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Abstract

In this paper we combine the algebraic properties of Mealy ma-
chines generating self-similar groups and the combinatorial properties
of the corresponding deterministic finite automata (DFA). In partic-
ular, we relate bounded automata to finitely generated synchronizing
automata and characterize finite automata groups in terms of nilpo-
tency of the corresponding DFA. Moreover, we present a decidable
sufficient condition to have free semigroups in an automaton group. A
series of examples and applications is widely discussed, in particular
we show a way to color the De Bruijn automata into Mealy automata
whose associated semigroups are free, and we present some structural
results related to the associated groups.

1 Introduction

This paper deals with different aspects concerning automata, semigroups
and groups. In this context, groups generated by finite automata, naturally
appear. Given a deterministic finite automaton (DFA) on the alphabet
A, one can introduce an output function (or coloring) on each arrow in
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such a way that the states of the automaton are identified with the genera-
tors of a subgroup of the permutation groups over A∗, these automata are
particular kind of simple Mealy machines, also known as Mealy automata,
with the same input and output alphabets [13, 27]. In this way automata
groups belong to the class of self-similar groups, which act by automorphisms
(isometries) on a rooted regular tree. Such class of groups contains remark-
able examples of groups with intermediate growth, amenable groups, infinite
finitely generated torsion groups, groups with exponential but non-uniform
exponential growth and it has been proved to have deep connections with
the theory of profinite groups, combinatorics and with complex dynamics.
In particular, groups of this type satisfy a property of self-similarity which
reflects on the fractalness of some limit objects associated with them via the
notion of limit space and Schreier graphs [5, 7, 10, 14, 19]. In this context
the class of groups generated by bounded automata, i.e. automata with a
finite number of infinite paths avoiding the sink is of special interest and
presents important properties [4, 8, 28]. In this spirit, here, we relate the
structure of a bounded automaton regarded as a DFA to the combinatorial
properties of the sets of its synchronizing words, connecting the algebraic
and the combinatorial aspects of automata theory. The study of groups
and semigroups generated by automata usually starts with a specific simple
Mealy machine, here instead we address the problem of studying the groups
(semigroups) that can arise from the possible “colorings” of a determinis-
tic finite automaton into simple Mealy machines, and how combinatorial
properties on the underlying DFA can reflect into structural properties of
the corresponding groups (semigroups) generated. This paper focuses on a
particular class of DFAs called synchronizing, i.e. the automata for which
there is a word w, called reset word, and a state q such that w applied to an
arbitrary state p leads to q. This class has received a great deal of attention
in the last fifty years both in computer science being a suitable model of
error resistant systems, and in mathematics mainly motivated by the Černý
conjecture, i.e. every synchronizing DFA with n states has a reset word of
length at most (n− 1)2. By now this simply looking conjecture is arguably
the most longstanding open problem in the combinatorial theory of finite
automata. Other mathematical motivations for the study of this kind of
automata come from semigroup theory [1, 2], theory of codes [6], multiple-
valued logic and symbolic dynamics [18]. The latter connection is especially
interesting in view of the Road Coloring Problem which has recently been
solved positively [31]. For a general introduction on synchronizing automata
and the Černý conjecture we refer to Volkov’s survey [32].

The paper is organized as follows. In Section 2 we give some basic notions
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useful later in the paper. In Section 3 we extend the main result of [29]
considering the natural class of reset Mealy automata and proving that for
automata in this class with distinct modified state functions the associated
semigroups are free. In Section 4 we study group colorings, in particular we
present a gap theorem for reset group colorings of synchronizing DFAs which
are simple, we also frame the class of bounded synchronizing automata in
the more general class of finitely generated synchronizing automata, and
we finally characterize the synchronizing DFAs with a sink state for which
all the group colorings generate finite groups. In Section 5 we give some
sufficient conditions on some particular synchronizing automata to have a
weakly reset group colorings for which the associated semigroups are free.
Furthermore, we show group colorings on the De Bruijn automata for which
the associated semigroups are also free.

2 Preliminaries

In the sequel A denotes a finite set, called alphabet, A∗ (A+) is the free
monoid (semigroup) on A. By A≤n (A≥n, An) we denote the set of words
of length less or equal (greater or equal, equal) to n. Aω is the set of right
infinite words in A. In our context a directed graph (for short digraph) is a
graph in the sense of Serre. Thus, it is a tuple (V,E, ι, τ), where V is the set
of vertices, E is the set of edges, and ι, τ are functions from E into V giving
the initial and terminal vertices, respectively. Therefore, we can depict an
edge e ∈ E as q−→q′ where q = ι(e), q′ = τ(e). We allow multiple edges and
for q ∈ V , we denote by ∂+(q) the set of outgoing edges, i.e. the collection
of e ∈ E with ι(e) = v. In this paper we are interested in the particular class
of out-regular digraphs (for short or-digraph). These are digraphs such that
every vertex q has the same number k of edges leaving it, or equivalently
there is an integer k ≥ 1 with |∂+(q)| = k, the integer k is called the
out-degree. The interest in or-digraphs derives from the connection with
deterministic finite automata since their underlying digraphs are out-regular.
A deterministic finite automaton (for short DFA) is a 3-tuple A = (Q,A, δ)
where Q is a finite set of states, A is a finite alphabet, δ : Q × A → Q is
the transition function. Note that traditionally, in literature, these objects
are often referred as semiautomata [17] since they are not seen as languages
recognizers. However, we still call a DFA a tuple A = (Q,A, δ, q0, F ), where
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states and the language
recognized by A is given by

L[A] = {u ∈ A∗ : δ(q0, u) ∈ F}
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When the transition function is clear from the context we use the simple
notation q·a to denote δ(q, a). This action of the alphabet A on the states can
be naturally extended to an action of A∗ on Q and this action can be further
extended to subsets Q by putting H · u = {q · u : q ∈ H} for any H ⊆ Q,
u ∈ A∗. The underlying digraph of A is defined as D(A) = (Q,E, ι, τ) where

E = {e = q−→q′ : ∃ a ∈ A, δ(q, a) = q′}

Notice that D(A) is an or-digraph. Conversely, given an or-digraph G =
(V,E, ι, τ) it is possible to define DFAs via certain “edge colorings”. Indeed,
if G has out-degree k, a DFA-coloring is a map χ : E → A, where |A| = k,
such that χ : ∂+(v) → A is a bijection for any v ∈ V . It is evident that
χ gives rise to the DFA A(G,χ) = (V,A, δ), where δ(v, a) = v′ such that
e = v−→v′ and χ(e) = a.
In this paper we deal mostly with synchronizing automata. A synchronizing
DFA A = (Q,A, δ) has the property that there is a word u ∈ A∗, called
synchronizing (or reset) word such that q · u = q′ · u for any q, q′ ∈ Q, or
equivalently |Q · u| = 1. We use Syn(A) to denote the set of all the reset
words of A. The set Syn(A) has a natural structure of two-sided ideal (for
short ideal) of the free monoid A∗, i.e. A∗ Syn(A)A∗ ⊆ Syn(A). In general
an ideal I is said to be finitely generated whenever there is a finite set U such
that A∗UA∗ = I or equivalently the bifix code generated by I is finite [22].
We say that A has a sink state whenever there is a state s ∈ Q such that
s·a = s for all a ∈ A. It is an easy exercise to check that every synchronizing
automaton has at most one sink state. Note that a DFA A = (Q,A, δ) with
a unique sink s, such that any state q ∈ Q is co-accessible from s, i.e. there
is a word u ∈ A∗ with q · u = s, is actually synchronizing. An automata
congruence (for short congruence) onA = (Q,A, δ) is an equivalence relation
ρ ⊆ Q ×Q which is compatible with the action δ, i.e. qρp ⇒ (q · a)ρ(p · a)
for all a ∈ A.
A finite state Mealy automaton is a 4-tuple A = (Q,A, δ, λ) where Q is a
finite set of states, A is a finite alphabet, δ : Q × A → Q is the transition
function, while λ : Q × A → A is called the output function. The tuple
(Q,A, δ) is called the associated DFA of A . In case both the transition
function and the output function are clear from the context we also use the
shorter notation

δ(q, a) = q · a, λ(q, a) = q ◦ a

for any q ∈ Q, a ∈ A. These maps also extend naturally on A∗ by q · (ua) =
(q · u) · a, and (q ◦ ua) = (q ◦ u)((q · u) ◦ a) with q ∈ Q, u ∈ A∗, a ∈ A. For
q ∈ Q, the function λq : A→ A defined by λq(a) = λ(q, a) for a ∈ A is called
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the state function. One can depict a Mealy automata as an or-digraph with
edges labelled as q

a|b
−→q′ whenever q · a = q′ and q ◦ a = b. We call a Mealy

automaton A is called invertible if for any q ∈ Q, λq is a permutation on A,
and it is called synchronizing whenever the associated DFA is synchronizing,
in this case we denote Syn(A ) the set of reset words of the associated DFA.
Given any state q ∈ Q, with a slight abuse of notation we consider the
(sequential) functions Aq : A

∗ → A∗ and Aq : A
ω → Aω defined by:

Aq(1) = 1, Aq(a0 . . . an) = λq(a0)Aq·a0(a1 . . . an)

Aq(a0a1 . . .) = lim
n→∞

Aq(a0 . . . an)

This action extends to subsets of A∗, Aω in the obvious way. Note that if
A is invertible, then Aq is also invertible and the inverse is denote by A −1

q .
The action of A −1

q on A∗, Aω is uniquely determined. The automaton A

is called reduced if the functions Aq, q ∈ Q, are distinct. The semigroup
of automatic transformations generated by the automaton A , which we
refer to as automata semigroup of A , is the semigroup S(A ) generated
by {Aq : q ∈ Q}. If A is invertible, then the group G(A ) generated by
{Aq : q ∈ Q} is called the automata group of A . Recall that, in this case,
we denote by A −1

q the inverse of the generator Aq.
The following lemma is a straightforward consequence of the previous

definitions.

Lemma 1. Let A = (Q,A, δ, λ), then, for any q ∈ Q and u ∈ A∗, Aq(u) =
(q ◦ u)Aq·u.

The group G(A ) naturally acts on the space of finite and infinite words
A∗ ⊔Aω in the alphabet A. The set A∗ ⊔Aω can be identified with a rooted
regular tree T|A|, i.e. a simple graph which is a tree and the root r is the
only vertex of degree |A|, instead the other vertices have degree |A| + 1.
Denote by ∅ the empty word of the set A∗ and ∼ the adjacency relation in
T|A|. A labeling Λ of the vertices of such tree is a bijective map

Λ : A∗ −→ V (T|A|)

such that Λ(∅) = r and Λ(v) ∼ Λ(w) if and only if either v = wa or w = va,
for a ∈ A. The n−th level of T|A| is identified with the set An. The group
G(A ) acts on An, for every n and fixes the root. It is easy to prove that, if
d is the discrete distance in the graph T|A|, then d(v,w) = d(gv, gw). Hence
G(A ) is a subgroup of the full automorphism (isometry) group Aut(T|A|) of
T|A|. Every g ∈ G(A ) can be written as a product

∏
i A

ǫi
qi
, ǫi ∈ {−1,+1}
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of the generators and their inverses. This implies that g · a ∈ G(A ) for
every a ∈ A and the action of g on A is a permutation σg of the symmetric
group Sym(|A|) such that σ(a) = g ◦ a. From this it follows that g can
be represented by the element (g0, · · · , g|A|−1)σg and this is called the self-
similar representation of g. More precisely g can be regarded as an element
of the wreath product Sym(|A|) ≀ G(A ) and this gives an embedding of
G(A ) into the iterated wreath product Sym(|A|) ≀ (Sym(|A|) ≀ · · · ) [19]. The
simplest infinite group that we can obtain by this construction is the (binary)
Adding Machine isomorphic to Z. It corresponds to A = (Q,A, δ, λ) where
Q = {q, s}, A = {0, 1}, δ(q, 0) = s, δ(q, 1) = q, δ(s, a) = s and λ(q, a) =
1 − a, λ(s, a) = a for a ∈ A. The name is motivated by the fact the this
group acts by adding 1 in the binary expansion of a positive integer.
In this paper we consider groups (semigroups) that can arise from colorings
that give rise to invertible Mealy automata. Therefore, given an or-digraph
G = (V,E, ι, τ), a group coloring is a pair (χ1, χ2) consisting of two DFA-
colorings on G on the set A of cardinality equal to the out-degree of G. Thus,
from (χ1, χ2) and G we can build the associated invertible Mealy automaton

M (G,χ1, χ2) = (V,A, δ, λ)

where δ(v, a) = v′ and λ(v, a) = b whenever there is an edge e = v−→v′

such that χ1(e) = a, χ2(e) = b. If A = (Q,A, δ) is a DFA, then we still
call a group coloring of A a DFA-coloring χ on A of the underlying digraph
D(A). Hence the associated invertible Mealy automaton is clearly given by

M (A, χ) = (Q,A, δ, λ)

where λ(v, a) = b whenever v
a
−→v′ is a transition in A corresponding to an

edge e in D(A) colored by χ(e) = b.

3 Reset Mealy automata

We generalize the definition of reset Mealy automaton given in [29].

Definition 1. A Mealy automaton A is called reset if the following condi-
tions are satisfied

i) A is synchronizing;

ii) Aq (Syn(A )) ⊆ Syn(A ) for any q ∈ Q;
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For a given reset Mealy automaton A = (Q,A, δ, λ) we can also general-
ize the modified state functions introduced in [29] in the following way. For
a given q ∈ Q the modified state function is the map

λ̃q : Syn(A )→ Q

defined by λ̃q(u) = Q · (q ◦u) for any u ∈ Syn(A ). Note that the definitions
ensure the function to be well defined. We have the following theorem.

Theorem 1. If A = (Q,A, δ, λ) is an invertible reset Mealy automaton
with distinct modified state functions, then S(A ) is a free semigroup on
{Aq : q ∈ Q}.

Proof. Suppose that S(A ) is not free on {Aq : q ∈ Q}. By [29, Lemma 2.7],
there must be a non-trivial relation of the form

Apn . . .Ap1 = Aqn . . .Aq1 (1)

for some n, and let us assume that n is the smallest integer for which a rela-
tion like (1) holds in S(A ). Since A has distinct modified state functions,
then A is also reduced, and so n ≥ 2. Furthermore, there is a u ∈ Syn(A )

such that λ̃p1(u) 6= λ̃q1(u), hence Q · (q1 ◦ u) 6= Q · (p1 ◦ u). In particular by
condition ii) we have p1 ◦ u, q1 ◦ u ∈ Syn(A ), hence

q2 · (q1 ◦ u) 6= p2 · (p1 ◦ u) (2)

If we apply both sides of (1) to uv for any v ∈ A∗, by Lemma 1 we get

Apn . . .Ap2Ap1(uv) = Apn . . .Ap2(p1 ◦ u)Ap1·u(v) =

= Apn . . . (p2 ◦ (p1 ◦ u))Ap2·(p1◦u)Ap1·u(v) = . . .

= (pn ◦ (. . . ◦ (p2 ◦ (p1 ◦ u))))Atn . . .Ap2·(p1◦u)Ap1·u(v)

Aqn . . .Aq2Aq1(uv) = Aqn . . .Aq2(q1 ◦ u)Aq1·u(v) =

= Aqn . . . (q2 ◦ (q1 ◦ u))Aq2·(q1◦u)Aq1·u(v) = . . .

= (qn ◦ (. . . ◦ (q2 ◦ (q1 ◦ u))))Asn . . .Aq2·(q1◦u)Aq1·u(v)

where ti = pi · (pi−1 ◦ (. . . p2 ◦ (p1 ◦u))) and si = qi · (qi−1 ◦ (. . . q2 ◦ (q1 ◦u))).
Therefore, since (1) holds, we have

(qn ◦ (. . . ◦ (q2 ◦ (q1 ◦ u)))) = (pn ◦ (. . . ◦ (p2 ◦ (p1 ◦ u))))

and so we get

Atn . . .Ap2·(p1◦u)Ap1·u(v) = Asn . . .Aq2·(q1◦u)Aq1·u(v)
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for any v ∈ A∗. Since u ∈ Syn(A ), then q1 ·u = p1 ·u, whence Aq1·u = Ap1·u,
and since A is invertible, we get

Atn . . .Ap2·(p1◦u)(v) = Asn . . .Aq2·(q1◦u)(v)

for any v ∈ A∗. However, by (2) and the fact that A is reduced, we get
Ap2·(p1◦u) 6= Aq2·(q1◦u), whence

Atn . . .Ap2·(p1◦u) = Asn . . .Aq2·(q1◦u)

is a non-trivial relation with a number of elements n− 1, against the mini-
mality of (1), a contradiction.

Remark 1. Note that an analogous of Theorem 1 holds if we consider a
larger class of Mealy automata, which we can call weakly reset. For an
element A in this class, we request that A is synchronizing, and that there
is a non-empty ideal H ⊆ Syn(A ) such that Aq(H) ⊆ H for any q ∈ Q.
Note that with this last condition we need to modify also the definition of
modified state function and consider these functions restricted to H instead
of the whole set Syn(A ).

The notion of weakly reset Mealy automaton apparently depends on the
sub-ideal H chosen. However, the following proposition shows that it is not
the case and we can always choose a canonical sub-ideal.

Proposition 1. Let A = (Q,A, δ, λ) be a weakly reset Mealy automaton
with respect to some ideal H, and let

I(A ) = Syn(A ) \
⋃

g∈S(A )

g−1(A∗ \ Syn(A ))

Then I(A ) is the maximal two-sided ideal for which A is weakly reset. In
particular A is weakly reset if and only if I(A ) 6= ∅.

Proof. It is evident that I(A ) is fixed by S(A ) and it is the maximal set
with respect to this property. It remains to prove that it is an ideal. Indeed,
if u ∈ I(A ), then for any v, v′ ∈ A∗ and g ∈ S(A ), it is straightforward to
check that the elements g(uv′), g(vu) ∈ Syn(A ), i.e. vuv′ ∈ I(A ).

Recall that, any finitely generated group that contains a free semigroup
(over at least two letters) is of exponential growth (see, for example [12]).
From this and Theorem 1 we get the following
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Corollary 1. Let A be an invertible (weakly) reset Mealy automaton on an
alphabet A, |A| ≥ 2, and with distinct modified state functions, then G(A )
has exponential growth.

We end this section with some algorithmic considerations, we prove that
checking whether an invertible synchronizing Mealy automaton is reset is
a decidable task, first we need to recall some basic facts on automata, and
transducers theory (see for instance [17, 27]). We recall that a regular (ra-
tional) language is a subset L ⊆ A∗ which is recognized by some finite
automaton A = (Q,A, δ, q0, F ) where δ ⊆ Q×A×Q. Using the usual sub-
set construction we can alway assume A to be a DFA, furthermore the class
of these languages are closed by the usual boolean operations which can
be effectively implemented as well as checking if for two regular languages
L1, L2 it holds L1 ⊆ L2. We also recall the following lemma regarding the
image of a regular languages by transducers, we present here with a proof
for the sake of completeness.

Lemma 2. Let A = (Q,A, δ, λ) be a Mealy machines and L ⊆ A∗ be a
regular language, then for any q ∈ Q the language Aq(L) is regular.

Proof. Suppose that L is recognized by the DFA A = (P,A, φ, p0, F ). There-
fore using the usual product construction consider the finite automaton

C = (Q× P,A, η, (q, p0), Q× F )

where

η((q1, p1), a) = {(q2, p2) : δ(q1, b) = q2, λ(q1, b) = a, φ(p1, b) = p2}

it is straightforward to check that L[C] = Aq(L), hence regular.

We have the following decidability result regarding reset Mealy automata.

Proposition 2. Let A = (Q,A, δ, λ) be an invertible synchronizing Mealy
automaton, then the two following properties are decidable:

• checking if A is a reset Mealy automaton;

• for q 6= p checking whether or not λ̃q = λ̃p.

Proof. For the reset condition it is enough to check if the stability condition
ii) in Definition 1 is decidable. It is sufficient to prove that for a fixed
q ∈ Q, Aq(Syn(A )) ⊆ Syn(A ) is decidable. Consider the associated DFA
A = (Q,A, δ), it is a well known fact that the power automaton P(A) =
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(2Q, A, δ,Q, {{q} : q ∈ Q}) recognizes Syn(A). By Lemma 2 Aq(Syn(A)) is
a regular language, therefore we can decide whether or not Aq(Syn(A)) ⊆
Syn(A).

We now prove that it is decidable to check wether or not λ̃q = λ̃p. For an
s ∈ Q, consider the set

R(s) = {u ∈ Syn(B) : Q · u = {s}}

Note that

A
−1
q (R(s)) ∩ Syn(B) = {u ∈ Syn(B) : λ̃q(u) = s}

Therefore, to check if λ̃q = λ̃p it is enough to verify if

A
−1
q (R(s)) ∩ Syn(B) = A

−1
p (R(s)) ∩ Syn(B) (3)

holds for any s ∈ Q. Since Syn(B) is regular, and the equality of two regular
languages is decidable, then by Lemma 2 it is enough to prove that R(s) is
regular. Indeed, if we consider the power automaton restricting the set of
final states we get the DFA (2Q, A, δ,Q, {s}) which recognizes R(s).

4 Group colorings of synchronizing DFA

In this section we consider group colorings on synchronizing DFAs. In view of
Theorem 1, among the group colorings, we can consider the class of (weakly)
reset group colorings. A (weakly) reset group coloring of a synchronizing
DFA A is a group coloring χ of A with the property that the associated
Mealy automaton M (A, χ) is (weakly) reset. We call a (weakly) reset Mealy
automaton A singular whenever all the modified state functions of A are
equal. For instance all the reset Mealy automata whose associated DFAs
have a sink state are singular.
The first result we present is a gap theorem for (weakly) reset group colorings
of simple synchronizing automata. We recall that a DFA A is called simple
whenever the set of (automata) congruences consists only of the identity
1A, and the universal relation ωA (see for instance [3, 30]). We have the
following theorem.

Theorem 2. Let A be a simple synchronizing automaton, then for any
(weakly) reset group coloring χ, either S(M (A, χ)) is a free semigroup or
M (A, χ) is singular.
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Proof. We consider the case of a group coloring, the weakly group coloring
case is analogous and it is left to the reader. Let us prove that for any reset
group coloring χ, for the invertible Mealy automaton Aχ = M (A, χ) =

(Q,A, δ, λ), either the modified state functions λ̃q, q ∈ Q, are all distinct,
and so by Theorem 1 S(M (A, χ)) is free, or all the modified state functions
are equal. Since A is simple, it is sufficient to prove that the relation σ
defined on Q by pσq if λ̃p = λ̃q is a congruence on A. It is straightforward
to check that σ is an equivalence relation. Thus, we have to prove that if pσq,
then (p · v)σ(q · v) for any v ∈ A∗. Suppose, contrary to our statement, that

there are distinct states p, q ∈ Q such that λ̃p = λ̃q, but λ̃p·v(u) 6= λ̃q·v(u)
for some v ∈ A∗ and u ∈ Syn(A). Hence

Q · ((p · v) ◦ u) 6= Q · ((q · v) ◦ u)

In particular, since u ∈ Syn(A) and Q · (p ◦ v) ⊆ Q,Q · (q ◦ v) ⊆ Q, we get

(Q · (p ◦ v)) · ((p · v) ◦ u) 6= (Q · (q ◦ v)) · ((q · v) ◦ u) (4)

Using an induction on the length of the words, it is straightforward to check
that Q · (p ◦ (vu)) = (Q · (p ◦ v)) · ((p · v) ◦ u). Hence by (4) we have Q · (p ◦

(vu)) 6= Q · (q ◦ (vu)), or equivalently λ̃p(vu) 6= λ̃q(vu) since Syn(A) is a

two-sided ideal. Hence we get λ̃p 6= λ̃q, a contradiction.

We say that a DFA A = (Q,A, δ) with a unique sink s is bounded if the
set {u = u1u2 · · · ∈ Aω : q · (u1 . . . ui) 6= s ∀i ∈ N} is finite, or equivalently,
there are finitely many right infinite paths avoiding the sink. The defini-
tion of this class of DFA is motivated by the theory of automata groups
[28]. In what follows, we frame the bounded automata in the more gen-
eral class of finitely generated synchronizing automata. This class consists
of the synchronizing automata whose language of synchronizing words is a
finitely generated ideal [21, 23]. These automata have a combinatorial char-
acterization in term of their power automata. First we need to recall some
definitions from [23]. For a DFA A = (Q,A, δ), a subset S ⊆ Q is called
reachable if Q·u = S for some u ∈ A∗, we put Syn(S) = {u ∈ A∗ : |S ·u| = 1}
and Fix(S) = {u ∈ A+ : S · u = S}. For a word w ∈ A∗, m(w) denotes the
maximum (with respect to the inclusion order) subset of Q fixed by w, i.e.
m(w) ·w = m(w). It is an easy exercise to prove that this set always exists,
it is unique, and m(u) = Q · uk for some integer k with k ≤ |Q| − |m(u)|.
We have the following characterization.

Theorem 3. [23, Theorem 1] A synchronizing automaton A = (Q,A, δ)
is finitely generated if and only if for any reachable subset S ⊆ Q with
1 < |S| < |Q| and for any u ∈ Fix(S), Syn(S) = Syn(m(u)) holds.
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The following proposition places the class of bounded automata inside
the class of finitely generated synchronizing automata.

Proposition 3. Let A = (Q,A, δ) be a bounded DFA with sink s and |A| >
1, then Syn(A) is a finitely generated ideal.

Proof. We first prove that A is synchronizing. For this purpose, by the re-
mark in Section 2 regarding automata with a unique sink state, it is sufficient
to prove that for any state q ∈ Q there is a word u ∈ A∗ such that q · u = s.
Let us assume, contrary to our claim, that there is a state p ∈ Q such that
p · u 6= s for all u ∈ A∗. Therefore, since |A| > 1, it is straightforward to
verify that the set

{u ∈ Aω : p · u 6= s}

is infinite, a contradiction.
We now prove that if S ⊆ Q is reachable and w ∈ Fix(S), then S = m(w),
and so by Theorem 3 A is finitely generated. Suppose, contrary to our
claim, that there is a reachable subset S ⊆ Q and w ∈ Fix(S) such that
S ( m(w) ⊆ Q. Let u ∈ A+ such that Q · u = S, and let q ∈ m(w) \ S.
Since Q ·u = S, the vertex p = q ·u ∈ S. Since w acts like a permutation on
m(w), and S ⊆ m(w), then there is an integer m > 0 such that p · wm = p,
q · wm = q. Therefore, for any k, h ≥ 1 we have paths

q
wkmu(wm)h

−−−−→ p

avoiding the sink s. Hence, we have distinct right infinite paths labeled by
wkmu(wm)ω for any k ≥ 1. Thus, by the boundedness hypothesis, and by
simple considerations on the combinatorics of words, we necessarily have
w = uw′ = w′u for some w′ ∈ A∗. Therefore, there is an integer ℓ ≥ 1 such
that

m(w) = Q · wℓ = S · wℓ−1w′ = S · w′

Hence, |m(w)| ≤ |S|, and since S ⊆ m(w), we get m(w) = S, a contradic-
tion.

In the class of synchronizing DFA with a sink state we now consider the
more general case of group colorings. We characterize the class of synchro-
nizing DFAs with sink for which any group coloring (not just reset group
coloring) gives rise to an invertible Mealy automaton whose associated group
is finite. Before proving the characterization, we define the notion of nilpo-
tent automata. This particular class of synchronizing automata has been
introduced by Perles et al. in 1962 under the name of definite table [20].
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Later, such automata were studied by Rystsov in [26] in view of Černý’s
conjecture. In the present paper we use the definition from [26]. Namely,
we say that a DFA A = (Q,A, δ) is nilpotent if there is a state s ∈ Q and a
positive integer n ≥ 1 such for any word w ∈ A∗ of length at least n it holds
Q · w = {s}. Obviously, any nilpotent automaton is a finitely generated
synchronizing automaton with a sink state s. This automata also represent,
in some sense, the worst case from the computational complexity theory
point of view, since they are fundamental in proving the co-NP -hardness of
the problem of recognizing finitely generated synchronizing automata [23,
Theorem 6]. It is an easy exercise to prove that a DFA A with a unique
sink state is nilpotent if and only if there are no cycles or loops passing
through non-sink states. Therefore, nilpotent automata are also bounded.
The next result establishes a connection between automata groups theory
and nilpotent DFA. Put

GC(A) = {G(M (A, χ)) : χ is a group coloring on A}

Proposition 4. Let A = (Q,A, δ) be a synchronizing automaton with a
sink s and |A| > 1. If A is not nilpotent then there exists a group coloring
χ such that G(M (A, χ)) contains a subgroup isomorphic to Z.

Proof. We can suppose that there exists at least one cycle in A

q0
x0−→q1

x1−→ . . .
xk−2

−→qk−1
xk−1

−→qk = q0 (5)

avoiding the sink state s, which is labeled by v = x0 · · · xk−1 ∈ Ak, and a
path

q0 = p0
y0
−→p1

y1
−→ . . .

yd−2

−→yd−1
yd−1

−→pd = s (6)

labelled by the word y = y0 · · · yd−1 ∈ Ad such that q0 · y = s and no state
of {p0, . . . , pd} belongs to any cycle with the same properties. We consider
the following two cases:

• Assume d ≤ k. Consider the group coloring χ defined by

q0
x0|y0
−→q1

x1|y1
−→ . . . qd−1

xd−1|yd−1

−−−−→qd
xd|xd
−→qd+1 . . . qk−1

xk−1|xk−1

−−−−→qk

and
p0

y0|x0

−→p1
y1|x1

−→ . . . pd−1
yd−1|xd−1

−−−−→pd

while for the other edges is defined in such a way that χ is a group
coloring (this can be always done since there is no common edge be-
tween the two paths (5) and (6)) and with identity on the sink, i.e.
s

a|a
−→s for a ∈ A. Putting yi = xi for d ≤ i ≤ k − 1, notice that

q0 ◦ (x0 · · · xk−1) = y0 · · · yk−1, q0 · (x0 · · · xk−1) = q0
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and
q0 ◦ (y0 · · · yk−1) = x0 · · · xk−1, q0 · (y0 · · · yk−1) = s,

After passing to a new alphabet Y = Ak, in such a way that 0 ∈ Y
corresponds to x0 · · · xk−1 ∈ Ak and 1 ∈ Y corresponds to y0 · · · yk−1 ∈
Ak, we get that q0 · 0 = q0, q0 · 1 = s, q0 ◦ x = 1− x, for x ∈ {0, 1}.
This means that its self-similar representation is q0 = (q0, s, . . .)(0 1)σ,
for some σ ∈ Sym(Y \{0, 1}) and so it generates a group acting as the
Adding machine on the subtree {0, 1}∗. Hence G(M (A, χ)) contains
a subgroup isomorphic to Z.

• If d > k, let y0 · · · yk−1 ∈ Ak such that q0 · (y0 · · · yk−1) = q1. Note
that by the choice of the path (6), q1 does not belong to any other
cycle. This implies that q1 · (y0 · · · yk−1)

ty0 · · · yi 6= q0 for any t ≥ 0
and i ≤ k − 1. Define χ in such a way that

q0 ◦ (x0 · · · xk−1) = y0 · · · yk−1, q0 · (x0 · · · xk−1) = q0

and

q0 ◦ (y0 · · · yk−1) = x0 · · · xk−1, q0 · (y0 · · · yk−1) = q1.

Moreover impose that q1 ◦(y0 · · · yk−1)
ty0 · · · yi = (y0 · · · yk−1)

ty0 · · · yi.
Consider the alphabet Y = Ak and let 0 and 1 correspond to x0 · · · xk−1

and y0 · · · yk−1 respectively. The action of q0 on the infinite word 0
∞

is such that

q0 ◦ 0
∞

= 1
∞
, q1+n

0 ◦ 0
∞

= 1
n
0 1

∞
.

Since q0 is invertible and qn0 6= id for every n, we get that the subgroup
of G(M (A, χ)) generated by q0 is isomorphic to Z.

The following theorem shows an algebraic characterization of nilpotent
DFAs inside the class of synchronizing automata with sink.

Theorem 4. Let A = (Q,A, δ) be a synchronizing automaton with a sink s
and |A| > 1. Then any group in GC(A) has finite order if and only if A is
nilpotent.

Proof. First suppose that the DFA A is nilpotent, then for every right infi-
nite word w = w1w2 · · · ∈ Aω, and for every state q ∈ Q there is n such that
q ·w1 · · ·wn = s. Let χ be a group coloring of A, and consider the associated
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Mealy automaton A = M (A, χ). Consider the action of M on w. Every
generators Aq acts non trivially on w1 . . . wn, and acts as a permutation
σ ∈ Sym(|A|) (induced by the action of s on A) on every symbol wi, with
i > n. This implies that Aq can be identified with the pair (g′, σ), where g′

is an element of the wreath product Sym(|A|) ≀ · · · ≀ Sym(|A|) of n copies of
Sym(|A|). This implies that the associated group G(A ) is finite.

On the other hand suppose that A is not nilpotent, then Proposition 4
says that there exists a group coloring χ such that G(M (A, χ)) contains a
subgroup isomorphic to Z. In particular G(M (A, χ)) is infinite.

Note that Proposition 4 is constructive. Therefore, by the above theo-
rem, for any given synchronizing automaton which is not nilpotent, there is
always a constructive way to color it in an invertible Mealy automaton such
that the resulting associated group is infinite. Furthermore, note that each
group coloring χ of a nilpotent automaton is also a reset group coloring.
Indeed, for a nilpotent automaton A, Syn(A) = A≥k for some positive inte-
ger k, and Aq = M (A, χ)q, for any state q and any group coloring χ, is a
transformation on the rooted regular tree T|A|, hence Aq(Syn(A)) ⊆ Syn(A)
clearly holds.

5 Examples of reset Mealy automata

So far we have generalized the concept of reset automaton presented in [29]
without presenting any example of automaton satisfying the conditions of
Definition 1 but which is different from the kind of reset automata consid-
ered in [29]. Note that, by [25], for any regular ideal language I ⊆ A∗ on
an alphabet with |A| > 1 there is a strongly connected1 synchronizing au-
tomaton whose set of reset words is exactly I. We have already noted at
the end of Section 4 that any group coloring of a nilpotent automaton gives
rise to a reset Mealy automaton. Not all the synchronizing automata having
A≥k, for some k > 0, as set of reset words are nilpotent. However, the same
argument at the end of Section 4 holds, thus any group coloring gives rise
to a reset Mealy automaton. We record this fact in the following

Proposition 5. Let A be a synchronizing automaton such that Syn(A) =
A≥k, for some k > 0. Then for any group coloring χ, the associated Mealy
automaton M (A, χ) is reset.

1A DFA A = (Q,A, δ) is called strongly connected whenever for any q, q′ ∈ Q there is
a word u ∈ A∗ such that δ(q, u) = q′.
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· · ·

1|0
0|1

1|0
1|0

0|1

1|0

0|10|1

0|1

Figure 1: A weakly reset group coloring of the Černý’s automaton Cn.

When dealing with synchronization, the Černý’s series is a fundamental
example of synchronizing automata since it is the only infinite series reach-
ing the bound (n−1)2 for the minimal synchronizing words. In Figure 1 it is
depicted a group coloring of the Černý’s automaton Cn which gives rise to a
weakly reset Mealy automaton Cn. The group coloring is defined by coloring
each transition q1

x
−→q2 by q1

x|1−x
−→ q2, for x ∈ {0, 1}. The automaton Cn is

weakly reset by taking the two sided ideal I generated by the two synchro-
nizing words w1 = 1n−1(0n−11n−1)n−20n−1, w2 = 0n−1(1n−10n−1)n−21n−1.
It is routine to check that each (Cn)q, for each state q, transforms w1 into
w2 and vice versa. It is also not hard to see that the group G(Cn) generated
is isomorphic to (Z/(2Z))n. This coloring generates a weakly reset Mealy
automaton which is not reduced and, in particular, it is singular, i.e. all
the modified state functions are equal. The next natural step is to produce
examples of reset coloring for which Theorem 1 can be applied, hence we are
seeking for reset group colorings for which the modified state functions are
all distinct. In this case it comes in handy Theorem 2 since if the underlying
DFA is simple, then we just have to exclude the singularity condition.

The following lemma provides some natural sufficient conditions on a
DFA to be simple.

Lemma 3. Let A = (Q,A, δ) be a synchronizing automaton with |Q| prime
and having a subset B ⊆ A such that B∗ acts transitively on Q like a per-
mutation group. Then A is simple.

Proof. If A is not simple, then there is an automata congruence σ with σ 6=
1A , ωA . Thus there is an equivalence class [q]σ of Q/σ with 1 < |[q]σ| < |Q|.
Since σ is a congruence, and B∗ acts like a permutation group transitively on
Q, then |[q′]σ ·u| = |[q

′]σ| for any q′ ∈ Q and u ∈ B∗. Thus by the transitivity
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Figure 2: An example of a group coloring of a DFA described in the proof
of Proposition 6 where the chosen state is e

we get |Q| = |Q/σ||[q]σ | with 1 < |[q]σ | < |Q|, a contradiction.

For instance all the Černý’s automata Cn, with n prime, are simple. The
following proposition provides a way to color particular simple synchronizing
automata in such a way that the resulting associated monoid is free.

Proposition 6. Let A = (Q,A, δ) be a synchronizing automaton such that
|Q| > 1 is prime, there is a B ⊆ A for which B∗ acts transitively on Q, and
with two elements a, b ∈ A ∩ Syn(A) such that Q · a 6= Q · b. Then there is
a weakly reset group coloring χ, such that S(M (A, χ)) is free.

Proof. Choose a state q, and consider the group coloring χ defined by

q
a|b
−→v, q

b|a
−→v′, q

s|s
−→v′′, s ∈ A \ {a, b}

while p
s|s
−→p′ for any p ∈ Q \ {q}, s ∈ A. Put B = M (A, χ). Note that χ

is a weakly reset group coloring such that Bq(I) ⊆ I for any q ∈ Q, and
I = A∗{a, b}A∗. Since by Lemma 3 A is simple, then by Theorem 2 we
get that either B is singular, or S(B) is free. We prove that the singular
condition does not occurs. Indeed, since |Q| > 1 consider any p ∈ Q \ {q},
then by the definition of χ we get

λ̃q(a) = Q · b 6= Q · a = λ̃p(a)

Therefore, B can not be singular, and so S(M (A, χ)) is free.
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This last proposition shows examples of synchronizing automata which
can be colored in such a way that the associated semigroup is free. However,
the synchronization is quite trivial being these automata synchronized by a
one letter of the alphabet. We now present a way to color a particular class
of finitely generated synchronizing automata having non-trivial reset words
in such a way that the associated semigroup is free. These automata are
the De Bruijn automata and they are built from the De Bruijn graphs of
the words Ak. These graphs were first defined by N. G. de Bruijn [11] and
they are connected to symbolic systems. Indeed, given a subshift (X,S) it is
possible to associate to the language Lk(X) of all the factors of X of length
k, some graphs, called Rauzy graphs [9, 24]. De Bruijn graphs are Rauzy
graphs when Lk(X) = Ak, or equivalently when X is a full shift. We now
introduce the De Bruijn automata in a slightly more general form, indeed
we assume that the finite alphabet A is endowed with a structure of group
(A, ⋆). This condition is not required for the definition of these automata,
however it is used in the definition of the group coloring presented later. The
De Bruijn automata Bk(A) = (Q,A, δ), for k > 1, is the DFA whose set of
states is given by Q = Ak and there is a transition u

x
−→v if u = ys, v = sx

for some s ∈ Ak−1. It is evident that the underlying graph of Bk(A) is the De
Bruijn graph of order k with respect to the alphabet A. Moreover, it is not
difficult to check that this automaton is a finitely generated synchronizing
automaton which is also strongly connected. Another interesting feature
of these automata is that Bk(A) is the only strongly connected (finitely
generated) synchronizing automata (up to isomorphisms) whose set of reset
words is A≥k [16, Theorem 1]. Since Syn(Bk(A)) = A≥k, then by Proposition
5 a group coloring for a De Bruijn automaton is necessarily a reset group
coloring. For a word u = u1 . . . uk ∈ Ak, let u[i] = ui, for 1 ≤ i ≤ k, denote
the i-th component of u, and for i ≥ 0 we denote by u[0, i] = u1 . . . ui with
the convention that u[0, 0] is the empty word. Without loss of generality we
can view u as an element (u1, . . . , uk) ∈ Ak in the direct product (Ak, ⋆).
Consider the group coloring χk(A) on Bk(A) defined on the transitions by
the following rule. If we have the transition u

a
−→u′ with u = ys, u′ = sx for

some s ∈ Ak−1, x, y ∈ A, then we color this transition as:

u
x|x⋆y−1

−−−→u′

Using the fact that (A, ⋆) is a group, it is straightforward to see that χk(A)
is actually a group coloring. In Figure 3 it is depicted the reset Mealy
automaton M (Bk(A), χk(A)) in the case k = 3 and (A,+) = (Z2,+) with
the usual operation of sum modulo two. Note that the Mealy automaton
M (B1(Z2), χ1(Z2)) is the automaton given by Grigorchuk and Żuk, whose
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Figure 3: A reset group coloring for the De Bruijn automaton B3(Z2) whose
associated semigroup is free. Note that for any u, v ∈ A3, u ◦ v = u + v
mod 2.

associated group is the lamplighter group Z2 ≀ Z [15].
The following proposition shows that the semigroup associated to all the De
Bruijn automata with this coloring are free.

Proposition 7. With the above notation M (Bk(A), χk(A)) is a reset Mealy
automaton with all different modified state functions. In particular, the as-
sociated semigroup S(M (Bk(A), χk(A))) is free.

Proof. We have already remarked that Bk(A) is reset invertible Mealy au-
tomaton. It is not hard to check, by the definition of the action δ, that for
a word u ∈ Ak, Q ·u = {u}. We claim that for any pair q 6= q′ of states, and
for any element u ∈ Ak, we have

λq(u) = Q · (q ◦ u) 6= Q · (q′ ◦ u) = λq′(u)

By the previous remark, sinceQ·u = {u}, it is enough to show that for q 6= q′,
q ◦ u 6= q′ ◦ u. To prove this fact consider the functions ζ : Ak × Aℓ → Aℓ,
ℓ ≥ 1, defined componentwise by

ζ(q, v)i = (q · v[0, i − 1])[1], for 1 ≤ i ≤ ℓ

Starting from the state q and applying the word v, this function takes trace
of the elements that are multiplied in the output function. Therefore, using
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an induction on the length of v, it is easy to prove that

q ◦ v = v ⋆ ζ(q, v)−1 (7)

holds. We claim that for any v ∈ Ak, we have

ζ(q, v) = q (8)

Indeed, let q = q1 . . . qk, we prove by induction on the index 1 ≤ i ≤ k,
that q[i] = ζ(q, v)i. It is evident that the base of the induction holds since
q[1] = (q · v[0, 0])[1]. Thus, assume the statement true for i − 1 ≥ 1. It is
straightforward to check, using the definition of the action δ, that

q · v[0, i − 1] = qi . . . qkv[0, i − 1]

Hence,
ζ(q, v)i = (q · v[0, i − 1])[1] = (qi . . . qky)[1] = qi

and so claim (8) holds. Let q, q′ be two different states, and let v ∈ Ak.
Assume, contrary to our claim, that q ◦ v = q′ ◦ v, whence by (7) and (8) we
obtain:

v ⋆ q−1 = q ◦ v = q′ ◦ v = v ⋆ (q′)−1

Thus, since (A, ⋆) is a group, we get q = q′, a contradiction.

Let B(k,A) = G (M (Bk(A), χk(A)), if we assume (A,+) to be a non-
trivial abelian group, by using similar techniques involved in [29, Theorem
3.1], we obtain the following analogous structural result.

Theorem 5. If (A,+) is a non-trivial finite abelian group, then

B(k,A) = Ak ≀ Z

As in [29] we consider the ring GJtK of formal power series with coeffi-
cients in G, we may identify all the words in Gω as elements in GJtK via the
correspondence:

g = g0g1g3 . . .←→ Fg(t) =

∞∑

i=0

git
i

The following lemma shows how the action of the elements in B(k,A) on Aω

is reflected in the formal power series.
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Lemma 4. Let (A,+) be a non-trivial finite abelian group, and let B =
M (Bk(A), χk(A)). Therefore, for any state q of B we have:

FBq(g)(t) = (1−tk)Fg(t)−Fq(t), F
B

−1
q (g)(t) = (Fg(t)+Fq(t))

1

(1 − tk)
(9)

Moreover, if e = 0k, where 0 is the neutral element of A, then for any q ∈ Q
and ℓ 6= 0 we have:

F
Bℓ

eBqB
−ℓ
e (g)(t) = Fg(t)− (1− tk)ℓFq(t) (10)

Proof. Let q = q1 . . . qk ∈ Ak. An element g ∈ Aω can be (uniquely) factor-
ized as a product of words in Ak. Therefore, using equations (8), (7) in the
proof of Proposition 7, it is not difficult to check that

FBq(g)(t) = Fg(t)− Fqg(t)

with qg = q1 . . . qkg1g2 . . .. Since Fqg(t) = Fq(t) + tkFg(t), we obtain the
first claim of the lemma, the other equality follows from the first one and
the equality:

∞∑

i=0

tki =
1

(1− tk)

Equality (10) can be proved by a straightforward induction using equations
(9).

Lemma 5. With the above notation, if:

P =

N∑

i=0

(1− tk)ℓici = 0 (11)

where ℓi ∈ Z and ci are polynomial of degree at most k − 1, then ci = 0.

Proof. Suppose, contrary to the claim, that not all of the c1, . . . , cN are zero.
Let ℓ = max{|ℓi|, i = 1, . . . , N}, multiplying by (1− tk)ℓ on the both sides of
equality (11), we can suppose, without loss of generality, that 0 ≤ ℓi < ℓi+1

for 0 ≤ i ≤ N − 1, and ci 6= 0 for 0 ≤ i ≤ N . It is straightforward to check
that P − tkℓN cN is a polynomial of degree at most klN − 1. Hence if (11)
holds, then tkℓN cN = 0, i.e cN = 0, contradiction.

Proof of Theorem 5. By (10) of Lemma 4 the mapping in Ak → B(k,A)
defined by h 7→ BhBe, where e is the neutral element of Ak, is injective.
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If a = B−1
e , then B(k,A) = 〈Ak, a〉. Moreover, by (10) of Lemma 4 and

Lemma 5 we have that the subgroup H = 〈aℓqa−ℓ : q ∈ Ak, ℓ ∈ Z〉 is
isomorphic to

⊕
Z A

k. Therefore, since B(k,A) = H〈a〉 with H and 〈a〉
intersecting trivially, having a infinite order and H being of torsion, and
since a acts on H by conjugation as the shift on Z, we get

B(k,A) ≃
⊕

Z

Ak ⋊ Z = Ak ≀ Z

6 Open Problems

We give a list of natural open problems originated by the previous results.

Problem 1. In Proposition 2 we prove that checking whether a Mealy au-
tomaton is reset or not is a decidable problem. However, unlike the condi-
tions of [29] which can be checked in linear time for a particular subclass of
reset Mealy automata, the algorithm proposed here is not polynomial. The
natural question is to find the computational class where this problem lies.
By far it is not even known if this problem is in the class NP or not.
Things become even more unclear in the case of checking the weakly reset
condition. This problem is clearly equivalent to checking whether or not
I(A ) 6= ∅, which is not known whether or not it is decidable.

Problem 2. Is there any combinatorial characterization of the synchroniz-
ing automata possessing a (weakly) reset group coloring. In particular, are
there examples of synchronizing automata which do not have any (weakly)
reset group coloring?

Problem 3. Theorem 2 gives a gap result for (weakly) reset group col-
orings of simple synchronizing automata. It would be interesting to give
structural results for the groups (semigroups) associated to singular (weakly)
reset Mealy automata.

Problem 4. It would be interesting to explore the algebraic properties of
the groups obtained by (some) colorings of the Černý’s series Cn or the De
Bruijn groups B(A, k) in case (A, ⋆) is not abelian.

Problem 5. Can we say more about the structure of the groups defined by
a reset Mealy automata with distinct modified state functions?
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C.Mart́ın-Vide, F. Otto, H. Fernau (eds.), Languages and Automata:
Theory and Applications. LATA 2008, Lect. Notes Comp. Sci, Berlin,
Springer, 5196:11–27, 2008.

25


	1 Introduction
	2 Preliminaries
	3 Reset Mealy automata
	4 Group colorings of synchronizing DFA
	5 Examples of reset Mealy automata
	6 Open Problems

