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Abstract

In this paper we study group actions on hyperbolic Λ-metric spaces,
where Λ is an ordered abelian group. Λ-metric spaces were first introduced
by Morgan and Shalen in their study of hyperbolic structures and then
Chiswell, following Gromov’s ideas, introduced the notion of hyperbolicty
for such spaces. Only the case of 0-hyperbolic Λ-metric spaces (that is, Λ-
trees) was systematically studied, while the theory of general hyperbolic
Λ-metric spaces was not developed at all. Hence, one of the goals of the
present paper was to fill this gap and translate basic notions and results
from the theory of group actions on hyperbolic (in the usual sense) spaces
to the case of Λ-metric spaces for an arbitrary Λ. The other goal was to
show some principal difficulties which arise in this generalization and the
ways to deal with them.

1 Introduction

In this paper we introduce and study group actions on hyperbolic Λ-metric
spaces. This is a natural development of the theory of groups acting on Λ-
trees. We extend some ideas of Morgan, Shalen, Bass, Chiswell, and Gromov to
hyperbolic metric spaces, where the metric takes values in an arbitrary ordered
abelian group Λ.

Motivation. This research stems from several areas. Firstly, it is a very
natural generalization of the theory of groups acting on Λ-trees. It turned out
that in the study of group actions on Λ-trees is convenient sometimes to take
a wider look and consider actions on hyperbolic Λ-metric spaces. This makes
results much more general, but also more elegant and sometimes shorter. Sec-
ondly, this gives a new approach to general hyperbolicity and a new framework
to study groups acting on hyperbolic Λ-spaces. Thus, Gromov hyperbolic groups
can be viewed as Z-hyperbolic, Fuchsian groups as well as Kleinean groups, as
R-hyperbolic etc. New interesting classes of Λ-hyperbolic groups appear as a re-
sult of various “limit” constructions. Recall, that limit groups (which are limits
of free groups in Gromov-Hausdorff metric) are Zn-free, that is, they act freely
on Zn-trees [10, 17], which is one of the crucial properties of these groups. Sim-
ilarly, limits of torsion-free Gromov hyperbolic groups are Zn-hyperbolic [18].
Moreover, various non-standard versions of hyperbolic groups (ultrapowers of
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hyperbolic groups and their subgroups) also act nicely on hyperbolic Z̃-spaces,
where Z̃ is the group of non-standard integers (Z̃ is an ultrapower of Z). Thirdly,
we believe that this framework gives a unified approach to several open problems
related to model theory of hyperbolic groups, questions on algebraic structure
of subgroups of hyperbolic groups and relatively hyperbolic groups, construc-
tions of effective versions of asymptotic cones of hyperbolic-like groups and some
others.

Results. We lay down foundations of the theory in Sections 2 and 3.
Let Λ be an ordered abelian group. In Section 2 we discuss hyperbolic

Λ-metric spaces. In fact, this notion is not new, in [16] Morgan and Shalen
defined Λ-metric space for an arbitrary Λ, while in [3] Chiswell, following Gro-
mov’s ideas, gave a definition of a hyperbolic Λ-metric space. We show that
most of the classical definitions of hyperbolicity remain valid and equivalent in
the general case, which gives the base for the whole study. We introduce the
notion of a boundary of a hyperbolic Λ-metric space and establish some of its
basic properties which we use throughout the paper. In Section 2.6 we study
isometries of hyperbolic Λ-metric spaces. The results are more technical and
proofs are more involved than both in the case of isometries of Λ-trees and the
classical R-hyperbolic spaces, since in the general case one has to accommodate
the both of these. The following result (Theorem 2 in Section 2.6) is a crucial
result here which gives classification of isometries in the general setting. Let
(X, d) be a geodesic δ-hyperbolic Λ-metric space. Then every minimal isometry
of X is either elliptic, or parabolic, or hyperbolic in the case when Λ = 2Λ,
and is either elliptic, or parabolic, or hyperbolic, or an inversion when Λ 6= 2Λ.
We have (see Section 2.6) a more detailed description of isometries and their
properties in two principle cases, when Λ is equal to either Rn, or Zn (both
with the right lexicographic order). We conclude Section 2 with examples of
hyperbolic Λ-metric spaces.

In Section 3 we, following ideas of Lyndon and Gromov we introduce group
based hyperbolic length functions with values in Λ. From this view-point Lyn-
don’s length functions are 0-hyperbolic, and our general hyperbolic length func-
tions occur when the Lyndon’s 0-hyperbolicity axiom is replaced by a general
one that corresponds to the hyperbolicity condition on the Gromov’s products
(which can be easily expressed in terms of the length functions). Chiswell in
[3] showed that groups with Lyndon length functions l : G → R (and an extra
axiom) are precisely those ones that act freely on R-trees, and later Morgan and
Shalen generalized his construction in [16] to arbitrary Λ (we refer the reader
to the book [3] for details). In Section 3.1 we show how an action of a group G
by isometries on a (hyperbolic) Λ-metric space naturally induces a (hyperbolic)
length function on G with values in Λ. And in Section 3.2 we prove the converse,
thus establishing equivalence of these two approaches. In the end of Section 3
we give examples of groups acting on hyperbolic Λ-metric spaces. This gives,
as in the classical Bass-Serre theory of groups acting on trees, an equivalent
approach to study group actions on hyperbolic Λ-metric spaces.

In Section 4 we consider kernels of hyperbolic length functions. Let G be a
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group with a length function l : G→ Λ. For a fixed convex subgroup Λ0 6 Λ one
can define the Λ0-kernel of G by GΛ0

= {g ∈| l(g) ∈ Λ0}, which is a subgroup
of G. If the hyperbolicity constant δ is greater then any element in Λ0 (that
is, δ 6∈ Λ0) then the restriction of the function l to GΛ0

becomes δ-hyperbolic,
in other words, l does not say much about the Λ0-kernel. This shows that if Λ
is not archimedean then all elements in G of length “infinitely smaller” than δ
become invisible for the function l, so the δ-hyperbolicity axiom does not impose
any restrictions on them. To deal with this on the group level we use the idea
of a group which is hyperbolic relative to a subgroup (see below).

It turns out that for a non-Archimedean Λ group actions on hyperbolic Λ-
metric spaces can be quite cumbersome, they might have rather strange prop-
erties that do not occur in the classical situations. In Section 5 with introduce
several natural types of group actions and the corresponding length functions:
regular, complete, free, and proper. The axioms on length functions associated
with these action types shed some light on the algebraic structure of the un-
derlying groups. In particular, in Section 4 we consider actions of a finitely
generated group G on a geodesic δ-hyperbolic R-metric space (X, d) and show
(Theorem 9) that if the action is “nice” (regular and proper) then G is weakly
hyperbolic (in the sense of Farb, and Osin [5, 19]) relative to the kernel of the
associated length function. This is an analog of the classical result on hyperbol-
icity of groups acting “nicely” on hyperbolic metric spaces. We refer the reader
to Section 6 for some interesting applications of this result.

In Section 7 we investigate how one can “complete” a given non-geodesic
hyperbolic Z-metric space X to a geodesic one, that is, how one can construct
a geodesic hyperbolic Z-metric space X which X (quasi-)isometrically embeds
into. According to Bonk and Schramm, any δ-hyperbolic Z-metric space embeds
isometrically into a complete geodesic δ-hyperbolic R-metric space (see [2]), but
unfortunately this completion does not have to be a Z-metric space. For a
given hyperbolic Z-metric space X we introduce two Z-completions of X which
we call Γ1(X) and Γ2(X). Our constructions will have, compared to Bonk
and Schramm’s, the disadvantage that the hyperbolicity constant will increase.
However, they will have the advantage that isometries, embeddings and quasi-
isometries of X extend easily and that boundaries are easy to work with.

2 Hyperbolic Λ-metric spaces

2.1 Ordered abelian groups

In this section we only mention some definitions and facts that are crucial for
understanding of the main concepts of the paper. For details on ordered abelian
groups we refer to books [6, 14, 8].

An ordered abelian group is an abelian group Λ (with addition denoted by
“+”) equipped with a linear order “6” such that the following axiom holds:

(OA) for all α, β, γ ∈ Λ, α 6 β implies α+ γ 6 β + γ.
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An abelian group Λ is called orderable if there exists a linear order “6” on
Λ, satisfying the condition (OA) above. In general, Λ can be ordered in many
different ways. In what follows Λ always denotes an ordered abelian group.

If A and B are ordered abelian group then their direct sum A ⊕ B can
be ordered with the right lexicographic order, where one compares first the
right components of two pairs and if they are equal than the left ones, that is,
(a, b) 6 (c, d) if and only if either b < d, or b = d and a 6 c. Similarly, one can
define the left lexicographic order on A⊕B. Throughout the paper we consider
only the right lexicographic order. Furthermore, the direct powers Zn and Rn,
if not said otherwise, are always considered in the right lexicographic order.

An ordered abelian group Λ is called discretely ordered or discrete if Λ has a
minimal positive element, which we denote by 1. It will be always clear from the
context whether 1 represents a natural number, or the minimal positive element
of Λ. If Λ is discrete then for any α ∈ Λ the following hold:

(1) α+ 1 = min{β | β > α},

(2) α− 1 = max{β | β < α}.

Notice, that Zn is discretely ordered for any n > 0, but Rn is not.
Sometimes we would like to be able to divide elements of Λ by non-zero

integers. To this end we fix a canonical order-preserving embedding of Λ into
an ordered divisible abelian group ΛQ and identify Λ with its image in ΛQ. The
group ΛQ is the tensor product Q ⊗Z Λ of two abelian groups (viewed as Z-
modules) over Z. One can represent elements of ΛQ by fractions λ

m
, where λ ∈

Λ,m ∈ Z,m 6= 0, and two fractions λ
m

and µ
n
are equal if and only if nλ = mµ.

Addition of fractions is defined as usual, and the embedding is given by the map
λ → λ

1 . The order on ΛQ is defined by λ
m

> 0 ⇐⇒ mλ > 0 in Λ. Obviously,
the embedding Λ → ΛQ preserves the order. It is easy to see that RQ = R and
ZQ = Q. Furthermore, it is not hard to show that (A ⊕ B)Q ≃ AQ ⊕ BQ, so
(Rn)Q = Rn and (Zn)Q = Qn. Notice also, that for every Λ the group Z⊕ Λ is
discrete.

For elements α, β ∈ Λ the closed segment [α, β] is defined by

[α, β] = {γ ∈ Λ | α 6 γ 6 β}.

Now a subset C ⊂ Λ is called convex if for every α, β ∈ C the set C contains
[α, β]. In particular, a subgroup C of Λ is convex if [0, β] ⊂ C for every positive
β ∈ C. Observe, that the set of all convex subgroups of Λ is linearly ordered
by inclusion. In the case when Λ = Rn, or Λ = Zn the convex subgroups form
a chain: 0 < Λ1 < · · · < Λn = Λ, where Λi = {(λ1, . . . , λi, 0, . . . , 0) | λj ∈
R (or Z)}. In this case Λ has a (unique) minimal non-trivial convex subgroup
Λ1.

For any a ∈ Λ we define |a| = a if a ≥ 0 and |a| = −a otherwise.

2.2 Λ-metric spaces

In [16] Morgan and Shalen defined Λ-metric spaces for an arbitrary ordered
abelian group Λ.
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Let X be a non-empty set and Λ an ordered abelian group. A Λ-metric on
X is a mapping d : X ×X → X such that:

(LM1) ∀ x, y ∈ X : d(x, y) > 0;

(LM2) ∀ x, y ∈ X : d(x, y) = 0 ⇔ x = y;

(LM3) ∀ x, y ∈ X : d(x, y) = d(y, x);

(LM4) ∀ x, y, z ∈ X : d(x, y) 6 d(x, z) + d(y, z).

A Λ-metric space is a pair (X, d), where X is a non-empty set and d is
a Λ-metric on X . Usually, unless specified otherwise, we always assume that
there is no convex subgroup Λ0 of Λ such that d(x, y) ∈ Λ0 for every x, y ∈ X
(otherwise we can replace Λ by Λ0).

Example 1. For any ordered abelian group Λ the map d(a, b) = |a − b| is a
metric, so (Λ, d) is a Λ-metric space.

We fix a Λ-metric space (X, d) and a convex subgroup Λ0 of Λ. For any
point x ∈ X the subset

Xx,Λ0
= {y ∈ X | d(x, y) ∈ Λ0}

of X is a Λ0-metric space with respect to the metric d0 = d|X0
, called a Λ0-

metric subspace of X .
If x ∈ X and ε ∈ Λ is positive then we define the ball of radius ε centered at

x as usual by
Bε(x) = {y ∈ X | d(x, y) 6 ε}.

A subset Y ⊆ X is bounded if Y ⊆ Bε(x) for some x ∈ X and ε > 0. If Λ0 6= Λ
then any Λ0-metric subspace Xx,Λ0

of X is bounded (it is contained in Bε(x)
for any 0 < ε ∈ Λr Λ0).

If (X, d) and (X ′, d′) are Λ-metric spaces, an isometry from (X, d) to (X ′, d′)
is a mapping f : X → X ′ such that d(x, y) = d′(f(x), f(y)) for all x, y ∈ X .

A mapping f : X → X ′ is called a (λ, c, L)-local-quasi-isometry from (X, d)
to (X ′, d′), where λ ∈ Z, c, L ∈ Λ are such that λ > 1, c, L > 0, if

1

λ
d(x, y)− c 6 d′(f(x), f(y)) 6 λd(x, y) + c

for all x, y ∈ X such that d(x, y) 6 L. Here, as usual, we understand 1
λ
d(x, y)

as an element in ΛQ.
Similarly, f is a (λ, c)-quasi-isometry if the inequalities above hold for any

x, y ∈ X (the condition d(x, y) 6 L is dropped).
A segment in a Λ-metric space X is the image of an isometry α : [a, b] → X

for some a, b ∈ Λ. In this case α(a), α(b) are called the endpoints of the segment.
By [x, y] we denote any segment with endpoints x, y.

We call a Λ-metric space (X, d) geodesic if for all x, y ∈ X , there is a segment
in X with endpoints x, y. (X, d) is geodesically linear if for all x, y ∈ X , there
is a unique segment in X with endpoints x, y.
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Lemma 1. [3, Lemma 1.2.2] Let (X, d) be a Λ-metric space.

1. Let σ be a segment in X with endpoints x, z and let τ be a segment in X
with endpoints y, z.

(a) Suppose that, for all u ∈ σ and v ∈ τ , d(u, v) = d(u, z) + d(z, v).
Then σ ∪ τ is a segment with endpoints x, y.

(b) if σ ∩ τ = {z} and σ ∪ τ is a segment, then its endpoints are x, y.

2. Assume that (X, d) is geodesically linear. Let x, y and z ∈ X, and let σ
be the segment with endpoints x, y. Then z ∈ σ if and only if d(x, y) =
d(x, z) + d(z, y).

2.3 Definition of hyperbolic Λ-metric space

In [3] Chiswell, generalizing Gromov’s approach to hyperbolicity [9], introduced
hyperbolic Λ-metric spaces. We briefly discuss this notion below.

Let (X, d) be a Λ-metric space. Fix a point v ∈ X and for x, y ∈ X define
the Gromov’s product

(x · y)v =
1

2
(d(x, v) + d(y, v)− d(x, y)),

as an element of ΛQ. A straightforward computation shows that, if t is another
point from X then

(x · y)t = d(t, v) + (x · y)v − (x · t)v − (y · t)v.

This and the triangle inequality implies the following result.

Lemma 2. Let (X, d) be a Λ-metric space. Then the following hold:

1. For any v, x, y ∈ X

0 6 (x · y)v 6 min{d(x, v), d(y, v)}.

2. If for some v ∈ X and all x, y ∈ X, (x · y)v ∈ Λ then for all v, x, y ∈
X, (x · y)v ∈ Λ.

Now, following Gromov (see [9]) one can define a hyperbolic Λ-metric space.

Definition 1. Let δ ∈ Λ with δ > 0. Then (X, d) is δ-hyperbolic with respect
to v if, for all x, y, z ∈ X

(x · y)v > min{(x · z)v, (z · y)v} − δ.

Lemma 3. [3, Lemma 1.2.5] If (X, d) is δ-hyperbolic with respect to v, and t
is any other point of X, then (X, d) is 2δ-hyperbolic with respect to t.

In view of Lemma 3, we call a Λ-metric space (X, d) δ-hyperbolic if it is
δ-hyperbolic with respect to any point of X .

The definition of δ-hyperbolicity can be reformulated as follows.
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Lemma 4. [3, Lemma 1.2.6] The Λ-metric space (X, d) is δ-hyperbolic if and
only if any x, y, z, t ∈ X satisfy the following 4-point condition:

d(x, y) + d(z, t) 6 max{d(x, z) + d(y, t), d(y, z) + d(x, t)} + 2δ.

2.4 Geodesic hyperbolic Λ-metric spaces

Geodesic hyperbolic Λ-metric spaces have some nice geometric properties, which
can be expressed in various forms of “thinness” of geodesic triangles. In this
section (X, d) is a geodesic Λ-metric space.

Λ-trees give an important class of 0-hyperbolic geodesic Λ-metric spaces.
They were introduced by Morgan and Shalen in [16]. Recall that a Λ-metric
space is a Λ-tree if it satisfies the following axioms:

(T1) (X, d) is geodesic,

(T2) if two segments of (X, d) intersect in a single point, which is an endpoint
of both, then their union is a segment,

(T3) if the intersection of two segments with a common endpoint is also a
segment.

If X is a Λ-tree and x, y, z ∈ X then [x, y] ∩ [x, z] = [x,w] for some w ∈ X .
In this case we write w = Y (y, x, z).

The following theorem was proved in [3] (Lemmas 2.1.6 and 2.4.3).

Theorem 1. A geodesic Λ-metric space (X, d) is a Λ-tree if and only if it
satisfies the following conditions:

(1) for all x, y, v ∈ X (x · y)v ∈ Λ,

(2) (X, d) is 0-hyperbolic.

In particular, if Λ is a divisible ordered abelian group (for instance Λ = Rn)
then the first condition in the theorem is always satisfied, so in this case Λ-trees
are precisely geodesic 0-hyperbolic Λ-metric spaces.

Now we give a characterization of hyperbolic geodesic Λ-metric spaces in
terms of thin triangles.

A Λ-tripod in a Λ-metric space is a Λ-tree spanned by three points (including
degenerate cases when the points coincide, or are collinear). Here is an analog
of Proposition 2.2 from [7]. The proof is straightforward.

Lemma 5. Let (X, d) be a Λ-metric space such that for all x, y, z ∈ X, (x ·
y)z ∈ Λ. Then for all x, y, z ∈ X there exists a Λ-tripod T and an isometry
φ : {x, y, z} → T , where T is spanned by φ(x), φ(y) and φ(z) such that (x · y)z
is equal to the length of the intersection [φ(z), φ(x)] ∩ [φ(z), φ(y)] in T .

We call the Λ-tripod T from the lemma above a comparison Λ-tripod for the
triple {x, y, z} and denote T = T (x, y, z).
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If (X, d) is geodesic then the isometry φ : {x, y, z} → T (x, y, z) extends to
an isometry of the geodesic triangle ∆(x, y, z) = [x, y] ∪ [x, z] ∪ [y, z] in (X, d)
to T whose restriction to {x, y, z} is exactly φ (we denote this extension again
by φ). Now, ∆(x, y, z) is called δ-thin for some δ ∈ Λ if d(u, v) 6 δ for all
u, v ∈ ∆(x, y, z) such that φ(u) = φ(v).

Lemma 6. Let (X, d) be a geodesic Λ-metric space such that for all x, y, z ∈
X, (x · y)z ∈ Λ. Then

(i) (x · y)z 6 d(z, [x, y]),

(ii) if ∆(x, y, z) is δ-thin then d(z, [x, y]) 6 (x · y)z + δ

Proof. The proof repeats the one of Lemma 2.17 [7].

Let p ∈ [x, y], q ∈ [x, z], r ∈ [y, z] be such that φ(p) = φ(q) = φ(r) =
Y (φ(x), φ(y), φ(z)).

Let w ∈ [x, y] be such that d(z, [x, y]) = d(z, w). Then there exists w′ ∈
[x, z] ∪ [y, z] such that φ(w) = φ(w′). Without loss of generality assume that
w′ ∈ [x, z]. Then

(x · y)z 6 d(w′, z) = d(x, z)− d(x,w′) = d(x, z)− d(x,w) 6 d(z, w) = d(z, [x, y])

which proves (i).
Finally, if ∆(x, y, z) is δ-thin then we have

d(z, [x, y]) 6 d(z, q) + d(p, q) 6 (x · y)z + δ.

Proposition 1. Let (X, d) be a geodesic Λ-metric space such that for all x, y, z ∈
X, (x · y)z ∈ Λ. Consider the following properties of (X, d):

(H1,δ) (X, d) is δ-hyperbolic,

(H2,δ) ∆(x, y, z) is δ-thin for any x, y, z ∈ X,

(H3,δ) d(u, [x, z] ∪ [y, z]) 6 δ for any x, y, z ∈ X and u ∈ [x, y].

Then the following implications hold

(H1, δ) =⇒ (H2, 4δ), (H2, δ) =⇒ (H1, 2δ)

(H2, δ) =⇒ (H3, δ), (H3, δ) =⇒ (H2, 4δ)

(H1, δ) =⇒ (H3, 4δ), (H3, δ) =⇒ (H1, 8δ)

Proof. We follow the proof of Proposition 2.21 [7].

(H1, δ) =⇒ (H2, 4δ):

Let x, y, z ∈ X and T (x, y, z) a comparison Λ-tripod (denote by d′ the metric
on T (x, y, z)). Let u 6= v ∈ ∆(x, y, z) be such that φ(u) = φ(v). We have
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to show that d(u, v) 6 4δ. Without loss of generality we can assume that
u ∈ [x, y], v ∈ [x, z]. If t = d(x, u) then

d′(φ(x), φ(u)) = d′(φ(x), φ(v)) = t 6 (y · z)x

(u · y)x = (v · z)x = t

which implies

(u · v)x > min{(u · y)x, (v · y)x}− δ > min{(u · y)x, (y · z)x, (z · v)x}− 2δ = t− 2δ.

Since (u · v)x = t− 1
2d(u, v) then

d(u, v) = 2t− (u · v)x 6 2t− 2(t− 2δ) = 4δ.

(H2, δ) =⇒ (H1, 2δ):

Suppose that all triangles in X are δ-thin and let x0, x1, x2, x3 ∈ X . We
have to show that

(x1 · x2)x0
> min{(x1 · x3)x0

, (x2 · x3)x0
} − 2δ

Denote t = min{(x1 · x3)x0
, (x2 · x3)x0

}. If t 6 (x1 · x2)x0
then there is nothing

prove, so let t > (x1 · x2)x0
.

For i ∈ {1, 2, 3} let x′i ∈ [x0, xi] be such that d(x0, x
′
i) = t. Let φi,j , i 6=

j ∈ {1, 2, 3} be the isometry of the triangle [x0, xi] ∪ [xi, xj ] ∪ [xj , x0] to the
comparison Λ-tripod T (x0, xi, xj).

In the case when i = 1, 2 we have d(x0, x
′
i) = d(x0, x

′
3) 6 (xi · x3)x0

since
φi,3(x

′
i) = φi,3(x

′
3) and d(x3, x

′
i) 6 δ. Thus we have

d(x′1, x
′
2) 6 2δ.

Since t > (x1 · x2)x0
, there exists yj ∈ [x1, x2] such that φ1,2(x

′
j) = φ1,2(yj)

and d(x′j , yj) 6 δ. Hence,

2δ > d(x′1, x
′
2) > d(y1, y2)− 2δ = d(x1, x2)− d(x1, y1)− d(x2, y2)− 2δ

= d(x1, x2)− (d(x1, x0)− d(x′1, x0))− (d(x2, x0)− d(x′2, x0))− 2δ

= 2t− 2(x1 · x2)x0
− 3δ.

So, (x1 · x2)x0
> t− 2δ.

(H2, δ) =⇒ (H3, δ): obvious

(H3, δ) =⇒ (H2, 4δ):

Suppose that (H2, 4δ) does not hold, that is, there exist x, y, z ∈ X and
u ∈ [x, y], v ∈ [x, z] such that d(x, u) = d(x, v) < (y · z)x but d(u, v) > 4δ. By
Lemma 6 we have

d(v, [x, y]) = min{d(v, [x, u]), d(v, [u, y])} > min{(x · u)v, (u · y)v}.
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Next, 2(x · u)v = d(u, v) and

2(u · y)v = d(u, v) + d(y, v)− (d(x, y)− d(x, u))

= d(u, v) + (d(y, v) + d(x, v) − d(x, y)) > d(u, v),

hence

d(v, [x, y]) >
1

2
d(u, v) > 2δ.

In particular, d(x, v) > 2δ and there exists p ∈ [x, v] such that d(p, v) = δ. Now
we have

d(p, [x, y]) > d(v, [x, y])− d(v, p) > δ

d(p, [y, z]) > d(x, [y, z])− d(x, p) > (y · z)x − d(x, p) > t− d(x, p)

= d(v, x)− d(x, p) = d(p, v) = δ.

It follows that d(p, [x, y] ∪ [y, z]) > δ which contradicts our assumption.

(H1, δ) =⇒ (H3, 4δ): follows from (H1, δ) =⇒ (H2, 4δ) and (H2, δ) =⇒
(H3, δ).

(H3, δ) =⇒ (H1, 8δ): follows from (H3, δ) =⇒ (H2, 4δ) and (H2, δ) =⇒
(H1, 2δ).

If (X, d) is geodesic then for x, y, z ∈ X we denote by ∆I(x, y, z) the geodesic
triangle whose vertices are the points p, q, r on the sides of ∆(x, y, z) which
are sent to the center point of T (x, y, z) under the isometry φ : ∆(x, y, z) →
T (x, y, z). From Proposition 1 it follows that if (X, d) is δ-hyperbolic then the
length of the sides of ∆I(x, y, z) is bounded by 4δ.

2.5 Boundaries of hyperbolic Λ-metric spaces

We say that a sequence {λi} of elements of Λ converges to infinity, and write

lim
i→∞

λi = ∞

if for every α ∈ Λ there is a natural number nα such that λi > α for every
i > nα. Similarly, a double-indexed family {λij} ⊆ Λ converges to infinity, that
is,

lim
i→∞
j→∞

λij = ∞

if for every α ∈ Λ there is a natural number nα such that λij > α for every
i, j > nα.

Since Λ is an arbitrary ordered abelian group, the notion of convergence to
infinity can be applied with respect to any convex subgroup Λ0 ⊆ Λ by replacing
Λ with Λ0.

Let (X, d) be a Λ-metric space. Fix a base point v ∈ X . We say that a
sequence of points {xi} ⊆ X converges to infinity if

lim
i→∞
j→∞

(xi · xj)v = ∞.
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Observe that if a sequence {xi} converges to infinity with respect to v ∈ X then
it converges to infinity with respect to any other v′ ∈ X , since (by the triangle
inequality)

|(xi · xj)v − (xi · xj)v′ | 6 d(v, v′) (1)

for any xi, xj , v, v
′.

Now, we term two convergent to infinity sequences {xi}, {yj} ⊆ X close or
equivalent (and write {xi} ∼ {yi}) with respect to v if

lim
i→∞
j→∞

(xi · yj)v = ∞.

Notice that (1) shows again that if {xi}, {yj} are equivalent with respect to v
then they are equivalent with respect to any base point v′ ∈ X .

Lemma 7. If (X, d) is a hyperbolic Λ-metric space then the property “to be
close” defines an equivalence relation on the set of all sequences in (X, d) that
converge to infinity.

Proof. Reflexivity and symmetry of “∼” follow immediately from definitions.
To prove transitivity consider convergent to infinity sequences {xi} ∼ {yj} and
{yj} ∼ {zk}. Suppose that X is δ-hyperbolic for some δ ∈ Λ. Then for a given
arbitrary α ∈ Λ choose nα be such that

(xi · yj)v > α+ δ, (yj · zk)v > α+ δ

for some v ∈ X and all i, j, k > nα. Hence,

(xi · zk)v ≥ min{(xi · yj)v, (yj · zk)v} − δ > (α+ δ)− δ = α

which shows that {xi} and {zk} are Λ-close.

For a hyperbolic Λ-metric space (X, d) we define the boundary at infinity
of X as the set of equivalence classes of close convergent to infinity sequences
in (X, d) and denote it ∂X . Observe that if Λ = R then ∂X is the hyperbolic
boundary of (X, d). If a ∈ ∂X and {xi} ∈ a then we write xi → a as i→ ∞.

Now let Λ0 be a convex non-trivial subgroup of Λ and v ∈ X . Take a Λ0-
subspace Xv,Λ0

with the base point v of X , which is a Λ0-metric space. If X
is δ-hyperbolic and δ ∈ Λ0 then Xv,Λ0

is δ-hyperbolic, so the argument above
applies and one gets the boundary at infinity ∂Xv,Λ0

of Xv,Λ0
, which we call the

Λ0-boundary of X with respect to the base point v. Notice that in the case of
Xv,Λ0

one can consider sequences not only from Xv,Λ0
but also {xi} such that

xi ∈ Xv,Λ0
for all sufficiently large i.

Recall that in the case of hyperbolic R-metric spaces there exists a notion
of the Gromov product on the boundary. Similarly, for x, y ∈ ∂X we define the
Gromov product on the Λ-boundary as follows

(α · β)v = sup
xi→α
yj→β

lim inf
i→∞
j→∞

(xi · yj)v

provided the limit exists (it depends on Λ).
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Lemma 8. If Λ = Rn with the right lexicographic order and δ = (d, 0, . . . , 0),
then (α · β)v exists for any distinct α, β ∈ ∂X.

Proof. We define
({xi} · {yj})v = lim inf

i→∞
j→∞

(xi · yj)v.

We have to prove first that ({xi}·{yj})v exists for any two sequences converging
at infinity which are not equivalent and then prove that (α · β)v exists for any
distinct α, β ∈ ∂X .

Suppose then that {xi} and {yj} are two sequences converging to infinity.
If for any a ∈ Rn there exist some indices ka, k

′
a such that (xka

· yk′

a
)v > a, then

the sub-sequences {xka
} and {yk′

a
}, where a = (0, . . . , 0, n), converge to the

same point in ∂X , which implies that α and β coincide which is a contradiction.
Hence, we can assume that there exists some a ∈ Rn such that (xi · yj)v 6 a
for any i, j. Since {xi} and {yj} converge to infinity, there exist m,n such that
(xm · xm+k)v, (yn · yn+k)v > a for any k > 0.

Take M,N ∈ N such that M > m and N > n. Hence,

(xM ·yN )v > min{(xM ·xm)v, (xm ·yN )v}− δ = (xm ·yN )v − δ > (xm ·yn)v −2δ.

A similar argument shows that (xm, yn)v > (xM · yN)v − 2δ.
Suppose now that (xm · yn)v = (c1, . . . , cn). It follows that

(c1, . . . , cn−1, cn − 2d) = (xm · yn)v − 2δ 6 (xM · yN )v 6 (xm · yn)v + 2δ

= (c1, . . . , cn−1, cn + 2d)

for any M > m, N > n. The completeness of R implies then that ({xi} · {yj})v
exists for any two non-equivalent sequences which converge at infinity.

Proving existence of (α · β)v is quite similar. Let {x′i} tend to α and {y′j}
tend to β and (x′i · y

′
j)v < a for any i, j. There exist m,n such that (xm ·

x′m+k)v, (yn · y′n+k)v > a for any k > 0. We then use the same argument as
above to prove that

({xi} · {yj})v − 2δ 6 ({x′i} · {y
′
j})v 6 ({xi} · {yj})v + 2δ,

so the supremum must again exist by completeness of R.

2.6 Isometries of Λ-metric spaces

Let (X, d) be a δ-hyperbolic Λ-metric space and Λδ be the minimal convex
subgroup of Λ containing δ (that is, for every α ∈ Λδ there exists k ∈ N such
that α < kδ). If δ = 0 then we set Λδ to be the trivial subgroup of Λ. Consider
the set of all isometric mappings from X to itself which we denote by Isom(X).
The image of x ∈ X under γ ∈ Isom(X) we denote by γx.

Observe that if {xi} ⊆ X converges to infinity then {γxi} also converges to
infinity, and if {xi}, {yi} are close then {γxi}, {γyi} are also close. This shows
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that γ extends to the mapping ∂X → ∂X which we by abuse of notation again
denote γ.

γ ∈ Isom(X) is minimal on X if it does not have any invariant Λ0-subspace
of X for some non-trivial proper convex subgroup Λ0 of Λ. If γ is not minimal
then it induces an isometry γ0 on a Λ0-subspace X0 of X and the definitions
below apply to the case when Λ = Λ0 and X = X0. Note that if the set
{γnx | n ∈ Z} for some x ∈ X is bounded by α ∈ Λ and Λ0 is the minimal
convex subgroup of Λ containing α then γ stabilizes

X0 = {y ∈ X | d(x, y) ∈ Λ0}

which is a Λ0-subspace of X containing x. Indeed, for every y ∈ X0 we have

d(y, γy) 6 d(x, y) + d(x, γx) + d(γx, γy) = 2d(x, y) + d(x, γx) ∈ Λ0

Hence, γ is minimal only if X0 = X .
An isometry γ : X → X is called elliptic if there exists x ∈ X such that

the set {γnx | n ∈ Z} has diameter of at most Kδ for some K ∈ N. This
definition generalizes the standard definition of elliptic isometry in R-metric
spaces. Indeed, recall that in a proper geodesic R-metric space an isometry is
elliptic if it has a fixed point. Our definition in this case (when X is a proper
geodesic R-metric space) also implies a fixed point: since the set {γnx | n ∈ Z}
is bounded and X is proper, there exists a subsequence {ni} such that γnix→ y
for some y ∈ X and γy = y. But in general, for an arbitrary Λ-metric space X ,
even if Λ = R our definition does not imply that there exists a fixed point of γ.

Suppose γ is elliptic and x ∈ X is such that the set {γnx | n ∈ Z} is bounded
by Kδ for some K ∈ N. Let X0 be the Λδ-subspace of X containing x. Hence,
for every y ∈ X0 and m,n ∈ Z there exists M ∈ N such that

d(γny, γmy) 6 d(γny, γnx) + d(γnx, γmx) + d(γmx, γmy)

= 2d(x, y) + d(γnx, γmx) 6 2d(x, y) +Kδ 6Mδ

In particular, it follows that γ fixesX0 and it cannot be minimal unless X = X0.
The following fact follows immediately from the definition above.

Lemma 9. Let Λ = Rn with the right lexicographic order and let (X, d) be
a geodesic δ-hyperbolic Λ-metric space, where δ = (d, 0, . . . , 0). Then γ ∈
Isom(X) is elliptic if and only if for some x ∈ X the set {γnx | n ∈ Z} is
bounded inside of some R-subspace of X.

An isometry γ : X → X is called parabolic with respect to x ∈ X if the
diameter of the set {γnx | n ∈ Z} is not bounded by any α ∈ Λ and there exists
ax ∈ ∂X such that for any subsequence of integers {ni} with the property
d(x, γnix) → ∞ we have that {γnix} → ax.

Lemma 10. Let (X, d) be a δ-hyperbolic Λ-metric space. If γ ∈ Isom(X) is
parabolic with respect to x ∈ X then γ is parabolic with respect to any other
y ∈ X and ax = ay.
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Proof. Suppose γ is parabolic with respect to x and fix y ∈ X . Notice that for
a subsequence of integers {ni} we have

d(x, γnix) → ∞ ⇐⇒ d(y, γniy) → ∞.

Indeed, assuming d(x, γnix) → ∞, we get

d(y, γniy) > d(x, γniy)− d(x, y) > d(x, γnix) − d(γnix, γniy)− d(x, y)

= d(x, γnix)− 2d(x, y) → ∞

and the converse implication can be obtained similarly.

Let v ∈ X be a base-point. If d(x, γnix) → ∞ then (γnix · γnjx)v → ∞ as
ni, nj → ∞. Next, from hyperbolicity of X we get

(γniy · γnjy)v > min{(γnix · γniy)v, (γ
nix · γnjy)v} − δ

> min{(γnix · γniy)v, (γ
nix · γnjx)v , (γ

njx · γnjy)v} − 2δ

which implies that (γniy · γnjy)v → ∞ as ni, nj → ∞ since

(γnix · γniy)v =
1

2
(d(v, γnix) + d(v, γniy)− d(γnix, γniy))

=
1

2
(d(v, γnix) + d(v, γniy)− d(x, y)) → ∞ as ni → ∞

and similarly (γnjx · γnjy)v → ∞ as nj → ∞. It follows that there exists
ay ∈ ∂X such that {γniy} → ay and γ is parabolic with respect y. Moreover,
the fact that (γniy · γnjy)v → ∞ as ni, nj → ∞ implies that ax = ay.

In view of Lemma 10 we say that γ ∈ Isom(X) is parabolic if it is parabolic
with respect to some x ∈ X . Note that a parabolic isometry cannot fix any
Λ0-subspace X0 of X for Λ0 ( Λ, so, it is minimal.

Observe that if γ is parabolic and a subsequence of integers {ni} is such
that d(x, γnix) → ∞ then {γnix} can be taken as a representative of a. But
then from d(x, γni+1x) > d(x, γni+1x)− d(x, γx) we get d(x, γni+1x) → ∞, so,
{γni+1x} → a. But at the same time, {γni+1x} → γa and we get γa = a.

γ is called hyperbolic with respect to x ∈ X if the diameter of the set {γnx |
n ∈ Z} is not bounded by any α ∈ Λ and there exist distinct ax, bx ∈ ∂X
such that for any subsequence of natural numbers {ni}, if d(x, γnix) → ∞ then
{γ−nix} → ax and {γnix} → bx. Similar to the parabolic case one can show
that if γ is hyperbolic with respect to x ∈ X then it is hyperbolic with respect
to any other y ∈ X and ax = ay, bx = by (up to a permutation). Hence, we say
that γ is hyperbolic if it is hyperbolic with respect to any x ∈ X and we denote
a− = ax and a+ = bx. Again, similar to the parabolic case one can easily show
that γa− = a− and γa+ = a+.

It is easy to see that if γ is elliptic, parabolic, or hyperbolic then so is γk for
every fixed k ∈ Z.
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Finally, an isometry γ is called an inversion if γ does not fix any Λδ-subspace
of X , but γ2 fixes a Λδ-subspace of X . Obviously, inversions can exist only in
the case when Λ 6= Λδ. Also, observe that if δ = 0 then any Λδ-subspace of X
is a single point, hence, in the case when X is a proper geodesic 0-hyperbolic
Λ-metric space, that is, a Λ-tree, our definition coincides with the definition of
inversion for Λ-trees.

Observe that if Λ = R, a geodesic Λ-metric space (X, d) is an ordinary
hyperbolic space, so, every isometry of X is either elliptic, or parabolic, or
hyperbolic (see [4, Theorem 9.2.1]). If X is not geodesic, or if Λ = Z then the
case of an inversion adds.

Next, if δ = 0 then a Λ-metric space (X, d) is a Λ-tree and classification of
its isometries is also known (see [3, Section 3.1]): any isometry of X is either
elliptic, or hyperbolic, or an inversion in the case when Λ 6= 2Λ.

Our next goal is to classify isometries of δ-hyperbolic Λ-metric spaces.
The following lemma is similar to [4, Lemma 2.2].

Lemma 11. Let γ be a minimal isometry of a geodesic δ-hyperbolic Λ-metric
space (X, d). If there exists x ∈ X such that

d(x, γ2x) > d(x, γx) + 3δ

then γ is hyperbolic in the case when Λ = 2Λ, and γ is either hyperbolic, or an
inversion if Λ 6= 2Λ.

Proof. Consider the points x, γx, γ2x and γnx, where n ∈ N. By the 4-point
condition (see Lemma 4) we have

d(x, γ2x)+d(γx, γnx) 6 max{d(x, γx)+d(γ2x, γnx), d(x, γnx)+d(γ2x, γx)}+2δ

or, if we denote αk = d(γkx, x) for every k ∈ N then

α2 + αn 6 max{α1 + αn−2, αn + α1}+ 2δ

since d(γkx, γmx) = α|k−m|. In other words we get

max{αn−2, αn} > αn−1 + α2 − α1 − 2δ

and from the assumption α2 > α1 + 3δ we obtain

max{αn−2, αn} > αn−1 + δ

which holds for any n ∈ N. Next, we prove by induction on n that

αn + δ < αn+1

If n = 0 then we have
α1 + 3δ < α2 6 2α1

and α0 + δ < α1. Suppose the inequality holds for n, that is, αn+1 > αn + δ.
Since we have

max{αn+2, αn} > αn+1 + δ
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it implies that max{αn+2, αn} = αn+2 and

αn+2 > αn+1 + δ

as required.
In particular, it follows that αn > nδ. Consider two cases.

Case I. There exists K ∈ N such that Kδ > α1 = d(x, γx) (δ and d(x, γx)
are “comparable”).

In this case, the diameter of the set {γnx | n ∈ Z} is not bounded by any
α ∈ Λ (since γ is minimal). Moreover, for any v ∈ X we have

lim
i→∞
j→∞

(γix · γjx)v = ∞

and
lim
i→∞
j→∞

(γ−ix · γ−jx)v = ∞

since γ is minimal and δ and d(x, γx) are “comparable”. It shows that there
exist distinct ax, bx ∈ ∂X such that for any subsequence of natural numbers
{ni} we have {γ−nix} → ax and {γnix} → bx. That is, γ is hyperbolic with
respect to x, hence, hyperbolic.

Case II. d(x, γx) = α1 > Kδ for every K ∈ N (d(x, γx) is “infinitely large”
with respect to δ).

Recall that Λδ is the minimal convex subgroup of Λ containing δ. Notice
that by the assumption we have Λδ 6= Λ. Define an equivalence relation “∼” on
X by setting

y ∼ z ⇐⇒ d(y, z) ∈ Λδ, for any y, z ∈ X

Observe that X1 = X/ ∼ is a Λ1-metric space, where Λ1 = Λ/Λδ, with respect
to the metric

d1([y], [z]) = d(y, z) + Λδ

where [y], [z] are the images of y, z ∈ X in X1. Since X is geodesic, from the
definition of X1 it follows that X1 is also geodesic. Moreover, X1 is 0-hyperbolic
since δ ∈ Λδ, and it follows that X1 is a Λ1-tree.

The isometry γ of X induces an isometry γ1 of X1 and we have

d1([x], γ
2
1 [x]) > d1([x], γ1[x])

Recall that the translation length l(γ1) of γ1 (see, for example, [3]) is defined as

l(γ1) = min{d1([y], γ1[y]) | [y] ∈ X1}

According to Lemma 3.1.8 [3], for any [y] ∈ X1

l(γ1) = max{d1([y], γ
2
1 [y])− d1([y], γ1[y]), 0}
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and in particular

l(γ1) = max{d1([x], γ
2
1 [x])− d1([x], γ1[x]), 0} = d1([x], γ

2
1 [x])− d1([x], γ1[x]) > 0

If l(γ1) > 0 then γ1 is a hyperbolic isometry of X1 which fixes a pair of ends
a1, b1 ∈ ∂X1 of full Λ1-type (the ends of the axis of γ1). Indeed, if a1, b1 are not
of full Λ1-type, then γ1 fixes a Λ2-subspace X2 of X1, where Λ2 6= Λ1. But in
this case, X2 lifts to a Λ3-subspace X3 of X , where Λ3 6= Λ which is stabilized
by γ - a contradiction with minimality of γ. Hence, a1, b1 ∈ ∂X1 have preimages
ax, bx ∈ ∂X which are fixed by γ and γ is hyperbolic.

If l(γ1) = 0 then γ1 is either elliptic or an inversion. If γ1 is elliptic then there
exists [y] ∈ X1 such that γ1[y] = [y], that is, γ stabilizes the Λ0-subspace of X
containing y - a contradiction with minimality of γ. Suppose γ1 is an inversion,
that is, γ1 does not fix a point in X1 but γ21 has a fixed point [y] ∈ X1. Observe
that this is possible only if Λ1 6= 2Λ1 which implies that Λ 6= 2Λ. Now, γ does
not fix any Λδ-subspace of X , but γ2 fixes the Λδ-subspace of X containing y.
Hence, γ is an inversion.

The lemma below is similar to [4, Lemma 2.3].

Lemma 12. Let (X, d) be a geodesic δ-hyperbolic Λ-metric space, where and
δ > 0. Suppose γ1, γ2 are isometries of X which are neither hyperbolic, nor
inversions, and such that for some x ∈ X

d(x, γ1x) > 2(γ1x · γ2x)x + 6δ, d(x, γ2x) > 2(γ1x · γ2x)x + 6δ

Then γ2γ1 and γ1γ2 are hyperbolic if Λ = 2Λ, and are either hyperbolic, or
inversions if Λ 6= 2Λ.

Proof. We follow the scheme of proof of [4, Lemma 2.3] and adopt the same
terminology: for any isometries α, β of X denote |α − β| = d(αx, βx) and
|α| = d(x, αx).

Since γ1, γ2 are neither hyperbolic, nor inversions, by Lemma 11 we have

|γ21 | 6 |γ1|+ 3δ, |γ22 | 6 |γ2|+ 3δ

Next, from

|γ1| > 2(γ1x · γ2x)x + 6δ, |γ2| > 2(γ1x · γ2x)x + 6δ

by definition of Gromov product we get

|γ1 − γ2| > |γ1|+ 6δ, |γ1 − γ2| > |γ2|+ 6δ

Now we apply the 4-point condition (see Lemma 4) to x, γ1x, γ
2
1x, and (γ1γ2)x:

|γ1|+ |γ21 − γ1γ2| 6 max{|γ21 |+ |γ1 − γ1γ2|, |γ1γ2|+ |γ1 − γ21 |}+ 2δ
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or
|γ1|+ |γ1 − γ2| 6 max{|γ21 |+ |γ2|, |γ1γ2|+ |γ1|}+ 2δ

From |γ21 | 6 |γ1|+ 3δ and |γ1 − γ2| > |γ2|+ 6δ we obtain

|γ1|+ |γ1 − γ2| > |γ21 |+ |γ2|+ 3δ

which implies that |γ1| + |γ1 − γ2| cannot not be smaller than |γ21 | + |γ2| + 2δ
and

max{|γ21 |+ |γ2|, |γ1γ2|+ |γ1|} = |γ1γ2|+ |γ1|

Hence,
|γ1|+ |γ1 − γ2| 6 |γ1γ2|+ |γ1|+ 2δ

or
|γ1 − γ2| 6 |γ1γ2|+ 2δ

Similar argument produces

|γ1 − γ2| 6 |γ2γ1|+ 2δ

Combining the above inequalities with |γ1−γ2| > |γ1|+6δ, |γ1−γ2| > |γ2|+6δ
we get

|γ1γ2| > |γ1|+ 4δ, |γ2γ1| > |γ1|+ 4δ, |γ1γ2| > |γ2|+ 4δ,

|γ2γ1| > |γ2|+ 4δ

Next we apply the 4-point condition to x, γ1x, (γ1γ2)x, and (γ1γ2γ1)x:

|γ2γ1|+ |γ1γ2| 6 max{|γ1γ2γ1|+ |γ2|, 2|γ1|}+ 2δ

But we have
|γ2γ1|+ |γ1γ2| > 2|γ1|+ 8δ

so
|γ2γ1|+ |γ1γ2| 6 |γ1γ2γ1|+ |γ2|+ 2δ

and since |γ2γ1| > |γ2|+ 4δ, it follows that

|γ1γ2|+ 2δ 6 |γ1γ2γ1|

We combine the above inequality with |γ1γ2| > |γ1|+ 4δ and |γ1γ2| > |γ2|+ 4δ
to get

|γ2|+ 6δ 6 |γ1γ2γ1|, |γ1|+ 6δ 6 |γ1γ2γ1|

Apply the 4-point condition to x, (γ1γ2)x, (γ1γ2γ1)x, and (γ1γ2)
2x:

|γ1γ2|+ |γ1γ2γ1| 6 max{|(γ1γ2)
2|+ |γ1|, |γ2|+ |γ1γ2|}+ 2δ

From |γ2|+ 6δ 6 |γ1γ2γ1| we get

|γ2|+ |γ1γ2|+ 6δ 6 |γ1γ2γ1|+ |γ1γ2|
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and it follows that

max{|(γ1γ2)
2|+ |γ1|, |γ2|+ |γ1γ2|} = |(γ1γ2)

2|+ |γ1|

Hence,
|γ1γ2|+ |γ1γ2γ1| 6 |(γ1γ2)

2|+ |γ1|+ 2δ

and from |γ1|+ 6δ 6 |γ1γ2γ1| we obtain

|γ1γ2|+ 4δ 6 |(γ1γ2)
2|

and
|γ1γ2|+ 3δ < |(γ1γ2)

2|

From Lemma 11 it follows that γ1γ2 is hyperbolic if Λ = 2Λ, and it is either
hyperbolic, or an inversion if Λ 6= 2Λ. The argument for γ2γ1 is similar.

Now, using the above lemmas, we are ready classify minimal isometries of a
geodesic δ-hyperbolic Λ-metric space.

Theorem 2. Let (X, d) be a a geodesic δ-hyperbolic Λ-metric space. Then every
minimal isometry of X is either elliptic, or parabolic, or hyperbolic in the case
when Λ = 2Λ, and is either elliptic, or parabolic, or hyperbolic, or an inversion
when Λ 6= 2Λ.

Proof. If δ = 0 then X is a Λ-tree and any isometry of X (not necessarily a
minimal one) is either hyperbolic, or elliptic, or an inversion (see, [1, 3]).

Suppose δ > 0 and let γ be a minimal isometry of X . Suppose γ is neither
elliptic, nor parabolic. It follows that for any x ∈ X the diameter of the set
{γnx | n ∈ Z} is not bounded by Kδ for any K ∈ N.

Next, suppose for any x ∈ X , the diameter of the set {γnx | n ∈ Z} is
bounded by some α ∈ Λ. We would like to show that γ is an inversion in this
case. Indeed, observe that the minimal convex subgroup Λ′ ⊆ Λ containing α
must coincide with Λ (otherwise γ stabilizes a Λ′-subspace of X and this is a
contradiction with minimality of γ). Next, by our assumption Λδ 6= Λ. Define
an equivalence relation “∼” on X by setting

y ∼ z ⇐⇒ d(y, z) ∈ Λδ, for any y, z ∈ X

Hence, X1 = X/ ∼ is a Λ1-metric space, where Λ1 = Λ/Λδ, with respect to the
metric

d1([y], [z]) = d(y, z) + Λδ

where [y], [z] are the images of y, z ∈ X in X1. Since X is geodesic, from the
definition of X1 it follows that X1 is also geodesic. Moreover, X1 is 0-hyperbolic
since δ ∈ Λδ, and it follows that X1 is a Λ1-tree.

The isometry γ ofX induces an isometry γ1 ofX1 and the diameter of the set
{γn1 [x] | n ∈ Z} is bounded by α+ Λδ. Consider the translation length l(γ1) of
γ1. If l(γ1) > 0 then γ1 is hyperbolic and the diameter of the set {γn1 [x] | n ∈ Z}
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cannot be bounded by any β ∈ Λ1. Hence, γ1 is either an inversion, or elliptic.
If γ1 is elliptic then it fixes a point [y] ∈ X1 which implies that γ stabilizes a Λδ-
subspace of X - a contradiction with minimality of γ. Hence, γ1 is an inversion
(which is possible only if Λ 6= 2Λ) and it follows that γ is also an inversion.

Finally, suppose that for any x ∈ X , the diameter of the set {γnx | n ∈ Z}
is not bounded by any α ∈ Λ. It follows that there exists a sequence of integers
{ni} such that d(x, γnix) → ∞. Hence, there exists a ∈ ∂X such that {γnix} →
a. Since we assume that γ is not parabolic, there must be at least one other
sequence of integers {mj} such that d(x, γmjx) → ∞ and a point b ∈ ∂X such
that {γmjx} → b such that a 6= b.

Since a 6= b, it follows that the Gromov product (a · b)x of a and b is finite.
At the same time d(x, γnix) → ∞, d(x, γmjx) → ∞, so, there exist N ∈ {ni}
and M ∈ {mj} such that N 6=M and

d(x, γNx) > 2(γNx · γMx)x + 6δ, d(x, γMx) > 2(γNx · γMx)x + 6δ

By Lemma 12, the isometry γN−M is hyperbolic if Λ = 2Λ, and is either hyper-
bolic, or an inversion if Λ 6= 2Λ. Hence, the required statement for γ follows.

The theorem above immediately can be applied in the case when Λ =
Rn, Zn.

Theorem 3. Let (X, d) be a geodesic δ-hyperbolic Rn-metric space, where Rn

is taken with the right lexicographic order. Then every minimal isometry of X
is either elliptic, or parabolic, or hyperbolic.

Theorem 4. Let (X, d) be a geodesic δ-hyperbolic Zn-metric space, where Zn

is taken with the right lexicographic order. Then every minimal isometry of X
is either elliptic, or parabolic, or hyperbolic, or an inversion.

Using Theorem 2 we can give a nice characterization of hyperbolic isometries
in the case when Λ is either Rn, or Zn.

Corollary 1. Let (X, d) be a geodesic δ-hyperbolic Λ-metric space, where Λ is
either Rn, or Zn with the right lexicographic order and δ = (δ0, 0, . . . , 0). Let
γ be a minimal isometry of X. If n > 1 then γ can be only either hyperbolic,
or an inversion. Moreover, for any n, γ is hyperbolic if and only if there exist
x ∈ X and λ, c ∈ Λ such that ht(λ) = ht(d(x, γx)) and d(x, γkx) > kλ + c for
any k ∈ N.

Proof. If n = 1 then there exists x ∈ X such that k → γkx is a quasi-isometry
(see, for example, [4]) of Z into X . Hence, there exist λ, c ∈ Λ (which is either
R, or Z in this case) such that d(x, γkx) > kλ+ c for any k ∈ N.

Suppose n > 1. By Theorem 2, γ is either hyperbolic, or elliptic, or parabolic
or an inversion, so, consider all these possibilities. Recall that Λδ is the minimal
convex subgroup of Λ containing δ (in our case, Λδ = R, or Λδ = Z). Define
X1 = X/ ∼, where x ∼ y if d(x, y) ∈ Λδ. Since X is geodesic, X1 is a Λ1-tree
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(here, either Λ1 = Rn−1, or Λ1 = Zn−1). Observe that γ induces an isometry γ1
of X1 which can be either elliptic, or hyperbolic, or an inversion if Λ1 = Zn−1.

If γ is elliptic then it fixes a Λ0-subspace - a contradiction with minimality.
If γ is parabolic then γ1 cannot be elliptic because then γ is not minimal.

γ1 cannot be hyperbolic because in this case γ1 fixes two distinct points on the
boundary ∂X1 (since γ is minimal) which can be lifted to two distinct points
on the boundary ∂X fixed by γ - a contradiction since we assume that γ is
parabolic. Eventually, if γ1 is an inversion then γ1 fixes a point in X1, that
is, γ2 fixes a Λδ-subspace of X . But since γ is parabolic, γ2 is also parabolic
and the diameter of {γ2x} is unbounded by any α ∈ Λ for any x ∈ X - a
contradiction.

Hence, we can conclude that γ can be neither elliptic, nor parabolic if n > 1.
That is, it can be only either hyperbolic, or an inversion.

Finally, in the case when n > 1, the isometry γ1 is either hyperbolic, or an
inversion. Moreover (see [3]), γ1 is hyperbolic if and only if there exists x1 ∈ X1,
which belongs to the axis of γ1, and λ1, c1 ∈ Λ1 such that d(x1, γ

k
1x1) > kλ1+c1

for any k ∈ N. So, x1, λ1, and c1 can be lifted back to X and Λ respectively,
and we get the required result for γ.

Finally, we conclude this section with an investigation of the behavior of
non-minimal isometries in the case when Λ is either Rn, or Zn.

Proposition 2. Let (X, d) be a geodesic δ-hyperbolic Rn-metric space, where
Rn is taken with the right lexicographic order and δ = (δ0, 0, . . . , 0). Let γ be
a non-minimal isometry of X fixing two distinct Rn−i-subspaces X0 and X1,
where i ∈ [1, n− 1]. Then the action of γ on X0 and X1 is of the same type.

Proof. Since X is geodesic, there exist unique α0 ∈ ∂X0 and α1 ∈ ∂X1 such
that if {xk} → α0, {yk} → α1 and x ∈ X0, y ∈ X1 then

(xk · y)x → ∞, (yk · x)y → ∞ with respect to Rn−i

It follows that γα0 = α0 and γα1 = α1.
Suppose γ|X0

is elliptic and x is such that for any k ∈ Z we have d(x, γkx) 6
Mδ for some M ∈ N. If γ|X1

is hyperbolic, it follows that either {γky} → α1,
or {γ−ky} → α1. Without loss of generality assume that {γky} → α1. We have

d(x, y) = d(γky, γkx) = d(γky, y) + d(γkx, y)− 2(γky · γkx)y

6 d(γky, y) + d(x, y) + d(γkx, x)− 2(γky · γkx)y

6 d(γky, y) + d(x, y) +Mδ − 2(γky · γkx)y

Next, since X0 6= X1, we have (γ
ky ·x)y ∈ Rn−i and (γkx ·x)y ∈ Rn−j for some

j < i. It follows that (γky · x)y < (γkx · x)y and from

(γky · γkx)y > min{(γky · x)y , (γ
kx · x)y} − δ

we get
(γky · γkx)y > (γky · x)y − δ
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or
−2(γky · γkx)y 6 −2(γky · x)y + 2δ

Thus,
d(x, y) 6 d(γky, y) + d(x, y) +Mδ − 2(γky · γkx)y

6 d(γky, y) + d(x, y) + (M + 2)δ − 2(γky · x)y

and eventually we obtain

0 6 d(γky, y) + (M + 2)δ − 2(γky · x)y (2)

for any k.
Using a similar argument but starting with d(γkx, y) > d(x, y) − d(x, γkx),

we can eventually obtain that

0 > d(γky, y)− (M + 2)δ − 2(γky · x)y (3)

for any k. Indeed we have

d(x, y) = d(γky, γkx) = d(γky, y) + d(γkx, y)− 2(γky · γkx)y

> d(γky, y) + d(x, y) − d(γkx, x)− 2(γky · γkx)y

> d(γky, y) + d(x, y) −Mδ − 2(γky · γkx)y

Next, since X0 6= X1, we have (γky · γkx)y ∈ Rn−i and (γkx · x)y ∈ Rn−j for
some j < i. It follows that (γky · γkx)y < (γkx · x)y and from

(γky · x)y > min{(γky · γkx)y , (γ
kx · x)y} − δ

we get
(γky · x)y > (γky · γkx)y − δ

or
−2(γky · γkx)y > −2(γky · x)y − 2δ

Thus,
d(x, y) > d(γky, y) + d(x, y)−Mδ − 2(γky · γkx)y

> d(γky, y) + d(x, y)− (M + 2)δ − 2(γky · x)y

from which we obtain (3).

Now, we assume (γky · γk+1y)y 6 (γk+1y · x)y and deduce

d(y, γk+1y) 6 2d(y, γy) + (M + 2)δ

From our assumption we get

−2(γky · γk+1y)y > −2(γk+1y · x)y

Next, we have

d(y, γy) = d(γky, γk+1y) = d(y, γky) + d(y, γk+1y)− 2(γky · γk+1y)y
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> 2d(y, γk+1y)− d(y, γy)− 2(γky · γk+1y)y

where the latter inequality follows from the triangle inequality. We can rewrite
the latter inequality in the form

2d(y, γy) > 2d(y, γk+1y)− 2(γky · γk+1y)y

so, combining it with −2(γky · γk+1y)y > −2(γk+1y · x)y we obtain

2d(y, γy) > 2d(y, γk+1y)− 2(γk+1y · x)y

Eventually, since

d(γk+1y, y)− 2(γk+1y · x)y > −(M + 2)δ

(we replaced k by k + 1 in (2)), it follows that

2d(y, γy) > d(y, γk+1y)− (M + 2)δ

or
d(y, γk+1y) 6 2d(y, γy) + (M + 2)δ

Observe that the latter inequality gives a contradiction since we assume that γ
acts as a hyperbolic isometry on X1. It follows that the inequality

(γy · γk+1y)y 6 (γk+1y · x)y

cannot hold for arbitrarily large k and there exists N ∈ N such that (γky ·
γk+1y)y > (γk+1y · x)y for any k > N .

It implies that

(γky · x)y > min{(γky · γk+1y)y, (γ
k+1y · x)y} − δ = (γk+1y · x)y − δ

Therefore, there exists L ∈ Rn−i such that (γky · x)y 6 L+ kδ for any k > N .
However, since γ acts hyperbolically on X1, by Corollary 1, there exist λ, c ∈

Rn−i such that d(y, γky) > kλ + c. We can assume that λ > 5δ since we can
replace γ with γ′ = γi for i large enough so that λ′ > 5δ. However, according
to (3) we have

0 > d(γky, y)− (M + 2)δ − 2(γky · x)y > d(γky, y)− (M + 2)δ − 2L− 2kδ

which implies that

0 > kλ+ c− (M + 2)δ − 2L− 2kδ > 5kδ + c− (M + 2)δ − 2L− 2kδ

= 3kδ − (2L+ (M + 2)δ − c)

Since 2L+ (M + 2)δ − c is a constant, we have a contradiction.

The same argument can be used to prove that if γ|X0
is elliptic, then γ|X1

cannot be parabolic since then both {γky} and {γ−ky} converge to the same
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point on the boundary while {γkx | k ∈ Z} stays within a fixed distance from
x.

We can use a similar argument to show that, if γ|X0
is hyperbolic, then γ|X1

cannot be parabolic. Indeed, if γ|X1
is parabolic then it has a unique fixed point

in ∂X1 which both {γky} and {γ−ky} converge to. At the same time, γ|X0
has

two fixed points in ∂X0: {γkx} converges to one of them and {γ−kx} to the
other one. Suppose, without loss of generality, that {γkx} converges to α0 and
{γky} converges to α1. The we have

d(x, y) = d(γkx, γky) = d(x, y)+ d(x, γkx)+ d(y, γky)− 2(γkx · y)x− 2(γky ·x)y

which implies that

0 = d(x, γkx) + d(y, γky)− 2(γkx · y)x − 2(γky · x)y

Finally, we use the obtained equality as a analog of (2) and repeat the argument
given above for both (γky · γk+1y)y and (γkx · γk+1x)x.

Corollary 2. Let (X, d) be a geodesic δ-hyperbolic Zn-metric space, where Zn

is taken with the right lexicographic order and δ = (δ0, 0, . . . , 0). Let γ be a
non-minimal isometry of X fixing Zn−i-subspaces X0 and X1. Then the action
of γ on X0 and X1 is of the same type.

Proof. If the actions of γ on X0 and X1 are either elliptic, or hyperbolic, or
parabolic then the proof is a straightforward adaptation of that of Proposition
2.

Suppose that γ is an inversion on X0. Observe that by definition γ does not
fix any Z-subspace of X .

Let Y be the Zn−1-tree obtained by contracting all Z-subspaces of X to
points (more precisely, Y = X/ ∼, where x ∼ y if and only if d(x, y) ∈ Z,
and since X is geodesic, Y is a geodesic 0-hyperbolic Zn−1-metric space). Let
Y0 and Y1 be the subtrees of Y corresponding to X0 and X1. Observe that γ
induces an isometry γ1 of Y such that γ1 fixes both Y0 and Y1 and γ1 acts on
Y0 as an inversion. Hence, let a, b ∈ Y0 such that γ1a = b, γ1b = a and take an
arbitrary z ∈ Y1. If [a, b] ∪ [b, z] is a geodesic in Y then so is γ1[b, z] = [a, γ1z]
and b /∈ [a, γ1z]. But the unique geodesic from a to any element of Y1 must
contain b, hence, a contradiction. If [b, a] ∪ [a, z] is a geodesic then we get a
contradiction in a similar way. Finally, if there is some c ∈ [a, b] such that
[a, c] ∪ [c, z] and [b, c] ∪ [c, z] are both geodesics then we get a contradiction by
using similar considerations with c and γ1c.

It follows that γ1 cannot fix distinct Y0 and Y1 and the same applies to γ in
X .

2.7 Examples

Example 2. Let X be a proper, geodesic δ-hyperbolic R-metric space, ∗ ∈ X
and a, b ∈ ∂X such that (a · b)∗ = 0. Let {Xi | i ∈ Z} be a set of copies of X
with the copy of x ∈ X in Xi denoted xi, and define Y =

⋃
Xi
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Let us define a metric d on Y . By abuse of notation, we are also going to
use d for the metric in X. For any i ∈ Z, define d(xi, yi) = (d(x, y), 0). If i < j
then define

d(xi, yj) = (d(x, ∗) + d(y, ∗)− 2(x · a)∗ − 2(y · b)∗, |i− j|)

First of all, (Y, d) is a (8δ, 0)-hyperbolic metric space. To see that, take ρ to
be a geodesic line joining a and b such that ∗ ∈ ρ (such a geodesic line exists
since X is geodesic). Define ρi to be the image of ρ in Xi, ai and bi to be the
images of a and b in ∂Xi, and [x, ω) to be a geodesic ray between some x ∈ X
and ω ∈ ∂X.

For any xi, yj ∈ Y with i 6= j, let

[xi, ai) ∪ ρi+1 ∪ · · · ∪ ρj−1 ∪ (bj , yj]

will be a geodesic embedding of [0, d(xi, yj)] into Y . It is then easy to prove that
(Y, d) is (8δ, 0)-hyperbolic by using a geometric argument.

Let now γ be an isometry of X which preserves a and b. We would like to
extend it to a mapping γ : Y → Y by γ(xi) = (γx)i+1. For every xi, yj ∈ Y ,
consider the first component of d(xi, yj) which we denote by D(x, y). Explicitly,

D(x, y) = d(x, ∗) + d(y, ∗)− 2(x · a)∗ − 2(y · b)∗

It is easy to see that γ is an isometry of Y if and only if D(x, y) = D(γx, γy)
for any x, y ∈ X. We have

D(x, y) = d(x, ∗) + d(y, ∗)− 2(x · a)∗ − 2(y · b)∗

= d(x, ∗)+d(y, ∗)− sup
ai→a
bi→b

lim
i→∞

d(x, ∗)+d(ai, ∗)−d(x, ai)+d(y, ∗)+d(bi, ∗)−d(y, bi)

= − sup
ai→a
bi→b

lim
i→∞

d(ai, ∗)− d(x, ai) + d(bi, ∗)− d(y, bi)

Recall now that γ fixes a and b, so we have that {ai | ai → a} = {γai | ai → a}
and {bi | bi → b} = {γbi | bi → b}. Hence,

D(x, y)−D(γx, γy) = sup
ai→a
bi→b

lim
i→∞

(d(ai, ∗)− d(γx, ai) + d(bi, ∗)− d(γy, bi))

− sup
ai→a
bi→b

lim
i→∞

(d(ai, ∗)− d(x, ai) + d(bi, ∗)− d(y, bi))

= sup
ai→a
bi→b

lim
i→∞

(d(γai, ∗)− d(γx, γai) + d(γbi, ∗)− d(γy, γbi))

− sup
ai→a
bi→b

lim
i→∞

(d(ai, ∗)− d(x, ai) + d(bi, ∗)− d(y, bi))

6 sup
ai→a
bi→b

lim
i→∞

d(γai, ∗) + d(γbi, ∗)− d(ai, ∗)− d(bi, ∗)
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= sup
ai→a
bi→b

lim
i→∞

d(γai, ∗) + d(γbi, ∗)− d(γai, γ∗)− d(γbi, γ∗)

6 sup
ai→a
bi→b

lim
i→∞

d(γai, ∗) + d(γbi, ∗)− d(γai, γbi)

= 2(γa · γb)∗ = 0

We use a similar reasoning to prove that D(γx, γy)−D(x, y) 6 0, which implies
that D(γx, γy) = D(x, y).

Let us reuse the same spaces X and Y but assume γb = a and γa = b. Since
γ2 has more fixed points on the boundary than γ, it is easy to see that γ is an
elliptic isometry of X.

This time, we extend γ to Y by using γ(xi) = (γx)−i. We can use the same
argument as above to prove that γ is an elliptic isometry of Y by using the fact
that {ai | ai → a} = {γbi | bi → b} and {bi | bi → b} = {γai | ai → a}, allowing
an analog of the previous computations.

Example 3. Let X be a δ-hyperbolic metric space in Λ1, T a Λ2-tree, dX and
dT the associated metrics and Y ⊆ X bounded and γ its diameter. Define
dY : X × T → Λ1 ⊕ Λ2 by

dY ((x1, t), (x2, t)) = (dX(x1, x2), 0)

and
dY ((x1, t1), (x2, t2)) = (dX(x1, Y ) + dX(x2, Y ), dT (t1, t2))

To see that dY is a (δ + γ, 0)-hyperbolic metric, notice that (X × T, dY ) can
be embedded into a space where we connect each pair X × t1, X × t2, where
dT (t1, t2) = 1 by attaching a copy of Y ×Λ2 to Y × t1 and Y × t2 and imagining
they meet at the end.

In particular, suppose G acts on X and T and there exists an x ∈ X such
that Gx is bounded. We can then consolidate both actions into an action on
(X × T, dGx) which is a (δ + γ, 0)-hyperbolic Λ1 ⊕ Λ2-metric space.

Note that one could use T as a δ′-hyperbolic space resulting in dY being
(δ + γ, δ′)-hyperbolic.

3 Group actions and hyperbolic length

functions

In this section we introduce hyperbolic length functions on groups. This gives
an equivalent approach to study group actions on hyperbolic Λ-metric spaces.

In [15] Lyndon introduced a notion of an abstract length function l : G→ Λ
on a group G with values in Λ. This started the whole study of the group length
functions and actions. Following Lyndon we call a function l : G → Λ a length
function if it satisfies the following axioms

(Λ1) ∀ g ∈ G : l(g) > 0 and l(1) = 0,
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(Λ2) ∀ g ∈ G : l(g) = l(g−1),

(Λ3) ∀ g, h ∈ G : l(gh) 6 l(g) + l(h).

Now we introduce the following crucial definition.
A length function l : G→ Λ is called hyperbolic if there is δ ∈ Λ such that

(Λ4, δ) ∀ f, g, h ∈ G : c(f, g) > min{c(f, h), c(g, h)} − δ,

where c(g, h) = 1
2

(
lv(g) + lv(h)− lv(g

−1h)
)
.

Usually, a length function satisfying (Λ4, δ), is called δ-hyperbolic.
Lyndon himself considered a much stronger form of the axiom (Λ4, δ), the

one with δ = 0. After him length functions l : G→ Λ are called Lyndon length
functions. In our terminology these are 0-hyperbolic length functions. Chiswell
in [3] showed that groups with Lyndon length functions L : G → R (and an
extra axiom) are precisely those that act freely on R-trees, and later Morgan
and Shalen generalized his construction to arbitrary Λ [16]. For more details we
refer to the book [3].

In Section 3.1 we show how an action of a group G by isometries on a
(hyperbolic) Λ-metric space induces naturally a (hyperbolic) length function on
G with values in Λ. And in Section 3.2 we prove the converse, thus establishing
equivalence of these two approaches.

3.1 From actions - to length functions

Let X = (X, d) be a Λ-metric space. By Isom(X) we denote the group of
bijective isometries of X . We say that a group G acts on a X if for any g ∈ G
there is an isometry φg ∈ Isom(X) such that for any x ∈ X and any g, h ∈ G
one has φgh(x) = φg(φh(x)), that is, the map g → φg is a group homomorphism
G→ Isom(X). In this case, for every x ∈ X and g ∈ G we denote φg(x) by gx.

If G acts on (X, d) then one can fix a point v ∈ X and consider a function
lv : G → Λ defined as lv(g) = d(v, gv), called a length function based at v. The
basic properties of based length functions come from the metric properties of
(X, d).

Theorem 5. If a group G acts on a Λ-metric space (X, d) and v ∈ X then
the length function lv based at v is a length function on G with values in Λ.
Moreover, if (X, d) is δ-hyperbolic with respect to v for some δ ∈ Λ then lv is
δ-hyperbolic.

Proof. (Λ1) is obvious since lv(1) = d(v, v) = 0. Also, (Λ2) follows since
d(v, gv) = d(g−1v, v).

Next, since d(v, (gh)v) = d(g−1v, hv) then by definition of the metric we
have

d(g−1v, hv) 6 d(g−1v, v) + d(v, hv)

and (Λ3) follows from the equality d(g−1v, v) = d(v, gv).
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Finally, assume that (X, d) is δ-hyperbolic. Observe that

c(f, g) =
1

2

(
lv(f) + lv(g)− lv(f

−1g)
)
=

1

2
(d(v, fv) + d(v, gv)− d(v, (f−1g)v))

=
1

2
(d(v, fv) + d(v, gv)− d(fv, gv)) = (fv · gv)v.

In the same way we have c(f, h) = (fv · hv)v, c(g, h) = (gv · hv)v and since
(X, d) is δ-hyperbolic then we have

(fv · gv)v > min{(fv · hv)v, (gv · hv)v} − δ,

which proves (Λ4) for lv.

3.2 From length functions - to actions

Let l : G→ Λ be a length function. The set

ker(l) = {g ∈ G | l(g) = 0}

is called the kernel of l. It is easy to see that ker(l) is a subgroup of G (this
follows from (Λ3)).

Lemma 13. Let l : G→ Λ be a length function. Then for any a ∈ ker(l), g ∈ G

l(ag) = l(ga) = l(g),

that is, l is a constant function on each coset of ker(l).

Proof. Let a ∈ ker(l), g ∈ G. Then l(ag) 6 l(a) + l(g) = l(g) and l(g) =
l(a−1ag) 6 l(a−1) + l(ag) = l(ag), so l(ag) = l(g). A similar argument works
for l(ga) = l(g).

Theorem 6. If l : G→ Λ is a length function, then there are a Λ-metric space
(X, d), an action of G on X, and a point v ∈ X such that l = lv. Moreover, if
l : G→ Λ is δ-hyperbolic then the space (X, d) is also δ-hyperbolic.

Proof. Denote A = ker(l) and consider the set X = G/A of all left cosets of A
in G. Define a function dA : G/A × G/A → Λ so that dA(gA, hA) = l(g−1h).
Observe that by Lemma 13, dA is well-defined. Indeed, if g′, h′ ∈ G such
that g′A = gA, h′A = hA then g′ = ga1 and h′ = ha2 and dA(g

′A, h′A) =
l(a−1

1 g−1ha2) = l(g−1h) = dA(gA, hA).
We claim that (X, dA) is a Λ-metric space. Indeed, axioms (LM1) and

(LM3) of Λ-metric space are evident. Next, dA(gA, hA) = l(g−1h) = 0 if and
only if g−1h ∈ A if and only if gA = hA, so (LM2) follows. Finally, the triangle
inequality (LM4) follows from the corresponding property of the length function
l.

Now we show that (X, dA) is δ-hyperbolic with respect to the point A, pro-
vided l is δ-hyperbolic. Notice that for fA, gA ∈ G/A we have

(fA · gA)A =
1

2
(dA(fA,A) + dA(gA,A)− dA(fA, gA))
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=
1

2

(
l(f) + l(g)− l(f−1g)

)
= c(f, g).

Hyperbolicity is then a consequence of G having a δ-hyperbolic length function.
Now, G acts on G/A in a natural way, that is, if g ∈ G, hA ∈ G/A then

g · (hA) = (gh)A. This action is isometric since dA(fA, hA) = l(f−1h) =
l(f−1g−1gh) = dA(g · (fA), g · (hA)). Finally, l(g) = dA(A, gA) = lA(g).

Given a group G and a δ-hyperbolic length function l : G → Λ, denote by
(Xl, dl) the δ-hyperbolic Λ-metric space constructed in Theorem 6. Note that
the stabilizer of the point v is exactly the kernel of l = lv.

In general, given an action of G on an arbitrary δ-hyperbolic Λ-metric space
(X, d) and a point x ∈ X , the stabilizer Gx of x is exactly the kernel of the
δ-hyperbolic length function lx based at x.

We are going to use the notion of the kernel later in Section 6.

3.3 Examples of group actions on hyperbolic Λ-metric

spaces

Here are some examples of groups acting on hyperbolic Λ-metric spaces for
various Λ.

Example 4. Given a torsion-free word-hyperbolic group G and its generating
set S, the Cayley graph X = Cay(G,S) with the word metric (with respect to
S) is a δ-hyperbolic Z-metric space for some δ ∈ Z. G acts on X by isometries,
in particular, no element of G fixed a point in X.

Example 5. Since any Λ-tree is a δ-hyperbolic Λ-metric space with δ = 0, the
class of groups acting on hyperbolic Λ-metric spaces contains all groups acting
on Λ-trees (in particular, all Λ-free groups).

Example 6. Any subgroup of a group acting on a Λ-metric space (X, d) also
acts on this space. So, the class of groups acting on hyperbolic Λ-metric spaces
is closed under taking subgroups.

Example 7. Given two groups G1 and G2 acting respectively on Λ-metric spaces
(X1, d1) and (X2, d2), there exists a Λ⊕ Z-metric space (X, d), where Λ⊕ Z is
taken with the right lexicographic order, such that G1 ∗ G2 acts on X. To see
this, take some x1 ∈ X1 and x2 ∈ X2 and define l(g) = dn(xn, gxn) for g ∈ Gn.

Any element g of G1 ∗ G2 has a unique normal form g = g1g2 · · · gn with
gi ∈ G1 ∪ G2 for any i and if gi ∈ G1, then gi+1 ∈ G2 and vice versa. Define
then l(g) = (l(g1)+ · · ·+ l(gn), 1) and X = (G1 ∗G2, dl). It is easy to show that
this is a metric space.

Finally, it is not hard to see that, if both X1 and X2 are hyperbolic, then so
is X.

Example 8. Let H be a torsion-free hyperbolic group, u a cyclically reduced
word in generators of H, and

G = 〈H, t | t−1ut = u〉
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We would like to construct a Z2-metric space X on which G acts as follows.
Define T as the subset of the boundary of G made up of limits of sequences

of the form

{w,wu,wu2, wu2, . . .} and {w,wu−1, wu−2, wu−3, . . .},

where w is an arbitrary element of G. Take a rooted tree Y whose vertices have
valence |T | and label them by elements of G/H in such a way that the adjacent
vertices are the pairs of the form (gH, (ht±1g)H), where h ∈ H, g ∈ G.

Denote the metric on Y by dY , the word metric on H (with respect to some
fixed generating set) b dH , and the hyperbolicity constant of (H, dH) by δ. Note
that any element of G either is of the form h, if it is in H, or is a product of
elements of the type gt±1h with g ∈ G and h ∈ H otherwise.

Now, let X = Y × H and for (gH, h1), (gH, h2) ∈ Y × H we define the
distance d((g1H,h1), (g2H,h2)) as follows. If g1H = g2H then we set

d((g1H,h1), (g2H,h2)) = (dH(h1, h2), 0)

If g1H 6= g2H then let e1e2 . . . eN , where N = dY (g1H, g2H), be the path from
g1H to g2H in Y . Observe that every edge ei is associated with a pair of ends
(α(ei), ω(ei)) in the corresponding copies of (H, dH). Hence, define

d((g1H,h1), (g2H,h2)) = (dH(1, g1)− 2((gH, h1) · α(e1)) + dH(1, g2)

−2((gH, h1) · ω(en))− 2

N∑

i=1

(ω(ei) · α(ei+1)), dY (g1H, g2H)),

where “ ·” represents the Gromov product of two ends, or an end and a point in
a hyperbolic space (computed in the appropriate copy of (H, dH)).

In the light of the alternative given in the definition of a hyperbolic length
function, it suffices to prove that X is (δ, 0)-hyperbolic and the action

(gt±1h) · (g′H,h′) = ((gt±1hg′)H,h′)

if g′ /∈ H, or
(gt±1h) · (g′H,h′) = ((gt±1)H,hh′)

if g′ ∈ H, is an action by isometries to have that

l(gt±1h) = d((H, 1), ((gt±1)H,h))

is a (δ, 0)-hyperbolic length function on G.

4 Kernels and hyperbolicity constants

Let Λ be an ordered abelian group and G a group with a length function l : G→
Λ (that is, l satisfies the axioms (Λ1)− (Λ3)). Fix a convex subgroup Λ0 6 Λ.
The order on Λ induces an order on the quotient abelian group Λ̄ = Λ/Λ0,
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so Λ̄ becomes an ordered abelian group with an order preserving the quotient
epimorphim η : Λ → Λ̄.

The Λ0-kernel of G (with respect to l : G→ Λ) is the set

GΛ0
= {g ∈ G | l(g) ∈ Λ0}

By the axiom (Λ3), the kernel GΛ0
is a subgroup of G (though not necessary

normal).

Lemma 14. Let l : G → Λ be a length function, Λ0 be a convex subgroup of
Λ, and 0 < δ 6∈ Λ0. Then the restriction l0 of the length function l to GΛ0

is a
δ-hyperbolic length function l0 : GΛ0

→ Λ.

Proof. Since Λ0 is convex, it follows that δ > λ for any λ ∈ Λ0. To prove the
result one needs only to show that for any f, g, h ∈ GΛ0), the following inequality
holds

c(f, g) > min{c(f, h), c(g, h)} − δ,

which is, of course, equivalent to (avoiding working in Q⊗ Λ):

2c(f, g) > min{2c(f, h), 2c(g, h)} − 2δ.

Since Λ0 is convex, it follows that 2c(f, h), 2c(g, h) ∈ Λ0, so

min{2c(f, h), 2c(g, h)} − 2δ < 0

But 2c(f, g) > 0, which finishes the proof.

The whole idea behind δ-hyperbolic length functions is a generalization of
hyperbolic properties from usual metric spaces to Λ-metric spaces for an arbi-
trary Λ. But when Λ is not archimedean the choice of δ becomes very important
as the following construction shows.

Let G be a word-hyperbolic group, that is, the geodesic word length function
l = | · |S : G → Z with respect to some finite generating set S is δ-hyperbolic
for some δ ∈ Z.

Consider the groupH = G×G and a map lH : H → Z2 defined by lH(f, g) =
(l(f), l(g)), where Z2 is considered with the right lexicographic order.

Lemma 15. The function lH : H → Z2 is a δH-hyperbolic length function on
H, where δH = (δ1, δ1) ∈ Z2 and δ1 ∈ Z is such that δ1 > δ.

Proof. It is easy to see that the axioms (Λ1) and (Λ2) hold immediately.
The triangle inequality (Λ3) is also straightforward. Indeed, let h1,h2 ∈ H

be such that h1 = (f1, g1),h2 = (f2, g2). Then

lH(h1h2) = lH(f1f2, g1g2) = (l(f1f2), l(g1g2)) 6 (l(f1) + l(f2), l(g1) + l(g2))

= lH(h1) + lH(h2).
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To prove (Λ4) let h1,h2,h3 ∈ H be such that h1 = (f1, g1),h2 = (f2, g2)
and h3 = (f3, g3). We have to show that

c(h1,h2) > min{c(h1,h3), c(h2,h3)} − δH .

We have

c(hi,hj) =
1

2
(l(hi) + l(hj)− l(h−1

i hj)) = (c(fi, fj), c(gi, gj)).

Hence, we have to show that

(c(f1, f2), c(g1, g2)) > min{(c(f1, f3), c(g1, g3)), (c(f2, f3), c(g2, g3))} − (δ1, δ1),

where δ1 ∈ Z is such that δ1 > δ. Since G is δ-hyperbolic we have

c(f1, f2) > min{c(f1, f3), c(f2, f3)} − δ > min{c(f1, f3), c(f2, f3)} − δ1.

Without loss of generality suppose that c(g1, g3) 6 c(g2, g3), so that

c(g1, g2) > c(g1, g3)− δ1.

Thus, we need to prove that

(c(f1, f2), c(g1, g2)) > (κ, c(g1, g3))− (δ1, δ1),

where κ ∈ Z2 is defined as follows

κ =

{
c(f1, f3) c(g1, g3) < c(g2, g3)
min{c(f1, f3), c(f2, f3)} c(g1, g3) = c(g2, g3)

The above inequality holds since c(g1, g2) > c(g1, g3)− δ1.

Remark 1. The result of Lemma 15 does not hold for δ1 = δ. Indeed, in
the case when c(g1, g3) < c(g2, g3) and c(g1, g2) = c(g1, g3) − δ we must have
c(f1, f2) > c(f1, f3)− δ which may not be true.

The construction above shows that if G has a δ-hyperbolic length function l
in a non-archimedean Λ and if there are many elements of G such that l(g) < δ
then the properties of G may be quite far from properties of word-hyperbolic
groups.

5 Various types of actions and functions

In this section we study properties of δ-hyperbolic length functions. In partic-
ular, we consider new axioms in addition to (Λ1) − (Λ4, δ) which shed some
light on the structure of the underlying group. We also try to characterize the
corresponding group actions (which exist in view of Theorem 6).

Below we use the following notation. If l : G → Λ is a δ-hyperbolic length
function and α ∈ Λ then for g, h ∈ G we write

gh = g ◦α h

if c(g−1, h) 6 α. Respectively, gh = g ◦ h means that c(g−1, h) = 0, that is,
l(gh) = l(g) + l(h).
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5.1 Regularity

Let l : G→ Λ be a δ-hyperbolic length function. We introduce several conditions
on l, all of which lead to the same property called regularity. Both conditions
depend on a parameter k ∈ N. Below is the first condition on l, which we denote
(R1, k).

(R1, k): ∃ k ∈ N ∀ g, h ∈ G ∃ u ∈ G

g = u ◦kδ g1 & h = u ◦kδ h1 & g−1h = g−1
1 ◦kδ h1

Observe that if δ = 0 then l is a Lyndon length function on G and it satisfies
(R1, k) for some k (and hence for any) if and only if l is regular (see [11, 13]
for all definitions and properties of regular Lyndon length functions). For an
arbitrary δ, clearly (R1, k) implies (R1,m) for any m > k.

Here is another condition on l, we call it (R2, k).

(R2, k): ∃ k ∈ N ∀ g, h ∈ G ∃ u ∈ G

l(u) 6 c(g, h) + kδ & l(u−1g) 6 c(g−1, g−1h) + kδ

& l(u−1h) 6 c(h−1, h−1g) + kδ

Again, as in the case of (R1, k), the condition (R2, k) obviously implies
(R2,m) for any m > k.

The following result makes a connection between these conditions.

Lemma 16. Let G be a group and l : G→ Λ be a δ-hyperbolic length function.
Then the following implications hold for l:

(R1, k) =⇒ (R2, k + 1), (R2, k) =⇒ (R1, k)

Proof. (R1, k) =⇒ (R2, k + 1) :

We have g = u ◦kδ g1 which is equivalent to c(u−1, g1) 6 kδ, so l(u)+ l(g1)−
l(g) 6 2kδ. It follows that 2l(u)− 2c(u, g) 6 2kδ, or l(u) 6 c(u, g) + kδ. Using
the same argument we get l(u) 6 c(u, h) + kδ. Hence,

c(g, h) > min{c(u, g), c(u, h)} − δ > l(u)− (k + 1)δ

and we have l(u) 6 c(g, h) + (k + 1)δ.
Similarly, from g−1 = g−1

1 ◦kδ u
−1 we get

l(g1) = l(g−1
1 ) 6 c(g−1, g−1

1 ) + kδ,

from g−1h = g−1
1 ◦kδ h1 we get

l(g1) = l(g−1
1 ) 6 c(g−1, g−1h) + kδ,

which imply
l(u−1g) = l(g1) 6 c(g−1, g−1h) + (k + 1)δ.



34

The inequality l(u−1h) = l(h1) 6 c(h−1, h−1g)+ (k+1)δ is derived in the same
way.

(R2, k) =⇒ (R1, k) :

We have that l(u) 6 c(g, h) + kδ and l(u−1g) 6 c(g−1, g−1h) + kδ which
imply that l(u) + l(u−1g) 6 l(g) + 2kδ. Therefore,

c(u−1, u−1g) =
1

2

(
l(u) + l(u−1g)− l(g)

)
6 kδ,

that is, g = u(u−1g) = u ◦kδ (u−1g). Similar argument proves the inequalities
h = u ◦kδ (u

−1h) and g−1h = (u−1g)−1 ◦kδ (u
−1h).

Definition 2. A δ-hyperbolic length function l : G → Λ is called regular if it
satisfies either (R1, k), or (R2, k) for some k ∈ N.

Observe that Definition 2 agrees with the notion of regularity for Lyndon
length functions in the case when δ = 0.

Now, we say that the action of G on a δ-hyperbolic space (X, d) is regular
if for some x ∈ X (hence, for any) the length function l based at x is regular.
Since in this case for every g, h ∈ G we have c(g, h) = (gx · hx)x then regularity
of the action can be explicitly characterized by the following condition (which
is just a reformulation of (R2, k) in terms of actions):

∃ k ∈ N ∀ g, h ∈ G ∃ u ∈ G

d(x, ux) 6 (gx · hx)x + kδ & d(x, (u−1g)x) 6 (g−1x · (g−1h)x)x + kδ

& d(x, (u−1h)x) 6 (h−1x · (h−1g)x)x + kδ

In the case when (X, d) is geodesic we introduce the following condition on
the action of G.

(RA, k): there exists k ∈ N such that for any g, h ∈ G there exists u ∈ G
with the property that ux belongs to the kδ-neighborhood of the interior of
∆I(x, gx, hx).

Obviously, if δ = 0 then the interior of ∆I(x, gx, hx) is a single point
Y (x, gx, hx) = [x, gx]∩ [x, hx]∩ [gx, hx] and (RA, k) is equivalent to the regular-
ity condition for group actions on Λ-trees (see [12, 11]). In general, equivalence
of (RA, k) and regularity of the action follows from the lemma below.

Lemma 17. Let G be a group acting on a δ-hyperbolic space (X, d) and l :
G→ Λ a δ-hyperbolic length function based at x ∈ X. If X is geodesic then the
following implications hold

(RA, k) =⇒ (R2, k + 4), (R2, k) =⇒ (RA, 3k + 4)

Proof. (RA, k) =⇒ (R2, k + 4) :

Since X is δ-hyperbolic then for any g, h ∈ G, the triangle ∆I(x, gx, hx) has
diameter at most 4δ. Hence, one of its vertices is at a distance c(g, h) = (gx·hx)x
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from x, another vertex is at a distance c(g−1, g−1h) from gx (one can see this
by translating the whole picture by g−1), and the third one is at a distance
c(h−1, h−1g) from hx (again, one can see this by translating the whole picture
by h−1). Thus, if ux is in the kδ-neighborhood of the interior of ∆I(x, gx, hx),
then it is in the (k + 4)δ-neighborhood of all three of its corners which implies
(R2, k + 4).

(R2, k) =⇒ (RA, k + 4) :

Suppose (R2, k) holds, so, the action of G on (X, d) (that is, (Xl, dl)) is
regular, and we want to show that it satisfies (RA, 3k + 4) with respect to the
base-point x ∈ X .

First of all, it is easy to see that

(gx · hx)x + (g−1x · (g−1h)x)x = dl(x, gx)

Next, we have

dl(x, gx) 6 dl(x, ux) + dl(ux, gx) 6 (gx · hx)x + kδ + dl(ux, gx)

from which it follows that

dl(x, gx)− dl(ux, gx) 6 dl(x, ux) 6 (gx · hx)x + kδ

which, combined with the inequalities dl(ux, gx) 6 (g−1x · (g−1h)x) + kδ and
dl(x, gx) − (g−1x · (g−1h)x)x = (gx · hx)x, implies that

(gx · hx)x − kδ 6 dl(x, ux) 6 (gx · hx)x + kδ

A similar argument shows that

(g−1x · (g−1h)x)x − kδ 6 dl(gx, ux) 6 (g−1x · (g−1h)x)x + kδ

Consider ∆(x, gx, hx) and ∆(x, gx, ux) which are both geodesic triangles in
X . The point on [x, gx] situated at a distance (gx · hx)x from x is a vertex of
∆I(x, gx, hx), and the points at a distance (gx · ux)x on [x, gx] and [x, ux] are
at a distance at most 4δ from one another. Next, we have

(ux · gx)x =
1

2
(d(x, ux) + d(x, gx) − d(ux, gx))

>
1

2
(((gx · hx)x − kδ) + d(x, ux) − ((g−1x · (g−1h)x)x + kδ))

=
1

2
(2(gx · hx)x − 2kδ) = (gx · hx)x − kδ

It follows that a point on [x, gx] at a distance (gx · ux)x from x is at a distance
at most kδ from a vertex of ∆I(x, gx, hx), a point on [x, ux] at a distance
(gx ·ux)x from x is at a distance at most 2kδ from ux, so ux is at a distance at
most (3k + 4)δ from one of the vertices of ∆I(x, gx, hx). Hence, (RA, 3k + 4)
holds for the action of G on X .
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5.2 Completeness and hyperbolic groups

A δ-hyperbolic length function l : G → Λ is called complete if the following
axiom holds:

(C) ∀ g ∈ G ∀ α 6 l(g) ∃ u ∈ G : g = u ◦ g1 & l(u) = α.

Note that such an element u may not be unique.

Lemma 18. Let l : G → Λ be a complete δ-hyperbolic length function. Then
for all g, h ∈ G, if g = u ◦ g1, h = v ◦ h1, with l(u) = l(v) 6 c(g, h), it follows
that l(u−1v) 6 4δ.

Proof. Consider the triple {h1, v−1, v−1ug1}. Then by δ-hyperbolicity of l we
have

2c(v−1, h1) > min{2c(v−1ug1, v
−1), 2c(h1, v

−1ug1)} − 2δ,

so that

0 > min{l(v−1ug1)− l(g1), l(v
−1ug1) + l(h1)− l(g−1h)} − 2δ.

At the same time we have l(u) = l(v) 6 c(g, h), which implies that l(g−1h) 6
l(g1) + l(h1) so that

l(v−1ug1)− l(g1) 6 l(v−1ug1) + l(h1)− l(g−1h),

which gives 0 ≥ l(v−1ug1)− l(g1)− 2δ. Hence

0 6 l(v−1ug1)− l(g1) 6 2δ.

Now consider the triple {u, v, g}. We have

2c(u, v) > min{2c(u, g), 2c(v, g)} − 2δ.

Next, 2c(u, g) = 2l(u) and 2c(v, g) = 2l(u) + l(g1) − l(v−1ug1). But l(g1) −
l(v−1ug1) 6 0 implies 2c(u, g) > 2c(v, g), so 2c(u, v) > 2c(v, g)−2δ and therefore

2l(u)− l(u−1v) > 2l(u) + l(g1)− l(v−1ug1)− 2δ,

so that we have the desired inequality

l(u−1v) 6 l(v−1ug1)− l(g1) + 2δ 6 4δ.

Corollary 3. Let l : G→ Λ be a complete δ-hyperbolic length function. Suppose
also that c(g, h) ∈ Λ for all g, h ∈ G. Then ∀ g, h ∈ G ∃ u, v ∈ G : g =
u ◦ g1 & h = v ◦ h1 & l(u) = l(v) = c(g, h) & l(u−1v) 6 4δ.

Proof. From completeness of l it follows that for any g, h ∈ G there exist u, v ∈ G
such that g = u ◦ g1, h = v ◦ h1, with l(u) = l(v) = c(g, h). Now, by Lemma 18
we have l(u−1v) 6 4δ and the result follows.
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Here are examples of groups with complete δ-hyperbolic length functions.

Example 9. Every δ-hyperbolic group has a complete Z-valued δ-hyperbolic
length function, which is the geodesic length of its elements.

Example 10. If G has a complete δ-hyperbolic length function with values in Λ
and CG(u) is a centralizer of u ∈ G, then the group G′ = 〈G, t | [CG(u), t] = 1〉
has a complete δ-hyperbolic length function with values in Λ⊕Z (with the right
lexicographic order).

We call a Λ-metric space (X, d) quasi-geodesic if for every x, y ∈ X there
is a map γ : [0, d(x, y)] → X such that γ(0) = x, γ(d(x, y)) = y, and for any
0 6 α 6 β 6 d(x, y) we have

β − α 6 d(γ(α), γ(β)) 6 β − α+ C,

here C is a constant which depends on X only.

Theorem 7. Let l : G → Λ be a complete δ-hyperbolic length function. Then
the δ-hyperbolic Λ-metric space (Xl, dl) constructed from the pair (G, l) is quasi-
geodesic.

Proof. Recall that Xl is the set G/A, where A = ker l, and the metric dl on Xl

is defined by dl(gA, hA) = l(g−1h).
Let x = gA, y = hA ∈ Xl. Consider a map γ : [0, d(x, y)] → Xl such that

γ(0) = x, γ(d(x, y)) = y, and for any 0 6 α 6 d(x, y) we put γ(α) = (gu1)A,
where g−1h = u1 ◦ u2 and l(u1) = α (such u1, u2 ∈ G exist by completeness of
l). Thus we have d(γ(0), γ(α)) = d(gA, (gu1)A) = l(u1) = α.

Now, for any α and β such that 0 6 α 6 β 6 d(x, y) we have γ(α) =
(gu1)A, γ(β) = (gv1)A, where g

−1h = u1◦u2 = v1◦v2 and l(u1) = α, l(v1) = β.
Since α 6 β, by Lemma 18, v1 = (u1s) ◦ v2, where l(s) 6 4δ. Hence, we have

β − α 6 d(γ(α), γ(β)) = l(u−1
1 v1) 6 l(v2) + l(s) 6 β − α+ 4δ

Theorem 8. A group G is δ-hyperbolic if and only if there exists a δ-hyperbolic
length function l : G→ Z with the following properties

(a) l is complete,

(b) |{g ∈ G | l(g) 6 1}| <∞.

Proof. If G is δ-hyperbolic then its word metric | · |S : G → Z with respect to
some finite generating set S is a δ-hyperbolic length function, it is obvious.

Now, suppose on a group G there exists a δ-hyperbolic length function l :
G → Z which satisfies the conditions (a) and (b). Denote S = {g ∈ G | l(g) 6
1}. Observe that S is finite and G = 〈S〉 since by completeness of l every g ∈ G
can be decomposed as a finite product of elements from S. Hence, l can be
viewed as a word metric | · |S with respect to S. Finally, the Cayley graph of G
with respect to S is δ-hyperbolic which follows from δ-hyperbolicity of l.
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5.3 Free length functions

A δ-hyperbolic length function l : G→ Λ is called free if

(F) ∀ g ∈ G : g 6= 1 → l(g2) > l(g) + 3δ

Observe that if δ = 0, that is, the δ-hyperbolic Λ-metric space (Xl, dl) is a
Λ-tree then l is a free Lyndon length function.

We say that the action of G on a δ-hyperbolic space (X, d) is free if for some
x ∈ X (hence, for any) the length function l based at x is free. Obviously, if a
δ-hyperbolic length function l : G→ Λ is free then ker(l) is trivial.

Example 11. Every torsion-free δ-hyperbolic group has a free (and complete) Z-
valued δ-hyperbolic length function, which is the geodesic length of its elements.

Observe that, in view of Lemma 11, free action implies that every element
of G acts as either a hyperbolic isometry, or an inversion. Hence, we say that
a group G is Λ-free if it acts on a δ-hyperbolic Λ-metric space (X, d) freely and
without inversions.

6 Proper actions and hyperbolicity relative to

the kernel

In this section we consider action of a finitely generated group G on a geodesic
δ-hyperbolic R-metric space (X, d) and show that if the action is “nice” (regular
and proper) then G is weakly hyperbolic relative to the kernel of the associated
length function.

6.1 Proper actions

We fix the group G with a finite generating set S and the δ-hyperbolic R-metric
space (X, d) with a base-point x ∈ X . As usual we have a δ-hyperbolic length
function l : G → R based at x and its kernel ker(l) is a subgroup of G. Recall
that ker(l) = Gx = StabG(x).

Recall that the action of G on (X, d) satisfies the axiom (R2, k) if there exists
k ∈ N such that for all g, h ∈ G there exists u ∈ G with the property

d(x, ux) 6 (gx · hx)x + kδ & d(x, (u−1g)x) 6 (g−1x · (g−1h)x)x + kδ

& d(x, (u−1h)x) 6 (h−1x · (h−1g)x)x + kδ

See Subsection 5.1 for all the details.
Next, we say the action is proper relative to x if there exists some α ∈ R

such that l(g) > α for any g ∈ GrGx and the set

BN = {g ∈ G | d(x, gx) 6 N}

is bounded for any N ∈ N in the Cayley graph Γ(G,S ∪ Gx) of G relative to
S ∪Gx.
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Since S is finite, there exists N ∈ N such that S ⊆ BN . Define the weighted
graph Γ so that

V (Γ) = G/Gx, E(Γ) = {(gGx, (gh)Gx) | g ∈ G, h ∈ BN}

and the weight function w : E(Γ) → R is defined by w(gGx, (gh)Gx) = l(h).
Note that Γ is connected since S ⊆ BN . Next, Γ is a metric space with respect
to the metric dΓ defined by

dΓ(gGx, hGx) = min{w(p) | p is a path in Γ connecting gGx and hGx}.

Notice that for g, h ∈ G, we have d(gx, hx) 6 N if and only if (gGx, hGx) ∈
E(Γ). It follows that in a geodesic path in Γ no two consecutive edges both
have weights less than or equal to N

2 (by the triangle inequality).

Lemma 19. Suppose the action of G on (X, d) is proper relative to x and that
it satisfies (R2, k) for some k ∈ N.

(i) If (Gx, aGx), (aGx, bGx) ∈ E(Γ) and (Gx, aGx)∪ (aGx, bGx) is a geodesic
in Γ then d(x, bx) > d(x, ax) + d(ax, bx) − 2kδ.

(ii) If (Gx, aGx), (aGx, bGx), (bGx, cGx) ∈ E(Γ) and (Gx, aGx)∪(aGx, bGx)∪
(bGx, cGx) is a geodesic in Γ with w(aGx, bGx) <

N
2 then d(x, cx) >

d(x, ax) + d(ax, bx) + d(bx, cx)− 5kδ.

Proof. (i) Consider the geodesic triangle ∆I(x, ax, bx) with the vertices p ∈
[x, ax], q ∈ [x, bx] and r ∈ [ax, bx]. From (R2, 1) it follows that there exists
u ∈ G such that

d(x, ux) 6 d(x, p) + kδ, d(ax, ux) 6 d(ax, q) + kδ, d(bx, ux) 6 d(bx, r) + kδ

By definition of ∆I(x, ax, bx) we have

d(x, bx) = d(x, q) + d(q, bx) = d(x, ax) + d(ax, bx) − d(p, ax)− d(r, ax).

If d(p, ax) = d(r, ax) < kδ then there is nothing to prove. Otherwise, we have

d(x, ux) 6 d(x, p) + kδ 6 d(x, ax) − kδ + kδ = d(x, ax) 6 N

and

d(ux, bx) 6 d(r, bx) + kδ 6 d(ax, bx)− kδ + kδ = d(ax, bx) 6 N,

so we have that (Gx, uGx) ∪ (uGx, bGx) is a path in Γ. But then

d(x, ax) + d(ax, bx) = w(Gx, aGx)+w(aGx, bGx) 6 w(Gx, uGx)+w(uGx, bGx)

= d(x, ux) + d(ux, bx) 6 d(x, q) + d(q, bx) + 2kδ = d(x, bx) + 2kδ
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(ii) Consider the geodesic triangle ∆I(x, bx, cx) with the vertices p ∈ [x, bx],
q ∈ [x, cx] and r ∈ [bx, cx]. Again, from (R2, k) it follows that there exists
u ∈ G such that

d(x, ux) 6 d(x, p) + kδ, d(bx, ux) 6 d(bx, q) + kδ, d(cx, ux) 6 d(cx, r) + kδ

By definition of ∆I(x, ax, cx) we have

d(x, cx) = d(x, q) + d(q, cx) = d(x, bx) + d(bx, cx)− d(p, bx)− d(r, bx).

If d(p, bx) = d(r, bx) < kδ then

d(x, cx) > d(x, bx)+d(bx, cx)−2kδ > d(x, ax)+d(ax, bx)−2kδ+d(bx, cx)−2kδ,

so, there is nothing to prove. So, assume that d(r, bx) > kδ. Then we have

d(ux, cx) 6 d(r, cx) + kδ 6 d(bx, cx) − kδ + kδ 6 N,

that is, (uGx, cGx) ∈ E(Γ). Note also that, if d(x, ux) 6 N then (Gx, uGx) ∈
E(Γ) which implies that

d(x, ax) + d(ax, bx) + d(bx, cx) 6 d(x, ux) + d(ux, cx) 6 d(x, cx) + 2kδ,

so, again, there would be nothing to prove. Thus we can assume that d(x, ux) >
N .

Observe that ux is at a distance of at most kδ from a point on [x, bx]. If
this point is at a distance of at most δ from a point on [ax, bx], then ux is at
a distance of at most N

2 + (k + 1)δ from ax. If, on the other hand, it is at a
distance of at most δ from a point on [x, ax], say t, then we have

d(x, ax) < d(x, ux) 6 d(x, t) + (k + 1)δ,

so, d(t, ax) < (k + 1)δ, and thus d(ax, ux) < (2k + 2)δ. In both cases, since we
can assume that N > (2k + 2)δ, we have (aGx, uGx) ∈ E(Γ). It follows that

d(x, ax) + d(ax, bx) + d(bx, cx) 6 d(x, ax) + d(ax, ux) + d(ux, cx).

Finally, we have d(x, bx) > d(x, ax) + d(ax, bx)− 2kδ, so, (ax · bx)x 6 kδ. It
follows that if v is a point on [x, bx] such that

d(x, ax) − 2kδ 6 d(v, x) 6 d(x, ax) + 2kδ

then d(ax, v) 6 2kδ. Similarly, if w is a point on [x, bx] such that

d(x, ux) − 2kδ 6 d(w, x) 6 d(x, ux) + 2kδ

then d(ux,w) 6 kδ. Since we assume that d(x, ux) > d(x, ax), we have that

d(ax, ux) 6 d(x, ux) − d(x, ax) + 3kδ.

It follows that

d(x, ax)+d(ax, ux)+d(ux, cx) 6 d(x, ax)+d(x, ux)−d(x, ax)+3kδ+d(ux, cx)

= d(x, ux) + d(ux, cx) + 3kδ 6 d(x, cx) + 5kδ.
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Now, define a map ϕ : Γ → X so that

ϕ(gGx) = gx and ϕ(gGx, hGx) = [gx, hx].

Corollary 4. Suppose the action of G on (X, d) satisfies (R2, k) for some
k ∈ N. Then Γ is hyperbolic.

Proof. Let γ be a geodesic in Γ. By the construction, ϕ(γ) is a concatenation of
geodesic segments of lengths at mostN so that no two consecutive segments both
have weights less than or equal to N

2 . Hence, if x ∈ ϕ(γ) then the intersection
BN

4

(x) ∩ ϕ(γ) is contained in the image ϕ(γ0) of a subpath γ0 of γ in Γ which

contains not more than three edges. Moreover, if γ0 consists of three edges
then the length of the middle one is less than N

2 . Now, by Lemma 19, ϕ(γ) is a

(1, 5δ, N4 )-local-quasi-geodesic. It is a known result (see [4, Theorem 3.1.4]) that
there exist constants L(δ, λ, c), λ′(δ, λ, c), and c′(δ, λ, c) such that any (λ, c, L)-
local-quasi-geodesic is a (λ′, c′)-quasi-geodesic.

We can assume that N
4 > L(δ, 1, 5δ) since N is independent of δ and L =

L(δ). Then we use λ = λ′(δ, 1, 5δ) and c = c′(δ, 1, 5δ) and it is immediate that
Γ is (λδ + c)-hyperbolic.

Lemma 20. If the action of G on (X, d) is proper relative to x then Γ is quasi-
isometric to the Cayley graph Γ(G,S ∪Gx) of G relative to S ∪Gx.

Proof. Denote the metric on Γ(G,S∪Gx) by d
′. Consider the function Γ(G,S∪

Gx) → Γ defined by g → gGx. Since S ∪ Gx ⊆ BN , the image of a path from
Γ(G,S ∪Gx) is a path in Γ of the same combinatorial length and we have

dΓ(gGx, hGx) 6 Nd′(g, h).

Next, suppose that N ′ ∈ N is such that BN is contained in the ball of radius
N ′ centered at the identity in Γ(G,S ∪ Gx) (such N

′ exists since the action is
proper). Any edge of Γ has weight at least α and it lifts to a geodesic path in
Γ(G,S ∪ Gx) of length at most N ′. Since in any geodesic word in (S ∪ Gx) at
least every other letter is in S, we have that the edge together with any elements
of S adjacent to it will have length at most 2N ′. Hence,

d′(g, h) 6
2N ′

α
dΓ(gGx, hGx)

and the required statement follows.

Theorem 9. Let G be a finitely generated group acting on a δ-hyperbolic R-
metric space (X, d) with a base-point x ∈ X. If the action of G on X is proper
relative to x and that it satisfies (R2, k) for some k ∈ N then G is weakly
hyperbolic relative to Gx.

Proof. This is a direct consequence of Lemma 20 and Corollary 4.
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6.2 Geometric alternative to relatively proper actions

One problem with our definition of a relatively proper action is that it is very
hard to detect, especially geometrically. Let us look at an alternative condition
which gives the same result but it is more easy to interpret geometrically, though
it gives less insight into the relation between the action and the relative Cayley
graph.

Let X be a geodesic δ-hyperbolic space on which G acts and choose a base-
point x. As before, Bn = {g ∈ G | d(x, gx) 6 n}. We say the action of G on X
has property P (n) if

(i) there exists α such that Bα = Gx,

(ii) Bn generates G,

(iii) the set of double cosets {Gx g Gx | g ∈ Bn} is finite.

Proposition 3. Suppose G is finitely generated relatively to Gx and the action
of G on X has property P (n) for some n > 6144 log2(154)+768+2288δ. Then
G is weakly relatively hyperbolic relative to Gx.

Proof. It is suffficient to prove that Lemma 20 and Corollary 4 hold in this
case. Since Lemma 19 requires only regularity and that n > (2k+ 2)δ, we have
nothing to prove there.

Lemma 20 is rather easy to prove in this case. By assumption, Bn generates
G and that {Gx g Gx | g ∈ Bn} is finite, so we can take S to be a finite set
of representatives of {Gx g Gx | g ∈ Bn}. Again, since both S and Gx are
contained in Bn, paths in Γ(G,Gx ∪S) are still paths in Γ and the images of its
edges have weight at most N , so dΓ(gGx, hGx) 6 NdΓ(G,Gx ∪ S)(g, h) for any
g, h. On the other hand, any edge in Γ has weight at least α and the length of
any of its preimages in Γ(G,Gx ∪ S) is at most 3, so

dΓ(G,Gx∪S)(g, h) 6
3

α
dΓ(gGx, hGx)

Finally, in order for the proof of Corollary 4 to work, it is sufficient to have
N
4 > L(δ, 1, 5δ), and it can be inferred from the proofs of Lemma 3.1.9 and
Theorem 3.1.4 of [4] that L(δ, 1, 5δ) = 1536 log2(154) + 192 + 572δ.

6.3 Application to actions on trees

Corollary 5. Let G be a finitely generated relative to some Gx group, which
acts regularly on an R-tree T with the property P (n) for some n ∈ R, n > 0.
Then G is weakly hyperbolic relative to Gx.

Proof. Define T k to be the metric space T with all distances multiplied by k
and take a basepoint xk. It is obvious that G acts on T k for any k, so we can
define Bk

n = {g ∈ G | d(xk, gxk) 6 n}. It is easy to see that Bk
n = Bnk, thus,

the action of G on T k has property P (nk).
Since δ = 0 for all T k, it follows that aδ2 + bδ + c = c for any such action,

and for some k we obtain nk > c, as required.
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7 Completing hyperbolic Z- and R-metric

spaces

In this section we investigate the question of “completing” a given non-geodesic
hyperbolic Z-metric space X , that is, constructing a geodesic hyperbolic Z-
metric space X in which X (quasi-)isometrically embeds. Observe that any
δ-hyperbolic Z-metric space embeds isometrically into a complete geodesic δ-
hyperbolic R-metric space (see [2]) but this completion does not have to be a
Z-metric space.

Given a δ-hyperbolic Z-metric space (X, d) which we fix for the rest of this
section, below we introduce two Z-completions of X which we call Γ1(X) and
Γ2(X). We shall also define an analogous construction β(X) when X is an
R-metric space.

Our constructions will have, compared to Bonk and Schramm’s, the disad-
vantage that the hyperbolicity constant will increase. However, they will have
the advantage that isometries, embeddings and quasi-isometries of X extend
easily and that boundaries are easy to work with.

7.1 Γ1(X)

Define a graph Γ1(X) as follows: to the set of points of X which we call essential
vertices we add new vertices which fill “gaps” between essential vertices.

(1) Define Γ1(X) = X , that is, all vertices of Γ1(X) initially are essential.

(2) For any pair {x, y} of essential vertices with the property that there exists
no z ∈ Γ1(X) such that d(x, y) = d(x, z)+d(z, y), add to Γ1(X) all vertices
on a Z-path of distance d(x, y). The added Z-paths we call basic and
the new vertices we call auxiliary vertices. Observe that after this step,
for every essential vertices of Γ1(X) there exists a Z-geodesic segment
(composed from auxiliary vertices) connecting them.

(3) For any triple {x, y, z} of essential vertices, consider the projection of the
triangle ∆(x, y, z) onto the tripod T (x, y, z). Every two auxiliary vertices
of ∆(x, y, z) which map into the same point of the tripod we connect by
a Z-path whose length is the smallest integer larger or equal to 4δ (that
is, we add to Γ1(X) all vertices on this path) unless there exists already
a path of length less than or equal to 4δ between them. The added paths
we call bridges and the new vertices we call negligible vertices.

(4) We extend the metric d : X → Z to the metric d : Γ1(X) → Z as follows:

(a) the distance between two essential vertices is inherited from X ,

(b) the distance between an auxiliary vertex to the adjacent essential
vertices is defined by construction, hence, the distance from an aux-
iliary vertex to any other either essential, or auxiliary vertex is also
defined (as the minimum of lengths of paths connecting them),
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(c) the distance from a negligible vertex to the adjacent auxiliary vertices
is defined by construction, so, the distance from a negligible vertex
to any other vertex of Γ1(X) is also defined.

Remark 2. 1. Observe that if δ = 0 then the process of building Γ1(X) is
equivalent to the construction of a Λ-tree out of a 0-hyperbolic Λ-metric
space (see, for example, [3, Theorem 2.4.4]) since all bridges have length
0.

2. If X is geodesic then Γ1(X) = X. Indeed, if X is geodesic then for
any essential vertices x and y there is no essential vertex z such that
d(x, y) = d(x, z) + d(y, z) only when d(x, y) = 1. So, no auxiliary vertices
are added. Finally, since X is hyperbolic, for any pair of auxiliary vertices
there is already a path of length at most 4δ. Hence, no bridges are added
and, hence, no negligible vertices are added either.

Remark 3. Note that Γ1(X) is unique for a given X. Indeed it is easy to see
that the steps (1) and (2) above do not depend on the order in which we process
pairs of essential vertices. As for the step (3), since bridges are exactly of length
4δ, the only cases where a bridge is not added is one where there already was a
path which did not contain bridges, so the order in which we process triples of
essential vertices does not matter.

By [2, Theorem 4.1], X isometrically embeds into a complete geodesic δ-
hyperbolic R-metric space X. Denote the metric on X by d̄. We are going to
use (X, d̄) in our construction below.

Define a map ϕ : Γ1(X) → X as follows. First of all, observe that the set of
essential vertices of Γ1(X) is naturally identified with X , hence, it embeds into
X. Next, for a pair {x, y} of essential vertices, the basic path between them
in Γ1(X) can be mapped to some geodesic segment between ϕ(x) and ϕ(y).
Finally, for a pair {x, y} of auxiliary vertices (whose images under ϕ are already
defined), the bridge between them can also be mapped to a geodesic segment
between ϕ(x) and ϕ(y). Observe that ϕ is not unique but it is well-defined by
the construction.

Lemma 21. Let v, w be vertices of Γ1(X).

(i) If v and w are essential then d(v, w) = d̄(ϕ(v), ϕ(w)).

(ii) If v and w are auxiliary then

d̄(ϕ(v), ϕ(w)) 6 d(v, w) 6 d̄(ϕ(v), ϕ(w)) + 24δ

(iii) If v is essential and w is auxiliary then

d̄(ϕ(v), ϕ(w)) 6 d(v, w) 6 d̄(ϕ(v), ϕ(w)) + 8δ

Proof. First, notice that for any v, w ∈ Γ1(X) we have

d(v, w) > d̄(ϕ(v), ϕ(w)).
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Indeed, any edge of Γ1(X) belongs either to a basic path, or to a bridge. Basic
paths are embedded isometrically in X since X is embedded isometrically in X.
However, X is also δ-hyperbolic, so for a pair of auxiliary vertices connected by
a bridge in Γ1(X), their images in X are also at a distance of at most 4δ. It
follows that ϕ can only shorten distances.

(i) Obvious.

(iii) By the construction, w is on the geodesic linking two essential vertices
w1 and w2 in Γ1(X). Consider the geodesic triangle ∆(v, w1, w2). Hence, w is
at a distance of at most 4δ from either [v, w1], or [v, w2]. Let γ be the path
[v, w′]∪ [w′, w], where w′ ∈ [v, wi] for i = 1, 2 and let l(γ) the length of γ. Then
[v, w′] is isometrically embedded in X and d(w,w′) 6 4δ, so ϕ|γ is a (1, 4δ)-
quasi-isometry. Furthermore, ϕ([v, w′]) is a geodesic and d̄(ϕ(w), ϕ(w′)) 6 4δ,
so ϕ(γ) is a (1, 4δ)-quasi-geodesic. It follows that

d(v, w) 6 l(γ) 6 d̄(ϕ(v), ϕ(w)) + 8δ.

δ + 1
<

v

< δ

[w', v]

w2w1
w

w'
[w, w'] (1,         )U is δ + 2 -quasi-geodesic

Figure 1: Case (iii) in the proof of Lemma 21

(ii) By the construction, there exist essential vertices v1, v2, w1, w2 ∈ Γ1(X)
such that v ∈ [v1, v2], w ∈ [w1, w2]. Consider the geodesic square {v1, v2, w2, w1}
(linked together in the given order). Suppose v is at a distance of 4δ from
v′ ∈ [v1, w1]. We can always assume this since v must be at a distance of 4δ
from either [v1, w1], or [v2, w1], and we can twist the square to fit this situation.

If w is at a distance 4δ from w′ ∈ [v1, w1] then set γ = [v, v′]∪[v′, w′]∪[w′, w].
Otherwise, w is at a distance of 4δ from w′ ∈ [v1, w2] and v′ is at a distance
of 4δ from either v′′ ∈ [v1, w2], or v

′′ ∈ [w1, w2]. Hence, we set γ = [v, v′] ∪
[v′, v′′]∪ [v′′, w′]∪ [w′, w] in the former case, and γ = [v, v′]∪ [v′, v′′]∪ [v′′, w] in
the latter one.

Suppose first that γ = [v, v′]∪ [v′, w′]∪ [w′, w]. Then ϕ([v′, w′]) is an isomet-
rically embedded geodesic. Next, the other two segments of γ have lengths of at
most 4δ, and so do their images. It follows that ϕ|γ is a (1, 8δ)-quasi-isometry
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Figure 2: Case (ii) in the proof of Lemma 21

and ϕ(γ) is a (1, 8δ)-quasi-geodesic. Hence,

d(v, w) 6 l(γ) 6 d̄(ϕ(v), ϕ(w)) + 16δ.

Now assume that γ = [v, v′] ∪ [v′, v′′] ∪ [v′′, w′] ∪ [w′, w]. Then ϕ([v′′, w′]) is an
isometrically embedded geodesic. The other three segments of γ have lengths
of at most 4δ, and so do their images. It follows that ϕ|γ is a (1, 12δ)-quasi-
isometry and ϕ(γ) is a (1, 12δ)-quasi-geodesic. Hence,

d(v, w) 6 l(γ) 6 d̄(ϕ(v), ϕ(w)) + 24δ.

Finally, suppose γ = [v, v′]∪ [v′, v′′]∪ [v′′, w]. Then ϕ([v′′, w]) is an isometrically
embedded geodesic. The other two segments of γ have lengths of at most 4δ,
and so do their images. Hence, ϕ|γ is a (1, 8δ)-quasi-isometry and ϕ(γ) is a
(1, 8δ)-quasi-geodesic. So

d(v, w) 6 l(γ) 6 d̄(ϕ(v), ϕ(w)) + 16δ.

Proposition 4. Γ1(X) is δ′-hyperbolic with δ′ = 29δ.

Proof. By Lemma 21, the restriction of ϕ to any geodesic of Γ1(X), whose end-
points are essential or auxiliary vertices, is a (1, 24δ)-quasi-isometry. Suppose
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then that a geodesic has negligible vertices as endpoints. Negligible vertices
have always valency 2 and they belong to paths of length of at most 2δ + 1
linking auxiliary vertices together. Thus, if a, b are the endpoints, there exist
auxiliary vertices a′, b′ such that d(a, a′), d(b, b′) 6 2δ. It follows that, since
[a, b] → [a′, b′] is a (1, 4δ)-quasi-isometry by Lemma 21 and [a′, b′] → X is a
(1, 24δ)-quasi-isometry, then [a, b] → X is a (1, 28δ)-quasi-isometry. Thus, the
embedding of any geodesic of Γ1(X) in X is a (1, 28δ)-quasi-isometric. It follows
that ϕ is a (1, 28δ)-quasi-isometric embedding, and the result follows.

Lemma 22. Let g be an isometry of X. Then there exists an unique isometry
ḡ of Γ1(X) such that ḡ|X = g.

Proof. Define ḡ simply by mapping basic paths to basic paths (since we know
the action on their endpoints) and bridges to bridges. Since g is an isometry
of X , it preserves the length of basic paths and the sizes of triangles, so it also
preserves the presence of bridges.

The uniqueness of ḡ is pretty obvious from the construction. Since all aux-
iliary vertices have valence 3 or 4, unless they are at distance smaller than or
equal to 2δ from an essential vertex, and all negligible vertices have valence 2,
and are at a distance greater than 2δ from any essential vertex, it follows that
any isometry of Γ1(X) which preserves essential vertices must also preserve aux-
iliary and negligible vertices. Therefore, any extension of g will map basic paths
to basic paths and bridges to bridges, and so will be equivalent to ḡ.

Lemma 23. Let Y be a geodesic ∆-hyperbolic metric space with X isometrically
embedded into Y . Then Γ1(X) is quasi-isometrically embedded into Y and the
constants of the quasi-isometry depend only on δ and ∆

Proof. Denote by d∗ the metric on Y and let ψ : X → Y be the embedding of
X into Y . We can extend it to Γ1(X) in an obvious way by mapping geodesics
to geodesics. Basic paths are embedded isometrically, and the images of bridges
cannot be longer than 4∆. If we have a path in Γ1(X), it maps to a path of
length at least multiplied by min

{
1, ∆

δ

}
, so min{1, δ

∆}d∗(ψ(x), ψ(y)) 6 d(x, y)
for any x, y ∈ Γ1(X). On the other hand, if we have a path γ which con-
sists of n bridges and only one segment of a basic path, since basic paths are
isometrically embedded, we have that ψ|γ is a (1, n ·max{4δ, 4(∆− δ)})-quasi-
isometric embedding and ψ(γ) is a (1, n · 4∆)-quasi-geodesic. Using the same
argument as in the proof of Lemma 21, we have that ψ extended to Γ1(X) is a
(1, 12(∆+max{δ,∆− δ}))-quasi-isometric embedding.

Lemma 24. Let Y be a ∆-hyperbolic metric space with X quasi-isometric to Y .
Then Γ1(X) is quasi-isometric to Γ1(Y ) and the constants of the quasi-isometry
depend only on δ, ∆, and the constants of the quasi-isometry between X and Y .

Proof. Let ψ : X → Y be a (λ, k)-quasi-isometry. Recall that d̄ is the metric on
Γ1(X) and denote by d∗ the metric on Γ1(Y ). We can build a map Ψ : Γ1(X) →
Γ1(Y ) as follows. Define Ψ(x) = ψ(x) for x ∈ X . Next, we can approximate
how auxiliary vertices should be mapped based on how far they are from the
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endpoints of the basic paths they lie on. In other words, if z is on a basic path
[x, y] at a distance of d from x, then Ψ(z) should be the auxiliary vertex on

[Ψ(x),Ψ(y)] at a distance of d · d̄(x,y)

d∗(Ψ(x),Ψ(y))
from Ψ(x). Finally, we map bridges

to bridges approximating how integer distances should be mapped. To see that
Ψ is a quasi-isometry, notice that for any x, y ∈ X we have that Ψ|[x,y] is a
(λ, k + 1)-quasi-isometry, then reuse the same paths we have above to obtain
bounds for d̄(a, b) in terms of d∗(Ψ(a),Ψ(b)) by using the fact that bridges have
length 4δ, their images have length 4∆ and basic paths are quasi-isometrically
mapped.

Corollary 6. Let Y be a geodesic ∆-hyperbolic metric space such that X is
quasi-isometrically embedded into Y . Then Γ1(X) is quasi-isometrically embed-
ded into Y .

7.2 Γ2(X)

The space (Γ1(X), d) introduced in the previous subsection is constructed so
that geodesics between any two essential vertices x and y almost never include
any other essential vertices. The only exception happens when there exists an
essential vertex z in Γ1(X) such that d(x, y) = d(x, z) + d(y, z). This property
makes Γ1(X) an artificially “thinned” weighted complete graph.

The goal of this subsection is to construct another completion Γ2(X) of X
in the case when X is regular, that is, when the following condition holds

(RS) ∀ x, y, z ∈ X, ∃ v ∈ X :

d(x, v) + d(v, y) 6 d(x, y) + 2δ, d(x, v) + d(v, z) 6 d(x, z) + 2δ,

d(y, v) + d(v, z) 6 d(y, z) + 2δ.

Any point v from the definition above we call a mid-point of {x, y, z}.

The process of building Γ2(X) is considerably more involved but the graph
itself appears to be more natural than Γ1(X). At first, for n ∈ N we build an
auxiliary graph Γn

2 (X) using Γ1(X).
Recall that δ′ is the hyperbolicity constant for Γ1(X) (see Proposition 4).

Now, define H to be the maximal Hausdorff distance between a geodesic and a
(4δ′, 240δ′3 + 108δ′2)-quasi-geodesic in Γ1(X) and set B = 2H+ 2δ′.

Set Γn
2 (X) = X and call all vertices of X essential.

(1) For any essential vertices x, y with d(x, y) = n add to Γn
2 (X) a Z-path

of length n connecting x and y. This path we call basic and its vertices
auxiliary.

(2) For a pair of essential vertices {x, y} such that d(x, y) = n and another
essential vertex z, consider all mid-points v for {x, y, z}. If there exists
some v such that d(x, v), d(y, v) > 2δ then we remove the basic path [x, y].

(3) Repeat step (2) for the pair {x, y} and all essential vertices z.
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(4) Repeat steps (2) and (3) for all pairs of essential vertices {x, y} with
d(x, y) = n.

(5) Repeat steps (1)-(4) for all integers smaller than n in descending order.

(6) Finally, if the distance in Γ1(X) between an auxiliary vertex x and a basic
path p, which has not been removed on previous steps, is smaller than B,
add a Z-path, which we call a bridge and whose vertices we call negligible,
connecting x and the closest to it vertex y on p (if there are two such
vertices on p then add a bridge for each one) in Γn

2 (X). The length of the
added bridge connecting x and y is equal to d(x, y) in Γ1(X). See Figure
3.

X

Γ
n
(X)2

Γ (X)1

Figure 3: Construction of Γn
2 (X)

(7) We extend the metric d : X → Z to the metric dn2 : Γn
2 (X) → Z as follows:

(a) the distance between two essential vertices is inherited from X ,
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(b) the distance between an auxiliary vertex to the adjacent essential
vertices is defined by construction, hence, the distance from an aux-
iliary vertex to any other either essential, or auxiliary vertex is also
defined (as the minimum of lengths of paths connecting them),

(c) the distance from a negligible vertex to the adjacent auxiliary vertices
is defined by construction, so, the distance from a negligible vertex
to any other vertex of Γn

2 (X) is also defined.

Lemma 25. Suppose for some pair x, y there exists z such that there is a mid-
point v of {x, y, z} chosen on step (2) above. Then d(x, v) < d(x, y), d(y, v) <
d(x, y).

Proof. Suppose on the contrary that d(y, v) > d(x, y). From regularity of X it
follows that d(x, v) 6 2δ, hence, by construction, v could not be chosen on step
2, a contradiction.

Remark 4. 1. From Lemma 25 it follows that the algorithm of constructing
Γn
2 (X) is correct in the sense that there is no risk of re-adding a geodesic

that was previously removed and the process ends since we always split
geodesics into geodesics of strictly shorter integer length.

2. Lemma 25 also explains why a geodesic is removed in the process only
if there exists a mid-point of {x, y, z} which is sufficiently far away from
x, yand z. Unfortunately, it also means that no geodesic shorter than 2δ is
ever removed (since any path through an acceptable mid-point has length of
at most 4δ, so it is contained in the 2δ-neighborhood of the two points), so,
δ-neighborhoods of points in Γ1(X) and Γn

2 (X) are essentially the same.

3. Finally, from Lemma 25 it follows that Γn
2 (X) is connected since a basic

path is removed only if there are two shorter paths connecting the same
vertices which are added later on.

Observe that Γn
2 (X), n ∈ N can be viewed as a graph whose vertices

V (Γn
2 (X)) are points of Γn

2 (X) and edges E(Γn
2 (X)) are pairs of points at dis-

tance 1 from each other.

Lemma 26. If n < m then

V (Γn
2 (X)) ⊆ V (Γm

2 (X)) and E(Γn
2 (X)) ⊆ E(Γm

2 (X)).

Proof. In the process of building Γm
2 (X) we eventually run steps (1)-(5) for m.

Thus, we add all the geodesics we would add and remove all the geodesics we
would remove in the process of building Γn

2 (X) (since we always split geodesics
into shorter ones). Since the set of geodesics between essential vertices in Γn

2 (X)
is contained in the set of geodesics between essential vertices of Γm

2 (X), the same
relation is going to hold for the sets of bridges in both graphs. The required
statement follows.
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Observe that Lemma 26 does not imply that Γn
2 (X) isometrically embeds

into Γm
2 (X). At the same time, it implies that if X is not bounded then the

sequence {Γn
2 (X)}n∈N converges to a graph Γ2(X) whose vertices and edges are

defined by

V (Γ2(X)) =
⋃

n∈N

V (Γn
2 (X), E(Γ2(X)) =

⋃

n∈N

E(Γn
2 (X)).

If X is bounded and has diameter d then we set Γ2(X) = Γd
2(X).

Remark 5. If X is geodesic then Γ2(X) = X. Indeed, if X is geodesic then all
basic paths are removed except those of length 1, and all bridges already exist
since X is δ-hyperbolic.

Remark 6. Given a specific X, then there will exist an unique extension Γ2(X).
This is less obvious than in the case of Γ1, but still pretty easy to see. Notice
that, in the construction of Γn

2 (X), steps (1) and (2) do not depend on the order
in which we consider pairs of essential vertices, steps (3)–(5) are a repetition of
steps (1) and (2), and step (6) depends entirely on the image of the graph built
up until then in Γ1(X), which we have already shown to be unique.

Γ2(X), being an union of uniquely determined extensions of X, will itself be
an unique extension of X.

Suppose n ∈ N. Let N be a set which initially contains only n and we apply
to all elements of N the following steps. For each k ∈ N , if k > 2δ then replace
it by two new numbers k1 and k2 such that k1, k2 < k and k 6 k1+k2 6 k+2δ.
Continue this splitting process until all elements of N are smaller than 2δ.
Denote by τ(n) the maximal sum obtained by the above algorithm starting
from n.

Lemma 27. τ(n) 6 4δn.

Proof. Observe that for n 6 2δ we have τ(n) = n 6 4δn. Next, for n > 2δ there
exist i, j ∈ N such that τ(n) = τ(i) + τ(j) with j 6 n− i+ 2δ. We are gong to
prove that for n > 2δ

τ(n) 6 4δn− 8δ2 < 4δn.

Assume without loss of generality that j ≥ i.

First of all, for n = 2δ+1, any n1, n2 will be smaller than 2δ, so the ideal is
to use n1 = n2 = 2δ giving us τ(2δ + 1) = 4δ = 4δ(2δ + 1)− 8δ2.

Suppose now that τ(k) ≤ 4δk − 8δ2 for any 2δ + 1 6 k 6 n − 1. We have
τ(n) = τ(j) + τ(i) with n − 1 > j > i. It is worth noticing that j 6 n − 1, so
j + 2δ + 1 6 n + 2δ. Thus, if we can choose j > 2δ, we can choose i > 2δ as
well. Since τ is an increasing function, if n > 2δ + 1 then we can assume that
i, j > 2δ. So, we have that

τ(n) = τ(i) + τ(j) 6 4δi+ 4δj − 16δ2 6 4δ(n− j + 2δ) + 4δj − 16δ2

= 4δn− 8δ2 6 4δn.
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For any v, w ∈ Γ2(X) define [v, w]2 to be a geodesic between v and w either
in Γ2(X) and ϕ[v, w]2 its embedding into Γ1(X). To simplify notation, let d2
represent the graph metric on Γ2(X) and d1 the metric on Γ1(X). Let k = 30δ′2.
If [x, y]2 contains no other essential vertices so that it coincides with a geodesic
in Γ1(X), we say that [x, y]2 is long if d(x, y) > k and short otherwise.

Lemma 28. (i) Let [x, y]2 be long and z be an essential vertex. Then either
ϕ([x, y]2 ∪ [x, z]2), or ϕ([x, y]2 ∪ [y, z]2) is a (1, 6δ)-quasi-geodesic.

(ii) Let [x, x′]2 and [y, y′]2 be long. Then there exist χ ∈ {x, x′} and ψ ∈ {y, y′}
such that ϕ([x, x′]2 ∪ [χ, ψ]2 ∪ [y, y′]2) is a (1, 12δ)-quasi-geodesic.

Proof. (i) Observe that [x, y]2 is long and it has not been split into two segments
in the process of building the graph. It implies that for any essential vertex
v, any mid-point of {x, y, v} is within a 2δ-ball centered either at x, or at y.
Suppose, without loss of generality, that there exists a mid-point m of {x, y, z}
in the 2δ-neighborhood of x. We have that ϕ([z,m]2 ∪ [m, y]2) is a (1, 2δ)-
quasi-geodesic and that d(x,m) 6 2δ, but this implies that ϕ([z,m]2 ∪ [m,x]2 ∪
[x,m]2 ∪ [m, y]2) is a (1, 6δ)-quasi-geodesic. Hence, so is ϕ([z, x]2 ∪ [x, y]2).

(ii) By the above result, there exists χ ∈ {x, x′} such that ϕ([y′, χ]2∪[x, x′]2)
is a (1, 6δ)-quasi-geodesic. Suppose, without loss of generality, that χ = x′. At
the same time, similarly there exists ψ ∈ {y, y′} such that ϕ([x′, ψ]2 ∪ [y′, y]2) is
a (1, 6δ)-quasi-geodesic. If ψ = y then the path ϕ([x, x′]2 ∪ [x′, y]2 ∪ [y, y′]2) is
simply the (1, 6δ) quasi-geodesic ϕ([y′, x′]2∪[x

′, x]2) with the segment ϕ([y′, x′]2)
replaced by a (1, 6δ)-quasi-geodesic. It follows that the path in question is a
(1, 12δ) quasi-geodesic.

Suppose that χ = x. There exists some ψ′ such that ϕ([x, ψ′]2 ∪ [y, y′]2) is a
(1, 6δ)-quasi-geodesic. If ψ′ = y′ then the path ϕ([x, x′]2 ∪ [x′, y′]2 ∪ [y′, y]2) is
merely the (1, 6δ)-quasi-geodesic ϕ([x, y′]2∪ [y′, y]2) with the segment ϕ([x, y′]2)
replaced by a (1, 6δ)-quasi-geodesic. It follows that the path in question is a
(1, 12δ)-quasi-geodesic.

Suppose that χ = x′, ψ = y′, ψ′ = y. Both ϕ([y′, y]2 ∪ [y, x]2) and
ϕ([y′, x′]2 ∪ [x′, x]2) are (1, 6δ)-quasi-geodesic, so, cy′(x′, x) > d(y′, x′)− 3δ and
cy′(y, x) > d(y′, y)− 3δ, which implies that cy′(y, x′) > min{d(y′, y), d(y′, x′)}−
2δ′ − 3δ > min{d(y′, y), d(y′, x′)} − 5δ′. But ϕ([y, y′]2 ∪ [y′, x′]2) is a (1, 6δ)-
quasi-geodesic, which means that d(x′, y) > d(x′, y′) + d(y′, y) − 6δ. Now,
d(x′, y′) = d(x′, y′) + d(y′, y)− 2cy′(x′, y), so,

3δ′ > 3δ > cy′(x′, y) > min{d(y′, y), d(y′, x′)} − 5δ′,

so,
8δ′ > cy′(x′, y) > min{d(y′, y), d(y′, x′)}.

Since [y, y′] is long, it follows that d(y′, x′) 6 8δ′.
Consider ∆(x′, y, x). We have that ϕ([y′, y]2 ∪ [y, x]2) is a (1, 6δ)-quasi-

geodesic, so y is at a distance of at most 3δ from ∆I(x
′, y, x), and so it is at

a distance of at most 3δ + δ′ 6 4δ′ from a point z ∈ ϕ([y′, x]2). Furthermore,
since d(x′, y′) 6 8δ′, letting z′ be a point on ϕ([y′, x′]2 ∪ [x′, x]2) at a distance
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Figure 4: Red curves here are (1, 6δ)-quasi-geodesics.
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of smaller than δ′ from z, we get z′ ∈ [y′, y] since 30δ′2 6 d(y, y′) 6 d(y, z′) +
d(z′, y′) 6 5δ′ + d(z′, y′) and d(x′, y′) 6 13δ′. This implies that [x′, y] ∪ [y, x]
is a (1, 10δ′)-quasi-geodesic. By the alternative definition of regularity that any
mid-point of {x′, y, x} must be within the 7δ′-neighborhood of ∆I(x

′, y, x). But
since [x′, y] ∪ [y, x] is a (1, 10δ′)-quasi-geodesic, it follows that the vertices of
∆I(x

′, y, x) which lie on [x′, y] and [x, y] are at a distance of at most 5δ′ from
y. So, ∆I(x

′, y, x) must be within the 6δ′-ball around y, so any mid-point of
{x′, y, x} is within the 13δ′-ball around y.

Now, from the fact that is [x, x′] is long it follows that any such mid-point
must be within 2δ′ of either x′, or x. It cannot be near x′ since d(x′y) > k−8δ′ >
10δ′, so, any such mid-point must be at a distance of at most 2δ′ from x, and
It follows that d(x, y) 6 15δ′. However, d2(x, y) > 2k > 4δ′ · 15δ′ > 4δ′d(x, y),
a contradiction. Thus, the only possible cases occur when there exists one such
path which is a (1, 12δ)-quasi-geodesic.

Lemma 29. Let v, w be essential vertices. The embedding of [v, w]2 into Γ1 is
a (4δ, 48δ2 + (8δ + 2)k)-quasi-geodesic.

Proof. By Lemma 27, for any two essential vertices v and w we have d1(v, w) 6
d2(v, w) 6 4δd1(v, w). Suppose that a and b are vertices such that ϕ([v, a]2 ∪
[a, b]2∪[b, w]2) = ϕ([v, w]2). We can assume that there exist no essential vertices
between a and v, or b and w, and that a ∈ [v, v′]2, b ∈ [w,w′]2 with v′, w′ being
essential vertices. We have three cases.

Case I. If both [v, v′] and [w,w′] are short then we have

d1(ϕ(a), ϕ(b)) 6 d2(a, b) = d2(a, v
′) + d2(v

′, w′) + d2(w
′, b)

6 d1(ϕ(a), v
′) + 4δd1(v

′, w′) + d1(w
′, ϕ(b))

6 4δ(d1(a, b) + 2k) + 2k = 4δd1(a, b) + (8δ + 2)k.

Case II. If [v, v′]2 is short and [w,w′]2 is long (without loss of generality)
then that there exists ω ∈ {w,w′} such that ϕ([v′, ω]2 ∪ [w,w′]2) is a (1, 6δ)-
quasi-geodesic. Thus, we have

d2(a, b) 6 d2(a, v
′)+d2(v

′, ω)+d2(ω, b) 6 d1(a, ϕ(v
′))+4δd1(v

′, ω)+d1(ω, ϕ(b))

6 k + 4δ(d1(v
′, ω) + d1(ω, ϕ(b))) 6 k + 4δ(d1(v

′, ϕ(b)) + 6δ)

6 k + 4δ(d(a, b) + k + 6δ) = 4δd(a, b) + 24δ2 + (1 + 4δ)k

Case III. If both [v, v′]2 and [w,w′]2 are long then there exist φ ∈ {v, v′} and
ω ∈ {w,w′} such that ϕ([v, v′]2 ∪ [φ, ω]2 ∪ [w,w′]2) is a (1, 12δ)-quasi-geodesic.
Thus, we have

d2(a, b) 6 d2(a, φ) + d2(φ, ω) + d2(ω, b) 6 d1(ϕ(a), φ) + 4δd1(φ, ω) + d1(ω, ϕ(b))

6 4δ(d1(ϕ(a), φ) + d1(φ, ω) + d1(ω, ϕ(b))) 6 4δ(d1(ϕ(a), ϕ(b)) + 12δ)

= 4δd1(ϕ(a), ϕ(b)) + 48δ2.
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Remark 7. Since for any essential vertices x, y, the embedding of [x, y]2 into
Γ1(X) is a (4δ, 240δ′3 + 60δ′2 + 48δ2)-quasi-geodesic, there exists H such that
the Hausdorff distance between ϕ[x, y]2 and [x, y]1 is at most H.

Lemma 30. Let v, w be vertices of Γ2(X).

(i) If v and w are both auxiliary, then [v, w]2 is a (4δ, 240δ′3+60δ′2 +48δ2 +
2H+ δ′ + 1)-quasi-geodesic.

(ii) If v is essential and w is auxiliary then [v, w]2 is a (4δ′, 240δ′3 + 60δ′2 +
48δ2 + 4H+ 4δ′ + 2)-quasi-geodesic.

Proof. (ii) By the construction, w is on the geodesic in Γ2(X) connecting two
essential vertices w1 and w2. Consider the geodesic triangle ∆(v, w1, w2). We
have that w is at a distance of at most H from some point on [w1, w2] which is at
a distance of at most δ′ from either [v, w1], or [v, w2], which itself is at a distance
of at most H from [v, wi]2. So, w is at a distance of at most 2H+ δ′ from either
[v, w1]2, or [v, w2]2. By the construction, we have a bridge in Γ2(X) of length at
most 2H+ δ′ +1 between w and some auxiliary vertex w′ on [v, wi]2. It follows
that the embedding of [w,w′]1∪[w′, v]1 is a (4δ, 240δ

′3+60δ′2+48δ2+2H+δ′+1)-
quasi-geodesic.

v

< δ

w2 w1w

w'

H<
2H <δ+2   + 1

H<

Figure 5: Case (ii) in the proof of Lemma 30. Wavy lines are quasi-geodesics

(i) There exist essential vertices v1, v2, w1, w2 such that v ∈ [v1, v2]2, w ∈
[w1, w2]2. Consider the geodesic square {v1, v2, w2, w1} (linked together in the
given order). Thus, v and w must be within a distance of H from some points v′

and w′ on [v1, v2] and [w1, w2] respectively. Furthermore, both v′ or w′ must be
within a distance of 2δ′ from either [v1, w1], or [v2, w2]. If they are both within
2δ′ from the same edge, say [v1, w1], then they are within 2δ′+2H from [v1, w1]2,
so that both v and w are within at most 2H + 2δ′ from [v1, w1]2. Hence, there
are bridges of length at most 2δ′ + 2H + 1 between them and that geodesic,
thus, [v, w]2 is a (4δ′, 240δ′3 + 108δ′2 + 4H+ 4δ′ + 2)-quasi-geodesic.

Suppose on the contrary that, without loss of generality, v′ is within 2δ′

from [v1, w1], w
′ is within 2δ′ from [v2, w2], and neither one is within 2δ′ of

the other edge. Consider the triangles ∆(v1, v2, w2) and ∆(v1, w1, w2). By the
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assumption, both v′ and w′ must be within δ′ from [v1, w2], which itself is at
a Hausdorff distance of at most H from [v1, w2]2. Thus, there exist bridges of
length at most 2H + δ′ + 1 from v and w to some v′′ and w′′ on [v1, w2]2. It
follows that the embedding of [v, w]2 is a (4δ′, 240δ′3 + 108δ′2 + 4H+ 2δ′ + 1)-
quasi-geodesic.
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Figure 6: Case (i) in the proof of Lemma 30. Wavy lines are quasi-geodesics

Proposition 5. Γ2(X) is δ′′-hyperbolic with δ′′ = 240δ′3+64δ′2+48δ2+8H+
8δ′ + 2.

Proof. Let ϕ : Γ2(X) → Γ1(X) be the function sending vertices of Γ2(X) to their
embedding in Γ1(X). We have that the embedding of any geodesic of Γ2(X)
whose endpoints are either essential, or auxiliary vertices is a (4δ, 240δ′3+60δ′2+
48δ2+4H+4δ′+2)-quasi-geodesic. Suppose then that a geodesic has negligible
vertices as endpoints. Negligible vertices always have valency 2 and they belong
to paths of length at most 2H + 2δ′ + 1 connecting auxiliary vertices. Thus,
if a, b are the endpoints, there exist auxiliary vertices a′, b′ such that [a, b]2 =
[a, a′]2 ∪ [a′, b′]2 ∪ [b′, b]2 with d(a, a′), d(b, b′) 6 2H+2δ′. Thus, the embedding
of any geodesic of Γ2(X) into Γ1 is a (4δ′, 240δ′3+108δ′3+8H+8δ′ +2)-quasi-
geodesic. It follows that ϕ is a (4δ, 240δ′3 + 60δ′2 + 48δ2 + 8H+ 8δ′ + 2)-quasi-
isometric embedding, and the result follows.
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Remark 8. Since the maximal Hausdorff distance between a geodesic and a
(4δ, 240δ′3 + 60δ′2 + 48δ2)-quasi-geodesic in a δ′-hyperbolic space is polynomial
in δ′ and δ, and remembering that δ′ is polynomial in δ, it follows that δ′′

depends polynomially on δ.

Corollary 7. Γ2(X) is quasi-isometrically embedded into Γ1(X) and all uni-
versal properties of Γ1(X) extend to Γ2(X).

Lemma 31. Let g be an isometry of X. There exists an unique isometry ḡ of
Γ2(X) such that ḡ|X = g

Proof. If g is an isometry of X then it preserves mid-points of triangles. It
follows that if [x, y] is removed, so is g[x, y]. Finally, since by Lemma 22, g
can be extended to Γ1(X) and that bridges are placed based upon proximity in
Γ1(X), then if we have a bridge between a and b, we also have a bridge between
ga and gb defined by extending the isometry on the essential vertices to the
basic paths joining them.

Uniqueness of ḡ follows easily from the fact that it is defined entirely by
the action of g on X and the fact that the extension of g to Γ1(X) is itself
unique.

7.3 β(X)

If we have a hyperbolic R-metric space, it is possible to define an embedding into
a geodesic hyperbolic R-metric space analogous to the construction of Γ1(X) in
the discrete case. Since the two constructions are very similar, the proofs will
often be done by reference to the case of Γ1(X). The same terminology will be
used to make transferring those proofs easier. Notice that a continuous analog
of Γ2(X) is not possible. There is no guarantee that our algorithm of breaking
down geodesics ever stops since arbitrarily small distances can occur.

Let now X be an R-metric space. Define a band complex β(X) as follows:

(1) Define first β(X) = X and define these points as essential points.

(2) For any pair (x, y) of essential points, add to our complex a copy of the
interval [0, d(x, y)] with endpoints x and y unless there exists some z such
that d(x, y) = d(x, z) + d(z, y). Let us call these lines basic paths and the
points that are on them auxiliary. Take the completion of the weighted
graph so obtained. Observe that after this step, for every essential points
of β(X) there exists an R-geodesic segment (composed from auxiliary
vertices) connecting them.

(3) For any triple {x, y, z} of essential vertices, consider the projection of the
triangle ∆(x, y, z) onto the tripod T (x, y, z). Attach bands of length 4δ
to the basic paths linking together the points that are mapped together
on the tripod, except for those at the distance less than 2δ from x, y, or
z. Define the fibers of the bands to be bridges and the points that make
them up negligible.
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(4) We extend the metric d : X → R to the metric d̂ : beta(X) → R as follows:

(a) the distance between two essential points is inherited from X ,

(b) the distance between an auxiliary point to the adjacent essential
points is defined by construction, hence, the distance from an aux-
iliary point to any other either essential, or auxiliary point is also
defined (as the minimum of lengths of paths connecting them),

(c) the distance from a negligible point to the adjacent auxiliary points
is defined by construction, so, the distance from a negligible point to
any other point of β(X) is also defined.

Remark 9. As in the case of Γ1 and Γ2, every given space X has a unique
extension β(X). The reasoning is the same as for Γ1.

Lemma 32. Let v, w be points of β(X).

(i) If v and w are essential then d(v, w) = d̂(ϕ(v), ϕ(w)).

(ii) If v and w are auxiliary then

d̂(ϕ(v), ϕ(w)) 6 d(v, w) 6 d̂(ϕ(v), ϕ(w)) + 24δ

(iii) If v is essential and w is auxiliary then

d̂(ϕ(v), ϕ(w)) 6 d(v, w) 6 d̂(ϕ(v), ϕ(w)) + 8δ

Proof. The proof is a straightforward adaptation of the proof of Lemma 21. All
the arguments work in the exact same way.

Proposition 6. β(X) is δ′-hyperbolic with δ′ = 29δ.

Proof. Let ϕ : β(X) → X̄ be the function sending points of X ⊆ β(X) to
their embedding in X̄ extended by mapping basic paths and fibers of bands to
geodesics of X̄.

The embedding of any geodesic of β(X) whose endpoints are essential or aux-
iliary is a (1, 24δ)-quasi-isometry. Suppose then that a geodesic has endpoints
which are on bands. Bands are always of length 4δ and link together essen-
tial and auxiliary points. Thus, if a, b are the endpoints, there exist auxiliary
points a′, b′ such that d(a, a′), d(b, b′) 6 2δ. It follows that, since [a, b] → [a′, b′]
is a (1, 4δ)-quasi-isometry and ϕ : [a′, b′] → X̄ is a (1, 24δ)-quasi-isometry,
ϕ : [a, b] → X̄ is a (1, 28δ)-quasi-isometry.

Thus, the embedding of any geodesic of β(X) into X̄ is a (1, 28δ)-quasi-
geodesic. It follows that ϕ is a (1, 28δ)-quasi-isometric embedding, and the
result follows easily.

Lemma 33. (i) Let g be an isometry of X. There exists a unique isometry
g of β(X) such that g|X = g.
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(ii) If δ = 0, our construction is equivalent to the one given in [3, Theorem
2.4.4].

Proof. Both statements are quite obvious. Define g simply by mapping basic
paths to basic paths (since we know the action on their endpoints) and bands
to bands. Since g is an isometry of X , it preserves the length of basic paths and
the size of triangles, so that it also preserves the presence of bands. Uniqueness
is proven in a way analogous to Lemma 22.

If δ = 0, then bands have length 0, so we simply identify points in the same
way as shown in the proof of [3, Theorem 2.4.4].

Lemma 34. (i) Let Y be a geodesic ∆-hyperbolic metric space with X iso-
metrically embedded in Y . Then β(X) is quasi-isometrically embedded in
Y and the constants of the quasi-isometry depend only on δ and ∆.

(ii) Let Y be a ∆-hyperbolic metric space with X ≃ Y . Then β(X) ≃ β(Y )
and the constants of the quasi-isometry depend only on δ, ∆, and the
constants of the quasi-isometry between them.

(iii) Let Y be a geodesic ∆-hyperbolic metric space and X quasi-isometrically
embedded in Y . Then β(X) is quasi-isometrically embedded in Y .

Proof. The proofs are similar to the proofs of Lemma 23 and Lemma 24. Trans-
fer of the proofs is very straightforward.

7.4 Boundaries ∂Γ1(X), ∂Γ2(X) and ∂β(X)

Proposition 7. ∂X = ∂Γ1(X)

Proof. First of all, since X embeds isometrically into Γ1(X), it is obvious that
∂X ⊆ ∂Γ1(X).

Let then {xn} be a sequence in Γ1(X) converging at infinity, representing
the point α ∈ ∂Γ1. If xn is a negligible vertex, it is at distance at most 2δ
from an auxiliary vertex x′n, so we can replace xn by x′n without changing the
behavior of {xn} at infinity. If for any n there would exist kn > n such that
xkn

is an essential vertex, we would have that {xkn
} is a sequence of essential

vertices converging at infinity, so that α ∈ ∂X .
We can therefore assume that all xn are auxiliary vertices. Hence, there

exist xαn and xωn such that xn ∈ [xαn , x
ω
n ]. Let x

′
n ∈ {xαn , x

ω
n} such that (xn · x′n)

is maximal. If for any n there exists kn such that (xkn
· x′kn

) > n, then {x′kn
}

converges at infinity towards the same point as {xkn
}, so we have that α ∈ ∂X .

Let us then assume there exists some N such that (xn · xαn), (xn · xωn) 6 N
for any n. Let x be the basepoint. We have

d(xαn , xn) = d(x, xαn) + d(x, xn)− 2(xn · xαn) > d(x, xn) + d(x, xαn)− 2N.

By the same reasoning we have

d(xωn , xn) > d(x, xωn) + d(x, xn)− 2N.
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However, xn ∈ [xαn, x
ω
n ], so we have that

d(xαn , x
ω
n) = d(xαn , xn) + d(xωn , xn) > d(x, xαn) + d(x, xωn) + 2d(x, xn)− 4N

> d(xαn , x
ω
n) + 2d(x, xn)− 4N.

This implies that d(x, xn) 6 2N for any n and we have a contradiction with the
assumption that {xn} converges at infinity.

Then it follows that for any sequence {xn} of vertices in Γ1(X) which con-
verges at infinity, there exists a subsequence {xkn

} and a sequence {x′kn
} in X

such that (xkn
· x′kn

) > n for any n. We have therefore that ∂Γ1(X) ⊆ ∂X .

Corollary 8. ∂X = ∂Γ2(X)

Proof. By Lemma 27, X is quasi-isometrically embedded in Γ2(X), so we have
that ∂X ⊆ ∂Γ2(X). At the same time, from the proof of Lemma 5 we have
that Γ2(X) is quasi-isometrically embedded in Γ1(X), so ∂Γ2(X) ⊆ ∂Γ1(X) =
∂X .

Corollary 9. ∂X = ∂β(X)

Proof. It is again straightforward to use the same rationale as in the proof of
Proposition 7. We leave the details to the reader.
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