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TIME COMPLEXITY OF THE CONJUGACY PROBLEM IN RELATIVELY

HYPERBOLIC GROUPS

INNA BUMAGIN

Abstract. If u and v are two conjugate elements of a hyperbolic group then the length of a shortest
conjugating element for u and v can be bounded by a linear function of the sum of their lengths,
as was proved by Lysenok in [27]. Bridson and Haefliger showed in [7] that in a hyperbolic group
the conjugacy problem can be solved in polynomial time. We extend these results to relatively
hyperbolic groups. In particular, we show that both the conjugacy problem and the conjugacy
search problem can be solved in polynomial time in a relatively hyperbolic group, whenever the
corresponding problem can be solved in polynomial time in each parabolic subgroup. We also prove
that if u and v are two conjugate hyperbolic elements of a relatively hyperbolic group then the
length of a shortest conjugating element for u and v is linear in terms of their lengths.
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1. Introduction

The conjugacy problem is one of the three classical algorithmic problems formulated by Max
Dehn in 1912. It asks the following.

The Dehn Conjugacy Problem. Find an algorithm that takes as input a finite presentation
of a group G = 〈S | R〉 and two freely reduced products of the generators u, v ∈ F (S), and decides
whether or not the elements of G, defined by the given products of generators, are conjugate in G.

When stated in this generality, the conjugacy problem is known to be unsolvable, which was first
shown by Novikov in 1954 [31]. The next year Novikov proved in [32] that the word problem is
unsolvable for finitely presented groups in general, and two years later Boone published his proof
in [5]. Therefore, to obtain positive results, one needs to restrict to subclasses of the class of finitely
presented groups.

Gromov stated in his seminal paper [17] that the conjugacy problem is solvable in hyperbolic
groups. The fundamental idea is that if the given elements u and v are conjugate in the group
then the length of a shortest conjugating element can be bounded in terms of the lengths of u and
v. A rough bound on the length of a conjugating element is exponential, and a straightforward
algorithm to find a conjugating element (or to verify that the given elements are not conjugate) is
double exponential. Later on, a linear bound on the shortest length of a conjugating element was
found by Lysenok [27, Lemma 10] (see also Lemma 3.5 in the present paper); this bound leads to an
algorithm with exponential time complexity. Better bounds and a much more elegant, polynomial
time, algorithm for hyperbolic groups can be found in the book by Bridson and Haefliger [7]; this
algorithm is cubic-time. This result was improved by Bridson and Howie in [8] and then improved
even further by Epstein and Holt, who found a linear time algorithm [15].

Closely related to the conjugacy problem is the following question.
The Conjugacy Search Problem. Find an algorithm that takes as input a finite presentation

of a group G = 〈S | R〉 and two freely reduced products of the generators wu, wv ∈ F (S) that
define elements u and v conjugate in G, and finds a conjugating element g ∈ G for u and v.

Clearly, in a countable group with solvable word problem the conjugacy search problem can be
solved by enumerating the group elements g1, g2, . . . and deciding for every i = 1, 2, . . . whether
or not the equality giug

−1
i v−1 = 1 holds in G. A conjugating element will be found, eventu-

ally. In a hyperbolic group, due to the linear bound on the length of a conjugating element, the
straightforward procedure is exponential time.

Both the conjugacy problem and the conjugacy search problem can be stated in the language
of equations over groups. Namely, the conjugacy problem asks to find out whether the orientable
quadratic equation xux−1 = v has a solution in G. The conjugacy search problem asks to find
a solution, when we know that it exists. The estimates obtained in [27] and in [7] for the length
of a conjugating element can be compared with the estimate of O(n4) on the length of a minimal
solution to a system of orientable quadratic equations over a torsion-free hyperbolic group, obtained
by Mohajeri in her Ph.D. thesis [29], and with the linear estimates for the length of solutions to
quadratic equations in free groups, due to Kharlampovich and Vdovina [26]. At the same time,
one notes the striking difference between the time complexity obtained in [15] and the result due to
Kharlampovich, Mohajeri, Taam and Vdovina [24] that solving quadratic equations in hyperbolic
groups is NP-hard.

We consider the class of relatively hyperbolic groups, defined in Section 2. In this class, a
reasonable question is as follows.

The Conjugacy Problem for Relatively Hyperbolic Groups. Find an algorithm that
takes as input
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• a finite relative presentation of a group G = 〈S0, P1, P2, . . . , Pm | R〉, hyperbolic relative to
the set of subgroups P = {P1, P2, . . . , Pm}, and finite generating sets S1, S2, . . . , Sm such
that Pi = 〈Si〉 , ∀i,

• solutions to the word problem and to the conjugacy problem in each one of the subgroups
in P and

• two freely reduced products of the generators wu, wv ∈ F (S), where S = ∪m
i=0Si,

and decides whether or not the elements u, v ∈ G, defined by the products wu and wv, are conjugate
in G.

Solvability of the conjugacy problem in relatively hyperbolic groups, also declared by Gromov
in [17], was proved by the author in [9], and also by Osin in [36] for hyperbolic elements. Both
papers provide estimates that lead to inefficient algorithms. Better estimates on the length of
conjugating elements in relatively hyperbolic groups were obtained by Ji, Ogle and Ramsey, who
gave a polynomial bound on the length in [23]. The degree of the polynomial bound was improved
considerably by O’Connor in [33].

A key to obtaining a polynomial time algorithm to solve the conjugacy problem is an observation
due to Bridson and Haefliger [7] that we generalize in Theorem 3.20(1). Essentially, it says the
following. One can compute shorter representatives w̄u ∈ [u]G and w̄v ∈ [v]G of the conjugacy
classes of the given elements u and v and obtain a bound on the length of an element g conjugating
w̄u and w̄v. In particular, if u and v are hyperbolic elements (see Definition 2.4) conjugate in G,
then the length of g will be bounded by a universal constant which is independent of u and v. As
a consequence of Theorem 3.20(1) and Proposition 5.3, we obtain the following linear estimate on
the length of a conjugating element.

Theorem 1.1. Let G be a group, hyperbolic relative to the set of subgroups P = {P1, . . . , Pm}. Let
S = ∪m

i=0Si be a finite generating set for G such that Pi = 〈Si〉 for i = 1, 2, . . . ,m. Let F (S) be
the free group on S. Let u, v ∈ G be defined by products of generators wu, wv ∈ F (S). Suppose that
u and v are hyperbolic elements conjugate in G. Then there is a conjugating element g ∈ G such
that |g|S ≤ N(δ)(|wu|S + |wv |S) +M(δ), where N(δ) and M(δ) are constants, computable from the
given presentation of G.

If u and v are parabolic elements (see Definition 2.4) conjugate in G then estimates on the length
of a shortest conjugating element will depend on the corresponding estimates in the parabolic
subgroups of G. Note that parabolic subgroups of G do not have to belong to the same class as
abstract groups. A general statement is given in Theorem 3.20(2). For some classes of parabolic
subgroups our estimates can be made more precise, as we discuss below.

The following theorem refers to a particular case of relatively hyperbolic groups with abelian
parabolic subgroups. These groups have been attracting a great deal of attention lately; we just
mention some examples. For instance, Rn-free groups are hyperbolic relative to abelian subgroups,
which was proved by Guirardel in [18], using a theorem proved by Dahmani in [12]. Also, finitely
generated groups acting properly and cocompactly on CAT (0) spaces with isolated flats are hyper-
bolic relative to abelian subgroups; we refer the interested reader to Hruska’s thesis [22] and to the
paper by Hruska and Kleiner [21] for details. It follows from the results of Kharlampovich and the
author [11] that Z

n-free groups belong to the class defined by Hruska. An important subclass of
Z
n-free groups consists of finitely generated fully residually free groups, also known as limit groups

introduced by Sela, who also proved the equivalence of the two definitions in [40]; these groups were
shown to be Z

n-free by Kharlampovich and Miasnikov in [25]. Alternatively, the above inclusions
for limit groups follow from the combination theorems for relatively hyperbolic groups proved by
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Alibegovič in [1] and by Dahmani in [12], and from the theorem proved by Alibegovič and Bestvina
in [2].

If G is a group hyperbolic relative to abelian subgroups then, according to Theorem 1.2 below,
a linear bound on the length of a conjugating element applies to arbitrary u, v ∈ G. Theorem 1.2
follows from Theorem 3.20 and Remark 3.21.

Theorem 1.2. Let G be a finitely generated group, hyperbolic relative to the set of abelian subgroups
P = {P1, . . . , Pm}. Let S = ∪m

i=0Si be a finite generating set for G such that Pi = 〈Si〉 for
i = 1, 2, . . . ,m. Let F (S) be the free group on S. Let u, v ∈ G be defined by products of generators
wu, wv ∈ F (S). If u and v are conjugate in G then there is a conjugating element g ∈ G such that
|g|S ≤ N(δ)(|wu|S + |wv|S) +Mab(δ), where N(δ) and Mab(δ) are constants, computable from the
given presentation of G.

Our solution to the conjugacy problem uses Farb’s solution to the word problem in relatively
hyperbolic groups.

Theorem 1.3. [16, Theorem 3.7] Suppose G is a group hyperbolic relative to the set of subgroups
P = {P1, P2, . . . , Pm}, defined by a Dehn presentation, and suppose Pi has word problem solvable
in time O(f(n)), ∀i. Then there is a curve-shortening algorithm that gives an O(f(n) log n)-time
solution to the word problem for G.

The curve-shortening algorithm is designed to obtain a relative k-local geodesic representing a
given element of G. We sketch Farb’s argument in Lemma 5.1 and in Proposition 5.3 adapt it to
obtain cyclic relative k-local geodesics.

The conditions of Theorem 1.3 could be relaxed to allow the group G be defined by an arbitrary
finite presentation; the word problem in G will remain solvable. This is due to Dahmani [13,
Theorem 0.1], who gave an algorithm to compute a relative Dehn presentation for G and a factor
N for a relative linear isoperimetric inequality for G from a finite presentation for G, generating
sets S1, S2, . . . , Sm for the parabolic subgroups and solution to the word problem in the parabolic
subgroups (see Theorem 4.1 for details). Then one can find a hyperbolicity constant δ, also used
in Farb’s curve-shortening algorithm. However, the complexity of those additional computations
exceeds by far the complexity of the solution to the word problem in G. This is why we also assume
that G is defined by a relative Dehn presentation when discussing the complexity of our algorithms.
Moreover, in Section 4 we explain in detail what additional data, that does not depend on the given
elements u and v and is used in our algorithms, is considered to be computed in advance.

The following theorem shows that we do not need solution to the conjugacy problem in par-
abolic subgroups to solve the conjugacy problem for hyperbolic elements of G and even to find
a conjugating element. Moreover, we do not need to know a priori whether given elements are
hyperbolic, because we can determine this using only solution to the word problem. The statement
also provides estimates for the time complexity of these computations.

Theorem 1.4. Let G be a group, hyperbolic relative to the set of subgroups P = {P1, . . . , Pm}. The
following data is considered input of our algorithms.

(i) A relative Dehn presentation 〈S0, P1, . . . , Pm | R〉 for G, along with finite generating sets Si

for parabolic subgroups: Pi = 〈Si〉 for i = 1, 2, . . . ,m. We denote by S the finite generating
set S = ∪m

i=0Si for G;

(ii) Solution(s) to the word problem in the parabolic subgroups; let O(C
(par)
w (n)) denote the

(maximum) complexity of these procedures;
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(iii) Two words wu, wv ∈ F (S), where F (S) is the free group on S. We consider the maximum
length L̄ = max{|wu|S , |wv |S} of these words the length of the input. Denote by u and v the
elements of G, defined by the words wu and wv, respectively.

There are algorithms as follows:

(1) An algorithm that decides whether u (or v) is a hyperbolic or a parabolic element of G. The

time complexity of the algorithm is O(L̄C
(par)
w (L̄)).

(2) For u and v hyperbolic in G, an algorithm that decides whether or not u and v are conjugate
in G. Moreover, if u and v are conjugate then a conjugating element will be found. The

time complexity of the algorithm is O(L̄2C
(par)
w (L̄) log L̄).

Theorem 1.4(1) follows from Theorem 5.4, and Theorem 1.4(2) follows from Theorem 5.8(2) and
Theorem 5.9(1). The statement of Theorem 5.8(3), not included in Theorem 1.4, provides solution
to the conjugacy problem for parabolic elements in G, and this is where we use solution(s) to the

conjugacy problem in parabolic subgroups. Let O(C
(par)
c (n)) denote the (maximum) complexity of

these solutions. As an immediate corollary of Theorem 5.8, we have the following estimate for the
time complexity of the conjugacy problem.

Theorem 1.5. There is an algorithm which takes as input all of the data listed in Theorem 1.4
(cf. Convention 5.5) and solution to the conjugacy problem in each one of the parabolic subgroups
of G, and decides whether or not u and v are conjugate in G. The time complexity of the algorithm
is

Tc(L̄) = max{O(C(par)
c (L̄)), O(L̄2C(par)

w (L̄) log L̄)}.

Note that the algorithm from the statement of Theorem 1.4(2) solves also the conjugacy search
problem for hyperbolic elements of G. According to Theorem 1.4 (see also Theorem 5.4), one does
not have to specify whether or not u and v are hyperbolic elements. If the elements u and v happen
to be hyperbolic in G then a conjugating element will be found in polynomial time, whenever
the word problem in parabolic subgroups has polynomial time solution. This result applies to
hyperbolic groups (where the parabolic subgroups are all trivial) and should be contrasted with the
straightforward exponential time algorithm to solve the conjugacy search problem in a hyperbolic
group, mentioned earlier. The algorithm that we present in Theorem 5.9 solves the conjugacy
search problem for all the elements of G. However, if u and v are parabolic then the running

time Tsearch(L̄) of the algorithm will depend on the complexity O(C
(par)
search(n)) of solution to the

conjugacy search problem in parabolic subgroups. Theorem 5.10 provides the following estimate:

Tsearch(L̄) = max{Tc(L̄), O(C
(par)
search(L̄))}.

Here Tc(L̄) is the complexity of the conjugacy problem in G, see Theorem 1.5.
As an application of the results obtained in the paper, we prove the following theorem.

Theorem 1.6. Let G be a finitely generated group hyperbolic relative to subgroups P1, . . . , Pm.
Then the word problem, the conjugacy problem and the conjugacy search problem in G can be solved
in polynomial time if the parabolic subgroups are abelian, free solvable or Artin groups of extra-large
type. More precisely, we have the following.

(1) If the parabolic subgroups P1, . . . , Pm are free solvable then the time complexity of the word
problem is O(n3 log n). The time complexity of the conjugacy and of the conjugacy search
problem is O(n5 log n) for hyperbolic elements and O(n8) for parabolic elements of G.

(2) If the parabolic subgroups P1, . . . , Pm are Artin groups of extra-large type then the time
complexity of the word problem is O(n2 log n). The time complexity of the conjugacy and of
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the conjugacy search problem is O(n4 log n) for hyperbolic elements and O(n3) for parabolic
elements of G.

(3) If the parabolic subgroups P1, . . . , Pm are abelian then the time complexity of the word prob-
lem is O(n log n), and the time complexity of the conjugacy and of the conjugacy search
problem is O(n3 log n).

Proof. This is a consequence of Theorem 5.8, proved in Section 5. The assertion (1) follows from the
results of Myasnikov, Roman’kov, Ushakov and Vershik [30] who showed that the word problem in
free solvable groups can be solved in cubic time, and from the algorithm due to Vassileva [41] solving
the conjugacy problem in free solvable groups in O(n8). In the assertion (2), the complexity of the
word problem follows from the theorem by Peifer in [37] stating that the Artin groups of extra-large
type are bi-automatic, and the complexity of the conjugacy problem for parabolic elements is a
result by Holt and Rees in [19]. The complexity of the word problem in the assertion (3) is a
particular case of Theorem 1.3. �

In a recent preprint [4], Antolin and Ciobanu provide a cubic-time algorithm for solving the
conjugacy problem in groups hyperbolic relative to abelian subgroups.

Another application was suggested by Ashot Minasyan. In [39] Rips gave an example of a
finitely generated normal subgroup K of a hyperbolic group H such that K is not hyperbolic as
an abstract group. Moreover, the membership problem is not solvable for K in H. The proof of
the following theorem shows that K is not a relatively hyperbolic group. Note that ∂H is the
compact space on which K acts as a convergence group. Therefore, Theorem 1.7 gives an example
of a finitely generated convergence group which is not relatively hyperbolic with respect to any
family of proper subgroups. Moreover, since K is normal in H, its limit set coincides with the
entire Gromov boundary ∂H of H. This can be contrasted with the characterization of relatively
hyperbolic groups as geometrically finite convergence groups by Asli Yaman in [42].

Theorem 1.7. (Minasyan) There is a finitely generated subgroup of a hyperbolic group that is not
hyperbolic relative to any finite set of its own proper subgroups.

Proof. Let K be the subgroup of the hyperbolic group H, both as constructed in [39, Theorem].
Let g ∈ H be arbitrary, we want to decide whether g ∈ K.

Suppose that K is hyperbolic relative to a set P = {P1, . . . , Pm} of its proper finitely generated
subgroups. Since K and all of Pi ∈ P are subgroups of a hyperbolic group, the word problem
is solvable in K and in Pi, ∀i. Therefore, Theorem 1.4 applies. Enumerating elements of K as
words in the generators and applying Theorem 1.4(1) to each one of them, we can find a hyperbolic
element x ∈ K of infinite order (see Definition 2.4 below). Since K ⊳ H, y = gxg−1 ∈ K, and
we can apply Theorem 1.4(1) to determine whether y is parabolic or hyperbolic in K. If y is a
parabolic element of K then it cannot be conjugate to x in K, and if y is hyperbolic in K then by
Theorem 1.4(2), we can decide whether x and y are conjugate in K. If not, then clearly, g /∈ K.
Otherwise, there is k ∈ K such that y = kxk−1, and g ∈ K if and only if gk−1 ∈ CK(x). The proof
of [28, Proposition 3.3] shows that the latter inclusion can be decided effectively. Alternatively, the
case when x and y are conjugate in K could be handled as follows. We choose a f.p. torsion-free
group P with unsolvable word problem, and apply Rips’ construction to it. By the construction,
H is a torsion-free hyperbolic group. Therefore, the centralizer of the element x is cyclic, and
since x ∈ K and H/K is torsion-free, it follows that CH(x) must be completely contained in K.
Hence, x and y are conjugate in K iff g ∈ K. The latter is undecidable as the word problem
in P ∼= H/K is unsolvable. Thus, we can decide, whether or not g ∈ K, which contradicts [39,
Corollary]. Therefore, K is not hyperbolic relative to the set P = {P1, . . . , Pm}.

�
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The paper is organized as follows. In Section 2 we collect the definitions and introduce the
notation used throughout the paper. In Section 3 we establish the estimates on the length of a con-
jugating element, for both hyperbolic and parabolic elements. In Section 4 we discuss preliminary
computations. The algorithms are presented in Section 5.

Acknowledgment. Parts of this paper were written during my visit to the Research Centre Erwin
Schrödinger International Institute for Mathematical Physics (ESI) of the University of Vienna. I
am grateful to the organizers of the research program “Computation in groups” Goulnara Arzhant-
seva, Olga Kharlampovich and Alexey Miasnikov for their kind invitation and to the ESI for the
support.

2. Definitions and Notation

Let G denote a group, generated by a finite set S. We denote by F (S) the free group with basis
S. Let Γ = Γ(G;S) be the Cayley graph of G with respect to S. We assign length 1 to each edge
of Γ and denote by dΓ the obtained metric on Γ.

Let I = [0, s] be an interval, γ : I → Γ be an arbitrary path in Γ, and let A and B be two points
in the image im(γ) of γ. If ta and tb in I are such that γ(ta) = A and γ(tb) = B then we denote by
lγ(A,B) the length of the image of the subpath of im(γ) joining A and B: lγ(A,B) = l(im(γ|[ta,tb])).
If ta = 0 and tb = s are the enpoints of I, then we write lγ instead of lγ(A,B). A path γ is called
geodesic if lγ(A,B) = dΓ(A,B), for any two points A,B ∈ im(γ). In what follows, abusing notation,
we denote by γ both the path and its image in Γ. We denote by γ− the origin γ(0) and by γ+ the
terminus γ(s) of the path γ : [0, s] → Γ.

Let Vg denote the unique vertex in Γ that corresponds to g, and let V1 ∈ Γ correspond to the
identity of G. We denote by |g|Γ = dΓ(V1, Vg) the length of a geodesic path γ ⊂ Γ representing g.

Definition 2.1. Let k > 1 be an integer. A path γ is called a k-local geodesic if every subpath of
γ of length at most k is a geodesic. We say that γ is a cyclic (k-local) geodesic if the concatenation
γ ◦ γ is a (k-local) geodesic.

Definition 2.2. Let δ ≥ 0 be a real number. A geodesic metric space (X, d) is called δ-hyperbolic if
for every geodesic triangle in X, each side of the triangle is contained in the δ-neighborhood of the
union of the other two sides. A geodesic metric space (X, d) is called hyperbolic if it is δ-hyperbolic
for some δ ≥ 0.

2.1. Relatively hyperbolic groups. In this section we give basic definitions and state some facts
about the properties of relatively hyperbolic groups. We refer an interested reader to the papers
by Farb [16], Osin [36], Bowditch [6], Hruska [20], and the author [10] for various definitions and
more detailed discussion of this class of groups.

Let G, S and Γ = Γ(G;S) be as above. Let P1, P2, . . . , Pm be finitely generated subgroups of the
group G and suppose that Pi = 〈Si〉 for i = 1, 2, . . . ,m, such that S = S0 ∪ S1 ∪ S2 ∪ · · · ∪ Sm. We
assume that the sets Si (i = 0, 1, . . . ,m) are all finite. Denote by Γi = Γ(Pi;Si) the Cayley graph
of Pi with respect to the generating set Si and consider the following presentation for G:

G = 〈S0, P1, . . . , Pm | R = 1, R ∈ R〉 ,

where R is such that G ∼= F (S0) ∗ P1 ∗ · · · ∗ Pm/ 〈〈R〉〉. Note that in the latter presentation for

G the generating set Ŝ = S0 ∪ P1 · · · ∪ Pm is infinite if some of the subgroups Pi are infinite. We
denote by Γ̂ = Γ̂(G; Ŝ) the Cayley graph of G with respect to Ŝ. The graph Γ̂ can be obtained from
Γ(G;S) as follows: add an edge between every pair of vertices in each Γi and extend equivariantly
with respect to the action of G. That is, add an edge between every pair of vertices in each left
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coset of Pi, for all i = 1, 2, . . . ,m. Alternatively, one can add a vertex v(gPi) joined by an edge of

length 1/2 to every element in gPi for each left coset of Pi, for all i; see [16] for details. We call Γ̂ a
coned-off Cayley graph and denote by dΓ̂ the (relative) metric associated with it. (Quasi-) geodesic

paths in Γ̂ are called relative (quasi-)geodesics.

Definition 2.3. The group G is called weakly hyperbolic relative to subgroups {P1, . . . , Pm} if the

coned-off Cayley graph Γ̂ is a hyperbolic metric space.

Examples of weakly relatively hyperbolic groups, that can be found in [35] and in [9], show that
in general, weakly relatively hyperbolic groups do not possess particularly nice properties. The
problem is as follows. While a hyperbolic space can be characterized by the property that (λ, ǫ)-
quasi-geodesics with common endpoints are uniformly Hausdorff-close to one another, in a Cayley
graph of a weakly relatively hyperbolic group this property no longer holds. We need to gain some
control over quasi-geodesics to be able to draw interesting algebraic consequences. This is why
Farb [16] introduced an additional property, which he called the Bounded Coset Penetration (or
BCP) property, see Definition 2.7. We need to introduce some more terminology to explain it.

Definition 2.4. An element a ∈ G is called a parabolic element if a is conjugate into a subgroup
Pi ∈ P. Otherwise, a is called a hyperbolic element.

In what follows, we distinguish two types of parabolic elements. Namely, if a is written as a word
in Si, which we sometimes write as a ∈ F (Si) with slight abuse of notation, then clearly, a ∈ Pi.
Parabolic elements of the other type are written as hyperbolic words and so are not “obviously”
parabolic.

Definition 2.5. Let h ∈ G, and let αh be the path in Γ labelled by h, so that h = lab(αh). A
nonempty subword p of h is called a parabolic component of h if p is an element of Pi ∈ P, written
as a word in Si, and is a maximal parabolic subword of h with respect to inclusion. If h = h1ph2,
where p ∈ Pi and |p|Γ ≥ 1 then we say that the path αh in Γ labelled by h penetrates the coset h1Pi

along p. We denote by p− the vertex of Γ where αh first enters h1Pi and by p+ the vertex of Γ
where αh last exits h1Pi. The path αp joining p− and p+ inside the coset is a parabolic component
of αh. We always assume that αp is a geodesic path in Γi.

Note that the relative length of each parabolic component of a path α equals 1.

Definition 2.6. Let α be a path in Γ, and let gPi be a coset of a parabolic subgroup of G. We say
that α backtracks to gPi if α joins two points in gPi but α is labeled by a non-parabolic word. A
path α backtracks if there are g ∈ G and i ∈ {1, 2, . . . ,m} such that α backtracks to gPi. We say
that β is a path without backtracking if no subpath of β backtracks.

Two distinct parabolic components p and q of a path α are connected if α penetrates a coset
gPi along p, exits gPi, then backtracks to it and penetrates gPi along q. A parabolic component
of a path α is called isolated if it is not connected to any other parabolic component of α. In
particular, if α is a path without backtracking then all the parabolic components of α are isolated.

It can be readily seen that the following definition is equivalent to Farb’s definition of bounded
coset penetration [16, Section 3.3].

Definition 2.7. The group G is said to satisfy the Bounded Coset Penetration (or BCP) property
if there is a constant C = C(λ, ǫ) such that the following condition holds. Let α and β be (λ, ǫ)-

quasi-geodesic paths without backtracking with common endpoints and distinct images in Γ̂. If p
is an isolated component of the closed path α ◦ β−1 then lΓ(p) ≤ C.

We omit ǫ if ǫ = 0 and write C(λ) instead of C(λ, 0).
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2.2. Notation. Let u and v be two elements of G, given as products of generators, wu and wv

in F (S), where F (S) is the free group on S. Let L̄ = max{|wu|S , |wv |S} be the maximum length
of wu and wv in the word metric of F (S); the length L̄ is considered the length of the input
of our algorithms. Throughout the paper, we denote by γu and γv two relative cyclic geodesics
and by α and β two relative cyclic (8δ + 1)-local geodesics that represent the elements u and v,
correspondingly. We denote by Lg = max{lγu , lγv} the maximum relative lehgth of γu and γv, and
by L = max{lα, lβ} the maximum relative lehgth of α and β. We obtain α and β by shortening
the paths labelled by wu and wv (see Proposition 5.3 for details); therefore, we shall always assume
that L ≤ L̄.

Suppose that u and v are conjugate in G, so that v = gug−1 for some g ∈ G. We denote by
σ and τ two relative geodesics representing g, such that the concatenation σ ◦ γu ◦ τ−1 ◦ γ−1

v is a
geodesic quadrilateral Qg and the concatenation σ ◦α◦τ−1 ◦β−1 is a (quasi-geodesic) quadrilateral

Q, both are closed paths at the identity in the coned-off Cayley graph Γ̂, see Figure 1(Left).
Note that the vertices of the quadrilaterals Qg and Q coincide. We denote the vertices as follows:
A0 = σ− = (γv)− = β− is the identity, A1 = σ+ = (γu)− = α−, A2 = τ+ = (γu)+ = α+, and
A3 = τ− = (γv)+ = β+. We refer to α and β (or γu and γv) as the horizontal edges of Q (or Qg),
and to σ and τ as the vertical edges.

If u, v and g are written as parabolic words in Si for some i then each one of the paths α, β, γu,
γv, σ and τ consists of a unique parabolic component in Pi. In this case, we say that Q and Qg are
parabolic (or Pi-parabolic) quadrilaterals. If u ∈ Pi and v ∈ Pj are written as parabolic words but
g /∈ Pi ∪ Pj then we say that Q and Qg are semi-parabolic quadrilaterals. We say that Q and Qg

are hyperbolic quadrilaterals if none of u and v is written as a parabolic word.

Definition 2.8. Let σ and τ be two distinct paths in the Cayley graph Γ of G, both labelled by
g. Let g = g1pg2, where p is a parabolic component. The corresponding parabolic components σp
of σ and τp of τ are called synchronous.

Throughout the paper, we are interested in shortest conjugating elements. In what follows, we
are always looking for a shortest conjugating element (or a shortest conjugator) for u and v. What
we mean is an element g conjugating a cyclic permutation of u to a cyclic permutation of v, such
that g is shortest with respect to the relative length. Unless stated otherwise, we say that g is a
shortest conjugating element for u and v if in the quadrilateral Q the relative geodesic σ (or τ) is
a shortest path connecting a point on α to a point on β.

The following subsets of the elements of G play a role in our computations in sections 4 and 5:

• B(r1, r2) = {w ∈ F (S) | |w|Γ̂ ≤ r1, |p|Γ ≤ r2, for each parabolic component p of w} is a
subset of the ball Br1r2 of radius r1r2 in Γ. This is a proper subset of Br1r2 , whenever
r1r2 > 1.

• Bi = {p ∈ Pi | |p|Γ ≤ C(3)} is the set of “very short” elements of Pi, for each i = 1, 2, . . . ,m.

3. Estimates

3.1. Hyperbolic spaces. The following theorem provides useful properties of k-local geodesics in
a δ-hyperbolic space.

Theorem 3.1. [7, III.H. Theorem1.13] Let X be a δ-hyperbolic geodesic space and let γ : [a, b] → X
be a k-local geodesic, where k > 8δ. Then:

(1) im(γ) is contained in the 2δ-neighbourhood of any geodesic segment [γ(a), γ(b)] connecting
its endpoints.

(2) [γ(a), γ(b)] is contained in the 3δ-neighbourhood of im(γ), and
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✒
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❄
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A3

σ τ

xα x
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β

Figure 1. (Left) The quadrilaterals Q = σ◦α◦τ−1◦β−1 and Qg = σ◦γu◦τ
−1◦γ−1

v .
(Right) This figure illustrates the proof of Lemma 3.3(1).

(3) γ is a (λ, ε)-quasi-geodesic, where ε = 2δ and λ = (k + 4δ)/(k − 4δ).

Corollary 3.2. Every side of the quadrilateral Q, defined in Section 2.2, is contained in the 7δ-
neighbourhood of the other three sides.

Proof. In the geodesic quadrilateral Qg every side is contained in the 2δ-neighbourhood of the other
three sides. Now we apply the first two assertions of Theorem 3.1 to obtain the claim. �

Lemma 3.3. Let g be a shortest conjugating element for (cyclic permutations of) u and v. Then:

(1) Each one of the intersections α∩ σ, α∩ τ , β ∩ σ and β ∩ τ is a single point, and this point
is a vertex of the quadrilateal Q.

(2) The paths σ ◦ γu and τ−1 ◦ γ−1
v are (3, 0)- quasi-geodesics. The paths σ ◦ α and τ−1 ◦ β−1

are (2λ+ 1, ε)- quasi-geodesics, where λ and ǫ are as in Theorem 3.1.

Proof. (1) Suppose α ∩ σ contains more than just one point. Let B be a point in α ∩ σ, different
from A1. Denote by x the label of the segment of σ joining B and A1. Note that whereas the
label xα of the subpath of α joining A1 and B may differ from x in F (S), necessarily x−1 = xα in
G. Let g1 and u1 be the labels of the remaining subpaths of g and u, correspondingly. We have
1 = gug−1v−1 = g1xxαu1x

−1g−1
1 v−1 = g1u1xαg

−1
1 v−1. It follows that g1 is a shorter conjugator for

a conjugate of u and v, which is a contradiction. The other cases are similar.
(2) Let C be an arbitrary point on σ, and let D be a point on α. Note that d(C,D) ≥ d(C,A1)

because g is a shortest conjugating element. Also, note that

lα(A1,D) ≤ λd(A1,D) + ε ≤ λ(d(A1, C) + d(C,D)) + ε ≤ 2λd(C,D) + ε.

It follows from the latter inequality and from the statement (1) of this lemma that

lσ◦α(C,D) = d(C,A1) + lα(A1,D) ≤ (2λ+ 1)d(C,D) + ε.

To prove the assertion for σ◦γu and τ−1 ◦γ−1
v , note that γu and γv are (1, 0)-quasi-geodesics. �

Corollary 3.4. If α and β are (8δ+1)-local geodesics then α and β are (3, 2δ)-quasi-geodesics and
the paths σ ◦ α and τ−1 ◦ β−1 are (7, 2δ)- quasi-geodesics.

The following lemma is the first step to the proof of the existence of a linear bound on the length
of a shortest conjugating element, stated in Theorem 1.1. The argument in the proof is due to
Lysenok [27, Lemma 10].



TIME COMPLEXITY OF THE CONJUGACY PROBLEM IN RELATIVELY HYPERBOLIC GROUPS 11

✻
σ1

✻
σ2

q
D

✻
τ1

✻
τ2

q T0

q
T1

✒

µ

q

M

✒

α

✒
β

A0

A1 A2

A3

Qi

✻fi

✲
a

✲
b

r

✲
ci

✻
fi

Qi+1

✻
fi+1 ✻

fi+1

✲

ci+1

✲b ✲ar

Figure 2. (Left) If d(T0, T1) > 2δ then [A3, T0] ◦ [T0,D] ◦ σ2 is shorter than σ, see
Lemma 3.5. (Right) Need to adjust Qi before gluing, see Lemma 3.15.

Lemma 3.5. (Lysenok) Let u and v be conjugate in G, and let g ∈ G be such that v = gug−1, and
g has the smallest possible relaive length among all the elements that conjugate a cyclic conjugate
of u and a cyclic conjugate of v. If |g|Γ̂ > |u|Γ̂ + |v|Γ̂ + 4δ + 2 then both u and v are conjugate in
G to an element z ∈ G with |z|Γ̂ ≤ 4δ.

Proof. We consider the quadrilateral Q corresponding to the equality v = gug−1, as before. Assume
that |g|Γ̂ > |u|Γ̂ + |v|Γ̂ + 4δ + 2. Let µ be the diagonal in the quadrilateral Q joining the identity
A0 and the vertex A2; µ is labeled by a word wµ such that wµ = gu = vg, see Figure 2(Left). Let
σ1 and σ2 be such that σ = σ1 ◦ σ2, |σ1|Γ̂ > |v|Γ̂ + 2δ and |σ2|Γ̂ > |u|Γ̂ + 2δ. Then the endpoint
D = t(σ1) of σ1 is δ-close to a point M on µ, and M is δ-close to a point T0 on τ . Let τ1 and τ2
be such that τ = τ1 ◦ τ2 and |σ1|Γ̂ = |τ1|Γ̂, and let T1 = t(τ1). Then necessarily dΓ̂(T0, T1) ≤ 2δ, for
if not then either σ1 ◦ [D,T0] ◦ [T0, A2], or [A3, T0] ◦ [T0,D] ◦ σ2 was a path shorter than σ joining
a point on β and a point on α, which would be a contradiction. It follows that dΓ̂(D,T1) ≤ 4δ. If
z is the label of a relative geodesic joining D and T1 then z is conjugate to both u and v and has
the required relative length. �

The following lemma is stated in [7, III.Γ. Lemma 2.11] for hyperbolic groups; the proof below
is analogous to the proof of [7, III.Γ. Lemma 2.9], and we include it for completeness.

Lemma 3.6. Let Γ be a δ-hyperbolic metric space such that paths in Γ are labeled by elements of
a group G. Let α and β be cyclic (8δ + 1)-local geodesic paths in Γ with the labels lab(α) = u and
lab(β) = v. Suppose that u and v are conjugate in G, and let σ and τ be two geodesics in Γ with
lab(σ) = lab(τ) = g such that gug−1v−1 = 1 in G, σ ◦ α ◦ τ−1 ◦ β−1 is a closed path in Γ, and for
any geodesic ρ ∈ Γ joining a point on α and a point on β, lρ ≥ lσ. Then

(1) max{lα, lβ} ≤ 86δ + 3, or else
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(2) lσ ≤ 7δ.

If Γ is a Cayley graph of G then there exists a word g of length at most 7δ+1 such that gu′g−1 = v′

in G, where u′ and v′ are cyclic permutations of u and v.

Proof. W.l.o.g., assume that lα ≥ lβ. Let B be the midpoint of α. By Corollary 3.2, B is 7δ-close
to a point E on one of the other three sides of Q. Suppose that E ∈ σ, and let A1 = σ+ = α−

be the vertex of Q where σ and α meet; this vertex is unique, by Lemma 3.3(1). Note that
d(A1, E) ≤ d(B,E) ≤ 7δ because σ is a shortest path joining a point on α and a point on β, by
assumption. It follows that d(A1, B) ≤ 14δ, which implies that d(A1, A2) ≤ 28δ+1, where A2 = α+.
Since by Corollary 3.4, α is a (3, 2δ)-quasi-geodesic, we have that lα ≤ 3d(A1, A2) + 2δ ≤ 86δ + 3.
On the other hand, if lα ≥ 86δ + 3 then necessarily d(A1, A2) > 28δ + 1, and the argument above
shows that B is 7δ-close to a point on β, which proves (2). To prove the last assertion note that
the vertices of Γ closest to the points B and E, correspondingly, are at most distance 7δ+1 apart.
Also, the length of a path joining two vertices in the Cayley graph equals the length of its label in
the word metric. �

3.2. Relatively hyperbolic groups.

Lemma 3.7. If α is a relative (8δ+1)-local geodesic then α does not backtrack. In other words, if
α travels a nonzero distance inside a left coset gP of a parabolic subgroup P then α never returns
to gP after leaving it.

Proof. By Corollary 3.4, α is a relative (3, 2δ)-quasi-geodesic. Suppose that α backtracks, so
that lab(α) = lab(α1)lab(γ1)lab(α2)lab(γ2)lab(α3), where lab(γ1), lab(γ2) ∈ P , for some parabolic
subgroup P ∈ {P1, P2, . . . , Pm}, lab(γ1) 6= 1, α2 is a nonempty path with lab(α2) /∈ P , and
lab(α1)P = lab(α1)lab(γ1)lab(α2)P . It follows that lab(α2) = lab(γ0) ∈ P ; in particular, the
relative distance between the endpoints of α2 does not exceed 1. Since α2 is a relative (3, 2δ)-quasi-
geodesic, ℓΓ̂(α2) ≤ 3 + 2δ < 8δ + 1. It follows that α2 is a relative geodesic, so that ℓΓ̂(α2) = 1.
We conclude that 2 ≤ ℓΓ̂(γ1 ◦ α2 ◦ γ2) ≤ 3, depending on whether or not γ2 is the empty path.
Therefore, γ1 ◦α2 ◦γ2 is a relative geodesic of length 2 or more, whereas lab(γ1 ◦α2 ◦γ2) ∈ P , which
is a contradiction. �

In the following lemma we explore the case when fuf−1 = v for some f ∈ G, and in the
quadrilateral Q (some) parabolic components of α and β are connected.

Lemma 3.8. Let α and β be cyclic relative (8δ+1)-local geodesics representing u and v, respectively.
Let u and v be conjugate in G, so that v = fuf−1 for some f ∈ G. Suppose that α = α1 ◦ ξu ◦ α2

β = β1 ◦ ξv ◦ β2, where pu = lab(ξu) and pv = lab(ξv) are in Pi, both written as words in F (Si), for
some i, while uj = lab(αj) and vj = lab(βj), j = 1, 2, are not in Pi.

If in the quadrilateral Qf the parabolic components ξu and ξv are connected then there is a
conjugating element g ∈ Pi, written as a word in F (Si). Moreover, if g has the shortest possible
relative length then exactly one of the following holds:

(1) g = 1 and u = v;
(2) Both u and v are written as hyperbolic elements, so that uj 6= 1 and vk 6= 1 for some

j, k ∈ {1, 2}, u 6= v, and 1 ≤ |g|Γ ≤ C(7, 2δ);
(3) Both u and v are written as parabolic elements, so that u = pu and v = pv, and Q is a

parabolic quadrilateral.

Proof. Suppose that u 6= v, so that g 6= 1.
Firstly, we show that if v = pv then necessarily u = pu. By way of contradiction, suppose that

u = u1puu2, where pu is a maximal parabolic component, and at least one of u1 and u2 is not
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equal 1 and is not in Pi. Since pu and pv are connected, there is g ∈ Pi such that g = fu−1
2 and

therefore, pv = fu1puu2f
−1 = gu2u1pug

−1. Whereas u2 and u1 are not written as parabolic words
in F (Si), note that u2u1 = g−1pvgp

−1
u ∈ Pi. In particular, the relative (8δ + 1)-local geodesic path

(α2 ◦ α1 ◦ γu)
−1 backtracks, which contradicts Lemma 3.7. Hence, u1 = u2 = 1, and we have (3).

Now, let g = v2fu
−1
2 , so that g ∈ Pi and gu2u1pug

−1 = v2v1pv, and let Q be the corresponding
quadrilateral. Assume that Q is not a parabolic quadrilateral. By the preceding paragraph, this
implies that both u and v are written as hyperbolic elements. We have that v2v1pvgp

−1
u = u2u1,

and let q = pvgp
−1
u . Denote by σg (or τq) the parabolic geodesic labelled by g (or q). By Lemma 3.7,

v2v1Pi 6= Pi, hence in the closed path σg ◦ α2 ◦ α1 ◦ τ
−1
q ◦ β−1

1 ◦ β−1
2 the parabolic components σg

and τq are not connected. Since, according to Corollary 3.4, σg ◦ α2 ◦ α1 and β2 ◦ β1 ◦ τq is a pair
of relative (7, 2δ)-quasi-geodesics with common endpoints, (2) follows. �

Corollary 3.9. Let conjugate elements u and v be represented by relative geodesics γu and γv,
respectively, and let the labels lab(γu) and lab(γv) be written as hyperbolic elements. Suppose that
parabolic components of γu and γv are connected, and let g be a shortest possible conjugating para-
bolic element as in the statement of Lemma 3.8. If u 6= v then 1 ≤ |g|Γ ≤ C(3).

Proof. The claim follows immediately from the proof of Lemma 3.8, one only needs to note that,
by Corollary 3.4, the geodesic quadrilateral Qg is formed by two relative (3, 0)-quasi-geodesics with
common endpoints. �

Lemma 3.10. Let g be a conjugating element of shortest relative length for cyclic permutations of
u and v. Suppose that Q (or Qg) is not a parabolic quadrilateral.

(1) If u /∈ F (Si), for all i, so that α does not consist of a single parabolic component then either
α and σ, or α and τ have no connected parabolic components.

(2) If u /∈ F (Si) and v /∈ F (Sj), for all i, j, and σ and τ do not have connected parabolic
components, then every parabolic component of g appears isolated in either σ or τ .

Proof. (1) Suppose that σ and α have connected parabolic components, ps ∈ Pi and pa ∈ Pi,
correspondingly. Abusing notation, we denote by ps and pa both paths in Γ and their labels. Let
σ = σ1 ◦ ps ◦σ2 and α = α1 ◦ pa ◦α2. Since by Lemma 3.7, (8δ+1)-local geodesics do not bactrack,
σ2 and α1 are either both empty paths, or both non-empty paths. Indeed, if σ2 was the empty
path and α1 was non-empty then σ1Pi = σ1psα1Pi would imply that α bactracks, and this is a
contradiction. The other case is similar. On the other hand, if both σ2 and α1 were non-empty
then σ1 ◦ [(ps)−, (pa)+] would be a shorter conjugating element for cyclic conjugates of u and v,
which is a contradiction. So, suppose that both σ2 and α1 are empty paths.

To show that α and τ have no connected parabolic components, suppose by way of contradiction
that α = α′

1 ◦ pb ◦α
′
2 and τ = τ1 ◦ pt ◦ τ2 and that the parabolic components pb ∈ Pi and pt ∈ Pi are

connected. The arguments above apply to show that τ−1
2 and α′

2 are both empty paths. Note that
we only need to consider the case when pt and ps are synchronous components, hence they have
the same label. It follows that pa and pb belong to the same parabolic subgroup. If the parabolic
components pb and pa are distinct then α is not a relative cyclic (8δ + 1)-local geodesic, as p−1

a upa
would have a shorter relative length, which is a contradiction. However, if pa and pb are one and
the same parabolic component of α then α = pa = pb, which contradicts our assumption on u.

(2) The same arguments apply to show that if v /∈ Pj , for all j, and σ and β have connected
parabolic components pt and pv, correspondingly, then necessarily the component of τ synchronous
with pt is isolated. The claim follows. �
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Lemma 3.11. Let g be a conjugating element of shortest relative length for cyclic permutations
of u and v. Suppose that u /∈ F (Si) for all i = 1, 2, . . . ,m. Then every parabolic component of g
appears isolated in either σ or τ , in each one of the following cases.

(1) The elements u and v are hyperbolic,
(2) The element v = p consists of a single parabolic component, u is written as a hyperbolic

element, and g has a shortest relative length among all the elements of G that conjugate u
into a parabolic subgroup of G. Moreover, in this case p is an isolated component of the
path τ−1 ◦ β−1.

Proof. (1) Note that connected parabolic components of σ and τ can only be synchronous, by [36,
Lemma 3.39]. However, if σ and τ have synchronous connected parabolic components then u and
v are parabolic, which is a contradiction. The claim now follows from Lemma 3.10(2).

(2) Parabolic components of σ and τ are not connected, for if they were then g would not be a
shortest conjugator. Moreover, parabolic components of σ and τ are not connected to p for if they
were connected then, by an argument in the proof of Lemma 3.10, necessarily u = g−1

1 p−1
1 pp1g1 for

some p1 ∈ Pi. However, this implies that u = g−1
1 (p−1

1 pp1)g1 is conjugate into Pi by the shorter
element g1, which is a contradiction. Now, Lemma 3.10 applies to prove the claim. �

Recall that for i = 1, 2, . . . ,m, we denote by Bi the following subset of the parabolic subgroup:
Bi = {p ∈ Pi | |p|Γ ≤ C(3)}.

Lemma 3.12. Let u ∈ F (Si) and v ∈ F (Sj) be conjugate in G. If i = j then we assume that u
and v are not conjugate in Pi. There are pu ∈ [u]Pi

∩Bi and pv ∈ [v]Pj
∩Bj.

Proof. The relative length of both u and v equals 1, so that in this case, the semi-parabolic quadri-
lateral Q is the concatenation of two (2, 0)-quasi-geodesics. In general, v = fuf−1, where f = fvgfu
with fu ∈ Pi and fv ∈ Pj. We denote by pu = fuuf

−1
u and by pv = f−1

v vfv. We assume that g is a
shortest conjugating element for pu and pv. By assumption, g /∈ Pi. If v ∈ Pj with j 6= i then g /∈ Pj

because pu = g−1pvg /∈ Pj . Hence, if the relative length of g equals 1 then, by Lemma 3.8, all the
parabolic components of Q are isolated, and we conclude that |pu|Γ ≤ C(2) and |pv|Γ ≤ C(2); note
that C(2) ≤ C(3).

So, we can assume that |g|Γ̂ > 1. If a parabolic component of g is connected to u then, by

an argument in the proof of Lemma 3.10, necessarily v = g1p1up
−1
1 g−1

1 for some p1 ∈ Pi. Set

pu = p1up
−1
1 to have v = g1pug

−1
1 , where no parabolic component of g1 connected to pu. If

no parabolic component of g is connected to u then we set pu = u and g1 = g. Similarly, if a
parabolic component of g1 is connected to v ∈ Pj then there is p2 ∈ Pj and pv = p−1

2 vp2 such that

pu = g−1
2 pvg2, where g2 = p−1

2 g1 and no parabolic component of g2 is connected to pv. We set
pv = v and g2 = g1 if parabolic components of g1 are not connected to v.

Let σ′ and τ ′ represent g2, and let γ̂u and γ̂v represent pu and pv, correspondingly. Suppose that
parabolic components of σ′ and τ ′ are connected. By [36, Lemma 3.39], the connected components
have to be synchronous. Let p, q ∈ P1 ∪ P2 ∪ · · · ∪ Pm be such that pu = h−1ph, pv = fqf−1,
and let the paths σh and τh, as well as σf and τf , have no connected components. Then in the

quadrilaterals Q1 = σh ◦ γ̂u ◦ τ−1
h ◦ γp and Q2 = σf ◦ γq ◦ τ

−1
f ◦ γ̂−1

v the parabolic components are

all isolated, by an argument in the proof of Lemma 3.11(2). The claim for |pu|Γ and |pv|Γ follows
since each of Q1 and Q2 is the concatenation of two (2, 0)-quasi-geodesics. �

Corollary 3.13. Let u and v be as in the statement of Lemma 3.12, and let g be a shortest conju-
gator for u and v, so that v = gug−1. Assume that the corresponding semi-parabolic quadrilateral
Q is minimal, that is, the parabolic components of σ and τ are not connected. Then the Γ-length
of every parabolic component of g is bounded by C(3).
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Proof. The claim follows from the proof to Lemma 3.12. �

3.3. Long elements. The following theorem provides an estimate on the length of a shortest
conjugating element g for cyclic conjugates of u and v in G, if u and v are long.

Theorem 3.14. Let G be a group hyperbolic relative to a set of subgroups {P1, . . . , Pm}, and let
u and v be two elements conjugate in G. Let g ∈ G be a shortest conjugator for cyclic conjugates
u′ and v′ of u and v. Let α and β be relative cyclic (8δ + 1)-local geodesics representing u′ and
v′, correspondingly. If max{ℓα, ℓβ} > 86δ + 3 then u and v are hyperbolic elements of G, and
g ∈ B(7δ + 1, C(7, 2δ)). In particular, the length of g can be bounded above as follows:

|g|Γ ≤ (7δ + 1)C(7, 2δ).

Proof. Without loss of generality, suppose that ℓα ≥ ℓβ. Since, by Corollary 3.4, α and β are
relative cyclic (3, 2δ)-quasi-geodesics, the relative distance between the endpoints A1 and A2 of α

can be estimated in terms of the length lα as follows: dΓ̂(A1, A2) ≥
lα − 2δ

3
.

In particular, since lα ≥ 86δ + 3, the relative distance between the endpoints of α is at least
28δ + 1. If u and v are conjugate then by Lemma 3.6, there is a conjugator of the relative length
7δ + 1 or less, and it follows that the relative distance between the endpoints of β is at least
28δ + 1− 2(7δ + 1) > 14δ > 1. It follows that u and v are not parabolic elements.

The upper bound on the Γ-length of g follows from Lemma 3.6, Corollary 3.4 and Lemma 3.11(1).
�

3.4. Short elements. In this section we consider the case when u and v are such that max{lα, lβ} ≤
86δ+3. We assume that u and v are represented by relative geodesics γu and γv, and consider the
geodesic quadrilateral Qg. In this section, by a shortest conjugating element for u and v we mean
the label of a shortest relative geodesic σ joining a point on γu and a point on γv. If Qg is not a
parabolic quadrilateral and max{|γu|Γ̂, |γv |Γ̂} ≤ 4δ then we call Qg a short base quadrilateral. In
particular, every semi-parabolic quadrilateral is short base. We say that a short base quadrilateral
is minimal if it does not contain any smaller short base quadrilateral. Note that in a minimal
quadrilateral the synchronous parabolic components of the vertical sides are not connected.

Lemma 3.15. Let u and v be hyperbolic elements such that max{|γu|Γ̂, |γv|Γ̂} ≤ 4δ, and let f be

a shortest conjugating element for u and v. Then f ∈ B(K
(hyp)
4δ , C(3)), where the bound on the

relative length of f , K
(hyp)
4δ = #B(4δ, 2C(3))(16δ + 2), does not depend on u and v. In particular,

the length of f can be bounded as follows:

|f |Γ ≤ K
(hyp)
4δ C(3) = #B(4δ, 2C(3))(16δ + 2)C(3).

Proof. The quadrilateral Qf , corresponding to the equality u = fvf−1, consists of a sequence
Q1, Q2, . . . Qs of minimal short base quadrilaterals glued along their horizontal sides. We number
the minimal quadrilaterals so that the top horizontal side of Q1 is γu and the bottom horizontal
side of Qs is γv. By Lemma 3.5, the relative length of the vertical side γi of Qi is bounded as
follows: |γi|Γ̂ ≤ 12δ + 2. To bound the length of parabolic components, firstly consider each Qi

separately. We replace the horizontal sides of Qi by cyclic geodesics and replace each vertical side
of Qi by a shortest conjugator for cyclic permutations of the horizontal sides. When doing this, we
may need to replace the horizontal sides of Qi by their cyclic conjugates. Now each Qi satisfies the
conditions of Lemma 3.3 and of Lemma 3.11(1), and we conclude that the length of each parabolic
component of the vertical side of Qi is bounded by C(3), ∀i. So, if ci is a horizontal side of Qi

then ci ∈ B(4δ, 2C(3)), for all i. However, the bottom side of Qi may not be the same cyclic
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conjugate as the top of Qi+1, see Figure 2(Right). When we glue the adjusted minimal rectangles,
we may need to cyclically shift some of their horizontal sides and thus enlarge the relative length
of the vertical sides. Let Qi correspond to the equality ab = ficif

−1
i and Qi+1 correspond to the

equality ci+1 = fi+1baf
−1
i+1. We replace fi by f ′

i = a−1fi if |a|Γ ≤ |b|Γ; otherwise, we replace fi+1

by f ′
i+1 = fi+1b. The length of the parabolic components does not change. The relative length of

each vertical side can grow by 4δ at most. It follows that f ′
i ∈ B(16δ + 2, C(3)).

The horizontal sides ci of the minimal rectangles are all distinct because f is shortest possible.
Therefore, |f |Γ̂ 6 #B(4δ, 2C(3))(16δ + 2), and the claim follows. �

A careful analysis of the argument in the proof of Lemma 3.15 shows that the requirement in
the statement of the lemma that u and v be hyperbolic elements can be dropped, so long as no
horizontal side of any of the quadrilaterals Qi consists of a single parabolic component. More
precisely, we have the following.

Corollary 3.16. Let a quadrilateral Qf consist of a sequence Q1, Q2, . . . Qs of minimal short base
quadrilaterals such that in each Qi, the labels of the horizontal sides are written as hyperbolic
words and the vertical sides have identical labels. Let Q1, Q2, . . . Qs be glued along their horizontal
sides, as described in the proof of Lemma 3.15. Assume that the horizontal sides of the minimal
quadrilaterals are all distinct. Then the length of the vertical side f of Qf is bounded by the constant
from the statement of Lemma 3.15.

Definition 3.17. For each i = 1, 2, . . . ,m, we define a constant Ki as follows: if t1, t2 ∈ Pi are
conjugate in Pi and |t1|Γ, |t2|Γ ≤ C(3) then there is t ∈ Pi such that t1 = tt2t

−1 and |t|Γ ≤ Ki.

Lemma 3.18. Let u and v be parabolic elements such that max{|γu|Γ̂, |γv |Γ̂} ≤ 4δ. Assume that
if u ∈ ∪m

i=1F (Si) then |γu|Γ ≤ C(3) and similarly, if v ∈ ∪m
i=1F (Si) then |γv|Γ ≤ C(3). If h is

a shortest conjugating element for u and v then h ∈ B(K4δ ,K), where the bound on the relative

length K4δ = K
(hyp)
4δ +

m∑
i=1

|Si|
C(3) does not depend on u and v, K

(hyp)
4δ is as in Lemma 3.15 and

K = max{C(3),K1,K2, . . . ,Km} for K1,K2, . . . ,Km as in Definition 3.17. More precisely, the
length of h can be bounded as follows:

|h|Γ ≤ #B(4δ, 2C(3))(16δ + 2)C(3) +
1

2

m∑

i=1

Ki · |Si|
C(3).

Proof. With the notation from the proof of Lemma 3.15, the minimal quadrilaterals Qi can have
parabolic sides glued to parabolic quadrilaterals. In particular, some Qi may be semi-parabolic.
By Lemma 3.11(2), Corollary 3.13 and Corollary 3.16, the estimates provided in Lemma 3.15 apply
to the minimal quadrilaterals Qi. Since by Lemma 3.12 and by the assumption, the parabolic
horizontal sides of all quadrilaterals are always bounded by C(3), the Γ-length of a vertical side
in each parabolic quadrilateral is bounded by Ki for the corresponding i. Note that since h is a
shortest conjugator, the intermediate parabolic horizontal sides of the quadrilaterals are all distinct.
Hence, the number of parabolic Pi-quadrilaterals that may occur is bounded by 1

2 |Si|
C(3). The claim

follows. �

Theorem 3.19. Let G be a group hyperbolic relative to the set of subgroups P = {P1, . . . , Pm},
and let u and v be two elements conjugate in G. Let g ∈ G be a shortest conjugator for cyclic
conjugates u′ and v′ of u and v. Let α and β be (8δ + 1)-local geodesics representing u′ and v′,
correspondingly. If max{lα, lβ} ≤ 86δ + 3 and Qg is not a parabolic quadrilateral then

(1) g ∈ B(176δ + 8, C(3)), or else
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(2) u is conjugate to zu ∈ B(4δ, C(3)) by an element gu ∈ B(94δ + 5, C(3)) and v is conjugate
to zv ∈ B(4δ, C(3)) by an element gv ∈ B(94δ + 5, C(3)).

Proof. Consider the geodesic quadrilateral Qg. The estimate for the relative length of g in (1) and
for the relative length of gu and of gv in (2), as well as the existence of zu and zv in (2), follow from
Lemma 3.5. The bound on the Γ-length of the parabolic components of g, gu and gv follows from
Corollary 3.4, Lemma 3.11 and Corollary 3.13 if the parabolic components of γu and γv are not
connected, and from Corollary 3.9 if parabolic components of γu and γv are connected in Qg. �

3.5. Upper bound on the length of a conjugating element. Suppose that u ∈ F (Si), for
some i. If [u]Pi

∩Bi 6= ∅ (see section 2.2) then we set Mu = mint∈[u]Pi
∩Bi

{|y|Γ | y ∈ Pi, u = yty−1};

otherwise, we set Mu = 0. Note that if u ∈ Bi then Mu = 0 as well. We also set Mu = 0 if
u /∈ F (S1) ∪ · · · ∪ F (Sm).

Informally, Mu 6= 0 if and only if u ∈ Pi for some i, u /∈ Bi, so that u itself is not “very short”,
whereas the conjugacy class [u]Pi

of u in Pi contains “very short” elements. In this case, Mu equals
the length of a shortest y ∈ Pi that conjugates u into Bi. We define Mv similarly.

Theorem 3.20. Let G be a finitely generated group hyperbolic relative to the set of subgroups
P = {P1, . . . , Pm}, and let S1, S2, . . . , Sm be finite generating sets for the parabolic subgroups, so
that Pi = 〈Si〉 ∀i. Let u and v be conjugate in G, and let g be a shortest conjugating element for
cyclic permutations of u and v.

(1) If u and v are hyperbolic elements of G then there is an upper bound on the Γ-length of g
independent of u and v.

(2) Let u and v be parabolic, and if u ∈ F (Si) for some i then suppose that v /∈ [u]Pi
. Then

|g|Γ ≤ max{Mu +Mv, 2(94δ + 5)C(3)} +#B(4δ, C(3))(16δ + 2)C(3) +
1

2
K

m∑

i=1

|Si|
C(3),

where Mu and Mv are as above, and K is as in Lemma 3.18.

Proof. If max{lα, lβ} > 86δ + 3 then the claim follows from Theorem 3.14. Note that in this case,
u and v are hyperbolic. If u and v are hyperbolic and short, that is, max{lα, lβ} ≤ 86δ + 3, then
|g|Γ ≤ |gu|Γ+|gv|Γ+|f |Γ, where a constant bound on the length of gu, gv is given in Theorem 3.19(2),
and f is as in Lemma 3.15. This proves (1).

To prove (2), note that |g|Γ ≤ max{Mu +Mv , |gu|Γ + |gv|Γ}+ |h|Γ, where h is as in Lemma 3.18,
and a constant bound on the length of gu, gv is given in Theorem 3.19(2). It depends on whether u
and v are written as parabolic or hyperbolic words, what part of the estimate applies actually. �

Remark 3.21. In general, if u and v are written as parabolic words in G then no upper bound on
the length of g independent of u and v can be given, even if u and v are not conjugate in a parabolic
subgroup, as we assume in Theorem 3.20(2). Indeed, Mu and Mv depend on u and v, unless both
u and v are “very short”. If u and v are conjugate in a parabolic subgroup, so that v ∈ [u]Pi

for
some i then g ∈ Pi and the length of g is completely determined by the properties of Pi, which we
have no control over.

However, if the parabolic subgroups are abelian then Ki = 0,∀i (see Definition 3.17) and Mu =
Mv = 0. Therefore, the upper bound on the length of g in Theorem 3.20(2) does not depend on u
and v. Thus, we have a constant bound also in the case when u and v are parabolic.

4. Preliminary computations

In this section we explain how we compute data used in our algorithms. Neither the data nor
the computations depend on u and v.
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4.1. Solution to the word problem in parabolic subgroups is given. In this section and in
what follows we assume that solution(s) to the word problem in the parabolic subgroups of G is
part of the input of our algorithms.

In the following theorem we collect some known results.

Theorem 4.1. Let G be a finitely presented group hyperbolic relative to subgroups P1, P2, . . . , Pm.
Given a finite presentation for G, generating sets S1, S2, . . . , Sm for the parabolic subgroups and
solution to the word problem in the parabolic subgroups, one can compute the following data.

(1) A relative Dehn presentation for G and a factor N for a relative linear isoperimetric in-
equality for G (Dahmani [13, Theorem 0.1], see also [14]).

(2) A hyperbolicity constant δ for the coned-off Cayley graph Γ̂ of G.
(3) Constants C(2), C(3) and C(7, 2δ) (Osin [36]).

Proof. (2) Using the factor N from (1), we can apply results from [3], [27], [34] or [38] (see also [7,
III.H Theorem 2.1] for details) to compute a hyperbolicity constant δ for the coned-off Cayley graph

Γ̂ of G.
(3) Given a relative Dehn presentation G = 〈X,P1, . . . , Pk | R = 1, R ∈ R〉 , we find the max-

imum relative length M = maxR∈R lΓ̂(R); note that M ≤ 8δ. Next, we can compute a bound
B = B(δ, λ, ε,D) on the relative Hausdorff distance between two relative (λ, ε)-quasi-geodesics,
whose endpoints are distance D apart (see for instance, [36, Lemma 3.8]). Now, the proof of [36,
Proposition 3.15] shows that the Γ-length of an isolated parabolic component p of a relative (λ, ε)-
quasi-geodesic is bounded as follows: lΓ(p) ≤ (8λB + 2ε + 2B)MK. Here, and only here, in this
proof, K denotes the constant from [36, Lemma 3.8].

The paths that we consider are (7, 2δ)-, (3, 0)-, or (2, 0)-quasi-geodesics. Therefore, we are
interested in the following upper bounds on the length of an isolated parabolic component:

C(7, 2δ) = (56B7 + 4δ + 2B7)MK, where B7 = B(δ, 7, 2δ, 0),

C(3) = C(3, 0) = 24B3MK, where B3 = B(δ, 3, 0, 0),

C(2) = C(2, 0) = 18B2MK, where B2 = B(δ, 2, 0, 0).

�

We use the constants from Theorem 4.1(3) and the solution to the word problem in parabolic
subgroups to compute the following lists of parabolic elements:

L1 = {p ∈ F (S1) ∪ F (S2) ∪ · · · ∪ F (Sm) | |p|Γ ≤ C(2)}

L2 = {q ∈ F (S1) ∪ F (S2) ∪ · · · ∪ F (Sm) | |q|Γ ≤ C(7, 2δ)}

L3 = {p ∈ F (S1) ∪ F (S2) ∪ · · · ∪ F (Sm) | |p|Γ ≤ C(3)}.

Recall that B(r1, r2) denotes the set of those elements of G whose relative length does not exceed
r1 and the length of each parabolic component is bounded above by r2 (see section 2.2). Clearly,
there are finitely many such elements and we can effectively enumerate all of them. So, we use the
solution to the word problem in G and the lists L1 and L2 to compute the following subsets of the
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Cayley graph Γ of G:

L4 = B(7δ + 1, C(7, 2δ))

L5 = B(16δ + 1, C(2))

L6 = B(2(274δ + 9), C(7, 2δ))

L8 = {w ∈ F (S) | w ∈ B(86δ + 3, 2C(3)), and w is a relative geodesic};

L9 = {w ∈ F (S) | |w|Γ ≤ 4δC(3)}.

4.2. Solution to the conjugacy problem in parabolic subgroups is given.

Proposition 4.2. Let G be a group hyperbolic relative to P = {P1, . . . , Pm}, and let S = S0 ∪
S1 ∪ · · · ∪ Sm be a generating set for G such that Pi = 〈Si〉, for all i = 1, 2, . . . ,m. Suppose that
solutions to the word problem and to the conjugacy problem in each one of the parabolic subgroups
are given. Then there is an algorithm to compute the bounded conjugacy classes

BCC = {[w]B(4δ,C(3)) | w ∈ B(4δ, C(3))}.

In particular, we can compute the list L11 ⊂ L3 × L3 of all the pairs (p, q) of conjugate elements
p, q ∈ L3 and a set of conjugating elements L7 = {gpq ∈ G | q = gpqpg

−1
pq , (p, q) ∈ L11}.

Proof. Let Bi = Pi ∩ L3 be the set of the elements of length at most C(3) in Pi. Firstly, using the
soluton to the conjugacy problem in the parabolic subgroups, we compute the bounded conjugacy
classes {[p]Pi

∩ Bi | p ∈ Bi, i = 1, 2, . . . ,m} of very short elements of Pi, for each i. We can
also find a conjugating element for each pair q1, q2 ∈ [p]Pi

∩ Bi, ∀p ∈ Bi, i = 1, 2, . . . ,m. This
allows us to compute the constants Ki from definition 3.17. Now we can apply Lemma 3.18 to
compute [p]B(4δ,C(3)) ∀p ∈ Bi,∀i. More precisely, we conduct exhaustive search of all the elements
in [p]B(4δ,C(3)) by taking all the elements h ∈ B(K4δ,K) (with the notation of Lemma 3.18) and

checking for each one of them whether or not h−1ph = w for some w ∈ B(4δ, C(3)). In particular,
if w ∈ L3 then we add the pair (p,w) to L11 and h to L7. According to Lemma 3.11(2) and
Lemma 3.3(2), if w ∈ B(4δ, C(3)) is a parabolic element of G then necessarily it is conjugate to
some p ∈ L3. Therefore, the argument in the proof of Lemma 3.18 implies that the exhaustive
search procedure described above provides all the conjugacy classes of parabolic elements in BCC.

It remains to compute the bounded conjugacy classes [w]B(4δ,C(3)) of all the hyperbolic elements

w ∈ B(4δ, C(3)) \
⋃

p∈L3

[p]B(4δ,C(3)).

This can be done using the estimate from Lemma 3.15.
�

For our solution to the conjugacy problem we also need to pre-compute the following sets:

L88 = {(w1, w2) ∈ L8 × L8 | w1, w2 are conjugate in G};

L10 = {w ∈ L8 | (w, q) ∈ L88 with q ∈ L3}.

For our solution to the conjugacy search problem, we also need to pre-compute the set

L12 = {gwz ∈ G | z = gwzwg
−1
wz , (w, z) ∈ L88}

of conjugating elements for the pairs from L88.
We need the estimate from Lemma 3.5 and the set BCC from Proposition 4.2 to compute L88.

Then it is straightforward to find L10 and L12.
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5. Algorithms

5.1. Curve shortening. The complexity of the algorithms below depends on the (maximum)

complexity O(C
(par)
w (n)) of the solution to the word problem in the parabolic subgroups. Some

algorithms use the solution to the conjugacy problem in the parabolic subgroups; we denote the

(maximum) complexity of that by O(C
(par)
c (n)). Finally, the algorithm for the conjugacy search

problem uses the solution to the conjugacy search problem in parabolic subgroups, the complexity

of which we denote by O(C
(par)
search(n)).

The following lemma is proved in [16].

Lemma 5.1. (Farb) Let G be a relatively hyperbolic group defined by a Dehn presentation, and
suppose that solution to the word problem in parabolic subgroups is given. There is an algorithm that
takes as input a relative Dehn presentation G = 〈S0, P1, . . . , Pk | R = 1, R ∈ R〉 , finite generating
sets S1, S2, . . . , Sm for the parabolic subgroups and a word in the generators wu ∈ F (S), where
S = ∪m

i=0Si, and computes a relative (8δ + 1)-local geodesic ρ such that lab(ρ) = u in G; here u is
the element of G defined by wu.

If the complexity of the word problem in parabolic subgroups is O(C
(par)
w (n)) then the complexity

of the algorithm is O(C
(par)
w (L̄) log L̄), where L̄ = |wu|S is the length of the word wu in F (S).

Proof. We give a sketch of the proof here. Let k = 8δ + 1.
First, using the solution to the word problem in parabolic subgroups, we replace every maximal

parabolic component of wu by a geodesic word in L1, whenever possible; we call w̄u the word that
we obtain in this way. A maximal parabolic component of wu is identified as a maximal subword in
F (Si) for some i; the total length of the parabolic subwords of wu is bounded above by L̄ = |wu|S .

Therefore, the complexity of this procedure is O(C
(par)
w (L̄)).

We replace w̄u with a relative k-local geodesic ρ, as follows. If the word w̄u is not (the label
of) a relative k-local geodesic then it has a subword z of length at most k so that every subword
of z is a relative geodesic but z is not a relative geodesic. It follows that z is a relative 2-quasi-
geodesic. Let y be a relative geodesic joining the endpoints of z. One shows that every parabolic
component in the path zy−1 is isolated. Therefore, lΓ(zy

−1) ≤ (k + k − 1)C(2) = (16δ + 1)C(2),
or zy−1 ∈ L5. So, to obtain a relative (8δ + 1)-local geodesic ρ, it suffices to replace every longer
part of a word in L5 by its shorter part, whenever it occurs in w̄u. It may happen that after a
replacement two or three parabolic components merge: for instance, having replaced x in a subword
xp, we could obtain wqp with q and p in the same parabolic subgroup. In this case we replace
the new maximal parabolic component qp by a geodesic word in L1, if possible, and continue the

computation. According to [16, Theorem 3.7], the computation time is O(C
(par)
w (L̄) log L̄), and the

worst case scenario occurs when the path labelled by wu backtracks often, that is, it visits the same
left coset of a parabolic subgroup many times. �

Corollary 5.2. With the notation of Lemma 5.1, the Γ-length of the relative (8δ+1)-local geodesic
ρ can be bounded as follows: lΓ(ρ) < C(2)|wu|S.

Proof. Clearly, the relative length of ρ does not exceed the relative length of the path labelled by
wu. The upper bound on the Γ-length of ρ could be attained if wu had no parabolic components
of length greater than one, while every subword of ρ of relative length 1 was a parabolic word of
Γ-length C(2). �

Proposition 5.3. With the notation and assumptions of Lemma 5.1, there is an algorithm to
compute a relative cyclic (8δ + 1)-local geodesic α such that lab(α) ∈ [u]G; the computation time
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Figure 3. Cyclic curve shortening, see Proposition 5.3.

is O(L̄C
(par)
w (L̄)). Moreover, the algorithm also finds a ∈ G such that lab(α) = a−1ua, and the

Γ-length of a is bounded as follows: |a|Γ ≤ C(2)|wu|S.

Proof. If u is not cyclically reduced, so that u = a′u′a′−1 for some a′ 6= 1, then we apply the
free reduction; let the subpath ρ0 of ρ be such that lab(ρ0) = u′ = a′−1ua′ is cyclically reduced.
To compute the relative cyclic (8δ + 1)-local geodesic α and a conjugating element a such that
lab(α) = a−1lab(ρ)a, we apply the procedure from Lemma 5.1 to the concatenation ρ0 ◦ ρ0.

If the concatenation ρ0 ◦ ρ0 is not a relative (8δ + 1)-local geodesic then necessarily there is a
’tail’ ν0 and a ’head’ η0 of ρ0 such that the following conditions hold, see Figure 3:

(1) ρ0 = η0 ◦ ρ̄0 ◦ ν0;
(2) every proper subpath of ν0 ◦ η0 is a relative geodesic but ν0 ◦ η0 is not a relative geodesic;
(3) the relative length of ν0 ◦ η0 does not exceed 8δ + 1.

Since ρ0 is a relative (8δ + 1)-local geodesic, both η0 and ν0 are nontrivial paths; in particular,
the relative length of η0 does not exceed 8δ. We replace ν0 ◦ η0 with a relative geodesic ν̄0. By
an argument due to Farb, ν0 ◦ η0 and ν̄0 form a pair of relative (2, 0) quasi-geodesics that do not
have connected parabolic components (cf. the proof of Lemma 5.1). It follows that the length of
every parabolic component of η0 is bounded by C(2). We set a0 = lab(η0), then a0 ∈ B(8δ, C(2)),
in particular, |a0|Γ ≤ 8δC(2).

Let ρ′1 = ρ̄0 ◦ ν̄0. Note that lab(ρ′1) = a−1
0 lab(ρ0)a0 = a−1

0 u′a0 = a−1
0 a′−1ua′a0. We replace ρ′1

with a relative (8δ+1)-local geodesic ρ1 with the same endpoints as ρ′1 and continue with ρ1◦ρ1 in a
similar way. Namely, we identify ν1, and η1 that satisfy the conditions (1)-(3) above, and then find ν̄1
and ρ2; note that lab(ρ2) = a−1

1 lab(ρ1)a1 = a−1
1 a−1

0 u′a0a1. After a number s of iterations we obtain

a relative (8δ+1)-local geodesic path ρs◦ρs such that lab(ρs) = a−1
s . . . a−1

1 a−1
0 a′−1ua′a0a1 . . . as. We

set α = ρs and a = a′a0a1 . . . as. The argument, that was applied above to the parabolic components
of η0 and the length of a0, appllies to ηi and ai for all i. Therefore, |ai|Γ ≤ 8δC(2),∀i = 0, 1, . . . , s.
The number s of iterations does not exceed L̄ because lρ0 ≤ L̄ and li ≤ l′i < li−1, where li = lρi and
l′i = lρ′

i
, for all i = 1, 2, . . . , z. Note that a′ is a subword of wu. Thus, |a|Γ ≤ 8δC(2)|wu|S = 8δC(2)L̄.

To compute the time complexity, it remains to show that the complexity of the replacement of ρ′i
with ρi is bounded above by O(C

(par)
w (n)). Note that ρ′i is the concatenation of two relative (8δ+1)-

local geodesics. By Lemma 3.7, relative (8δ + 1)-local geodesics do not backtrack. Therefore, in
the curve shortening procedure, we may only need to replace each parabolic component of ρ′i with
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shorter parabolic components a globally bounded number of times. The total length n1+n2+· · ·+nt

of the parabolic components of ρ′i does not exceed L̄, so that we have

Σt
i=1O(C(par)

w (ni)) ≤ O(C(par)
w (n1 + n2 + · · ·+ nt)) ≤ O(C(par)

w (L̄)).

�

Theorem 5.4. Let G be a group, hyperbolic relative to the set of subgroups P = {P1, . . . , Pm}. Let
S = ∪m

i=0Si be a finite generating set for G such that Pi = 〈Si〉 for i = 1, 2, . . . ,m. Let F (S) be
the free group on S. There is an algorithm that, given a relative Dehn presentation for G, solution
to the word problem in the parabolic subgroups and a word wu ∈ F (S), decides whether or not the
element u ∈ G, defined by the word wu, is a hyperbolic or a parabolic element of G. Moreover, if u
is parabolic then the algorithm finds q ∈ F (S1) ∪ · · · ∪ F (Sm) conjugate to u.

The time complexity of the algorithm is O(L̄C
(par)
w (L̄)), where L̄ = |wu|S.

Proof. By Proposition 5.3, we can assume that u is represented by a relative cyclic (8δ + 1)-local
geodesic path α; let w̄u = lab(α). If w̄u is a word in Si for some i then clearly, u is parabolic in
G. If w̄u /∈ F (Si) for all i, then u is parabolic only if it is conjugate to an element q of one of
the subgroups from P. By Theorem 3.14, u is parabolic only if ℓα ≤ 86δ + 3. So, assume that
α is relatively short and does not consist of a single parabolic component. Let γu be a relative
geodesic joining the endpoints of α, then by Lemma 3.7, γu cannot consist of a single parabolic
component. Clearly, |γu|Γ̂ ≤ 86δ + 3. Consider the geodesic quadrilateral Qg. By Lemma 3.8, if
in Qg a parabolic component of γu is connected to q then necessarily u = q in G. In this case,
since γu is a relative geodesic representing u, it consists of a single parabolic component, which is
a contradiction. Therefore, no parabolic component of γu is connected to q. Hence, we can apply
Lemma 3.11 and Lemma 3.3(2) to show that |q|Γ ≤ C(3), and the Γ-length of every parabolic
component of a shortest conjugating element g is bounded by C(3). We conclude that the Γ-length
of every parabolic component of γu is bounded by 2C(3), so that γu ∈ L8.

Thus, there is an algorithm to decide whether or not wu represents a parabolic element, as
follows:

(1) Compute a relative cyclic (8δ + 1)-local geodesic path α, using Lemma 5.1 and Proposi-

tion 5.3; this takes O(L̄C
(par)
w (L̄)) steps. If ℓα > 86δ + 3 then u is not a parabolic element.

(2) If ℓα ≤ 86δ + 3 but α does not consist of a single parabolic component then check whether
there is w ∈ L10 such that w̄u = w. The given element u is parabolic if and only if such w
exists. There are finitely many equalities to check, so that the complexity of this part of

the algorithm is O(C
(par)
w (L̄) log L̄), the same as the complexity of the word problem in G.

The complexity of the algorithm is O(L̄C
(par)
w (L̄)), because the two parts of it apply one after

another. �

5.2. Conjugacy problem.

Convention 5.5. In this section, the following data is considered input of our algorithms.

(i) A relative Dehn presentation 〈S0, P1, . . . , Pm | R〉 of a finitely generated relatively hyper-
bolic group G, along with finite generating sets Si for parabolic subgroups: Pi = 〈Si〉 for
i = 1, 2, . . . ,m. We denote by S the finite generating set S = ∪m

i=0Si for G;

(ii) Solution(s) to the word problem in the parabolic subgroups; let C
(par)
w (n) denote the (max-

imum) complexity of these procedures;
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(iii) Two words wu, wv ∈ F (S), where F (S) is the free group on S. The maximum length
L̄ = max{|wu|S , |wv |S} of these words is considered the length of the input. We denote by
u and v the elements of G, defined by the words wu and wv, respectively.

(iv) We assume that relative cyclic (8δ +1)-local geodesic paths α and β with w̄u = lab(α) and
w̄v = lab(β), such that w̄u ∈ [u]G and w̄v ∈ [v]G, have already been computed; recall that

this computation takes O(L̄C
(par)
w (L̄)), according to Proposition 5.3. We have the following

inequality: L = max{lα, lβ} ≤ L̄.

In the following theorem we describe an efficient algorithm to solve the conjugacy and the
conjugacy search problem for “long” elements. Notably, solution to the conjugacy (search) problem
in parabolic subgroups is not needed in this case.

Theorem 5.6. There is an algorithm which takes as input all of the data listed in Convention 5.5,
checks the value of L and proceeds as follows. If L < 86δ +3 then it stops. If L ≥ 86δ +3 then the
algorithm decides whether or not u and v are conjugate in G. Moreover, if u and v are conjugate
then a conjugating element for w̄u and w̄v will be found. The time complexity of the algorithm is

O(L̄2C
(par)
w (L̄) log L̄).

Proof. If w̄u and w̄v are conjugate in G then by Theorem 3.14, there is a conjugating element g ∈ L4.
The cardinality of L4 is a constant that does not depend on u and v. Try every element x ∈ L4,
with all the cyclic permutations of α and β. For each x there are at most L2 products xũx−1ṽ−1,
where ũ = lab(α̃) and ṽ = lab(β̃) are the labels of cyclic permutations of α and β, correspondingly.

Furtermore, it takes O(C
(par)
w (L) logL) steps to decide whether or not xũx−1ṽ−1 = 1. Since L ≤ L̄,

the claim follows. �

The case when u and v are “short”, which means that L < 86δ + 3, is somewhat different. Note
that we only assume that the relative length of u and v is bounded, while their Γ-length cannot be
bounded in general. However, one can overcome this obstacle, as the following lemma shows.

Lemma 5.7. Assume that L < 86δ + 3 and that u and v are hyperbolic elements of G. If u and v
are conjugate in G then one of the following holds.

(1) There is a conjugating element g ∈ L2 for cyclic permutations of w̄u and w̄v.
(2) There are relative geodesics γu and γv with the same endpoints as α and β, correspondingly,

such that lab(γu), lab(γv) ∈ L8.

Proof. Let γu (or γv) be a relative geodesic connecting the endpoints of α (or β). Clearly,

max{|γu|Γ̂, |γv |Γ̂} ≤ L < 86δ + 3.

By assumption, w̄u and w̄u are conjugate, so we consider the corresponding geodesic quadrilateral
Qg. If in Qg parabolic components of γu and γv are connected then it follows from Lemma 3.8 that
cyclic permutations of w̄u and w̄u are conjugate by some g ∈ L2. If no parabolic components of
γu and γv are connected then it follows from Lemma 3.11(1) and Lemma 3.3(2) that the Γ-length
of every parabolic component of g is bounded by C(3). We conclude that the Γ-length of every
parabolic component of γu and of γv is bounded by 2C(3), hence γu, γv ∈ L8. �

Theorem 5.8. There is an algorithm that takes as input all of the data listed in Convention 5.5,
decides for each one of u and v whether the element is hyperbolic or parabolic, and then does the
following.

(1) If one of u and v is hyperbolic and the other one is parabolic in G then the algorithm stops.
Clearly, u and v are not conjugate. The time complexity of the procedure in this case is

O(L̄C
(par)
w (L̄)).
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(2) If both u and v are hyperbolic then the algorithm decides, whether or not u and v are
conjugate. Moreover, if u and v are conjugate then the algorithm finds a conjugating element
for some representatives of the conjugacy classes [u]G and [v]G. The time complexity of the

procedure in this case is O(L̄2C
(par)
w (L̄) log L̄).

(3) If both u and v are parabolic then the algorithm needs also solution to the conjugacy prob-
lem for each one of the parabolic subgroups of G to decide, whether or not u and v are

conjugate. If O(C
(par)
c (n)) is the (maximum) time complexity of solution to the conju-

gacy problem in a parabolic subgroup of G then the time complexity of this procedure is

max{O(C
(par)
c (L̄)), O(L̄C

(par)
w (L̄))},

Proof. By Theorem 5.4, we can decide whether each one of u and v is a hyperbolic or a parabolic
element. If the results differ then u and v are not conjugate in G, and we have (1). Otherwise, we
proceed as follows.

(2) If L ≥ 86δ + 3 then we apply the algorithm from Theorem 5.6. If L < 86δ + 3 and w̄u and
w̄v are not conjugate by g ∈ L2, then by Lemma 5.7, for w̄u and w̄v be conjugate, the following
conditions have to hold. There exist two relative geodesics, γu and γv, such that their labels
z̄u = lab(γu) and z̄v = lab(γv) are in L8, and we have that z̄u = w̄u and z̄v = w̄v in G. Moreover,
the pair (z̄u, z̄v) has to be in L88; if this is the case then there is a conjugating element for z̄u and
z̄v in L12. If at least one of these conditions fails then u and v are not conjugate in G.

One checks in time O(L̄2C
(par)
w (L̄) log L̄) whether or not w̄u and w̄v are conjugate by some g ∈ L2,

the complexity is the same as that from Theorem 5.6. If there is no conjugating element g ∈ L2,
that is, the case of Lemma 5.7(2) occurs, then one only needs to check finitely many equalities,
using the results of preliminary computations.

(3) By Theorem 5.4, we have qu, qv ∈ F (S1) ∪ F (S2) ∪ · · · ∪ F (Sm) such that qu ∈ [u]G and
qv ∈ [v]G; possibly, qu = w̄u or qv = w̄v. If qu, qv ∈ F (Si) for some i then we use the solution
to the conjugacy problem in Pi to determine whether they are conjugate in Pi. If [qu]Pi

= [qv]Pi

then u and v are conjugate in G. If qu and qv are not conjugate in Pi then it is still possible that
they are conjugate by an element in G \ Pi. We proceed as follows. Let qu ∈ Pi and qv ∈ Pj

(possibly, i = j). We try to construct a semi-parabolic geodesic quadrilateral Qg with qu and qv
as its top and bottom horizontal sides. By Lemma 3.12, if such Qg exists then [qu]Pi

∩ L3 6= ∅ and
[qv]Pj

∩L3 6= ∅; otherwise, u and v are not conjugate in G. So, suppose that there are pu ∈ [qu]Pi
∩L3

and pv ∈ [qv]Pj
∩ L3. By Proposition 4.2, u and v are conjugate if and only if (pu, pv) ∈ L11. Note

that conjugating elements for the pairs in L11 are collected in L7.
Using the solution to conjugacy problem in the parabolic subgroups #Bi and #Bj times (recall

that Bi = Pi ∩ L3,∀i), it will take O(C
(par)
c (L̄)) steps to find pu ∈ [qu]Pi

∩ L3 and pv ∈ [qv]Pj
∩ L3,

or to make sure that at least one of the intersections is empty. The complexity of the algorithm

from Theorem 5.4 is O(L̄C
(par)
w (L̄)). The other procedures in this case have either the same or

lower complexity. �

5.3. Conjugacy Search Problem. Recall that in a countable group with solvable word problem,
the conjugacy search problem is always solvable: enumerate all the elements of G and substitute
them one after another into the equation xux−1 = v. Since a solution exists, it will be found. This
is why in the Theorem 5.9 below we do not assume that solution to the conjugacy search problem
in the parabolic subgroups of G is given. However, the estimate for the time complexity of our
algorithm refers to the time complexity of the conjugacy search problem in parabolic subgroups.
Indeed, in some cases a better algorithm for the parabolic subgroups may exist. For instance, if a
parabolic subgroup P is abelian then the conjugacy search problem in it can be solved instantly,
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because [p]P = [q]P ⇔ p = q and any g ∈ P is a conjugating element. We denote the (best

possible) “parabolic” complexity by O(C
(par)
search(n)). On the other hand, our algorithm for the

conjugacy search problem in G uses solution to the conjugacy problem in parabolic subgroups if
the given elements are parabolic, see Theorem 5.9(2).

Theorem 5.9. There is an algorithm which takes as input all of the data listed in Convention 5.5
and the information that u and v are conjugate in G, decides whether u and v are hyperbolic or
parabolic, and then does the following.

(1) If u and v are hyperbolic elements of G then the algorithm finds a conjugating element for

u and v. The time complexity of the algorithm in this case is O(L̄2C
(par)
w (L̄) log L̄).

(2) If u and v are parabolic elements of G then the algorithm needs also solution(s) to the
conjugacy problem for each one of the parabolic subgroups of G to find a conjugating element

for u and v. If O(C
(par)
c (n)) is the (maximum) time complexity of these solutions then the

time complexity of the algorithm is max{O(C
(par)
c (L̄)), O(C

(par)
search(L̄)), O(L̄C

(par)
w (L̄))}.

Proof. An algorithm to determine whether a given element x ∈ G is hyperbolic or parabolic is
described in Theorem 5.4.

(1) Recall that by Convention 5.5(iv), we assume that we have already computed relative cyclic
(8δ +1)-local geodesics α and β with the labels w̄u = lab(α) and w̄v = lab(β), such that w̄u ∈ [u]G
and w̄v ∈ [v]G. By the proof of Proposition 5.3, the procedure provides elements au and av such
that u = auw̄ua

−1
u and v = avw̄va

−1
v . The algorithm described in the proof of Theorem 5.8(2)

provides an element g ∈ G such that w̄v = gw̄ug
−1. We conclude that v = (avga

−1
u )u(avga

−1
u )−1.

The complexity in this case is O(L̄2C
(par)
w (L̄) log L̄), that of the algorithm from Theorem 5.8(2);

the complexity of the algorithm from Proposition 5.3 is lower.
(2) By Theorem 5.4, u and v are conjugate to parabolic elements qu and qv, correspondingly;

possibly, w̄u = qu and w̄v = qv. If the latter equalities fail, which means that w̄u and w̄v are written
as hyperbolic words, then conjugating elements for w̄u and qu as well as for w̄v and qv can be found
using the algorithm from Theorem 5.4.

Now, if qu, qv ∈ F (Si) for some i then the solution to the conjugacy problem in Pi allows us
to determine whether or not qu and qv are conjugate in Pi. If they are conjugate then we can
find a conjugating element for qu and qv in Pi, using an available algorithm for the conjugacy
search problem in Pi. If qu ∈ Pi and qv ∈ Pj are not conjugate in a parabolic subgroup then,
by Lemma 3.12, there are elements pu ∈ [qu] ∩ Bi and pv ∈ [qv] ∩ Bj . Using the solution to the
conjugacy problem (finitely many times) and the solution to the conjugacy search problem in the
parabolic subgroups, we find pu, pv and corresponding conjugating elements. Whereas the elements
pu and pv may not be unique, (pu, pv) ∈ L11 and a conjugating element for pu and pv is in L7 in
any case, according to Proposition 4.2.

We apply the algorithm from Theorem 5.4 and then we use solutions to the conjugacy problem
and to the conjugacy search problem in parabolic subgroups. Each algorithm is applied finitely
many times; the estimate for the complexity follows. �

The following theorem is immediate from Theorem 5.9.

Theorem 5.10. There is an algorithm which takes as input all of the data listed in Convention 5.5,
solution to the conjugacy problem in the parabolic subgroups and the information that u and v are
conjugate in G, and finds a conjugating element for u and v. If in parabolic subgroups the word prob-

lem can be solved in time O(C
(par)
w (n)), the conjugacy problem can be solved in time O(C

(par)
c (n)),
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and the conjugacy search problem can be solved in time O(C
(par)
search(n)) then the time complexity of

the algorithm is Tsearch(L̄) = max{O(C
(par)
c (L̄)), O(C

(par)
search(L̄)), O(L̄2C

(par)
w (L̄) log L̄)}.

As another application, we have the following generalization of Proposition 4.2.

Theorem 5.11. Let G be a group hyperbolic relative to P = {P1, . . . , Pm}, and let S = S0 ∪ S1 ∪
· · · ∪ Sm be a generating set for G such that Pi = 〈Si〉, for all i = 1, 2, . . . ,m. Suppose solutions
to the word problem and to the conjugacy problem in each one of the parabolic subgroups are given.
Then there is an algorithm that, given u ∈ F (S) and a positive integer N , computes the ball BN of
radius N in the Cayley graph Γ = Γ(G;S) and the bounded conjugacy class [u]G ∩BN . Moreover,
the algorithm computes a conjugating element for each pair x, y ∈ [u]G ∩BN .

Proof. By [16, Theorem 3.7] (see Theorem 1.3), G has solvable word problem, so that the ball
BN can be computed. Since the ball BN is finite, the bounded conjugacy class [u]G ∩ BN can
be computed using the algorithm from Theorem 5.8. Conjugating elements can be computed by
Theorem 5.10. �
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