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Abstract. Let G be a free product of two groups with amalgamated subgroup, π
be either the set of all prime numbers or the one-element set {p} for some prime
number p. Denote by Σ the family of all cyclic subgroups of group G, which are
separable in the class of all finite π-groups.

Obviously, cyclic subgroups of the free factors, which aren’t separable in these fac-
tors by the family of all normal subgroups of finite π-index of group G, the subgroups
conjugated with them and all subgroups, which aren’t π′-isolated, don’t belong to Σ.
Some sufficient conditions are obtained for Σ to coincide with the family of all other
π′-isolated cyclic subgroups of group G.

It is proved, in particular, that the residual p-finiteness of a free product with
cyclic amalgamation implies the p-separability of all p′-isolated cyclic subgroups if
the free factors are free or finitely generated residually p-finite nilpotent groups.

1. Introduction. Main results

Let K be a class of groups. We recall (see [1]), that a subgroup F of a group
G is said to be separable by the groups of class K if, to any element g ∈ G r F ,
there exists a homomorphism ψ of group G onto a group of K such that gψ /∈ Fψ.
Group G is called residually K if it’s trivial subgroup is separable by the groups of
class K. If class K coincides with the class of all finite groups, then we shall say
about residual finiteness and about finite separability of subgroups. A group, all
cyclic subgroups of which are finitely separable, is called πc-group.

If Ψ is a family of normal subgroups of group G, then we shall say also that
subgroup F of group G is separable by the subgroups of Ψ if

⋂
N∈Ψ

FN = F .
Thus, the separability of subgroup F in class K is equivalent to the separability of
F by the family of all normal subgroups of group G, the factor-groups by which
belong to K.

It is obvious that the separability of all cyclic subgroups of group G in class K
implies the “residually K” property of G. The converse, in general, isn’t true, and
so the problem arises to describe all cyclic subgroups of a residually K group, which
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2 E. V. SOKOLOV

are separable by the groups of K. The case considered in the present paper is that
K coincides with the class of all finite groups or all finite p-groups and group G is
a free product of two groups with amalgamated subgroup.

Let A and B be some groups, H be a subgroup of A, K be a subgroup of B
and let ϕ: H → K be an isomorphism. Let G = (A ∗ B;H = K,ϕ) be the free
product of groups A and B with subgroups H and K amalgamated according to
isomorphism ϕ. Obviously, an arbitrary cyclic subgroup of group G conjugated
with a subgroup of one of the free factors A and B, that isn’t separable in class
K, will not be separable by the groups of K itself. Thus, our task is to determine
which of the remaining cyclic subgroups are separable in K and, in particular, to
find the conditions for them all being separable by the groups of K.

More precisely, the problem may be formulated as follows. Let ∆A and ∆B be
the families of all cyclic subgroups of groups A and B, respectively, which aren’t
finitely separable in these groups. It is necessary to find the conditions guaranteeing
the truth of the following statement:

(∗) An arbitrary cyclic subgroup of group G, which isn’t conjugate with any
subgroup of the family ∆A ∪∆B, is finitely separable.

We note that in a series of papers (see, e. g., [2]), dealing with generalized free
products of two πc-groups, the special case of this task was considered, when the
family ∆A ∪∆B was empty.

If, as above,H andK are subgroups of groupsA and B, respectively, and ϕ:H →
K is an isomorphism, then, following G. Baumslag [3], we shall call subgroups
R 6 A and S 6 B (H,K,ϕ)-compatible if (R ∩ H)ϕ = S ∩K. Let denote by Ω
the family of all pairs of normal (H,K,ϕ)-compatible subgroups of finite index of
groups A and B and by ΩA and ΩB it’s projections onto groups A and B.

It is easy to see that, if N is an arbitrary normal subgroup of finite index of
group G, then the pair (A ∩ N,B ∩ N) belongs to family Ω. It follows from this
remark that a finitely separable cyclic subgroup of group G contained in one of
groups A and B is separable by the subgroups of families ΩA or ΩB, respectively.

Let now ΛA and ΛB denote the families of all cyclic subgroups of groups A
and B, which aren’t separable by the subgroups of families ΩA or ΩB . Then the
condition just stated can be formulated in the form of the following

Proposition 1.1. If a cyclic subgroup of group G is finitely separable, then it
conjugates with no subgroup of the family ΛA ∪ ΛB.

We note now that inclusions ∆A ⊆ ΛA and ∆B ⊆ ΛB take place, since the finite
separability of a subgroup of a given group means precisely the separability by the
family of all normal subgroups of finite index. Thus, statement (∗) is equivalent to
simultaneous realizability of the next two ones:
a) ∆A = ΛA and ∆B = ΛB, and
b) an arbitrary cyclic subgroup of group G, that isn’t conjugate with any subgroup
of ΛA ∪ ΛB, is finitely separable.

The following statement, the first of the main results of the paper, gives a suffi-
cient condition for the second claim to be true.

Theorem 1.2. Let family ΩA be an H-filtration and family ΩB be a K-filtration.
Then an arbitrary cyclic subgroup of group G, that conjugates with no subgroup of
ΛA ∪ ΛB, is finitely separable.



ON THE CYCLIC SUBGROUP SEPARABILITY 3

We recall (see [3]) that a family Ψ of normal subgroups of a group X is said to
be a Y -filtration, where Y is a subgroup of X , if

⋂
N∈Ψ

N = 1 and Y is separable
by the subgroups of Ψ. Proposition 2 of paper [3] asserts that, if family ΩA is an
H-filtration and family ΩB is a K-filtration, then G is a residually finite group.
Thus, theorem 1.2 may be considered as a generalization of this statement.

Having slightly increased our restrictions, we may obtain the maximal property
(∗) for the family of finitely separable cyclic subgroups of group G.

Theorem 1.3. Let groups A and B be residually finite, subgroups H and K
be finitely separable in the free factors and, to any two normal subgroups of finite
index M 6 A and N 6 B there exists a pair of subgroups (R,S) ∈ Ω such that
R 6 M and S 6 N . Then group G satisfies condition (∗). In particular, if A and
B are πc-groups, then G is also a πc-group.

Indeed, any subgroup F of group A or group B, which is finitely separable in A
or B, turns out separable by the subgroups of ΩA or ΩB , respectively, in this case.
Therefore, in particular, ∆A = ΛA and ∆B = ΛB. Besides, groups A and B being
residually finite, ΩA is an H-filtration and ΩB is a K-filtration. The desired claim
follows now from theorem 1.2.

We note that theorems 1.2 and 1.3 are a generalization of the results obtained
by G. Kim [2, theorem 1.1 and proposition 1.2] for generalized free products of
πc-groups.

Let turn now to description of cyclic subgroups of group G = (A∗B;H = K,ϕ),
which are separable in the class of finite p-groups (or, briefly, p-separable).

We remind, first of all, that a subgroup Y of a group X is called p′-isolated if,
for any element g ∈ Y and for any prime number q, which doesn’t equal p, gq ∈ Y
implies g ∈ Y . It is easy to see that every p-separable subgroup must be p′-isolated,
and so the original task takes the following form.

Let ∆p
A and ∆p

B be the families of all p′-isolated cyclic subgroups of groups A
and B, respectively, which aren’t p-separable in these groups. It is necessary to
find the conditions guaranteeing the truth of the following statement:

(∗∗) An arbitrary p′-isolated cyclic subgroup of group G, which isn’t conjugate
with any subgroup of ∆p

A ∪∆p
B, is p-separable.

We remark that the p-separability of all p′-isolated cyclic subgroups of some
group doesn’t necessarily imply the residual p-finiteness of this group.

Let Ωp denotes the family of all ordered pairs (A ∩ N,B ∩ N), where N is an
arbitrary normal subgroup of group G of finite p-index. Let also Ωp

A and Ωp
B denote

the families of the first and the second components of elements of Ωp. The next
proposition is obtained by E. D. Loginova in the paper [4].

Proposition 1.4. A pair of subgroups (R,S) belongs to family Ωp if, and only if
there exist sequences of subgroups R = R0 6 . . . 6 Rm = A, S = S0 6 . . . 6 Sn = B
such that:

1) Ri, Sj are normal subgroups of groups A and B, respectively (0 6 i 6 m, 0 6

j 6 n);
2) |Ri+1/Ri| = |Sj+1/Sj | = p (0 6 i 6 m− 1, 0 6 j 6 n− 1);
3) isomorphism ϕ maps the set {Ri ∩H} onto the set {Sj ∩K}.

Following to [4] we shall call subgroups R and S satisfying the conditions of
proposition 1.4 (H,K,ϕ, p)-compatible.
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Let us denote by Λp
A and Λp

B the families of all p′-isolated cyclic subgroups of
groups A and B, which aren’t separable by the subgroups of Ωp

A and Ωp
B , respec-

tively. Then, as above, the inclusions ∆p
A ⊆ Λp

A, ∆
p
B ⊆ Λp

B take place, and the
following proposition is true.

Proposition 1.5. If a p′-isolated cyclic subgroup of group G is p-separable,
then it conjugates with no subgroup of the family Λp

A ∪ Λp
B.

In the same paper [4] the analog of the mentioned above sufficient condition
by Baumslag is obtained: if family Ωp

A is an H-filtration and family Ωp
B is a

K-filtration, then group G is residually p-finite. It turns out that the statements,
similar to theorems 1.2 and 1.3, also take place.

Theorem 1.6. Let family Ωp
A be an H-filtration and family Ωp

B be a K-filtration.
Then an arbitrary p′-isolated cyclic subgroup of group G, which conjugates with no
subgroup of Λp

A ∪ Λp
B, is p-separable.

Theorem 1.7. Let groups A and B be residually p-finite, subgroups H and K
be p-separable in the free factors and, to any two normal subgroups of finite p-index
M 6 A and N 6 B, there exists a pair of subgroups (R,S) ∈ Ωp such that R 6M
and S 6 N . Then group G satisfies condition (∗∗).

The last theorem is deduced from theorem 1.6 in exactly the same way as theo-
rem 1.3 from theorem 1.2.

2. Some applications

Let A be a free group with the set of free generators {a, b}, B be a free group with
the set of free generators {c, d}, and let H be the subgroup of group A generated
by the elements a and a1 = b−1ab, K be the subgroup of group B generated by the
elements c and c1 = d−1c2d. It is obvious that the indicated generators of subgroups
H and K generate these subgroups freely, and so the map, which associates a with
c and a1 with c1, defines an isomorphism ϕ of subgroup H onto subgroup K.

Thus, the group G = 〈a, b, c, d; a = c, b−1ab = d−1c2d〉 is a free product of groups
A and B with subgroups H and K amalgamated according to isomorphism ϕ.

Theorem 2.1. An arbitrary cyclic subgroup of the group G = 〈a, b, c, d; a =
c, b−1ab = d−1c2d〉, that isn’t conjugate with any subgroup of ΛA ∪ ΛB, is finitely
separable. At the same time families ΛA and ΛB aren’t empty, and family ΩB isn’t
a K-filtration.

The given statement demonstrates that the sufficient condition stated in theo-
rem 1.2 isn’t necessary. Besides, all finitely generated subgroups of an arbitrary free
group being finitely separable, the first two conditions of theorem 1.3 are fulfilled
here. But G isn’t a πc-group. Thus, the third condition of this theorem isn’t true
and hence doesn’t follow, in general, from the first two ones.

It isn’t difficult to verify that the (H,K,ϕ)-compatibility of normal subgroups
of finite p-index implies their (H,K,ϕ, p)-compatibility in a free product of two
groups with cyclic amalgamation. It is easy to see also that, to any element g of
a residually p-finite group and to any p-number x, there exists a normal subgroup
of finite p-index, which intersects with the cyclic subgroup generated by g at the
subgroup 〈gx〉.
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Thus, if groups A and B are residually p-finite, and subgroups H and K are
cyclic, then families Ωp

A and Ωp
B coincide with the families of all normal subgroups

of groups A and B of finite p-index. This remark results in the next statement
following directly from theorem 1.7.

Theorem 2.2. Let A and B be residually p-finite groups, H and K be cyclic
subgroups, which are p-separable in the free factors. Then group G is residually
p-finite and satisfies condition (∗∗).

The same reasons are used in the proof of one more result.

Theorem 2.3. Let H and K are infinite cyclic subgroups, and their centralizers
in groups A and B, respectively, don’t contain elements of finite order. If group G
is residually p-finite, then it satisfies condition (∗∗).

Let us formulate now two statements following directly from theorems 2.2 and
2.3, respectively.

Corollary 2.4. Let A and B be finitely generated residually p-finite nilpotent
groups (i. e. their torsion parts are p-groups), 〈h〉 6 A and 〈k〉 6 B be maximal
infinite cyclic subgroups and H = 〈hm〉, K = 〈kn〉. If m and n are p-numbers, then
all p′-isolated cyclic subgroups of group G are p-separable.

Corollary 2.5. Let A and B be free groups, 〈h〉 6 A and 〈k〉 6 B be maximal
cyclic subgroups and H = 〈hm〉, K = 〈kn〉. If m = 1 or n = 1 or m and n are
p-numbers, then all p′-isolated cyclic subgroups of group G are p-separable.

It is proved in [5] and [6] that the conditions of corollaries 2.4 and 2.5 are nec-
essary and sufficient for the residual p-finiteness of group G. So the only remark
which is needed for the proof is that all p′-isolated cyclic subgroups of free and
finitely generated nilpotent groups are p-separable (see [5] and [4], respectively).

We note that, as it followes from corollary 2.5, neither the p-separability of the
amalgamated subgroups, nor even their p′-isolation isn’t the necessary condition
for the p-separability of all p′-isolated cyclic subgroups of group G.

The other applications of theorems 1.3 and 1.7 can be founded in the author’s
papers [7] and [8].

3. The proof of theorems 1.2 and 1.6

To any pair of subgroups (R,S) ∈ Ω, the map ϕR,S : HR/R → KS/S, which
associates an element hR, h ∈ H , with the element (hϕ)S, is correctly defined
and serves as an isomorphism of subgroups. Therefore we may construct the group
GR,S = (A/R∗B/S;HR/R = KS/S, ϕR,S). The natural homomorphisms of group
A onto A/R and of group B onto B/S are extendable to a homomorphism πR,S of
group G onto group GR,S .

It is well known that generalized free product of two finite groups is residually
finite and moreover a πc-group. So, to any pair of subgroups (R,S) ∈ Ω, GR,S is a
πc-group.

Generalized free product of two finite p-groups isn’t, in general, residually p-fini-
te. The corresponding criteria was founded by G. Higman in [9]. It follows directly
from this criteria and proposition 1.4 that, if (R,S) ∈ Ω, then the group GR,S is
residually p-finite if, and only if (R,S) ∈ Ωp. We’ll show also that all p′-isolated
cyclic subgroups of group GR,S are p-separable in this case.
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Proposition 3.1. Let A and B be finite groups. If G is a residually p-finite
group, then all it’s p′-isolated cyclic subgroups are p-separable.

Proof. For group G is residually p-finite, there exists it’s homomorphism onto
a finite p-group, the kernel of which intersects trivially with the free factors and,
because of known theorem by H. Neumann [10], is a free group. As it was noted
above, all p′-isolated cyclic subgroups of free group are p-separable, and so the
desired claim results from the following statement.

Proposition 3.2. Let a group X be an extension of a group Y by a finite
p-group and let all p′-isolated cyclic subgroups of group Y be p-separable. Then all
p′-isolated cyclic subgroups of group X are p-separable too.

Proof. Let F be a p′-isolated cyclic subgroup of group X , g ∈ X r F . It is
sufficient for proving to point out a normal subgroup N of finite p-index such that
g /∈ FN .

If g /∈ FY , then subgroup Y is desired. So g will be considered to be an element
of FY .

We write g in the form g = fy, where f ∈ F , y ∈ Y . Since g /∈ F , y /∈ F ∩ Y .
Obviously, F ∩ Y is a p′-isolated cyclic subgroup of group Y . Hence it is

p-separable in Y and there exists a normal subgroupM of group Y of finite p-index
such that y /∈ (F ∩Y )M . To every element y ∈ Y , the subgroup y−1My is included
in Y , is normal and has finite p-index in this group. Owing to finiteness of the
index [X : Y ], the number of different subgroups of such form is also finite. Thus,
their intersection N , say, is a subgroup of finite p-index of group Y , normal in X .

If g ∈ FN , then g = f ′u for some elements f ′ ∈ F , u ∈ N and f−1f ′ = yu−1 ∈
F ∩ Y . But y = (f−1f ′)u ∈ (F ∩ Y )N ⊆ (F ∩ Y )M in this case, what contradicts
the choice of subgroup M . Thus, g /∈ FN , and subgroup N is required.

Proposition 3.3. Let X be a residually p-finite group, g ∈ X be an element
of infinite order. The subgroup 〈g〉 isn’t p′-isolated if, and only if there exist an
element h ∈ X and a prime number q, which doesn’t equal p, such that g = hq.

Proof. The sufficiency of this condition is obvious, we’ll show it’s necessity.
Let f ∈ X r 〈g〉 be such an element that f q ∈ 〈g〉 for some prime number q,

which isn’t equal to p, and f q = gk.
The residual p-finiteness of group X results that the centralizer C(g) of element

g in group X is a p-separable subgroup and therefore a p′-isolated one. Hence
f ∈ C(g).

If we suppose that k = qk′, then 1 = f qg−qk′

= (fg−k′

)q, and, owing to the

residual p-finiteness of X , f = gk
′

. We obtain a contradiction with the choice of
element f . Thus, (k, q) = 1 and ku + qv = 1 for some integer numbers u and v.
From this it follows that g = gku+qv = f qugqv = (fugv)q, as claimed.

We shall carry out the proof of theorems 1.2 and 1.6 simultaneously and
say about separability and compatibility of subgroups without specifying of the
concrete class of groups.

Let h and g be arbitrary elements of group G such that g 6= 1, the cyclic sub-
group 〈g〉 conjugates with no subgroup of ΛA ∪ΛB (respectively, is p′-isolated and
conjugates with no subgroup of Λp

A ∪ Λp
B), and h /∈ 〈g〉. Let also h = h1h2 . . . hm,

g = g1g2 . . . gn be reduced forms of elements h and g. Applying an appropriate
inner automorphism of group G we may consider element g as cyclically reduced.
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To find a homomorphism θ of group G onto a finite group mapping h to an
element, which doesn’t belong to 〈gθ〉, it is sufficient to point out a pair of subgroups
(R,S) ∈ Ω satisfying the property hπR,S /∈ 〈gπR,S〉. Since GR,S is a πc-group, the
homomorphism πR,S can be extended to the desired homomorphism θ.

We may use the same idea for constructing a homomorphism of group G onto a
finite p-group, but with minor restriction.

Indeed, if subgroups R and S are compatible, then all cyclic subgroups of the
free factors of the group GR,S (which are finite p-groups) are p′-isolated. There-
fore, if n = 1, i. e. g ∈ A ∪ B, and if we succeed to point out such a pair of
subgroups (R,S) ∈ Ωp that hπR,S /∈ 〈gπR,S〉, then the existence of the required
homomorphism follows from proposition 3.1.

But if n > 2, then the mere presence of a pair of compatible subgroups R and
S satisfying the property hπR,S /∈ 〈gπR,S〉 may turn out insufficient, because the
subgroup 〈gπR,S〉 need not be p′-isolated in the group GR,S (the corresponding
example is given at the end of the proof). To make use of proposition 3.1 in this
case we shall find such a pair of subgroups (R,S) ∈ Ωp that the image of h under the
action of homomorphism πR,S doesn’t belong to some p′-isolated cyclic subgroup
including the subgroup 〈gπR,S〉.

Let, at first, n = 1, and let g ∈ A for definiteness.
By the condition the subgroup 〈g〉 is separable by the subgroups of family ΩA

(respectively, of family Ωp
A). Therefore, if h ∈ A, there exists a pair of compatible

subgroups R and S such that h /∈ 〈g〉R, and hence hπR,S /∈ 〈gπR,S〉.
Let h /∈ A. Then h ∈ B rK if m = 1 or every syllable hi of it’s reduced form

belongs to one of the free factors but isn’t contained in the amalgamated subgroup
if m > 1. So, to every i (1 6 i 6 m), we can point out a pair of compatible
subgroups R and S such that hi /∈ HRi if hi ∈ A and hi /∈ KSi if hi ∈ B. Let
R =

⋂
Ri, S =

⋂
Si.

It is easy to see that subgroups R and S are compatible, l(hπR,S) = l(h) (here
l(·) denotes syllable length), and, if m = 1, then hπR,S ∈ BπR,S rKπR,S . Thus,
hπR,S /∈ 〈gπR,S〉 in this case too.

Let now n > 2. We find, as above, a pair of compatible subgroups R and S such
that l(hπR,S) = l(h) and l(gπR,S) = l(g). Obviously, the form of the element gπR,S

is cyclically reduced as before.
We shall finish the proof of theorem 1.2 at first.
It is not difficult to show that, for any two elements u, v ∈ GR,S , if one of these

elements is cyclically reduced and v ∈ 〈u〉, then the other element is also cyclically
reduced and l(u)|l(v). Hence, if n doesn’t divide m, then hπR,S /∈ 〈gπR,S〉.

Let m = nk for some positive k. Since h /∈ 〈g〉, then h 6= g±k and, because of the
residual finiteness of group G, there exists it’s normal subgroup L of finite index
not containing the elements h−1gk and h−1g−k. Putting R′ = R∩L, S′ = S∩L we
have l(hπR′,S′) = l(h), l(gπR′,S′) = l(g), and hπR′,S′ 6= (gπR′,S′)±k, whence follows
that hπR′,S′ /∈ 〈gπR′,S′〉.

Thereby, theorem 1.2 is proved, and we turn to the proof of theorem 1.6.
Obviously, l(gπR′,S′) = l(g) > 1 for any pair of compatible subgroups R′ and

S′, which are included in R and S, respectively. Applying proposition 3.3 it isn’t
difficult to see that the subgroup 〈gπR′,S′〉 is contained in some p′-isolated cyclic
subgroup FR′,S′ , it’s index in this subgroup being mutually distinct with p. We
shall prove that subgroups R′ and S′ can be chosen in a such way that the element
hπR′,S′ doesn’t belong to FR′,S′ .



8 E. V. SOKOLOV

Let write the number n in the form n = pln′, where (n′, p) = 1, and consider the
two cases.

Case 1. n doesn’t divide mn′.
Suppose that hπR,S ∈ FR,S . It is clear that the index of the subgroup 〈gπR,S〉

in group FR,S divides n′, and so (hπR,S)
n′

∈ 〈gπR,S〉. But this contradicts the
supposition that n doesn’t divide mn′. Thus, hπR,S /∈ FR,S .

Case 2. mn′ = nk for some positive k.
Since the subgroup 〈g〉 is p′-isolated in G and h /∈ 〈g〉, then hn

′

6= g±k. The
residual p-finiteness of group G results that there exists a normal subgroup L of
groupG of finite p-index such that h−n′

gk, h−n′

g−k /∈ L. LetR′ = R∩L, S′ = S∩L.
Then (hπR′,S′)n

′

6= (gπR′,S′)±k, and so (hπR′,S′)n
′

/∈ 〈gπR′,S′〉. It follows, as
above, that hπR′,S′ /∈ FR′,S′ , and the proof is finished.

Let us make a remark now in connection with the given proof. Let F be a cyclic
subgroup of group G generated by a cyclically reduced element g of a syllable length
greater than 1. It is interesting that, even if subgroup F is p-separable, it may be
impossible to find such a pair of subgroups (R,S) ∈ Ωp that the element gπR,S has
a reduced form of a non-unit length, as before, and at the same time the subgroup
〈gπR,S〉 is p

′-isolated in GR,S .
Let G = 〈a, b; ap = bp〉 and g = (ab)qap, where p, q are different prime numbers.

It is easy to see that the subgroup 〈g〉 is p′-isolated in G and hence is p-separable
in G by virtue of theorem 2.2.

From the other hand, for every pair of subgroups (R,S) ∈ Ωp, where R 6= A
and S 6= B, the group GR,S has the presentation 〈a, b; ap

n

= bp
n

= 1, ap = bp〉 for
a convenient natural n. Let h = abapxn , where xn is a solution of the congruence
qx ≡ 1 (mod pn). Then, obviously, hπR,S /∈ 〈gπR,S〉 while (hπR,S)

q ∈ 〈gπR,S〉, and,
thus, the subgroup 〈gπR,S〉 isn’t p

′-isolated in GR,S .

4. The proof of theorems 2.1 and 2.3

The proof of theorem 2.1. We put t = bd−1 and then use the obvious Tietze
transformations to convert the presentation G = 〈a, b, c, d; a = c, b−1ab = d−1c2d〉
of group G to the presentation G = 〈a, b, t; t−1at = a2〉, which means that group
G is the ordinary free product of the group C = 〈a, t; t−1at = a2〉 and an infinite
cyclic subgroup with generator b.

Owing to the residual finiteness of group G and theorem 1.3 a cyclic subgroup
of group G isn’t finitely separable if, and only if it conjugates with a subgroup of
∆C . It is well known that family ∆C consists of those subgroups of group C, which
conjugate with the subgroups generated by the elements of form ak.

We shall prove now the two auxiliary statements.

Proposition 4.1. If a normal subgroup M of finite index of group A (of group
B) belongs to family ΩA (respectively, to family ΩB), then the order of element a
(respectively, of element c) modulo subgroup M is an odd number.

Proof. Let a normal subgroup M of finite index of group A and a normal
subgroupN of finite index of groupB are (H,K,ϕ)-compatible. We put H∩M = U
and K ∩N = V , so that Uϕ = V .

It is obvious that the orders of elements a and a1 modulo subgroup M must
coincide, and, the factor-group H/U being embeddable naturally to the factor-
group A/M , the orders of these elements modulo subgroup U coincide too.
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Considering the images according to isomorphism ϕ we get coincidence of the
orders of elements c and c1 of group K modulo subgroup V , and so coincidence of
the orders of these elements modulo subgroup N . It follows that elements c and c2

have the same order, and therefore the order of element c modulo subgroup N is
an odd number.

Since the element cN corresponds to the element aM under the isomorphism of
the subgroup HM/M of A/M onto the subgroup KN/N of B/N , which is induced
by isomorphism ϕ, the order of element a modulo subgroup M is an odd number
too.

Proposition 4.2. A cyclic subgroup of group A (of group B) belongs to fam-
ily ΛA (respectively, to family ΛB) if, and only if it conjugates with a subgroup
generated by an element a2k (respectively, c2k) for some k 6= 0.

Proof. The cyclic subgroup F of group A generated by the element a2k doesn’t
contain the element ak. Let M be an arbitrary subgroup of family ΩA. Owing to
proposition 4.1 the orderm of element amodulo subgroupM is an odd number, and
so the congruence 2l ≡ 1 (mod m) is solvable for some integer number l. Therefore
a ≡ a2l (mod M), ak ≡ (a2k)l (mod M), whence ak ∈ FM . Thus, subgroup F isn’t
separable by family ΩA.

Conversely, the elements a and a2 conjugated in G, an arbitrary cyclic subgroup
F , which is contained in A and conjugates with no subgroup generated by an
element a2k, is finitely separable in G, and, in accordance with proposition 1.1, is
separable by family ΩA.

The argument for group B is analogous.

Since the elements a and a2 are conjugated in group G, the statement of theorem
follows directly from propositions 4.1 and 4.2.

The proof of theorem 2.3. If families Ωp
A and Ωp

B are anH- and aK-filtration,
respectively, the desired claim results from theorem 1.6. So this condition will be
considered to be false.

Let, for definiteness, family Ωp
A be not an H-filtration. Owing to the residual

p-finiteness of group G, this means that subgroup H isn’t separable by the sub-
groups of family Ωp

A, and hence there exists an element f ∈ A r H moving to H
under the action of any homomorphism of group G onto a finite p-group (we will
denote the family of all such homomorphisms by Ψ). Let us remark that family Ωp

B

must be a K-filtration then: otherwise there exists an element g of the set B rK
with the analogous property, and the commutator [f, g] turns out a non-trivial
element of group G, mapped to unit under any homomorphism ψ ∈ Ψ.

Let further h and k be a generators of subgroups H and K, respectively, and
hϕ = k. First of all we’ll show that, to any natural p-number n, there exists such
an element fn ∈ ArH that fnψ ∈ Hnψ under every homomorphism ψ ∈ Ψ.

Let f ∈ ArH be an element moving toH under the action of any homomorphism
of Ψ. The residual p-finiteness of group G results that the centralizer C(H) of
subgroup H of group A is a p-separable subgroup, and so f ∈ C(H).

Obviously, if element f has an infinite order modulo subgroup H (i. e. fn /∈ H
for any natural n), it is sufficient to put fn = fn. Therefore the order of f modulo
H is considered to be finite and equal to q. We’ll show that q isn’t a p-number.

Let f q = hm. Since, by the condition, subgroup C(H) doesn’t contain elements
of finite order, (m, q) = 1. From the order hand, there exists a homomorphism



10 E. V. SOKOLOV

ψ ∈ Ψ, mapping h to a non-identity element. By virtue of the choice of element f
one can find such a number x that fψ = hxψ. Then qx ≡ m (mod |hψ|), and, the
order of the element hψ being a non-unit p-number, the property p|q would imply
p|m and (m, q) 6= 1.

Thus, q isn’t a p-number, and we can put fn = fn again.

Let now b ∈ B r K be an arbitrary element. Suppose that b−1Kb ∩ K 6= 1,
and b−1knb ∈ b−1Kb ∩K for some n > 0. Since subgroup K is separable by the
subgroups of family Ωp

B, it is p
′-isolated in group B, hence n may be considered as

a p-number. Putting g = [b−1fnb, fn], where element fn is defined above, we get
g 6= 1 and at the same time gψ = 1 for any homomorphism ψ ∈ Ψ. This contradicts
the residual p-finiteness of group G.

Thus, b−1Kb∩K = 1 for every element b ∈ BrK. It follows, in particular, that
an arbitrary non-unit element of subgroup K doesn’t commutate with any element
of group G having a reduced form of a syllable length greater than 1.

Let now a p′-isolated cyclic subgroup 〈u〉 of group G be not p-separable in G, and
let v ∈ G be such an element that v /∈ 〈u〉, but vψ ∈ 〈uψ〉 for every homomorphism
ψ ∈ Ψ. Then, as it was noted above, [u, v] = 1.

Suppose, at first, that element u belongs to some subgroup C conjugated with
A or with B. Then v comes to be an element of the same subgroup C: it follows
from general considerations (see, e. g., [11, theorem 4.5]) if u isn’t contained in
a subgroup conjugated with K, and from proved before otherwise. Hence, the
subgroup 〈u〉 conjugates with a subgroup of family Λp

A ∪ Λp
B, which coincides with

∆p
A ∪∆p

B.

The case, when element v belongs to a subgroup conjugated with A or with B,
is considered similarly.

Let, at last, neither u, nor v be contained in such a subgroup. Then u =
g−1kmgws, v = g−1kngwt, where g, w ∈ G and [g−1kmg, w] = [g−1kng, w] = 1
[ibid.]. We’ll show that it is impossible.

It follows from [g−1kmg, w] = [g−1kng, w] = 1 that [km, gwg−1] = [kn, gwg−1] =
1, and so either m = n = 0, or gwg−1 ∈ A ∪ B. The second case just gives a
contradiction, since elements u = g−1km(gwg−1)sg and v = g−1kn(gwg−1)tg turn
out in the subgroup conjugated with A or with B by element g.

Thus, u = ws and v = wt, and s is a p-number. As it was noted above, the
residual p-finiteness of group G gives the existence of it’s normal subgroup N , say,
of finite p-index, which intersects with the cyclic subgroup generated by element w
at the subgroup 〈ws〉. Since v /∈ 〈u〉, vN 6= 1 in the group G/N , i. e. vN /∈ 〈uN〉.
We get a contradiction with the choice of element v.
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