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Abstract

The variant of a semigroup S with respect to an element a ∈ S, denoted Sa, is the semigroup with
underlying set S and operation ? defined by x ? y = xay for x, y ∈ S. In this article, we study variants
T a
X of the full transformation semigroup TX on a finite set X. We explore the structure of T a

X as well
as its subsemigroups Reg(T a

X) (consisting of all regular elements) and EaX (consisting of all products of
idempotents), and the ideals of Reg(T a

X). Among other results, we calculate the rank and idempotent
rank (if applicable) of each semigroup, and (where possible) the number of (idempotent) generating sets
of the minimal possible size.
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1 Introduction

In John Howie’s famous 1966 paper [39], it was shown that the semigroup SingX of all singular transforma-
tions on a finite setX (i.e., all non-invertible functionsX → X) is generated by it idempotents. In subsequent
works, and with other authors, Howie calculated the rank (minimal size of a generating set) and idempotent
rank (minimal size of an idempotent generating set) of SingX [27, 41]; classified the idempotent generating
sets of SingX of minimal size [41]; calculated the rank and idempotent rank of the ideals of SingX [44];
investigated the length function on SingX with respect to the generating set consisting of all idempotents
of defect 1 [43]; and extended these results to various other kinds of transformation semigroups and gener-
ating sets [6, 7, 27, 28, 40]. These works have been enormously influential, and have led to the development
of several vibrant areas of research covering semigroups of (partial) transformations, matrices, partitions,
endomorphisms of various algebraic structures, and more; see for example [5,16–19,21–23,29,30,54,64] and
references therein. The current article continues in the spirit of this program of research, but takes it in
a different direction; rather than concentrating on semigroups whose elements are variations of transfor-
mations of a set, we investigate semigroups of transformations under natural alternative binary operations,
studying the so-called variants of the full transformation semigroup.

The study of semigroup variants goes back to the 1960 monograph of Lyapin [50] and a 1967 paper of
Magill [53] that considers semigroups of functions X → Y under an operation defined by f · g = f ◦ θ ◦ g,
where θ is some fixed function Y → X; see also [9, 10, 14, 46, 51, 52, 65, 68]. In the case that X = Y ,
this provides an alternative product on the full transformation semigroup TX (consisting of all functions
X → X) that we will have more to say about below. More generally, the variant of a semigroup S with

∗The first named author gratefully acknowledges the support of Grant No. 174019 of the Ministry of Education, Science, and
Technological Development of the Republic of Serbia, and Grant No. 1136/2014 of the Secretariat of Science and Technological
Development of the Autonomous Province of Vojvodina.
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respect to an element a ∈ S is the semigroup, denoted Sa, with underlying set S and operation ? defined
by x ? y = xay for each x, y ∈ S. Variants of arbitrary semigroups were first studied in 1983 by Hickey [32],
where (among other things) they were used to provide a novel characterisation of Nambooripad’s celebrated
partial order [59] on a regular semigroup; see also [33]. As noted by Khan and Lawson [47], variants arise
naturally in relation to Rees matrix semigroups, and also provide a useful alternative to the group of units
in some classes of non-monoidal regular semigroups (we explore the latter idea in Section 3 below).

If S is a group, it is easy to see that Sa is isomorphic to S, the identity element of Sa being a−1; in a sense, this
shows that no element of a group is more special than another, as the product may be “scaled” so that any
element may play the role of the identity. When S is not a group, the situation can be very different. Indeed,
many semigroups with a relatively simple structure give rise to exceedingly complex variants; compare for
example the right-most semigroup pictured in Figure 1 with some of its variants pictured in Figures 2 and 3
(these figures are explained in detail below).1 In complete contrast to the situation with groups, where
every variant is isomorphic to the group itself, there exist semigroups for which all the variants are pairwise
non-isomorphic; the bicyclic monoid is such a semigroup [69], and some more examples may be found in [25].
On the other hand, some semigroups are isomorphic to all their variants (rectuangular bands, for example,
which satisfy the identity xay = xy).

Variants of finite full transformation semigroups have been studied in a variety of contexts. For exam-
ple, Tsyaputa classified the non-isomorphic variants [70], characterised Green’s relations [69] and, together
with Mazorchuk, classified the isolated subsemigroups [55]; see also [49,71,72] where similar problems were
considered in the context of partial transformations and partial permutations, and also [10, 51, 68] where
more general semigroups of functions and relations are considered. The recent monograph of Ganyushkin
and Mazorchuk [25] contains an entire chapter devoted to variants of various kinds of transformation semi-
groups, covering mostly Green’s relations and the classification and enumeration of distinct variants. In
the current article, we take these existing results as our point of departure, and we investigate the kind of
problems discussed in the opening paragraph in the context of the variants T aX of a finite full transforma-
tion semigroup TX . The structure and main results of the article are as follows. In Sections 2 and 3, we
recall various facts regarding transformation semigroups and general variants (respectively), and also give
a new characterisation of Green’s relations on arbitrary variants (Proposition 3.2); from these, we deduce
Tsyaputa’s above-mentioned results as corollaries in Section 4 (Theorem 4.2), where we also explore the
Green’s structure of T aX further by investigating the natural partial order on the D-classes, using results
regarding maximal D-classes to calculate the rank of T aX (Theorem 4.6). The most substantial part of
the article constitutes an investigation, in Section 5, of the structure of Reg(T aX), the subsemigroup of T aX
consisting of all regular elements (the elements of Reg(T aX) are characterised in Section 4, Proposition 4.1).
In particular, we identify Reg(T aX) as a pullback product of the regular subsemigroups of two well-known
semigroups consisting of transformations with restricted range and kernel (Propositions 5.4 and 5.5), and
we also show that Reg(T aX) is a kind of “inflation” of the full transformation semigroup TA, where A denotes
the image of a (Theorem 5.7); among other things, these structural results allow us to calculate the size and
rank of Reg(T aX) (Corollary 5.9 and Theorem 5.18). The idempotent generated subsemigroup EaX of T aX is
studied in Section 6, where we characterise the elements of EaX (Theorem 6.4), calculate the rank and idem-
potent rank of EaX (showing in particular that these are equal, Theorem 6.8), and classify and enumerate the
minimal idempotent generating sets (Theorem 6.9). Finally, in Section 7, we investigate the proper ideals
of Reg(T aX), showing that they are idempotent generated and calculating their rank and idempotent rank
(which are again equal, Theorem 7.4).

2 Transformation semigroups

In this section, we record some basic notation and facts concerning finite transformation semigroups that
we will need in what follows.

If S is any semigroup and U ⊆ S, we denote by E(U) = {x ∈ U : x2 = x} the set of all idempotents from U .
If U ⊆ S, we write 〈U〉 for the subsemigroup of S generated by U , which consists of all products u1 · · ·uk
where k ≥ 1 and u1, . . . , uk ∈ U . We write rank(S) for the rank of S, defined to be the least cardinality of a

1The authors are grateful to Attila Egri-Nagy for producing the GAP code for computing with semigroup variants.
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subset U ⊆ S such that S = 〈U〉. If S is idempotent generated, we write idrank(S) for the idempotent rank
of S, defined to be the least cardinality of a subset U ⊆ E(S) such that S = 〈U〉. Generation will always
be in the variety of semigroups.

Recall that Green’s relations R, L , J , H , D , on a semigroup S are defined, for x, y ∈ S, by

x R y ⇐⇒ xS(1) = yS(1), x L y ⇐⇒ S(1)x = S(1)y, x J y ⇐⇒ S(1)xS(1) = S(1)yS(1),

H = R ∩ L , D = R ◦ L = L ◦ R.

Here, S(1) denotes the monoid obtained from S by adjoining an identity element 1, if necessary. (We use
the notation S(1) rather than the more standard S1 for reasons that will become clear shortly.) If x ∈ S,
and if K is one of R, L , J , H , D , we denote by Kx the K -class of x in S. An H -class contains an
idempotent if and only if it is a group, in which case it is a maximal subgroup of S. The J -classes of S
are partially ordered; we say that Jx ≤ Jy if x ∈ S(1)yS(1). If S is finite, then J = D . An element x ∈ S
is regular if x = xyx and y = yxy for some y ∈ S or, equivalently, if Dx contains an idempotent, in which
case Rx and Lx do, too. We write Reg(S) for the set of all regular elements of S, and we say S is regular if
S = Reg(S).

Let X be a finite set with |X| = n. The full transformation semigroup on X is the (regular) semigroup TX
of all transformations of X (i.e., all functions X → X), under the operation of composition. We write xf
for the image of x ∈ X under f ∈ TX , and we compose functions from left to right. If f ∈ TX , we will write

f =

(
F1 · · · Fm
f1 · · · fm

)

to indicate that X = F1 t · · · t Fm and Fif = fi for each i. (The symbol “t” denotes disjoint union.)
Usually this notation will imply that f1, . . . , fm are distinct, but occasionally this will not be the case, and
we will always specify this. As usual, we denote the image, kernel and rank of f ∈ TX by

im(f) = {xf : x ∈ X}, ker(f) = {(x, y) ∈ X ×X : xf = yf}, rank(f) = |im(f)| = |X/ ker(f)|.

We will sometimes write ker(f) = (F1| · · · |Fm) to indicate that ker(f) has equivalence classes F1, . . . , Fm,
and this notation will always imply that the Fi are pairwise disjoint and non-empty. The symmetric group
on X is the set SX of all permutations of X (i.e., all invertible functions X → X) and is the group of
units of TX . In the case that X = {1, . . . , n}, we will write TX = Tn and SX = Sn. In general, if k is a
non-negative integer, we will write k = {1, . . . , k}. (So k = ∅ if k = 0.) A transformation f ∈ Tn will often
be written as f = [1f, . . . , nf ]. Green’s relations on TX are easy to describe; see for example [37,42].

Proposition 2.1. If f ∈ TX , where X is a finite set with |X| = n, then

(i) Rf = {g ∈ TX : ker(f) = ker(g)},

(ii) Lf = {g ∈ TX : im(f) = im(g)},

(iii) Hf = {g ∈ TX : ker(f) = ker(g) and im(f) = im(g)},

(iv) Df = {g ∈ TX : rank(f) = rank(g)}.

The D-classes of TX form a chain: D1 < · · · < Dn, where Dm = {f ∈ TX : rank(f) = m} for each m ∈ n.
A group H -class contained in Dm is isomorphic to Sm. 2

Note that Dn = SX . For future reference, Figure 1 gives the so-called egg box diagrams of the semigroups
T1, T2, T3, T4. Large boxes are D-classes; within a D-class, R-related (resp., L -related) elements are in
the same row (resp., column); H -related elements are in the same cell; group H -classes are shaded grey
and the label “m” indicates that a given group is isomorphic to Sm; the J = D-order is indicated by the
edges between D-classes. (See [37,42] for more on egg box diagrams.) The pictures were produced with the
Semigroups package [57] on GAP [26].

It is well-known that rank(SX) = 2 and rank(TX) = 3 if |X| ≥ 3; for example, Sn is generated by the
transposition [2, 1, 3, 4, . . . , n] and n-cycle [2, 3, 4, . . . , n, 1], while TX is generated by (any generating set
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Figure 1: Egg box diagrams of the semigroups T1, T2, T3, T4 (left to right).

for) SX along with any element of Dn−1; see for example [1, 25, 58, 73]. The set E(TX) of idempotents of
TX is not a subsemigroup, but the idempotent generated subsemigroup EX = 〈E(TX)〉 of TX has a neat
description. For x, y ∈ X with x 6= y, denote by εxy the (idempotent) transformation defined, for z ∈ X, by

zεxy =

{
x if z = y

z if z 6= y.

Then E(Dn−1) = {εxy : x, y ∈ X, x 6= y}.

Theorem 2.2 (Howie [39,41]; Gomes and Howie [27]). If X is a finite set with |X| = n ≥ 2, then

EX = 〈E(TX)〉 = {1} ∪ (TX \ SX) and 〈E(Dn−1)〉 = TX \ SX .
Further, rank(TX \ SX) = idrank(TX \ SX) = ρn, where ρ2 = 2 and ρn =

(
n
2

)
if n ≥ 3. 2

The minimal idempotent generating sets of TX \ SX have a nice graphical interpretation. Recall that a
tournament on X is a directed graph Γ with vertex set X such that for each x, y ∈ X with x 6= y, Γ contains
precisely one of the directed edges (x, y) or (y, x). Recall also that a directed graph on vertex set X is
strongly connected if for any x, y ∈ X, there is a directed path from x to y in Γ. If |X| ≥ 3, we will write TX
for the set of all strongly connected tournaments on X. By convention, if X = {x, y} is a set of size 2, we
will let TX denote the set consisting of a single graph; namely, the graph with vertex set X and directed
edges (x, y) and (y, x). For U ⊆ E(Dn−1), we define a graph ΓU on vertex set X with a directed edge (x, y)
corresponding to each εxy ∈ U .

Theorem 2.3 (Howie [41]). Let X be a finite set with |X| = n ≥ 2, and let

U ⊆ E(Dn−1) = {εxy : x, y ∈ X, x 6= y}
with |U | = ρn (as defined in Theorem 2.2). Then TX \ SX = 〈U〉 if and only if ΓU ∈ TX . In particular, the
number of idempotent generating sets of the minimal size ρn is equal to |TX |. 2

Remark 2.4. A recurrence relation for the numbers |TX | is given in [74]. The current authors have
shown [15] that any idempotent generating set for TX \ SX contains one of minimal possible size; a formula
was also given for the total number of subsets of E(Dn−1) that generate TX \ SX (but are not necessarily
of size ρn). Arbitrary generating sets of minimal size were classified in [5]. The subsemigroup generated by
the idempotents of an infinite transformation semigroup was described in [39].
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3 Variant semigroups

Let S be a semigroup, and fix some element a ∈ S. A new operation ?a may be defined on S by

x ?a y = xay for each x, y ∈ S.

We write Sa for the semigroup (S, ?a) obtained in this fashion, and call Sa the variant of S with respect
to a. Since we fix S and a throughout this section, we will supress the subscript and simply write ? for ?a.
(Note that several authors write ◦a instead of ?a, but we use the current notation so as not to interfere with
the usual use of ◦ to denote composition of functions in TX .)

If u, v ∈ S(1), the map x 7→ vxu defines a homomorphism Suav → Sa. If S is a monoid with identity 1, we
write G(S) for the group of units of S; that is,

G(S) = {x ∈ S : (∃y ∈ S) xy = yx = 1}.

We have already noted that G(TX) = SX . If S is a monoid and u, v ∈ G(S) are units, then the above map
Suav → Sa is invertible and, hence, an isomorphism. As a special case, if a is a unit, the maps x 7→ xa and
x 7→ ax define isomorphisms Sa → S = S1. As a result, we will typically concern ourselves only with the
case that a is not a unit (although S may in fact be a monoid), and call Sa a non-trivial variant in this
case. Our main objects of study are the (non-trivial) variants of a finite full transformation semigroup TX ,
but in this section we will prove some general results concerning arbitrary variants.

Before we do this, it is instructive to consider some examples; Figures 2 and 3 illustrate the egg box diagrams
of the variant semigroup T a4 for various choices of a ∈ T4. A number of things become apparent when
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Figure 2: Egg box diagram of the variant semigroup T a4 , where a = [1, 2, 3, 3].

examining Figures 2 and 3. In each case:
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Figure 3: Egg box diagrams of the variant semigroups T a4 , where a = [1, 1, 2, 2] (top) and a = [1, 2, 2, 2]
(bottom). The pdf file may be zoomed to obtain greater clarity.

(i) T a4 is not regular (as indicated by the many D-classes containing no idempotents).

(ii) A non-regular D-class of T a4 is either a single R-class or a single L -class, or both (so a single H -class).

(iii) All the maximal D-classes are single H -classes (but a D-class consisting of a single H -class need not
be maximal).

(iv) The number of maximal D-classes increases as r = rank(a) decreases.

(v) It is not evident from the picture, but every H -class contained in a non-regular D-class is a singleton.

In fact, all of these statements are true for arbitrary non-trivial variants of a finite transformation semigroup,
while some are true for variants of arbitrary semigroups, as we will soon see.

We now prove a result concerning Green’s relations on Sa. In order to avoid confusion, if K is one of R,
L , J , H , D , we will write K a for Green’s K -relation on the variant Sa, and write Ka

x for the K a-class
of x ∈ Sa. It is easy to check that K a ⊆ K for each relation K and, hence, Ka

x ⊆ Kx for each x ∈ S.
Throughout our investigations, a crucial role will be played by the sets

P1 = {x ∈ S : xa R x}, P2 = {x ∈ S : ax L x}, P = P1 ∩ P2.

We note that P1 = P2 = P = S if S is a monoid and a ∈ G(S) is a unit.

Lemma 3.1. If y ∈ S, then ß

(i) y ∈ P1 if and only if Ly ⊆ P1, (ii) y ∈ P2 if and only if Ry ⊆ P2.

The set Reg(Sa) of all regular elements of Sa is contained in P = P1 ∩ P2.

Proof. We just prove (i) because (ii) is dual. Suppose y ∈ P1, and let z ∈ Ly be arbitrary. So y R ya, and
we have z = uy for some u ∈ S(1). But then z = uy R uya = za since R is a left congruence, so z ∈ P1,
whence Ly ⊆ P1. The other implication is trivial. For the statement about regular elements, note that if
x ∈ Reg(Sa), then x = x ? y ? x = xayax for some y ∈ S. This gives xa R x L ax, so x ∈ P . 2

Proposition 3.2. If x ∈ S, then

(i) Rax =

{
Rx ∩ P1 if x ∈ P1

{x} if x ∈ S \ P1,

(ii) Lax =

{
Lx ∩ P2 if x ∈ P2

{x} if x ∈ S \ P2,

(iii) Ha
x =

{
Hx if x ∈ P
{x} if x ∈ S \ P ,

(iv) Da
x =





Dx ∩ P if x ∈ P
Lax if x ∈ P2 \ P1

Rax if x ∈ P1 \ P2

{x} if x ∈ S \ (P1 ∪ P2).
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Further, if x ∈ S \ P , then Ha
x = {x} is a non-group H a-class of Sa.

Proof. We begin with (i). Suppose y ∈ Rax \ {x}. Then x = y ? u = yau and y = x ? v = xav for some
u, v ∈ S. But then x = yau = xa(vau), so that x R xa, and x ∈ P1. In particular, if x ∈ S \ P1, then
Rax = {x}. Next, suppose x ∈ P1. If y is another element of Rax then, since Ray = Rax, the previous calculation
shows that y ∈ P1, and it follows that Rax ⊆ P1. Since we have already observed that Rax ⊆ Rx, it follows
that Rax ⊆ Rx ∩ P1. Conversely, suppose y ∈ Rx ∩ P1. If y = x, then y ∈ Rax, so suppose y 6= x. So x = yu
and y = xv for some u, v ∈ S. Also, x = xaw and y = yaz for some w, z ∈ S(1), since x, y ∈ P1. Then
x = yu = yazu = y ? (zu) and, similarly, y = x ? (wv), showing that y ∈ Rax.

Part (ii) is dual to (i). We now prove (iii). If x ∈ S \ P , then either Rax = {x} or Lax = {x} (or both). In
any case, Ha

x = Rax ∩ Lax = {x}. Next, suppose x ∈ P . We have already noted that Ha
x ⊆ Hx. Conversely,

suppose y ∈ Hx. If y = x, then y ∈ Ha
x , so suppose y 6= x. Then x = ys = ty and y = xu = vx for some

s, t, u, v ∈ S. Also, x = xaw = zax for some w, z ∈ S(1), since x ∈ P . But then y = xu = xawu = x ? (wu)
and x = ys = vxs = vxaws = yaws = y ? (ws), showing that y Ra x. A similar calculation shows that
y L a x, and we conclude that y ∈ Ha

x .

For part (iv), note that

Da
x =

⋃

y∈Ra
x

Lay =
⋃

y∈La
x

Ray.

In particular, if x ∈ S \ P1, then Rax = {x}, so that Da
x = Lax. Similarly, if x ∈ S \ P2, then Da

x = Rax. If
x ∈ S \ (P1 ∪ P2) = (S \ P1) ∩ (S \ P2), then Da

x = Lax = {x}. Finally, if x ∈ P , then

Da
x =

⋃

y∈Ra
x

Lay =
⋃

y∈Rx∩P1

(Ly ∩ P2) = P2 ∩
⋃

y∈Rx∩P1

Ly = P2 ∩
⋃

y∈Rx

(Ly ∩ P1) = P ∩
⋃

y∈Rx

Ly = P ∩Dx,

where we have used parts (i) and (ii) in the second step, and Lemma 3.1 (which tells us that Ly ∩P1 is equal
to Ly or ∅ if y ∈ P1 or y 6∈ P1, respectively) in the fourth step.

For the final statement about group H a-classes, suppose Ha
x is a group, and let e be the identity element

of this group. Then x = x ? e = xae and also x = eax, so it follows that xa R x L ax, whence x ∈ P . 2

Remark 3.3. In a sequel to the current paper [14], we characterise the J a relation, but we do not need
this here. As noted above, if S is a monoid and a ∈ G(S) a unit, then P1 = P2 = P = S, in which case
Green’s relations on Sa coincide exactly with the corresponding relations on S ∼= Sa. Let x ∈ P = P1 ∩ P2,
and put H = Ha

x = Hx. Whether H is a group or non-group H -class of S is independent of whether H is a
group or non-group H a-class of Sa. See Table 1 for some examples with S = T4, a = [1, 2, 3, 3] and x ∈ P .
(See the next section for a description of the set P in the case of S = TX .)

x Is Hx a group H -class of T4? Is Hx a group H a-class of T a4 ?

[1, 1, 3, 3] Yes Yes
[4, 2, 2, 4] Yes No
[2, 4, 2, 4] No Yes
[1, 3, 1, 3] No No

Table 1: Group/non-group relationships between Hx and Ha
x in T4 and T a4 , where a = [1, 2, 3, 3].

If S is a monoid and a ∈ G(S), then Sa is a monoid (since then Sa ∼= S). The converse of this statement is
also true, as we now demonstrate. Part of the next proof is similar to that of [25, Proposition 13.1.1].

Proposition 3.4. Let S be a semigroup and let a ∈ S. Then Sa is a monoid if and only if S is a monoid
and a ∈ G(S), in which case Sa is isomorphic to S.

Proof. It suffices to show the forwards implication, so suppose Sa is a monoid with identity e. In particular,
for each x ∈ S, x = x ? e = e ? x; that is, x = xae = eax for all x. So ae is a right identity for S, and ea a
left identity. It follows that ae = ea is a two sided identity for S, and that a is a unit (with inverse e). 2
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So Sa is not a monoid in general, even if S is itself a monoid. The idea of the group of units of a monoid
may be generalised to a non-unital semigroup S by considering the so-called regularity presering elements
of S [32, 47]; namely, those elements a ∈ S for which Sa is a regular semigroup. The set of all regularity
preserving elements of S is denoted RP(S). As the use of the word “preserving” suggests, S can only
contain regularity preserving elements if S is itself regular, as may easily be checked (though there are
regular semigroups S for which RP(S) = ∅, one example being S = TX \ SX). It is also clear that if
a ∈ RP(S), then Ja must be a maximum element in the ordering of J -classes. If S is a regular monoid,
then RP(S) = G(S), and this is just one of the reasons that RP(S) is considered to be a good analogue
of the group of units in the case that S is not a monoid. The next result summarises some of the facts
from [47] that we will need when investigating regularity preserving elements later. Recall that an element
u ∈ S is a mididentity (sometimes called a midunit or middle unit) if xuy = xy for all x, y ∈ S. Semigroups
with mididentity were first studied in [75] (the idea is also present in [67]), and then more systematically
in [3, 4]; the connection with semigroup variants is elucidated in [8, 32,47].

Proposition 3.5 (Khan and Lawson [47]). Let S be a regular semigroup.

(i) An element a ∈ S is regularity preserving if and only if a H e for some regularity preserving idempotent
e ∈ E(S). (In particular, RP(S) is a union of groups.)

(ii) An idempotent e ∈ E(S) is regularity preserving if and only if fe R f L ef for all idempotents
f ∈ E(S).

(iii) Any mididentity is regularity preserving. 2

So Sa is not regular in general, even though S may be regular itself. But in some cases, Reg(Sa), the set of
all regular elements of Sa, is a subsemigroup of S. The next result was proved in [47] under the assumption
that S is regular, but the proof given there works unmodified for the following stronger statement.

Lemma 3.6 (Khan and Lawson [47]). Suppose S is a semigroup, and that aSa ⊆ Reg(S) for some a ∈ S.
Then Reg(Sa) is a (regular) subsemigroup of Sa. 2

4 The variant semigroup T aX

We now turn our attention to the main object of our study; namely, the variants T aX , where X is a finite set
with |X| = n and a ∈ TX . The main results of this section include a characterisation of Green’s relations
and the ordering on J = D-classes, and the calculation of rank(T aX).

It is easy to see that for any a ∈ TX , there is a permutation p ∈ SX = G(TX) such that ap ∈ E(TX) is an
idempotent. As noted in the previous section, T aX and T apX are then isomorphic, so it suffices to assume that a
is an idempotent. So for the remainder of the article, we fix an idempotent a ∈ E(TX) with r = rank(a),
and we write

a =

(
A1 · · · Ar
a1 · · · ar

)
.

The condition that a is an idempotent is equivalent to saying that ai ∈ Ai for each i ∈ r. Further, we will
write A = im(a) = {a1, . . . , ar} and α = ker(a) = (A1| · · · |Ar). We will also write λi = |Ai| for each i,
and for I = {i1, . . . , im} ⊆ r, we define ΛI = λi1 · · ·λim . In the special case that I = r, we will write
Λ = Λr = λ1 · · ·λr. As in the previous section, we will write ? for ?a. If r = n, then a ∈ SX = G(TX) and
so, as we have noted, T aX ∼= TX . All the problems we consider have been solved for TX , so we will assume
throughout that r < n. In particular, T aX is not a monoid, nor regular since SX = RP(TX).

As in the previous section, we will write R, L , H , D = J for Green’s relations on TX , and Ra, L a, H a,
Da = J a for Green’s relations on T aX . If f ∈ TX and if K is one of R,L ,H ,D , we write Kf and Ka

f

for the K -class and K a-class of f , respectively. As we noted in the previous section for arbitrary variant
semigroups, K a ⊆ K for each K and, hence, Ka

f ⊆ Kf for each f .

8



As we have seen, the key to describing Green’s relations on T aX are the sets

P1 = {f ∈ TX : fa R f}, P2 = {f ∈ TX : af L f}, P = P1 ∩ P2.

It will be convenient to have a more transparent characterisation of the elements of P1 and P2. In order to
give such a description, we introduce some terminology. Let B be a subset of X and β an equivalence relation
on X. We say B saturates β if each β-class contains at least one element of B. We say β separates B if each
β-class contains at most one element of B. We call B a cross-section of β if B saturates and is separated
by β.

Proposition 4.1. (i) P1 = {f ∈ TX : rank(fa) = rank(f)} = {f ∈ TX : α separates im(f)},

(ii) P2 = {f ∈ TX : rank(af) = rank(f)} = {f ∈ TX : A saturates ker(f)},

(iii) P = {f ∈ TX : rank(afa) = rank(f)} = Reg(T aX) is the set of all regular elements of T aX , and is a
subsemigroup of T aX .

Proof. Let f ∈ TX and write f =
(
F1 ··· Fm
f1 ··· fm

)
, where m = rank(f). For each i ∈m, let ki ∈ r be such that

fi ∈ Aki . Note that

f ∈ P1 ⇐⇒ fa R f ⇐⇒ ker(fa) = ker(f) ⇐⇒ rank(fa) = rank(f),

since X is finite. Note that for each i ∈ m, Fifa = fia = aki . It follows that rank(fa) = m if and only if
the set {k1, . . . , km} has cardinality m, and this is clearly equivalent to α separating im(f), establishing (i).

A similar argument shows that f ∈ P2 if and only if rank(af) = rank(f). Next, note that im(af) ⊆ im(f)
and that for all i ∈ m, fi(af)−1 = Fia

−1 =
⋃
aj∈Fi

Aj . So rank(af) = m if and only if Fi ∩ A 6= ∅ for all i,

and this is clearly equivalent to A saturating ker(f), giving (ii).

Combining the arguments of the previous two paragraphs shows that f ∈ P = P1 ∩ P2 if and only if
rank(afa) = rank(f). We have already seen in Lemma 3.1 that Reg(T aX) ⊆ P . Conversely, suppose f ∈ P .

Since rank(fa) = rank(af) = m, we may write fa =
(
F1 ··· Fm
ak1
··· akm

)
and af =

(
G1 ··· Gm
f1 ··· fm

)
, where k1, . . . , km

are distinct, and G1, . . . , Gm are non-empty and pairwise disjoint. Let g ∈ TX be any transformation for
which akig ∈ Gi for each i ∈m. Then clearly, f = (fa)g(af) = f ?g ?f , showing that f ∈ Reg(T aX). Finally,
Lemma 3.6 tells us that P is a subsemigroup of T aX . 2

Note that if rank(f) > r, then f belongs to neither P1 nor P2. The next result follows from Proposi-
tion 3.2. Together with Proposition 4.1, it yields the characterisation of Green’s relations on T aX given by
Tsyaputa [70]; see also [25, Theorem 13.4.2].

Theorem 4.2. If f ∈ T aX , then

(i) Raf =

{
Rf ∩ P1 if f ∈ P1

{f} if f ∈ TX \ P1,

(ii) Laf =

{
Lf ∩ P2 if f ∈ P2

{f} if f ∈ TX \ P2,

(iii) Ha
f =

{
Hf if f ∈ P
{f} if f ∈ TX \ P ,

(iv) Da
f =





Df ∩ P if f ∈ P
Laf if f ∈ P2 \ P1

Raf if f ∈ P1 \ P2

{f} if f ∈ TX \ (P1 ∪ P2).

The sets P1 and P2 are described in Proposition 4.1. In particular, Raf = Laf = Ha
f = Da

f = {f} if
rank(f) > r. If f ∈ TX \ P , then Ha

f = {f} is a non-group H a-class of T aX . 2

Remark 4.3. The article [51] characterises Green’s relations and the regular elements of the more general
semigroup T (X,Y, a) consisting of all functions f : X → Y under the operation f · g = f ◦ a ◦ g, where
a : Y → X is some fixed function and ◦ denotes the usual composition of functions. This characterisation
is, by necessity, far more complex than that given in Proposition 4.1 and Theorem 4.2.
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Theorem 4.2 yields an intuitive picture of the Green’s structure of T aX . Recall that the D-classes of TX are
precisely the sets Dm = {f ∈ TX : rank(f) = m} for 1 ≤ m ≤ n = |X|. Each of the D-classes Dr+1, . . . , Dn

separates completely into singleton Da-classes in T aX . (We will study these classes in more detail shortly.)
Next, note that D1 ⊆ P (as the constant maps clearly belong to both P1 and P2), so D1 remains a (regular)
Da-class of T aX . Now fix some 2 ≤ m ≤ r, and recall that we are assuming that r < n. The D-class Dm is
split into a single regular Da-class, namely Dm ∩P , and a number of non-regular Da-classes. Some of these
non-regular Da-classes are singletons, namely those of the form Da

f = {f} where f ∈ Dm belongs to neither
P1 nor P2. Some of the non-regular Da-classes consist of one non-singleton L a-class, namely those of the
form Da

f = Laf = Lf ∩P2, where f ∈ Dm belongs to P2 \P1; the H a-classes contained in such a Da-class are
all singletons. The remaining non-regular Da-classes in Dm consist of one non-singleton Ra-class, namely
those of the form Da

f = Raf = Rf ∩ P1, where f ∈ Dm belongs to P1 \ P2; the H a-classes contained in such
a Da-class are all singletons. This is all pictured (schematically) in Figure 4; see also Figures 2 and 3.

⊆ P1 6⊆ P1

⊆ P2

6⊆ P2

⊆ P1 6⊆ P1

⊆ P2

6⊆ P2

Figure 4: A schematic diagram of the way a D-class Dm of TX (with 2 ≤ m ≤ r) breaks up into Da-classes
in T aX . Group H - and H a-classes are shaded grey.

We now give some information about the order on the J a = Da-classes of T aX . Recall that in TX , Df ≤ Dg

if and only if rank(f) ≤ rank(g). The situation is more complicated in T aX .

Proposition 4.4. Let f, g ∈ TX . Then Da
f ≤ Da

g in T aX if and only if one of the following holds:

(i) f = g,

(ii) rank(f) ≤ rank(aga),

(iii) im(f) ⊆ im(ag),

(iv) ker(f) ⊇ ker(ga).

The maximal Da-classes are those of the form Da
f = {f} where rank(f) > r.

Proof. Note that Da
f ≤ Da

g if and only if one of the following holds:

(a) f = g,

(b) f = uagav for some u, v ∈ TX ,

(c) f = uag for some u ∈ TX ,

(d) f = gav for some v ∈ TX .

We clearly have the implications (b) ⇒ (ii), (c) ⇒ (iii), and (d) ⇒ (iv). Next, note that (ii) implies
Df ≤ Daga in TX , from which (b) follows. Next suppose (iii) holds. Since im(f) ⊆ im(ag), we may write

f =
(
F1 ··· Fm
f1 ··· fm

)
and ag =

(
G1 ··· Gm Gm+1 ··· Gl

f1 ··· fm gm+1 ··· gl

)
. For i ∈ m, let gi ∈ Gi. We then have f = uag, where
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u =
(
F1 ··· Fm
g1 ··· gm

)
, giving (c). Finally, suppose (iv) holds, and write f =

(
F1 ··· Fm
f1 ··· fm

)
and ga =

(
G1 ··· Gl
g1 ··· gl

)
.

Since ker(f) ⊇ ker(ga), there is a surjective function q : l → m such that Gi ⊆ Fiq for all i. We see then

that f = gav, where v ∈ TX is any transformation that extends the partial map
(
g1 ··· gl
f1q ··· flq

)
, giving (d).

To prove the statement concerning maximal Da-classes, let f ∈ TX . If rank(f) ≤ r, then rank(f) ≤
rank(a) = rank(a1a), so that Da

f < Da
1 = {1}, whence Da

f is not maximal. (Here, 1 ∈ TX denotes the
identity element of TX , namely the identity map X → X.) On the other hand, suppose rank(f) > r and that
Da
f ≤ Da

g . Then (ii) does not hold, since rank(aga) ≤ rank(a) = r < rank(f). Similarly, rank(ag) < rank(f)
and rank(ga) < rank(f), so neither (iii) nor (iv) holds. Having eliminated (ii–iv), we deduce that (i) must
hold; that is, f = g, so Da

f = {f} is maximal. 2

Remark 4.5. If r = rank(a) = 1, then T aX has a very simple structure, as may be deduced from Theorem 4.2
and Proposition 4.4; see Figure 5 for an illustration in the case n = |X| = 3. This structure may also be
observed directly. For x ∈ X, denote by cx ∈ TX the constant map with image {x}. If a = cx, then for all
f, g ∈ TX , f ? g = fcxg = cxg = cxg.

1 1 1

                        

Figure 5: Egg box diagram of the variant semigroup T a3 , where a = [1, 1, 1].

The description of the maximal Da-classes from Proposition 4.4 allows us to obtain information about
rank(T aX). In order to avoid confusion when discussing generation, if U ⊆ TX , we will write 〈U〉 (resp., 〈U〉a)
for the subsemigroup of TX (resp., T aX) generated by U , which consists of all products u1 · · ·uk (resp.,
u1 ? · · · ? uk), where k ≥ 1 and u1, . . . , uk ∈ U .

Theorem 4.6. Let M = {f ∈ TX : rank(f) > r}. Then T aX = 〈M〉a. Further, any generating set for T aX
contains M . Consequently, M is the unique minimal (with respect to containment or size) generating set
of T aX , and

rank(T aX) = |M | =
n∑

m=r+1

S(n,m)

(
n

m

)
m!,

where S(n,m) denotes the (unsigned) Stirling number of the second kind.

Proof. Consider the statement:

H(m): 〈M〉a contains Dm ∪ · · · ∪Dn = {f ∈ TX : rank(f) ≥ m}.
Since H(1) says that T aX = 〈M〉a, it suffices to show that H(m) is true for all m ∈ n. We do this by (reverse)
induction on m. Note that M = Dr+1 ∪ · · · ∪ Dn, so H(m) is clearly true for m ≥ r + 1. Now suppose

H(m + 1) is true for some 1 ≤ m ≤ r. Let f ∈ Dm, and write f =
(
F1 ··· Fm
f1 ··· fm

)
. Since m ≤ r < n, we may

assume that |F1| ≥ 2. Choose some non-trivial partition F1 = F ′1 t F ′′1 . Without loss of generality, we may

also assume that |A1| ≥ 2. Choose some a′1 ∈ A1 \{a1}, and put g =
(
F ′1 F

′′
1 F2 ··· Fm

a′1 a1 a2 ··· am

)
. So g ∈ 〈M〉a, by the

induction hypothesis. Also, let h ∈ SX ⊆ M be any permutation that extends the partial map
( a1 ··· am
f1 ··· fm

)
.

Then f = gah = g ? h ∈ 〈M〉a, so H(m) is true, completing the inductive step.

Any f ∈ M belongs to a non-group, maximal Da-class, so it follows that any generating set of T aX must
contain M . This tells us that M is the minimal generating set with respect to both size and containment,
and that rank(T aX) = |M |. The formula for |M | follows from the well-known fact that |Dm| = S(n,m)

(
n
m

)
m!

for any m ∈ n [25]. This completes the proof. 2

Remark 4.7. It seems noteworthy that rank(T aX) depends only on r = rank(a), and not on the sizes
λ1, . . . , λr of the kernel-classes of a. See also Theorems 5.18, 6.8 and 7.4.
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The description of the order on Da-classes of T aX from Proposition 4.4 may be simplified in the case that
one of f, g is regular.

Proposition 4.8. Let f, g ∈ TX .

(i) If f ∈ P , then Da
f ≤ Da

g if and only if rank(f) ≤ rank(aga).

(ii) If g ∈ P , then Da
f ≤ Da

g if and only if rank(f) ≤ rank(g).

The regular Da-classes of T aX form a chain: Da
1 < · · · < Da

r , where Da
m = {f ∈ P : rank(f) = m} for m ∈ r.

Proof. As in the proof of Proposition 4.4, Da
f ≤ Da

g if and only if one of the following holds:

(a) f = g,

(b) f = uagav for some u, v ∈ TX ,

(c) f = uag for some u ∈ TX ,

(d) f = gav for some v ∈ TX .

Suppose first that f ∈ P , so f = fahaf for some h ∈ TX . Then (a) implies f = fah(aga)haf , (c)
implies f = u(aga)haf , and (d) implies f = fah(aga)v. So, in each of cases (a–d), we deduce that
rank(f) ≤ rank(aga). We have already observed that rank(f) ≤ rank(aga) implies Da

f ≤ Da
g .

Next, suppose g ∈ P . Since rank(ag) = rank(ga) = rank(aga) = rank(g), each of (a–d) implies rank(f) ≤
rank(g). If rank(f) ≤ rank(g) = rank(aga), then we already know that Da

f ≤ Da
g . The statement about

regular Da-classes follows quickly from (ii). 2

Proposition 4.8 gives us some more partial information about the location of the “fragmented” Da-classes
(see Figure 4). Specifically, a non-regular Da-class Da

f with rank(f) = m ≤ r sits below Da
m. However,

Da
f may or may not sit above Da

m−1; this depends on rank(afa). For example, if a = [1, 1, 1, 4, 5] and
f = [1, 2, 3, 1, 1], then Da

f sits between Da
1 and Da

3 but not above Da
2 in T a5 . While it is extremely difficult to

enumerate all Da-classes (even maximal ones) that sit above Da
m but not Da

m+1, where m ∈ r is arbitrary,
we can enumerate those that sit right at the top of the picture, above the highest regular Da-class, Da

r .
Recall that Λ = λ1 · · ·λr, where λi = |Ai|.

Proposition 4.9. A maximal Da-class Da
f = {f} sits above Da

r in the ordering of Da-classes in T aX if and

only if rank(afa) = r < rank(f). The number of such Da-classes is equal to (nn−r − rn−r)r!Λ.

Proof. The first statement follows from Proposition 4.8(i). It remains to count the number of transfor-
mations f ∈ TX satisfying rank(afa) = r < rank(f). Note that such an f maps A to a cross-section of
α = ker(a). The number of cross-sections of α is λ1 · · ·λr = Λ, and once such a cross-section B = {b1, . . . , br}
is chosen, there are r! ways to choose f |A (which maps A bijectively to B). There are nn−r − rn−r ways to
extend f |A to f ∈ TX with rank(f) > r. 2

5 The regular semigroup Reg(T aX)

In this section, we study the subsemigroup

P = Reg(T aX) = {f ∈ TX : rank(afa) = rank(f)},

consisting of all regular elements of T aX . Key results include a description of P as a subdirect product of
the well-known semigroups Reg(T (X,A)) and Reg(T (X,α)) (see below for definitions), a realisation of P
as a kind of “inflation” of TA, combinatorial results on the number of Green’s classes of certain types, and
calculations of |P | and rank(P ). As before, we assume that

a =

(
A1 · · · Ar
a1 · · · ar

)
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is an idempotent with rank(a) = r < n, and we continue to write A = im(a), α = ker(a), λi = |Ai|, and
so on. By Theorem 4.2, we see that Reg(T aX) = D1 is a right zero semigroup in the case r = 1 (see also
Remark 4.5 and Figure 5), in which case, all the problems we consider become trivial. So for the duration
of this section, we will assume that 1 < r < n.

Figures 2 and 3 picture the variant T a4 with respect to various transformations a ∈ T4, and one may see the
regular subsemigroup Reg(T a4 ) in each case as the collection of Da-classes containing groups (shaded cells).
Figure 6 pictures Reg(T a5 ) for various choices of a ∈ T5 with rank(a) ≤ 4. When one compares Figure 6
with Figure 1, which pictures the semigroups T1, T2, T3, T4, a striking pattern seems to emerge. In each
case, P = Reg(T a5 ) looks like some kind of “inflation” of Tr (where r = rank(a)), in the sense that one may
begin with an egg box diagram of Tr and then subdivide the cells in some way to obtain an egg box diagram
of P ; further, it appears that the subdivision is done in such a way that group (resp., non-group) H -classes
of Tm become rectangular arrays of group (resp., non-group) H a-classes of P , although the reason for the
exact number of subdivisions applied to each cell may not yet be apparent. One of the goals of this section
is to explain the reason for this phenomenon.

1 1 1 1 1 1 1 1 1 1

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2
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2 2 2 2 2 2
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Figure 6: Egg box diagrams of the regular subsemigroups P = Reg(T a5 ) in the cases (from left to right):
a = [1, 1, 1, 1, 1], a = [1, 2, 2, 2, 2], a = [1, 1, 2, 2, 2], a = [1, 2, 3, 3, 3], a = [1, 2, 2, 3, 3], a = [1, 2, 3, 4, 4].

Now, Theorem 4.2 enables us to immediately describe Green’s relations on P = Reg(T aX). Since P is a
regular subsemigroup of T aX , the R, L , H relations on P are just the restrictions of the corresponding
relations on T aX (see for example [37,42]), and it is easy to check that this is also true for the D = J relation
in this case. So if K is one of R, L , H , D , we will continue to write K a for the K relation on P , and
write Ka

f for the K a-class of f in P for any f ∈ P .

Corollary 5.1. If f ∈ P , then

(i) Raf = Rf ∩ P = {g ∈ P : ker(f) = ker(g)},

(ii) Laf = Lf ∩ P = {g ∈ P : im(f) = im(g)},

(iii) Ha
f = Hf ∩ P = {g ∈ P : ker(f) = ker(g) and im(f) = im(g)},

(iv) Da
f = Df ∩ P = {g ∈ P : rank(f) = rank(g)}.

The Da-classes of P form a chain: Da
1 < · · · < Da

r , where Da
m = {f ∈ P : rank(f) = m} for each m ∈ r. 2
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Corollary 5.1 gives a descriptive characterisation of Green’s relations on P = Reg(T aX); in particular, it
relates each relation K a on P directly to the relation K on TX . But it says nothing about why P appears
to be an inflated version of Tr. In order to explain this phenomenon, we must further explore the structure
of P . We will do this by examining a certain relationship between P and TA, the full transformation
semigroup on A = im(a), as well as some other well-known subsemigroups of TX . Recall that the sets

T (X,A) = {f ∈ TX : im(f) ⊆ A} and T (X,α) = {f ∈ TX : ker(f) ⊇ α}

are subsemigroups of TX . These semigroups have been studied extensively in the literature, where they are
typically referred to as semigroups of transformations of restricted range or restricted kernel (respectively);
see for example [56,62–64,66], and references therein.

Remark 5.2. Note that T (X,A) = TXa and T (X,α) = aTX , as subsemigroups of TX (with respect to the
usual operation). Indeed, the maps

ρa : T aX → T (X,A) = TXa : f 7→ fa and λa : T aX → T (X,α) = aTX : f 7→ af

are easily seen to be epimorphisms. Since products in T (X,A) = TXa and T (X,α) = aTX are found by
forming expressions such as faga and afag (respectively), it should be no surprise that these semigroups
play a role in an investigation of the structure of T aX . Since we are assuming a is an idempotent, it also follows
that T (X,A) = TX ? a and T (X,α) = a ? TX , as subsemigroups of T aX (with respect to the ? operation).
As noted in [25], if S is either T (X,A) or T (X,α), the semigroups Sa and S are precisely the same object;
that is, f ? g = fg for all f, g ∈ S. (This is because a, being an idempotent of TX , is a mididentity of both
aTX and TXa.)

The regular elements of the semigroups T (X,A) and T (X,α) have been described in [63] and [56], respec-
tively; in terms of our notation, the description is as follows. Recall that

P1 = {f ∈ TX : α separates im(f)} and P2 = {f ∈ TX : A saturates ker(f)}.

Proposition 5.3 (Sanwong and Sommanee [63]; Mendes-Gonçalves and Sullivan [56]).
The regular elements of T (X,A) and T (X,α) are precisely the sets

Reg(T (X,A)) = T (X,A) ∩ P2 and Reg(T (X,α)) = T (X,α) ∩ P1. 2

The next two propositions are the main structural results of this section.

Proposition 5.4. There is a well-defined monomorphism

ψ : Reg(T aX)→ Reg(T (X,A))× Reg(T (X,α)) : f 7→ (fa, af).

The image of ψ is the set

im(ψ) =
{

(g, h) ∈ Reg(T (X,A))× Reg(T (X,α)) : rank(g) = rank(h), g|A = (ha)|A
}
.

In particular, Reg(T aX) is (isomorphic to) a subdirect product of Reg(T (X,A)) and Reg(T (X,α)).

Proof. Let f ∈ P = Reg(T aX). Since P is a subsemigroup of T aX , we have fa = faa = f?a ∈ P ; in particular,
fa ∈ TXa ∩ P2 = Reg(T (X,A)). A similar calculation shows that af ∈ Reg(T (X,α)). If f, g ∈ P , then
(f ? g)ψ = (fag)ψ = ((fag)a, a(fag)) = (fa, af)(ga, ag) = (fψ)(gψ), so ψ is a homomorphism. Suppose
now that f, g ∈ P are such that fψ = gψ. So fa = ga and af = ag, and we must show that f = g. Since A
saturates ker(f) and ker(g), it suffices to show that ker(f) = ker(g) and f |A = g|A. Now, for any x ∈ A,
we have xf = xaf = xag = xg, so f |A = g|A. Also note that since f ∈ P1, ker(fa) = ker(f). Similarly,
ker(ga) = ker(g). Since fa = ga, it follows that ker(f) = ker(g). As noted above, this completes the proof
that ψ is injective.

To prove the statement concerning im(ψ), first suppose f ∈ P and put g = fa and h = af . Since
f ∈ P = P1 ∩ P2, Proposition 4.1 gives rank(g) = rank(f) = rank(h). Since a maps A identically, it follows
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that (aq)|A = q|A for all q ∈ TX . In particular, (ha)|A = (afa)|A = (fa)|A = g|A. Conversely, suppose
g ∈ Reg(T (X,A)) and h ∈ Reg(T (X,α)) satisfy rank(g) = rank(h) and g|A = (ha)|A. Put m = rank(g),

and write g =
(
G1 ··· Gm
ak1
··· akm

)
and h =

(
H1 ··· Hm
h1 ··· hm

)
, noting that im(g) ⊆ A. Also, since h ∈ T (X,α), there is

a partition r = I1 t · · · t Im such that Hj =
⋃
i∈Ij Ai for each j. Now, since g ∈ Reg(T (X,A)), A saturates

ker(g), so it follows that Gi ∩ A 6= ∅ for all i. Thus, g|A =
(
G1∩A ··· Gm∩A
ak1

··· akm

)
. For each i ∈ m, let li ∈ r be

such that hi ∈ Ali . Since h ∈ Reg(T (X,α)), α separates im(h), so l1, . . . , lm are distinct. It follows that

ha =
(
H1 ··· Hm
al1 ··· alm

)
. Since each Hi ∩ A is non-empty (as Hi is a union of α-classes, each of which contains

an element of A), we have (ha)|A =
(
H1∩A ··· Hm∩A
al1 ··· alm

)
. But g|A = (ha)|A, so (reordering if necessary), it

follows that li = ki and Hi ∩ A = Gi ∩ A for each i. In particular, hi ∈ Ali = Aki for each i. Now put

f =
(
G1 ··· Gm
h1 ··· hm

)
. Since ker(f) = ker(g) and im(f) = im(h), we see that f ∈ P . It is clear that fa = g. We

also have af = h since, for all j,

Hjaf =
( ⋃

i∈Ij
Ai

)
af = {ai : i ∈ Ij}f = (Hj ∩A)f = (Gj ∩A)f = hj .

It follows that (g, h) = fψ. Finally, suppose g ∈ Reg(T (X,A)) and h ∈ Reg(T (X,α)). To prove the
statement about Reg(T aX) being a subdirect product, we must show that there exist h′ ∈ Reg(T (X,α)) and
g′ ∈ Reg(T (X,A)) such that (g, h′), (g′, h) ∈ im(ψ). First note that g ∈ P2 by Proposition 5.3. But also
T (X,A) ⊆ P1, so g ∈ P , and (g, ag) = (ga, ag) = gψ, so we may take h′ = ag. Similarly, h ∈ P and
(ha, h) = hψ, and we take g′ = ha. This completes the proof. 2

The homomorphism ψ from the previous result is built up out of the two homomorphisms

ψ1 : P → Reg(T (X,A)) : f 7→ fa and ψ2 : P → Reg(T (X,α)) : f 7→ af,

which are the restrictions to P = Reg(T aX) of the epimorphisms λa and ρa from Remark 5.2. The last
paragraph of the previous proof shows that ψ1 and ψ2 are epimorphisms, indeed projections, since P con-
tains both Reg(T (X,A)) and Reg(T (X,α)), and ψ1 (resp., ψ2) maps Reg(T (X,A)) (resp., Reg(T (X,α)))
identically.

Proposition 5.5. The maps

φ1 : Reg(T (X,A))→ TA : g 7→ g|A and φ2 : Reg(T (X,α))→ TA : g 7→ (ga)|A

are epimorphisms, and the following diagram commutes:

that (aq)|A = q|A for all q 2 TX . In particular, (ha)|A = (afa)|A = (fa)|A = g|A. Conversely, suppose
g 2 Reg(T (X, A)) and h 2 Reg(T (X,↵)) satisfy rank(g) = rank(h) and g|A = (ha)|A. Put m = rank(g),

and write g =
⇣

G1 ··· Gm
ak1

··· akm

⌘
and h =

⇣
H1 ··· Hm
h1 ··· hm

⌘
, noting that im(g) ✓ A. Also, since h 2 T (X,↵), there is

a partition r = I1 t · · · t Im such that Hj =
S

i2Ij
Ai for each j. Now, since g 2 Reg(T (X,A)), A saturates

ker(g), so it follows that Gi \ A 6= ; for all i. Thus, g|A =
⇣

G1\A ··· Gm\A
ak1

··· akm

⌘
. For each i 2 m, let li 2 r be

such that hi 2 Ali . Since h 2 Reg(T (X,↵)), ↵ separates im(h), so l1, . . . , lm are distinct. It follows that

ha =
⇣

H1 ··· Hm
al1

··· alm

⌘
. Since each Hi \ A is non-empty (as Hi is a union of ↵-classes, each of which contains

an element of A), we have (ha)|A =
⇣

H1\A ··· Hm\A
al1

··· alm

⌘
. But g|A = (ha)|A, so (reordering if necessary), it

follows that li = ki and Hi \ A = Gi \ A for each i. In particular, hi 2 Ali = Aki
for each i. Now put

f =
⇣

G1 ··· Gm
h1 ··· hm

⌘
. Since ker(f) = ker(g) and im(f) = im(h), we see that f 2 P . It is clear that fa = g. We

also have af = h since, for all j,

Hjaf =
⇣ [

i2Ij

Ai

⌘
af = {ai : i 2 Ij}f = (Hj \ A)f = (Gj \ A)f = hj .

It follows that (g, h) = f . Finally, suppose g 2 Reg(T (X, A)) and h 2 Reg(T (X,↵)). To prove the
statement about Reg(T a

X) being a subdirect product, we must show that there exist h0 2 Reg(T (X,↵)) and
g0 2 Reg(T (X, A)) such that (g, h0), (g0, h) 2 im( ). First note that g 2 P2 by Proposition 5.3. But also
T (X, A) ✓ P1, so g 2 P , and (g, ag) = (ga, ag) = g , so we may take h0 = ag. Similarly, h 2 P and
(ha, h) = h , and we take g0 = ha. This completes the proof. 2

The homomorphism  from the previous result is built up out of the two homomorphisms

 1 : P ! Reg(T (X, A)) : f 7! fa and  2 : P ! Reg(T (X,↵)) : f 7! af,

which are the restrictions to P = Reg(T a
X) of the epimorphisms �a and ⇢a from Remark 5.2. The last

paragraph of the previous proof shows that  1 and  2 are epimorphisms, indeed projections, since P con-
tains both Reg(T (X, A)) and Reg(T (X,↵)), and  1 (resp.,  2) maps Reg(T (X, A)) (resp., Reg(T (X,↵)))
identically.

Proposition 5.5. The maps

�1 : Reg(T (X, A)) ! TA : g 7! g|A and �2 : Reg(T (X,↵)) ! TA : g 7! (ga)|A

are epimorphisms, and the following diagram commutes:

Reg(T a
X)

Reg(T (X, A)) Reg(T (X,↵))

TA

 1  2

�1 �2

Further, the induced map Reg(T a
X) ! TA is an epimorphism.

Proof. Clearly �1 and �2 map their domains into TA. Note that for any f 2 TX , f |A = idA � f , where idA

is the restriction of the identity map to A, and � denotes the usual composition of partial functions. So, if
g, h 2 Reg(T (X, A)), then

(gh)�1 = idA � g � h = idA � g � idA � h = (g�1)(h�1),

since g = g � idA as im(g) ✓ A. If g, h 2 Reg(T (X,↵)), then

(gh)�2 = idA � g � h � a = idA � g � a � h � a = idA � g � a � idA � h � a = (g�2)(h�2),

15

Further, the induced map Reg(T aX)→ TA is an epimorphism.

Proof. Clearly φ1 and φ2 map their domains into TA. Note that for any f ∈ TX , f |A = idA ◦ f , where idA
is the restriction of the identity map to A, and ◦ denotes the usual composition of partial functions. So, if
g, h ∈ Reg(T (X,A)), then

(gh)φ1 = idA ◦ g ◦ h = idA ◦ g ◦ idA ◦ h = (gφ1)(hφ1),

since g = g ◦ idA as im(g) ⊆ A. If g, h ∈ Reg(T (X,α)), then

(gh)φ2 = idA ◦ g ◦ h ◦ a = idA ◦ g ◦ a ◦ h ◦ a = idA ◦ g ◦ a ◦ idA ◦ h ◦ a = (gφ2)(hφ2),
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since h = a◦h as α ⊆ ker(h), and a = a◦idA. So φ1 and φ2 are homomorphisms. That the diagram commutes
follows from the fact that (afa)|A = (fa)|A for all f ∈ P , as observed in the proof of Proposition 5.4. Finally,
let q ∈ TA, and write q =

( a1 ··· ar
ak1
··· akr

)
. (This notation is not supposed to imply that k1, . . . , kr are distinct.)

Put f =
(
A1 ··· Ar
ak1
··· akr

)
. Then clearly, f ∈ Reg(T (X,A)) ∩ Reg(T (X,α)) and q = fφ1 = fφ2, showing that

φ1 and φ2 are surjective. Note that, in fact, f ∈ P and q = fφ1 = (fa)φ1 = f(ψ1φ1), showing that ψ1φ1 is
surjective, and completing the proof. 2

Remark 5.6. The previous result displays the structure of P = Reg(T aX) ∼= im(ψ) as a pullback product of
Reg(T (X,A)) and Reg(T (X,α)) with respect to TA. Namely, im(ψ) consists of all pairs (g, h) such that
gφ1 = hφ2. Pullback products have been studied in various contexts in universal algebra and semigroup
theory (where they are sometimes referred to as spined products); see for example [12,13,20,24,48].

From now on, we will denote by φ = ψ1φ1 = ψ2φ2 the epimorphism P → TA : f 7→ (fa)|A. If f ∈ P , we will
write f = fφ ∈ TA. If U ⊆ P , we write U = {u : u ∈ U} ⊆ TA.

We now show how φ : P → TA may be used to relate Greens relations on the semigroups P and TA. If
f, g ∈ P and K is one of L , R, H , D , we say f K̂ g if f K g in TA. Denote by K̂f = Kfφ

−1 the K̂ -class
of f in P . Recall that λi = |Ai| for each i ∈ r, and that ΛI = λi1 · · ·λim if I = {i1, . . . , im} ⊆ r. If Y is a set
and 0 ≤ m ≤ |Y |, we write

(
Y
m

)
for the set of all m-element subsets of Y . Recall that a rectangular band is

a semigroup of the form I ×J with product (i1, j1)(i2, j2) = (i1, j2), and that a rectangular group is a direct
product of a rectangular band with a group.

Theorem 5.7. Let f =
(
F1 ··· Fm
f1 ··· fm

)
∈ P , where m = rank(f) and fi ∈ Aki for each i, and put I =

{k1, . . . , km}.

(i) R̂f is the union of mn−r Ra-classes of P .

(ii) L̂f is the union of ΛI L a-classes of P .

(iii) Ĥf is the union of mn−rΛI H a-classes of P , each of which has size m!. The map φ : P → TA is
injective when restricted to any H a-class of P .

(iv) If Hf is a non-group H -class of TA, then each H a-class of P contained in Ĥf is a non-group.

(v) If Hf is a group H -class of TA, then each H a-class of P contained in Ĥf is a group isomorphic to

the symmetric group Sm. Further, Ĥf is a rectangular group; specifically, Ĥf is isomorphic to a direct
product of an mn−r × ΛI rectangular band with Sm.

(vi) D̂ = Da, so D̂f = Da
f = Da

m = {g ∈ P : rank(g) = m} is the union of:

(a) mn−rS(r,m) Ra-classes of P ,

(b)
∑

J∈( r
m) ΛJ L a-classes of P ,

(c) mn−rS(r,m)
∑

J∈( r
m) ΛJ H a-classes of P .

Proof. First observe that if ρ : S → T is an epimorphism of semigroups, and if K is a K -class of T where
K is one of L ,R,H , then Kρ−1 is a union of K -classes of S.

(i) By the above observation, it suffices to count the number of Ra-classes contained in R̂f . An Ra-

class Rag contained in R̂f is completely determined by the common kernel of all its members, namely

ker(g). Such a kernel is constrained so that it has m equivalence classes and ker(g) = ker(f) =
(F1 ∩A| · · · |Fm ∩A). To construct ker(g) from ker(g), the remaining n− r elements of X \A may be
assigned to the m ker(g)-classes arbitrarily, and there are mn−r ways to do this.

(ii) An L a-class Lag contained in L̂f is completely determined by the common image of all its members,

namely im(g). Such an image is constrained so that it has size m and im(g) = im(f) = {ak1 , . . . , akm}.
So im(g) must contain one element of Aki for each i, and may be chosen in λk1 · · ·λkm = ΛI ways.
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(iii) The statement concerning the number of H a-classes contained in Ĥf follows immediately from (i)

and (ii). By Theorem 4.2, Ha
f = Hf , so |Ha

f | = m!. If g H a f , then g =
(
F1 ··· Fm
f1q ··· fmq

)
and g =

(
F1∩A ··· Fm∩A
ak1q

··· akmq

)
for some q ∈ Sm. So it follows that φ is injective when restricted to Ha

f . Since Ha
f is

an arbitrary H a-class of Reg(T aX), the proof of (iii) is complete.

(iv) If Hf is a non-group H -class, then g2 6∈ Hf for all g ∈ Ĥf . Since im(g2) ⊆ im(g) and ker(g2) ⊇ ker(g),

it then follows that rank(g2) = rank(g2) < rank(g) = rank(g), so g2 6∈ Ha
g , whence Ha

g is a non-group
H a-class of P .

(v) Suppose Hf is a group. Then g2 ∈ Hf for any g ∈ Ĥf , so rank(g2) = rank(g2) = rank(g) = rank(g).

But im(g2) ⊆ im(g) and ker(g2) ⊇ ker(g), so it follows that im(g2) = im(g) and ker(g2) = ker(g),
whence g2 H a g, whence Ha

g is a group. By (iii), the restriction of φ to Ha
f yields an isomorphism

onto Hf
∼= Sm.

Consider an arbitrary element g ∈ Ĥf , and write ker(g) = (G1| · · · |Gm) and im(g) = {g1, . . . , gm}
where aki ∈ Gi and gi ∈ Aki for each i ∈ m. Then there is a permutation pg ∈ Sm such that

g =
(

G1 ··· Gm
g1pg ··· gmpg

)
. In this way, we see that g is completely determined by ker(g), im(g) and pg, and

we write g ≡ [ker(g), im(g), pg]. If h =
(

H1 ··· Hm
h1ph

··· hmph

)
≡ [ker(h), im(h), ph] is another element of Ĥf ,

then we have g ? h = [ker(g), im(h), pgph]. Indeed, we have ker(g ? h) = ker(g) and im(g ? h) = im(h),

as g ? h ∈ Ĥf gives rank(g ? h) = m, and if x ∈ Gi is arbitrary, then

x 7 g−−→ gipg 7
a−−→ akipg 7

h−−→ hipgph .

Now let K = {ker(g) : g ∈ Ĥf} and I = {im(g) : g ∈ Ĥf}. Then K × I is a rectangular band under

the product (β,B)(γ,C) = (β,C), and by the above rule for multiplication in Ĥf , we immediately see
that the map

Ĥf → K × I × Sm : g ≡ [ker(g), im(g), pg] 7→ (ker(g), im(g), pg)

is an isomorphism. The dimensions of the rectangular band are given by parts (i) and (ii), above.

(vi) We deduce D̂ = Da immediately from the fact that rank(f) = rank(f) for all f ∈ P . The number of
R̂-classes in Da

m is equal to the number of R-classes in Dm ⊆ TA, which is equal to S(r,m); (a) now
follows from (i). Part (b) follows from (ii) and the fact that the L -classes contained in Dm ⊆ TA (and

hence the L̂ -classes contained in Da
m) are indexed by the m-element subsets of A. Part (c) follows

immediately from (a) and (b). 2

Remark 5.8. See also [70, Proposition 3.1] for formulae for the number of singleton Ra- and L a-classes
of T aX , and various other parameters.

As an immediate consequence of Theorem 5.7, we may give the size of P = Reg(T aX).

Corollary 5.9. We have |Reg(T aX)| =
r∑

m=1

m!mn−rS(r,m)
∑

I∈( r
m)

ΛI .

Proof. From parts (vi) and (iii) of Theorem 5.7, we have |Da
m| = m!mn−rS(r,m)

∑
I∈( r

m) ΛI for each m ∈ r.

Summing over all m gives the result. 2

The top Da-class of P is the set

Da
r = SAφ−1 = {f ∈ P : rank(f) = r}.

We will write D = Da
r for this set. As a special case of Theorem 5.7(v), D is a rectangular group; it is

isomorphic to the direct product of an rn−r × Λ rectangular band with the symmetric group Sr. (Recall
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that Λ = λ1 · · ·λr.) Since D is the pre-image of SA under the map φ : P → TA, we may think of D as a
kind of “inflation” of SA, the group of units of TA. In fact, we will soon see that D = RP(P ) is precisely
the set of regularity preserving elements of P , so that D may be thought of as an alternative to the group
of units in the non-monoid P , as noted in Section 3.

In order to avoid confusion when discussing idempotents, if U ⊆ TX , we will write

E(U) = {f ∈ U : f = f ◦ f} and Ea(U) = {f ∈ U : f = f ? f}

for the set of idempotents from U with respect to the different operations on TX and T aX . Recall that an
element u of a semigroup S is a mididentity if xuy = xy for all x, y ∈ S.

Lemma 5.10. Let e ∈ Ea(D). Then aea = a. In particular, e is a mididentity for both T aX and P .

Proof. Since rank(e) = r, we may write e =
(
E1 ··· Er
e1 ··· er

)
. Since α separates im(e) = {e1, . . . , er}, we may

assume (reordering if necessary) that ei ∈ Ai for each i. It follows that ea =
(
E1 ··· Er
a1 ··· ar

)
. Since e ∈ Ea(D),

we see that e = e ? e = eae. It follows that ea = eaea, so ea ∈ E(TX), whence ai ∈ Ei for each i. It follows
then that aea =

(
A1 ··· Ar
a1 ··· ar

)
= a. If f, g ∈ TX , then f ? e ? g = faeag = fag = f ? g, showing that e is a

mididentity for T aX (and hence also for P ⊆ T aX) and completing the proof. 2

Proposition 5.11. The top Da-class, D = Da
r , of P = Reg(T aX) is precisely the set RP(P ) of all regularity

preserving elements of P .

Proof. By Proposition 3.5(i), it suffices to show that Ea(RP(P )) = Ea(D). By Proposition 3.5(iii) and
Lemma 5.10, we see that Ea(D) ⊆ Ea(RP(P )). Conversely, suppose e ∈ Ea(P ) \Ea(D). Then rank(e) < r,
and so if f ∈ Ea(D) is arbitrary, then rank(f ? e) = rank(fae) ≤ rank(e) < r, so f ? e does not belong to
D = Da

f and, in particular, f ? e is not Ra-related to f , from which we deduce from Proposition 3.5(ii) that
e 6∈ RP(P ). This shows that Ea(RP(P )) ⊆ Ea(D), and completes the proof. 2

Our next goal is to calculate the rank of P = Reg(T aX). Recall that the relative rank, denoted rank(S : U),
of a semigroup S with respect to a subset U ⊆ S is defined to be the minimum cardinality of a subset V ⊆ S
such that S = 〈U ∪ V 〉. The concept of relative rank was first introduced in [45], and has played a major
role in a number of investigations [2, 11,34–36,38].

Lemma 5.12. We have rank(P ) = rank(D) + rank(P : D).

Proof. This follows quickly from the fact that D is a subsemigroup of P and P \D an ideal. 2

The next result may be easily be proved directly, but it is a special case of [61, Theorem 4.7] (see also [31])
so we omit the proof.

Lemma 5.13 (Ruškuc [61]). Let I and J be non-empty sets, and G a group. Let S = I × J × G be the
rectangular group with product defined by (i1, j1, g1)(i2, j2, g2) = (i1, j2, g1g2). Then

rank(S) = max
{
|I|, |J |, rank(G)

}
. 2

We wish to apply Lemma 5.13 to calculate the rank of the rectangular group D. To do this, we need to
calculate max{rn−r,Λ}. Recall that we are assuming 1 < r < n.

Lemma 5.14. We have rn−r ≥ Λ = λ1 · · ·λr.

Proof. First note that if r = 2 and n = 3, then we must have {λ1, λ2} = {1, 2}, in which case rn−r = Λ = 2.
Now suppose (r, n) 6= (2, 3). Elementary calculus shows that the maximum value of the product x1 · · ·xr,
where x1 + · · · + xr = n and x1, . . . , xr ≥ 0 are real numbers, occurs when x1 = · · · = xr = n/r. It
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follows that Λ ≤ (n/r)r = nr/rr. So it suffices to show that nr/rr ≤ rn−r = rn/rr, which is equivalent to
nr ≤ rn. This, in turn, is equivalent to ln(n)/n ≤ ln(r)/r. Now, f(x) = ln(x)/x is a decreasing function
for x > e ≈ 2.718. In particular, f(3) > f(4) > f(5) > · · · , so the result holds for r ≥ 3. We also have
f(2) = f(4), so the result holds for r = 2 and n ≥ 4. We have already covered the case (r, n) = (2, 3). 2

Corollary 5.15. We have rank(D) = rn−r.

Proof. Recall that D is isomorphic to the direct product of an rn−r×Λ rectangular band with the symmetric
group Sr. So Lemma 5.13 gives rank(D) = max

{
rn−r,Λ, rank(Sr)

}
. We have already seen that rn−r ≥ Λ.

Also, rank(S2) = 1, while rank(Sr) = 2 if r ≥ 3. So it follows that rn−r ≥ rank(Sr). 2

The next technical lemma will help us calculate rank(P : D). It is quite a bit stronger than we need at
this point (we only require the m = r case at the moment), but we will use the full strength in subsequent
sections when we consider ideals and the idempotent generated subsemigroup of T aX .

Lemma 5.16. Suppose f, g ∈ P are such that f = g. Then for any rank(f) ≤ m ≤ r, there exist idempotents
e1, e2 ∈ Ea(Da

m) such that f = e1 ? g ? e2.

Proof. Put l = rank(f) = rank(g) and write f =
(
F1 ··· Fl
f1 ··· fl

)
and g =

(
G1 ··· Gl
g1 ··· gl

)
, where fi ∈ Aki for each i.

Since
(
F1∩A ··· Fl∩A
ak1

··· akl

)
= f = g, we may assume (reordering if necessary) that gi ∈ Aki for all i, in which case

also Gi ∩ A = Fi ∩ A. Let r \ {k1, . . . , kl} = {j1, . . . , jr−l}, and put B = Ajm−l+1
∪ · · · ∪ Ajr−l

. (Note that
B = ∅ if m = r.) Define

e2 =

(
Ak1 ∪B Ak2 · · · Akl Aj1 · · · Ajm−l

f1 f2 · · · fl aj1 · · · ajm−l

)
.

For each s ∈ l, let Fs ∩A = {ais1 , . . . , aisqs}, noting that Fs ∩A 6= ∅ and q1 + · · ·+ ql = r. For each s, choose
1 ≤ ps ≤ qs such that p1 + · · ·+ pl = m, and choose a partition Fs = Fs1 t · · · t Fsps so that aist ∈ Fst for
each t. Define

e1 =

(
F11 · · · F1p1 · · · Fl1 · · · Flpl
ai11 · · · ai1p1

· · · ail1 · · · ailpl

)
.

One may easily check that e1, e2 ∈ E(TX). Since also e1a = e1 and ae2 = e2, it follows that e1, e2 ∈ Ea(Da
m).

Now let x ∈ Fs be arbitrary. Then xe1 ∈ Fs ∩A = Gs ∩A, so

x 7 e1−−→ xe1 7 a−−→ xe1 7 g−−→ gs 7 a−−→ aks 7
e2−−→ fs = xf,

showing that f = e1 ? g ? e2, as desired. 2

Lemma 5.17. If f ∈ Da
r−1 is arbitrary, then P = 〈D ∪ {f}〉a. Consequently, rank(P : D) = 1.

Proof. Since 〈D〉a = D 6= P (as r > 1), rank(P : D) ≥ 1 so it suffices to prove the first statement. Note that
D = {g : g ∈ D} is equal to SA, and f ∈ TA satisfies rank(f) = r−1. It follows that TA = 〈D∪{f}〉. Now let
g ∈ P be arbitrary. Choose h1, . . . , hk ∈ D∪{f} such that g = h1 · · ·hk, and put h = h1?· · ·?hk ∈ 〈D∪{f}〉a.
Then h = g, so Lemma 5.16 tells us that g = e1 ? h ? e2 ∈ 〈D ∪ {f}〉a for some e1, e2 ∈ Ea(D). 2

As an immediate consequence of Lemmas 5.12 and 5.17 and Corollary 5.15, we have the following.

Theorem 5.18. If 1 < r < n, then rank(Reg(T aX)) = rn−r + 1. 2

Remark 5.19. It was shown in [64, Theorem 3.6] that rank(Reg(T (X,A))) = rn−r + 1, also. See also
Theorem 7.4 and Remark 7.5. If r = 1, then Reg(T aX) = D1 is an n-element right zero semigroup, so we
have rank(Reg(T aX)) = n in this case. If r = n, then Reg(T aX) = T aX ∼= TX , so rank(Reg(T aX)) = rank(TX),
which is equal to 1 (if n ≤ 1), 2 (if n = 2) or 3 (if n ≥ 3).

Remark 5.20. The natural task of classifying and enumerating the generating sets of P of the minimal
size rn−r + 1 seems virtually unassailable. Indeed, by the proof of Lemma 5.13 (see [61, Theorem 4.7]), such
a classification would involve classifying and enumerating all generating sets of Sr of size at most rn−r.
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6 The idempotent generated subsemigroup 〈Ea(T aX)〉a

In this section, we investigate the idempotent generated subsemigroup EaX = 〈Ea(T aX)〉a of T aX . Our main
results include a proof that EaX = Ea(D) ∪ (P \ D), a calculation of rank(EaX) = idrank(EaX), and an
enumeration of the idempotent generating sets of this minimal possible size. Since the solution to every
problem we consider is trivial when r = 1, and well-known when r = n, we will continue to assume that
1 < r < n. To simplify notation, we will write E = Ea(T aX) = Ea(P ), so EaX = 〈E〉a. We begin with a
simple observation; part (ii) is proved in [25, Proposition 13.3.2], where the idempotents were characterised
in a different way (we include a short proof for completeness).

Proposition 6.1. (i) E = Ea(T aX) = {f ∈ TX : (af)|im(f) = idim(f)};

(ii) |E| =
r∑

m=1

mn−m ∑

I∈( r
m)

ΛI .

Proof. Part (i) is easily checked. For part (ii), note that to specify an idempotent f ∈ E, we first choose
m = rank(f) = rank(f) ∈ r, then im(f) = {ai1 , . . . , aim}, then im(f) = {b1, . . . , bm} where bk ∈ Aik for each
k ∈ m. Note that the condition (af)|im(f) = idim(f) simply says that aikf = bk for each k. The remaining
n−m points of X \ {ai1 , . . . , aim} may be mapped arbitrarily by f to any of the points from {b1, . . . , bm}.
Multiplying the number of choices at each step, and adding as appropriate, gives the desired result. 2

Lemma 6.2. If f ∈ E(TA), then there exists e ∈ E = Ea(T aX) such that f = e and rank(e) = rank(f).

Proof. One easily checks that e =
(
A1 ··· Ar
a1f ··· arf

)
satisfies the desired conditions. 2

Recall that TA \ SA is idempotent generated; see Theorem 2.2.

Lemma 6.3. Let V ⊆ Ea(P \ D) be an arbitrary set of idempotents such that TA \ SA = 〈V 〉. Then
〈Ea(D) ∪ V 〉a contains P \D.

Proof. Let f ∈ P\D be arbitrary. Choose e1, . . . , ek ∈ V so that f = e1 · · · ek, and put g = e1?· · ·?ek ∈ 〈V 〉a.
So g = f , and Lemma 5.16 tells us that there exist e0, ek+1 ∈ Ea(D) such that f = e0 ? g ? ek+1 ∈
〈Ea(D) ∪ V 〉a. 2

We may now describe the idempotent generated subsemigroup EaX = 〈Ea(T aX)〉a of T aX .

Theorem 6.4. We have EaX = 〈E〉a = Ea(D) ∪ (P \D), where E = Ea(T aX) = Ea(P ) and D = Da
r is the

top Da-class of P = Reg(T aX).

Proof. First, Ea(D) ⊆ E, and it follows from Lemma 6.3 that P \ D ⊆ EaX . It remains to show that
EaX ⊆ Ea(D)∪(P \D). So suppose f ∈ EaX , and consider an expression f = e1 ? · · ·?ek, where e1, . . . , ek ∈ E.
We must show that f ∈ Ea(D) ∪ (P \ D). If f ∈ P \ D, we are done, so suppose f ∈ D. Since P \ D is
an ideal, it follows that e1, . . . , ek ∈ D. But D is a rectangular group, so Ea(D) is a rectangular band. In
particular, f = e1 ? · · · ? ek ∈ Ea(D). 2

Remark 6.5. Theorem 6.4 is a pleasing analogue of Howie’s result [39] that 〈E(TX)〉 = {1} ∪ (TX \ SX),
since {1} = E(SX), where SX is the top D-class of TX . Also, SX = G(TX) = RP(TX) and, while T aX has no
group of units as it is not a monoid, it is still the case that D = RP(P ).

Now that we have described the elements of the semigroup EaX , the next natural task is to calculate its rank
and idempotent rank. To do this, we need the first part of the next result; the second part will be of use
when we later enumerate the idempotent generating sets of EaX of minimal possible size.
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Lemma 6.6. Let I and J be non-empty sets, and S = I × J the rectangular band with product defined by
(i1, j1)(i2, j2) = (i1, j2). Then

rank(S) = idrank(S) = max
{
|I|, |J |

}
.

If I and J are finite, then the number of (idempotent) generating sets of this smallest possible size is equal
to y!S(x, y), where x = max

{
|I|, |J |

}
and y = min

{
|I|, |J |

}
.

Proof. Note that S is (isomorphic to) a rectangular group with respect to a trivial group, which has rank 1,
so the statement about rank(S) = idrank(S) follows immediately from Lemma 5.13 (or may easily be proved
directly). Now let U be an arbitrary generating set of S of minimal possible size. By duality, we may assume
that x = |I| and y = |J |. By considering an expression (i, j) = u1 · · ·uk, where u1, . . . , uk ∈ U , we see that
for each i ∈ I, U contains (i, ji) for some ji ∈ J . Since we are assuming that |U | = x = |I|, we see that in
fact U = {(i, ji) : i ∈ I}. A similar consideration shows that J = {ji : i ∈ I}, so i 7→ ji defines a surjective
map I → J . (In fact, considered as a binary relation, U is a surjective map I → J .) Conversely, any
surjective map I → J determines an idempotent generating set of S of size x = |I|. Since the number of
surjective functions from an x-set to a y-set is y!S(x, y), the result follows. 2

Since Ea(D) is an rn−r × Λ rectangular band, the next result follows from Lemmas 5.14 and 6.6.

Corollary 6.7. We have rank(Ea(D)) = idrank(Ea(D)) = rn−r, and the number of minimal (idempotent)
generating sets of Ea(D) is equal to Λ!S(rn−r,Λ). 2

Theorem 6.8. We have rank(EaX) = idrank(EaX) = rn−r + ρr, where ρ2 = 2 and ρr =
(
r
2

)
if r ≥ 3.

Proof. As in Lemma 5.12, we have rank(EaX) = rank(Ea(D)) + rank(EaX : Ea(D)) so, by Corollary 6.7, it
remains to show that:

(i) there exists a set V ⊆ E of size ρr such that EaX = 〈Ea(D) ∪ V 〉a, and

(ii) if W ⊆ EaX \ Ea(D) = P \D satisfies EaX = 〈Ea(D) ∪W 〉a, then |W | ≥ ρr.

Let U ⊆ E(TA) be an arbitrary idempotent generating set of TA \ SA with |U | = ρr. By Lemma 6.2, we
may choose V ⊆ E such that |V | = ρr and V = U . Since U is a generating set of TA \ SA, Lemma 6.3 and
Theorem 6.4 give 〈Ea(D) ∪ V 〉a = EaX , establishing (i).

Next, suppose EaX = 〈Ea(D)∪W 〉a, where W ⊆ P \D. We will show that W generates TA \ SA. Indeed, let
g ∈ TA \ SA be arbitrary, and choose any h ∈ P such that h = g. Since rank(h) = rank(h) = rank(g) < r, it
follows that h ∈ P \D ⊆ EaX . Consider an expression h = u1 ? · · · ?uk, where u1, . . . , uk ∈ Ea(D)∪W . Now,
g = h = u1 · · ·uk. If any of the ui belongs to Ea(D), then ui = 1, the identity element of TA. So the factor
ui is not needed in the product g = u1 · · ·uk. After cancelling all such factors, we see that g is a product
of elements from W . Since g ∈ TA \ SA was arbitrary, we conclude that TA \ SA = 〈W 〉. In particular,
|W | ≥ |W | ≥ rank(TA \ SA) = ρr, giving (ii). 2

Now that we know the size of a minimal (idempotent) generating set for EaX , our next task is to enumerate
the idempotent generating sets of this size. For i, j ∈ r with i 6= j, let eij ∈ E(Tr) and εij ∈ E(TA) be the
transformations of r and A (respectively) defined by

keij =

{
i if k = j

k if k ∈ r \ {j}
and akεij =

{
ai if k = j

ak if k ∈ r \ {j}.

Note that akεij = akeij for all i, j, k. Recall that TY denotes the set of all strongly connected tournaments
on the vertex set Y with |Y | ≥ 3. We will write Tr for Tr. Recall also the convention that T2 = T2 consists
of the single directed graph on vertex set 2 = {1, 2} with edges (1, 2) and (2, 1). If j ∈ r and Γ ∈ Tr, we
write d+

Γ (j) for the in-degree of vertex j in Γ.
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Theorem 6.9. The number of idempotent generating sets of EaX of the minimal possible size rn−r + ρr is
equal to

[
(r − 1)n−rΛ

]ρrΛ!S(rn−r,Λ)
∑

Γ∈Tr

1

λ
d+

Γ (1)
1 · · ·λd

+
Γ (r)
r

.

Proof. Let U be an arbitrary minimal idempotent generating set of EaX = Ea(D) ∪ (P \ D). Put U1 =
U ∩Ea(D) and U2 = U ∩ (P \D). Since P \D is an ideal of EaX , it follows that U1 is a (minimal) idempotent
generating set of Ea(D). So, by Corollary 6.7, there are

Λ!S(rn−r,Λ) (6.9.1)

choices for U1. We multiply this by the number of choices for U2. By the proof of Theorem 6.8, U2 is a
generating set of TA \ SA. Also, since |U2| ≤ |U2| = |U | − |U1| = ρr = idrank(TA \ SA), it follows that U2

is a minimal idempotent generating set of TA \ SA, and therefore corresponds to a unique graph Γ ∈ Tr.
We will count the number of ways to choose U2 so that U2 corresponds to Γ. Consider an edge (i, j) in Γ.
Then εij ∈ U2, so there is a unique idempotent ηij ∈ U2 with εij = ηij . To specify ηij , we first choose
im(ηij) = {b1, . . . , bj−1, bj+1, . . . , br}, where bk ∈ Ak for each k. There are λ1 · · ·λj−1λj+1 · · ·λr = Λ/λj
choices for im(ηij). Once im(ηij) is chosen, ηij is restricted by the fact that akηij = bkeij for each k. But
the remaining n− r elements of X \A may be mapped by ηij arbitrarily into the r− 1 elements of im(ηij),
and there are (r − 1)n−r ways to make these choices. So the total number of choices for ηij is equal to
(r−1)n−rΛ/λj . Since this value depends only on j, and since there are d+

Γ (j) edges of the form (i, j), taking
the product over all edges of Γ gives a total of

∏

j∈r

[
(r − 1)n−r

Λ

λj

]d+
Γ (j)

=
[
(r − 1)n−rΛ

]ρr 1

λ
d+

Γ (1)
1 · · ·λd

+
Γ (r)
r

(6.9.2)

choices for U2 with U2 corresponding to Γ (noting that
∑

j∈r d
+
Γ (j) = ρr). Summing (6.9.2) over all Γ ∈ Tr

and multiplying by (6.9.1) gives the result. 2

Remark 6.10. Theorem 6.9 is also valid if r = n, giving |Tn| generating sets for EX = 〈E(TX)〉 of size
1 + ρn, in agreement with Theorem 2.3. When r = 2, the given expression reduces to Λ2Λ!S(2n−2,Λ).

7 Ideals of Reg(T aX)

In this final section, we consider the ideals of P = Reg(T aX). In particular, we show that each of the proper
ideals is idempotent generated, and we calculate the rank and idempotent rank, showing that these are
equal. Again, the problems of this section have been solved in the case r = n and are trivial if r = 1,
so we continue to assume that 1 < r < n. We first state the corresponding result for full transformation
semigroups; for convenience, we state it in the context of TA.

Theorem 7.1 (Howie and McFadden [44]). The ideals of TA are precisely the sets

Im =
⋃

j∈m
Dj = {f ∈ TA : rank(f) ≤ m} for 1 ≤ m ≤ r,

and they form a chain: I1 ⊆ · · · ⊆ Ir. If m < r, then Im = 〈E(Dm)〉 is generated by the idempotents in its
top D-class, and

rank(Im) = idrank(Im) =

{
S(r,m) if 1 < m < r

r if m = 1.
2

The next result is a strengthening Lemma 5.14.
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Lemma 7.2. If 2 ≤ m ≤ r, then

(i) mn−r ≥ ΛI for all I ∈
(
r
m

)
, (ii) mn−rS(r,m) ≥

∑

I∈( r
m)

ΛI .

Proof. Let I ∈
(
r
m

)
. Since λj ≥ 1 for all j ∈ r \ I,

∑
i∈I λi ≤ n − r + m. As in the proof of Lemma 5.14,

we deduce that ΛI ≤ (n − r + m)m/mm. So it suffices to prove that (n − r + m)m/mm ≤ mn−r, which is
equivalent to

(n− r +m)m ≤ mn−r+m. (7.2.1)

Note that n − r + m > m, so again, as in the proof of Lemma 5.14, (7.2.1) is true unless n − r + m = 3
and m = 2. But in this exceptional case, we have r = n− 1 and m = 2 so that, without loss of generality,
(λ1, . . . , λr) = (2, 1, . . . , 1), giving ΛI ≤ 2 = mn−r. This completes the proof of (i). For (ii), we have

∑

I∈( r
m)

ΛI ≤
(
r

m

)
mn−r ≤ S(r,m)mn−r,

where we have used (i) and the fact that S(r,m) ≥
(
r
m

)
. 2

Remark 7.3. It follows from Theorem 5.7 and Lemma 7.2 that each Ĥ - and D̂=Da-class of P = Reg(T aX)
not contained in Da

1 is at least as “tall” as it is “wide”; that is, if C is such a class, then |C/Ra| ≥ |C/L a|.

Theorem 7.4. The ideals of P = Reg(T aX) are precisely the sets

Iam =
⋃

j∈m
Da
j = {f ∈ P : rank(f) ≤ m} for 1 ≤ m ≤ r,

and they form a chain: Ia1 ⊆ · · · ⊆ Iar . If m < r, then Iam = 〈Ea(Da
m)〉a is generated by the idempotents in

its top Da-class, and

rank(Iam) = idrank(Iam) =

{
mn−rS(r,m) if 1 < m < r

n if m = 1.

Proof. More generally, it may easily be checked that if the J -classes of a semigroup S form a chain,
J1 < · · · < Jq, then the ideals of S are precisely the sets Ip = J1∪· · ·∪Jp for 1 ≤ p ≤ q. Now suppose m < r,
and let f ∈ Iam be arbitrary. By Theorem 7.1, f = h1 · · ·hk for some h1, . . . , hk ∈ E(Dm). By Lemma 6.2,
we may choose e1, . . . , ek ∈ Ea(Da

m) such that ei = hi for each i. Now put g = e1 ? · · · ? ek ∈ 〈Ea(Da
m)〉a.

Then g = f , so by Lemma 5.16, there exist e0, ek+1 ∈ Ea(Da
m) such that f = e0 ? g ? ek+1 ∈ 〈Ea(Da

m)〉a.

We now prove the statement about rank and idempotent rank. Note that Ia1 = Da
1 = D1 is an n-element

right zero semigroup, so the result is trivial for m = 1; see also Remark 5.19. So we assume 1 < m < r from
now on. More generally, if J is a maximal J -class of a finite semigroup S, and if the R-classes contained
in J are R1, . . . , Rq, then any generating set for S must intersect each Rp non-trivially (for example, this
follows from [42, Exercise 12, p98] or from stability [60, Definition A.2.1]). In particular, it follows from
Theorem 5.7(vi) that rank(Iam) ≥ mn−rS(r,m). To complete the proof, it suffices to show that there exists
U ⊆ Ea(Da

m) with |U | = mn−rS(r,m) and such that 〈U〉a contains Da
m. We now construct such a U .

First, let V ⊆ E(Dm) ⊆ TA be such that |V | = S(r,m) and Im = 〈V 〉. Fix some v ∈ V , write im(v) =

{ai1 , . . . , aim}, and put I = {i1, . . . , im}. Then Hvφ
−1 is an Ĥ -class of P , and is an mn−r ×ΛI rectangular

group. Put Bv = Ea(Hvφ
−1), so that Bv is a mn−r × ΛI rectangular band. Since mn−r ≥ ΛI , we see by

Lemma 6.6 that rank(Bv) = idrank(Bv) = mn−r, so we may choose some Uv ⊆ Bv with |Uv| = mn−r and
Bv = 〈Uv〉a, noting that u = v for all u ∈ Uv. Note that for any h ∈ Da

m with ker(h) = ker(v), Uv contains
some u with ker(u) = ker(h); a similar statement holds for images. Now put U =

⋃
v∈V Uv, noting that

U ⊆ Ea(D
a
m) and |U | = mn−rS(r,m). Let f ∈ Da

m be arbitrary, and consider an expression f = v1 · · · vk,
where v1, . . . , vk ∈ V . Note that, since rank(vj) = m for each j ∈ k, we have ker(v1) = ker(f) and
im(vk) = im(f). For each j ∈ k, we choose some uj ∈ Uvj , but we make these choices so that ker(u1) = ker(f)

and im(uk) = im(f). Put g = u1 ? · · · ? uk. Then rank(g) = rank(g) = rank(f) = rank(f) so, since
rank(uj) = rank(uj) = m for each j, we see that ker(g) = ker(u1) = ker(f) and im(g) = im(uk) = im(f).
Together with f = g, this shows that f = g ∈ 〈U〉a, and completes the proof. 2
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Remark 7.5. Again, we note the similarity between Theorem 7.4 and [64, Theorem 4.4], where it is shown
that the proper ideals, there denoted Q(F ;m), of Reg(T (X,A)) are idempotent generated, and have rank
and idempotent rank equal to mn−rS(r,m). See also Remark 5.19. We also note that an alternative
approach exists to tackle problems such as those we addressed in this section; namely, making use of the
general results of Gray [29,30] on (idempotent) rank in completely 0-simple semigroups.
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