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An introduction to the universal algebra approach to Higman–Thompson groups (includ-
ing Thompson’s group V ) is given, following a series of lectures by Graham Higman in
1973. In these talks, Higman outlined an algorithm for the conjugacy problem; which
although essentially correct fails in certain cases, as we show here. A revised and complete
version of the algorithm is written out explicitly. From this, we construct an algorithm
for the power conjugacy problem in these groups. Python implementations of these algo-
rithms can be found in [26].
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1. Introduction

In 1965, Thompson introduced the group now called “Thompson’s group V ” and
its subgroups F < T . In doing so he gave the first examples (namely V and T ) of
finitely presented, infinite simple groups (see [11, 28]). McKenzie and Thompson [23]
later used V to construct finitely presented groups with unsolvable word problem.
Subsequently, Galvin and Thompson (unpublished) identified V with the automor-
phism group of an algebra V2,1, studied by Jónsson and Tarski [18]. Higman [17]
generalized this construction, defining Gn,r as the automorphism group of a gen-
eralization Vn,r of V2,1, for n ≥ 2 and r ≥ 1. Moreover, Higman showed that the
commutator subgroup of Gn,r is a finitely generated, infinite, simple group, for all
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n ≥ 2. (Gn,r is perfect when n is even, and its commutator subgroup has index 2
when n is odd.)

The groups Gn,r are the “Higman–Thompson” groups of the title. There are
many isomorphic groups in this set: in fact the algebras Vn,r and Vn′,r′ are iso-
morphic if and only if n = n′ and r ≡ r′ modn− 1; so Gn,r ∼= Gn′,r′ if n = n′

and r ≡ r′ modn− 1. Higman [17] showed that there are infinitely many non-
isomorphic groups Gn,r and gave necessary conditions for such groups to be isomor-
phic. Recently Pardo [24] completed the isomorphism classification, showing that
Higman’s necessary conditions are also sufficient: that is Gn,r ∼= Gn′,r′ if and only
if n = n′ and gcd(n− 1, r) = gcd(n′ − 1, r′). Higman–Thompson groups have been
much studied and further generalized: we refer to [11, 8, 6, 22, 15, 10] for example.

In this paper, we consider the conjugacy and power conjugacy problems in
Higman–Thompson groups. We use Higman’s method, describing the groups Gn,r
in terms of universal algebra. This allows us to give a detailed description of the
algorithm for the conjugacy problem; and to uncover a gap in the original algorithm
proposed by Higman. To be precise, [17, Lemma 9.6] is false, and consequently the
“orbit sharing” algorithm in [17] does not always detect elements in the same orbit
of an automorphism. The orbit sharing algorithm is crucial to the algorithm for
conjugacy given in [17], which may fail to recognize that a pair of elements of Gn,r
is conjugate. Fortunately it is not difficult to complete the algorithm. We then
extend these results to construct an algorithm for the power conjugacy problem:
that is, given elements g, h in a group G decide whether or not there exist nonzero
integers a and b such that ga is conjugate to hb.

The power conjugacy problem though less well known than the conjugacy prob-
lem, already occurs as one of the problems in the hierarchy of decision problems
studied by Lipschutz and Miller [20]. The problem has been shown to be decidable
in, for example, certain HNN-extensions and free products with cyclic amalgama-
tion [1, 14], in certain one-relator groups [25], in Artin groups of extra large type [5],
in groups with small cancellation conditions C(3) and T(6) [4] and in free-by-cyclic
groups [7]. Cryptographic protocols based on the power conjugacy search problem
have been proposed, see for example [19], although these may be susceptible to
attack by quantum computer [16].

The third author has implemented the algorithms described in this paper in
Python [26]. In fact it was the process of testing this implementation which uncov-
ered the existence of an orbit unrecognized in [17]; and it became evident that the
algorithms of [17] were incomplete.

Note that other approaches to algorithmic problems in Gn,r have been devel-
oped. For example [27] proposes an algorithm for the conjugacy problem in G2,1

based on the revealing tree pairs of Brin [8]. In [6] the same methods are used to
study the centralizers of elements of Gn,1 for n ≥ 2. Again Belk and Matucci [3]
gave a solution to the conjugacy problem in G2,1 based on strand diagrams. In
another direction, Higman’s methods were used by Brown [9] to show that all the
Higman–Thompson groups are of type FP∞. This discussion of finiteness properties
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has been extended to generalizations of Higman–Thompson groups, by Martinez-
Perez and Nucinkis [22].

In detail the contents of the paper are as follows. In order to make this account
self-contained, we begin with an introduction to universal algebra. Sec. 2, outlines
the universal algebra required, following Cohn’s account [13]. In Sec. 2.1, we intro-
duce Ω-algebras; that is universal algebras with signature Ω. Sections 2.2 and 2.3
cover quotients of Ω-algebras, varieties of Ω-algebras and free Ω-algebras. We use
this machinery in Sec. 3 to define the algebras Vn,r and establish their basic prop-
erties, following the exposition of [17].

The groups Gn,r are defined in Sec. 4 as the automorphism groups of Vn,r. We
represent elements of Gn,r as bijections between carefully chosen generating sets of
the algebras Vn,r. This is done in two stages, beginning with the semi-normal forms
of Sec. 4.1. There are many ways of representing a given automorphism in semi-
normal form, but in Sec. 4.2 it is shown that this representation may be refined
to a unique quasi-normal form. Furthermore, an algorithm is given which takes an
automorphism and produces a quasi-normal form representation.

The solution to the conjugacy problem is based on an analysis of certain orbits of
automorphisms in quasi-normal form, and we give a full account of this analysis in
Secs. 4.1 and 4.2. Here we follow [17] except that, as pointed out above, there exist
orbits of types not recognized there, which give automorphisms in quasi-normal
form a richer structure, as described here.

Section 5 contains the algorithm for the conjugacy problem. This involves break-
ing an automorphism down into well-behaved parts. It is shown that every element
of Gn,r decomposes into factors which are called periodic and regular infinite parts.
The conjugacy problem for periodic and regular infinite components is solved sep-
arately and then the results recombined. The decomposition into these parts is the
subject of Sec. 5.1 and here we give the main algorithm for the conjugacy prob-
lem, Algorithm 5.6. This algorithm depends on algorithms for periodic and regular
infinite automorphisms: namely Algorithm 5.13 in Sec. 5.3 and Algorithm 5.27 in
Sec. 5.4.

In Sec. 6, we turn to the power conjugacy problem. In the version considered
here the problem is, given g, h ∈ Gn,r to find all pairs of nonzero integers (a, b) such
that ga is conjugate to hb. Again the problem splits into the periodic and regular
infinite parts. The periodic part is straightforward, and reduces to the conjugacy
problem; see Sec. 6.1. The algorithm for power conjugacy of regular infinite elements
is Algorithm 6.13, in Sec. 6.3 and gives the main result of the paper Theorem 6.14:
that the power conjugacy problem is solvable. On input g, h ∈ Gn,r the algorithm
returns a (possibly empty) set S consisting of all pairs of integers (a, b) such that
ga and hb are conjugate; as well as a conjugator, for each pair.

In outline, the main steps of the algorithm for the (power-)conjugacy problem
are:

• Lemma 4.28 which computes the quasi-normal basis of a given automorphism.
• Lemma 4.30, the “component-sharing test”, as in Higman’s original algorithm.
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• Lemma 4.34, the “orbit-sharing test”, which recognizes and combines components
which belong to a single orbit.

• Algorithm 5.6 which is Higman’s solution to the conjugacy problem.
• Algorithm 6.13 which determines if two automorphisms are power conjugate.

The examples given throughout the text are used as examples in [26], from
where these and other examples may be run through the third author’s implemen-
tations of the algorithms. To find Example x.y in [26], follow the instructions in the
documentation to install the program; then run

>>> from thompson import *

>>> f = load example(’example x y’)

in a Python session. The automorphism will then be available as the Python
object f.

2. Universal Algebra

2.1. Ω-algebras

In this section, we review enough universal algebra to underpin the construction of
the Higman–Thompson groups in later sections. We follow [13].

Definition 2.1. An operator domain consists of a set Ω and a mapping a : Ω → N0.
The elements of Ω are called operators. If ω ∈ Ω, then a(ω) is called the arity of
ω. We shall write Ω(n) = {ω ∈ Ω | a(ω) = n}, and refer to the members of Ω(n) as
n-ary operations.

An algebra with operator domain (or signature) Ω consists of a set S, called the
carrier of the algebra, and a family of maps {ϕω}ω∈Ω indexed by Ω, such that for
ω ∈ Ω(n), ϕω is a map from Sn to S.

Following [13] we suppress all mention of the maps ϕω, identifying ϕω with ω,
and referring to any algebra with carrier S and operator domain Ω as an Ω-algebra,
which we denote by (S,Ω). For example, a group (G, ·,−1 , 1) is a Ω-algebra with
operator domain {·,−1 , 1} and carrier G, where · is binary, −1 is unary and 1 is
a constant. For this to describe a group, certain laws must hold between these
operations, i.e. the group axioms.

Given an Ω-algebra (S,Ω) and f ∈ Ω(n), we write s1 · · · snf for the image of
the n-tuple (s1, . . . , sn) ∈ Sn under f . We say that a subset T ⊆ S is closed under
the operations of Ω (or that T is Ω-closed) if, for all n ≥ 0, for all f in Ω(n) and
for all s1, . . . , sn ∈ T the element s1 · · · snf is also an element of T . Indeed, if T is
a subset of S then T is Ω-closed if and only if (T,Ω) is an Ω-algebra: which brings
us to the next definition.

Definition 2.2. Given an Ω-algebra (S,Ω), an Ω-subalgebra is an Ω-algebra (T,Ω)
whose carrier T is a subset of S.

The intersection of any family of subalgebras is again a subalgebra. Hence, for
any subset X of the set S we may define the subalgebra 〈X〉 generated by X to
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be the intersection of all subalgebras containing X . The subalgebra 〈X〉 may also
be defined recursively: that is 〈X〉 is the subset of S such that (i) X ⊆ 〈X〉, (ii)
if y1, . . . , yn ∈ 〈X〉 then y1 · · · ynf ∈ 〈X〉, for all f ∈ Ω(n) and (iii) if s does not
satisfy (i) or (ii) then s does not belong to 〈X〉. Loosely speaking we might say
that 〈X〉 is obtained from X by applying a finite sequence of operations of Ω. If
the subalgebra generated by X is the whole of S, then X is called a generating set
for (S,Ω).

A mapping g : A → B between two Ω-algebras A = (S,Ω),B = (S′,Ω) is said
to be compatible with f ∈ Ω(n) if, for all s1, . . . , sn ∈ S,

(s1g) · · · (sng)f = (s1 · · · snf)g.

If g is compatible with each f ∈ Ω, it is called a homomorphism from A = (S,Ω)
to B = (S′,Ω). If a homomorphism g from A to B has an inverse g−1 which
is again a homomorphism, g is called an isomorphism and then the Ω-algebras
A = (S,Ω),B = (S′,Ω) are said to be isomorphic. An isomorphism of an algebra
A = (S,Ω) with itself is called an automorphism and a homomorphism of an algebra
into itself is called an endomorphism. A homomorphism is determined once the
images of a generating set are fixed.

Proposition 2.3 ([13, Proposition 1.1]). Let g, h : A → B be two homomor-
phisms between Ω-algebras A = (S,Ω),B = (S′,Ω). If g and h agree on a generating
set for A, then they are equal.

From a family {Ai}mi=1 (Ai = (Si,Ω)) of Ω-algebras we can form the direct
product P =

∏m
i=1 Ai of Ω-algebras. Its set is the Cartesian product S of the Si,

and the operations are carried out component wise. Thus, if πi : S → Si are the
projections from the product to the factors then any f ∈ Ω of arity n is defined on
Sn by the equation

(p1 · · · pnf)πi = (p1πi) · · · (pnπi)f,
where pi ∈ S.

Let C be a class of Ω-algebras, whose elements we will call C-algebras. By a free
C-algebra on a set X we mean a C-algebra F with the following universal property.

There is a mapping µ : X → F such that every mapping f : X → A into a
C-algebra A can be factored uniquely by µ to give a homomorphism from
F to A, i.e. there exists a unique homomorphism f ′ : F → A such that
µf ′ = f .

In this case we say that X is a free generating set or a basis for F . If X is a
subset of F then we shall always assume that µ is the inclusion map. Not every
class has free algebras, but they do exist in the class under consideration here (see
Proposition 2.16).

A free product is defined similarly, replacing the set X by a collection of C
algebras. Given an indexing set I and for each i ∈ I an Ω algebra Ai from C the
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free product A of {Ai}i∈I , written A = ∗i∈IAi, is an Ω-algebra in C satisfying the
following property.

There exist homomorphisms µi : Ai → A, for all i ∈ I, such that for any
Ω-algebra B and homomorphisms fi : Ai → B, for all i ∈ I, there exists a
unique homomorphism f ′ : A → B such that µif ′ = fi, for all i.

Given collections {Ai}i∈I and {Bi}i∈I of Ω-algebras such that there exist free prod-
ucts A = ∗i∈IAi and B = ∗i∈IBi, then, by definition, there exist homomorphisms
µi : Ai → A and µ′

i : Bi → B, for all i ∈ I. In this case, given homomorphisms
fi : Ai → Bi, for all i ∈ I, the composition fiµ′

i is a homomorphism from Ai to B,
so there exists a unique homomorphism f ′ : A → B, with µif ′ = fiµ

′
i, for all i ∈ I.

We denote f ′ by ∗i∈Ifi.

2.2. Congruence on an Ω-algebra

A relation between two sets S and R is defined to be a subset of the Cartesian
product S ×R. A mapping f : S → R is a relation Γf ⊂ S ×R with the properties
that for each s ∈ S there exists r ∈ R such that (s, r) ∈ Γf (everywhere defined)
and if (s, r), (s, r′) ∈ Γf then r = r′ (single valued). A relation Γ ⊂ S × R has an
inverse Γ−1, defined by

Γ−1 = {(r, s) ∈ R× S | (s, r) ∈ Γ};
and if ∆ ⊂ R×T is a relation then the composition Γ ◦∆ of Γ and ∆ is defined by

Γ ◦ ∆ = {(s, t) ∈ S × T | (s, x) ∈ Γ and (x, t) ∈ ∆ for some x ∈ R}.
If Γ ⊂ S ×R and S′ ⊂ S we define

S′Γ = {r ∈ R | (s, r) ∈ Γ for some s ∈ S′}.
Given a set S the identity relation 1S = {(s, s) | s ∈ S} and the universal relation
S2 = {(s, s′) | s, s′ ∈ S} always exist.

An equivalence on a set S is a subset Γ of S2 with the properties Γ ◦ Γ ⊂ Γ
(transitivity): Γ−1 = Γ (symmetry) and 1S ⊆ Γ (reflexivity). The equivalence class
of s ∈ S is {s′ ∈ S | (s, s′) ∈ Γ} = {s}Γ. Given any subset U of S×S, the equivalence
generated by U is

E =
⋂

{V ⊆ S × S |V is an equivalence and U ⊆ V };
that is, the smallest equivalence E on S containing U . It follows that E is

{(a, b) ∈ S × S | there exists a0, . . . , an such that a0 = a, an = b and (ai, ai+1)∈U}.
Of particular interest in the study of Ω-algebras are relations which are also

subalgebras. Firstly, if A = (S,Ω) and B = (R,Ω) are Ω-algebras and Γ ⊂ S ×R is
a relation which is closed under the operations of Ω, as defined in A×B, then (Γ,Ω)
is a subalgebra of A×B. In this case we abuse notation and say Γ is a subalgebra
of A× B.
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Lemma 2.4 ([13, Lemma 2.1, Chap. 1]). Let A,B, C be Ω-algebras and let Γ,∆
be subalgebras of A×B,B×C respectively. Then Γ−1 is a subalgebra of B×A,Γ◦∆
is a subalgebra of A × C and if A′ is a subalgebra of A, with carrier S′ ⊆ S, then
(S′Γ,Ω) is a subalgebra of B.

Let S and T be sets and f : S → T a mapping between them. The image of f
is defined as SΓf , and the kernel of f is defined as

ker f = {(x, y) ∈ S2 |xf = yf}.
The latter is an equivalence on S; the equivalence classes are the inverse images of
elements in the image (sometimes called the fibers of f).

Example 2.5 (Groups). Given a group homomorphism f : G→ H , the (group-
theoretic) kernel of f is a normal subgroup N ; and the different cosets of N in G

are the fibers of f . So, the equivalence classes of kerf , in the definition above, are
the cosets of N in G.

A congruence on an Ω-algebra A = (S,Ω) is an equivalence on S which is also a
subalgebra of A2 i.e. an equivalence Γ ⊂ S × S which is Ω-closed. From the above,
1A and A2 are congruences on A. Given any subset U ⊆ S × S the congruence
generated by U is

C =
⋂

{V ⊆ S × S |V is a congruence and U ⊆ V }.
It follows that C is the smallest congruence on A containing U .

Let A be an Ω-algebra. By definition a congruence is an equivalence which
admits the operations ω (ω ∈ Ω). Now each n-ary operator ω defines an n-ary
operation on A:

(a1, . . . , an) �→ a1 · · ·anω for a1, . . . , an ∈ A. (2.1)

By giving fixed values in A to some of the arguments, we obtain r-ary operations
for r ≤ n. In particular, if we fix all the aj except one, say the ith, we obtain, for
any n− 1 fixed elements a1, . . . , an−1 ∈ A, a unary operation

x �→ a1 · · · ai−1xai · · · an−1ω; (2.2)

and this applies for all i ∈ {1, . . . , n}. We say that the operation (2.2) is an elemen-
tary translation (derived from Ω by specialization in A). Given a finite sequence
τ1, . . . , τn of elementary transformations the composition τ = τ1 ◦ · · · ◦ τn is also a
unary operation on A, which we call a translation. (In particular we allow n = 0 in
this definition, so the identity map on A is a translation.)

Proposition 2.6 ([12, Proposition 6.1, Chap. 6]). An equivalence q on an
Ω-algebra A is a congruence if and only if it is closed under all translations. More
precisely, a congruence is closed under all translations, while any equivalence which
is closed under all elementary translations is a congruence.
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Remark 2.7. If U ⊆ S × S, then the congruence generated by U can be seen to
consist of pairs (a, b) ∈ S × S such that there exist m ≥ 0, a0, . . . , am ∈ S, and a
translation τ with

• a0 = a, am = b and
• (ai, ai+1) = (uiτ, ui+1τ),

where either (ui, ui+1) ∈ U , (ui+1, ui) ∈ U or ui = ui+1. That is, there exist
s1, . . . , sn−1 ∈ S, u0, . . . , um ∈ S, and ω ∈ Ω(n) such that (ui, ui+1) ∈ U ∪U−1∪1S
and setting

ai = (s1, . . . , sj−1, ui, sj , . . . , sn−1)ω,

for 0 ≤ i ≤ m, we have a = a0 and b = am.

The next two theorems explain the significance of congruences for Ω-algebras
and will be used in the following section on free algebras and varieties.

Theorem 2.8 ([13, Theorem 2.2, Chap. 1]). Let g : A → B be a homomor-
phism of Ω-algebras. Then the image of g is a subalgebra of B and the kernel of g
is a congruence on A.

Theorem 2.9 ([13, Theorem 2.3, Chap. 1]). Let A be an Ω-algebra and q a
congruence on A. Then, there exists a unique Ω-algebra, denoted A/q, with carrier
the set of all q-classes such that the natural mapping ν : A → A/q is a homomor-
phism.

The homomorphism ν in the previous theorem, which maps an element s of the
carrier of A to its q-equivalence class, is called the natural homomorphism from A
to A/q. The algebra A/q is called the quotient algebra of A by q.

Example 2.10. Given a group G and a normal subgroup N of G, the natural
mapping G→ G/N is a homomorphism.

2.3. Free algebras and varieties

Let X = {x1, x2, . . .} be a non-empty, finite or countably enumerable set, called an
alphabet, and Ω an operator domain, with Ω ∩X = ∅. We define an Ω-algebra as
follows. An Ω-row in X is a finite sequence of elements of Ω ∪ X . The set of all
Ω-rows in X is denoted as W (Ω;X). The length of the Ω-row w = w1 · · ·wm (where
wi ∈ Ω ∪X) is defined to be m and is written as |w|. The carrier of our Ω-algebra
is W (Ω;X), the set of Ω-rows.

We define the action of elements Ω on W (Ω;X) by concatenation. First observe
that if u and v are Ω-rows then the concatenation uv of u with v is also an Ω-row,
and this may be extended to the concatenation of arbitrarily many Ω-rows in the
obvious way. For f ∈ Ω(n) and u1, . . . , un ∈ W (Ω;X), we define the image of the
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n-tuple (u1, . . . , un) ∈W (Ω, X)n under the operation f to be the Ω-row u1 · · ·unf .
By abuse of notation we will refer to W (Ω;X) as an Ω-algebra.

The alphabet X ⊂W (Ω;X) and we call the subalgebra generated by X the Ω-
word algebra on X , denoted WΩ(X). Its elements are called Ω-words in the alphabet
X . There is a clear distinction between Ω-rows that are Ω-words and those that are
not. For example, if f is a binary operation then

x1x2x3fx4ff = (x1, ((x2, x3)f, x4)f)f

is a Ω-row which is also an Ω-word, whereas x1ffx2fx3 is an Ω-row which is not
an Ω-word.

Definition 2.11 ([13, Chap. 1]). We define the valency of an Ω-row w =
w1 · · ·wm (wi ∈ Ω ∪X) as v(w) =

∑m
i=1 v(wi) where

v(wi) =

{
1, if wi ∈ X ,

1 − arity(wi), if wi ∈ Ω.

Proposition 2.12 ([13, Proposition 3.1, Chap. 1]). An Ω-row w = w1 · · ·wm
in W (Ω;X) is an Ω-word if and only if every left-hand factor ui = w1 · · ·wi of w
satisfies

v(ui) > 0 for i = 1, . . . ,m and v(w) = 1.

Moreover, each Ω-word can be obtained in precisely one way by applying a finite
sequence of operations of Ω to elements of X.

Let A be an Ω-algebra. If in an element w of WΩ(X) we replace each element
of X by an element of A we obtain a unique element of A. For |w| = 1, this
is clear, so assume |w| > 1 and we will use induction on the length of w. We
have w = u1 · · ·unf (f ∈ Ω(n), ui ∈ WΩ(X)), where, by Proposition 2.12, the ui
are uniquely determined once w is given. By induction each ui becomes a unique
element ai ∈ A, when we replace the elements of X by elements of A. Hence w
becomes a1 · · · anf ; a uniquely determined element of A.

This establishes the next theorem.

Theorem 2.13 ([13, Theorem 3.2, Chap. 1]). Let A be an Ω-algebra and let
X be a set. Then any injective mapping θ : X → A extends, in just one way,
to a homomorphism θ̄ : WΩ(X) → A. That is, WΩ(X) is a free Ω-algebra, freely
generated by X.

Corollary 2.14 ([13, Corollary 3.3, Chap. 1]). Any Ω-algebra A can be
expressed as a homomorphic image of an Ω-word algebra WΩ(X) for a suitable
set X. Here X can be taken to be any set mapping onto a generating set of A.

By an identity or law over Ω in X we mean a pair (u, v) ∈ WΩ(X) ×WΩ(X)
or an equation u = v formed from such a pair. We say that the law (u, v) holds
in the Ω-algebra A or that A satisfies the equation u = v if every homomorphism
WΩ(X) → A maps u and v to the same element of A. This correspondence between
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sets of laws and classes of algebras establishes a pair of maps, with the following
definitions.

• Given a set Σ of laws over Ω in X , form VΩ(Σ), the class of all Ω-algebras
satisfying all the laws in Σ. This class VΩ(Σ) is called the variety generated by
Σ.

• Given a class C of Ω-algebras we can form the set q = q(C) of all laws over Ω in
X which hold in all algebras of C.

Thus we have a pair of maps VΩ and q; relating each variety of Ω-algebras to a
relation q on WΩ(X) and vice-versa. We shall see below that q(C) is a congruence,
but first we make a further definition.

A subalgebra of an Ω-algebra A is called fully invariant if it is mapped into
itself by all endomorphisms of A. A congruence Γ on A is said to be fully invariant
if (u, v) ∈ Γ implies (uθ, vθ) ∈ Γ, for all endomorphisms θ of A. The fully invariant
congruence generated by Γ is

I =
⋂

{V |V is a fully invariant congruence and Γ ⊆ V }.
It follows that I is the smallest invariant congruence on A generated by Γ.

We claim that if C is a class of Ω-algebras then q(C) is a fully invariant con-
gruence on WΩ(X). To see that q(C) is a congruence, note that in every class C of
Ω-algebras we have the following: u = u for all u ∈ WΩ(X); if u = v holds then
so does v = u; and if u = v and v = w then also u = w. Further, if ui = vi for
i = 1, . . . , n are laws holding in A and if ω ∈ Ω(n), then u1 · · ·unω = v1 · · · vnω
holds in A. Hence q(C) is indeed a congruence.

To see that q(C) is a fully invariant congruence, let (u, v) ∈ q(C) and let θ be any
endomorphism of WΩ(X). If A ∈ C and α : WΩ(X) → A is any homomorphism,
then so is θα, hence uθα = vθα. Thus the law uθ = vθ holds in A, so (uθ, vθ) ∈ q(C)
and thus q(C) is a fully invariant congruence. Cohn shows in addition that the map
VΩ is a bijection with inverse q, and deduces the following theorem.

Given sets S and T and a relation Γ from S to T , we may use Γ to define a
system of subsets of S, T , as follows. For any subset X of S we define a subset X∗

of T by

X∗ = {y ∈ T | (x, y) ∈ Γ for all x ∈ X} =
⋂
x∈X

{x}Γ,

and similarly, for any subset Y of T we define a subset Y ∗ of S by

Y ∗ = {x ∈ S | (x, y) ∈ Γ for all y ∈ Y } =
⋂
y∈Y

{y}Γ−1.

We thus have mappings X �→ X∗ and Y �→ Y ∗ of the power sets of S and T with
the following properties:

X1 ⊆ X2 ⇒ X∗
1 ⊇ X∗

2 , Y1 ⊆ Y2 ⇒ Y ∗
1 ⊇ Y ∗

2 , (2.3)
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X ⊆ X∗∗, Y ⊆ Y ∗∗, (2.4)

X∗∗∗ = X∗, Y ∗∗∗ = Y ∗. (2.5)

A pair of maps X �→ X∗, from the power set 2S of S to the power set 2T of T , and
Y �→ Y ∗, from 2T to 2S , satisfying (2.3)–(2.5) is called a Galois connection.

Theorem 2.15 ([13, Theorem 3.5, Chap. 1]). Let W = WΩ(X) be the Ω-
word algebra on the alphabet X. The pair of maps Σ �→ VΩ(Σ) and C �→ q(C)
forms a Galois connection giving a bijection between varieties of Ω-algebras and
fully invariant congruences q on WΩ(X).

Proposition 2.16 ([13, Proposition 3.6, Chap. 1]). Let V be a variety of Ω-
algebras and q the congruence on WΩ(X) (the Ω-word algebra generated by X) con-
sisting of all the laws on V i.e. the fully invariant congruence q(V). Then WΩ(X)/q
is the free V-algebra on X.

Suppose Σ is a set of laws over Ω in X and let V = VΩ(Σ) and q = q(V). Then
Σ ⊆ q and, from Proposition 2.16, q is a fully invariant congruence and WΩ(X)/q
is the free V-algebra.

Now let p be the fully invariant congruence generated by Σ. Then, as Σ ⊆ q

and q is a fully invariant congruence, we have p ⊆ q. Let A = WΩ(X)/p. Then A
is an Ω-algebra, in which every law of Σ holds (as Σ ⊆ p). Thus A is a V-algebra.
Then, from Proposition 2.16, the natural map X → A extends to a homomorphism
WΩ(X)/q → A. It follows that q ⊆ p. Therefore p = q = q(V). We record this as a
corollary which we shall use in Sec. 3 to construct Higman’s algebras Vn,r.

Corollary 2.17. Let Σ be a set of laws over Ω in X, let V = VΩ(Σ) and q = q(V).
Then q is the fully invariant congruence generated by Σ.

3. The Higman Algebras Vn,r

In this section, we define the algebras which Higman called Vn,r. Let n ≥ 2 be
an integer and let A be an Ω-algebra, with carrier S and operator domain Ω =
{λ, α1, . . . , αn}, such that a(αi) = 1, for i = 1, . . . , n and a(λ) = n. We call the n-ary
operation λ : Sn → S a contraction and the unary operations αi : S → S descending
operations. We define a map α : S → Sn, which we shall call an expansion, by

vα = (vα1, . . . , vαn),

for all v ∈ S. For any subset Y of S, a simple expansion of Y consists of substi-
tuting some element y of Y by the n elements of the tuple yα. A sequence of d
simple expansions of Y is called a d-fold expansion of Y . A set obtained from Y

by a d-fold expansion, d ≥ 0, is called an expansion of Y . For example, if x ∈ S

then {xα1, . . . , xαn} is the unique simple expansion of {x} and the 2-fold expan-
sions of {x} are the sets {xα1, . . . , xαi−1, xαiα1, . . . , xαiαn, xαi+1, . . . , xαn}, for
1 ≤ i≤n. Every d-fold expansion of Y has |Y | + (n − 1)d elements. Similarly, a
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simple contraction of Y consists of substituting n distinct elements {y1, . . . , yn} ∈ Y

by the single element (y1, . . . , yn)λ. A set obtained from Y by applying a finite num-
ber of simple contractions is called a contraction of Y .

From now on in this paper, Ω is fixed as above. Let x be a non-empty set and
recall that the Ω-word algebra WΩ(x) is the free Ω-algebra on x.

Definition 3.1. Let Σn be the set of laws over Ω in x:

(1) for all w ∈ WΩ(x), wαλ = w, (or explicitly wα1 · · ·wαnλ = w),
(2) for all (w1, . . . , wn) ∈WΩ(x)n and i ∈ {1, . . . , n}, w1 · · ·wnλαi = wi.

That is,

Σn = {(wα1 · · ·wαnλ,w) |w ∈ WΩ(x)}

∪
n⋃
i=1

{(w1 · · ·wnλαi, wi) |wi ∈WΩ(x)}.

Let Vn = VΩ(Σn) the variety of Ω-algebras which satisfy Σn and let q = q(Vn).
From Proposition 2.16 and Corollary 2.17, it follows that q is the fully invariant

congruence on WΩ(x) generated by Σn and WΩ(x)/q is the free Vn-algebra on x.

Definition 3.2. Let x be a non-empty, finite or countably enumerable set of cardi-
nality r and n ≥ 2 an integer. Then Vn,r(x) is the free Vn-algebra WΩ(x)/q, where
q = q(Vn) and Vn = VΩ(Σn).

When no ambiguity arises we refer to Vn,r(x) as Vn,r.

Remark 3.3. In [17, Sec. 2] Higman defines a standard form over x to be one
of the finite sequences of elements of x ∪ {α1, . . . , αn, λ} specified by the following
rules.

(i) xαi1 · · ·αik is a standard form whenever k ≥ 0, x ∈ x and 1 ≤ ij ≤ n for
j = 1, . . . , k.

(ii) If w1, . . . , wn are standard forms then so is w1 · · ·wnλ, unless there is a stan-
dard form u such that wi = uαi for i = 1, . . . , n.

(iii) No sequence is a standard form unless this follows from (i) and (ii).

We define the descending operations α1, . . . , αn by the rules

(xαi1 · · ·αik)αi = xαi1 · · ·αikαi,
(w1 · · ·wnλ)αi = wi

for i ∈ {1, . . . , n}. The contraction operation λ is defined by

(w1, . . . , wn)λ = w1 · · ·wnλ,
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unless there is a standard form u such that wi = uαi for i = 1, . . . , n in which case

(w1, . . . , wn)λ = (uα1, . . . , uαn)λ = u.

These operations turn the set of standard forms into an Ω-algebra. Higman
then goes on to prove that this is a free Vn-algebra, freely generated by x ([17,
Lemma 2.1]). This follows in our case from the definition above, and the remarks
following it, together with Lemma 3.4 below.

Lemma 3.4. Let U be an equivalence class of the congruence q on WΩ(x). Then
there exists a unique minimal length element u in U . The unique minimal length
elements of equivalence classes are precisely the standard forms of Higman.

To prove Lemma 3.4, one can use a standard argument which proves a statement
of this form in an algebra of an appropriate type. Details may be found in [2,
Lemma 2.4.5].

Let y be the minimal length representative of its equivalence class in Vn,r i.e.
let y be a standard form. Then the length of the equivalence class of y is the length
of y, denoted |y|, and the λ-length of the equivalence class of y is the number of
times the symbol λ occurs in y.

Now that we have a concrete description of the free algebra Vn,r in the variety
Vn, we recall those results of [17, Sec. 2], required in the sequel.

Lemma 3.5 (cf. [17, Lemma 2.3]). Let B be a basis of Vn,r(x).

(1) Every expansion of B is a basis of Vn,r(x).
(2) Every contraction of B is a basis of Vn,r(x).

Proof. (1) Let Y be a d-fold expansion of B, where d ≥ 0. Arguing by induction,
we assume that every d-fold expansion of B is a basis of Vn,r and show that any
simple expansion of Y is also a basis. Let y ∈ Y and let Y ′ be the simple expansion

Y ′ = (Y \{y}) ∪ {yα1, . . . , yαn}.
Since y = yα1 · · · yαnλ, the set Y ′ generates Vn,r. It remains to show that Y ′ is a
basis for Vn,r.

Given A ∈ Vn and a map θ : Y ′ → A, we shall show that there is a unique
homomorphism θ̄ : Vn,r → A extending θ. First, define θ∗ from Y to A by y′θ∗ =
y′θ, for y′ ∈ Y \{y}, and yθ∗ = yα1θ · · · yαnθλ. As Y is a basis, there is a unique
homomorphism θ̄∗ from Vn,r to A extending θ∗. Now

(yαi)θ̄∗ = (yθ̄∗)αi = (yθ∗)αi = (yα1θ · · · yαnθλ)αi = yαiθ.

Hence θ̄∗ also extends θ. Furthermore, any other homomorphism which extends θ
must equal θ̄∗, since any such map must be defined on Y in the same way as θ∗.

(2) This is proved in the same way as (1).
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The final statement of Corollary 3.13 forms a partial converse to this lemma,
for finite bases. Mostly we work with bases for Vn,r(x) which are expansions of x,
so we make the following definition.

Definition 3.6. Let A = {α1, . . . , αn} ⊂ Ω. An A-basis of Vn,r(x) is an expansion
of x.

If A = (S,Ω) is an Ω-algebra with carrier S then we may form the A-algebra
(S,A) and the {λ}-algebra (S, {λ}), where the elements of A and {λ} have actions
inherited from A. We call these, respectively, the A-algebra and {λ}-algebra of A.
A subset U of Vn,r is said to be A-closed if uαi ∈ U , for all αi ∈ A, and an A-closed
subset is called an A-subalgebra of (the A-algebra of) Vn,r. Similarly W ⊆ Vn,r
is called a {λ}-subalgebra (of the {λ}-algebra of Vn,r) if it is {λ}-closed: that is if
wλ ∈W , for all w ∈W .

Definition 3.7. Let Y be a subset of Vn,r. The A-subalgebra generated by Y is
denoted Y 〈A〉. The {λ}-subalgebra generated by Y is denoted Y 〈λ〉.

The free monoid on a set L is denoted L∗. If Y is a subset of Vn,r(x) then
Y A∗ = {yΓ | y ∈ Y,Γ ∈ A∗} is A-closed, and it follows that Y 〈A〉 = Y A∗. If in
addition Y ⊆ x〈A〉, then yΓ is a standard form for all y ∈ Y and Γ ∈ A∗. In the
sequel we write Y 〈A〉〈λ〉 for (Y 〈A〉)〈λ〉.

Lemma 3.8. Let B be an A-basis and Y a finite basis for Vn,r(X). If B ⊆ Y 〈A〉
then B is an expansion of Y .

Proof. Since Y is finite, there exists an expansion of Y contained in B〈A〉. Let d
be minimal such that there is a d-fold expansion of Y contained in B〈A〉, and let W
be such a d-fold expansion. Each w ∈ W is of the form w = bΓ, for some b ∈ B and
Γ ∈ A∗. As B ⊆ Y 〈A〉 we have b = y∆, for some y ∈ Y and ∆ ∈ A∗; so w = y∆Γ.
Also, as w ∈ W , there exists y′ ∈ Y such that w = y′Γ′, as part of an expansion of
Y . As Y is a basis it follows that y = y′ and ∆Γ = Γ′.

Suppose that Γ �= 1, so that Γ = Γ0αj , for some αj ∈ A and Γ0 ∈ A∗. As W is
an expansion of Y it follows that y∆Γ0αi ∈W , for all i ∈ {1, . . . , n}. Furthermore
y∆Γ0 ∈ B〈A〉, so the union

W ′ = (W\{y∆Γ0αi | 1 ≤ i ≤ n}) ∪ {y∆Γ0}

is contained in B〈A〉. Now W ′ is a simple contraction of W , so W ′ is a basis
by Lemma 3.5. But W ′ is a (d − 1)-fold expansion of Y , which contradicts the
minimality of d. So Γ = 1 and w ∈ B, and hence W ⊆ B.

Conversely, if b ∈ B then b = yΓ, for some y ∈ Y and Γ ∈ A∗. So either b∆ =
yΓ∆ ∈ W for some ∆ ∈ A∗, or yΓ0 = w ∈ W , where Γ = Γ0Γ1. In the first case,
b∆ = w ∈ B implies w = b and ∆ = 1. In the second case, b = yΓ = yΓ1Γ0 = wΓ0,
with w ∈ B, so again w = b and Γ0 = 1. Thus B ⊆W .
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A word Γ ∈ A∗ is called primitive if it is not a proper power of another word.
Explicitly, this means that if Γ is nontrivial and Γ ∈ {∆}∗, for some ∆ ∈ A∗, then
Γ = ∆.

Proposition 3.9 ([21, Proposition 1.3.1, Chap. 1]). If Γn = ∆m with Γ,∆ ∈
A∗ and n,m ≥ 0, there exists a word Λ such that Γ,∆ ∈ {Λ}∗. In particular, for
each word Γ ∈ A∗, there exists a unique primitive word Λ such that Γ ∈ {Λ}∗.
Proposition 3.10 ([21, Proposition 1.3.2, Chap. 1]). Two words Γ,∆ ∈ A∗

commute if and only if they are powers of the same word. More precisely, the set of
words commuting with a word Γ ∈ A∗ is a monoid generated by a single primitive
word.

Lemma 3.11 ([17, Sec. 2, Lemma 2.2]). Let Y be a subset of Vn,r and let W
be the Ω-subalgebra of Vn,r generated by Y . Then

(1) W = Y 〈A〉〈λ〉 and
(2) for all w ∈W, the set w〈A〉\Y 〈A〉 is finite.

Proof. (1) Let w ∈ W . Then there exists a finite subset Y0 of Y such that w
belongs to the Ω-subalgebra W0 of Vn,r generated by Y0. Let Z be an expansion
of x such that |Z| ≥ |Y0|. Choose a surjection β of Z onto Y0. As Vn,r is freely
generated by Z we may extend β to a homomorphism from Vn,r to W0. Let w0

be the preimage of w under this homomorphism and let l be the λ-length of the
standard form of w0 over Z. By a straightforward induction on l it is apparent that
w0 ∈ Z〈A〉〈λ〉. Hence the image w of w0 in W0 belongs to Y0〈A〉〈λ〉 ⊆ Y 〈A〉〈λ〉, as
required.

(2) As in the previous part of the proof, we may assume that W is freely generated
by Y . Let w ∈W and let l be the λ-length of the standard form of w over Y . Then
wαi1 · · ·αir ∈ Y 〈A〉, whenever r ≥ l. Hence, the only elements of the set difference
w〈A〉\Y 〈A〉 are those of the form wαi1 · · ·αir with r < l, and there are only finitely
many of these since we only have n choices for each αij .

Lemma 3.12 ([17, Sec. 2, Lemma 2.4]). Let x be a set of size r ≥ 1 and let
X ⊆ Vn,r(x) be an expansion of x. If U is a subset of Vn,r(x) contained in X〈A〉,
then the following are equivalent.

(1) U = X〈A〉 ∩ Y 〈A〉, for some generating set Y of Vn,r.
(2) U is A-closed and X〈A〉\U is finite.
(3) U = Z〈A〉 for some expansion Z of X.

Moreover, if Y in statement (1) is a finite basis for Vn,r(x) then Z in statement (3)
is an expansion of Y .

Proof. First, let U = X〈A〉 ∩ Y 〈A〉. Since U is the intersection of A-closed sets,
it is also A-closed. By Lemma 3.11, X〈A〉\Y 〈A〉 is finite and therefore X〈A〉\U is
finite. So (1) implies (2).
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Second, assume that U is A-closed and X〈A〉\U is finite. We will prove state-
ment (3) by induction on the size of |X〈A〉\U |. If |X〈A〉\U | = 0, then statement
(3) holds with Z = X . Otherwise, |X〈A〉\U | > 0 and we choose an element
w ∈ X〈A〉\U whose length |w| is maximal. Then the set U∗ = U ∪ {w} is A-closed
and |X〈A〉\U∗| = |X〈A〉\U | − 1.

By induction, there is an expansion Z∗ ofX such that U∗ = Z∗〈A〉. The element
w belongs to Z∗, otherwise w would have the form w = zαi1 · · ·αit , where z ∈ Z∗

and t > 0, and hence z ∈ U∗\{w} = U . However, U is A-closed and so this would
imply that w ∈ U , a contradiction. If we take

Z = (Z∗\{w}) ∪ {wαi | 1 ≤ i ≤ n},

then this is again an expansion of X and by the choice of w we have wαi ∈ U , for
all i. Therefore U = Z〈A〉 and (2) implies (3).

For the last implication: if U = Z〈A〉 for some expansion Z of X , then U =
X〈A〉 ∩ Y 〈A〉, with Y = Z, and so (3) implies (1).

Finally, let U = X〈A〉 ∩ Y 〈A〉 as in statement (1), so that U = Z〈A〉 by
statement (3). In particular this means that Z ⊆ Y 〈A〉. As Z is an expansion of X ,
it is also an expansion of x; then Lemma 3.8 tells us that Z is a basis of Vn,r(x).
Now suppose that Y is a finite basis. Apply Lemma 3.8 to see that Z is an expansion
of Y .

Corollary 3.13 (cf. [17, Corollary 1, p. 12]). Let B and C be finite bases
of Vn,r(x). Then B and C have a common expansion Z, which may be chosen
such that Z〈A〉 = B〈A〉 ∩ C〈A〉. In particular, every finite basis of Vn,r(x) may be
obtained from x by an expansion followed by a contraction.

Proof. Let f be the homomorphism from Vn,r(x) to Vn,|B|(B) defined by mapping
b ∈ B ⊆ Vn,r(x) to b ∈ Vn,|B|(B), for all b ∈ B. As this is a bijection between
bases, f is an isomorphism. Let C′ = Cf , so C′ is a basis for Vn,|B|(B). From
Lemma 3.12, B and C′ have a common expansion Z ′ such that B〈A〉 ∩ C′〈A〉 =
Z ′〈A〉. Then B and C have common expansion Z = Z ′f−1, and the remainder of
the first statement of the lemma follows. The final statement follows on taking B
to be an arbitrary finite free generating set and C = x.

Corollary 3.14 ([17, Corollary 2, p. 12]). Vn,r ∼= Vn,s if and only if r ≡
s modn− 1.

Proof. If r ≡ s modn − 1 then it follows from Lemma 3.5 that Vn,r ∼= Vn,s.
Conversely, let θ be an isomorphism from Vn,r(X) to Vn,s(Y ), where X and Y

are sets of size r and s, respectively. Then Xθ is a basis of Vn,s(Y ) of size r.
From Corollary 3.13, there is a common expansion Z of Xθ and Y . If Z is a d-fold
expansion of Xθ and an e-fold expansion of Y then r+(n−1)d = |Z| = s+(n−1)e,
so r ≡ s mod (n− 1), as claimed.
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We could henceforth restrict to Vn,r, where 1 ≤ r ≤ n− 1. However, we do not
need to do this for what follows here, and it is convenient to allow arbitrary positive
values of r, and multiple instances of the same algebra.

Definition 3.15. Let u, v be elements of Vn,r. Then, u is said to be a proper initial
segment of v if v = uΓ for some nontrivial Γ ∈ A∗. If u = v or u is a proper initial
segment of v then u is called an initial segment of v .

Lemma 3.16 ([17, Sec. 2, Lemma 2.5(i)–(iii)]). Let B be an A-basis of Vn,r
and V a subset of B〈A〉.
(1) If B and V are finite, then V is contained in an expansion of B if and only if

the following condition is satisfied:

no element of V is a proper initial segment of another. (†)
(2) If B and V are finite, then V is an expansion of B if and only if (†) is satisfied

and for each u ∈ B〈A〉 there exists v ∈ V such that one of u, v is an initial
segment of the other.

(3) V is a set of free generators for the Ω-subalgebra it generates if and only if (†)
is satisfied.

Proof. (1) If V is contained in an expansion of B then, using Lemma 3.5(1), (†)
is satisfied.

Suppose V satisfies (†) and write

U = B〈A〉\{proper initial segments of elements of V }.
Then (†) implies that V ⊆ U . Also, U is A-closed and B〈A〉\U consists of initial
segments of the elements of the finite set V , so it is finite. Thus, by Lemma 3.12,
there is an expansion Z of B such that U = Z〈A〉. Therefore, U ⊆ Z〈A〉, and this
implies that V ⊆ Z (for an element of Z〈A〉\Z has a proper initial segment in
Z ⊆ U so it cannot be in V by the definition of U). Hence, V is contained in an
expansion of B.

(2) If V is an expansion of B then (†) is satisfied and for each u ∈ B〈A〉 there exists
v ∈ V such that one of u, v is an initial segment of the other.

Suppose V satisfies (†) and for each u ∈ B〈A〉 there exists v ∈ V such that one
of u, v is an initial segment of the other. By part (1), V is contained in an expansion
Z of B. If V �= Z then there is an element z ∈ Z\V and hence by the hypothesis
there exists v ∈ V such that one of v or z is an initial segment of the other. But
no element of Z can be an initial segment of another, so this is a contradiction and
hence V = Z.

(3) If V is a set of free generators for the Ω-subalgebra it generates then (†) is
satisfied.

Suppose (†) is satisfied. If V is not a free generating set then the same is true of
some finite subset V0 and clearly (†) is also satisfied with V replaced by V0. Then
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V0 ⊆ B0〈A〉 for some finite subset B0 of B. As (†) holds, it follows from part (1)
that V0 is a subset of an expansion Z0 of B0. However, this means that V0 is a
subset of a basis of Vn,r, a contradiction.

Corollary 3.17. Let Yi be a finite basis for Vn,r, for i = 1, . . . ,m. Then there
is a unique minimal common expansion Z of all the Yi, and Z satisfies Z〈A〉 =⋂m
i=1(Yi〈A〉).

Proof. For m = 2, from Corollary 3.13 we have a common expansion Z of Y1 and
Y2 such that Z〈A〉 = Y1〈A〉∩Y2〈A〉. Furthermore, if W is a common expansion of Y1

and Y2 then, from Lemma 3.16, W ⊆ Z〈A〉, which implies that W is an expansion
of Z.

For m > 2, let Z〈A〉 =
⋂m−1
i=1 (Yi〈A〉) and V = Z〈A〉 ∩ Ym〈A〉, where we assume

inductively that Z is the unique minimal expansion of Y1, . . . , Ym−1. From the pre-
vious paragraph there exists a unique minimal expansion W of Z and Ym such that
W 〈A〉 = V . It follows that the result holds for Y1, . . . , Ym and hence by induction
for all m.

Corollary 3.18. Let Y be a finite basis and let B be an A-basis of Vn,r(x). If
Y ⊆ B〈A〉 then Y is an expansion of B : i.e. Y is an A-basis.

Proof. As Y ⊆ B〈A〉 and Y is a basis, Y satisfies (†) from Lemma 3.16(3). If
u ∈ B〈A〉 then u ∈ Y 〈A〉〈λ〉, so for some Γ,∆ ∈ A∗ and y ∈ Y we have uΓ = y∆.
As u ∈ B〈A〉 and y ∈ Y ⊆ B〈A〉 there exist b, b′ ∈ B and Λ,Λ′ ∈ A∗ such that
u = bΛ and y = b′Λ′, so bΛΓ = b′Λ′∆, and therefore b = b′. Thus bΛΓ = bΛ′∆,
so either u = bΛ is an initial segment of y = bΛ′, or vice-versa. Hence, from
Lemma 3.16(2), Y is an expansion of B.

Lemma 3.19 ([17, Sec. 2, Lemma 2.5(iv)]). Let B be an A-basis of Vn,r. Let
Y and Z be d-fold expansions of B, for d ≥ 1. If Y �= Z then some element of Y is
a proper initial segment of an element of Z.

Proof. If no element of Y is a proper initial segment of an element of Z then, from
Corollary 3.13, Y ⊆ Z〈A〉. Then Lemma 3.16 implies that Y is an expansion of Z.
However, Y and Z are both d-fold expansions of B and thus Y = Z. This completes
the proof.

Lemma 3.20. Let u ∈ Vn,r and let d be a non-negative integer.

(1) If v ∈ Vn,r then u = v if and only if uΓ = vΓ, for all Γ ∈ A∗ of length d.
(2) If S is an Ω-subalgebra of Vn,r then u ∈ S if and only if uΓ ∈ S, for all Γ ∈ A∗

of length d.

Proof. (1) If u = v then uΓ = vΓ for all Γ ∈ A∗ of length d.
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We shall show that given d ≥ 0 we have

u, v ∈ Vn,r satisfy uΓ = vΓ for all Γ ∈ A∗ of length d =⇒ u = v. (∗)
If d = 0 this holds trivially; to proceed we use induction on d. Our hypothesis is
that for all d′ such that 0 ≤ d′ < d, the implication (∗) holds with d′ instead of d.
Suppose then that u, v ∈ Vn,r and uΓ = vΓ for all Γ of length d. We may uniquely
write Γ = ∆αi, where 1 ≤ i ≤ n and ∆ ∈ A∗ has length d − 1. Write u∆ as a
contraction u∆ = u∆α1 . . . u∆αnλ. Each string ∆αj has length d, so u∆αj = v∆αj
for each j. Then the contraction above is equal to v∆α1 . . . v∆αnλ = v∆, and so
u∆ = v∆.

Now apply this argument to all strings Γ of length d. In doing so we will use
every length d− 1 string ∆ (n times), and so u∆ = v∆ for every ∆ of length d− 1.
By the inductive hypothesis we conclude u = v.

(2) The proof is similar to that of part (1).

4. The Higman–Thompson Groups Gn,r

In this section we define the groups which form the object of study in this paper.
Throughout the remainder of the paper, we assume that n ≥ 2, and that Vn,r =
Vn,r(x) = WΩ(x)/q, where x = {x1, . . . , xr}. When r = 1 we let x = {x}.

When we discuss automorphisms of Vn,r we assume that they are given by listing
the images of a (finite) basis of Vn,r. For instance, let ψ ∈ Vn,r be defined by the
bijection ψ : Y → Z, where Y and Z are bases of Vn,r. If we expand y ∈ Y to
form Y ′ = Y \{y} ∪ {yα1, . . . , yαn}, the result Y ′ is also a basis by Lemma 3.8. As
yαiψ = yψαi = zαi for i = 1, . . . , n, we see that the automorphism ψ induces an
expansion Z ′ of Z such that Y ′ψ = Z ′. Thus, if Y and Z are not expansions of
x, we can find Y ′ and Z ′ = Y ′ψ contained in x〈A〉 and redefine ψ in terms of Y ′

and Z ′. In other words, we may always describe an automorphism by a bijection
between A-bases.

As bijections between bases are not particularly easy to read, we represent
automorphisms using pairs of rooted forests. An n-ary rooted tree is a tree with a
single distinguished root vertex of degree n, such that all other vertices have degree
n + 1 or 1. If a vertex v is at distance d ≥ 1 from the root then the n vertices
incident to v and not on the path to the root are its children. Vertices of degree 1
are called leaves. An n-ary rooted tree is said to be A-labeled if the edges joining a
vertex v to its n children are labeled with the elements αi ∈ A, so that two edges
joining v to different children are labeled differently. An A-labeled, r-rooted, n-ary
forest is a disjoint union of r rooted, A-labeled, n-ary trees.

Let T be such a forest consisting of trees T1, . . . , Tr. For each 1 ≤ i ≤ r,
we identify the root of Ti with the generator xi ∈ x of Vn,r(x). We proceed by
recursively identifying vertices of Ti with elements of {xi}〈A〉 ⊆ Vn,r. Suppose that
v ∈ Ti is not a leaf, and that v has been identified with xiΓ for some Γ ∈ A∗.
Then v has n children c1, . . . , cn, where cj is the child connected to v by an edge
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labeled aj . For each 1 ≤ j ≤ n we identify cj with xiΓαj ; this identifies each vertex
of T with a uniquely determined element of x〈A〉. Furthermore, by construction,
the leaves of T correspond to an expansion of x. We use such trees to represent
automorphisms, as in the following example.

Example 4.1. Let n = 2, r = 1, x = {x} and let ψ be the element of G2,1

corresponding to the bijective map between A-bases Y = {xα2
1, xα1α2, xα2} and

Z = Y ψ = {xα1, xα2α1, xα
2
2} given by

xα2
1ψ = xα1, xα1α2ψ = xα2α1, xα2ψ = xα2

2.

The A-labeled binary trees corresponding to these bases are shown below. The
labeling of edges is not shown, but edges from a vertex to its children are always
ordered from left to right in the order α1, . . . , αn. Thus the leaves of the left-hand
tree correspond to Y and the leaves of the right-hand tree to Z. The numbering
below the leaves determines the mapping ψ; by taking leaf labeled j on the left to
leaf labeled j on the right.

ψ :
1 2 3

−→
1 2 3

Definition 4.2 ([17]). The Higman–Thompson group Gn,r is the group of Ω-
algebra automorphisms of Vn,r.

Note that the largest Thompson group V is isomorphic to G2,1, because the A-
labeled trees we have described are exactly the tree-pair diagrams used to represent
elements of V .

Lemma 4.3 ([17, Lemma 4.1]). If {ψ1, . . . , ψk} is a finite subset of Gn,r and X
is an A-basis of Vn,r, then there is a unique minimal expansion Y of X such that
Y ψi ⊆ X〈A〉, for i = 1, . . . , k. That is, any other expansion of X with this property
is an expansion of Y .

Proof. For each i, Xψ−1
i is a generating set for Vn,r, but may not be a subset of

X〈A〉. Let Ui = X〈A〉 ∩Xψ−1
i 〈A〉. Then, by Lemma 3.12, Ui is A-closed and there

exists an expansion Yi of X such that Ui = Yi〈A〉. Now, Corollary 3.17 gives a
unique minimal common expansion Y , of the Yi’s, and Y 〈A〉 =

⋂k
i=1(Yi〈A〉). Then,

for all i, Y ⊆ Yi〈A〉 = Ui ⊆ Xψ−1
i 〈A〉, so Y ψi ⊆ X〈A〉.

Let Z be an expansion of X . If Zψi ⊆ X〈A〉, for all i, then (by the definition
of Ui) Z ⊆ Ui = Yi〈A〉, so Z ⊆ ⋂ki=1(Yi〈A〉) = Y 〈A〉. Hence, from Lemma 3.12, Z
is an expansion of Y .

Definition 4.4. Let {ψ1, . . . , ψk} be a finite subset of Gn,r and let X be an A-basis
of Vn,r. The expansion Y of X given by Lemma 4.3 is called the minimal expansion
of X associated to {ψ1, . . . , ψk}.
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4.1. Semi-normal forms

Let ψ ∈ Gn,r, let X be an A-basis of Vn,r, and y ∈ Vn,r. The ψ-orbit of y is the set
Oy = {yψn |n ∈ Z}. We consider how ψ-orbits intersect the A-subalgebra X〈A〉.
To this end an X-component of the ψ-orbit of y is a maximal subsequence C of
the sequence (yψi)i=∞

i=−∞ such that all elements of C are in X〈A〉. More precisely, C
must satisfy

(1) if yψp and yψq belong to C, where p < q then yψk belongs to X〈A〉, for all k
such that p ≤ k ≤ q; and

(2) C is a maximal subset of the ψ-orbit of y for which statement (1) holds.

Note: Higman [17, Sec. 9] refers to X-components as “orbits in X〈A〉”.
First we distinguish the five possible types of X-component of ψ by giving them

names.

(1) Complete infinite X-components. For any y in such an X-component, yψi

belongs to X〈A〉 for all i ∈ Z, and the elements yψi are all different.
(2) Complete finite X-components. For any y in such an X-component, yψi = y

for some positive integer i, and y, yψ, . . . , yψi−1 all belong to X〈A〉.
(3) Right semi-infinite X-components. For some y in theX-component, yψi belongs

to X〈A〉 for all i ≥ 0, but yψ−1 does not. The elements yψi, i ≥ 0, are then
necessarily all different.

(4) Left semi-infinite X-components. For some y in theX-component, yψ−i belongs
to X〈A〉 for all i ≥ 0, but yψ does not. The elements yψ−i, i ≥ 0, are then
necessarily all different.

(5) Incomplete finite X-components. For some y in the X-component and some
non-negative integer i we have y, yψ, . . . , yψi belonging to X〈A〉 but yψ−1 and
yψi+1 do not.

Example 4.5. Let n = 2, r = 1, x = {x}. Let our bases be

Y = {xα3
1, xα

2
1α2, xα1α2, xα2α1, xα

2
2} and

Z = {xα2
1, xα1α2α1, xα1α

2
2, xα

2
2, xα2α1}.

Define the automorphism ψ by Y ψ = Z, with the ordering given above.

ψ :

1 2 3 4 5
−→

1 2 3
5 4

Then Y is the minimal expansion of x associated to ψ. Take the basis X to be just
X = x. The X-component of xα3

1 is left semi-infinite

· · · �→ xα4
1 �→ xα3

1 �→ xα2
1,

and the X-component of xα1α2 is right semi-infinite:

xα1α2 �→ xα1α
2
2 �→ xα1α

3
2 �→ · · · .
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The X-component of xα2
1α2 is complete infinite

· · · �→ xα4
1α2 �→ xα3

1α2 �→ xα2
1α2 �→ xα1α2α1 �→ xα1α

2
2α1 �→ · · · ,

and (xα2α1, xα
2
2) is a complete finite X-component. We have xα2 = xα2α1xa

2
2λ,

so xα2ψ = xa2
2xα2α1λ and xα2ψ

2 = xα2; therefore (xα2) is an incomplete finite
X-component.

Let ψ ∈ Gn,r, let X be an A-basis of Vn,r, let Y be the minimal expansion of
X〈A〉 associated to ψ and let Z = Y ψ. Then, as discussed above, Y and Z are
both expansions of X . From Lemma 3.12, both X〈A〉\Z〈A〉 and X〈A〉\Y 〈A〉 are
finite. Furthermore, as |Y | = |Z|, both X and Y are d-fold expansions, for some d,
so |X〈A〉\Z〈A〉| = |X〈A〉\Y 〈A〉|.

By definition Y 〈A〉 = X〈A〉 ∩X〈A〉ψ−1, and moreover ψ maps no proper con-
traction of Y into X〈A〉. Hence

Z〈A〉 = Y 〈A〉ψ = X〈A〉ψ ∩X〈A〉.
Thus, if u ∈ X〈A〉\Z〈A〉 then u �∈ X〈A〉ψ, so uψ−1 �∈ X〈A〉 and hence u is an initial
element either of an incomplete finite X-component or of a right semi-infinite X-
component i.e. in an X-component of type (3) or (5). Similarly, if v ∈ X〈A〉\Y 〈A〉
then v �∈ X〈A〉ψ−1, so vψ �∈ X〈A〉 and hence v is a terminal element either of
an incomplete finite X-component or of a left semi-infinite X-component i.e. in an
X-component of type (4) or (5).

If C is an X-component of type (3) or (5), then by definition C has an initial
element u: that is uψ−1 �∈ X〈A〉. Then u �∈ X〈A〉ψ, and so u ∈ X〈A〉\Z〈A〉.
Similarly, if C is an X-component of type (4) or (5), then C has a terminal element
v: that is vψ �∈ X〈A〉. Again, v �∈ X〈A〉ψ−1 and so v ∈ X〈A〉\Y 〈A〉.

Let u be an initial element of an incomplete finite X-component C. By the
above, u ∈ X〈A〉\Z〈A〉 and by definition of an incomplete finite X-component,
there is some non-negative integer k such that u, uψ, . . . , uψk all belong to X〈A〉
but uψk+1 does not. Since uψk is the terminal element of the incomplete finite
X-component C, we have uψk ∈ X〈A〉\Y 〈A〉. Therefore, the initial elements of
incomplete finiteX-components inX〈A〉\Z〈A〉 and terminal elements of incomplete
finite X-components in X〈A〉\Y 〈A〉 pair up.

Given that the initial and terminal elements of the incomplete finite
X-components must be in one-to-one correspondence, all other elements of
|X〈A〉\Z〈A〉| (respectively, |X〈A〉\Y 〈A〉|) are initial (respectively, terminal) ele-
ments in right (respectively, left) semi-infinite X-components. Hence there are as
many right semi-infinite X-components as left semi-infinite X-components.

The above is summarized in a lemma.

Lemma 4.6 ([17, Lemma 9.1]). Let ψ be an element of Gn,r and let X be an
A-basis of Vn,r. There are only finitely many X-components of ψ of types (3)–(5)
and there are as many of type (3) as of type (4). If Y is the minimal expansion of
X〈A〉 associated to ψ and Z = Y ψ then

• Y 〈A〉 = X〈A〉 ∩X〈A〉ψ−1 and Z〈A〉 = X〈A〉ψ ∩X〈A〉;
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• X〈A〉\Z〈A〉 is exactly the set of initial elements of X-components of types (3) or
(5); and

• X〈A〉\Y 〈A〉 is exactly the set of terminal elements of X-components of types (4)
or (5).

Example 4.7. In Example 4.5, we have X〈A〉\Z〈A〉 = {x, xα1, xα1α2, xα2} and
X〈A〉\Y 〈A〉 = {x, xα1, xα

2
1, xα2}. The incomplete finite X-components are (x),

(xα1) and (xα2), while xα1α2 is an initial element of a right semi-infinite X-
component and xα2

1 is a terminal element of a left semi-infinite X-component.
All other X-components of elements of X〈A〉 are complete.

Definition 4.8 ([17, Sec. 9]). An element ψ of Gn,r is in semi-normal form
with respect to the A-basis X if no element of X〈A〉 is in an incomplete finite
X-component of ψ.

Lemma 4.9 ([17, Lemma 9.2]). Let ψ ∈ Gn,r and let X be an A-basis of Vn,r.
There exists an expansion of X with respect to which ψ is in semi-normal form.

Proof. Let ψ ∈ Gn,r. We prove the lemma by induction on the number of elements
in X〈A〉 which belong to an incomplete finite X-component. Note that Lemma 4.6
shows us that this number is finite. If there are no such elements then we are done.

Suppose then that there exists an element u in X〈A〉 which belongs to an
incomplete finite X-component. Thus, there exist y ∈ X and Γ ∈ A∗ such that
u = yΓ and some minimal m, k ∈ N0 such that uψ−(m+1), uψk+1 �∈ X〈A〉. It
follows that yψ−(m+1), yψk+1 �∈ X〈A〉, so that y is also in an incomplete finite X-
component. Let X ′ be the simple expansion X ′ = X\{y} ∪ {yα1, . . . , yαn}. Then
X ′ is a A-basis for Vn,r and X〈A〉\X ′〈A〉 = {y}. Thus the number of elements
of X ′′〈A〉 in an incomplete finite X ′′-component is one less than the number of
elements of X〈A〉 in an incomplete finite X-component. Hence, by induction, there
exists an expansion of X with respect to which ψ is in semi-normal form.

Remark 4.10. Continuing the discussion above Lemma 4.6, observe that if u ∈
X〈A〉 and u /∈ Y 〈A〉∪Z〈A〉 then u is both the initial and terminal element of an X-
component of ψ; so (u) constitutes an incomplete finite X-component. Therefore,
when implementing the argument of Lemma 4.9 to find a semi-normal form for
ψ, we may pass immediately to a minimal expansion containing no elements of
X〈A〉\(Y 〈A〉 ∪ Z〈A〉): that is an expansion minimal amongst those contained in
Y 〈A〉 ∪ Z〈A〉.

Example 4.11. Let n = 2, r = 1, x = {x} and let ψ be the automorphism of
Example 4.1. Here Y = {xα2

1, xα1α2, xα2} is the minimal expansion of x associated
to ψ and Z = Y ψ = {xα1, xα2α1, xα

2
2}. In this example, x〈A〉\(Y 〈A〉∪Z〈A〉) = {x}

and the minimal expansion of x not containing x is X = {xα1, xα2}. Then Y

remains the minimal expansion of X associated to ψ, X〈A〉\Z〈A〉 = {xα2} and
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X〈A〉\Y 〈A〉 = {x, xα1}. As xα1 is the terminal element of a left semi-infinite X-
component, while xα2 is the initial element of a right semi-infinite X-component it
follows that ψ is in semi-normal form with respect to X .

Example 4.12. Let n = 2, r = 1, x = {x} and let ψ be the element of G2,1

corresponding to the bijective map:

xα2
1ψ = xα2

2, xα1α2ψ = xα2α1, xα2ψ = xα1.

ψ :
1 2 3

−→
3 2 1

Again, Y = {xα2
1, xα1α2, xα2} is the minimal expansion of x associated to ψ and

setting Z = Y ψ = {xα1, xα2α1, xα
2
2}, the minimal expansion of x contained in

Y 〈A〉 ∪ Z〈A〉 is X1 = {xα1, xα2}; and Y is still the minimal expansion of X1

associated to ψ. However (xα2, xα1) is an incomplete finite X1-component, so ψ

is not in semi-normal form with respect to X1. As xα1 is in an incomplete finite
X1-component, we first take the simple expansion of X1 at xα1, giving X2 = Y .
As xα2ψ = xα1 /∈ X2〈A〉, (xα2) is now an incomplete finite X2-component, so ψ is
not in semi-normal form with respect to X2. We take a further simple expansion of
X2 at xα2, to obtain a new A-basis X3 = {xα2

1, xα1α2, xα2α1, xα
2
2}. Then ψ maps

X3 to itself:

xα2
1ψ = xα2

2, xα1α2ψ = xα2α1, xα2α1ψ = xα2
1, xα

2
2 = xα1α2.

ψ :
1 2 3 4

−→
3 4 2 1

As all elements of X3 are in the same complete finite X3-component, ψ is in semi-
normal form with respect to X3. The minimal expansion of X3 associated to ψ is
just X3.

Example 4.13. The automorphism ψ of Example 4.7 is not in semi-normal form
with respect to X or X1 = {xα1, xα2}, as both xα1 and xα2 are in incomplete
finite X-components. However, ψ is in semi-normal form with respect to X2 =
{xα2

1, xα1α2, xα2α1, xα
2
2}. The minimal expansion of X2 associated to ψ is the

A-basis Y of Example 4.5.

The following, which follows directly from the definitions, summarizes the pos-
sibilities for the intersection with X〈A〉 of the orbit of an element under an auto-
morphism in semi-normal form.

Corollary 4.14. Let ψ be an element of Gn,r in semi-normal form with respect to
the A-basis X, let v ∈ Vn,r and let Ov be the ψ-orbit of v. Then Ov has one of the
following six types.

(1) Ov ∩X〈A〉 = ∅.
(2) Ov is finite and Ov ⊆ X〈A〉, so Ov is a complete finite X-component.
(3) Ov is infinite and Ov ⊆ X〈A〉, so Ov is a complete infinite X-component.
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(4) Ov ∩X〈A〉 consists of a unique left semi-infinite X-component.
(5) Ov ∩X〈A〉 consists of a unique right semi-infinite X-component.
(6) Ov ∩X〈A〉 is the disjoint union of a left semi-infinite X-component and a right

semi-infinite X-component.

Remark 4.15. As can be seen from Example 4.17 below, there are automorphisms
for which orbits of the final type in this list exist. In fact we shall show in Exam-
ple 4.31 that there exist automorphisms which have such orbits with respect to
every semi-normal form. This means that [17, Lemma 9.6] is false. Consequently,
the algorithms [17, Lemma 9.7] for determining if two elements of Vn,r belong to a
single orbit, and [17, Theorem 9.3] for conjugacy of automorphisms are incomplete.

Definition 4.16. Let ψ be an element of Gn,r in semi-normal form with respect to
the A-basis X , and let O be a ψ-orbit of type (6), as given in Corollary 4.14. Then
O is called a pond orbit with respect to X . The subsequence P ⊂ O of elements
not in X〈A〉 is called a pond. The width of P is one more than number of elements
in P ; this is the number of times we need to apply ψ to get from the endpoint of
one semi-infinite X-component to the other.

Example 4.17. Let n = 2, r = 1 and V2,1 be free on x = {x}. Let

Y = {xα4
1, xα

3
1α2, xα

2
1α2α1, xα

2
1α

2
2, xα1α2, xα2α1, xα

2
2},

Z = {xα2
1, xα1α2α

2
1, xα1α2α1α2, xα1α

2
2α1, xα1α

3
2, xα2α1, xα

2
2}

and let ψ ∈ G2,1 be determined by the bijection Y → Z illustrated below.

ψ :

1 2 3 4
5

6 7

−→

1
2 5 7 6

4 3

As usual, Y is the minimal expansion of x associated to ψ and Z = Y ψ. The minimal
expansion of x contained in Y 〈A〉 ∪ Z〈A〉 is X = {xα2

1, xα1α2, xα2α1, xα
2
2}. Two

of these elements are endpoints of semi-infinite X-components, whereas the other
two belong to complete infinite X-components.

· · · �→ xα4
1 �→ xα2

1, (4.1)

xα1α2 �→ x(α1α2)2 �→ · · · , (4.2)

· · · �→ xα4
1α

2
2 �→ xα2

1α
2
2 �→ xα2α1 �→ xα1α

3
2 �→ x(α1α2)2α2

2 �→ · · · , (4.3)

· · · �→ xα4
1α2α1 �→ xα2

1α2α1 �→ xα2
2 �→ xα1α

2
2α1 �→ x(α1α2)2α2α1 �→ · · · . (4.4)

Thus ψ is in semi-normal form with respect to X . Now let us compute the ψ-orbit
of the element xα2

1α2.

· · ·xα6
1α2 �→ xα4

1α2 �→ xα2
1a2 �→ xα2

2xα2α1λ

�→ xα1α
2
2 �→ x(α1α2)2α2 �→ · · · . (4.5)
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Fig. 1. The binary trees above represent a finite subset of x〈A〉, as described in the introduction to
Sec. 4. On the left we have annotated this tree, highlighting the semi-infinite X-components (4.1)
and (4.2). Below these components sit the pond orbit (4.5), which is shown on the right tree. Note
that the element w = xα2

2xα2α1λ /∈ x〈A〉 does not correspond to a vertex of this tree; we have
represented it as a “phantom” vertex � below xα2 whose left child is xα2

2 and whose right child
is xα2α1 — a “twisted” version of xα2.

Figure 1 illustrates the orbit (4.5), which consists of two semi-infinite X-components
and a single element xα2

2xα2α1λ (the pond) outside of X〈A〉. In this case, the pond
has width 1 + 1 = 2.

Lemma 4.18 ([17, Lemma 9.3]). Let ψ be an element of Gn,r in semi-normal
form with respect to the A-basis X. Suppose that x is an element of X. Exactly one
of the following holds.

(A) There exists Γ ∈ A∗ such that xΓ is in a complete finite X-component. In
this case x itself belongs to a complete finite X-component, which consists of
elements of X, and we say x is of type (A).

(B) There exist Γ,∆ ∈ A∗, with Γ �= ∆, such that xΓ and x∆ belong to the same X-
component. In this case there exists Λ ∈ A∗ and m ∈ Z\{0} with |m| minimal,
such that xψm = xΛ; we say x is of type (B). If m > 0 then the X-component
containing x is right semi-infinite; if m < 0 then the X-component containing
x is left semi-infinite.

(C) x is not of type (A) or (B) above and there exists some z ∈ X of type (B)
and nontrivial ∆ ∈ 〈A〉 such that xψi = z∆. In this case the X-component
containing x is infinite; and we say x is of type (C).

Proof. (A) If x belongs to an infinite X-component of ψ (of types (1), (3) or
(4) that is), then so does xΓ, a contradiction. As ψ is in semi-normal form with
respect to X it follows that x is in a complete finite X-component. Let d be the
smallest positive integer such that xψd = x. For each 1 ≤ i ≤ d− 1 write xψi = z∆
for some z ∈ X and ∆ ∈ A∗. Then z must also belong to a complete finite X-
component, so we can write zψd−i = yΓ for some y ∈ X and Γ ∈ A∗. Then
x = xψd = z∆ψd−i = zψd−i∆ = yΓ∆. From Lemma 3.16, we have y = x and
Γ = ∆ = ε, so xψi = z ∈ X , as claimed.
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(B) If x belongs to a finite X-component then, from (A), theX-component of xΓ
consists of elements zΓ, where z ∈ X , contrary to the hypotheses of (B). Therefore x
belongs to an infinite X-component of ψ. Without loss of generality we may assume
that there is i > 0 such that xΓψi = x∆. Suppose first that xψk ∈ X〈A〉, for all
k ≥ 0. Then xψi = vΛ, for some v ∈ X and Λ ∈ A∗, and thus x∆ = xΓψi = vΛΓ;
so v = x and ∆ = ΛΓ, and we obtain xψi = xΛ.

Similarly, if xψ−k ∈ X〈A〉, for all k ≥ 0, then xψ−i = xΛ′, for some Λ′ ∈ A∗,
with Γ = Λ′∆. Note that if xψk ∈ X〈A〉 for all k, then x = xΛΛ′, which forces
Λ = Λ′ = ε, so Γ = ∆, a contradiction. Hence the final statement of (B) holds.

(C) In this case x must belong to an infinite X-component, as (A) does not hold.
As X is finite there is z ∈ X such that zΓ and z∆ belong to the X-component of
x, for distinct Γ and ∆ in A∗; and then z is of type (B), as required.

Definition 4.19. Let u ∈ Vn,r and ψ ∈ Gn,r. If uψd = uΓ for some d ∈ Z\{0} and
some Γ ∈ A∗\{1}, then u is a characteristic element for ψ. If u is a characteristic
element for ψ then the characteristic of u is the pair (m,Γ) such that m ∈ Z\{0},
Γ ∈ A∗ with

• uψm = uΓ and
• for all i such that 0 < |i| < |m|, uψi �∈ u〈A〉.
In this case Γ is called the characteristic multiplier andm is the characteristic power
for u, with respect to ψ.

From the definition, if ψ is in semi-normal form with respect to X then an
element x ∈ X is of type (B) if and only if x is a characteristic element: in which
case it follows from Lemma 4.24 below that the ψ-orbit of x is of type (4) or (5)
in Corollary 4.14. On the other hand, if x ∈ X has type (C) then the ψ-orbit of x
may be of types (3), (4), (5) or (6) in Corollary 4.14.

Example 4.20. In Example 4.13, the automorphism ψ is in semi-normal form with
respect to an A-basis X . The elements xα2α1 and xα2

2 of X are of type (A). The
element xα2

1 ∈ X is of type (B) with characteristic (−1, α1), while xα1α2 ∈ X is
of type (B) with characteristic (1, α2); and both of these elements are endpoints of
their semi-infinite X-components.

In Example 4.17 the elements xα2α1 and xα2
2 of X are of type (C), are not

characteristic and belong to complete infinite X-components. The elements xα2
1α2

and xα1α
2
2 in the pond orbit (4.5) are also type (C) and non-characteristic, but

belong to semi-infinite X-components.

Lemma 4.21. If u ∈ Vn,r is a characteristic element for ψ ∈ Gn,r then

(1) the characteristic (m,Γ) is uniquely determined, and
(2) if v is in the same ψ-orbit as u then v is a characteristic element with the same

characteristic as u.
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Proof. To see part (1), suppose that u has characteristic (m,Γ). If uψm
′

= u∆
and for all 0 < |k| < |m′| we have uψk �∈ u〈A〉, then |m′| ≥ |m| by Definition 4.19,
so m = ±m′. If uψ−m = u∆ then u = uψm∆ = uΓ∆, which cannot happen as
Γ �= 1.

For part (2), let uψr = v. For all k such that uψk = u∆ with ∆ ∈ A∗, we have

vψk = uψrψk = uψkψr = u∆ψr = uψr∆ = v∆.

Interchanging u and v we also see that whenever vψk = v∆ then uψk = u∆.

From Lemma 4.21, if a ψ-orbit has a characteristic element, then every X-
component of this ψ-orbit contains a characteristic element, and all these elements
have the same characteristic. Bearing this in mind we make the following definition.

Definition 4.22. Let ψ ∈ Gn,r have an X-component C containing a characteristic
element u. Then we define the characteristic of C to be equal to the characteristic
of u.

Theorem 4.23 ([17, Theorem 9.4]). Let ψ ∈ Gn,r be in semi-normal form
with respect to X. Then ψ is of infinite order if and only if it has a characteristic
element u. Moreover, if ψ is of infinite order then we may assume that u ∈ X.

Proof. If u is a characteristic element for ψ with characteristic (m,Γ) then uψm =
uΓ, so uψmq = uΓq. So for sufficiently large q, uψmq ∈ X〈A〉. Then uψmq also
has characteristic (m,Γ) by Lemma 4.21. Write uψmq = x∆, for some x ∈ X and
∆ ∈ A∗. Now x∆Γ = uψmqΓ = uψm(q+1) = x∆ψm, so from Lemma 4.18, x has
type (B). Thus we may assume u ∈ X . Now

uψmj = uψmψm(j−1) = uΓψm(j−1) = uΓψmψm(j−2)

= uψmΓψm(j−2) = uΓ2ψm(j−2) = · · · = uΓj ,

for j ∈ N. Since Γ is a characteristic multiplier, the elements uΓj are all different
for j ∈ N, so ψ has infinite order.

Conversely, if ψ has no characteristic element, then certainly there are none in
X , so X has no elements of type (B) nor type (C). Thus all elements of X are of
type (A), as ψ is in semi-normal form; whence ψ is a permutation of X and has
finite-order.

Lemma 4.24. Let ψ be in semi-normal form with respect to an A-basis X and let
u ∈ Vn,r. If u has characteristic (m,Γ) then the ψ-orbit of u has precisely one X-
component, which is semi-infinite (right semi-infinite if m > 0 and left semi-infinite
if m < 0) and consists of elements of the form xΛ, where x ∈ X is of type (B) and
Λ ∈ A∗.

Furthermore, if xΛ belongs to the X-component of the ψ-orbit of u, where x ∈ X

and Λ ∈ A∗, then x has characteristic (m,Γ1Γ0), where Γ = Γ0Γ1,Λ = (Γ1Γ0)pΓ1 =
Γ1Γp, p ≥ 0, and Γ0 is nontrivial.
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Proof. As uψm = uΓ we have uψmq = uΓq, for all integers q ≥ 0, and choosing q
sufficiently large uΓq ∈ X〈A〉. Thus we may assume that u ∈ X〈A〉. Let C denote
the X-component containing u and write u = xΛ, where x ∈ X and Λ ∈ A∗.

Assume first thatm > 0. As u has characteristic (m,Γ), both xΛ and xΛΓ belong
to C, so x is of type (B) by Lemma 4.18. Suppose there is an integer K ≥ 0 such
that uψ−k ∈ X〈A〉, for all k ≥ K. (That is, suppose that the ψ-orbit of u contains a
left semi-infinite X-component.) Let Λ = Λ0Γt, where Λ0 has no terminal segment
equal to Γ. Then, for j such that m(j + 1) ≥ K and j ≥ t, uψ−m(j+1) ∈ X〈A〉, so
uψ−m(j+1) = zΞ for some z ∈ X and Ξ ∈ A∗. From Lemma 4.21 we see that zΞ
has characteristic (m,Γ). Hence

zΞΓj+1 = zΞψm(j+1) = u = xΛ0Γt,

which implies z = x and ΞΓj−t+1 = Λ0, a contradiction. As ψ is in semi-normal
form with respect to X and C is not a complete X-component, the C must be right
semi-infinite. We have just shown the ψ-orbit of u contains no left semi-infinite
X-component, so C is the unique X-component of this ψ-orbit.

For the second part of the lemma, suppose x has characteristic (k,Ω). The X-
component of x cannot be left semi-infinite, or else xΛψ−i ∈ X〈A〉 for all i ≥ 0;
this would mean that C is not right semi-infinite. Hence x is in a right semi-infinite
X-component and k > 0. If Λ = ΩjΛ1 then xΛ1ψ

kj = xΩjΛ1 = u and so C contains
xΛ1; and it suffices to prove the lemma under the assumption that Λ has no initial
segment equal to Ω.

Suppose that m = kp+r, where 0 ≤ r < k. Then xΛψkp = xΩpΛ and xΩpΛψr =
xΛψkp+r = xΛψm = xΛΓ. However, as x is in a right semi-infinite X-component,
xψr = zΞ, for some z ∈ X and Ξ ∈ A∗. Thus xΛΓ = xΩpΛψr = xψrΩpΛ = zΞΩpΛ,
which implies that z = x and ΛΓ = ΞΩpΛ. Now, as xψr = xΞ, 0 ≤ r < k and x

has characteristic (k,Ω), it must be that r = 0, m = kp and Ξ = ε. We have now
ΛΓ = ΩpΛ, and as Λ has no initial segment equal to Ω it follows that Ω = ΛΩ1.
Now uψk = xΛψk = xψkΛ = xΩΛ = xΛΩ1Λ = uΩ1Λ, so k ≥ m, by definition
of characteristic. Therefore k = m and Γ = Ω1Λ, completing the proof in the case
m > 0.

In the case when m < 0 the result follows from the above on replacing ψ by
ψ−1.

An element w of the free monoid A∗ is said to be periodic with period i if
w = a1 · · · an, where aj ∈ A, and ak = ak+i, for 1 ≤ k ≤ n − k. In this sense, in
Lemma 4.24 above, Λ = (Γ1Γ0)pΓ1 is periodic of period m.

Lemma 4.25. Let ψ ∈ Gn,r and u ∈ Vn,r such that uψk = u∆, where ∆ �= ε. Then
u has characteristic (m,Γ) with respect to ψ, where k = mq and ∆ = Γq, for some
positive integer q.

Proof. Let ψ be in semi-normal form with respect to X , and let (m,Γ) be the
characteristic of u. Suppose first that k > 0. As in the proof of Lemma 4.24, we may
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assume that u ∈ X〈A〉, the X-component of u is right semi-infinite and that there
exist x ∈ X and Γ1 ∈ A∗ such that u = xΓ1 and x has characteristic power m. Then
k ≥ m, say k = mq + s, where 0 ≤ s < m and q ≥ 1. Let xψs = yΛ′, where y ∈ X

and Λ′ ∈ A∗. Now xΓ1∆ = u∆ = uψk = uψmq+s = uΓqψs = xψsΓ1Γq = yΛ′Γ1Γq.
Hence x = y and so s = 0 and k = mq. Moreover xΛ∆ = u∆ = uψk = uψmq =
uΓq = xΛΓq, so Λ∆ = ΛΓq, from which ∆ = Γq, as required.

If k < 0, replace ψ with ψ−1 in the argument above. We have uψ−k = u∆, so
from the previous part of the proof, u has characteristic (m,Γ), with respect to ψ,
where −k = mq, q > 0, and ∆ = Γq. If follows that u has characteristic (−m,Γ),
with respect to ψ, and −m = kq, completing the proof.

Corollary 4.26. Let ψ be in semi-normal form with respect to an A-basis X and let
u ∈ Vn,r. Then there exists an element Λ ∈ A∗ such that uΛ belongs to a complete
X-component of ψ.

Proof. Multiplying by a sufficiently long element of A∗ we may, as usual, assume
that u ∈ X〈A〉, so u belongs to either a complete or a semi-infinite X-component
of ψ. There are finitely many semi-infinite X-components (Lemma 4.6). If S is
a characteristic semi-infinite X-component with characteristic (m,Γ) then, from
Lemma 4.24, elements of S have the form xΛ where x ∈ X , Λ ∈ A∗ and, for all but
finitely many elements of S, Λ is periodic of period m.

Let FS be the finite subset of elements of A∗ such that Λ ∈ FS only if xΛ ∈ S and
Λ is not periodic of period m. Let F0 be the union of the FS over all characteristic
semi-infinite X-components. If S is non-characteristic then, from Lemma 4.18, S
contains an element z∆, where z ∈ X of type (B), with characteristic (m′,Γ′), say.
It follows, from Lemma 4.24 again, that all but finitely many elements of S have the
form xΛ∆ where x ∈ X , Λ ∈ A∗ and Λ is periodic of period m′. This time, let FS
be the finite subset of elements of A∗ such that Λ∆ ∈ FS only if xΛ∆ ∈ S and Λ is
not periodic of period m′. Let F1 be the union of the FS over all non-characteristic
semi-infinite X-components.

Let M be the maximum of lengths of elements of F0 ∪ F1 and assume u = xΓ,
where x ∈ X , Γ ∈ A∗. Choose element Ξ of A∗ such that ΓΞ has length greater
than M , is not periodic and does not factor as Λ∆, where Λ is periodic and ∆ ∈ F1.
Then uΞ = xΓΞ cannot belong to a semi-infinite X-component, so must belong to
a complete X-component.

4.2. Quasi-normal forms

Quasi-normal forms are particular semi-normal forms which give representations of
automorphisms minimizing the number of elements in pond orbits. In [17, Sec. 9]
it is claimed that if an automorphism is given with respect to a quasi-normal
form, then it has no pond orbits. In this section we shall see that this is not
the case.
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Definition 4.27 ([17, Sec. 9]). An element ψ of Gn,r is in quasi-normal form
with respect to the A-basis X if it is in semi-normal form with respect to X , but
not with respect to any proper contraction of X .

It follows from Lemma 4.3 that for ψ ∈ Gn,r there exists an A-basis X with
respect to which ψ is in quasi-normal form. For instance, the automorphisms ψ in
Examples 4.11, 4.13 and 4.17 are in quasi-normal form with respect to the bases
X in those examples. Additionally, the automorphism ψ of Example 4.12 is in
quasi-normal form with respect to the basis X3.

Lemma 4.28 (cf. [17, Lemma 9.7]). Given an element ψ ∈ Gn,r there exists
a unique A-basis, denoted Xψ, with respect to which ψ is in quasi-normal form.
Furthermore Xψ may be effectively constructed.

Proof. Assume ψ is given by listing the images of elements of X , where X is an
A-basis of Vn,r. We modify X to find an A-basis X ′ with respect to which ψ is in
semi-normal form. For each y ∈ X we can list elements of the ψ-orbit of y.

. . . , yψ−3, yψ−2, yψ−1, y, yψ, yψ2, yψ3, . . . .

We enumerate the forward sequence (yψm)m≥0, until we reach m ≥ 0 such that

(1F) either yψm ∈ X〈A〉 with yψm+1 �∈ X〈A〉, or
(2F) for some 0 ≤ l < m, ŷ ∈ X and Γ,∆ ∈ A∗ we have yϕl = ŷΓ and yϕm = ŷ∆.

Similarly, we enumerate the backwards sequence (yψ−k)k≥0 until we reach k ≥ 0
such that

(1B) either yψ−k ∈ X〈A〉 with yψ−(k+1) �∈ X〈A〉 or,
(2B) for some 0 ≤ l < k, ŷ ∈ X and Γ,∆ ∈ A∗ we have yϕ−l = ŷΓ and yϕ−k = ŷ∆.

Given y ∈ X , the forward part of the process above produces a sequence of
elements of X〈A〉, until it halts. As X is finite, if it does not halt at step (1F) then
it halts at step (2F); so always halts. Similarly, the backward part of the process
always halts.

If some y satisfies (1F) and (1B), then y is in an incomplete X-component,
so ψ is not in semi-normal form with respect to X . In this case we take a simple
expansion X ′ of X at the element y. Next, use the proof of Lemma 4.9 to find an
expansionX ′′ of X ′ with respect to which ψ is in semi-normal form. We now replace
X with X ′′ and return to the start of this proof. Repeating as necessary, eventually
we shall find X such that no y ∈ X satisfies both (1F) and (1B). The repetition
terminates because the number of elements x′′ ∈ X ′′ belonging to incomplete X ′′

components is strictly smaller than the corresponding number for X .
At this stage, every y ∈ X satisfies one of (2F) and (2B), so ψ is in semi-normal

form with respect to X by Lemma 4.18. We can now test all the contractions of the
A-basis X to find an expansion of x with respect to which ψ is in a quasi-normal
form.
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For uniqueness, we will argue by contradiction. Let ψ be in quasi-normal form
with respect to X1 and X2, with X1 �= X2. Since X1, X2 are expansions of x, (with-
out loss of generality) there exists a simple contraction X ′

1 of X1 which contains an
element y of X2\X1. Then X ′

1〈A〉 = X1〈A〉 ∪ {y}〈A〉 and, as ψ is in semi-normal
form with respect to X2, it is also in semi-normal form with respect to X ′

1, contrary
to the definition of quasi-normal form.

Remark 4.29. Let ψ ∈ Gn,r be in quasi-normal form with respect to X . The proof
of this lemma illustrates that if ψ is in semi-normal form with respect to X ′, then
X ′ is an expansion of X . The converse is false: it is not true in general that ψ is in
semi-normal form with respect to all expansions of X .

Lemma 4.30. Let ψ ∈ Gn,r be in semi-normal form with respect to an A-basis X
and let u, v ∈ X〈A〉. Then we can effectively decide whether or not u, v are in the
same X-component, and if so, find the integers m for which uψm = v.

Proof. As u ∈ X〈A〉, we have u = yΛ where y ∈ X and Λ ∈ A∗. We now run the
process of Lemma 4.28 on y. If the process halts with yψm = y, for some m then
we may list the elements uψi = yψiΛ, i = 0, . . . ,m − 1, of the (complete finite)
ψ-orbit of u. In this case v is in the same ψ-orbit as u if and only if it appears in
the list, so we are done.

Otherwise the process halts at least one of the states (2F) and (2B). We obtain
ỹ ∈ X and integers k �= l such that yϕk = ỹΛ1 and yϕl = ỹΛ2, where Λ1 and Λ2

are distinct elements of A∗. It follows from Lemma 4.18 that ỹ is of type (B). As u
and uϕk = yΛϕk = ỹΛ1Λ are k steps apart in the same X-component, we may
replace u = yΛ with ũ = ỹΛ1Λ. Therefore we now assume that u = yΛ, where y is
of type (B).

Now, when we run the process of Lemma 4.28 on y it halts either at (2F) and
(1B) or else at (1F) and (2B). Suppose first the forward part halts at (2F). Then y
is in a right semi-infinite X-component and there is a minimal positive integer m
such that yψm = yΓ, with Γ �= 1. That is y has characteristic (m,Γ), with m > 0.
Set u0 = yΛ0. If Λ = ΓiΛ0 where Λ0 has no initial segment Γ, then

u0ψ
mi = yΛ0ψ

mi = yψmiΛ0 = yΓiΛ0 = yΛ = u,

so u0 is mi steps away from u in the ψ-orbit of u. We may replace u = yΛ by
u0 = yΛ0. This allows us to assume from now on that Λ has no initial segment
equal to the characteristic multiplier Γ of y.

Next we run the process of Lemma 4.28 on u instead of y. As y is in a right
semi-infinite X-component the forward part of the process halts at (2F). We obtain
a list of elements of the X-component of u of the form

zrΦr, . . . , z1Φ1, u = yΛ, y1Γ′
1Λ, . . . , ym−1Γ′

m−1Λ, yΓΛ, (4.6)

where yj , zj ∈ X , Γ′
j ,Φj ∈ A∗, zjΦj = uψ−j, for 1 ≤ j ≤ r and for some r ≥ 0,

and yψs = ysΓ′
s, for 0 < s < m. (The yi’s must be distinct otherwise u would have
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characteristic power less than m.) We proceed differently based on which state the
backwards enumeration finishes in.

Case (1B). If the backward part of the process halts at (1B) then zrΦrψ−1 =
uψ−r−1 /∈ X〈A〉. In this case, the entire X-component of u consists of the elements
on this list together with elements

yiΓ′
iΓ
qΛ, with q > 0 and 0 < i ≤ m,

where we set y0 = y, Γ′
0 = Γ.

As v ∈ X〈A〉 we also have z ∈ X and ∆ in A∗ such that v = z∆. If z is in a finite
X-component then v cannot belong to the same X-component as u, so we assume
z is in an infinite X-component. As in the case of u, we may adjust v so that z is
of type (B). As before we find a characteristic multiplier Φ for z and, replacing ∆
with a shorter element if necessary, we may assume that ∆ has no initial segment
equal to Φ.

If v = uψd, where d ≥ 0, then v = yiΓ′
iΓ
qΛ, for some q ≥ 0 and i with 0 ≤ i < m.

In this case, z = yi and by Lemma 4.24 and our assumption on v we have q = 0,
so v = yiΓ′

iΛ, which appears on list (4.6). Assume then that v = uψd, where d < 0.
As the backward part of the enumeration of the ψ-orbit of u halts at (1B), the
X-component of u has initial element zrΦr, and v must appear on list (4.6).

Case (2B). On the other hand, if the backward part of the process stops at
(2B) then u is in a complete infinite X-component and, for some s with 0 ≤ s ≤ r,
we have zr = zs (and r is minimal with this property). It follows that zs is of
type (B) and in a left semi-infinite X-component. Again, we may assume that
v = z∆, where ∆ ∈ A∗, z ∈ X is of type (B) and has characteristic multiplier
Φ, such that ∆ has no initial segment equal to Φ. As before, if v = uψd with
d ≥ 0, then v appears on list (4.6). Assume then that v = uψd, where d < 0.
Repeating the argument above, using the left semi-infinite X-component of zs
instead of the right semi-infinite X-component of y, it follows again that v appears
on list (4.6).

Therefore, in the case where y is in a right semi-infinite X-component we have
v in the X-component of u if and only if v lies on the list (4.6); and we may
compute m such that uψm = v, if this is the case. Finally, if the enumeration of the
X-component of y halts at steps (1F) and (2B) then the process is essentially the
same, except that we deal with a left, rather than a right, semi-infiniteX-component
of y.

This procedure allows us to decide if two given words in X〈A〉 belong to the
same X-component so, if there are no pond orbits, we may decide if two such words
belong to the same ψ-orbit. On the other hand, as the enumeration of components
always stops once we fall outside X〈A〉, we cannot detect when a pair of elements
lie in the same ψ-orbit but on opposite sides of a pond. We demonstrate below that
there exist automorphisms for which every semi-normal form has a pond; thus we
require a strategy to deal with ponds.
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Lemma 4.31. Let ψ ∈ Gn,r be in semi-normal form with respect to X, and suppose
that some ψ-orbit O contains a pond with respect to X. If ψ is in semi-normal form
with respect to an expansion X ′ of X, then O is also a pond-orbit with respect to
X ′.

Proof. Let us write O as

O : . . . lψ−t, . . . lψ−1, l, p1, . . . pk, r, rψ, . . . rψ
s, . . . ,

where l, r ∈ X〈A〉 are endpoints of semi-infinite X-components and the pi /∈ X〈A〉
form a pond of width k+1. To begin with we claim that, for sufficiently large s ≥ 0,
we have rψs ∈ X ′〈A〉. Indeed, because r belongs to a semi-infinite X-component,
Lemma 4.18 implies that there is some s′ ≥ 0 for which rψs

′
= r′∆, where ∆ ∈ A∗

and r′ ∈ X has characteristic (m,Γ). Therefore, for all q ≥ 0,

rψs
′+mq = rψs

′
ψmq = r′∆ψmq = r′ψmq∆ = r′Γq∆.

By taking q sufficiently large, we can ensure that rψs
′+mq ∈ X ′〈A〉. This works

because the difference X〈A〉\X ′〈A〉 is finite. So we can find s ≥ 0 such that rψs ∈
X ′〈A〉. Similarly, there is some t ≥ 0 for which lψ−t ∈ X ′〈A〉.

Since X ′〈A〉 ⊂ X〈A〉, it follows that each pi /∈ X ′〈A〉. Appealing to Corol-
lary 4.14, the only possibility is that O is a pond-orbit with respect to X ′.

Notice that the pond width with respect to X ′ is at least the previous width
(k+ 1) with respect to X . Additionally, if ψ was in quasi-normal form with respect
to X , this (with Remark 4.29) shows that every semi-normal formX ′ for ψ contains
the pond given above. Example 4.17 shows that this possibility does occur.

Lemma 4.32. Given an element ψ ∈ Gn,r in semi-normal form with respect to an
A-basis X we may effectively construct the set P (ψ) of the triples (l, k, r) such that
r (respectively, l) is the initial (respectively, terminal) word in a right (respectively,
left) semi-infinite X-component, and k is the width of the pond between them.

Proof. Let Y be the minimal expansion ofX associated to ψ and let Z = Y ψ. Since
there are no incomplete X-components, Lemma 4.6 tells us that the set of initial
elements of right semi-infinite X-components is R = X〈A〉\Z〈A〉. This is finite, so
we may enumerate this effectively. The same is true for the set L = X〈A〉\Z〈A〉 of
terminal elements of left semi-infinite X-components. To enumerate P (ψ), for each
(l, r) ∈ L × R we need to solve the equation r = lψk for some k, or to determine
that there is no solution. A solution exists if and only if rΓ = lΓψk, for all Γ ∈ A∗.

With this in mind, first find Γ ∈ A∗ such that lΓ is in a complete infinite X-
component. We do this by enumerating the words Γ of length 1, 2, . . . and applying
the process of Lemma 4.28 to each element lΓ in turn. We stop when we find Γ
such that the process halts at (2F) and (2B). Now use Lemma 4.30 to determine
whether rΓ and lΓ are in the same X-component. If not, then there cannot exist
an element of the form (l, k, r) ∈ P (ψ); that is l and r are not joined by a pond.
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Assume then that rΓ = lΓψk, for some k. We can test to see if r = lψk directly,
which holds if and only if (l, k, r) ∈ P (ψ). If the equality were false, is it possible
that (l, k′, r) ∈ P (ψ) for a different k′ �= k? This would mean that r = lψk

′
, so

lψkΓ = rΓ = lΓψk
′

and thus lΓψk−k
′

= lΓ. As lΓ belongs to a complete infinite
X-component, this means k = k′; so the answer to our previous question is “no”.
In this situation there are no elements of the form (l, k′, r) in P (ψ).

In practice, when enumerating the sets L and R in the proof above, we need to
consider only non-characteristic elements, as Lemma 4.24 implies that no charac-
teristic element belongs to a pond orbit.

Example 4.33. Let ψ and X be the automorphism and basis described in Exam-
ple 4.17; we noted above that ψ is in quasi-normal form with respect to X . We
claim that this ψ-orbit is the only pond orbit with respect to X .

The endpoints of semi-infinite X-components are precisely

L = X〈A〉\Y 〈A〉 = {xα2
1, xα

3
1, xα

2
1α2}

and R = X〈A〉\Z〈A〉 = {xα1α2, xα1α2α1, xα1α
2
2}.

The four endpoints xα2
1, xα

3
1, xα1α2 and xα1α2α1 have characteristics (−1, α2

1),
(−1, α2

1), (1, α1α2) and (1, α2α1), respectively. Are the two remaining endpoints l =
xα2

1α2 and r = xα1α
2
2 separated by a pond? (We saw before in computation (4.5)

that they are, but to illustrate Lemma 4.32 we will remain ignorant of this.)
Multiplying by Γ = α1 we obtain lΓ = xα2

1α2α1, which is in a complete infinite
X-component. We also see that rΓ = lψ2Γ = xα1α

2
2α1 is in this component, so

we have a candidate pond width of k = 2. Fortunately we directly computed that
r = lψ2 in (4.5), so P (ψ) = {(xα2

1a2, 2, xα1α
2
2)}.

Lemma 4.34 (cf. [17, Lemma 9.7]). Let ψ ∈ Gn,r and u, v ∈ Vn,r. Then we
can effectively decide whether or not u, v are in the same ψ-orbit, and if so, find
the integers m for which uψm = v.

Proof. For a fixed integer s ≥ 0 we have uψm = v if and only if (uΓ)ψm = uψmΓ =
vΓ for all Γ ∈ A∗ of length s (using Lemma 3.20). Now, suppose that we have an
algorithm A to decide whether v′ = u′ψm for some m, given elements u′, v′ of X〈A〉
(and to return m, if so). Then if u, v are arbitrary elements of Vn,r we may choose
s such that uΓ and vΓ belong to X〈A〉, for all Γ ∈ A∗ of length s, and input all
these elements to the algorithm A in turn. In the light of the previous remark, this
allows us to determine whether or not u and v belong to the same ψ-orbit (and to
return appropriate m, if so). Hence we may assume u, v ∈ X〈A〉.

By Corollary 4.14, u and v belong to the same ψ-orbit if and only if either
they belong to the same X-component of a ψ-orbit, or they belong to different X-
components of a single pond orbit. We may use Lemma 4.30 to decide whether or
not u and v both belong to the same X-component. If so we are finished. If not, and
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both belong to semi-infinite X-components, then for each triple (l, k, r) in P (ψ) we
check whether u belongs to the same component as l or r.

If u belongs to neither component then u is not in a pond orbit, and thus u and v
do not share a ψ-orbit. Otherwise if u and l (respectively, r) share an X-component,
we run the same check on v and r (respectively, l). If the check determines that v
is not in the X-component in question, then u and v do not share a ψ-orbit. Else
we have l = uψa and v = rψb for some a and b, so v = uψa+k+b.

Example 4.35. Let ψ be the automorphism of Examples 4.17 and 4.33, which is
in quasi-normal form with respect to X = {q1 = xα2

1, q2 = xα1α2, q3 = xα2α1, q4 =
xα2

2}. The elements q1 and q2 have characteristics (−1, α2
1) and (1, α1α2), respec-

tively, whereas q3 and q4 belong to complete infinite X-components such that
q3ψ = q2α

2
2 and q4ψ−1 = q1α2α1.

(1) We wish to test if u = xα1α
2
2α

2
1α2 = q2α2α

2
1α2 and v = xα2α

2
1 = q3α1 belong

to the same ψ-orbit. Because q3 is not characteristic, Lemma 4.30 first replaces
v = q3α1 with v′ = vψ = q3ψα1 = q2α

2
2α1, which begins with the characteristic

element q2 of X . Enumerating the X-component containing u gives us a specific
instance of list (4.6)

xα4
1α2α

2
1α2 �→ xα2

1α2α
2
1α2 �→ xα2

2α1α2

�→ xα1α
2
2α

2
1α2︸ ︷︷ ︸

u

�→ x(α1α2)2α2α
2
1α2 (4.6′)

once the enumeration has halted at stages (2F) and (2B). Since v′ does not lie
on this list, we conclude that v′ does not belong to the X-component of u, so
neither does v.

We now need to check if u and v are separated by a pond. In Example 4.33,
we showed that ψ has only one pond-orbit, and referring to the computa-
tion (4.5) we see that neither u nor v belong to this orbit. Hence u and v′

do not share a ψ-orbit.
(2) Now let us test if u and w = xα4

1α2α
2
1α2 = q1α

2
1α2α

2
1α2 share a ψ-orbit. We

remove the characteristic multiplier α2
1 of q1 from w, obtaining w′ = q1α2α

2
1α2

where w′ψ−1 = w. From list (4.6′) we notice that uψ−2 = w′, so uψ−3 = w.
(3) Let u = xα8

1α2, v = xα4
1α2α1 and w = x(α1α2)3α2. In terms of X , these

are u = q1α
6
1α2, v = q1α

2
1α2α1, and w = q2(α1α2)2α2. Since q1 and q2 are

characteristic, we remove copies of the characteristic multipliers. We obtain
u′ = q1α2 = uψ3, v′ = q1α2α1 = v′ψ and w′ = q2α2 = wψ−2. Enumerating the
X-component of u′ gives us

. . . �→ xα4
1α2 �→ xα2

1α2 = u′,

(halting at stages (1F) and (2B)) and we see that neither v′ nor w′ are in this
list. However, u′ is adjacent to a pond. Referring once again to Example 4.17,
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we see that the corresponding endpoint is ū = u′ψ2 = xα1α
2
2. Its X-component

begins

ū = xα1α
2
2 �→ x(α1α2)2α2 �→ . . . .

Since this list does not contain v′, we conclude that u and v do not share a
ψ-orbit. On the other hand, we note that w′ = ū belongs to the list. Hence u
and w belong to the same ψ-orbit, and having kept track of the various powers,
we calculate that

wψ−2 = w′ = ū = u′ψ2 = uψ3ψ2 =⇒ w = uψ7.

5. The Conjugacy Problem

For a group with presentation G = 〈X |R〉, the conjugacy problem is to determine,
given words g, h ∈ F(X) whether or not g is conjugate to h in G; denoted g ∼ h. The
strong form, which we consider here, requires us to produce a conjugator c ∈ F(X)
when g is conjugate to h, i.e. an element c such that c−1gc =G h. We say the conju-
gacy problem is decidable if there is an algorithm which for inputs g and h outputs
“yes” if they are conjugate and “no” otherwise. The stronger form is decidable if
there is an algorithm which produces a conjugator c in the “yes” case. Note that
the word problem is the special case of the conjugacy problem where h = 1.

As pointed out at the beginning of Sec. 4, an element ψ of Gn,r may be uniquely
represented by the triple (Y, Z, ψ0), where Y is the minimal expansion of ψ, Z = Y ψ

and ψ0 is a bijection between Y and Z, namely ψ0 = ψ|Y . This triple is called a
symbol for ψ. In [17, Sec. 4] a finite presentation of Gn,r is given, with generators
the symbols (Y, Z, ψ0) such that Y is a d-fold expansion of x, for d ≤ 3. As we
may effectively enumerate symbols and effectively construct the symbol for ψ1ψ2,
from the symbols for ψ1 and ψ2, words in Higman’s generators effectively deter-
mine symbols and vice-versa. Therefore when we consider algorithmic problems in
Gn,r we may work with symbols for automorphisms, and leave the presentation
in the background. That is, we always assume that automorphisms are given as
maps between bases of Vn,r (from which a symbol may be computed). As minimal
expansions are unique it follows immediately that the word problem is solvable in
Gn,r. In this section, we give an algorithm for the conjugacy problem in Gn,r, based
on (a complete version of) Higman’s solution.

5.1. Higman’s ψ-invariant subalgebras

Let ψ be an element of Gn,r. Higman defined two Ω-subalgebras of Vn,r determined
by ψ, namely

• the Ω-subalgebra VP,ψ generated by the set of elements of Vn,r which belong to
finite ψ-orbits.

• the Ω-subalgebra VRI,ψ generated by the set of characteristic elements for ψ.

Where there is no ambiguity, we will write VP for VP,ψ and VRI for VRI,ψ .

In
t. 

J.
 A

lg
eb

ra
 C

om
pu

t. 
20

16
.2

6:
30

9-
37

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
W

C
A

ST
L

E
 o

n 
05

/2
6/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 7, 2016 12:18 WSPC/S0218-1967 132-IJAC 1650014

346 N. Barker, A. J. Duncan & D. M. Robertson

If u ∈ Vn,r then the ψ-orbit of u is identical to the ψ-orbit of uψ; so u is in a
finite ψ-orbit if and only if uψ is in a finite ψ-orbit. From Lemma 4.21, an element
u is a characteristic element for ψ if and only if uψ is a characteristic element for
ψ. Therefore VP,ψ and VRI,ψ are ψ-invariant subalgebras of Vn,r. (A subalgebra S
is ψ-invariant if Sψ = S.) Hence ψP = ψ|VP,ψ is an automorphism of VP,ψ and
ψRI = ψ|VRI,ψ is an automorphism of VRI,ψ .

If ψ and ϕ are conjugate elements of Gn,r and ρ−1ψρ = ϕ for some conjugator
ρ ∈ Gn,r, then for all Γ ∈ A∗ we have uϕm = uΓ if and only if uρ−1ψmρ = uΓ if
and only if (uρ−1)ψm = (uρ−1)Γ. Thus u is in a finite ϕ-orbit if and only if uρ−1

is in a finite ψ-orbit (taking Γ = ε) and u is a characteristic element for ϕ if and
only if uρ−1 is a characteristic element for ψ (Γ �= ε). It follows that the restriction
ρ|VP,ψ of ρ to VP,ψ maps VP,ψ isomorphically to VP,ϕ, and similarly ρ|VRI,ψ is an
isomorphism from VRI,ψ to VRI,ϕ.

Now suppose that ψ is in semi-normal form with respect to an A-basis X .
Partition X into

XP = XP,ψ = {y ∈ X | y is of type (A)}
and XRI = XRI,ψ = {y ∈ X | y is of type (B) or (C)}.

Theorem 5.1 ([17, Theorem 9.5]). Let ψ be an element of Gn,r, in semi-normal
form with respect to A-basis X. Then, with the notation above, the following state-
ments hold.

(1) Vn,r = VP ∗ VRI , the free product of the ψ-invariant subalgebras VP and VRI .
(2) VP = XP 〈A〉〈λ〉 and VRI = XRI〈A〉〈λ〉; that is, VP (VRI) is generated by XP

(XRI).
(3) Given ψ, ϕ, ρ ∈ Gn,r define six restrictions as follows.

ψP = ψ|VP,ψ , ϕP = ϕ|VP,ϕ , ρP = ρ|VP,ψ ,
ψRI = ψ|VRI,ψ , ϕRI = ϕ|VRI,ϕ , ρRI = ρ|VRI,ψ .

We have ρ−1ψρ = ϕ if and only if ρ−1
P ψP ρP = ϕP and ρ−1

RI ψRI ρRI = ϕRI .

Proof. Write WP = XP 〈A〉〈λ〉 and WRI = XRI〈A〉〈λ〉. As X is the disjoint union
of XP and XRI , we have Vn,r = WP ∗WRI , using Lemma 3.11. We shall show that
VP = WP and VRI = WRI . By definition, WP ⊆ VP . If x ∈ XRI is of type (B)
then x ∈ VRI , by definition. If x ∈ XRI is of type (C) then there exists z ∈ XRI ,
of type (B), and ∆ ∈ A∗, such that xψi = z∆. As z ∈ VRI , so is z∆, and as VRI is
ψ-invariant we have x = z∆ψ−i ∈ VRI . Hence WRI ⊆ VRI .

To see that VP ⊆ WP , let u ∈ Vn,r have a finite ψ-orbit. Choose d ∈ N such
that, uΓ ∈ X〈A〉, for all Γ ∈ A∗ of length d. For each such Γ write uΓ = x∆, where
x ∈ X and ∆ ∈ A∗. As u is in a finite ψ-orbit so is uΓ, so x ∈ XP and thence
uΓ = x∆ ∈ WP . As this holds for all Γ in A∗ of length d, we have u ∈ WP , by
Lemma 3.11. Hence VP ⊆WP .
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To see that VRI ⊆ WRI , we first show that WRI is ψ-invariant. Let Y be the
minimal expansion of X associated to ψ and let x ∈ XRI . Then choose d such that
xΓ ∈ Y 〈A〉, for all Γ ∈ A∗ of length d. Given such a Γ, write xΓ = y∆ for y ∈ Y

and ∆ ∈ A∗. Then xΓψ = yψ∆ ∈ X〈A〉, so xΓψ = zΛ, for some z ∈ X and Λ ∈ A∗.
Moreover, z must have type (B) or (C), as x does, so xΓψ ∈ XRI〈A〉 ⊆WRI . This
holds for all Γ of length d, so again xψ ∈WRI . It follows that WRIψ ⊆WRI .

Repeating the same argument, using Z = Y ψ instead of Y and ψ−1 instead of
ψ gives WRIψ

−1 ⊆ WRI ; so WRI is ψ-invariant as claimed. Now let u ∈ Vn,r be a
characteristic element for ψ. Then, from Lemma 4.24, we have uψi = xΛ, for some
integer i, x ∈ XRI and Λ ∈ A∗. Thus u = xΛψ−i ∈ WRI , as WRI is ψ-invariant;
and we have VRI ⊆ WRI . This proves (1) and (2) of the theorem, and (3) then
follows from the discussion preceding the statement of the theorem.

Note that in the case that ρ−1ψρ = ϕ in the theorem above we have ρ = ρP ∗ρRI
an isomorphism from VP,ψ ∗ VRI,ψ to VP,ϕ ∗ VRI,ϕ, both of which are isomorphic
to Vn,r.

Example 5.2. Let ψ be as in Example 4.5. Then XP = {xα2α1, xα
2
2} and XRI =

{xα2
1, xα1α2}. Thus ψP is the automorphism of VP = XP 〈A〉〈λ〉 defined by

xα2α1 �→ xα2
2, xα2

2 �→ xα2α1.

Let YRI = {xα3
1, xα

2
1α2, xα1α2} and ZRI = {xα2

1, xα1α2α1, xα1α
2
2}, both of which

are expansions of XRI . Then ψRI is the automorphism of VRI = XRI〈A〉〈λ〉 defined
by

xα3
1 �→ xα2

1, xα2
1α2 �→ xα1α2α1, xα1α2 �→ xα1α

2
2.

Theorem 5.1 allows us to decompose the conjugacy problem for (ψ, ϕ) into
conjugacy problems for (ψP , ϕP ) and (ψRI , ϕRI). Indeed, VP ∼= Vn,|XP | and VRI ∼=
Vn,|XRI |, and we regard ψP and ψRI as automorphisms of Vn,|XP | and Vn,|XRI |,
respectively. It turns out that ψP and ψRI are each of particularly simple types;
so if we can solve the conjugacy problem for these simple types of automorphism,
then we can solve it in general. In the remainder of this subsection we describe in
detail how this decomposition works.

First consider a single automorphism ψ ∈ Gn,r, where ψ is in semi-normal form
with respect to an A-basis X . As before, we take Vn,r to be the free Vn algebra on
a set x of size r, so that X is an expansion of x. Let XP and XRI be defined as
above, let Y be the minimal expansion of X associated to ψ and let Z = Y ψ. As
Y is an expansion of X , for all x ∈ X the set Yx = Y ∩ {x}〈A〉 is an expansion
of {x}, by Lemma 3.16. Therefore YP = Y ∩ XP 〈A〉 is an expansion of XP , and
YRI = Y ∩ XRI〈A〉 is an expansion of XRI . Similarly, ZP = Z ∩ XP 〈A〉 and
ZRI = Z ∩ XRI〈A〉 are expansions of XP and XRI , respectively. In fact, as ψ
permutes the elements of X with type (A), ψP permutes the elements of XP , so
XP = YP = ZP . Therefore ψP is an automorphism of VP = XP 〈A〉〈λ〉, which
permutes the elements of XP .
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For all y ∈ YRI we have yψ = z ∈ Z; moreover z ∈ XRI〈A〉 because VRI is ψ-
invariant, so YRIψ = ZRI . Now ψRI is an automorphism of VRI , where VRI is freely
generated byXRI , and YRI is the minimal expansion ofXRI associated to ψRI (as Y
is the minimal expansion of X associated to ψ). Furthermore YRIψRI = ZRI and if
u is an element of XRI〈A〉 such that uψ ∈ X〈A〉 then uψ ∈ X〈A〉∩VRI = XRI〈A〉;
so no element of XRI〈A〉 is in an incomplete finite XRI -component of ψRI .

To summarize, let |XP | = a, |XRI | = b and let XP = {x1, . . . , xa} and XRI =
{xa+1, . . . , xa+b}, where xi ∈ x〈A〉. Then, regarding the xi as new generators, we
may view VP as Vn,a, the free Vn algebra on {x1, . . . , xa}, and VRI as Vn,b, the free
Vn algebra on {xa+1, . . . , xa+b}. We regard ψP and ψRI as elements of Gn,a and
Gn,b, respectively. In this case, ψP (respectively, ψRI) is in quasi-normal form with
respect to the A-basis XP (respectively, ψRI). We write all elements of Y and Z in
terms of the xi, rather than as expansions of elements of x.

Example 5.3. Let n = 2, r = 1 and V2,1 be free on x = {x}. Use bases Y and Z

Y = {xα4
1, xα

3
1α2, xα

2
1α2, xα1α2α1, xα1α

2
2, xα2α1, xα

2
2α1, xα

3
2},

Z = {xα3
1, xα

2
1α2α1, xα

2
1α

2
2, xα1α2α1, xα1α

2
2, xα2α

2
1, xα2α1α2, xα

2
2}

to define the element ψ of Gn,r illustrated below.

ψ :

1 2 3 4 5
6 7 8

−→

1 2 3
5 4 6 7 8

Then Y is the minimal expansion of x associated to ψ. The minimal expansion of
x contained in Y 〈A〉 ∪ Z〈A〉 is

X = {xα3
1, xα

2
1α2, xα1α2α1, xα1α

2
2, xα2α1, xα

2
2}.

Then X〈A〉\(Y 〈A〉 ∩ Z〈A〉) = {xα3
1, xα

2
1α2, xα2α1, xα

2
2}. The X-components of

these elements are

· · · �→ xα4
1 �→ xα3

1, xα2
1α2 �→ xα2

1α
2
2 �→ · · · ,

· · · �→ xα3
2 �→ xα2

2, xα2α1 �→ xα2α
2
1 �→ · · · ,

so ψ is in quasi-normal form with respect to X . Introduce new generators x1 = xα3
1,

x2 = xα2
1α2, x3 = xα1α2α1, x4 = xα1α

2
2, x5 = xα2α1 and x6 = xα2

2. Then
XP = {x3, x4} and XRI = {x1, x2, x5, x6}.

Let V2,2 be free on {x3, x4}. Then, as an element of G2,2 the map ψP is the map
sending x3 to x4 and x4 to x3. Let V2,4 be free on {x1, x2, x5, x6}. We have

YRI = {xα4
1, xα

3
1α2, xα

2
1α2, xα2α1, xα

2
2α1, xα

3
2}

= {x1α1, x1α2, x2, x5, x6α1, x6α2} and
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ZRI = {xα3
1, xα

2
1α2α1, xα

2
1α

2
2, xα2α

2
1, xα2α1α2, xα

2
2}

= {x1, x2α1, x2α2, x5α1, x5α2, x6},
so as an element of G2,4 the map ψRI is given by the following forest diagram.

ψRI :
x1 x1x2 x2x5 x5x6 x6

1 2
3 4

5 6
1

2 3 4 5
6

Definition 5.4. Let ψ be an element of Gn,r. Then ψ is called periodic if VRI = ∅
and ψ is called regular infinite if VP = ∅.

Lemma 5.5. Let ψ be an element of Gn,r in semi-normal form with respect to an
A-basis X.

(1) ψ is periodic if and only if ψ permutes the elements of X.
(2) ψ is regular infinite if and only if no element of X is of type (A).

Proof. (1) If ψ permutes the elements of X then X contains no element of type
(B) or (C); so X = XP and Vn,r = VP , by Theorem 5.1. As Vn,r is the free product
of VP and VRI it follows that VRI = ∅, so ψ is periodic.

If ψ is periodic then XRI ⊆ VRI = ∅, so X = XP . Thus X consists of elements
of type (A), which are permuted by ψ, by Lemma 4.18.

(2) If ψ is regular infinite then VP = ∅, so Xp = ∅; i.e. no element of X is of type
(A). If X contains no element of type (A) then XP = ∅, and therefore VP = ∅ by
Theorem 5.1, so ψ is regular infinite.

It follows that, in the notation established above Example 5.3, the automorphism
ψP ∈ Gn,a is periodic and ψRI ∈ Gn,b is regular infinite. Thus, the decomposition of
Theorem 5.1 may be viewed as factoring ψ into a product of a periodic and a regular
infinite automorphism. It remains to see how to regard a pair of automorphisms in
this way, simultaneously in the same algebra.

To this end suppose that ψi ∈ Gn,ai is in semi-normal form with respect to
an A-basis Xi, where |Xi| = ai, for i = 1, 2. If there exists an isomorphism ρ :
Vn,a1 → Vn,a2 with the property that ρ−1ψ1ρ = ψ2 then, from Corollary 3.14,
a1 ≡ a2 modn− 1. Also, if a1 ≡ a2 modn − 1 then Vn,ai is isomorphic to Vn,s
where 1 ≤ s ≤ n − 1 and s ≡ ai. If this is the case then we may take an A-basis
xs of s elements of Vn,s and choose expansions X ′

1 and X ′
2 of xs of a1 and a2

elements, respectively. Now let fi be the map taking Xi to X ′
i. Then there exists

an isomorphism ρ : Vn,a1 → Vn,a2 such that ρ−1ψ1ρ = ψ2 if and only if a1 ≡
a2 modn− 1 and, setting ψ̂i = f−1

i ψifi ∈ Gn,s, we have ρ−1f1ψ̂1f
−1
1 ρ = f2ψ̂2f

−1
2 :

that is θ−1ψ̂1θ = ψ̂2, where θ = f−1
1 ρf2 ∈ Gn,s (see Fig. 2).
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Vn,a1 Vn,a1

Vn,s Vn,s

Vn,s Vn,s

Vn,a2 Vn,a2

ψ1

f1

ρ

f1

ρ

ψ̂1

θ θ

ψ̂2

ψ2

f2

f2

Fig. 2. Isomorphisms of Vn,ai and Vn,s.

Combining this with Theorem 5.1(1) gives a decomposition of the conjugacy
problem into the conjugacy problem for periodic and for regular infinite elements,
separately. Let ψ and ϕ be elements of Gn,r, write Vn,a1 = VRI,ψ, ψ1 = ψRI ,
Vn,a2 = VRI,ϕ and ψ2 = ϕRI . Using the procedure above, if ρRI exists (in the
notation of Theorem 5.1) then we may regard ψi, i = 1, 2, as a regular infinite
element of Gn,s, namely ψ̂i, for appropriate s. Similarly, we may regard ψP and ϕP
as periodic automorphisms of a single algebra.

We can now outline the algorithm for the conjugacy problem.

5.2. The conjugacy algorithm

Algorithm 5.6. Let ψ and ϕ be an elements of Gn,r.

Step 1: Find A-bases Xψ and Xϕ such that ψ and ϕ are in quasi-normal form
with respect to Xψ and Xϕ, respectively, as in Lemma 4.28. The sets
XP,ψ, XRI,ψ, XP,ϕ and XRI,ϕ are obtained as part of this process.

If |XP,ψ| ≡ |XP,ϕ| modn − 1 and |XRI,ψ| ≡ |XRI,ϕ| modn − 1; con-
tinue. Otherwise output “No” and stop.

Step 2: Find the minimal expansion Yψ of Xψ associated to ψ and the minimal
expansion Yϕ of Xϕ associated to ϕ. (See Lemma 4.3.) Construct YRI,ψ
and YRI,ϕ; the sets elements of Yψ and Yϕ which are not in finite orbits
(as in the discussion following Theorem 5.1). Construct ZRI,ψ = YRI,ψψ

and ZRI,ϕ = YRI,ϕϕ.
Step 3: For T = P and for T = RI carry out the following. Find the integer sT

such that 1 ≤ sT ≤ n−1 and sT ≡ |XT,ψ|. Let xT be a set of sT elements,
let Vn,sT be free on xT and find expansions WT,ψ and WTϕ of xT of
sizes |XT,ψ| and |XT,ϕ|, respectively. Construct a map fT,ψ mapping XT,ψ

bijectively to WT,ψ and fT,ϕ mapping XT,ϕ bijectively to WT,ϕ. Write ψT
and ϕT as elements of Gn,sT , using these maps.
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Step 4: Input ψP and ϕP into Algorithm 5.13 below for conjugacy of periodic
elements of Gn,r. If ψP and ϕP are not conjugate, return “No” and stop.
Otherwise obtain a conjugating element ρP .

Step 5: Input ψRI and ϕRI into Algorithm 5.27 below for conjugacy of regular
infinite elements of Gn,sRI . If ψRI and ϕRI are not conjugate, return “No”
and stop. Otherwise obtain a conjugating element ρRI .

Step 6: Return the conjugating element ρP ∗ ρRI .
Given this algorithm we have the following theorem.

Theorem 5.7 ([17, Theorem 9.3]). The conjugacy problem is soluble in Gn,r.

Proof. Apply Algorithm 5.6.

5.3. Conjugacy of periodic elements

Let ψ ∈ Gn,r be a periodic element. For u ∈ Vn,r the size of the ψ-orbit of u is the
least positive integer d such that uψd = u.

Definition 5.8. Let ψ be a periodic element of Gn,r in semi-normal form with
respect to the A-basis X . The cycle type of ψ is the set

Tψ(X) = {d ∈ N | some x ∈ has a ψ-orbit of size d}.
For d ∈ N, define the ψ-multiplicity of d to be mψ(d,X) = D/d, where D is the
number of elements of X which belong to a ψ-orbit of size d.

Note that, as ψ is periodic and in semi-normal form with respect to X , all
X-components of ψ are (ordered) ψ-orbits and all ψ-orbits of elements of X〈A〉
are X-components (once ordered appropriately). Also, d ∈ Tψ(X) if and only if
mψ(d,X) �= 0; the size of the set X is |X | =

∑
d∈Tψ(X) dmψ(d,X); if d ∈ Tψ(X)

then X contains mψ(d,X) disjoint ψ-orbits of size d; and ψ is a torsion element of
order equal to the least common multiple of elements of Tψ(X).

Example 5.9. Let n = 2, r = 1 and V2,1 be free on x = {x}. Let

X = {xα3
1, xα

2
1α2, xα1α2, xα2α

2
1, xα2α1α2, xα

2
2α1, xα

3
2}

and let ψ be the periodic element of G2,1 defined by the tree pair diagram below.

ψ :

1 2 3
4 5 6 7

−→

3 1 2
5 4 7 6

Then the cycle type of ψ is {2, 3} with multiplicitesmψ(2, X) = 2 andmψ(3, X)=1.

Lemma 5.10. Let ψ be a periodic element of Gn,r in semi-normal form with respect
to the A-basis X and the A-basis Z, where Z is a q-fold expansion of X. Then
Tψ(X) = Tψ(Z) and mψ(d,X) ≡ mψ(d, Z) modn− 1, for all d ∈ Tψ(X).
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Proof. It suffices to prove the lemma in the case where Z is a simple expansion
of X , because any expansion is obtained by a finite sequence of simple expansions.
Suppose the expansion happens at w ∈ X , so that Z = (X\{w})∪{wα1, . . . , wαn}.
To compute Tψ(Z) we need to break Z into a union of ψ-orbits.

Let d be the size of the ψ-orbit of w, so that Ow = {w,wψ, . . . , wψd−1}. For
each 1 ≤ i ≤ n the orbit of wαi is Owαi = {wαi, wψαi, . . . , wψd−1αi}, which is of
size at most d. In fact its size is exactly d: if there are integers 0 ≤ j < k < d for
which wψjαi = wψkαi, we would have wψj = wψk, which cannot occur.

Thus, in moving from X to Z we have lost 1 and gained n ψ-orbits of size d; all
other ψ-orbits inside Z are ψ-orbits inside X . Therefore Tψ(X) = Tψ(Z). In terms
of multiplicities this means mψ(d, Z) = mψ(d,X)+n−1 and mψ(e, Z) = mψ(e,X),
for every positive integer e �= d; whence the result.

Note that it follows from this lemma that if ψ is in semi-normal form with
respect to both X and X ′ then Tψ(X) = Tψ(X ′), since we may take a common
expansion of both X and X ′ and then expand this to an A-basis Z with respect
to which ψ is in semi-normal form. So from now on, we refer to the cycle type Tψ
without reference to an A-basis X .

Proposition 5.11. Let ψ and ϕ be periodic elements of Gn,r in semi-normal form
with respect to the A-bases Xψ and Xϕ, respectively. Then ψ is conjugate to ϕ if
and only if

(1) Tψ = Tϕ and
(2) mψ(d,Xψ) ≡ mϕ(d,Xϕ) modn− 1, for all d ∈ N.

Proof. Assume that ψ and ϕ are conjugate and let ρ ∈ Gn,r be such that ρ−1ψρ =
ϕ. Let ρ be in semi-normal form with respect to Xρ, let Y be the minimal expansion
of Xρ associated to ρ and let Z = Y ρ. Let W be a common expansion of Xψ and
Y and let ψ be in semi-normal form with respect to an expansion X ′

ψ of W . (Such
an expansion of W exists, by Lemma 4.9.) As ψ is periodic and in semi-normal
form it permutes the elements of X ′

ψ, so for all x ∈ X ′
ψ we have x′ ∈ X ′

ψ such
that xρϕ = xψρ = x′ρ ∈ Xρ. Therefore ϕ permutes the elements of X ′

ψρ, so ϕ is
in semi-normal form with respect to X ′

ϕ = X ′
ψρ. As X ′

ψ is an expansion of Y and
Z = Y ρ it follows that X ′

ϕ is an expansion of Z.
Now if x ∈ X ′

ψ and i ∈ Z then xρϕi = xψiρ, so we have xψd = x if and only if
xρϕd = xρ; in other words, x and xρ have orbits of equal size. This applies to any x,
so Tψ = Tϕ and both X ′

ψ and X ′
ϕ have the same number of elements with an orbit

of size d. Therefore mψ(d,X ′
ψ) = mϕ(d,X ′

ϕ), for all d ∈ Tψ = Tϕ. Statement (2)
follows, from Lemma 5.10 and the fact that X ′

ψ and X ′
ϕ are expansions of Xψ and

Xϕ, respectively.
Conversely, suppose that statements (1) and (2) hold. Let Tψ = Tϕ =

{d1, . . . , dk} and write mj = mψ(dj , Xψ) and m′
j = mϕ(dj , Xϕ). Fix j ∈ {1, . . . , k}.

Assume first that mj > m′
j . Then, by hypothesis, mj = m′

j + qj(n − 1) for some
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positive integer qj . Select an element x ∈ Xϕ whose ϕ-orbit Ox has size dj . Let Yx
be a qj-fold expansion of {x} and set E = {Γ ∈ A∗ |xΓ ∈ Yx}, so that Yx = xE.
Then for each 0 ≤ i < dj , xϕiE is a qj-fold expansion of {xϕi}.

For every string Γ ∈ E, the set {xΓ, xϕΓ, . . . , xϕd−1Γ} is a ϕ-orbit of size d.
(We saw this in Lemma 5.10 for Γ = αi.) Hence the set OxE = {xϕiΓ |Γ ∈
E, 0 ≤ i < dj} is a qjdj-fold expansion of Ox; more precisely it is a disjoint union
of |E| = qj(n − 1) ϕ-orbits of size dj . After Ox is expanded to OxE, the resulting
expansion Xϕ has exactly m′

j + qj(n− 1) = m′
j size dj ϕ-orbits.

For each j such that mj > m′
j apply this process to a single element of Xϕ with

ϕ-orbit size dj . Dually, for each j such thatm′
j > mj apply the process to an element

of Xψ with ψ-orbit size dj , interchanging the roles of ϕ and ψ. The result is an
expansionX ′

ψ of Xψ and an expansionX ′
ϕ of Xϕ such that mϕ(d,X ′

ϕ) = mψ(d,X ′
ψ)

for every positive integer d.
Now define ρ : X ′

ψ → X ′
ϕ by mapping orbits of size d to each other, preserving

the order within each orbit. In detail, for each d set m = mψ(d,Xψ) = mϕ(d,Xϕ).
Let O1, . . . ,Om be the size d ψ-orbits (in any order) in X ′

ψ and let O′
1, . . . ,O′

m be
the size d ϕ-orbits in X ′

ϕ (also in any order). Select a representative oi ∈ Oi and
o′i ∈ O′

i for each of these 2m orbits. We define ρ by the rule oiψjρ = o′iϕ
j . By

construction we have xψρ = xρϕ, for all x ∈ X ′
ψ. Hence ρ−1ψρ = ϕ.

Example 5.12. Let n = 2, r = 1 and V2,1 be free on x = {x}. Let

X = {xα4
1, xα

3
1α2, xα

2
1α2, xα1α2, xα2α1, xα

2
2}

and let ψ be the periodic element of G2,1 given by the tree pair diagram below.

ψ :

1 2 3
4 5 6

−→

2 1 4
3 6 5

Then ψ has cycle type Tψ = {2} and multiplicity mψ(2, X) = 3. The ψ-orbits of ele-
ments of X are O1 = {xα4

1, xα
3
1α2}, O2 = {xα2

1α2, xα1α2} and O3 = {xα2α1, xα
2
2}.

Let Y = {xα1, xα2} and let ϕ be the periodic element of G2,1 which swaps the
elements of Y .

ϕ : 1 2 −→ 2 1

Then ϕ has cycle type Tϕ = {2} and mϕ(2, Y ) = 1. From Proposition 5.11, ψ is
conjugate to ϕ. We can construct a conjugator by applying the process of the proof.
We take the same 2-fold expansion of both xα1 and xα2 to give a 4-fold expansion

Y ′ = {xα3
1, xα

2
1α2, xα1α2, xα2α

2
1, xα2α1α2, xα

2
2}

of Y such that ϕ is in semi-normal form with respect to Y ′. The ϕ-orbits of elements
of Y ′ are O′

1 = {xα3
1, xα2α

2
1}, O′

2 = {xα2
1α2, xα2α1α2} and O′

3 = {xα1α2, xα
2
2}, so

mϕ(2, Y ′) = 3. Take the representative of each orbit to be the first element listed in
its description. The corresponding conjugator ρ is the element of G2,1 which sends
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Oi to O′
i via xα4

1ρ = xα3
1, xα

3
1α2ρ = xα2α

2
1, xα

2
1α2ρ = xα2

1α2, xα1α2ρ = xα2α1α2,
xα2α1ρ = xα1α2 and xα2

2ρ = xα2
2.

ρ :

1 2 3
4 5 6

−→

1 3 5 2 4 6

Then ρ−1ψρ = ϕ.

From the proof of Theorem 5.11 we extract the following algorithm for the
conjugacy of periodic elements of Gn,r.

Algorithm 5.13. Let ψ and ϕ be periodic elements of Gn,r.

Step 1: Construct A-bases Xψ and Xϕ with respect to which ψ and ϕ are in
semi-normal form (Lemma 4.9).

Step 2: Compute the cycle types Tψ and Tϕ. If Tψ �= Tϕ, output “No” and stop.
Step 3: Compute mψ(d,Xψ) and mϕ(d,Xϕ), for all d ∈ Tψ. If mψ(d,Xψ) �≡

mϕ(d,Xϕ) modn− 1, output “No” and stop.
Step 4: Construct A-bases X ′

ψ and X ′
ϕ as described in the proof of Theorem 5.11.

Step 5: Choose a map ρ sending ψ-orbits of elements of X ′
ψ to ϕ-orbits of elements

of X ′
ϕ, as in the proof of the theorem, and output ρ.

5.4. Conjugacy of regular infinite elements

We begin with a necessary condition for two regular infinite elements to be conju-
gate. Let ψ be a regular infinite element of Gn,r in semi-normal form with respect to
X . By Lemma 4.6, ψ has finitely many semi-infinite X-components, each of which
has a characteristic element u with some characteristic (m,Γ) (see Definition 4.22).
If ψ is also in semi-normal form with respect to Y , the ψ-orbit of u has precisely
one Y -component, which is again semi-infinite of characteristic (m,Γ). Therefore,
the set of pairs (m,Γ) which are characteristics of semi-infinite X-components is
independent of the choice of a basis for a semi-normal form. With this in mind, we
make the following definition.

Definition 5.14. Let ψ be a regular infinite element of Gn,r in semi-normal form
with respect to X . Define

Mψ = {(m,Γ) | (m,Γ) is the characteristic of a semi-infinite X-component of ψ}.

Example 5.15. We refer to the following example through the remainder of this
section. Let n = 2, r = 1, x = {x} and ϕ ∈ G2,1 be determined by the bijection
from A-basis

Y = {xα1, xα2α1, xα
2
2α

2
1, xα

2
2α1α2, xα

3
2}
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to the A-basis

Z = {xα3
1, xα

2
1α2, xα1α2, xα2α1, xα

2
2}

as illustrated below.

ϕ :
1

2
3 4 5

−→
1 2 4 5 3

Then Y is the minimal expansion of x associated to ϕ and Z = Y ϕ. The elements
of x〈A〉\(Y 〈A〉 ∪ Z〈A〉) are x and xα2, so we start the search for a quasi-normal
form by taking the unique minimal expansion X = {xα1, xα2α1, xα

2
2} of x not

containing either of these elements.
The X-component of xα1 is

xα1 �→ xα3
1 �→ xα5

1 �→ · · · ,
which is right semi-infinite of characteristic (1, α2

1). Next, xα2α1 belongs to a com-
plete infinite X-component:

· · ·xα5
2 �→ xα4

2 �→ xα3
2 �→ xα2α1 �→ xα2

1α2 �→ xα4
1α2 �→ xα6

1α2 �→ · · · .
Finally, the X-component of xα2

2 is

· · · �→ xα2
2α

4
1 �→ xα2

2α
2
1 �→ xα2

2,

which is left semi-infinite of characteristic (−1, α2
1). Thus ϕ is in quasi-normal form

with respect to X .
To determine Mϕ, we compute the sets X〈A〉\Y 〈A〉 = {xα2

2, xα
2
2α1} and

X〈A〉\Z〈A〉 = {xα1, xα
2
1}. The X-components we have yet to calculate are those

of xα2
2α1 and xα2

1; these are the sets {xα2
2α

2i−1
1 | i ≥ 1} and {xα2i

1 | i ≥ 1} with
characteristics (1, α2

1) and (−1, α2
1), respectively. Hence

Mϕ = {(1, α2
1), (−1, α2

1)}.
Lemma 5.16. Let ψ and ϕ be regular infinite elements of Gn,r in semi-normal
form with respect to A-bases X and Y, respectively. Suppose that the elements are
conjugate via ρ ∈ Gn,r with ρ−1ψρ = ϕ. Then the sets Mψ and Mϕ coincide.
Moreover, ρ maps a semi-infinite X-component of ψ into a ϕ-orbit which contains
a (unique) semi-infinite Y -component with the same characteristic.

Proof. If u is an element of X〈A〉 such that uψm = uΓ, for some m and Γ, then

uρϕm = uψmρ = uΓρ = uρΓ.

The same argument can be applied starting with an element v ∈ Y 〈A〉 and
interchanging ψ and ϕ. Hence if u belongs to a ψ-orbit of characteristic (m,Γ)
then uρ belongs to an ϕ-orbit of characteristic (m,Γ). Thus, from Lemma 4.24,
a ψ-orbit that contains a semi-infinite X-component of characteristic (m,Γ) is
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mapped by ρ to a ϕ-orbit which has a semi-infinite Y -component of the same
characteristic.

Definition 5.17. Let ψ be in semi-normal form with respect to X . The equivalence
relation ≡ on X , is that generated by the relation x ≡ x′, whenever xΓ and x′∆
are in the same ψ-orbit, for some Γ,∆ ∈ A∗.

Example 5.18. Let ϕ be as in Example 5.15. Then xα2α1ϕ = (xα1)α1α2, so
xα2α1 ≡ xα1. Also, xα2α1ϕ

−1 = (xα2
2)α2, so xα2α1 ≡ xα2

2. Therefore all elements
of X are related by ≡.

Proposition 5.19. Let ψ be a regular infinite element in semi-normal form with
respect to X. Let X =

∐m
i=1 Xi, where the Xi are the equivalence classes of ≡ defined

on X under the action of ψ. Then Vn,r is the free product of the ψ-invariant Ω-
subalgebras V1, . . . , Vm, where Vi is the Ω-subalgebra generated by Xi.

Proof. As ψ is regular infinite, the sets Xi partition X , so Vn,r is the free product
of the Vi’s. To show that Vi is ψ-invariant it suffices to show that if x ∈ Xi then xψ
and xψ−1 are in Vi. To this end, choose d ≥ 0 such that xψΓ and xψ−1Γ belong
to X〈A〉, for all Γ ∈ A∗ of length d. Then for all such Γ we have xψΓ = y∆ and
xψ−1Γ = zΛ, for some y, z ∈ X and ∆,Λ ∈ A∗. By definition then y ≡ x ≡ z, so
x, y, z ∈ Xi. This implies that xψΓ = y∆ ∈ Vi and xψ−1Γ = zΛ ∈ Vi. This holds
for all Γ of length d, so from Lemma 3.20, xψ and xψ−1 belong to Vi, as required.
Hence Vi is ψ-invariant.

Lemma 5.20. Let ψ be a regular infinite element in semi-normal form with respect
to X and let Xi, i = 1, . . . ,m, be the equivalence classes of ≡ defined on X under
the action of ψ. We may effectively construct the Xi.

Proof. From Lemmas 4.28 and 4.3, we may effectively construct X , the minimal
expansion Y of ψ with respect to X , and the basis Z = Y ψ. For each v ∈ X∪Y ∪Z
we may enumerate a finite subsequence Cv of the X-component of v using the
procedure of Lemma 4.28. Let ≡0 be the equivalence relation on X generated by
y ≡0 z if yΓ and z∆ belong to Cv, for some v ∈ X ∪ Y ∪ Z and Γ,∆ ∈ A∗. We
claim that ≡0=≡.

By definition, ≡0⊆≡. To prove the opposite inclusion, we suppose that there
exist p ∈ Z, x, y ∈ X and ∆,Φ ∈ A∗ such that xΦ = y∆ψp and x and y are not
related under the relation ≡0. In this case we may assume, interchanging x and y

if necessary, that p > 0. Let p be a minimal positive integer for which such x, y

exist. As y∆ψp = xΦ it follows that y∆ψp
′ ∈ X〈A〉, for p′ = 1, . . . , p − 1. Let

y∆ψ = y′∆′, so y′∆′ψp−1 = xΦ. By minimality of p we have y′ ≡0 x.
Let ∆0 be an initial subword of ∆ of maximal length such that y∆0ψ ∈ X〈A〉,

say ∆ = ∆0∆1. Then y∆0 ∈ Y and y∆0ψ = y′′∆′′
0 , for some y′′ ∈ X and ∆′′

0 ∈ A∗.
Now y′∆′ = y∆0∆1ψ = y′′∆′′

0∆1, so y′′ = y′ and ∆′ = ∆′′
0∆1. Thus y∆0ψ = y′∆′′

0
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and, as y∆0 ∈ Y , y′∆′′
0 ∈ Z we have y ≡0 y

′. Therefore y ≡0 x, a contradiction.
We conclude that no such p, x and y exist and so ≡⊆≡0, as required. Thus ≡0=≡,
and as we may effectively compute the sets Cv, it follows that we may compute the
equivalence classes Xi.

Lemma 5.21. Let ψ be a regular infinite element in semi-normal form with respect
to X and let Xi, i = 1, . . . ,m be the equivalence classes of ≡ defined on X under
the action of ψ. Define

xθi =

{
xψ if x ∈ Xi,
x if x ∈ Xj for i �= j,

for i = 1, . . . ,m. Then θi extends to an element of Gn,r which commutes with ψ

and with θj , for all j = 1, . . . ,m.

Proof. Let Vi be the Ω-subalgebra generated by Xi, i = 1, . . . ,m. Since Vn,r =
V1 ∗ · · · ∗ Vm and the Vi are ψ invariant, we have ψ = ψ1 ∗ · · · ∗ ψm, where ψi =
ψ|Vi . Moreover ψi is an automorphism of Vi. By definition, ψi|Xi = ψ|Xi = θi|Xi ,
so θi|Xi extends to the automorphism ψi of Vi. Thus (the extension to Vn,r of)
θi= 1V1 ∗· · ·∗ψi∗· · ·∗1Vm is an automorphism of Vn,r. For i < j we have θiθj =1V1 ∗
· · · ∗ ψi ∗ · · · ∗ ψj · · · ∗ 1Vm = θjθi, and it follows that θi commutes with ψ.

Lemma 5.22. Let ψ and ϕ be regular infinite elements of Gn,r, in semi-normal
form with respect to the A-bases X and Y, respectively. Let X1, . . . ,Xm be the equiv-
alence classes of ≡ defined on X under the action of ψ. Choose a representative
xi ∈ Xi of type (B) for each i. If ψ and ϕ are conjugate, there exists a conjugator ρ
such that xiρ is a terminal or initial element in a semi-infinite Y -component of ϕ.

Proof. Let ρ′ ∈ Gn,r be a conjugator with ρ′−1ψρ′ = ϕ. We will explain how to
modify ρ′ to form another conjugator ρ satisfying the requirements of the lemma.
Lemma 5.16 asserts that xiρ′ belongs to a ϕ-orbit containing a semi-infinite Y -
component, which has the same characteristic as xi. Let yi ∈ Y 〈A〉 be the initial or
terminal element of this Y -component. Then there exists ji such that xiρ′ = yiϕ

ji ,
meaning that

yi = yiϕ
jiϕ−ji = xiρ

′ϕ−ji = xiψ
−jiρ′.

For each equivalence class Xi, define θi as in Lemma 5.21 and ρ ∈ Gn,r by

ρ =

(
n∏
i=1

θ−jii

)
ρ′.

Then θ =
∏n
i=1 θ

−ji
i commutes with ψ, so ρ−1ψρ = ρ′−1θ−1ψθρ′ = ρ′−1ψρ′ = ϕ;

furthermore for each chosen xi ∈ Xi we have

xiρ = xi

(
n∏
i=1

θ−jii

)
ρ′ = xiθ

−ji
i ρ′ = xiψ

−jiρ′ = yi.

Thus ρ is the required conjugator.
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Definition 5.23. Let ψ and ϕ be regular infinite elements in semi-normal form
with respect to X and Y and let X1, . . . ,Xm, be the equivalence classes of ≡ defined
on X under the action of ψ. We define Ri(ψ, ϕ) to be the set of pairs (x, y), where
x ∈ Xi is of type (B) and y is an initial or terminal element of a semi-infinite
Y -component of ϕ with the same characteristic as x.

Given a choice of elements (xi, yi) ∈ Ri(ψ, ϕ) for each 1 ≤ i ≤ m, let ρ0 be the
map from {x1, . . . , xm} to {y1, . . . , ym} given by xiρ0 = yi for each i. We define
R(ψ, ϕ) to be the set of all such maps ρ0 constructed in this way.

The set Ri(ψ, ϕ) is finite since the number of elements of type (B) in X and
the number of semi-infinite Y -components of ϕ is finite, so R(ψ, ϕ) is also finite.

Lemma 5.24. Given ρ0 ∈ R(ψ, ϕ), there are finitely many ways of extending ρ0

to an element ρ of Gn,r such that ϕ = ρ−1ψρ. Moreover the existence of such an
extension ρ can be effectively determined, and if such ρ exists then the images yρ
can be effectively determined, for all y ∈ X.

Proof. Throughout the proof, when we say ρ exists we mean that an extension ρ
of ρ0 to an element of Gn,r exists and satisfies ϕ = ρ−1ψρ. From Lemma 5.20, we
may effectively construct the equivalence classes Xi, and so also the sets Ri(ψ, ϕ).
First consider a single equivalence class Xi. We are given a representative element
xi ∈ Xi of type (B) and an element yi such that xiρ0 = yi, where yi is an initial or
terminal element of a semi-infinite Y -component of ϕ with the same characteristic
as xi.

Let x ∈ X of type (B). Then, by definition of ≡, we have x ∈ Xi if and only if
there exist elements xi = u0, . . . , ut = x of X , elements Γj ,∆j ∈ A∗ and kj ∈ Z

with uj+1∆j+1 = ujΓjψkj , for j = 0, . . . , t − 1. Before going any further, we show
that we may assume that uj is of type (B), for all j. Suppose not, say uj is of type
(C). Then, by Lemma 4.18, there exist k′j ∈ Z, Γ′

j ∈ A∗ and u′j ∈ X of type (B)
such that ujψk

′
j = u′jΓ

′
j . Now

uj−1Γj−1ψ
kj−1+k′j = uj∆jψ

k′j = u′jΓ
′
j∆j

and

u′jΓ
′
jΓjψ

kj−k′j = u′jΓ
′
jψ

−k′jΓjψkj = ujΓjψkj = uj+1∆j+1,

so we may replace uj by u′j . Continuing this way, eventually all uj will be of type (B).
We show, by induction on t, that there are finitely many possible values of xρ,

for a conjugator ρ ∈ Gn,r such that xϕ = xρ−1ψρ which extends ρ0. (That is,
where xiρ = xiρ0 = yi.) We also describe an effective procedure to enumerate the
set of all such elements. Suppose first that t = 1, so x = u1 and we have Γ = Γ0,
∆ = ∆1 and k = k0 such that xiΓψk = x∆. Given that ρ exists, from Lemma 5.16,
xρ belongs to a semi-infinite Y -component C of ϕ with the same characteristic as x.
Therefore (if ρ exists) there exists an element (x,w) ∈ Ri(ψ, ϕ) such that w is the
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initial or terminal element of C, as well as an integer l such that wϕl = xρ. This
implies that

w∆ϕl = (x∆)ρ = xiΓψkρ = xiΓρϕk = xiρ0ϕ
kΓ,

so

w∆ϕl−k = xiρ0Γ = yiΓ. (5.1)

Lemma 4.34 gives an effective procedure to determine whether an integer l
satisfying (5.1) exists, and if so find it. Given ρ0 and x, the integer k and the
elements Γ and ∆ are uniquely determined so, to decide whether an appropriate
value xρ exists, we may check each pair (x,w) in the set Ri(ψ, ϕ) to see if (5.1)
holds for some l or not. For each such w there is at most one l such that (5.1) has a
solution and, as Ri(ψ, ϕ) is finite, we may effectively enumerate the values w∆ϕl−k

that could be assigned to xρ. Hence the result holds if t = 1.
Now assume that t > 1 and the result holds for all x related to xi by a chain

of length at most t − 1. Then ut−1 is of type (B) and by assumption ut−1ρ may
be given one of finitely many values, and we have a procedure to enumerate these
values. Suppose then that ut−1ρ = v. Now x = um and we have Γt−1,∆t ∈ A∗

and kt−1 ∈ Z such that ut−1Γt−1ψ
kt−1 = x∆t. Applying the argument of the case

m = 1 with ut−1, Γt−1, ∆t and v in place of xi, Γ, ∆ and y, we see that a finite set
of possible values for xρ may be effectively determined. Therefore, by induction,
the result holds for all x ∈ Xi of type (B).

Finally, if x ∈ Xi is of type (C), then by Lemma 4.18 there is a zΣ in the
X-component of x, for some z of type (B) and Σ ∈ A∗, i.e. xψp = zΣ for some
integer p. Since we have already determined the possible images of all the type (B)
elements in Xi, if ρ exists we have, for each choice of zρ,

xρ = zΣψ−pρ = zρΣϕ−p

and this determines the image of the type (C) element under ρ (uniquely once we
have made our initial choice for the image of zρ).

We carry out this process on each equivalence class in turn. If the process results
in at least one possible value for each element of X , we obtain a potential extension
ρ of ρ0. For such a ρ to be a genuine extension, we need to check if ρ defines an
automorphism of Vn,r. This is the case if and only if the image Xρ of the A-basis X
is itself a basis for Vn,r, which we can effectively determine using Lemma 3.16. (Note
that Xρ need not be an A-basis — see Example 5.26 below.)

We are now able to state the main result of this section.

Proposition 5.25. Let ψ and ϕ be regular infinite elements of Gn,r in quasi-
normal form with respect to X and Y, respectively. Then ψ is conjugate to ϕ if and
only if there exists a map ρ0 ∈ R(ψ, ϕ) which extends to an element ρ of Gn,r with
ρ−1ψρ = ϕ.
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Proof. If ρ0 extends to an element ρ ∈ Gn,r with ρ−1ψρ = ϕ, then ψ is certainly
conjugate to ϕ.

Assume that ψ is conjugate to ϕ. Lemma 5.22 tells us that there exists a con-
jugator ρ such that, for each equivalence class Xi, there exists an element xi of
type (B) in Xi with yi = xiρ an initial or terminal element of a semi-infinite Y -
component of ϕ. We define ρ0 to be the map x1 �→ y1, . . . , xm �→ ym, where yi = xiρ

for each i = 1, . . . ,m. Thus, ρ0 is an element of the finite set R(ψ;ϕ). Now ρ0 is
the restriction of ρ to {x1, . . . , xm}, so it certainly extends to ρ, as required.

Example 5.26. Let n = 2, r = 1 and V2,1 be free on x = {x}. Let

Y = {xα1, xα2α
2
1, xα2α1α2, xα

2
2} and Z = {xα3

1, xα
2
1α2, xα1α2, xα2}

determine the automorphism ψ as illustrated below.

ψ :
1

2 3 4

−→
1 3 4

2

Then Y is the minimal expansion of x associated to ψ and Z = Y ψ. The only
element of x〈A〉 not in Y 〈A〉 ∪ Z〈A〉 is x, so we take X = {xα1, xα2} to be our
candidate basis for a quasi-normal form. Then X〈A〉\Y 〈A〉 = {xα2, xα2α1} and
X〈A〉\Z〈A〉 = {xα1, xα

2
1}. The X-components of the first two elements are

xα2 ∈ {xα2α
2k
1 }k≥0 and xα2α1 ∈ {xα2α

2k+1
1 }k≥0,

both left semi-infinite with characteristic (−1, α2
1). The latter two elements’ X-

components are

xα1 ∈ {xα2k+1
1 }k≥0 and xα2

1 ∈ {xα2k+2
1 }k≥0,

both right semi-infinite with characteristic (1, α2
1). Hence ψ is in quasi-normal form

with respect toX , both elements ofX are of type (B) and Mψ = {(1, α2
1), (−1, α2

1)}.
As (xα2)α2ψ = (xα1)α2 there is one equivalence class of ≡, that is X1 = X .

Let ϕ be automorphism of Examples 5.15 and 5.18. Then ϕ is in quasi-normal
form with respect to the A-basis Xϕ = {xα1, xα2α1, xα

2
2} and Mϕ = Mψ. The

initial elements of right semi-infinite Xϕ-components are xα1 and xα2
1 and the

terminal elements of left semi-infinite Xϕ-components are xα2
2 and xα2

2α1.
The set R1(ψ, ϕ) consists of the pairs (xα1, xα1), (xα1, xα

2
1), (xα2, xα

2
2) and

(xα2, xα
2
2α1). Let us choose xα1 as our type (B) representative in X1. We have

two choices for the image of xα1 under ρ0, corresponding to the two pairs
(xα1, xα1), (xα1, xα

2
1) ∈ R1. Denote these by ρ1 and ρ2, where

xα1ρ1 = xα1 and xα1ρ2 = xα2
1.

Next we determine the images of the other type (B) element xα2 of X under the
action of ρ1 and ρ2, following the proof of Lemma 5.24.
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As noted above, xα1 ≡ xα2 because (xα1)α2ψ
−1 = (xα2)α2, so in the notation

of the proof of Lemma 5.24 we have Γ = α2, ∆ = α2 and k = −1. Substituting
these values into Eq. (5.1), we wish to find l such that

wα2ϕ
l+1 = (xα1)ρiα2,

where i = 1 or 2, and w = xα2
2 or xα2

2α1. Whenever we find such an l then we set
xα2ρi = wϕl and check to see if ρi determines an automorphism. If so, we check if
ρi is a conjugator i.e. if ρ−1

i ψρ = ϕ.

Case i =1: xα1ρ1 = xα1.

(i) When w = xα2
2 we have

xα3
2ϕ

l+1 = xα1α2 ⇐⇒ xα2α1ϕ
l = xα1α2,

which has no solutions, as may be verified using the process of Lemma 4.34.
(ii) When w = xα2

2α1 we have

xα2
2α1α2ϕ

l+1 = xα1α2 ⇐⇒ xα1α2ϕ
l = xα1α2,

which has solution l = 0. Therefore we set xα2ρ1 = xα2
2α1. Now ρ1 maps X to

{xα1, xα
2
2α1}, which is not a basis of V2,1 (see Lemma 3.16). So the set map ρ1

extends to an endomorphism which is not an automorphism of V2,1.

Neither value of w results in a potential conjugator ρ1.

Case i =2: xα1ρ2 = xα2
1.

(i) When w = xα2
2 we have

xα3
2ϕ

l+1 = xα2
1α2 ⇐⇒ xα2α1ϕ

l = xα2
1α2

which has solution l = 1. Therefore we set

xα2ρ2 = xα2
2ϕ

= (xα2
2α

2
1)(xα

2
2α1α2)λ(xα3

2)λϕ

= (xα2
2α

2
1ϕ)(xα2

2α1α2ϕ)λ(xα3
2ϕ)λ

= (xα2
2)(xα1α2)λ(xα2α1)λ. (5.2)

In this case xα2
2 is in Xϕ〈A〉\W 〈A〉, where W is the minimal expansion associ-

ated to ϕ; this is why the standard form of xα2ρ2 is written using contraction
operations λ.

To define ρ2 in terms of X〈A〉, we must take an expansion of X at xα2.
We take the minimal expansion which allows us to define the map into x〈A〉;
namely {xα2α

2
1, xα2α1α2, xα

2
2}. From (5.2) we obtain

xα2α
2
1ρ2 = (xα2

2)α
2
1ϕ = xα2

2,

xα2α1α2ρ2 = (xα2
2)α1α2ϕ = xα1α2,

xα2
2ρ2 = (xα2

2)a2ϕ = xα2α1.
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We see that ρ2 maps the expansion {xα1, xα2α
2
1, xα2α1α2, xα

2
2} of X to

{xα2
1, xα

2
2, xα1α2, xα2α1} which is a basis for V2,1; so ρ2 determines an ele-

ment of G2,1. It can be verified ρ−1
2 ψρ2 = ϕ, so ρ2 is a conjugator. At this

point we could stop but we give the final case for completeness.
(ii) When w = xα2

2α1 we have

xα2
2α

3
1α2ψ

l+1 = xα2
1α2 ⇐⇒ xα1α2 = xα2

1α2,

which has no solutions.

We find one conjugating element ρ2 and we see that ψ and ϕ are conjugate via ρ2.

The algorithm for the conjugacy of regular infinite elements of Gn,r is as follows.

Algorithm 5.27. Let ψ and ϕ be regular infinite elements of Gn,r.

Step 1: Construct A-bases Xψ and Xϕ with respect to which ψ and ϕ are in
quasi-normal form (Lemma 4.28).

Step 2: Construct the equivalence classes Xi, i = 1, . . . ,m, of ≡ on Xψ

(Lemma 5.20).
Step 3: Find the initial and terminal elements of semi-infinite Xϕ-components

of ϕ, by finding the minimal expansion ofXϕ associated to ϕ (Lemma 4.9).
Step 4: Construct the sets Ri(ψ, ϕ).
Step 5: For each equivalence class Xi of ≡ on Xψ choose an element xi ∈ Xi, of

type (B).
Step 6: For each i and each pair (xi, y) of Ri(ψ, ϕ), construct a map ρi : Xi �→ Xϕ,

using Eq. (5.1), as in the proof of Lemma 5.24, if possible. In each case
check that ρi is an automorphism.

Step 7: For each m tuple ρ1, . . . , ρm of automorphisms, from the previous step,
check whether the map ρ = ρ1 ∗ · · · ∗ ρm conjugates ψ to ϕ.

6. The Power Conjugacy Problem

For a group with presentation 〈X |R〉, the power conjugacy problem is to determine,
given words g, h ∈ F(X) whether or not there exist nonzero integers a and b such
that ga is conjugate to hb in G. We may in addition require that, if the answer
to this question is “yes”, then integers a and b, and an element c ∈ F(X), are
found, such that c−1gac =G hb. We say the power conjugacy problem is decidable if
there is an algorithm which, given g and h outputs “yes” if they are conjugate and
“no” otherwise. Again, the stronger form entails the obvious extra requirements.
As before, in Gn,r we work entirely with symbols for automorphisms, ignoring the
presentation.

As in the case of the conjugacy problem, we break the power conjugacy problem
down into two cases; one for periodic elements and one for regular infinite elements.
Then, we construct an algorithm that combines the two parts.
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6.1. The power conjugacy for periodic elements

Let ψ and ϕ be periodic elements of Gn,r, of order k and m respectively, in quasi-
normal form with respect to the A-bases X and Y . To test whether there exist a,
b ∈ Z such that ψa is conjugate to ϕb, we apply Proposition 5.11 to the pair ψc,
ϕd, for all c ∈ {1, . . . , k} and all d ∈ {1, . . . ,m}.

6.2. Regular infinite elements

The first step is to compare the sets Mψ and Mψa , a ∈ Z, |a| > 1, for a regular
infinite automorphism ψ.

Lemma 6.1. Let ψ be a regular infinite element of Gn,r and let a be a non-negative
integer. Then

Mψa = {(m/d,Γq) | (m,Γ) ∈ Mψ, gcd(m, a) = d and |a| = qd}. (6.1)

Proof. Let ψ be in semi-normal form with respect to X . The X-components of ψa

are sub-sequences of the X-components of ψ, so ψa is also in semi-normal form with
respect to X . Suppose to begin with that a > 0. First we show that the right-hand
side of (6.1) is contained in the left-hand side. If (m,Γ) ∈ Mψ then there exists
an element u of Vn,r in a semi-infinite X-component for ψ of characteristic (m,Γ);
and we may assume u ∈ X〈A〉. If d = gcd(m, a), p = m/d, q = a/d and k = ma/d,
then u(ψa)p = uψmq = uΓq, (as mq has the same sign as m). If a < 0 then, from
the above, with d = gcd(m,−a), p = m/d, q = −a/d and k = −ma/d, we have
uψ−ap = uΓq. In all cases therefore u is a characteristic element of ψa. Furthermore,
if u(ψa)r = u∆, with ∆ �= 1 then, from Lemma 4.25, m|ar, which we can rewrite as
pd|qdr, so p|qr. As gcd(p, q) = 1, this implies p|r, so that |m/d| = |p| ≤ |r|. Hence
u has characteristic (m/d,Γq), with respect to ψa. As u belongs to a semi-infinite
X-component for ψa, it follows that (m/d,Γq) is in Mψa and so we have

Mψa ⊇ {(m,Γq) | (md,Γ) ∈ Mψ, d > 0, gcd(m, q) = 1 and |a| = qd}.
On the other hand, suppose that (r,∆) ∈ Mψa . Then again, there exists u ∈

X〈A〉 such that u is a characteristic element of ψa, so uψar = u∆. Thus, from
Lemma 4.25, u is a characteristic element for ψ, with characteristic (m,Γ) ∈ Mψ,
such that m|ar and ∆ = Γt, where ar = mt, t > 0. Let d = gcd(a,m), m = pd and
a = qd. Then dqr = pdt, so qr = pt and gcd(p, q) = 1, so r = pr′ and t = qt′, for
some r′, t′. However, we have u(ψa)p = uψdpq = uψmq = uΓq, and so, by definition
of (r,∆) ∈ Mψa , we see that |p| ≥ |r|, so r′ = ±1. Since a > 0, both m and r have
the same sign, so r′ = 1. It now follows that r = p = m/d and ∆ = Γq, so (r,∆)
belongs to the set on the right-hand side of (6.1). That is

Mψa ⊆ {(m,Γq) | (md,Γ) ∈ Mψ, d > 0, gcd(m, q) = 1 and |a| = qd}.
If a < 0 then the lemma follows by applying the result above to Mψ−1(−a) , as

for all θ ∈ Gn,r we have (m,Γ) ∈ Mθ if and only if (−m,Γ) ∈ Mθ−1.
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Example 6.2. Let n = 2 and r = 1 and let V2,1 be free on x = {x}. Let ϕ be the
regular infinite element of G2,1 defined by the bijection from

Y = {xα3
1, xα

2
1α2, xα1α2, xα2},

to

Z = {xα2
1, xα1α2, xα2α1, xα

2
2},

given by the following tree pair diagram.

ϕ :

1 2 3
4
−→

3 1 2 4

Then Y is the minimal expansion of {x} associated to ϕ. The minimal expansion
of {x} contained in Y 〈A〉 ∪ Z〈A〉 is X = {xα2

1, xα1α2, xα2}. X〈A〉\Y 〈A〉 = {xα2
1}

and X〈A〉\Z〈A〉 = {xα2}. The X-components of these elements are

· · · �→ xα1α2α1 �→ xα3
1 �→ xα1α2 �→ xα2

1

with characteristic (−2, α1) and

xα2 �→ xα2
2 �→ xα3

2 �→ xα4
2 �→ · · ·

with characteristic (1, α2). Hence ϕ is in quasi-normal form with respect to X and
Mϕ = {(−2, α1), (1, α2)}.

The map ϕ2 may be defined by the bijection from

U = {xα3
1, xα

2
1α2, xα1α2α1, xα1α

2
2, xα2}

to

V = {xα2
1, xα1α2, xα2α1, xα

2
2α1, xα

3
2}

given by a different tree pair diagram.

ϕ2 :

1 2 3 4
5

−→
1 3 4 2 5

Then U is the minimal expansion of {x} associated to ϕ2 and the minimal expansion
of {x} contained in U〈A〉 ∪ V 〈A〉 is X again. X〈A〉\U〈A〉 = {xα2

1, xα1α2} and
X〈A〉\V 〈A〉 = {xα2, xα

2
2}; the corresponding X-components are

· · · �→ xα3
1 �→ xα2

1, · · · �→ xα1α2α1 �→ xα1α2

with characteristic (−1, α1) and

xα2 �→ xα3
2 �→ · · · , xα2

2 �→ xα4
2 �→ · · ·

with characteristic (1, α2
2). Hence ϕ2 is in quasi-normal form with respect to X and

Mϕ2 = {(−1, α1), (1, α2
2)}, as asserted by Lemma 6.1.

Lemma 6.3 and Proposition 6.6 will allow us to find “minimal” pairs (a, b) such
that ψa and ϕb are conjugate.
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Lemma 6.3. Let ψ and ϕ be regular infinite elements of Gn,r and let c be an
integer, such that c is coprime to m, for all m ∈ Z such that (m,Γ) ∈ Mψ ∪Mϕ.
Then ψc ∼ ϕc if and only if ψ ∼ ϕ.

Proof. If ψ ∼ ϕ then it is immediate that ψc ∼ ϕc. For the converse, let ρ ∈ Gn,r be
such that ϕc = ρ−1ψcρ and observe that we may assume, without loss of generality,
that c > 0. Suppose that ψ and ϕ are in quasi-normal form with respect to A-bases
X and Y , respectively. From Lemma 6.1, Mψc = {(m,Γc) | (m,Γ) ∈ Mψ} and
Mϕc = {(m,∆c) | (m,∆) ∈ Mϕ}.

Let u be an element of Vn,r which is characteristic for ψ, with ψ-characteristic
(m,Γ). Then, from Lemma 6.1 (and its proof), u has ψc-characteristic (m,Γc) and,
as ϕc = ρ−1ψcρ, its image uρ has ϕc-characteristic (m,Γc). Hence, from Lemma 6.1
again, uρ has ϕ-characteristic (m,Γ). As gcd(c,m) = 1, there exist integers s and
t such that ms+ ct = 1. Since ψcρ = ρϕc we have, in the case where s > 0,

uψρ = uψms+ctρ = (u(ψm)s)ψctρ = uΓsψctρ = uΓsρϕct

= (uρ)Γsϕct = (uρ)ϕmsϕct = (uρ)ϕms+ct

= uρϕ.

If s < 0 then we have m(−s) + c(−t) = −1, with −s > 0 and the argument
above implies instead that uψ−1ρ = uρϕ−1. In this case, let v = uψ, so v also
has ψ-characteristic (m,Γ) and, applying the argument above to v instead of u,
consequently vψ−1ρ = vρϕ−1, from which it follows that uψρ = uρϕ. This applies
in particular to all elements of X of type (B), with respect to ψ.

Let y′ be an element of type (C), with respect to ψ; so there exists an integer
k and an element y ∈ X of type (B) such that y′ψk = yΩ. Then y′ = yΩψ−k, and
yψj has the same ψ-characteristic as y, for all j: and so is a characteristic element
for ψ. From the above then yψjρ = (yρ)ϕj , for all j. Now

y′ψρ = yΩψ1−kρ = yψ1−kρΩ = yρϕ1−kΩ = yρϕ−kϕΩ

= yψ−kρϕΩ = yψ−kΩρϕ = y′ρϕ.

Therefore, yψρ = yρϕ, for all y ∈ X , so ψ ∼ ϕ.

Definition 6.4. Let ψ be a regular infinite element of Gn,r and let a be a pos-
itive integer. Define a map ψ̂a : Mψ → Mψa by ψ̂a(m,Γ) = (p,Γα), where
d = gcd(m, a), p = m/d and α = a/d.

Example 6.5. For ϕ in Example 6.2, with a = 2, the map ϕ̂2 : Mϕ → Mϕ2 is
given by

ϕ̂2(−2, α1) = (−1, α1) and ϕ̂2(1, α2) = (1, α2
2).

From Lemma 6.1 this is a well defined map, and is surjective. In general it is not
injective. For instance if p, s and t are pairwise coprime positive integers and we have
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m1 = ps, m2 = pt and a = st, then d1 = gcd(m1, a) = s and d2 = gcd(m2, a) = t.
If, for some nontrivial Λ ∈ A∗, we have (m1,Λs) and (m2,Λt) in Mψ then both
these elements are mapped by ψ̂a to (p,Λst).

Proposition 6.6. Let ψ and ϕ be regular infinite elements of Gn,r, let a and b be
positive integers and let the images of ψ̂a and ϕ̂b be

Mψa = {(pi,Γαii ) | i = 1, . . . ,M} and Mϕb = {(qi,∆βi
i ) | i = 1, . . . , N}.

For i = 1, . . . ,M, let

(ψ̂a)−1(pi,Γαii ) = {(mi,j ,Γi,j) | 1 ≤ j ≤Mi}
and, for i = 1, . . . , N, let

(ϕ̂b)−1(qi,∆
βi
i ) = {(ni,j ,∆i,j) | 1 ≤ j ≤ Ni}.

If ψa ∼ ϕb then M = N and, after reordering if necessary, we have pi = qi and
Γαii = ∆βi

i . Moreover, there exist positive integers α, β, g, di,j , ei,k, si,j,k, ti,j,k, fi,j,k,
and Λi,j,k ∈ A∗, for 1 ≤ i ≤M, 1 ≤ j ≤Mi and 1 ≤ k ≤ Ni, such that

α =
a

g
= di,jfi,j,kti,j,k and β =

b

g
= ei,kfi,j,ksi,j,k, for all i, j, k,

and

ψα ∼ ϕβ ,

where di,j is a positive divisor of mi,j , ei,k is a positive divisor of ni,k,Γi,j = Λsi,j,ki,j,k

and ∆i,j = Λti,j,ki,j,k , and

fi′,j′,k′

∣∣∣∣∣∣
∏
i,j,k

(ti,j,kdi,j)

 /ti′,j′,k′di′,j′ ,

for all i′, j′, k′.

Proof. Assume ψa ∼ ϕb, with a, b > 0, and that ρ−1ψaρ = ϕb. From Lemma 5.16,
Mψa and Mϕb are equal, so M = N , and we may order Mψa so that (pi,Γαii ) =
(qi,∆

βi
i ), so pi = qi and Γαii = ∆βi

i . With the notation for (ψ̂a)−1(pi,Γαii ) and
(ϕ̂b)−1(qi,∆αi

i ) given in the statement of the proposition, let di,j = gcd(a,mi,j)
and ei,k = gcd(b, ni,k), so

mi,j/di,j = pi = qi = ni,k/ei,k

and let

αi,j = a/di,j , βi,k = b/ei,k,

and

Γαi,ji,j = Γαii = ∆βi
i = ∆βi,k

i,k , (6.2)

by Definition 6.4, for 1 ≤ i ≤M , 1 ≤ j ≤Mi and 1 ≤ k ≤ Ni.
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As Γαi,ji,j = ∆βi,k
i,k , by Proposition 3.9, there exist Λi,j,k ∈ A∗ and positive integers

si,j,k, ti,j,k such that Γi,j = Λsi,j,ki,j,k and ∆i,j = Λti,j,ki,j,k . Taking a power of Λi,j,k if
necessary, we may assume that gcd(si,j,k, ti,j,k) = 1. Then

Λsi,j,kαi,ji,j,k = Γαi,ji,j = ∆βi,k
i,k = Λti,j,kβi,ki,j,k , (6.3)

so si,j,kαi,j = ti,j,kβi,k. As si,j,k and ti,j,k are coprime this implies that αi,j/ti,j,k =
βi,k/si,j,k = ci,j,k ∈ Z, and αi,j = ci,j,kti,j,k and βi,k = ci,j,ksi,j,k.

Let

g = gcd({ci,j,k|1 ≤ i ≤M, 1 ≤ j ≤Mi, 1 ≤ k ≤ Ni}).
Then there exist integers fi,j,k such that ci,j,k = gfi,j,k, for all i, j, k. From
Lemma 6.1, Mψa/g consists of elements (m/p,Γα), where (m,Γ) ∈ Mψ, p =
gcd(m, a/g) and α = a/gp. Similarly, elements of Mϕb/g are of the form (n/q,∆β),
where (n,∆) ∈ Mϕ, q = gcd(n, b/g) and β = b/gq. Now g|ci,j,k and ci,j,k|αi,j
and ci,j,k|βi,k. Therefore gcd(mi,j , a/g) = gcd(mi,j , a) = di,j and similarly
gcd(ni,k, b/g) = ei,k. Thus g is coprime to

pi =
mi,j

gcd(mi,j , a/g)
=

ni,k
gcd(ni,k, b/g)

,

for all i, j, k. From Lemma 6.3, it follows that ψa/g ∼ ϕb/g.
Now

a/g = αi,jdi,j/g = ci,j,kti,j,kdi,j/g = fi,j,kti,j,kdi,j

and similarly

b/g = fi,j,ksi,j,kei,k,

for all i, j, k. Also

gcd({fi,j,k | 1 ≤ i ≤M, 1 ≤ j ≤Mi, 1 ≤ k ≤ Ni}) = 1

so, for fixed i′, j′, k′,

fi′,j′,k′

∣∣∣∣∣∣
∏
i,j,k

(ti,j,kdi,j)

 /ti′,j′,k′di′,j′ .

Corollary 6.7. The power conjugacy problem for regular infinite elements of Gn,r
is solvable.

Proof. Let ψ and ϕ be regular infinite elements of Gn,r. Suppose that ψa is conju-
gate to ϕb, for some nonzero a, b. Replacing either ψ or ϕ or both by their inverse,
we may assume that a, b > 0. Then, in the notation of the proposition above, we
have ψα ∼ ϕβ , where α = fi,j,kti,j,kdi,j and β = fi,j,ksi,j,kei,k. From the conclusion
of the theorem it is clear that there are finitely many choices for fi,j,k, si,j,k, ti,j,k,
di,j and ei,k. Hence there are finitely many possible α and β, and we may effec-
tively construct a list of all possible pairs (α, β). Having constructed this list we
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may check whether or not ψα ∼ ϕβ , using Algorithm 5.27. Hence we may decide
whether or not there exist a, b such that ψa ∼ ϕb.

The proof of Proposition 6.6 forms the basis for the algorithm for the power
conjugacy problem. Given regular infinite elements ψ, ϕ ∈ Gn,r we construct bounds
â and b̂ such that if some (positive) power of ψ is conjugate to a (positive) power of
ϕ then ψc ∼ ϕd, for 0 < c ≤ â and 0 < d ≤ b̂. Following the proof of the proposition,
if ψa ∼ ϕb, for some a, b > 0, then the inverse images ψ̂a and ϕ̂b partition Mψ and
Mϕ, so we have integers L,Mi, Ni such that

Mψ =
L⋃
i=1

{(mi,j ,Γi,j) | 1 ≤ j ≤Mi}

and

Mϕ =
L⋃
i=1

{(ni,k,∆i,k) | 1 ≤ k ≤ Ni}.

Given any Γ ∈ A∗ there exists unique Λ ∈ A∗ and r ∈ N such that Γ = Λr

and if Γ = Λ′s then s ≤ r. We denote Λ by
√

Γ and r by m(Γ). From Eqs. (6.2)
and (6.3), it follows that√

Λi,j,k =
√

Γi,j =
√

Γi =
√

∆i =
√

∆i,k

and

si,j,k ≤ m(Γi,j) and ti,j,k ≤ m(∆i,k),

for 1 ≤ i ≤ L, 1 ≤ j ≤Mi and 1 ≤ k ≤ Ni.
From Proposition 6.6 we have α = d1,1f1,1,1t1,1,1 and f1,1,1 ≤∏

(i,j,k) �=(1,1,1) di,jti,j,k. As di,j ≤ |mi,j | and ti,j,k ≤ m(∆i,k), this means that

α ≤
L∏
i=1

Mi∏
j=1

Ni∏
k=1

di,jti,j,k

≤
L∏
i=1

Mi∏
j=1

Ni∏
k=1

|mi,j |m(∆i,k)

≤
L∏
i=1

Mi∏
j=1

(
|mi,j |Ni

Ni∏
k=1

m(∆i,k)

)

≤
L∏
i=1

Mi∏
j=1

|mi,j |
Ni (

Ni∏
k=1

m(∆i,k)

)Mi

. (6.4)

Similarly

β ≤
L∏
i=1

( Ni∏
k=1

|ni,k|
)Mi

Mi∏
j=1

m(Γi,j)

Ni
. (6.5)
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Now suppose that a solution ψa
′ ∼ ϕb

′
gives rise to sub-partitions of the partitions of

Mψ and Mϕ above. Straightforward calculation shows that in this case, the bounds
on α and β obtained are again less than or equal to the right-hand sides of (6.4)
and (6.5) (calculated using the original partitions). Thus, in computing (upper)
bounds â and b̂ we may take partitions of Mψ = P1∪· · ·∪PL and Mϕ = Q1∪· · ·∪QL
with L as small as possible, subject to the constraint that, for each i such that
1 ≤ i ≤ L we have

√
Γ =

√
∆, for all (m,Γ) ∈ Pi and (n,∆) ∈ Qi. If these

partitions satisfy these properties, and this does not hold for any partition of fewer
than L subsets, (in other words the partitions are formed by gathering together
characteristics with the same root) then the bounds â and b̂ are given by

â =
L∏
i=1


 ∏

(m,Γ)∈Pi
|m|
|Qi| ∏

(n,∆)∈Qi
m(∆)

|Pi| (6.6)

and

b̂ =
L∏
i=1


 ∏

(n,∆)∈Qi
|n|
|Pi| ∏

(m,Γ)∈Pi
m(Γ)

|Qi|
. (6.7)

Example 6.8. Let n = 2 and r = 1 and V2,1 be free on {x}. Let ψ be the regular
infinite element of G2,1 of Examples 4.1 and 4.11. Then ψ is in quasi-normal form
with respect to the A-basis X = {xα1, xα2} and Mψ = {(1, α2), (-1, α1)}.

Let ϕ be the regular infinite element of G2,1 defined by a bijective map from

Yϕ = {xα1, xα2α
3
1, xα2α

2
1α2, xα2α1α2, xα

2
2}

to

Zϕ = {xα2
1, xα1α2α1, xα1α

2
2α1, xα1α

3
2, xα2}

given as illustrated below.

ϕ :
1

2 3 4
5

−→
3

4 5 1

2

Then Yϕ is the minimal expansion of {x} associated to ϕ and the min-
imal expansion of {x} contained in Yϕ〈A〉 ∪ Zϕ〈A〉 is X . We have X〈A〉\
Yϕ〈A〉 = {xα2, xα2α1, xα2α

2
1} and X〈A〉\Zϕ〈A〉 = {xα1, xα1α2, xα1α

2
2}. The X-

components of these elements are:

xα1 �→ xα1α
3
2 �→ xα1α

6
2 �→ · · · ,

xα1α2 �→ xα1α
4
2 �→ xα1α

7
2 �→ · · · ,

xα1α
2
2 �→ xα1α

5
2 �→ xα1α

8
2 �→ · · · ,

· · · �→ xα2α
6
1 �→ xα2α

3
1 �→ xα2,
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· · · �→ xα2α
7
1 �→ xα2α

4
1 �→ xα2α1,

· · · �→ xα2α
8
1 �→ xα2α

5
1 �→ xα2α

2
1

so ϕ is in quasi-normal form with respect to X and Mϕ = {(1, α3
2), (−1, α3

1)}. In
the notation above, we have partitions Mψ = P1 ∪ P2 and Mϕ = Q1 ∪ Q2 with
P1 = {(1, α2)}, P2 = {, (−1, α1)}, Q1 = {(1, α3

2)} and Q2 = {(−1, α3
1)}, so we

obtain bounds â = 9 and b̂ = 1.
Assume there exists positive integers a, b such that ψa ∼ ϕb. We may now

assume that a ≤ 9 and b = 1. The map ψ̂a : Mψ → Mψa is given by

ψ̂a(1, α2) = (1/d1, α
a/d1
2 ), ψ̂a(−1, α1) = (−1/d2, α

a/d2
1 ),

where d1 = gcd(1, a) = 1 and d2 = gcd(−1, a) = 1. Thus

Mψa = {(1, αa2), (−1, αa1)}.
The only possible choice for a making Mψa = Mϕb = Mϕ is a = 3. Applying
Algorithm 5.27 to ψ3 and ϕ we find a conjugating element ρ, given by xα1ρ = xα2

and xα2ρ = xα1.

Remark 6.9. In Corollary 6.7 the powers a and b were positive, giving us upper
bounds a ≤ â and b ≤ b̂ for the minimal powers which solve the power conjugacy
problem. Now suppose that a < 0 and b > 0. We may write ψa = (ψ−1)−a and
then −a > 0. If we apply Corollary 6.7 to (ψ−1, ϕ), we obtain a second pair of
bounds −a ≤ ā and b ≤ b̄. Observing that (m,Γ) ∈ Mψ if and only if (−m,Γ) ∈
Mψ−1 , we note that this replacement ψ �→ ψ−1 preserves the absolute value |m|
of all characteristic multipliers. Thus each of the terms |mi,j |, |ni,k|, |m| and |n| in
Eq. (6.4)–(6.7) is unchanged. We conclude that ā = â and b̄ = b̂.

The same argument applies equally well to the remaining two cases a > 0, b < 0
and a < 0, b < 0. Thus, once we have obtained â and b̂, we need only to check the
ranges 1 ≤ |a| ≤ â and 1 ≤ |b| ≤ b̂ to find minimal conjugating powers.

Example 6.10. Let ψ be as in Example 6.8 and let ϕ be as in Example 6.2. Then
Mψ = {(1, α2), (−1, α1)} and Mϕ = {(−2, α1), (1, α2)}. In the notation above,
we have partitions Mψ = P1 ∪ P2 and Mϕ = Q1 ∪ Q2 with P1 = {(1, α2)},
P2 = {(−1, α1)}, Q1 = {(1, α2)} and Q2 = {(−2, α1)}, so we obtain bounds â = 1
and b̂ = 2.

Assume there exist positive integers a, b such that ψa ∼ ϕb; with a = 1 and
b ≤ 2. The map ϕ̂b : Mϕ → Mϕb is given by

ϕ̂b(1, α2) = (1/d1, α
b/d1
2 ), ϕ̂b(−2, α1) = (−2/d2, α

b/d2
1 ),

where d1 = gcd(1, b) = 1 and d2 = gcd(-2, b) = b. Thus,

Mϕb = {(1, α2), (−2, α1)} or {(1, α2
2), (−1, α1)}.

As Mψ �= Mϕb , for b = 1 and b = 2, there is no pair of positive integers a, b such
that ψa ∼ ϕb. The same argument applies on replacing ϕ or ψ by ϕ−1 or ψ−1,
respectively, so no nontrivial power of ϕ is conjugate to a power of ψ.
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In order to solve the power conjugacy problem for general regular infinite ele-
ments of Gn,r we require an algorithm which finds all pairs (a, b), within the bounds
calculated, rather than merely deciding whether or not such a pair exists. This is the
algorithm we describe here. It constructs a set PCRI consisting of triples (a, b, ρ),
such that ρ−1ψaρ = ϕb.

Algorithm 6.11. Let ψ and ϕ be regular infinite elements of Gn,r.

Step 1: Construct A-bases Xψ and Xϕ with respect to which ψ and ϕ are in
quasi-normal form (Lemma 4.28).

Step 2: Construct the sets Mψ and Mϕ (see Definition 5.14).
Step 3: Calculate the bounds on â and b̂, using Eqs. (6.6) and (6.7).
Step 4: For all pairs a, b such that 1 ≤ |a| ≤ â and 1 ≤ |b| ≤ b̂, input ψa and ϕb to

Algorithm 5.27. If a conjugating automorphism ρ is returned, add (a, b, ρ)
to the set PCRI .

Step 5: If PCRI = ∅, output “No” and halt. Otherwise output PCRI .
Corollary 6.7 may be strengthened.

Corollary 6.12. Given regular infinite elements ψ, ϕ ∈ Gn,r there is a finite subset
PCRI of Z × Z ×Gn,r, which may be effectively constructed, such that ψa ∼ ϕb if
and only if a = cg and b = dg, for some (c, d, ρ) ∈ PCRI and g ∈ Z. Moreover, for
all (c, d, ρ) ∈ PCRI and g ∈ Z, we have ρ−1ψcgρ = ϕdg.

Proof. From Lemma 6.6 and the description of Algorithm 6.11, PCRI is a finite set
and it follows that if ψa ∼ ψb, for some positive a, b ∈ Z, then (a/g, b/g, ρ) ∈ PCRI
and in this case ρ−1ψaρ = ϕb. Replacing one or other, or both, of ψ and ϕ by their
inverses the same holds, without the constraint that a, b be positive. On the other
hand if (c, d, ρ) is in PCRI then ρ−1ψcρ = ϕd, so ρ−1ψcgρ = ϕdg, for all g ∈ Z.

6.3. The power conjugacy algorithm

We combine the algorithms of Secs. 6.1 and 6.2 to give an algorithm for the power
conjugacy problem in Gn,r. In fact in Secs. 6.1 and 6.2 we find a description of all
solutions of the power conjugacy problem for periodic and regular infinite automor-
phisms, respectively and the algorithm in this section does the same for arbitrary
elements of Gn,r.

If we are only interested in the existence of a solution to the power conjugacy
problem then we may essentially ignore the periodic part of automorphisms, as
long as the regular infinite part is nontrivial. To see this, suppose ψ and ϕ are
elements of Gn,r and we have decompositions ψ = ψP ∗ψRI , ϕ = ϕP ∗ϕRI . Assume
that we have found that VRI,ψ is nontrivial and ψaRI is conjugate to ϕbRI , a, b �= 0.
In this case, ψP and ϕP have finite-orders, m and k say, and so we immediately
have a solution ψamk ∼ ϕbmk, amk, bmk �= 0, of the power conjugacy problem.
The algorithm described below allows this type of solution but also tries to find a
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solution to the power conjugacy problem corresponding to each pair (c, d) such that
ψcP ∼ ϕdP . Thus, in Theorem 6.14, we obtain a description of all solutions to the
power conjugacy problem, for ψ and ϕ. (That is, all pairs (a, b) such that ψa ∼ ϕb.
We do not find all possible conjugators ρ.)

Algorithm 6.13. Let ψ and ϕ be elements of Gn,r.

Step 1: Run Steps 1, 2, and 3 of Algorithm 5.6.
Step 2: Input ψRI and ϕRI to Algorithm 6.11.
Step 3: If XRI,ψ is non-empty (that is, VRI,ψ is non-empty) and PCRI is empty,

output “No” and stop.
Step 4: Compute the orders k and m of ψP and ϕP . Input ψaP and ϕbP to Algo-

rithm 5.13, for all c, d such that 1 ≤ c ≤ k and 1 ≤ d ≤ m. Construct the
set PCP of all triples (c, d, ρ) found such that ρ−1ψcρ is conjugate to ϕd.
If XRI,ψ is non-empty, adjoin the triple (0, 0, θ0) to PCP , where θ0 is the
identity map of the algebra Vn,sP , of Step 3 of Algorithm 5.6.

Step 5: If PCP is empty, output “No” and stop. If PCP is non-empty and XRI,ψ

is empty output PCP and stop.
Step 6: If this step is reached then both PCP and PCRI are non-empty. For all

(α, β, ρRI) in PCRI and all pairs (c, d, ρP ) in PCP consider the simulta-
neous congruences

αx ≡ c mod k and βx ≡ d modm,

where k and m are the orders of ψP and ϕP found in Step 4. For each
positive solution x = g (less than lcm(k,m)) add (αg, βg, g, ρP ∗ ρRI) to
the set PC (which is empty at the start).

We verify that this algorithm solves the power conjugacy problem in the proof
of the following theorem.

Theorem 6.14. The power conjugacy problem for the Higman–Thompson group
Gn,r is solvable. Furthermore, given elements ψ, ϕ ∈ Gn,r, let ψP have order
k, let ϕP have order m and let l = lcm(k,m). There is a finite subset PC ⊆
Z

3 × Gn,r, which may be effectively constructed, such that ψa ∼ ϕb if and only if
(ag/h, bg/h, g, ρ) ∈ PC, where ρ ∈ Gn,r and g, h ∈ Z such that h ≡ g mod l, h|a and
h|b. In this case ρ−1ψaρ = ϕb.

Proof. Apply Algorithm 6.13 to ψ and ϕ. If there exist a, b ∈ Z such that ψa ∼ ϕb

then ψaP ∼ ϕbP and ψaRI ∼ ϕbRI . In this case let ψP and ϕP have orders k and
m, respectively and let a1, b1 ∈ Z be such that 1 ≤ a1 < k and 1 ≤ b1 < m and
a1 ≡ a mod k, b1 ≡ b modm. Then there exists ρP such that (a1, b1, ρP ) ∈ PCI .
Furthermore, from Corollary 6.12, there exists (a2, b2, ρRI) ∈ PCRI and h ∈ Z

such that a = a2h and b = b2h. Let g be such that 1 ≤ g < lcm(k,m), and
g ≡ h mod lcm(k,m) so g ≡ h mod k and g ≡ h modm. As h is a solution to
the congruences a2x ≡ a1 mod k and b2x ≡ b1 modm, it follows that g is also a
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solution to these congruences. Therefore (a2g, b2g, g, ρP ∗ ρRI) ∈ PC. As a2 = a/h

and b2 = b/h, this is an element of Z
3 ×Gn,r of the required form.

Conversely, assume (u, v, g, ρP ∗ ρRI) ∈ PC, where u = ag/h and v = bg/h, for
some a, h ∈ Z satisfying the hypotheses of the theorem. Then there exist (α, β, ρRI)
in PCRI and (c, d, ρP ) in PCP such that u = αg ≡ c mod k and v = βg ≡ d modm.
As g ≡ h mod l this implies that a = (u/g)h = αh ≡ c mod k and b = (v/g)h =
βh ≡ d modm. Therefore ψaP = ψcP ∼ ϕdP = ϕbP , by definition of PCP , and
indeed ρ−1

P ψaPρP = ϕbP . Also, a = αh and b = βh implies ρ−1
RIψ

a
RIρRI = ϕbRI , by

Corollary 6.12, so

ψa = (ψP ∗ ψRI)a = ψaP ∗ ψaRI ∼ ϕbP ∗ ϕbRI = (ϕP ∗ ϕRI)b = ϕb

and ρP ∗ ρRI is a conjugating element.

Examples which illustrate how the algorithm works on automorphisms which
are not necessarily periodic or regular infinite can be found in [26]: follow the
link to “Examples” and refer to the examples named “mixed pconj phi” and
“mixed pconj psi”.
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