n(−1)xn

1 gk1

3 gk2

5 · · · gkn

2n+1 =

g
−knx

′

n

1 gk1

3 gk2

5 · · · gkn

2n+1

Negt we conjugate by g
xn−1

2n−2:

g
xn−1

2n−2(g
−knx

′

n

1 gk1

3 gk2

5 · · · g
kn−1

2n−1g
kn

2n+1)g
−xn−1

2n−2 =

g
−knx

′

n(−1)xn−1

1 gk1

3 gk2

5 · · · g
xn−1

2n−2(g
kn−1

2n−1g
−xn−1

2n−2)gkn

2n+1 =

g
−knx

′

n(−1)xn−1

1 gk1

3 gk2

5 · · · g
xn−1

2n−2(g
kn−1x

′

n−1

1 g
−xn−1

2n−2 g
kn−1

2n−1)g
kn

2n+1 =

g
−knx

′

n(−1)xn−1−kn−1x
′

n−1

1 gk1

3 gk2

5 · · · g
kn−1

2n−1g
kn

2n+1 =

g
−p(kn−1,kn,xn−1,xn)
1 gk1

3 gk2

5 · · · g
kn−1

2n−1g
kn

2n+1

We now induct and assume the result holds for l = n− 1 and show it holds for
l = n . In this case we have:

(gx1

2 gx2

4 · · · gxn

n)(gk1

3 gk2

5 · · · gkn

2n+1)(g
x1

2 gx2

4 · · · gxn

n)−1 =

10 BREN CAVALLO AND DELARAM KAHROBAEI

gx1

2 (g
−p(k2,··· ,kn,x2,··· ,xn)
1 gk1

3 · · · gkn

2n+1)g
−x1

2

Conjugating by gx1

2 then yields:

gx1

2 (g
p(k2,··· ,kn,x2,··· ,xn)
1 gk1

3 · · · gkn

2n+1)g
−x1

2 =

g
−p(k2,··· ,kn,x2,··· ,xn)(−1)x1

1 gx1

2 (gk1

3 g−x1

2) · · · gkn

2n+1 =

g
−p(k2,··· ,kn,x2,··· ,xn)(−1)x1

1 gx1

2 (g
k1x

′

1

1 g−x1

2 gk1

3) · · · gkn

2n+1 =

g
−p(k2,··· ,kn,x2,··· ,xn)(−1)x1−k1x

′

1

1 gk1

3 · · · gkn

2n+1 =

g
−p(k1,k2,··· ,kn,x1,x2,··· ,xn)
1 gk1

3 · · · gkn

2n+1

It is now enough to note that any possible solution to the above conjugacy
problem would give you a solution to the equivalent TSSP instance by eliminating
all the gj with j odd and reducing all the exponents modulo 2. Therefore a “yes”
answer to the conjugacy decision problem using any algorithm would imply the
existence of a solution to the TSSP . �

7. The Conjugacy Problem In Gn Is In NP

In this section we show that the conjugacy problem in the groups Gn can in
fact be checked efficiently. To do this we will find closed form expressions for
conjugating a word by a power of a single generator. These closed form expressions
will be effectively computable with group elements in their normal form. Since
conjugating by a single syllable can be done in polynomial time, conjugating by
2n+ 1 of them is also polynomial time. Therefore, checking conjugacy is efficient.
These methods can also be used to create closed form expressions for multiplying
and collecting elements in normal form.

When conjugating elements in Gn there are three cases to consider: conjugation
by powers g1, conjugation by powers of gj with j even, and conjugation by powers
of gl where l is odd and larger than 1.

For the first case we collect

gk1 (g
k1

1 · · · g
k2n+1

2n+1)g
−k
1

Since each of the even gj invert g1, when we bring the g−k
1 to the left we switch the

sign of the exponent according to the parity of the exponents of the even indexed
gj. Also, the odd gl commute with g1, and do not affect the collection process.
Therefore we end up with:

(3) g
k+k1−k(−1)k2+k4+···+k2n

1 gk2

2 · · · g
k2n+1

2n+1

The second case is then collecting

gkj (g
k1

1 · · · g
k2n+1

2n+1)g
−k
j

where j is even.

A FAMILY OF POLYCYCLIC GROUPS OVER WHICH THE UNIFORM CONJUGACY PROBLEM IS NP-COMPLETE 11

We first move the gkj right. Hopping over the gk1

1 may change the sign of the
exponent, but after that, each gi commutes with gj for i < j. Therefore as a first
step we end up with:

(g
k1(−1)k

1 gk2

2 · · · g
k+kj

j · · · g
k2n+1

2n+1)g
−k
j

In moving the g−k
j to the left, the only thing that doesn’t commute is gj+1. To

hop over g
kj+1

j+1 we can use Lemma 6.1 and get

g
k1(−1)k

1 gk2

2 · · · g
k+kj

j (g
kj+1

j+1 g−k
j) · · · g

k2n+1

2n+1 =

g
k1(−1)k

1 gk2

2 · · · g
k+kj

j (g
kj+1k

′

1 g−k
j g

kj+1

j+1) · · · g
k2n+1

2n+1

Finally, we move the g
kj+1k

′

1 to the left to end up with:

(4) g
k1(−1)k+kj+1k

′(−1)k2+k4+···+kj+k

1 gk2

2 · · · g
kj

j g
kj+1

j+1 · · · g
k2n+1

2n+1

The third case is dealt with similarly to the second. When l > 1 is odd:

gkl (g
k1

1 · · · g
k2n+1

2n+1)g
−k
l =

gk1

1 · · · (gkl g
kl−1

l−1)gkl−k
l · · · g

k2n+1

2n+1 =

gk1

1 · · · (g
kk′

l−1

1 g
kl−1

l−1 gkl)g
kl−k
l · · · g

k2n+1

2n+1 =

(5) g
k1+kk′

l−1(−1)k2+k4+···+kl−3

1 gk2

2 · · · g
k2n+1

2n+1

Since conjugation is done by successively conjugating elements of the form of
those in (3), (4), and (5) these closed forms can iteratively perform a general con-
jugation. Such a computation can be performed in polynomial time in terms of
n log(K) because computing the normal form after conjugation by each syllable
can be done in polynomial time using the closed forms, and need only be per-
formed n times. This means that we can create a polynomial time verifier for the
conjugacy problem in the Gn.

These normal forms also provide us with the following corollaries that describe
conjugation in the group. The proofs for both statements can be seen directly be
inspecting the closed forms above.

Corollary 7.1. Let u, v ∈ Gn where u = ge11 · · · g
e2n+1

2n+1 and v = gf11 · · · g
f2n+1

2n+1 .

i. u ∼ v implies ei = fi for i ≥ 2.
ii. Let ei = fi for i ≥ 2. If there exists an even l− 1 such that el−1 = fl−1 is odd,

the u and v are conjugate. In fact, one such element that conjugates u to v is:

g
(f1−e1)(−1)e2+e4+···+el−3

l

Note that part ii of the above corollary does not include the difficult cases of the
conjugacy problem that we saw in Section 6.

Now we check that there exists a certificate that is of polynomial length with re-
spect to any instance of the conjugacy problem Gn, u ∼ v. Let u = ge11 ge22 · · · g

e2n+1

2n+1

12 BREN CAVALLO AND DELARAM KAHROBAEI

and v = gf11 ge22 · · · g
e2n+1

2n+1 and w = gx1

1 · · · g
x2n+1

2n+1 such that wuw−1 = v. In the case
that there exists an odd exponent above an even indexed generator, we have a
certificate of polynomial length from part ii of Corollary 7.1. Therefore, we can
assume that for all j even, ej is even.

In this case, we also know there exists a conjugator where xl = 0 for all l odd
and greater than 1 by inspecting the closed forms from (5). Additionally we can
take xj to be 0 or 1 for j even by looking at the closed forms from (4). It remains
to put bounds on x1.

Let y be the exponent above g1 conjugating by gx2

2 · · · g
x2n+1

2n+1 . Then by repeated
applications of (4), |y| ≤ |e1| + |e3| + · · · + |e2n+1|. From (3), conjugating by gx1

1

either increases the exponent by 2x1 or leaves it unchanged. Therefore if f1 = y,
we can take x1 to be 0 and then clearly a certificate has length O(n). Otherwise,
f1 = y+ 2x1 implying that |x1| ≤ |f1|+ |y| ≤ |f1|+ |e1|+ |e3|+ · · ·+ |e2n+1|. This
means that the length of a certificate is bounded from above by log(|f1| + |e1| +
|e3| + · · · + |e2n+1|) + n which is of polynomial size in the length of the original
conjugacy problem. This now shows that the conjugacy problem in Gn is in NP.

One could also compose these operations to find a single closed form for conju-
gation in general. Such a closed form, would be not unlike the one computed in
the previous section, but altogether much more complicated. If instead we consider
right or left multiplication by syllables, we can obtain closed forms for multipli-
cation of normal forms. By using these closed forms, we can also perform these
algebraic operations with elements represented by exponent vectors in polynomial
time.

8. Reduction of TSSP to SSP

In this section we show that SSP ≤p TSSP . To make this easier we introduce
another problem SSP ′ that is similar to SSP and in fact show that SSP ≤p

SSP ′ ≤p TSSP . We define SSP ′ as follows: given a list of integers {k1, · · · , kn}
and an integer M , decide if there exists a solution to the equation:

k1x1 + · · · knxn = M where x1, · · · , xn ∈ {−1, 0, 1}

Lemma 8.1. SSP ′ ≤p TSSP .

Proof. Consider SSP ′({k1, · · · , kn},M) and TSSP ({0, k1, 0, k2, · · · , 0, kn},M), in-
stances of SSP ′ and TSSP respectively. In this case, we have that if (x1, x2, · · · , xn)
is a solution for SSP ′({k1, · · · , kn},M) then (y1, y2, · · · , y2n) is a solution for the
corresponding TSSP problem where y2i = |xi| and y2i−1 = 1 if:

xi = −1 and y1 + · · ·+ y2i−2 is even (−ki appears in the sum)
or

xi = 1 and y1 + · · ·+ y2i−2 is odd (ki appears in the sum)
and is 0 otherwise. �

It is more work to then show that SSP ≤p SSP ′. We adapt a proof from the
appendix of [17] by Kellerer, Pferschy, and Pisinger. Consider the following systems
of equations:

A FAMILY OF POLYCYCLIC GROUPS OVER WHICH THE UNIFORM CONJUGACY PROBLEM IS NP-COMPLETE 13

(6)

{

∑n

i=1 kixi = M

xi ∈ {0, 1}

(7)

∑n

i=1 kixi = M

xi + yi = 1 for i = 1, · · · , n

xi, yi ∈ {−1, 0, 1}

(8)

{

∑n

i=1(4
n−i + 4nki)xi +

∑n

i=1 4
n−iyi = 4nM + 4n − 1

xi, yi ∈ {−1, 0, 1}

First, note that (6) and (7) have equivalent solutions: any set of xi that satisfies
one will satisfy the other. The constraints xi + yi = 1 and xi, yi ∈ {−1, 0, 1}
prevent xi from ever being −1. What is less apparent is that (7) and (8) have the
same solution set. If this is the case, we can solve any instance of SSP , (6), using
an algorithm that solves the equivalent SSP ′ (8). If we also show that the size
of (8) is only polynomially larger than (6) then we will have in fact shown that
SSP ≤p SSP ′ and proving that both SSP and TSSP are NP-complete.

Proposition 8.2. The following systems of equations have the same set of solu-

tions:

(9)

∑n

i=1 kixi = M

x1 + y1 = 1

xi, yi ∈ {−1, 0, 1}

(10)

{

x1 + y1 + 4
∑n

i=1 kixi = 4M + 1

xi, yi ∈ {−1, 0, 1}

Proof. First note that anything that is a solution to (9) is a solution to (10). In the
other direction, assume that (x1, · · · , xn, y1) is a solution to (10). Note that that
is equivalent to saying that:

(11) 4(

n
∑

i=1

kixi −M) = 1− x1 − y1

Using the fact that−1 ≤ 1− x1 − y1 ≤ 3 we then get

(12) − 1 ≤ 4(
n
∑

i=1

kixi −M) ≤ 3

Finally, since
∑n

i=1 kixi−M is an integer, (12) can only be satisfied if
∑n

i=1 kixi−
M = 0 implying that (x1, · · · , xn) is a solution for (9). �

Proposition 8.3. The systems of equations (7) and (8) have the same set of solu-

tions.

14 BREN CAVALLO AND DELARAM KAHROBAEI

Proof. As we did in the previous proposition, we combine the conditions xi+yi = 1
to the equation

∑n

i=1 kixi = M to obtain an instance of SSP ′ whose solution will
yield a solution to the corresponding instance of the SSP .

We then continue as in the proposition, merging our system of equations into
just one, by performing the same steps beginning with x1+ y1 = 1 and ending with
xn + yn = 1. Note, that as we perform each step, we are not changing the solution
set. After we have performed the first two steps we have the equation:

x2 + y2 + 4x1 + 4y1 + 42
n
∑

i=1

kixi = 4(4M + 1) + 1

and then after n steps, we have obtained:

n
∑

i=1

2n−1xi +

n
∑

i=1

2n−1yi + 4n
n
∑

i=1

kixi = 4nM + 4n−1 + 4n−2 + · · ·+ 1

After collecting like terms on the left and summing the geometric series on the
right we have (8).

�

Theorem 8.4. SSP ≤p SSP ′ ≤p TSSP implying that the TSSP is NP-complete

and furthermore so is the conjugacy decision problem in the Gn.

Proof. All that is left to show is that the process described in this section turns
instances of SSP , (6) into instances of TSSP , (8) in polynomial time and that the
size of the TSSP instance is only polynomially larger than the SSP instance. First
notice that (8) has 2n indeterminates and since each of the 4i can be expressed in
2n bits, the number of digits needed to express each coefficient increases linearly.
As such, (8) is polynomially larger than (6). Additionally, the new coefficients can
clearly be computed in polynomial time. �

Furthermore, from the argument in section 3, a polynomial time algorithm for
the conjugacy search problem over the Gn would imply P = NP.

9. Acknowledgments and Support

The authors would like to thank Vladimir Shpilrain for useful conversations on
related topics. We would also like to thank the anonymous reviewer for their many
helpful comments.

Delaram Kahrobaei is partially supported by the Office of Naval Research grant
N00014120758 and also supported by PSC-CUNY grant from the CUNY research
foundation, as well as the City Tech foundation.

References

[1] Iris Anshel, Michael Anshel, and Dorian Goldfeld. An algebraic method for public-key cryp-
tography. Mathematical Research Letters, 6:287–292, 1999.

[2] Bren Cavallo, Jorge Delgado, Delaram Kahrobaei, Ha Lam, and Enric Ventura. A Tits alter-
native for the automorphism group of a rigid poly-Z group. Preprint.

[3] Donald J Collins and Charles F Miller. The conjugacy problem and subgroups of finite index.
Proceedings of the London Mathematical Society, 3(3):535–556, 1977.

A FAMILY OF POLYCYCLIC GROUPS OVER WHICH THE UNIFORM CONJUGACY PROBLEM IS NP-COMPLETE 15

[4] Volker Diekert, Alexei Miasnikov, and Armin Weiß. Conjugacy in baumslag’s group, generic
case complexity, and division in power circuits. arXiv preprint arXiv:1309.5314, 2013.

[5] Cornelia Drutu and Michael Kapovich. Lectures on geometric group theory. preprint, 2013.
[6] B. Eick. Algorithms for Polycyclic Groups. Habilitationsschrift, Universitat Kassel, 2001.
[7] Bettina Eick and Delaram Kahrobaei. Polycyclic groups: A new platform for cryptology?

arXiv preprint math/0411077, 2004.
[8] Bettina Eick and Gretchen Ostheimer. On the orbit-stabilizer problem for integral matrix

actions of polycyclic groups. Mathematics of computation, 72(243):1511–1529, 2003.
[9] Edward Formanek. Conjugate separability in polycyclic groups. Journal of Algebra, 42(1):1–

10, 1976.
[10] David Garber, Delaram Kahrobaei, and Ha T Lam. Analyzing the length-based attack on

polycyclic groups. arXiv preprint arXiv:1305.0548, 2013.
[11] David Garber, Shmuel Kaplan, Mina Teicher, Boaz Tsaban, and Uzi Vishne. Length-based

conjugacy search in the braid group. Contemporary Mathematics, 418:75, 2006.
[12] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of Computational Group

Theory. CRC Press, 2005.
[13] Delaram Kahrobaei and Michael Anshel. Decision and search in non-abelian Cramer-Shoup

public key cryptosystem. Groups Complexity Cryptology, 1(2):217–225, 2009.
[14] Delaram Kahrobaei and Bilal Khan. A non-commutative generalization of ElGamal key ex-

change using polycyclic groups. In GLOBECOM, 2006.
[15] Delaram Kahrobaei and Charalambos Koupparis. Non-commutative digital signatures using

non-commutative groups. Groups, Complexity, Cryptology, 4:377–384, 2012.
[16] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.
[17] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.
[18] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju-sung Kang, and Choonsik

Park. New public-key cryptosystem using braid groups. In Advances in Cryptology, CRYPTO
2000, pages 166–183. Springer, 2000.

[19] Charles F Miller III. Decision problems for groupssurvey and reflections. In Algorithms and
classification in combinatorial group theory, pages 1–59. Springer, 1992.

[20] Alex D Myasnikov and Alexander Ushakov. Length based attack and braid groups: crypt-
analysis of anshel-anshel-goldfeld key exchange protocol. In Public Key Cryptography–PKC
2007, pages 76–88. Springer, 2007.

[21] Alexei Myasnikov, Andrey Nikolaev, and Alexander Ushakov. Knapsack problems in groups.
To appear in Mathematics of Computation. Available at http://arxiv.org/abs/1302.5671.

[22] Alexei Myasnikov, Vladimir Shpilrain, and Alexander Ushakov. Group-based Cryptography.
Springer, 2008.

[23] Vladimir N Remeslennikov. Conjugacy in polycyclic groups. Algebra and Logic, 8(6):404–411,
1969.

[24] Andrew W Sale. Short conjugators in solvable groups. arXiv preprint arXiv:1112.2721, 2011.
[25] Andrew W Sale. Conjugacy length in group extensions. arXiv preprint arXiv:1211.3144,

2012.
[26] Andrew W Sale. The geometry of the conjugacy problem in wreath products and free solvable

groups. arXiv preprint arXiv:1307.6812, 2013.
[27] Svetla Vassileva. Polynomial time conjugacy in wreath products and free solvable groups.

Groups, Complexity, Cryptology, 3(1):105–120, 2011.

Bren Cavallo, Department of Mathematics, CUNY Graduate Center, City Univer-

sity of New York

E-mail address: bcavallo@gc.cuny.edu

Delaram Kahrobaei, CUNY Graduate Center, PhD Program in Computer Science

and NYCCT, Mathematics Department, City University of New York

E-mail address: dkahrobaei@gc.cuny.edu

	1. Introduction
	2. The Complexity of Conjugacy Problem in Polycyclic Groups
	3. Poly-Z Groups
	4. Subset Sum Problem
	5. The Twisted Subset Sum Problem
	6. The conjugacy problem over the groups Gn
	7. The Conjugacy Problem In Gn Is In NP
	8. Reduction of TSSP to SSP
	9. Acknowledgments and Support
	References

