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An introduction to the universal algebra approach to Higman—Thompson groups (includ-
ing Thompson’s group V) is given, following a series of lectures by Graham Higman in
1973. In these talks, Higman outlined an algorithm for the conjugacy problem; which
although essentially correct fails in certain cases, as we show here. A revised and complete
version of the algorithm is written out explicitly. From this, we construct an algorithm
for the power conjugacy problem in these groups. Python implementations of these algo-
rithms can be found in [26].
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1. Introduction

In 1965, Thompson introduced the group now called “Thompson’s group V” and
its subgroups F' < T. In doing so he gave the first examples (namely V' and T) of
finitely presented, infinite simple groups (see [11, 28]). McKenzie and Thompson [23]
later used V' to construct finitely presented groups with unsolvable word problem.
Subsequently, Galvin and Thompson (unpublished) identified V' with the automor-
phism group of an algebra V3 1, studied by Jénsson and Tarski [18]. Higman [17]
generalized this construction, defining G, , as the automorphism group of a gen-
eralization V,, , of V51, for n > 2 and » > 1. Moreover, Higman showed that the
commutator subgroup of G, , is a finitely generated, infinite, simple group, for all
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n > 2. (G, is perfect when n is even, and its commutator subgroup has index 2
when n is odd.)

The groups G, , are the “Higman-Thompson” groups of the title. There are
many isomorphic groups in this set: in fact the algebras V,,, and V,, ,  are iso-
morphic if and only if n = n’ and r = ' modn —1; so Gy, = Gy if n =0/
and r = 7/ modn — 1. Higman [17] showed that there are infinitely many non-
isomorphic groups G,,,» and gave necessary conditions for such groups to be isomor-
phic. Recently Pardo [24] completed the isomorphism classification, showing that
Higman’s necessary conditions are also sufficient: that is G,, , = G, if and only
if n =n' and ged(n — 1,r) = ged(n’ — 1, 7). Higman—Thompson groups have been
much studied and further generalized: we refer to [11, 8, 6, 22, 15, 10] for example.

In this paper, we consider the conjugacy and power conjugacy problems in
Higman-Thompson groups. We use Higman’s method, describing the groups G, ,
in terms of universal algebra. This allows us to give a detailed description of the
algorithm for the conjugacy problem; and to uncover a gap in the original algorithm
proposed by Higman. To be precise, [17, Lemma 9.6] is false, and consequently the
“orbit sharing” algorithm in [17] does not always detect elements in the same orbit
of an automorphism. The orbit sharing algorithm is crucial to the algorithm for
conjugacy given in [17], which may fail to recognize that a pair of elements of G, ,
is conjugate. Fortunately it is not difficult to complete the algorithm. We then
extend these results to construct an algorithm for the power conjugacy problem:
that is, given elements g, h in a group G decide whether or not there exist nonzero
integers a and b such that ¢ is conjugate to h®.

The power conjugacy problem though less well known than the conjugacy prob-
lem, already occurs as one of the problems in the hierarchy of decision problems
studied by Lipschutz and Miller [20]. The problem has been shown to be decidable
in, for example, certain HNN-extensions and free products with cyclic amalgama-
tion [1, 14], in certain one-relator groups [25], in Artin groups of extra large type [5],
in groups with small cancellation conditions C(3) and T(6) [4] and in free-by-cyclic
groups [7]. Cryptographic protocols based on the power conjugacy search problem
have been proposed, see for example [19], although these may be susceptible to
attack by quantum computer [16].

The third author has implemented the algorithms described in this paper in
Python [26]. In fact it was the process of testing this implementation which uncov-
ered the existence of an orbit unrecognized in [17]; and it became evident that the
algorithms of [17] were incomplete.

Note that other approaches to algorithmic problems in G, , have been devel-
oped. For example [27] proposes an algorithm for the conjugacy problem in G
based on the revealing tree pairs of Brin [8]. In [6] the same methods are used to
study the centralizers of elements of G, 1 for n > 2. Again Belk and Matucci [3]
gave a solution to the conjugacy problem in G5 ; based on strand diagrams. In
another direction, Higman’s methods were used by Brown [9] to show that all the
Higman—Thompson groups are of type F P,,. This discussion of finiteness properties
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has been extended to generalizations of Higman—Thompson groups, by Martinez-
Perez and Nucinkis [22].

In detail the contents of the paper are as follows. In order to make this account
self-contained, we begin with an introduction to universal algebra. Sec. 2, outlines
the universal algebra required, following Cohn’s account [13]. In Sec. 2.1, we intro-
duce Q-algebras; that is universal algebras with signature €. Sections 2.2 and 2.3
cover quotients of Q-algebras, varieties of (2-algebras and free Q-algebras. We use
this machinery in Sec. 3 to define the algebras V;, , and establish their basic prop-
erties, following the exposition of [17].

The groups G, are defined in Sec. 4 as the automorphism groups of V,, .. We
represent elements of G,  as bijections between carefully chosen generating sets of
the algebras V,, . This is done in two stages, beginning with the semi-normal forms
of Sec. 4.1. There are many ways of representing a given automorphism in semi-
normal form, but in Sec. 4.2 it is shown that this representation may be refined
to a unique quasi-normal form. Furthermore, an algorithm is given which takes an
automorphism and produces a quasi-normal form representation.

The solution to the conjugacy problem is based on an analysis of certain orbits of
automorphisms in quasi-normal form, and we give a full account of this analysis in
Secs. 4.1 and 4.2. Here we follow [17] except that, as pointed out above, there exist
orbits of types not recognized there, which give automorphisms in quasi-normal
form a richer structure, as described here.

Section 5 contains the algorithm for the conjugacy problem. This involves break-
ing an automorphism down into well-behaved parts. It is shown that every element
of G, decomposes into factors which are called periodic and regular infinite parts.
The conjugacy problem for periodic and regular infinite components is solved sep-
arately and then the results recombined. The decomposition into these parts is the
subject of Sec. 5.1 and here we give the main algorithm for the conjugacy prob-
lem, Algorithm 5.6. This algorithm depends on algorithms for periodic and regular
infinite automorphisms: namely Algorithm 5.13 in Sec. 5.3 and Algorithm 5.27 in
Sec. 5.4.

In Sec. 6, we turn to the power conjugacy problem. In the version considered
here the problem is, given g, h € G,, , to find all pairs of nonzero integers (a, b) such
that ¢ is conjugate to h®. Again the problem splits into the periodic and regular
infinite parts. The periodic part is straightforward, and reduces to the conjugacy
problem; see Sec. 6.1. The algorithm for power conjugacy of regular infinite elements
is Algorithm 6.13, in Sec. 6.3 and gives the main result of the paper Theorem 6.14:
that the power conjugacy problem is solvable. On input g,h € G, the algorithm
returns a (possibly empty) set S consisting of all pairs of integers (a,b) such that
g% and h® are conjugate; as well as a conjugator, for each pair.

In outline, the main steps of the algorithm for the (power-)conjugacy problem
are:

e Lemma 4.28 which computes the quasi-normal basis of a given automorphism.
e Lemma 4.30, the “component-sharing test”, as in Higman’s original algorithm.
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e Lemma 4.34, the “orbit-sharing test”, which recognizes and combines components
which belong to a single orbit.

e Algorithm 5.6 which is Higman’s solution to the conjugacy problem.

e Algorithm 6.13 which determines if two automorphisms are power conjugate.

The examples given throughout the text are used as examples in [26], from
where these and other examples may be run through the third author’s implemen-
tations of the algorithms. To find Example 2.y in [26], follow the instructions in the
documentation to install the program; then run

>>> from thompson import *

>>> f = load_example(’example x_y’)
in a Python session. The automorphism will then be available as the Python
object £.

2. Universal Algebra
2.1. Q-algebras

In this section, we review enough universal algebra to underpin the construction of
the Higman-Thompson groups in later sections. We follow [13].

Definition 2.1. An operator domain consists of a set 2 and a mapping a : @ — Nj.
The elements of  are called operators. If w € €, then a(w) is called the arity of
w. We shall write Q(n) = {w € Q] a(w) = n}, and refer to the members of Q(n) as
n-ary operations.

An algebra with operator domain (or signature) € consists of a set S, called the
carrier of the algebra, and a family of maps {¢, }weq indexed by Q, such that for
w € Q(n), ¢, is a map from S™ to S.

Following [13] we suppress all mention of the maps ¢,,, identifying ¢, with w,
and referring to any algebra with carrier S and operator domain 2 as an Q-algebra,
which we denote by (S,2). For example, a group (G,-,71,1) is a Q-algebra with
operator domain {-,7%,1} and carrier G, where - is binary, ~! is unary and 1 is
a constant. For this to describe a group, certain laws must hold between these
operations, i.e. the group axioms.

Given an Q-algebra (5,Q) and f € Q(n), we write sy ---s,f for the image of
the n-tuple (s1,...,8,) € S™ under f. We say that a subset 7' C S is closed under
the operations of Q@ (or that T is Q-closed) if, for all n > 0, for all f in Q(n) and
for all s1,...,8, € T the element s1 ---s,f is also an element of T'. Indeed, if T is
a subset of S then T is Q-closed if and only if (7, 2) is an Q-algebra: which brings
us to the next definition.

Definition 2.2. Given an Q-algebra (5, 2), an Q-subalgebra is an Q-algebra (T, §2)
whose carrier 71" is a subset of S.

The intersection of any family of subalgebras is again a subalgebra. Hence, for
any subset X of the set S we may define the subalgebra (X) generated by X to
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be the intersection of all subalgebras containing X. The subalgebra (X) may also
be defined recursively: that is (X) is the subset of S such that (i) X C (X), (i)
if y1,...,yn € (X) then y1 .-y, f € (X), for all f € Q(n) and (iii) if s does not
satisfy (i) or (ii) then s does not belong to (X). Loosely speaking we might say
that (X) is obtained from X by applying a finite sequence of operations of Q. If
the subalgebra generated by X is the whole of S, then X is called a generating set
for (S, Q).

A mapping g : A — B between two Q-algebras A = (S,Q),B8 = (5,Q) is said
to be compatible with f € Q(n) if, for all s1,...,s, € S,

(519) - (509)f = (51 snf)g-

If g is compatible with each f € €, it is called a homomorphism from A = (5, )
to B = (9,Q). If a homomorphism g from A to B has an inverse g~! which
is again a homomorphism, ¢ is called an isomorphism and then the Q-algebras
A=(5,Q),B=(5,9Q) are said to be isomorphic. An isomorphism of an algebra
A = (5,Q) with itself is called an automorphism and a homomorphism of an algebra
into itself is called an endomorphism. A homomorphism is determined once the
images of a generating set are fixed.

Proposition 2.3 ([13, Proposition 1.1]). Let g,h : A — B be two homomor-
phisms between Q-algebras A = (S,Q),B = (5',Q). If g and h agree on a generating
set for A, then they are equal.

From a family {A4;}7, (A = (5;,9Q)) of Q-algebras we can form the direct
product P = [["; A; of Q-algebras. Its set is the Cartesian product S of the S;,
and the operations are carried out component wise. Thus, if m; : S — S; are the
projections from the product to the factors then any f € € of arity n is defined on
S™ by the equation

(p1---pnf)mi = (prmi) -+ - (pns) f

where p; € S.
Let C be a class of Q2-algebras, whose elements we will call C-algebras. By a free
C-algebra on a set X we mean a C-algebra F' with the following universal property.

There is a mapping i : X — F such that every mapping f: X — A into a
C-algebra A can be factored uniquely by u to give a homomorphism from
F to A, i.e. there exists a unique homomorphism [’ : F — A such that

uf' = f.

In this case we say that X is a free generating set or a basis for F. If X is a
subset of F' then we shall always assume that p is the inclusion map. Not every
class has free algebras, but they do exist in the class under consideration here (see
Proposition 2.16).

A free product is defined similarly, replacing the set X by a collection of C
algebras. Given an indexing set I and for each ¢ € I an Q algebra A; from C the
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free product A of {4;}icr, written A = #;c1.A4;, is an Q-algebra in C satisfying the
following property.

There exist homomorphisms pu; : A; — A, for all i € I, such that for any
Q-algebra B and homomorphisms f; : A; — B, for all i € I, there exists a
unique homomorphism f’: A — B such that p; f" = f;, for all 4.

Given collections {A; }icr and {B;};cr of Q-algebras such that there exist free prod-
ucts A = x;c1A; and B = *;¢;8;, then, by definition, there exist homomorphisms
wi A — Aand pl B, — B, for all i € I. In this case, given homomorphisms
fi + Ai — By, for all i € I, the composition f;u} is a homomorphism from A; to B,
so there exists a unique homomorphism f': A — B, with p; f' = fiu}, for all i € I.
We denote f’ by *;c7fi.

2.2. Congruence on an -algebra

A relation between two sets S and R is defined to be a subset of the Cartesian
product S x R. A mapping f: S — R is a relation I'y C S x R with the properties
that for each s € S there exists » € R such that (s,r) € I'y (everywhere defined)
and if (s,r), (s,r") € 'y then r = 1’ (single valued). A relation I' C S x R has an
inverse I ™1, defined by

' ={(r,s) € RxS|(s,r) €T};
and if A C R x T is a relation then the composition I'o A of T" and A is defined by
ToA={(s,t) € SxT|(s,x) €T and (z,t) € A for some z € R}.
IfI' CSx Rand S CS we define
ST ={reR|(s,r) €T for some s € S'}.

Given a set S the identity relation 1s = {(s,s)|s € S} and the universal relation
S? ={(s,5")|s,s" € S} always exist.

An equivalence on a set S is a subset I' of S? with the properties o' C T
(transitivity): =1 =T (symmetry) and 15 C T' (reflexivity). The equivalence class
ofse Sis{s € 5|(s,s') €'} = {s}I'. Given any subset U of Sx .S, the equivalence
generated by U is

E = n{V C S x S|V is an equivalence and U C V'};
that is, the smallest equivalence E on S containing U. It follows that E is
{(a,b) € S x S| there exists ag,...,a, such that ag =a, a, =b and (a;,a;11) € U}.

Of particular interest in the study of -algebras are relations which are also
subalgebras. Firstly, if A= (S,Q) and B = (R, Q) are Q-algebrasand I' C S X R is
a relation which is closed under the operations of 2, as defined in A x B, then (T, 2)
is a subalgebra of A x B. In this case we abuse notation and say I is a subalgebra
of A x B.
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Lemma 2.4 ([13, Lemma 2.1, Chap. 1]). Let A, B,C be Q-algebras and let T'; A
be subalgebras of A x B, B x C respectively. Then T™1 is a subalgebra of B x A,T oA
is a subalgebra of A x C and if A" is a subalgebra of A, with carrier S" C S, then
(S'T, ) is a subalgebra of B.

Let S and T be sets and f : S — T a mapping between them. The image of f
is defined as ST'y, and the kernel of f is defined as

ker f = {(z,y) € 5% |af = yf}.

The latter is an equivalence on S; the equivalence classes are the inverse images of
elements in the image (sometimes called the fibers of f).

Example 2.5 (Groups). Given a group homomorphism f : G — H, the (group-
theoretic) kernel of f is a normal subgroup N; and the different cosets of N in G
are the fibers of f. So, the equivalence classes of kerf, in the definition above, are
the cosets of NV in G.

A congruence on an Q-algebra A = (5,() is an equivalence on S which is also a
subalgebra of A? i.e. an equivalence I' C S x S which is Q-closed. From the above,
14 and A? are congruences on A. Given any subset U C S x S the congruence
generated by U is

C= ﬂ{V C S x S|V isa congruence and U C V}.

It follows that C'is the smallest congruence on A containing U.

Let A be an Q-algebra. By definition a congruence is an equivalence which
admits the operations w (w € 2). Now each n-ary operator w defines an n-ary
operation on A:

(a1y...,ap) — ay - -apw for ay,...,a, € A (2.1)

By giving fixed values in A to some of the arguments, we obtain r-ary operations
for 7 < n. In particular, if we fix all the a; except one, say the ith, we obtain, for
any n — 1 fixed elements ay,...,a,-1 € A, a unary operation

T a1 Q1T Ay W5 (2.2)

and this applies for all i € {1,...,n}. We say that the operation (2.2) is an elemen-
tary translation (derived from € by specialization in A). Given a finite sequence
Ti,...,Tn Of elementary transformations the composition 7 =7 0--- 07, is also a
unary operation on A, which we call a translation. (In particular we allow n = 0 in
this definition, so the identity map on A is a translation.)

Proposition 2.6 ([12, Proposition 6.1, Chap. 6]). An equivalence q on an
Q-algebra A is a congruence if and only if it is closed under all translations. More
precisely, a congruence is closed under all translations, while any equivalence which
1s closed under all elementary translations is a congruence.
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Remark 2.7. If U C S x S, then the congruence generated by U can be seen to
consist of pairs (a,b) € S x S such that there exist m > 0, ag,...,a,, € S, and a
translation 7 with

® ag =a, a,, =b and
o (a;,ait1) = (WiT, ui+17),

where either (u;,ui+1) € U, (ujy1,u;) € U or u; = u;+q. That is, there exist
815y 8n-1 €S, Ug, ..., Uy €S, and w € Q(n) such that (u;,u;r1) € UUU TULg
and setting

a; = (81,...,ijl,ui,8j7...,8n,1)w7
for 0 <i < m, we have a = ag and b = a,,.

The next two theorems explain the significance of congruences for 2-algebras
and will be used in the following section on free algebras and varieties.

Theorem 2.8 ([13, Theorem 2.2, Chap. 1]). Let g : A — B be a homomor-
phism of Q-algebras. Then the image of g is a subalgebra of B and the kernel of g
is a congruence on A.

Theorem 2.9 ([13, Theorem 2.3, Chap. 1]). Let A be an Q-algebra and q a
congruence on A. Then, there exists a unique Q-algebra, denoted A/q, with carrier
the set of all g-classes such that the natural mapping v : A — A/q is a homomor-
phism.

The homomorphism v in the previous theorem, which maps an element s of the
carrier of A to its g-equivalence class, is called the natural homomorphism from A
to A/q. The algebra A/q is called the quotient algebra of A by q.

Example 2.10. Given a group G and a normal subgroup N of G, the natural
mapping G — G/N is a homomorphism.

2.3. Free algebras and varieties

Let X = {x1,22,...} be a non-empty, finite or countably enumerable set, called an
alphabet, and Q an operator domain, with Q N X = (). We define an Q-algebra as
follows. An Q-row in X is a finite sequence of elements of 2 U X. The set of all
Q-rows in X is denoted as W (£2; X). The length of the Q-row w = wy - - - w,, (where
w; € QU X) is defined to be m and is written as |w|. The carrier of our Q-algebra
is W(Q; X), the set of Q-rows.

We define the action of elements 2 on W (£2; X) by concatenation. First observe
that if v and v are Q-rows then the concatenation uv of w with v is also an Q-row,
and this may be extended to the concatenation of arbitrarily many Q-rows in the
obvious way. For f € Q(n) and uq,...,u, € W(; X), we define the image of the
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n-tuple (uq,...,u,) € W(, X)" under the operation f to be the Q-row uy - - - u, f.
By abuse of notation we will refer to W (£2; X') as an 2-algebra.

The alphabet X C W(; X) and we call the subalgebra generated by X the Q-
word algebra on X, denoted Wq (X). Its elements are called Q-words in the alphabet
X. There is a clear distinction between Q2-rows that are 2-words and those that are
not. For example, if f is a binary operation then

rivaxs fraff = (x1, (w2, 23)f, 24) ) f

is a Q-row which is also an Q-word, whereas x1 f fro fxs is an (-row which is not
an Q-word.

Definition 2.11 ([13, Chap. 1]). We define the walency of an Q-row w =
wy Wy, (w; € QUX) as v(w) = >0, v(w;) where

( ) 1, if w; € X,
v\w; ) =
1 —arity(w;), if w; € Q.

Proposition 2.12 ([13, Proposition 3.1, Chap. 1]). An Q-row w = wy -+ wp,
in W(Q; X) is an Q-word if and only if every left-hand factor u; = wy -+ w; of w
satisfies

v(u;)) >0 fori=1,...,m and ov(w)=1.

Moreover, each Q-word can be obtained in precisely one way by applying a finite
sequence of operations of Q to elements of X.

Let A be an Q-algebra. If in an element w of Wq(X) we replace each element
of X by an element of A we obtain a unique element of A. For |w| = 1, this
is clear, so assume |w| > 1 and we will use induction on the length of w. We
have w = uy - unf (f € Q(n), u; € Wq(X)), where, by Proposition 2.12, the u;
are uniquely determined once w is given. By induction each w; becomes a unique
element a; € A, when we replace the elements of X by elements of A. Hence w
becomes aj - - - a,, f; a uniquely determined element of A.

This establishes the next theorem.

Theorem 2.13 ([13, Theorem 3.2, Chap. 1]). Let A be an Q-algebra and let
X be a set. Then any injective mapping 6 : X — A extends, in just one way,
to a homomorphism 0 : Wq(X) — A. That is, Wa(X) is a free Q-algebra, freely
generated by X.

Corollary 2.14 ([13, Corollary 3.3, Chap. 1]). Any Q-algebra A can be
expressed as a homomorphic image of an Q-word algebra Wq(X) for a suitable
set X. Here X can be taken to be any set mapping onto a generating set of A.

By an identity or law over  in X we mean a pair (u,v) € Wq(X) x Wn(X)
or an equation u = v formed from such a pair. We say that the law (u,v) holds
in the Q-algebra A or that A satisfies the equation u = v if every homomorphism
Wa(X) — A maps u and v to the same element of A. This correspondence between
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sets of laws and classes of algebras establishes a pair of maps, with the following
definitions.

e Given a set ¥ of laws over {2 in X, form Vo(X), the class of all (2-algebras
satisfying all the laws in X. This class V(X)) is called the variety generated by
3.

e Given a class C of Q-algebras we can form the set q = q(C) of all laws over 2 in
X which hold in all algebras of C.

Thus we have a pair of maps Vo and q; relating each variety of 2-algebras to a
relation g on W (X) and vice-versa. We shall see below that ¢(C) is a congruence,
but first we make a further definition.

A subalgebra of an Q-algebra A is called fully invariant if it is mapped into
itself by all endomorphisms of A. A congruence I" on A is said to be fully invariant
if (u,v) € T implies (uf,v0) € T, for all endomorphisms 6 of A. The fully invariant
congruence generated by I" is

I= ﬂ{V |V is a fully invariant congruence and I' C V'}.

It follows that 7 is the smallest invariant congruence on A generated by I'.

We claim that if C is a class of Q-algebras then q(C) is a fully invariant con-
gruence on Wq(X). To see that q(C) is a congruence, note that in every class C of
Q-algebras we have the following: u = w for all u € Wq(X); if u = v holds then
so does v = u; and if v = v and v = w then also v = w. Further, if u; = v; for
it =1,...,n are laws holding in A and if w € Q(n), then u; - upw = vy -+ VW
holds in A. Hence q(C) is indeed a congruence.

To see that ¢q(C) is a fully invariant congruence, let (u,v) € q(C) and let 6 be any
endomorphism of Wq(X). If A € C and « : W (X) — A is any homomorphism,
then so is fa, hence ufa = vla. Thus the law uf = v6 holds in A, so (uf,v8) € q(C)
and thus q(C) is a fully invariant congruence. Cohn shows in addition that the map
Vq is a bijection with inverse ¢, and deduces the following theorem.

Given sets S and T and a relation I' from S to T, we may use I' to define a
system of subsets of S, T, as follows. For any subset X of S we define a subset X*
of T' by

X ={yeT|(z,y)eTtorallz € X} = ﬂ{x}F,
zeX
and similarly, for any subset Y of T" we define a subset Y* of S by
Y*={zeS|(x,y) eTlorallyecY}= ﬂ {y}r 1.
yey
We thus have mappings X +— X* and Y +— Y™ of the power sets of S and T with

the following properties:

X, CXo= X DXS, YiCYy= Yy DYy, (2.3)
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XCX*™, YCYy™, (2.4)

A pair of maps X +— X*, from the power set 2° of S to the power set 27 of T', and
Y — Y*, from 27 to 29, satisfying (2.3)(2.5) is called a Galois connection.

Theorem 2.15 ([13, Theorem 3.5, Chap. 1]). Let W = Wq(X) be the Q-
word algebra on the alphabet X. The pair of maps ¥ — Vqo(X) and C — q(C)
forms a Galois connection giving a bijection between wvarieties of Q-algebras and
fully invariant congruences q on Wq(X).

Proposition 2.16 ([13, Proposition 3.6, Chap. 1]). Let V be a variety of -
algebras and q the congruence on Wq(X) (the Q-word algebra generated by X) con-
sisting of all the laws on V i.e. the fully invariant congruence q(V). Then Wq(X)/q
is the free V-algebra on X.

Suppose ¥ is a set of laws over © in X and let V = Vq(X) and q = q(V). Then
Y C q and, from Proposition 2.16, q is a fully invariant congruence and Wq(X)/q
is the free V-algebra.

Now let p be the fully invariant congruence generated by 3. Then, as ¥ C q
and q is a fully invariant congruence, we have p C q. Let A = Wq(X)/p. Then A
is an -algebra, in which every law of ¥ holds (as ¥ C p). Thus A is a V-algebra.
Then, from Proposition 2.16, the natural map X — A extends to a homomorphism
Wa(X)/q — A. Tt follows that q C p. Therefore p = q = q(V). We record this as a
corollary which we shall use in Sec. 3 to construct Higman’s algebras V;, ..

Corollary 2.17. Let ¥ be a set of laws over Q in X, let V =V (X) and q = q(V).
Then q is the fully invariant congruence generated by 3.

3. The Higman Algebras V,, ,

In this section, we define the algebras which Higman called V,, .. Let n > 2 be
an integer and let A be an Q-algebra, with carrier S and operator domain Q =
{A\ a1,...,an},such that a(a;) = 1, fori = 1,...,n and a(\) = n. We call the n-ary
operation A : S — S a contraction and the unary operations «; : S — S descending
operations. We define a map « : S — S™, which we shall call an expansion, by

va = (vag, ..., vap),

for all v € S. For any subset Y of S, a simple expansion of Y consists of substi-
tuting some element y of Y by the n elements of the tuple ya. A sequence of d
simple expansions of Y is called a d-fold expansion of Y. A set obtained from Y
by a d-fold expansion, d > 0, is called an expansion of Y. For example, if x € S
then {xaq,...,za,} is the unique simple expansion of {z} and the 2-fold expan-
sions of {z} are the sets {zay,...,xa;_1, 000, ..., T, TQi41, ..., Ty}, fOr
1 < i<n. Every d-fold expansion of Y has |Y| 4+ (n — 1)d elements. Similarly, a
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simple contraction of Y consists of substituting n distinct elements {y1,...,y,} € Y
by the single element (y1,. .., ¥y,)\. A set obtained from Y by applying a finite num-
ber of simple contractions is called a contraction of Y.

From now on in this paper, € is fixed as above. Let x be a non-empty set and
recall that the Q-word algebra Wq(x) is the free Q-algebra on x.

Definition 3.1. Let X, be the set of laws over € in x:

(1) for all w € Wq(x), wal = w, (or explicitly wa; - - wa, A = w),
(2) for all (wy,...,w,) € Wa(x)" and i € {1,...,n}, w1 - wpyAay = w;.

That is,

Y, = {(waq - wap A\, w) |w € Wo(x)}

U U{(w1 Cwp Ay, w;) |w; € Wa(x)}.
i=1

Let V,, = Vq(2,,) the variety of Q-algebras which satisfy X, and let g = q(V,,).

From Proposition 2.16 and Corollary 2.17, it follows that q is the fully invariant
congruence on Wq(x) generated by ¥,, and Wq(x)/q is the free V,-algebra on x.

Definition 3.2. Let x be a non-empty, finite or countably enumerable set of cardi-
nality » and n > 2 an integer. Then V,, ,.(x) is the free V,,-algebra Wq(x)/q, where
q=q(V,) and V,, = Vo(X,).

When no ambiguity arises we refer to V,, ,(x) as Vj, .

Remark 3.3. In [17, Sec. 2] Higman defines a standard form over x to be one
of the finite sequences of elements of x U{ay, ..., a,, A} specified by the following
rules.

(i) oy, --- a4, is a standard form whenever £k > 0, ¢ € x and 1 < i; < n for

ji=1,... k.
(ii) If weq,...,w, are standard forms then so is wy - - - wy, A, unless there is a stan-
dard form wu such that w; = uay; for i =1,...,n.

(iii) No sequence is a standard form unless this follows from (i) and (ii).
We define the descending operations asq, ..., a, by the rules
(T, « -y, )0y = Ty, - QG Qg
(w1 - wp Ny = w;
for i € {1,...,n}. The contraction operation A is defined by

(W1, .oy W)X = w1 -+ - WA,
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unless there is a standard form u such that w; = ua; for i = 1,...,n in which case
(Wi, ..y wp)A = (uaq, ..., ua,)\ = u.

These operations turn the set of standard forms into an {2-algebra. Higman
then goes on to prove that this is a free V,-algebra, freely generated by x ([17,
Lemma 2.1]). This follows in our case from the definition above, and the remarks
following it, together with Lemma 3.4 below.

Lemma 3.4. Let U be an equivalence class of the congruence q on Wq(x). Then
there exists a unique minimal length element u in U. The unique minimal length
elements of equivalence classes are precisely the standard forms of Higman.

To prove Lemma 3.4, one can use a standard argument which proves a statement
of this form in an algebra of an appropriate type. Details may be found in [2,
Lemma 2.4.5].

Let y be the minimal length representative of its equivalence class in V,, , i.e.
let y be a standard form. Then the length of the equivalence class of y is the length
of y, denoted |y|, and the A-length of the equivalence class of y is the number of
times the symbol A\ occurs in y.

Now that we have a concrete description of the free algebra V,, , in the variety
Vn, we recall those results of [17, Sec. 2], required in the sequel.

Lemma 3.5 (cf. [17, Lemma 2.3]). Let B be a basis of V,, »(x).

(1) Every expansion of B is a basis of V, »(x).
(2) Every contraction of B is a basis of V, »(x).

Proof. (1) Let Y be a d-fold expansion of B, where d > 0. Arguing by induction,
we assume that every d-fold expansion of B is a basis of V;, , and show that any
simple expansion of Y is also a basis. Let y € Y and let Y’ be the simple expansion

V= ¥\{y}) U{yar,...,yan}.

Since y = yai - - - yap A, the set Y’ generates V,, ;.. It remains to show that Y’ is a
basis for V,, ,.

Given A € V,, and amap 0 : Y/ — A, we shall show that there is a unique
homomorphism 6 : V,,,, — A extending 6. First, define 6* from Y to A by y/'0* =
y'0, for vy € Y\{y}, and y0* = ya16-- - ya,0). As Y is a basis, there is a unique
homomorphism 6* from Vi,r to A extending 6*. Now

(yai)0* = (Y0 ) = (0" )y = (yar6 - - -y, 0Ny = yay 6.

Hence #* also extends 6. Furthermore, any other homomorphism which extends 4
must equal 6%, since any such map must be defined on Y in the same way as 6*.

(2) This is proved in the same way as (1). m|
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The final statement of Corollary 3.13 forms a partial converse to this lemma,
for finite bases. Mostly we work with bases for V,, ,(x) which are expansions of x,
so we make the following definition.

Definition 3.6. Let A = {aq,...,a,} C Q. An A-basis of V,, ,(x) is an expansion
of x.

If A= (5,9Q) is an Q-algebra with carrier S then we may form the A-algebra
(S, A) and the {A}-algebra (S, {\}), where the elements of A and {\} have actions
inherited from A. We call these, respectively, the A-algebra and {\}-algebra of A.
A subset U of V,, , is said to be A-closed if uc; € U, for all a; € A, and an A-closed
subset is called an A-subalgebra of (the A-algebra of) V;, ,. Similarly W C V,, .
is called a {A}-subalgebra (of the {A}-algebra of V;, ) if it is {A\}-closed: that is if
wA € W, for all w € W.

Definition 3.7. Let Y be a subset of V,, .. The A-subalgebra generated by Y is
denoted Y (A). The {\}-subalgebra generated by Y is denoted Y (\).

The free monoid on a set L is denoted L*. If Y is a subset of V), .(x) then
YA* = {yI'|y € Y,T' € A*} is A-closed, and it follows that Y(4) = Y A*. If in
addition Y C x(A), then yI" is a standard form for all y € ¥ and I" € A*. In the
sequel we write Y (A)(\) for (Y (A))(N).

Lemma 3.8. Let B be an A-basis and Y a finite basis for V, .(X). If B C Y(A)
then B is an expansion of Y.

Proof. Since Y is finite, there exists an expansion of Y contained in B(A). Let d
be minimal such that there is a d-fold expansion of Y contained in B({A), and let W
be such a d-fold expansion. Each w € W is of the form w = bI', for some b € B and
I'e A*. As B C Y(A) we have b = yA, for some y € Y and A € A*; so w = yAT.
Also, as w € W, there exists ¢’ € Y such that w = y'I"”, as part of an expansion of
Y. As Y is a basis it follows that y = ¢’ and AT' =T".

Suppose that I' # 1, so that I' = I'gay;, for some o € A and I'o € A*. As W is
an expansion of Y it follows that yATga; € W, for all i € {1,...,n}. Furthermore
yAT'y € B{A), so the union

W' = (W\{yAFOOZ»L | 1 << Tl}) U {yAF()}

is contained in B(A). Now W' is a simple contraction of W, so W’ is a basis
by Lemma 3.5. But W' is a (d — 1)-fold expansion of Y, which contradicts the
minimality of d. SoI' =1 and w € B, and hence W C B.

Conversely, if b € B then b = yI', for some y € Y and I' € A*. So either bA =
yLA € W for some A € A*, or yI'o = w € W, where I' = I'gI';. In the first case,
bA = w € B implies w = b and A = 1. In the second case, b = yI' = yI'1T'g = wl'g,
with w € B, so again w =0 and I'g = 1. Thus B C W. O
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A word I € A* is called primitive if it is not a proper power of another word.
Explicitly, this means that if ' is nontrivial and T' € {A}*, for some A € A* then
r=A.

Proposition 3.9 ([21, Proposition 1.3.1, Chap. 1]). IfT"™ = A™ with T, A €
A* and n,m > 0, there exists a word A such that T';,A € {A}*. In particular, for
each word I' € A*| there exists a unique primitive word A such that T' € {A}*.

Proposition 3.10 ([21, Proposition 1.3.2, Chap. 1]). Two words I', A € A*
commute if and only if they are powers of the same word. More precisely, the set of
words commuting with a word I' € A* is a monoid generated by a single primitive
word.

Lemma 3.11 ([17, Sec. 2, Lemma 2.2]). Let Y be a subset of V,,, and let W
be the 2-subalgebra of Vi, . generated by Y. Then

(1) W =Y (A)\) and
(2) for all w € W, the set w{AY\Y (A) is finite.

Proof. (1) Let w € W. Then there exists a finite subset Yy of ¥ such that w
belongs to the )-subalgebra Wy of V,, . generated by Y. Let Z be an expansion
of x such that |Z| > |Yy|. Choose a surjection § of Z onto Yy. As V,, , is freely
generated by Z we may extend 8 to a homomorphism from V;,, to Wy. Let wq
be the preimage of w under this homomorphism and let [ be the A-length of the
standard form of wy over Z. By a straightforward induction on [ it is apparent that
wo € Z{A)(\). Hence the image w of wg in Wy belongs to Yo(A)(\) C Y{A)(N), as
required.

(2) As in the previous part of the proof, we may assume that W is freely generated
by Y. Let w € W and let [ be the A-length of the standard form of w over Y. Then
wa, -+ € Y{A), whenever r > [. Hence, the only elements of the set difference
w(AY\Y (A) are those of the form way, - - - «;, with r < [, and there are only finitely
many of these since we only have n choices for each «;. O

Lemma 3.12 ([17, Sec. 2, Lemma 2.4]). Let x be a set of sizer > 1 and let
X C Vo r(x) be an expansion of x. If U is a subset of V, »(x) contained in X (A),
then the following are equivalent.

(1) U= X(A)NY(A), for some generating set' Y of V, .
(2) U is A-closed and X {A)\U is finite.
(3) U= Z(A) for some expansion Z of X.

Moreover, if Y in statement (1) is a finite basis for V,, (x) then Z in statement (3)

is an expansion of Y.

Proof. First, let U = X(A) N Y (A). Since U is the intersection of A-closed sets,
it is also A-closed. By Lemma 3.11, X (A)\Y (A) is finite and therefore X (A)\U is
finite. So (1) implies (2).
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Second, assume that U is A-closed and X (A)\U is finite. We will prove state-
ment (3) by induction on the size of | X{A)\U|. If | X (A)\U| = 0, then statement
(3) holds with Z = X. Otherwise, |X(A)\U| > 0 and we choose an element
w € X(A)\U whose length |w| is maximal. Then the set U* = U U {w} is A-closed
and | X (A)\U*| = | X(A\U| — 1.

By induction, there is an expansion Z* of X such that U* = Z*(A). The element
w belongs to Z*, otherwise w would have the form w = za;, - - a;,, where z € Z*
and ¢ > 0, and hence z € U*\{w} = U. However, U is A-closed and so this would
imply that w € U, a contradiction. If we take

Z = (Z"\{w}) U{wa; |1 <i < n},

then this is again an expansion of X and by the choice of w we have wa; € U, for
all 7. Therefore U = Z(A) and (2) implies (3).

For the last implication: if U = Z(A) for some expansion Z of X, then U =
X(A)NY(A), with Y = Z, and so (3) implies (1).

Finally, let U = X(A4) N Y(A) as in statement (1), so that U = Z(A4) by
statement (3). In particular this means that Z C Y (A). As Z is an expansion of X,
it is also an expansion of x; then Lemma 3.8 tells us that Z is a basis of V,, »(x).
Now suppose that Y is a finite basis. Apply Lemma 3.8 to see that Z is an expansion
of Y. O

Corollary 3.13 (cf. [17, Corollary 1, p. 12]). Let B and C be finite bases
of Vor(x). Then B and C have a common expansion Z, which may be chosen
such that Z{A) = B(A) N C(A). In particular, every finite basis of V;, (x) may be
obtained from x by an expansion followed by a contraction.

Proof. Let f be the homomorphism from V;, ,.(x) to V,, |5|(B) defined by mapping
be BCV,,(x)tobeV, p(B), forall b € B. As this is a bijection between
bases, f is an isomorphism. Let C" = Cf, so C' is a basis for V,, |5/(B). From
Lemma 3.12, B and C’ have a common expansion Z’ such that B(A) N C'(A) =
Z'(A). Then B and C have common expansion Z = Z'f~1, and the remainder of
the first statement of the lemma follows. The final statement follows on taking B
to be an arbitrary finite free generating set and C' = x. |

Corollary 3.14 ([17, Corollary 2, p. 12]). V,,, = V, s if and only if r
smodn — 1.

Proof. If r = s modn — 1 then it follows from Lemma 3.5 that V,,, = V, ;.
Conversely, let § be an isomorphism from V,, .(X) to V, s(Y), where X and Y
are sets of size r and s, respectively. Then X6 is a basis of V, s(Y) of size r.
From Corollary 3.13, there is a common expansion Z of X0 and Y. If Z is a d-fold
expansion of X6 and an e-fold expansion of Y then r+(n—1)d = |Z| = s+(n—1)e,
so r = s mod (n — 1), as claimed. m|
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We could henceforth restrict to V;, ,, where 1 <r < n — 1. However, we do not
need to do this for what follows here, and it is convenient to allow arbitrary positive
values of r, and multiple instances of the same algebra.

Definition 3.15. Let u, v be elements of V,, ;.. Then, u is said to be a proper initial
segment of v if v = ul' for some nontrivial I' € A*. If u = v or w is a proper initial
segment of v then wu is called an initial segment of v .

Lemma 3.16 ([17, Sec. 2, Lemma 2.5(i)—(iii)]). Let B be an A-basis of Vi, »
and V' a subset of B(A).

(1) If B and V are finite, then V is contained in an expansion of B if and only if
the following condition is satisfied:

no element of V is a proper initial segment of another. ()

(2) If B and 'V are finite, then V is an expansion of B if and only if (1) is satisfied
and for each uw € B(A) there exists v € V' such that one of u,v is an initial
segment of the other.

(3) V is a set of free generators for the Q-subalgebra it generates if and only if (1)
1s satisfied.

Proof. (1) If V is contained in an expansion of B then, using Lemma 3.5(1), (f)
is satisfied.
Suppose V satisfies () and write

U = B(A)\{proper initial segments of elements of V'}.

Then (t) implies that V' C U. Also, U is A-closed and B(A)\U consists of initial
segments of the elements of the finite set V', so it is finite. Thus, by Lemma 3.12,
there is an expansion Z of B such that U = Z(A). Therefore, U C Z(A), and this
implies that V' C Z (for an element of Z(A)\Z has a proper initial segment in
Z C U so it cannot be in V' by the definition of U). Hence, V' is contained in an
expansion of B.

(2) If V is an expansion of B then (}) is satisfied and for each u € B(A) there exists
v € V such that one of u, v is an initial segment of the other.

Suppose V satisfies (f) and for each u € B(A) there exists v € V' such that one
of u, v is an initial segment of the other. By part (1), V' is contained in an expansion
Z of B. It V # Z then there is an element z € Z\V and hence by the hypothesis
there exists v € V such that one of v or z is an initial segment of the other. But
no element of Z can be an initial segment of another, so this is a contradiction and
hence V = Z.

(3) If V is a set of free generators for the {2-subalgebra it generates then () is
satisfied.

Suppose (}) is satisfied. If V' is not a free generating set then the same is true of
some finite subset V5 and clearly (}) is also satisfied with V' replaced by Vj. Then
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Vo C Bp(A) for some finite subset By of B. As (f) holds, it follows from part (1)
that Vp is a subset of an expansion Zy of By. However, this means that V4 is a
subset of a basis of V,, ., a contradiction. O

Corollary 3.17. Let Y; be a finite basis for V, ., for i = 1,...,m. Then there
is a unique minimal common expansion Z of all the Y;, and Z satisfies Z({A) =

iz, (Yi(4)).

Proof. For m = 2, from Corollary 3.13 we have a common expansion Z of Y7 and
Y5 such that Z(A4) = Y1 (A)NY2(A). Furthermore, if W is a common expansion of Y3
and Y5 then, from Lemma 3.16, W C Z(A), which implies that W is an expansion
of Z.

For m > 2, let Z(A) = ("5 (Yi(A)) and V = Z(A) NY,,(A), where we assume
inductively that Z is the unique minimal expansion of Y7, ...,Y,,_1. From the pre-
vious paragraph there exists a unique minimal expansion W of Z and Y, such that
W(A) = V. It follows that the result holds for Y7,...,Y;, and hence by induction
for all m. .

Corollary 3.18. Let Y be a finite basis and let B be an A-basis of Vy r(x). If
Y C B(A) then'Y is an expansion of B : i.e. Y is an A-basis.

Proof. As Y C B(A) and Y is a basis, Y satisfies (f) from Lemma 3.16(3). If
u € B{A) then u € Y(A)(\), so for some I';) A € A* and y € Y we have ul' = yA.
As u € B(A) and y € Y C B(A) there exist b,b’ € B and A,A" € A* such that
u = bA and y = b'A’, so bAT = ¥’A’A, and therefore b = b’. Thus DAT = bA'A,
so either v = DA is an initial segment of y = bA’, or vice-versa. Hence, from
Lemma 3.16(2), Y is an expansion of B. m|

Lemma 3.19 ([17, Sec. 2, Lemma 2.5(iv)]). Let B be an A-basis of V,, .. Let
Y and Z be d-fold expansions of B, for d > 1. If Y # Z then some element of Y is
a proper initial segment of an element of Z.

Proof. If no element of Y is a proper initial segment of an element of Z then, from
Corollary 3.13, Y C Z(A). Then Lemma 3.16 implies that Y is an expansion of Z.
However, Y and Z are both d-fold expansions of B and thus Y = Z. This completes
the proof. O

Lemma 3.20. Let u € V,,, and let d be a non-negative integer.

(1) If v € Vi then u = v if and only if ul' = oI, for all T € A* of length d.
(2) If S is an Q-subalgebra of V,, » then v € S if and only if ul' € S, for allT € A*
of length d.

Proof. (1) If u = v then uI' = oI for all T" € A* of length d.
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We shall show that given d > 0 we have
u,v € V,,p satisfy ul'’ = oI for all ' € A" of lengthd = uw=v. ()

If d = 0 this holds trivially; to proceed we use induction on d. Our hypothesis is
that for all d’ such that 0 < d’ < d, the implication (*) holds with d’ instead of d.
Suppose then that u,v € V,, , and ul’ = oI for all I" of length d. We may uniquely
write I' = Aq;, where 1 < i < n and A € A* has length d — 1. Write uA as a
contraction uA = uAay ... uAa,A. Each string Aoy has length d, so uAa; = vAa;
for each j. Then the contraction above is equal to vAaq; ...vAa, A = vA, and so
uA = vA.

Now apply this argument to all strings I' of length d. In doing so we will use
every length d — 1 string A (n times), and so uA = vA for every A of length d — 1.
By the inductive hypothesis we conclude u = v.

(2) The proof is similar to that of part (1). m|

4. The Higman—Thompson Groups G,

In this section we define the groups which form the object of study in this paper.
Throughout the remainder of the paper, we assume that n > 2, and that V,, , =
Vor(x) = Wa(x)/q, where x = {x1,...,2,}. When r =1 we let x = {z}.

When we discuss automorphisms of V;, , we assume that they are given by listing
the images of a (finite) basis of V,, .. For instance, let ¢ € V,, . be defined by the
bijection ¢ : Y — Z, where Y and Z are bases of V,, ,. If we expand y € Y to
form Y = Y\{y} U{yaa,...,ya,}, the result Y’ is also a basis by Lemma 3.8. As
yo; v = yay; = zay for i = 1,...,n, we see that the automorphism 1 induces an
expansion Z’ of Z such that Y’¢p = Z’. Thus, if Y and Z are not expansions of
x, we can find Y’ and Z’ = Y'4 contained in x(A) and redefine ¢ in terms of Y’
and Z’. In other words, we may always describe an automorphism by a bijection
between A-bases.

As bijections between bases are not particularly easy to read, we represent
automorphisms using pairs of rooted forests. An n-ary rooted tree is a tree with a
single distinguished root vertex of degree n, such that all other vertices have degree
n-+1or 1. If a vertex v is at distance d > 1 from the root then the n vertices
incident to v and not on the path to the root are its children. Vertices of degree 1
are called leaves. An n-ary rooted tree is said to be A-labeled if the edges joining a
vertex v to its n children are labeled with the elements a; € A, so that two edges
joining v to different children are labeled differently. An A-labeled, r-rooted, n-ary
forest is a disjoint union of r rooted, A-labeled, n-ary trees.

Let T be such a forest consisting of trees T3,...,T,.. For each 1 < i < 7|
we identify the root of T; with the generator z; € x of V,, ,(x). We proceed by
recursively identifying vertices of T; with elements of {x;}(A) C V,, ... Suppose that
v € T; is not a leaf, and that v has been identified with z;I" for some I' € A*.
Then v has n children ¢y, ..., c,, where ¢; is the child connected to v by an edge
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labeled a;. For each 1 < j < n we identify c¢; with z;I'a;; this identifies each vertex
of T' with a uniquely determined element of x(A). Furthermore, by construction,
the leaves of T' correspond to an expansion of x. We use such trees to represent
automorphisms, as in the following example.

Example 4.1. Let n = 2, r = 1, x = {x} and let ¢ be the element of Gg1
corresponding to the bijective map between A-bases Y = {za?, xrajaz, ras} and
Z =Y = {zai, rasal, xad} given by

xa%w = Taq, T = TsQ, TAY = xa%.

The A-labeled binary trees corresponding to these bases are shown below. The
labeling of edges is not shown, but edges from a vertex to its children are always
ordered from left to right in the order «q, ..., a,. Thus the leaves of the left-hand
tree correspond to Y and the leaves of the right-hand tree to Z. The numbering
below the leaves determines the mapping ; by taking leaf labeled j on the left to
leaf labeled j on the right.

Definition 4.2 ([17]). The Higman-Thompson group G, is the group of Q-
algebra automorphisms of V;, ..

Note that the largest Thompson group V' is isomorphic to Gs 1, because the A-
labeled trees we have described are exactly the tree-pair diagrams used to represent
elements of V.

Lemma 4.3 ([17, Lemma 4.1]). If {¢n,...,¥%} is a finite subset of Gy, » and X
is an A-basis of V, ,, then there is a unique minimal expansion Y of X such that
Yu; C X(A), fori=1,... k. That is, any other expansion of X with this property
s an expansion of Y.

Proof. For each i, Xz/{l is a generating set for V;, ., but may not be a subset of
X (A). Let U; = X (A) N X1b; *(A). Then, by Lemma 3.12, U; is A-closed and there
exists an expansion Y; of X such that U; = Y;(A). Now, Corollary 3.17 gives a
unique minimal common expansion Y, of the ¥;’s, and Y (4) = ﬂle (Y;(A)). Then,
for all i, Y C Yi(A) = U; € Xvb; H(A), so Yo C X (A).

Let Z be an expansion of X. If Zy; C X (A), for all 7, then (by the definition
of U;) Z CU; =Y;(A),s0 Z C ﬂle(Yi(A» =Y (A). Hence, from Lemma 3.12, Z
is an expansion of Y. O

Definition 4.4. Let {¢1,..., ¥} be a finite subset of G,, , and let X be an A-basis
of V,, ». The expansion Y of X given by Lemma 4.3 is called the minimal expansion
of X associated to {11, ..., ¥}
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4.1. Semi-normal forms

Let ¢ € Gy, let X be an A-basis of V,, ., and y € V;, .. The 1-orbit of y is the set
O, = {yy¥" |n € Z}. We consider how t-orbits intersect the A-subalgebra X (A).
To this end an X-component of the 1-orbit of y is a maximal subsequence C of
the sequence (y1)?)i=>°_ such that all elements of C are in X (A). More precisely, C

must satisfy

(1) if yap? and y1p? belong to C, where p < g then yi* belongs to X (A), for all k
such that p < k < ¢; and
(2) C is a maximal subset of the w-orbit of y for which statement (1) holds.

Note: Higman [17, Sec. 9] refers to X-components as “orbits in X (A)”.
First we distinguish the five possible types of X-component of ¢ by giving them
names.

(1) Complete infinite X -components. For any y in such an X-component, yi’
belongs to X (A) for all i € Z, and the elements yi) are all different.

(2) Complete finite X -components. For any y in such an X-component, yi’ = y
for some positive integer i, and y, y1, ..., y' ! all belong to X (A).

(3) Right semi-infinite X -components. For some ¥ in the X-component, y1’ belongs
to X (A) for all i > 0, but yy»~! does not. The elements yi)?, i > 0, are then
necessarily all different.

(4) Left semi-infinite X -components. For some y in the X-component, 1)~ belongs
to X(A) for all i > 0, but y3» does not. The elements yy»~%, i > 0, are then
necessarily all different.

(5) Incomplete finite X -components. For some y in the X-component and some
non-negative integer i we have y, y1, ..., y%" belonging to X (A) but yy»~! and
y¥*! do not.

Example 4.5. Let n =2, r = 1, x = {z}. Let our bases be
Y = {za, za?ay, zajag, zasar, zal}  and
Z = {za3, xoqanaq, zanad, a2, zasan .
Define the automorphism 1 by Y = Z, with the ordering given above.
v /KX 7 /@\
2345 1 gy 54

Then Y is the minimal expansion of x associated to 1. Take the basis X to be just
X = x. The X-component of xa3 is left semi-infinite

S aco/l1 — aco/f — J;ozf,
and the X-component of xajas is right semi-infinite:

T > TA1AS — Ta Al
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The X-component of zafay is complete infinite
4 3 2 2
S XA Qg o T > TATO — TA Qa0 > TG00

and (ragaq,zad) is a complete finite X-component. We have xas = zrasaiza3l,
S0 xaY = zairasai )\ and rag? = zag; therefore (zag) is an incomplete finite
X-component.

Let ¢ € Gy, let X be an A-basis of V,, ., let Y be the minimal expansion of
X (A) associated to ¥ and let Z = Y. Then, as discussed above, Y and Z are
both expansions of X. From Lemma 3.12, both X (A)\Z(A) and X (A4)\Y (A) are
finite. Furthermore, as |Y| = |Z|, both X and Y are d-fold expansions, for some d,
S0 [ X(ANZ(A)] = | X (A\Y(4)].

By definition Y (A) = X (A) N X (A)y~1, and moreover 1) maps no proper con-
traction of Y into X (A). Hence

Z(A) = Y (A = X (A)p 1 X (A).

Thus, if u € X(A)\Z(A) then u & X (A, sourp~t & X{A) and hence u is an initial
element either of an incomplete finite X-component or of a right semi-infinite X-
component i.e. in an X-component of type (3) or (5). Similarly, if v € X (A)\Y (A)
then v & X(A)y~1, so vip € X{A) and hence v is a terminal element either of
an incomplete finite X-component or of a left semi-infinite X-component i.e. in an
X-component of type (4) or (5).

If C is an X-component of type (3) or (5), then by definition C has an initial
element w: that is uyp™! ¢ X(A). Then u ¢ X(A)y, and so u € X(A)\Z(A).
Similarly, if C is an X-component of type (4) or (5), then C has a terminal element
v: that is vi) € X (A). Again, v € X(A)y~! and so v € X(A)\Y (A).

Let u be an initial element of an incomplete finite X-component C. By the
above, u € X(A)\Z(A) and by definition of an incomplete finite X-component,
there is some non-negative integer k such that w,u, ..., ub* all belong to X (A)
but uy**! does not. Since ut)* is the terminal element of the incomplete finite
X-component C, we have uyp* € X(A)\Y(A). Therefore, the initial elements of
incomplete finite X-components in X (A4)\Z(A) and terminal elements of incomplete
finite X-components in X (A)\Y (A4) pair up.

Given that the initial and terminal elements of the incomplete finite
X-components must be in one-to-one correspondence, all other elements of
| X (A)\Z(A)| (respectively, | X(A)\Y(A)|) are initial (respectively, terminal) ele-
ments in right (respectively, left) semi-infinite X-components. Hence there are as
many right semi-infinite X-components as left semi-infinite X-components.

The above is summarized in a lemma.

Lemma 4.6 ([17, Lemma 9.1]). Let ¢ be an element of Gy, and let X be an
A-basis of Vi, . There are only finitely many X -components of 1 of types (3)—(5)
and there are as many of type (3) as of type (4). If Y is the minimal expansion of
X (A) associated to 1 and Z = Y1) then

o Y(A) = X(A)NX (A" and Z(A) = X (A N X (A);
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o X(AWZ(A) is exactly the set of initial elements of X -components of types (3) or
(5); and

o X(AW\Y (A) is exactly the set of terminal elements of X -components of types (4)
or (5).

Example 4.7. In Example 4.5, we have X (A)\Z(A) = {z,zoq,za100, 202} and
X(A\Y(A) = {z,za1,ra?, ra3}. The incomplete finite X-components are (z),
(raq) and (zas), while zajas is an initial element of a right semi-infinite X-
component and xa? is a terminal element of a left semi-infinite X-component.
All other X-components of elements of X(A) are complete.

Definition 4.8 ([17, Sec. 9]). An element ¢ of G, is in semi-normal form
with respect to the A-basis X if no element of X(A) is in an incomplete finite
X-component of 1.

Lemma 4.9 ([17, Lemma 9.2]). Let ¢ € Gy and let X be an A-basis of Vi, .
There exists an expansion of X with respect to which i is in semi-normal form.

Proof. Let ¢ € G}, .. We prove the lemma by induction on the number of elements
in X (A) which belong to an incomplete finite X-component. Note that Lemma 4.6
shows us that this number is finite. If there are no such elements then we are done.

Suppose then that there exists an element u in X(A) which belongs to an
incomplete finite X-component. Thus, there exist y € X and I' € A* such that
u = yI' and some minimal m,k € Ny such that uyp~ ("D wpb+tl ¢ X(A). It
follows that yip—("+1) 41 & X (A), so that y is also in an incomplete finite X-
component. Let X’ be the simple expansion X’ = X\{y} U {yai,...,ya,}. Then
X' is a A-basis for V,, , and X(A)\X'(A) = {y}. Thus the number of elements
of X”(A) in an incomplete finite X”-component is one less than the number of
elements of X (A) in an incomplete finite X-component. Hence, by induction, there
exists an expansion of X with respect to which % is in semi-normal form. O

Remark 4.10. Continuing the discussion above Lemma 4.6, observe that if u €
X(A) and u ¢ Y(AYUZ(A) then u is both the initial and terminal element of an X-
component of 1; so (u) constitutes an incomplete finite X-component. Therefore,
when implementing the argument of Lemma 4.9 to find a semi-normal form for
1, we may pass immediately to a minimal expansion containing no elements of
X(A\(Y(A) U Z(A)): that is an expansion minimal amongst those contained in
Y(A) U Z(A).

Example 4.11. Let n = 2, r = 1, x = {«} and let ¢ be the automorphism of
Example 4.1. Here Y = {xa?, rajas, Tas} is the minimal expansion of x associated
toy and Z = Y9 = {zay, vasar, xa3}. In this example, x(A)\ (Y (A)UZ(A)) = {z}
and the minimal expansion of x not containing x is X = {zai,zas}. Then YV
remains the minimal expansion of X associated to ¢, X (A)\Z(A) = {xzaz} and
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X(A\Y(A) = {x,ra1}. As zay is the terminal element of a left semi-infinite X-
component, while xay is the initial element of a right semi-infinite X-component it
follows that 1 is in semi-normal form with respect to X.

Example 4.12. Let n = 2, r = 1, x = {z} and let ¢ be the element of Ga1
corresponding to the bijective map:

xa%z/J = acozg7 raiae) = xasay, Tas) = xQq.
v <N, T >
123 3 91

Again, Y = {xa?, rajas, ras} is the minimal expansion of x associated to ¢ and
setting Z = Y9 = {zai,rasar, a3}, the minimal expansion of x contained in
Y(A) U Z(A) is X1 = {zaj,zaz}; and Y is still the minimal expansion of X3
associated to 1. However (xasg,zaq) is an incomplete finite X;-component, so ¢
is not in semi-normal form with respect to X;. As xay is in an incomplete finite
Xi-component, we first take the simple expansion of X; at xaq, giving Xy =Y.
As zag) = zay ¢ Xo(A), (xasg) is now an incomplete finite Xo-component, so 1) is
not in semi-normal form with respect to X5. We take a further simple expansion of
X, at waz, to obtain a new A-basis X3 = {xa?, zajaz, rasar, za3}. Then ¢ maps
X3 to itself:

xa%w = xa%, Ta1) = xQoay, Tosa Y = xa%,xag = T Qo.

e N a e

1 2 3 4

As all elements of X3 are in the same complete finite X3-component, v is in semi-
normal form with respect to X3. The minimal expansion of X3 associated to v is
just Xs.

Example 4.13. The automorphism v of Example 4.7 is not in semi-normal form
with respect to X or X7 = {xaj,zas}, as both xa; and xas are in incomplete
finite X-components. However, ¢ is in semi-normal form with respect to Xy =
{za?, rajaz, rasar, zad}. The minimal expansion of X associated to 1 is the
A-basis Y of Example 4.5.

The following, which follows directly from the definitions, summarizes the pos-
sibilities for the intersection with X (A) of the orbit of an element under an auto-
morphism in semi-normal form.

Corollary 4.14. Let ¢ be an element of Gy, in semi-normal form with respect to
the A-basis X, let v € V;, » and let O, be the y-orbit of v. Then O, has one of the
following six types.

(1) O, NX(A) =0.
(2) O, is finite and O, C X(A), so O, is a complete finite X -component.
(3) O, is infinite and O, C X{(A), so O, is a complete infinite X -component.
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(4) O, N X(A) consists of a unique left semi-infinite X -component.

(5) O, N X(A) consists of a unique right semi-infinite X -component.

(6) O,NX(A) is the disjoint union of a left semi-infinite X -component and a right
semi-infinite X -component.

Remark 4.15. As can be seen from Example 4.17 below, there are automorphisms
for which orbits of the final type in this list exist. In fact we shall show in Exam-
ple 4.31 that there exist automorphisms which have such orbits with respect to
every semi-normal form. This means that [17, Lemma 9.6] is false. Consequently,
the algorithms [17, Lemma 9.7] for determining if two elements of V,, , belong to a
single orbit, and [17, Theorem 9.3] for conjugacy of automorphisms are incomplete.

Definition 4.16. Let ) be an element of G}, ,- in semi-normal form with respect to
the A-basis X, and let O be a -orbit of type (6), as given in Corollary 4.14. Then
O is called a pond orbit with respect to X. The subsequence P C O of elements
not in X (A) is called a pond. The width of P is one more than number of elements
in P; this is the number of times we need to apply ¥ to get from the endpoint of
one semi-infinite X-component to the other.

Example 4.17. Let n =2, r =1 and V51 be free on x = {z}. Let
4 3 2 2 2 2
Y = {zaj, zajas, zafasan, vajas, xagag, xasay, oG b,
Z = {xa%,xalaga%,xalagalo@,xalagal,xalag,xagal,xag}

and let ¢ € G21 be determined by the bijection ¥ — Z illustrated below.
z —

2 5 7 6

Asusual, Y is the minimal expansion of x associated to ¢ and Z = Y4. The minimal
expansion of x contained in Y{A) U Z(A) is X = {xa?, zajas, zazar, za3}. Two
of these elements are endpoints of semi-infinite X-components, whereas the other
two belong to complete infinite X-components.

c zad e xad, (4.1)

ragag — z(agag)? - (4.2)

S zafad — xalad — rasag — ragad — z(agan)?ad - (4.3)

S zafagoy > zadasag — xad s zaadar — o(aian)?agay oL (4.4)

Thus 1 is in semi-normal form with respect to X. Now let us compute the -orbit
of the element zafas.

- 'J?Ol?ag — J;o/fozg — J:OZ%CZQ — xa%xogal)\

— zaios — z(ogan)lag — - (4.5)
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Fig. 1. The binary trees above represent a finite subset of x(A), as described in the introduction to
Sec. 4. On the left we have annotated this tree, highlighting the semi-infinite X-components (4.1)

and (4.2). Below these components sit the pond orbit (4.5), which is shown on the right tree. Note

that the element w = xa%xagal)\ ¢ x(A) does not correspond to a vertex of this tree; we have

represented it as a “phantom” vertex ¢ below xags whose left child is xa% and whose right child
is zasay — a “twisted” version of xas.

Figure 1 illustrates the orbit (4.5), which consists of two semi-infinite X -components
and a single element ra3zazai X (the pond) outside of X (A). In this case, the pond
has width 1 +1 = 2.

Lemma 4.18 ([17, Lemma 9.3]). Let ¢ be an element of Gy, in semi-normal
form with respect to the A-basis X . Suppose that x is an element of X . Exactly one
of the following holds.

(A) There exists I' € A* such that I is in a complete finite X -component. In
this case x itself belongs to a complete finite X -component, which consists of
elements of X, and we say x is of type (A).

(B) There exist T, A € A*, withT # A, such that 2T’ and A belong to the same X -
component. In this case there exists A € A* and m € Z\{0} with |m| minimal,
such that xy™ = xA; we say x is of type (B). If m > 0 then the X -component
containing x is right semi-infinite; if m < 0 then the X -component containing
x s left semi-infinite.

(C) x is not of type (A) or (B) above and there exists some z € X of type (B)
and nontrivial A € (A) such that x* = zA. In this case the X -component
containing x is infinite; and we say x is of type (C).

Proof. (A) If z belongs to an infinite X-component of 1 (of types (1), (3) or
(4) that is), then so does zI', a contradiction. As v is in semi-normal form with
respect to X it follows that x is in a complete finite X-component. Let d be the
smallest positive integer such that z1)? = x. For each 1 <14 < d — 1 write z9)* = zA
for some z € X and A € A*. Then z must also belong to a complete finite X-
component, so we can write z¢)%"" = yI' for some y € X and I' € A*. Then
r = 2 = 2AY?4T = 2p? A = yI'A. From Lemma 3.16, we have y = x and
I'=A=¢ 502" =z € X, as claimed.
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(B) If = belongs to a finite X-component then, from (A), the X-component of 2T’
consists of elements 2T, where z € X, contrary to the hypotheses of (B). Therefore x
belongs to an infinite X-component of v». Without loss of generality we may assume
that there is i > 0 such that zT'¢" = xA. Suppose first that z¢* € X (A), for all
k> 0. Then 2¢* = vA, for some v € X and A € A*, and thus zA = 2Ty’ = vAT;
sov =z and A = A", and we obtain zy)® = zA.

Similarly, if z¢)~% € X (A), for all k > 0, then xp~" = xA’, for some A’ € A*,
with T' = A’A. Note that if 2¢* € X(A) for all k, then x = 2AA’, which forces
A=A =¢,s0T = A, a contradiction. Hence the final statement of (B) holds.

(C) In this case  must belong to an infinite X-component, as (A) does not hold.
As X is finite there is z € X such that zI" and zA belong to the X-component of
x, for distinct I" and A in A*; and then z is of type (B), as required. |

Definition 4.19. Let u € V,,, and ¢ € G, ,-. If up? = uT for some d € Z\{0} and
some I' € A*\{1}, then w is a characteristic element for ¢. If u is a characteristic
element for ¢ then the characteristic of u is the pair (m,T") such that m € Z\{0},
I' e A* with

o uy)™ =yl and
e for all i such that 0 < |i| < |m/|, uy)® & u(A).

In this case I' is called the characteristic multiplier and m is the characteristic power
for u, with respect to .

From the definition, if % is in semi-normal form with respect to X then an
element x € X is of type (B) if and only if « is a characteristic element: in which
case it follows from Lemma 4.24 below that the t-orbit of x is of type (4) or (5)
in Corollary 4.14. On the other hand, if € X has type (C) then the v-orbit of x
may be of types (3), (4), (5) or (6) in Corollary 4.14.

Example 4.20. In Example 4.13, the automorphism ) is in semi-normal form with
respect to an A-basis X. The elements zasa; and za3 of X are of type (A). The
element xa? € X is of type (B) with characteristic (—1,a1), while zayas € X is
of type (B) with characteristic (1, 2); and both of these elements are endpoints of
their semi-infinite X-components.

In Example 4.17 the elements zasa; and za3 of X are of type (C), are not
characteristic and belong to complete infinite X-components. The elements za?as
and a2 in the pond orbit (4.5) are also type (C) and non-characteristic, but

belong to semi-infinite X-components.

Lemma 4.21. Ifu €V, , is a characteristic element for ¢ € Gy, then

(1) the characteristic (m,T) is uniquely determined, and
(2) if v is in the same p-orbit as u then v is a characteristic element with the same
characteristic as u.
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Proof. To see part (1), suppose that u has characteristic (m,T). If ugp™ = uA
and for all 0 < |k| < |m/| we have uy)® ¢ u(A), then |m’| > |m| by Definition 4.19,
som = +m’. If uyp™™ = uA then u = up™A = uI'A, which cannot happen as
#1.

For part (2), let uy)” = v. For all k such that ui)* = uA with A € A*, we have

vp* = up" P = wpFY" = uAY" = uh" A = vA.,

Interchanging u and v we also see that whenever vi)¥ = vA then uy* = uA. O

From Lemma 4.21, if a t-orbit has a characteristic element, then every X-
component of this ¥-orbit contains a characteristic element, and all these elements
have the same characteristic. Bearing this in mind we make the following definition.

Definition 4.22. Let ¢ € G, , have an X-component C containing a characteristic
element u. Then we define the characteristic of C to be equal to the characteristic
of u.

Theorem 4.23 ([17, Theorem 9.4]). Let ¢ € G, , be in semi-normal form
with respect to X. Then 1 is of infinite order if and only if it has a characteristic
element u. Moreover, if v is of infinite order then we may assume that u € X.

Proof. If u is a characteristic element for ¢ with characteristic (m,T") then uyp™ =
ull; so uyp™4 = uI'?. So for sufficiently large ¢, uyy™? € X(A). Then uy)™? also
has characteristic (m,T’) by Lemma 4.21. Write up™? = zA, for some x € X and
A € A*. Now zAT = up™II' = uyp™ @) = zAy™, so from Lemma 4.18, z has
type (B). Thus we may assume u € X. Now

up™ = up™ ™) = yDymUD = Ty —2)
_ u¢mF¢m(j—2) _ ur2¢mu'—2) ==yl

for j € N. Since T is a characteristic multiplier, the elements uI'/ are all different
for 7 € N, so ¥ has infinite order.

Conversely, if 1 has no characteristic element, then certainly there are none in
X, so X has no elements of type (B) nor type (C). Thus all elements of X are of
type (A), as 1 is in semi-normal form; whence v is a permutation of X and has
finite-order. |

Lemma 4.24. Let ¢ be in semi-normal form with respect to an A-basis X and let
u € V. r. If w has characteristic (m,T") then the -orbit of u has precisely one X -
component, which is semi-infinite (right semi-infinite if m > 0 and left semi-infinite
if m < 0) and consists of elements of the form xA, where x € X is of type (B) and
Ae A",

Furthermore, if x A belongs to the X -component of the -orbit of u, where x € X
and A € A* then x has characteristic (m,T'1Ty), where T =TIy, A = (['1T)PT =
I'1ITP,p >0, and T'y is nontrivial.
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Proof. As uyp)™ = ul' we have uyp™4 = ul'?, for all integers ¢ > 0, and choosing ¢
sufficiently large uI'” € X (A). Thus we may assume that u € X (A). Let C denote
the X-component containing u and write u = xA, where z € X and A € A*.

Assume first that m > 0. As u has characteristic (m,I'), both A and AT" belong
to C, so z is of type (B) by Lemma 4.18. Suppose there is an integer K > 0 such
that uyp=* € X (A), for all k > K. (That is, suppose that the ¥-orbit of u contains a
left semi-infinite X-component.) Let A = AoI'*, where Ag has no terminal segment
equal to I'. Then, for j such that m(j +1) > K and j > t, uyp~™U+D) € X(A), so
uh~™UHTY) = 2= for some z € X and Z € A*. From Lemma 4.21 we see that 22
has characteristic (m,I"). Hence

2BV = inpm(j"'l) =u = xAgI?,

which implies z = x and EIV~*t! = Ay, a contradiction. As ¢ is in semi-normal
form with respect to X and C is not a complete X-component, the C must be right
semi-infinite. We have just shown the -orbit of u contains no left semi-infinite
X-component, so C is the unique X-component of this ¢-orbit.

For the second part of the lemma, suppose x has characteristic (k, ). The X-
component of z cannot be left semi-infinite, or else zAyp =" € X (A) for all i > 0;
this would mean that C is not right semi-infinite. Hence x is in a right semi-infinite
X-component and k > 0. If A = QA then zA 4" = 2QIA; = u and so C contains
xAq; and it suffices to prove the lemma under the assumption that A has no initial
segment equal to (2.

Suppose that m = kp+r, where 0 < r < k. Then AP = QP A and QP A" =
cAYFPT = gAy™ = xAT. However, as x is in a right semi-infinite X-component,
x” = zZ, for some z € X and = € A*. Thus xAT' = 2QPAY™ = 2" QP A = 2EQPA,
which implies that z = 2 and AT' = ZQPA. Now, as 29" = 2Z, 0 < r < k and z
has characteristic (k, <)), it must be that » = 0, m = kp and = = e. We have now
AT = QPA, and as A has no initial segment equal to € it follows that Q = AQ;.
Now up* = zAy* = zp*A = 2QA = 2AQ A = uQ A, so k > m, by definition
of characteristic. Therefore k = m and I' = Q1 A, completing the proof in the case
m > 0.

In the case when m < 0 the result follows from the above on replacing ¢ by

YL O

An element w of the free monoid A* is said to be periodic with period i if
W = ay - ayn, where a; € A, and ar = apyq, for 1 <k < n —k. In this sense, in
Lemma 4.24 above, A = (I''['y)PT"; is periodic of period m.

Lemma 4.25. Lety € G andu € V,, , such that wpf = ul, where A # ¢. Then
u has characteristic (m,I") with respect to ¢, where k = mq and A =T'9, for some
positive integer q.

Proof. Let ¢ be in semi-normal form with respect to X, and let (m,T") be the
characteristic of u. Suppose first that k£ > 0. As in the proof of Lemma 4.24, we may
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assume that u € X (A), the X-component of  is right semi-infinite and that there
exist € X and I'y € A* such that v = 2I"y and x has characteristic power m. Then
k > m, say k =mq+ s, where 0 < s < m and ¢ > 1. Let 2¢° = yA’, where y € X
and A’ € A*. Now 21 A = uA = uhp® = uyp™I+s = 9% = 2p°T 79 = yA'T 19,
Hence z = y and so s = 0 and k = mq. Moreover zAA = uA = up® = uyp™I =
ul'? = zAT'?, so AA = AT'?, from which A =T'9, as required.

If k < 0, replace ) with ¢~! in the argument above. We have u1) ™% = uA, so
from the previous part of the proof, u has characteristic (m,I'), with respect to 1,
where —k = mq, ¢ > 0, and A = I'?. If follows that u has characteristic (—m,T’),
with respect to ¥, and —m = kq, completing the proof. O

Corollary 4.26. Let Y be in semi-normal form with respect to an A-basis X and let
w € V,, . Then there exists an element A € A* such that ul belongs to a complete
X -component of 1.

Proof. Multiplying by a sufficiently long element of A* we may, as usual, assume
that u € X (A), so u belongs to either a complete or a semi-infinite X-component
of 1. There are finitely many semi-infinite X-components (Lemma 4.6). If S is
a characteristic semi-infinite X-component with characteristic (m,T") then, from
Lemma 4.24, elements of S have the form xA where z € X, A € A* and, for all but
finitely many elements of S, A is periodic of period m.

Let Fs be the finite subset of elements of A* such that A € Fg only if zA € S and
A is not periodic of period m. Let Fj be the union of the Fs over all characteristic
semi-infinite X-components. If S is non-characteristic then, from Lemma 4.18, S
contains an element zA, where z € X of type (B), with characteristic (m’,I"), say.
It follows, from Lemma 4.24 again, that all but finitely many elements of .S have the
form zAA where x € X, A € A* and A is periodic of period m’. This time, let Fs
be the finite subset of elements of A* such that AA € Fg only if tAA € S and A is
not periodic of period m’. Let F; be the union of the Fis over all non-characteristic
semi-infinite X-components.

Let M be the maximum of lengths of elements of Fjy U F; and assume u = xI,
where z € X, I' € A*. Choose element = of A* such that I'= has length greater
than M, is not periodic and does not factor as AA, where A is periodic and A € Fy.
Then u= = xI'= cannot belong to a semi-infinite X -component, so must belong to
a complete X-component. O

4.2. Quasi-normal forms

Quasi-normal forms are particular semi-normal forms which give representations of
automorphisms minimizing the number of elements in pond orbits. In [17, Sec. 9]
it is claimed that if an automorphism is given with respect to a quasi-normal
form, then it has no pond orbits. In this section we shall see that this is not
the case.
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Definition 4.27 ([17, Sec. 9]). An element ¢ of G, , is in quasi-normal form
with respect to the A-basis X if it is in semi-normal form with respect to X, but
not with respect to any proper contraction of X.

It follows from Lemma 4.3 that for ¢ € G, there exists an A-basis X with
respect to which v is in quasi-normal form. For instance, the automorphisms v in
Examples 4.11, 4.13 and 4.17 are in quasi-normal form with respect to the bases
X in those examples. Additionally, the automorphism v of Example 4.12 is in
quasi-normal form with respect to the basis X3.

Lemma 4.28 (cf. [17, Lemma 9.7]). Given an element ¢ € G, there exists
a unique A-basis, denoted Xy, with respect to which  is in quasi-normal form.
Furthermore Xy, may be effectively constructed.

Proof. Assume v is given by listing the images of elements of X, where X is an
A-basis of V,, .. We modify X to find an A-basis X’ with respect to which 9 is in
semi-normal form. For each y € X we can list elements of the 1-orbit of y.

Ly Ty TR gy y, byt

We enumerate the forward sequence (yy™)m>0, until we reach m > 0 such that

(1F) either yy™ € X (A) with yy™T! ¢ X(A), or
(2F) forsome 0 <l <m, € X and I', A € A* we have y¢' = ¢gI" and yo™ = JA.

Similarly, we enumerate the backwards sequence (yw’k)kzo until we reach k£ > 0
such that

(1B) either yy—* € X (A) with yy~*+1) & X (A) or,
(2B) forsome0 <[ <k,j€ XandI',A € A* wehave yp~! = §I"and yp~* = JA.

Given y € X, the forward part of the process above produces a sequence of
elements of X (A), until it halts. As X is finite, if it does not halt at step (1F) then
it halts at step (2F); so always halts. Similarly, the backward part of the process
always halts.

If some y satisfies (1F) and (1B), then y is in an incomplete X-component,
S0 1 is not in semi-normal form with respect to X. In this case we take a simple
expansion X’ of X at the element y. Next, use the proof of Lemma 4.9 to find an
expansion X" of X’ with respect to which v is in semi-normal form. We now replace
X with X” and return to the start of this proof. Repeating as necessary, eventually
we shall find X such that no y € X satisfies both (1F) and (1B). The repetition
terminates because the number of elements " € X" belonging to incomplete X"
components is strictly smaller than the corresponding number for X.

At this stage, every y € X satisfies one of (2F) and (2B), so ¢ is in semi-normal
form with respect to X by Lemma 4.18. We can now test all the contractions of the
A-basis X to find an expansion of x with respect to which 1 is in a quasi-normal
form.
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For uniqueness, we will argue by contradiction. Let ¢ be in quasi-normal form
with respect to X7 and Xs, with X7 # Xs. Since X1, X» are expansions of x, (with-
out loss of generality) there exists a simple contraction X of X; which contains an
element y of X5\ X7. Then X{(A) = X1(A) U {y}(A) and, as ¢ is in semi-normal
form with respect to Xo, it is also in semi-normal form with respect to X7, contrary
to the definition of quasi-normal form. |

Remark 4.29. Let ¢ € G, » be in quasi-normal form with respect to X. The proof
of this lemma illustrates that if 1) is in semi-normal form with respect to X', then
X'’ is an expansion of X. The converse is false: it is not true in general that 1) is in
semi-normal form with respect to all expansions of X.

Lemma 4.30. Let ¢ € Gy, be in semi-normal form with respect to an A-basis X
and let u,v € X(A). Then we can effectively decide whether or not u,v are in the
same X -component, and if so, find the integers m for which uy™ = v.

Proof. As u € X(A), we have u = yA where y € X and A € A*. We now run the
process of Lemma 4.28 on y. If the process halts with yy™ = y, for some m then
we may list the elements uy® = yy'A, i = 0,...,m — 1, of the (complete finite)
1-orbit of w. In this case v is in the same t-orbit as w if and only if it appears in
the list, so we are done.

Otherwise the process halts at least one of the states (2F) and (2B). We obtain
7 € X and integers k # [ such that yo* = yA; and yp'! = yAy, where A; and A
are distinct elements of A*. It follows from Lemma 4.18 that ¥ is of type (B). As u
and up®f = yApF = JA A are k steps apart in the same X-component, we may
replace u = yA with u = yA;A. Therefore we now assume that v = yA, where y is
of type (B).

Now, when we run the process of Lemma 4.28 on y it halts either at (2F) and
(1B) or else at (1F) and (2B). Suppose first the forward part halts at (2F). Then y
is in a right semi-infinite X-component and there is a minimal positive integer m
such that yy™ = yI', with I # 1. That is y has characteristic (m,I"), with m > 0.
Set ug = yAg. If A = T"Ag where Ay has no initial segment I', then

ugp™ = yAop™ = Y™ Ao = yI'Ao = yA = u,

S0 ug is mi steps away from w in the 1-orbit of u. We may replace u = yA by
ug = yAg. This allows us to assume from now on that A has no initial segment
equal to the characteristic multiplier I" of y.

Next we run the process of Lemma 4.28 on u instead of y. As y is in a right
semi-infinite X-component the forward part of the process halts at (2F). We obtain
a list of elements of the X-component of u of the form

27 @y oo, 21P1, u =y, DA, ym—1 D A, yTA, (4.6)

where y;,2; € X, I'},®; € A*, 2;®; = w7, for 1 < j < r and for some r > 0,
and yy°® = yI'%, for 0 < s < m. (The y;’s must be distinct otherwise u would have
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characteristic power less than m.) We proceed differently based on which state the
backwards enumeration finishes in.

Case (1B). If the backward part of the process halts at (1B) then z,®,¢~1 =
uh~"~1 ¢ X(A). In this case, the entire X-component of u consists of the elements
on this list together with elements

y;iT9A,  with ¢ >0 and 0 < 7 < m,

where we set yo =y, Iy =T

Asv € X(A) we also have z € X and A in A* such that v = zA. If z is in a finite
X-component then v cannot belong to the same X-component as u, so we assume
z is in an infinite X-component. As in the case of u, we may adjust v so that z is
of type (B). As before we find a characteristic multiplier ® for z and, replacing A
with a shorter element if necessary, we may assume that A has no initial segment
equal to .

Ifv= uz/;d, where d > 0, then v = y; T;T'?A, for some ¢ > 0 and ¢ with 0 <@ < m.
In this case, z = y; and by Lemma 4.24 and our assumption on v we have ¢ = 0,
so v = y;I'}A, which appears on list (4.6). Assume then that v = u?, where d < 0.
As the backward part of the enumeration of the -orbit of w halts at (1B), the
X-component of u has initial element z,.®,., and v must appear on list (4.6).

Case (2B). On the other hand, if the backward part of the process stops at
(2B) then w is in a complete infinite X-component and, for some s with 0 < s <r,
we have z, = 25 (and r is minimal with this property). It follows that zs is of
type (B) and in a left semi-infinite X-component. Again, we may assume that
v = zA, where A € A* z € X is of type (B) and has characteristic multiplier
®, such that A has no initial segment equal to ®. As before, if v = w)? with
d > 0, then v appears on list (4.6). Assume then that v = u?, where d < 0.
Repeating the argument above, using the left semi-infinite X-component of z
instead of the right semi-infinite X-component of y, it follows again that v appears
on list (4.6).

Therefore, in the case where y is in a right semi-infinite X-component we have
v in the X-component of u if and only if v lies on the list (4.6); and we may
compute m such that uy™ = v, if this is the case. Finally, if the enumeration of the
X-component of y halts at steps (1F) and (2B) then the process is essentially the
same, except that we deal with a left, rather than a right, semi-infinite X -component
of y. |

This procedure allows us to decide if two given words in X (A) belong to the
same X-component so, if there are no pond orbits, we may decide if two such words
belong to the same 1-orbit. On the other hand, as the enumeration of components
always stops once we fall outside X (A), we cannot detect when a pair of elements
lie in the same -orbit but on opposite sides of a pond. We demonstrate below that
there exist automorphisms for which every semi-normal form has a pond; thus we
require a strategy to deal with ponds.
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Lemma 4.31. Let € G, be in semi-normal form with respect to X, and suppose
that some ¥-orbit O contains a pond with respect to X . If ¢ is in semi-normal form
with respect to an expansion X' of X, then O is also a pond-orbit with respect to
X'.

Proof. Let us write O as
O: T T Ly, e, T T TS

where [, € X(A) are endpoints of semi-infinite X-components and the p; ¢ X (A)
form a pond of width k4 1. To begin with we claim that, for sufficiently large s > 0,
we have ri® € X’(A). Indeed, because r belongs to a semi-infinite X-component,
Lemma 4.18 implies that there is some s’ > 0 for which 7% = ' A, where A € A*
and ' € X has characteristic (m,T"). Therefore, for all ¢ > 0,

rws/+mq - rws/il)mq =AY =y A = ' TIA.

By taking ¢ sufficiently large, we can ensure that r¢»* t™4 € X’(A). This works
because the difference X (A)\ X'(A) is finite. So we can find s > 0 such that r® €
X'(A). Similarly, there is some ¢ > 0 for which l¢p~* € X'(A).

Since X'(A) C X(A), it follows that each p; ¢ X'(A). Appealing to Corol-
lary 4.14, the only possibility is that O is a pond-orbit with respect to X’. O

Notice that the pond width with respect to X’ is at least the previous width
(k+ 1) with respect to X. Additionally, if ) was in quasi-normal form with respect
to X, this (with Remark 4.29) shows that every semi-normal form X’ for ¢ contains
the pond given above. Example 4.17 shows that this possibility does occur.

Lemma 4.32. Given an element 1 € Gy, , in semi-normal form with respect to an
A-basis X we may effectively construct the set P(v) of the triples (I, k,r) such that
r (respectively, 1) is the initial (respectively, terminal) word in a right (respectively,
left) semi-infinite X -component, and k is the width of the pond between them.

Proof. Let Y be the minimal expansion of X associated to ¢ and let Z = Y'4. Since
there are no incomplete X-components, Lemma 4.6 tells us that the set of initial
elements of right semi-infinite X-components is R = X (A)\Z(A). This is finite, so
we may enumerate this effectively. The same is true for the set L = X (A)\Z(A) of
terminal elements of left semi-infinite X-components. To enumerate P (1), for each
(I,7) € L x R we need to solve the equation r = [%)* for some k, or to determine
that there is no solution. A solution exists if and only if rI" = ITy*, for all T € A*.
With this in mind, first find I" € A* such that (" is in a complete infinite X-
component. We do this by enumerating the words I' of length 1,2, ... and applying
the process of Lemma 4.28 to each element [I" in turn. We stop when we find T’
such that the process halts at (2F) and (2B). Now use Lemma 4.30 to determine
whether rI" and [I" are in the same X-component. If not, then there cannot exist
an element of the form (I, k,r) € P(¢); that is [ and r are not joined by a pond.



Int. J. Algebra Comput. 2016.26:309-374. Downloaded from www.worldscientific.com
by UNIVERSITY OF NEWCASTLE on 05/26/16. For personal use only.

Power conjugacy in Higman—Thompson groups 343

Assume then that " = IT'y¥, for some k. We can test to see if r = [1)* directly,
which holds if and only if (I,k,r) € P(¢). If the equality were false, is it possible
that (I,k',r) € P(y) for a different &' # k? This would mean that r = [{*", so
WD =T = lI‘wk/ and thus qupk’k/ = [I". As IT" belongs to a complete infinite
X-component, this means k = k’; so the answer to our previous question is “no”.
In this situation there are no elements of the form (I, %', r) in P(¢). m|

In practice, when enumerating the sets L and R in the proof above, we need to
consider only non-characteristic elements, as Lemma 4.24 implies that no charac-
teristic element belongs to a pond orbit.

Example 4.33. Let ¢ and X be the automorphism and basis described in Exam-
ple 4.17; we noted above that v is in quasi-normal form with respect to X. We
claim that this i-orbit is the only pond orbit with respect to X.

The endpoints of semi-infinite X-components are precisely

L = X{ANY (4) = {wa?, z0%, z0%as}
and R = X (A)\Z(A) = {raia9, vajasar, za1as}.

The four endpoints xa?, za}, rajas and zajaza; have characteristics (—1,a?),

(—1,02), (1,a1az2) and (1, agary ), respectively. Are the two remaining endpoints | =
rafas and r = zajaj separated by a pond? (We saw before in computation (4.5)
that they are, but to illustrate Lemma 4.32 we will remain ignorant of this.)
Multiplying by I' = a; we obtain IT' = za?aga;, which is in a complete infinite
X-component. We also see that 7' = 19’ = zajada; is in this component, so
we have a candidate pond width of k£ = 2. Fortunately we directly computed that

r=1y?in (4.5), so P(¢) = {(za%as, 2, ra103)}.

Lemma 4.34 (cf. [17, Lemma 9.7]). Let ¢ € Gy, and u,v € V,, .. Then we
can effectively decide whether or not u,v are in the same -orbit, and if so, find
the integers m for which uy™ = v.

Proof. For a fixed integer s > 0 we have uy)™ = v if and only if (ul")Y™ = uyp™I" =
oI’ for all ' € A* of length s (using Lemma 3.20). Now, suppose that we have an
algorithm A to decide whether v/ = «/¢™ for some m, given elements u’, v" of X (A)
(and to return m, if so). Then if u, v are arbitrary elements of V,, , we may choose
s such that ul’ and vT" belong to X (A), for all T' € A* of length s, and input all
these elements to the algorithm A4 in turn. In the light of the previous remark, this
allows us to determine whether or not u and v belong to the same -orbit (and to
return appropriate m, if so). Hence we may assume u,v € X (A).

By Corollary 4.14, v and v belong to the same w-orbit if and only if either
they belong to the same X-component of a ¥-orbit, or they belong to different X-
components of a single pond orbit. We may use Lemma 4.30 to decide whether or
not u and v both belong to the same X-component. If so we are finished. If not, and
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both belong to semi-infinite X-components, then for each triple (I, k,7) in P(¢) we
check whether u belongs to the same component as [ or r.

If u belongs to neither component then u is not in a pond orbit, and thus u and v
do not share a t-orbit. Otherwise if u and [ (respectively, r) share an X-component,
we run the same check on v and r (respectively, [). If the check determines that v
is not in the X-component in question, then v and v do not share a -orbit. Else
we have | = u1)® and v = r¢)® for some a and b, so v = ug@T*+P, O

Example 4.35. Let 1) be the automorphism of Examples 4.17 and 4.33, which is
in quasi-normal form with respect to X = {q1 = za?, g2 = ra1a2,q3 = Tasa1, qs =
xa2}. The elements ¢; and ¢z have characteristics (—1,a%) and (1, ajaz), respec-
tively, whereas q3 and ¢4 belong to complete infinite X-components such that

@Y = Q204§ and ™' = qrasa;.

(1) We wish to test if u = xala%a%ag = qgaga%ag and v = xaga% = g3a belong
to the same v-orbit. Because ¢z is not characteristic, Lemma 4.30 first replaces
v = ggay with v/ = vy = gzha; = gaaday, which begins with the characteristic
element ¢o of X. Enumerating the X-component containing u gives us a specific
instance of list (4.6)

1‘0/1106206%(12 — 1‘&%0&20[%0[2 — xa%alag

— rayasadas — zlaias) asadag (4.6")
———

u

once the enumeration has halted at stages (2F) and (2B). Since v' does not lie
on this list, we conclude that v" does not belong to the X-component of u, so
neither does v.

We now need to check if u and v are separated by a pond. In Example 4.33,
we showed that ¢ has only one pond-orbit, and referring to the computa-
tion (4.5) we see that neither u nor v belong to this orbit. Hence u and v’
do not share a -orbit.

(2) Now let us test if u and w = zafasalas = qa?aza’ay share a y-orbit. We
remove the characteristic multiplier o of ¢; from w, obtaining v’ = gaza? s
where w¢p~! = w. From list (4.6") we notice that uy)=2 = w’, so uh =3 = w.

(3) Let u = zafas, v = wataza; and w = x(ajaz)3as. In terms of X, these
are u = qralas, v = qradasar, and w = ga(aaz)?as. Since ¢ and ¢o are
characteristic, we remove copies of the characteristic multipliers. We obtain
u = qon = w3, v = qrasar = v and W' = gaas = wip 2. Enumerating the
X-component of u’ gives us

= zafag s zaday =/,

(halting at stages (1F) and (2B)) and we see that neither v’ nor w’ are in this
list. However, u’ is adjacent to a pond. Referring once again to Example 4.17,
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we see that the corresponding endpoint is 4 = u’1)? = zaja3. Its X-component
begins

U= xalag — x(a1a2)2a2 —

Since this list does not contain v’, we conclude that v and v do not share a
y-orbit. On the other hand, we note that w’ = @ belongs to the list. Hence u
and w belong to the same -orbit, and having kept track of the various powers,
we calculate that

wp™r =w' =a=u'p? = uwpY? = w=uwy’.

5. The Conjugacy Problem

For a group with presentation G = (X | R), the conjugacy problem is to determine,
given words g, h € F(X) whether or not g is conjugate to h in G; denoted g ~ h. The
strong form, which we consider here, requires us to produce a conjugator ¢ € F(X)
when ¢ is conjugate to h, i.e. an element ¢ such that ¢c~'gc =¢ h. We say the conju-
gacy problem is decidable if there is an algorithm which for inputs g and h outputs
“yes” if they are conjugate and “no” otherwise. The stronger form is decidable if
there is an algorithm which produces a conjugator ¢ in the “yes” case. Note that
the word problem is the special case of the conjugacy problem where h = 1.

As pointed out at the beginning of Sec. 4, an element v of G,, ,, may be uniquely
represented by the triple (Y, Z, ¢), where Y is the minimal expansion of ¢, Z = Y
and g is a bijection between Y and Z, namely 19 = 1|y. This triple is called a
symbol for 1. In [17, Sec. 4] a finite presentation of G, , is given, with generators
the symbols (Y, Z,4g) such that Y is a d-fold expansion of x, for d < 3. As we
may effectively enumerate symbols and effectively construct the symbol for ;s,
from the symbols for ¥; and 15, words in Higman’s generators effectively deter-
mine symbols and vice-versa. Therefore when we consider algorithmic problems in
Gp,» we may work with symbols for automorphisms, and leave the presentation
in the background. That is, we always assume that automorphisms are given as
maps between bases of V,, , (from which a symbol may be computed). As minimal
expansions are unique it follows immediately that the word problem is solvable in
G- In this section, we give an algorithm for the conjugacy problem in G, .., based
on (a complete version of) Higman’s solution.

5.1. Higman’s ¢ -invariant subalgebras

Let 1) be an element of G,, .. Higman defined two Q-subalgebras of V,, ,. determined
by v, namely

e the ()-subalgebra Vp, generated by the set of elements of V, , which belong to
finite -orbits.
e the {)-subalgebra Vzr ., generated by the set of characteristic elements for ).

Where there is no ambiguity, we will write Vp for Vp and Vgr for Vgr .
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If w € V,, » then the t-orbit of u is identical to the w-orbit of ui; so u is in a
finite v-orbit if and only if w2 is in a finite ¥-orbit. From Lemma 4.21, an element
u is a characteristic element for v if and only if ut is a characteristic element for
1. Therefore Vp, and Vg g are ¢-invariant subalgebras of V;, .. (A subalgebra S
is ¢-invariant if S¢» = S.) Hence ¥p = 9|y, , is an automorphism of Vp, and
PR = w|VRI,dJ is an automorphism of Vgr 4.

If ¢ and ¢ are conjugate elements of G,, . and p~11p = ¢ for some conjugator
p € Gp, then for all I' € A* we have up™ = ul if and only if up=*¢™p = ul if
and only if (up=1)y™ = (up~!)I. Thus u is in a finite -orbit if and only if up~?
is in a finite ¢-orbit (taking I' = €) and u is a characteristic element for ¢ if and
only if up~! is a characteristic element for ¢ (I # ¢). It follows that the restriction
plve., of p to Vpy maps Vp,, isomorphically to Vp,, and similarly ply,, , is an
isomorphism from Vgr .y to Vrr ,.

Now suppose that 1 is in semi-normal form with respect to an A-basis X.
Partition X into

Xp=Xpy={ye X|yisof type (A)}
and Xrr = Xpry = {y € X |y is of type (B) or (C)}.

Theorem 5.1 ([17, Theorem 9.5]). Let v be an element of G, , in semi-normal
form with respect to A-basis X. Then, with the notation above, the following state-
ments hold.

(1) Vi = Vp x Vgy, the free product of the y-invariant subalgebras Vp and Vgr.

(2) Vb = Xp(A)(\) and Vrr = Xgri{A)(\); that is, Vp (Vrr) is generated by Xp
(XRr).

(3) Given ¢, ¢, p € Gy, define six restrictions as follows.

¢P = w|VPﬂP’ Yp = §0|Vp,¢7 PP = p|pr¢,a
YRI = V|Varws PRI = PlVarws PRI = PlVary-

We have p~"4p = ¢ if and only if pp' Yp pp = ©p and ppy YrI PRI = PRI-

Proof. Write Wp = Xp(A)(\) and Wgrr = Xgrr(A)(A\). As X is the disjoint union
of Xp and Xpy, we have V,, , = Wp * Wgy, using Lemma 3.11. We shall show that
Vp = Wp and Vg = Wgy. By definition, Wp C Vp. If z € Xpg; is of type (B)
then = € Vgy, by definition. If € Xg; is of type (C) then there exists z € Xgy,
of type (B), and A € A*, such that 29" = 2A. As z € Vg, so is zA, and as Vg is
-invariant we have x = zAv~" € Vgr. Hence Wrr C Vgy.

To see that Vp C Wp, let u € V,,, have a finite -orbit. Choose d € N such
that, ul' € X (A), for all T € A* of length d. For each such I write ul’ = A, where
r € X and A € A*. As u is in a finite t-orbit so is ul', so z € Xp and thence
ul’ = xA € Wp. As this holds for all T" in A* of length d, we have u € Wp, by
Lemma 3.11. Hence Vp C Wp.
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To see that Vg C Wgy, we first show that Wgy is ¢-invariant. Let Y be the
minimal expansion of X associated to ¢ and let © € X ;. Then choose d such that
al’ € Y(A), for all I" € A* of length d. Given such a I, write zI" = yA fory € Y
and A € A*. Then 2Ty = yy A € X(A), so 2T'y) = zA, for some z € X and A € A*.
Moreover, z must have type (B) or (C), as x does, so 2I't) € Xg(A) C Wry. This
holds for all I of length d, so again xv¢ € Wg;. It follows that Wgryv C Wgky.

Repeating the same argument, using Z = Y1) instead of Y and ~! instead of
Y gives W™t € Wgy; so Wgy is ¢-invariant as claimed. Now let u € Vor be a
characteristic element for . Then, from Lemma 4.24, we have wi)? = zA, for some
integer 4, + € Xpr and A € A*. Thus v = Ay~ € Wgy, as Wgy is -invariant;
and we have Vgr € Wgy. This proves (1) and (2) of the theorem, and (3) then
follows from the discussion preceding the statement of the theorem. |

Note that in the case that p~11p = ¢ in the theorem above we have p = pp*prs
an isomorphism from Vpy * Vrr .y to Vp, * Vg, both of which are isomorphic
to Vi .

Example 5.2. Let ¢ be as in Example 4.5. Then Xp = {zasay,za3} and Xp; =
{za?, rajas}. Thus ¥p is the automorphism of Vp = Xp(A)()\) defined by

TOo1 {I,‘Ckg7 LL‘O[% = Tl .

Let Yrr = {za3, za}as, zaras} and Zgr = {za?, rasasar, zarad}, both of which
are expansions of Xpgr. Then ¢ gy is the automorphism of Vrr = Xpgr(A)(\) defined
by

acozzf — JZO(%, acafog — TayQea, Topag xalag.

Theorem 5.1 allows us to decompose the conjugacy problem for (i, ¢) into
conjugacy problems for (¢Yp,p) and (Yrr, ¢rr). Indeed, Vp =V, | x,,| and Vg =
Vo, |xri|» and we regard ¢p and gy as automorphisms of V,, x| and V, |xp,|,
respectively. It turns out that ¢¥p and g, are each of particularly simple types;
so if we can solve the conjugacy problem for these simple types of automorphism,
then we can solve it in general. In the remainder of this subsection we describe in
detail how this decomposition works.

First consider a single automorphism ¢ € Gy, ., where % is in semi-normal form
with respect to an A-basis X. As before, we take V,, . to be the free V,, algebra on
a set x of size r, so that X is an expansion of x. Let Xp and Xg; be defined as
above, let Y be the minimal expansion of X associated to ¢ and let Z = Y. As
Y is an expansion of X, for all # € X the set Y, = Y N {xz}(A) is an expansion
of {«}, by Lemma 3.16. Therefore Yp = Y N Xp(A) is an expansion of Xp, and
Yrr = Y N Xgr(A4) is an expansion of Xpgy. Similarly, Zp = Z N Xp(A) and
Zrr = Z N Xgr{A) are expansions of Xp and Xpgj, respectively. In fact, as ¢
permutes the elements of X with type (A), ¥p permutes the elements of Xp, so
Xp = Yp = Zp. Therefore ¢p is an automorphism of Vp = Xp(A)(\), which
permutes the elements of Xp.
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For all y € Yg; we have yip = 2z € Z; moreover z € Xpg;(A) because Viy is 9-
invariant, so Yrrv = Zrr. Now ¥ gy is an automorphism of Vi, where Vgy is freely
generated by X gy, and Yg; is the minimal expansion of X gy associated to ¥ pr (asY
is the minimal expansion of X associated to v). Furthermore Yr;¢rr = Zgs and if
w is an element of X pr(A) such that uy) € X (A) then uwyp € X(A)NVr; = Xpr(A);
so no element of Xgr(A) is in an incomplete finite X gr-component of ¥g;.

To summarize, let | Xp| = a, | Xgr| = b and let Xp = {x1,...,2,} and Xy =
{Zat1y.-,Tatp}, where x; € x(A). Then, regarding the z; as new generators, we
may view Vp as V,, 4, the free V,, algebra on {x1,..., 2.}, and Vs as V;, , the free
V,, algebra on {x411,...,%q4p}. We regard ¢p and ¢g; as elements of G, , and
G p, respectively. In this case, ¢p (respectively, ¥rr) is in quasi-normal form with
respect to the A-basis Xp (respectively, ¥rr). We write all elements of Y and Z in
terms of the x;, rather than as expansions of elements of x.

Example 5.3. Let n =2, r =1 and V51 be free on x = {z}. Use bases Y and Z
Y = {J;o/f,xa‘;’ag,xa%ag,acoqozzoq,xalag,xagal,xagal,xag},
Z = {za3, xalasan, 20202, xoq anan, zagal, zana?, zasarag, ral}
to define the element ¢ of G, , illustrated below.
¢ . —

6 7 3 FI:

3 4 5
1 2 1 53

Then Y is the minimal expansion of x associated to ¥. The minimal expansion of
x contained in Y (A4) U Z(A) is

X = {203,z a9, o, zag 02, zanag, a3}
Then X {A\(Y(A) N Z{A)) = {xa?, zalas, rasar, ra3}. The X-components of
these elements are

S zad e orad,  raiag e xatad s e

S TS Ta3, Ty b Tagad b e

so v is in quasi-normal form with respect to X. Introduce new generators x; = xa3,
To = xa%am I3 = Ty, Ty = xalag, T5 = xaooy and g = xa%. Then
Xp = {{L‘37 LL‘4} and XR] = {.’L'l, o, XI5, LL'6}.

Let Va2 be free on {x3,24}. Then, as an element of G 5 the map ¢ p is the map
sending x3 to x4 and x4 to x3. Let Vo 4 be free on {1, z2, x5, 26}. We have

4 3 2 2 3
Yrr = {za], zajas, xajas, zasay, zazar, vos )

= {100, 7100, T2, 5, TZet1, Tz} and
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3 2 2 9 2 2
Zrr = {zay, zajasar, zajas, rasay, tasa g, xas
= {x1, 201, 2002, L5011, T5002, T

so as an element of G5 4 the map gy is given by the following forest diagram.

T To Is5 Te X1 ) Ts5 Te
Ny LA — DA A

1 2 5 6 2 3 4 5

Definition 5.4. Let ¢ be an element of G,, ,.. Then ¢ is called periodic if Vg = 0)
and 1 is called regular infinite if Vp = ().

Lemma 5.5. Let v be an element of Gy, » in semi-normal form with respect to an
A-basis X.

(1) v is periodic if and only if 1 permutes the elements of X .
(2) 9 is regular infinite if and only if no element of X is of type (A).

Proof. (1) If ¢ permutes the elements of X then X contains no element of type
(B) or (C); s0o X = Xp and V,,, = Vp, by Theorem 5.1. As V,, , is the free product
of Vp and Vg it follows that Vi = (), so 1) is periodic.

If 9 is periodic then Xry C Vgr = 0, so X = Xp. Thus X consists of elements
of type (A), which are permuted by %, by Lemma 4.18.

(2) If ¢ is regular infinite then Vp = 0, so X,, = 0); i.e. no element of X is of type
(A). If X contains no element of type (A) then Xp = ), and therefore Vp = 0 by
Theorem 5.1, so v is regular infinite. O

It follows that, in the notation established above Example 5.3, the automorphism
Yp € Gy q is periodic and ¥Ygr; € Gy, p is regular infinite. Thus, the decomposition of
Theorem 5.1 may be viewed as factoring ¢ into a product of a periodic and a regular
infinite automorphism. It remains to see how to regard a pair of automorphisms in
this way, simultaneously in the same algebra.

To this end suppose that v¢; € Gy, 4, is in semi-normal form with respect to
an A-basis X;, where |X;| = a;, for i = 1,2. If there exists an isomorphism p :
Viay — Vn.as With the property that p~li1p = 1) then, from Corollary 3.14,
a1 = az modn — 1. Also, if a; = as modn — 1 then V,, 4, is isomorphic to V,, s
where 1 < s < n —1 and s = a;. If this is the case then we may take an A-basis
xs of s elements of V, s and choose expansions X| and X} of x; of a1 and as
elements, respectively. Now let f; be the map taking X; to X/. Then there exists
an isomorphism p : Vj, 4, — Vi, such that p=tp1p = 1) if and only if fay =
as modn — 1 and, bettmg 1@ =f lwlfl € Gy, we have p 1f1w1f1 p= f2w2f2
that is 0~ 1416 = by, where 6 = f; 'pfs € Gn.s (see Fig. 2).
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1
Vn,a1 ” V’I’L,CL1

2
Vn,az ” V’I’L,az

Fig. 2. Isomorphisms of Vi, 4, and Vi s.

Combining this with Theorem 5.1(1) gives a decomposition of the conjugacy
problem into the conjugacy problem for periodic and for regular infinite elements,
separately. Let ¢ and ¢ be elements of G,, ., write V,, o, = Vgry, ¥1 = Yrr,
Vaas = Vrrie and 2 = @gr. Using the procedure above, if pr; exists (in the
notation of Theorem 5.1) then we may regard t;, i = 1,2, as a regular infinite

element of G, 5, namely 1@», for appropriate s. Similarly, we may regard ¥p and pp
as periodic automorphisms of a single algebra.
We can now outline the algorithm for the conjugacy problem.

5.2. The conjugacy algorithm

Algorithm 5.6. Let ¢ and ¢ be an elements of G, .

Step 1:

Step 2:

Step 3:

Find A-bases X, and X, such that 1) and ¢ are in quasi-normal form
with respect to Xy and X, respectively, as in Lemma 4.28. The sets
Xpy, Xrr,p, Xp, and Xgr , are obtained as part of this process.

If | Xpy| =|Xpy| modn —1 and | Xgr,y modn — 1; con-
tinue. Otherwise output “No” and stop.
Find the minimal expansion Yy of X, associated to 1) and the minimal
expansion Y, of X, associated to ¢. (See Lemma 4.3.) Construct Yry
and YRy ,; the sets elements of Y, and Y, which are not in finite orbits
(as in the discussion following Theorem 5.1). Construct Zrr .y = Yrr,gt
and ZRI,Lp = YR[#,(,O.
For T'= P and for T = RI carry out the following. Find the integer sp
such that 1 < sy <n—1and sy = | X7,4|. Let xr be a set of sp elements,
let Vj, s, be free on xr and find expansions Wr, and Wr, of xp of
sizes | Xr | and | X |, respectively. Construct a map fr ., mapping X
bijectively to Wr 4 and fr , mapping Xr . bijectively to Wy . Write 91
and 7 as elements of G, 5., using these maps.

= [Xr1,e
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Step 4: Input ¥p and ¢p into Algorithm 5.13 below for conjugacy of periodic
elements of G, . If ¥»p and pp are not conjugate, return “No” and stop.
Otherwise obtain a conjugating element pp.

Step 5: Input ¥r; and ppry into Algorithm 5.27 below for conjugacy of regular
infinite elements of G, 55, If ¥rr and gy are not conjugate, return “No”
and stop. Otherwise obtain a conjugating element pry.

Step 6: Return the conjugating element pp * pr;.

Given this algorithm we have the following theorem.

Theorem 5.7 ([17, Theorem 9.3]). The conjugacy problem is soluble in G, ;.

Proof. Apply Algorithm 5.6. |

5.3. Conjugacy of periodic elements
Let ¢ € G, be a periodic element. For u € V;, , the size of the v-orbit of u is the

least positive integer d such that u?® = u.

Definition 5.8. Let 1) be a periodic element of G, in semi-normal form with
respect to the A-basis X. The cycle type of 1 is the set

Ty(X) = {d € N|some z € has a y-orbit of size d}.

For d € N, define the ¢-multiplicity of d to be my(d, X) = D/d, where D is the
number of elements of X which belong to a -orbit of size d.

Note that, as v is periodic and in semi-normal form with respect to X, all
X-components of ¢ are (ordered) t-orbits and all ¢-orbits of elements of X (A)
are X-components (once ordered appropriately). Also, d € Ty (X) if and only if
my(d, X) # 0; the size of the set X is | X| = 2der, (x) dmy(d, X); if d € Ty(X)
then X contains m,(d, X) disjoint ¢-orbits of size d; and v is a torsion element of
order equal to the least common multiple of elements of T, (X).

Example 5.9. Let n =2, r =1 and V51 be free on x = {z}. Let
X = {xa‘z’,xa%ag,acoqozz,xaza%,xagalag,xagal,xag}

and let ¢ be the periodic element of G5 ; defined by the tree pair diagram below.

Y o T

L2 4 5 6 7 3 1 5 4 7 6
Then the cycle type of ¢ is {2, 3} with multiplicites m (2, X ) = 2 and m (3, X) =1.

Lemma 5.10. Let v be a periodic element of Gy, in semi-normal form with respect
to the A-basis X and the A-basis Z, where Z is a q-fold expansion of X. Then
Ty(X) =Ty(Z) and my(d, X) = my(d, Z) modn — 1, for all d € Ty (X).
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Proof. It suffices to prove the lemma in the case where Z is a simple expansion
of X, because any expansion is obtained by a finite sequence of simple expansions.
Suppose the expansion happens at w € X, so that Z = (X\{w}) U{wa,...,way,}.
To compute Ty, (Z) we need to break Z into a union of ¢)-orbits.

Let d be the size of the v-orbit of w, so that O, = {w,wy, ..., wy? 1}, For
each 1 < i < n the orbit of wa; is Oypa, = {way, way, ..., wih?La;}, which is of
size at most d. In fact its size is exactly d: if there are integers 0 < j < k < d for
which wi? oy = wipFa;, we would have w17 = wi®, which cannot occur.

Thus, in moving from X to Z we have lost 1 and gained n -orbits of size d; all
other t-orbits inside Z are t)-orbits inside X. Therefore Tyy,(X) = Ty (Z). In terms
of multiplicities this means my,(d, Z) = mqy(d, X)+n—1and my(e, Z) = my(e, X),
for every positive integer e # d; whence the result. |

Note that it follows from this lemma that if v is in semi-normal form with
respect to both X and X’ then Ty, (X) = Ty (X'), since we may take a common
expansion of both X and X’ and then expand this to an A-basis Z with respect
to which v is in semi-normal form. So from now on, we refer to the cycle type T},
without reference to an A-basis X.

Proposition 5.11. Let ¢ and ¢ be periodic elements of Gy, , in semi-normal form
with respect to the A-bases Xy and X, respectively. Then 1 is conjugate to ¢ if
and only if

(1) Ty =T, and
(2) my(d, Xy) = my(d, X,) modn — 1, for all d € N.

Proof. Assume that 1) and ¢ are conjugate and let p € G, ,- be such that p~1lip =
. Let p be in semi-normal form with respect to X, let Y be the minimal expansion
of X, associated to p and let Z = Yp. Let W be a common expansion of X, and
Y and let ¥ be in semi-normal form with respect to an expansion X{p of W. (Such
an expansion of W exists, by Lemma 4.9.) As ¢ is periodic and in semi-normal
form it permutes the elements of X/, so for all z € X, we have 2’ € X, such
that xpp = xpp = 2'p € Xp. Therefore ¢ permutes the elements of X{bp, S0 @ is
in semi-normal form with respect to X/, = X} p. As X, is an expansion of ¥ and
Z =Yp it follows that X/, is an expansion of Z.

Now if x € X{p and i € Z then xzpp’ = 21'p, so we have 2% = x if and only if
xpp? = xp; in other words, = and xp have orbits of equal size. This applies to any z,
so Ty =Ty, and both X, and X, have the same number of elements with an orbit
of size d. Therefore my(d, X;,) = my(d, X(,), for all d € Ty, = T,,. Statement (2)
follows, from Lemma 5.10 and the fact that X, and X{, are expansions of X and
X, respectively.

Conversely, suppose that statements (1) and (2) hold. Let Ty, = T, =
{d1, ..., dx} and write m; = my(d;, Xy) and m; = my(d;, Xy). Fix j € {1,...,k}.
Assume first that m; > mj. Then, by hypothesis, m; = m/; + g;(n — 1) for some
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positive integer ¢;. Select an element x € X, whose p-orbit O, has size d;. Let Y,
be a g;-fold expansion of {z} and set E = {I' € A*|zT' € Y.}, so that Y, = zE.
Then for each 0 < i < d;, z¢'E is a gj-fold expansion of {z¢'}.

For every string I' € E, the set {a',zpl, ..., 20? 'T'} is a p-orbit of size d.
(We saw this in Lemma 5.10 for I' = «;.) Hence the set O, FE = {z¢'T'|T €
E,0 <i<dj}is a g;d;-fold expansion of O,; more precisely it is a disjoint union
of |E| = gj(n — 1) p-orbits of size d;. After O, is expanded to O, E, the resulting
' size d; p-orbits.

For each j such that m; > m;- apply this process to a single element of X, with
p-orbit size d;. Dually, for each j such that m;- > m,; apply the process to an element
of X, with #-orbit size d;, interchanging the roles of ¢ and . The result is an
expansion X, of Xy and an expansion X, of X, such that mq,(d, X7,) = my(d, X},)
for every positive integer d.

Now define p : X{p — X; by mapping orbits of size d to each other, preserving
the order within each orbit. In detail, for each d set m = my(d, Xyy) = my(d, X,).
Let O1,...,Om be the size d ¢-orbits (in any order) in X, and let O}, ..., Oy, be
the size d p-orbits in X/, (also in any order). Select a representative o; € O; and
o, € O for each of these 2m orbits. We define p by the rule 0;1/7p = ol¢?. By
construction we have xip = xpp, for all x € X{/;- Hence p~'9p = . |

expansion X, has exactly m; +gi(n—1)=m

Example 5.12. Let n =2, 7 =1 and V4 be free on x = {z}. Let
X = {aco/ll,aca‘;’ozg,xa%ag,xalag,xagal,xag}

and let 1) be the periodic element of G2 ; given by the tree pair diagram below.

v —
15 6 3 6 5

1 2 3 2 1 4
Then 9 has cycle type Ty, = {2} and multiplicity m. (2, X) = 3. The 1-orbits of ele-
ments of X are O; = {zaf, zadas}, Oy = {zataz, rajas} and O3 = {rasay, zad}.
Let Y = {zaq,zas} and let ¢ be the periodic element of G2 1 which swaps the
elements of Y.

. P U
v 1 2 2 1
Then ¢ has cycle type T,, = {2} and m,(2,Y) = 1. From Proposition 5.11, ¢ is
conjugate to ¢. We can construct a conjugator by applying the process of the proof.
We take the same 2-fold expansion of both xa; and zas to give a 4-fold expansion
Y = {J)a?,xa%ag,1‘(110(2,330(20[%,1‘0[20(10(2,1‘0[%}

of Y such that ¢ is in semi-normal form with respect to Y”. The @-orbits of elements
of Y are O] = {za3, xaza?}, O = {xalas, rasaias} and Of = {xaiag, ra3}, so
my(2,Y") = 3. Take the representative of each orbit to be the first element listed in
its description. The corresponding conjugator p is the element of G5 ; which sends
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O; to O} via xo/l*p = xai’, xai’agp = acozgozf7 xa%agp = {EOé%Otg, TP = T (2,

Tasap = rapay and xa%p = xa%.

S N
5 6
4 1 35 9 4 6

Then p~epp = .

From the proof of Theorem 5.11 we extract the following algorithm for the
conjugacy of periodic elements of Gy, ;.

Algorithm 5.13. Let ) and ¢ be periodic elements of G, .

Step 1: Construct A-bases X, and X, with respect to which % and ¢ are in
semi-normal form (Lemma 4.9).

Step 2: Compute the cycle types Ty, and T,. If T, # T,,, output “No” and stop.

Step 3: Compute my(d, Xy) and my(d, X,), for all d € Ty. If my(d, Xy) #
me(d, X,) modn — 1, output “No” and stop.

Step 4: Construct A-bases X{p and X; as described in the proof of Theorem 5.11.

Step 5: Choose a map p sending 1-orbits of elements of X &) to @-orbits of elements
of X/w’ as in the proof of the theorem, and output p.

5.4. Conjugacy of regular infinite elements

We begin with a necessary condition for two regular infinite elements to be conju-
gate. Let ¢ be a regular infinite element of G, ;- in semi-normal form with respect to
X. By Lemma 4.6, ¢ has finitely many semi-infinite X-components, each of which
has a characteristic element u with some characteristic (m,T") (see Definition 4.22).
If ¢ is also in semi-normal form with respect to Y, the ¥-orbit of u has precisely
one Y-component, which is again semi-infinite of characteristic (m,T"). Therefore,
the set of pairs (m,I") which are characteristics of semi-infinite X-components is
independent of the choice of a basis for a semi-normal form. With this in mind, we
make the following definition.

Definition 5.14. Let v be a regular infinite element of G}, ; in semi-normal form
with respect to X. Define

My = {(m,T)|(m,T') is the characteristic of a semi-infinite X-component of 1 }.

Example 5.15. We refer to the following example through the remainder of this
section. Let n = 2, r = 1, x = {z} and ¢ € G2 be determined by the bijection
from A-basis

Y = {zay, zason, wadal, rasog oo, xad )
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to the A-basis
Z = {za? xalay, rajay, rasay, ral}

as illustrated below.

<,0:/>>\—>/((\
1
9 12453

3 4 0

Then Y is the minimal expansion of x associated to ¢ and Z = Y. The elements
of x(A)\(Y(A) U Z(A)) are x and zas, so we start the search for a quasi-normal
form by taking the unique minimal expansion X = {zai,zasar,za} of x not
containing either of these elements.

The X-component of zaq is

Ty = 208 s xal

which is right semi-infinite of characteristic (1, a?). Next, zasa; belongs to a com-
plete infinite X-component:

L ZOb o Tah — 20 - Tagay — z0dag — zafas — zaSay e
Finally, the X-component of za3 is
S zadad & zadad v zad,

which is left semi-infinite of characteristic (—1,a?). Thus ¢ is in quasi-normal form
with respect to X.

To determine M, we compute the sets X(A)\Y(A) = {za3,za3a;} and
X(AN\Z(A) = {zai,ra?}. The X-components we have yet to calculate are those
of za3a; and wa?; these are the sets {zaZai "' |i > 1} and {za? |i > 1} with
characteristics (1,a?) and (-1, a?), respectively. Hence

MSD = {(170‘%)7 (_17 O‘%)}

Lemma 5.16. Let v and ¢ be regular infinite elements of G, , in semi-normal
form with respect to A-bases X and Y, respectively. Suppose that the elements are
conjugate via p € Gy, with p~'p = ¢. Then the sets My and M, coincide.
Moreover, p maps a semi-infinite X -component of 1 into a w-orbit which contains
a (unique) semi-infinite Y -component with the same characteristic.

Proof. If u is an element of X (A) such that ui)™ = ul', for some m and T', then
upe™ = up™p = ul'p = upl.

The same argument can be applied starting with an element v € Y (A) and
interchanging ¢ and . Hence if u belongs to a w-orbit of characteristic (m,T")
then up belongs to an @-orbit of characteristic (m,I"). Thus, from Lemma 4.24,
a t-orbit that contains a semi-infinite X-component of characteristic (m,I") is
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mapped by p to a ¢-orbit which has a semi-infinite Y-component of the same
characteristic. |

Definition 5.17. Let ¥ be in semi-normal form with respect to X. The equivalence
relation = on X, is that generated by the relation x = 2/, whenever 2I" and 2’ A
are in the same -orbit, for some I', A € A*.

Example 5.18. Let ¢ be as in Example 5.15. Then zasaip = (rag)aias, so
ragay = zag. Also, zasa1p™! = (zad)az, so xasa; = zad. Therefore all elements
of X are related by =.

Proposition 5.19. Let ¥ be a regular infinite element in semi-normal form with
respect to X . Let X = [[["| X;, where the X; are the equivalence classes of = defined
on X under the action of 1. Then V, . is the free product of the v-invariant $2-
subalgebras Vi, ..., V., where V; is the Q-subalgebra generated by X;.

Proof. As 1) is regular infinite, the sets A; partition X, so V,, . is the free product
of the V;’s. To show that V; is ¢-invariant it suffices to show that if x € &; then zv
and x¢~! are in V;. To this end, choose d > 0 such that z¢T" and 2¢~'T" belong
to X (A), for all T" € A* of length d. Then for all such " we have z¢I" = yA and
29p71T = zA, for some y,z € X and A, A € A*. By definition then y = x = z, so
x,y,z € X;. This implies that z¢T' = yA € V; and 29~ 'T = zA € V;. This holds
for all T of length d, so from Lemma 3.20, x1) and z)~! belong to V;, as required.
Hence V; is v-invariant. O

Lemma 5.20. Let i) be a reqular infinite element in semi-normal form with respect
to X and let X;,1 = 1,...,m, be the equivalence classes of = defined on X under
the action of . We may effectively construct the X;.

Proof. From Lemmas 4.28 and 4.3, we may effectively construct X, the minimal
expansion Y of ¢ with respect to X, and the basis Z = Y. For each v € XUY UZ
we may enumerate a finite subsequence C, of the X-component of v using the
procedure of Lemma 4.28. Let =; be the equivalence relation on X generated by
y =¢ z if yI" and zA belong to C,, for some v € X UY U Z and I'; A € A*. We
claim that =¢==.

By definition, =¢C=. To prove the opposite inclusion, we suppose that there
exist p € Z, x,y € X and A, ® € A* such that ® = yAyP and = and y are not
related under the relation =y. In this case we may assume, interchanging x and y
if necessary, that p > 0. Let p be a minimal positive integer for which such z,y
exist. As yAyP = x® it follows that yAy? € X(A), for p’ = 1,...,p — 1. Let
yAp =y’ A’ so y' A'ypP~! = ®. By minimality of p we have y’ =g x.

Let Ag be an initial subword of A of maximal length such that yAgy € X (A),
say A = AgA;. Then yAg € Y and yAgyp = y” A}, for some 3y € X and A € A*.
Now y'A" = yAgAyyp = y"AfA1, so y” =y and A" = AJA;. Thus yAgyp = y'Ajf
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and, as yAg € Y, y'Aj € Z we have y =¢ y'. Therefore y =¢ z, a contradiction.
We conclude that no such p, x and y exist and so =C=y, as required. Thus =¢==,
and as we may effectively compute the sets C,, it follows that we may compute the
equivalence classes AX;. O

Lemma 5.21. Let ¢ be a reqular infinite element in semi-normal form with respect
to X and let X;,i = 1,...,m be the equivalence classes of = defined on X under
the action of ¥. Define

9 ) ifx e X,
TU; =
x if v € Xj fori # j,
fori=1,...,m. Then §; extends to an element of G, , which commutes with 1
and with 0;, for all j =1,...,m.

Proof. Let V; be the (2-subalgebra generated by &;, ¢ = 1,...,m. Since V,,, =
Vi %V, and the V; are ¢ invariant, we have ¢ = 11 * - -+ % ¥y, where ¢; =
¥]y,. Moreover 1; is an automorphism of V;. By definition, ¥;|x, = ¢¥|x, = 0i|x;,
50 0;|x, extends to the automorphism ; of V;. Thus (the extension to V,,, of)
0; =1y, %+ k% - -x 1y, is an automorphism of V,, .. For i < j we have 0;0; =1y, *
ceekapy ke coxapy o x 1y = 0;0;, and it follows that ; commutes with . O

Lemma 5.22. Let ¢ and ¢ be reqular infinite elements of Gy, ,, in semi-normal
form with respect to the A-bases X and Y, respectively. Let Xy, ..., X, be the equiv-
alence classes of = defined on X wunder the action of V. Choose a representative
x; € X; of type (B) for each i. If ¢ and ¢ are conjugate, there exists a conjugator p
such that x;p is a terminal or initial element in a semi-infinite Y -component of .

Proof. Let p' € G, be a conjugator with p'~14p’ = . We will explain how to
modify p’ to form another conjugator p satisfying the requirements of the lemma.
Lemma 5.16 asserts that x;p’ belongs to a ¢-orbit containing a semi-infinite Y-
component, which has the same characteristic as ;. Let y; € Y (A) be the initial or
terminal element of this Y-component. Then there exists j; such that z;p’ = y;07%,
meaning that

yi =yt o = wip' T = app Ty
For each equivalence class &;, define 6; as in Lemma 5.21 and p € G, by
i=1
Then 0 = [, 6,7 commutes with v, so p~Lep = p'~ 10~ 1y’ = p'~ L’ = ¢

1=1"1
furthermore for each chosen x; € X; we have

n
Tip = T (H 0iji> p=wib " p = aip I =y
i=1

Thus p is the required conjugator. |
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Definition 5.23. Let ¢ and ¢ be regular infinite elements in semi-normal form
with respect to X and Y and let Xy, ..., X}, , be the equivalence classes of = defined
on X under the action of 1. We define R;(1), ¢) to be the set of pairs (x,y), where
x € X; is of type (B) and y is an initial or terminal element of a semi-infinite
Y -component of ¢ with the same characteristic as x.

Given a choice of elements (z;,v;) € R;i(¢, ) for each 1 < i <m, let py be the
map from {z1,...,2m} to {y1,...,ym} given by x;p9 = y; for each i. We define
R (1, p) to be the set of all such maps py constructed in this way.

The set R;(¢, ) is finite since the number of elements of type (B) in X and
the number of semi-infinite Y-components of ¢ is finite, so R(1, ¢) is also finite.

Lemma 5.24. Given pg € R(y, p), there are finitely many ways of extending po
to an element p of Gy, such that o = p~'1p. Moreover the existence of such an
extension p can be effectively determined, and if such p exists then the images yp
can be effectively determined, for all y € X.

Proof. Throughout the proof, when we say p exists we mean that an extension p
of po to an element of G, , exists and satisfies ¢ = p~11)p. From Lemma 5.20, we
may effectively construct the equivalence classes X;, and so also the sets R; (1, ¢).
First consider a single equivalence class X;. We are given a representative element
x; € X; of type (B) and an element y; such that x;pp = y;, where y; is an initial or
terminal element of a semi-infinite Y-component of ¢ with the same characteristic

as Tj.

Let 2 € X of type (B). Then, by definition of =, we have x € A&; if and only if
there exist elements z; = uo,...,us = « of X, elements I';,A; € A* and k; € Z
with w1441 = u;0jp%, for j = 0,...,t — 1. Before going any further, we show

that we may assume that wu; is of type (B), for all j. Suppose not, say u; is of type
(C). Then, by Lemma 4.18, there exist k} € Z, I'; € A* and u}; € X of type (B)
such that ujwk-; = uI";. Now

kj_1+k: _ k.o
Uj_lrj_1¢ IR = UjAjw i = qujAj
and
I k;—k, I =k k; k;
quijw 7N = qujw -7Fj¢ 7 ZUij¢ 7= Uj+1Aj+1,

so we may replace u; by u; Continuing this way, eventually all u; will be of type (B).

We show, by induction on ¢, that there are finitely many possible values of xp,
for a conjugator p € G, such that z¢p = zp~'¢p which extends py. (That is,
where x;p = x;po = y;.) We also describe an effective procedure to enumerate the
set of all such elements. Suppose first that ¢t = 1, so x = u; and we have I' = I'y,
A = A; and k = ko such that 2;I'y* = 2A. Given that p exists, from Lemma 5.16,
zp belongs to a semi-infinite Y-component C of ¢ with the same characteristic as x.
Therefore (if p exists) there exists an element (x,w) € R;(¢, p) such that w is the
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initial or terminal element of C, as well as an integer I such that w¢! = xp. This
implies that

wAQ' = (zA)p = 2Ty p = 2 Tpp* = 2;pop" T,
SO

wAgal_k = x;pol’ = y,;T. (5.1)

Lemma 4.34 gives an effective procedure to determine whether an integer [
satisfying (5.1) exists, and if so find it. Given py and x, the integer k and the
elements I" and A are uniquely determined so, to decide whether an appropriate
value zp exists, we may check each pair (z,w) in the set R;(1, ) to see if (5.1)
holds for some [ or not. For each such w there is at most one [ such that (5.1) has a
solution and, as R; (v, ¢) is finite, we may effectively enumerate the values wAp!~*
that could be assigned to zp. Hence the result holds if ¢ = 1.

Now assume that ¢ > 1 and the result holds for all x related to x; by a chain
of length at most ¢ — 1. Then wus— is of type (B) and by assumption u;_1p may
be given one of finitely many values, and we have a procedure to enumerate these
values. Suppose then that u;_1p = v. Now & = u,, and we have I';_1,A; € A*
and k;,_; € Z such that u;_1T;_19* - = xA,. Applying the argument of the case
m =1 with u;—1, I'y—1, Ay and v in place of z;, I', A and y, we see that a finite set
of possible values for zp may be effectively determined. Therefore, by induction,
the result holds for all x € &; of type (B).

Finally, if € A} is of type (C), then by Lemma 4.18 there is a zX in the
X-component of x, for some z of type (B) and ¥ € A* i.e. xzy? = 23 for some
integer p. Since we have already determined the possible images of all the type (B)
elements in A}, if p exists we have, for each choice of zp,

zp =2 Pp=zpXp?

and this determines the image of the type (C) element under p (uniquely once we
have made our initial choice for the image of zp).

We carry out this process on each equivalence class in turn. If the process results
in at least one possible value for each element of X, we obtain a potential extension
p of pg. For such a p to be a genuine extension, we need to check if p defines an
automorphism of V;, .. This is the case if and only if the image X p of the A-basis X
is itself a basis for V,, ,-, which we can effectively determine using Lemma 3.16. (Note
that X p need not be an A-basis — see Example 5.26 below.) O

We are now able to state the main result of this section.

Proposition 5.25. Let ¢ and ¢ be regular infinite elements of G, in quasi-
normal form with respect to X and Y, respectively. Then 1 is conjugate to ¢ if and
only if there exists a map py € R(Y, ¢) which extends to an element p of Gy, » with

plp = .
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Proof. If py extends to an element p € G, with p~p = ¢, then 9 is certainly
conjugate to .

Assume that v is conjugate to ¢. Lemma 5.22 tells us that there exists a con-
jugator p such that, for each equivalence class X;, there exists an element x; of
type (B) in &; with y; = z;p an initial or terminal element of a semi-infinite Y-

component of . We define pgy to be the map x1 +— y1, ..., Ty — Ym, where y; = x;p
for each i = 1,...,m. Thus, po is an element of the finite set R(¢;¢). Now pq is
the restriction of p to {x1,..., 2y}, so it certainly extends to p, as required. O

Example 5.26. Let n =2, 7 =1 and V41 be free on x = {z}. Let
Y = {xal,xagaf,xagalag,xag} and Z = {xai’,xa%ag,xalag,xag}

determine the automorphism 1 as illustrated below.

Then Y is the minimal expansion of x associated to ¢ and Z = Y+1). The only
element of x(A) not in Y(A) U Z(A) is x, so we take X = {za;,zas} to be our
candidate basis for a quasi-normal form. Then X (A)\Y(4) = {zxaz, xasa;} and
X(ANZ(A) = {za1,xa?}. The X-components of the first two elements are

2k 2k+1
rag € {zasai® i and  zasog € {razal™ >0,

both left semi-infinite with characteristic (—1,a%). The latter two elements’ X-
components are

zog € {za? 5o and  za? € {xa? s,

both right semi-infinite with characteristic (1,a?). Hence v is in quasi-normal form
with respect to X, both elements of X are of type (B) and My, = {(1,a3), (—1,a%)}.
As (zag)agy) = (zaq)as there is one equivalence class of =, that is Ay = X.

Let ¢ be automorphism of Examples 5.15 and 5.18. Then ¢ is in quasi-normal
form with respect to the A-basis X, = {zai,zasaq,za3} and M, = M,,. The
initial elements of right semi-infinite X -components are xa; and JZOJ% and the
terminal elements of left semi-infinite X,,-components are za3 and xa3a.

The set Ri(1), ) consists of the pairs (zay,zay), (zar, za?), (zaz, za?) and
(rag, ma3a). Let us choose wag as our type (B) representative in X;. We have
two choices for the image of wa; under py, corresponding to the two pairs
(zay,zay), (rag, xa?) € Ry. Denote these by p; and po, where

rzaip; =xap and zajpy = xa?.

Next we determine the images of the other type (B) element xas of X under the
action of p; and po, following the proof of Lemma 5.24.
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As noted above, ra; = xag because (ra;)az) ™t = (zas)asg, so in the notation
of the proof of Lemma 5.24 we have I' = ag, A = as and k = —1. Substituting
these values into Eq. (5.1), we wish to find [ such that

I+1
wagp' T = (ran)pias,
where i = 1 or 2, and w = za3 or xa3a;. Whenever we find such an [ then we set
zagp; = wy' and check to see if p; determines an automorphism. If so, we check if
p; is a conjugator i.e. if p;lsz = .
Case t =1: xa1p1 = xQq.
(i) When w = a3 we have
J?Ol%(pl_‘—l = o109 e Z‘OéQOélgpl = Tra0o,
which has no solutions, as may be verified using the process of Lemma 4.34.
(i) When w = zada; we have
2 I+1 _ I
Ty Q2P = T2 e TP = T,
which has solution [ = 0. Therefore we set xasp; = xa%al. Now p; maps X to

{xaq, zada;}, which is not a basis of Va1 (see Lemma 3.16). So the set map p;
extends to an endomorphism which is not an automorphism of V5 ;.

Neither value of w results in a potential conjugator p;.
Case ©t =2: zaqp2 = xa%.
(i) When w = a3 we have
zadp't = zalan = zasay! = zdias
which has solution [ = 1. Therefore we set
Tagpy = T3P
= (zaia?)(zaiaiaz) Mzad) e
= (zojaip)(zadaranp)A(za3p)A
= (zad)(raiaz)Mzazar). (5.2)
In this case za3 is in X, (A)\W (A), where W is the minimal expansion associ-
ated to ¢; this is why the standard form of xagpo is written using contraction
operations \.
To define py in terms of X (A), we must take an expansion of X at zas.
We take the minimal expansion which allows us to define the map into x(A);
namely {zasa?, rasajas, za}. From (5.2) we obtain
raz0ipy = (va3)oie = zoj,
TP = (xag)alaggp = raqao,

2 2
zagpe = (zaj)asy = rxasay.
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We see that ps maps the expansion {xal,xaga%xagalagmag} of X to
{xa%,xa%xalag,xagal} which is a basis for V5 1; so po determines an ele-
ment of Gy ;. It can be verified pglz/}pg = ¢, S0 ps is a conjugator. At this
point we could stop but we give the final case for completeness.

(ii) When w = za3a; we have

xa%a?agiﬁlﬂ = J?OZ%OZQ <— rToiag = xa%ag,

which has no solutions.
We find one conjugating element p, and we see that ¥ and ¢ are conjugate via ps.

The algorithm for the conjugacy of regular infinite elements of G, ,- is as follows.

Algorithm 5.27. Let ¢ and ¢ be regular infinite elements of G,, ..

Step 1: Construct A-bases X, and X, with respect to which ¢ and ¢ are in
quasi-normal form (Lemma 4.28).

Step 2: Construct the equivalence classes &;, ¢ = 1,...,m, of = on Xy
(Lemma 5.20).

Step 3: Find the initial and terminal elements of semi-infinite X,-components
of ¢, by finding the minimal expansion of X, associated to ¢ (Lemma 4.9).

Step 4: Construct the sets R; (¢, ¢).

Step 5: For each equivalence class &; of = on X choose an element z; € X}, of
type (B).

Step 6: For cach ¢ and each pair (z;,y) of R;(v, ¢), construct a map p; : X; — X,
using Eq. (5.1), as in the proof of Lemma 5.24, if possible. In each case
check that p; is an automorphism.

Step 7: For each m tuple p1, ..., p, of automorphisms, from the previous step,
check whether the map p = py * - - - % p,, conjugates ¥ to .

6. The Power Conjugacy Problem

For a group with presentation (X | R), the power conjugacy problem is to determine,
given words g, h € F(X) whether or not there exist nonzero integers a and b such
that ¢ is conjugate to h® in G. We may in addition require that, if the answer
to this question is “yes”, then integers a and b, and an element ¢ € F(X), are
found, such that ¢~ 1¢g% =g h’. We say the power conjugacy problem is decidable if
“yes” if they are conjugate and
“no” otherwise. Again, the stronger form entails the obvious extra requirements.
As before, in G, ,, we work entirely with symbols for automorphisms, ignoring the
presentation.

As in the case of the conjugacy problem, we break the power conjugacy problem
down into two cases; one for periodic elements and one for regular infinite elements.
Then, we construct an algorithm that combines the two parts.

there is an algorithm which, given g and h outputs
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6.1. The power conjugacy for periodic elements

Let ¢ and ¢ be periodic elements of G,, ,, of order k and m respectively, in quasi-
normal form with respect to the A-bases X and Y. To test whether there exist a,
b € Z such that 1® is conjugate to ¢®, we apply Proposition 5.11 to the pair 1/°,
e? forallce {l,...,k} and all d € {1,...,m}.

6.2. Regular infinite elements

The first step is to compare the sets My, and Mya, a € Z, |a|] > 1, for a regular
infinite automorphism ).

Lemma 6.1. Let i be a regular infinite element of Gy, and let a be a non-negative
integer. Then

Mya ={(m/d,T?) | (m,T) € My, ged(m,a) =d and |a| = qd}. (6.1)

Proof. Let v be in semi-normal form with respect to X. The X-components of )¢
are sub-sequences of the X-components of 1, so ¥* is also in semi-normal form with
respect to X. Suppose to begin with that a > 0. First we show that the right-hand
side of (6.1) is contained in the left-hand side. If (m,I') € M, then there exists
an element u of V,,, in a semi-infinite X-component for 1) of characteristic (m,I");
and we may assume u € X (A). If d = ged(m, a), p=m/d, ¢ = a/d and k = ma/d,
then u(y*)? = uyp™? = ul'?, (as mgq has the same sign as m). If a < 0 then, from
the above, with d = ged(m, —a), p = m/d, ¢ = —a/d and k = —ma/d, we have
up~ " = yI'?. In all cases therefore u is a characteristic element of )*. Furthermore,
if u(yp*)" = uA, with A # 1 then, from Lemma 4.25, m|ar, which we can rewrite as
pd|qdr, so p|gr. As ged(p, q) = 1, this implies p|r, so that |m/d| = |p| < |r|. Hence
u has characteristic (m/d,I'?), with respect to ¥*. As u belongs to a semi-infinite
X-component for ¢, it follows that (m/d,T'?) is in Mye and so we have

Mya 2 {(m, T | (md,T') € My,d > 0,gcd(m,q) =1 and |a| = gd}.

On the other hand, suppose that (r,A) € Mya. Then again, there exists u €
X (A) such that u is a characteristic element of ¥®, so ut)® = uA. Thus, from
Lemma 4.25, u is a characteristic element for ¢, with characteristic (m,I") € My,
such that m|ar and A =T, where ar = mt, t > 0. Let d = ged(a, m), m = pd and
a = qd. Then dqr = pdt, so qr = pt and ged(p,q) = 1, so r = pr’ and t = ¢t’, for
some 7', t'. However, we have u(¢?)P = utp@ = y3p™? = uI'?, and so, by definition
of (r,A) € Mya, we see that |p| > |r|, so 7’ = £1. Since a > 0, both m and r have
the same sign, so " = 1. It now follows that r = p = m/d and A =T, so (r, A)
belongs to the set on the right-hand side of (6.1). That is

Mya C{(m, T | (md,T) € My,d > 0,gcd(m,q) =1 and |a| = gd}.

If a < 0 then the lemma follows by applying the result above to M,—1(—a), as
for all 6 € G,, , we have (m,T") € My if and only if (—m,T") € My-1. |
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Example 6.2. Let n =2 and » = 1 and let V51 be free on x = {z}. Let ¢ be the
regular infinite element of G ; defined by the bijection from

3 .2
Y = {za3, zajas, xagas, xas},
to
Z _ 2 2
= {za7, xagay, xasay, xag},

given by the following tree pair diagram.

Then Y is the minimal expansion of {x} associated to ¢. The minimal expansion
of {z} contained in Y (A) U Z(A) is X = {za?, zayag, zas}. X(A)\Y(A) = {za?}
and X (A)\Z(A) = {zas}. The X-components of these elements are

= TO O {,I?Oé:f = TO0p .’EO[%
with characteristic (—2, o) and
2 3 4
Ty = TAG — TAG > Ty > -

with characteristic (1, ). Hence ¢ is in quasi-normal form with respect to X and
MSD = {(_27 0‘1)7 (17 042)}.
The map ©? may be defined by the bijection from

U= {xa‘i’,xa%ag,xalazal,xalag,xag}
to
V = {xa%,xalaz,xagal,xagal,xag}

given by a different tree pair diagram.

@2:/(§—>/>>\
5
1342

1 2 3 4 5

Then U is the minimal expansion of {x} associated to ¢? and the minimal expansion
of {z} contained in U(A) UV (A) is X again. X(A)\U(A) = {za?, zajas} and
X(A)\V(A) = {wagz, za3}; the corresponding X-components are

"—>{L‘Oé£f Hxa%, P Tl = T O
with characteristic (—1, ) and

T — TS e, TR s T

with characteristic (1,a3). Hence ¢? is in quasi-normal form with respect to X and
Mz = {(—1,1),(1,a3)}, as asserted by Lemma 6.1.

Lemma 6.3 and Proposition 6.6 will allow us to find “minimal” pairs (a, b) such
that ¢* and ¢° are conjugate.
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Lemma 6.3. Let v and ¢ be regular infinite elements of G, , and let ¢ be an
integer, such that ¢ is coprime to m, for all m € Z such that (m,I") € My U M,,.

Then ¢ ~ ¢ if and only if ¥ ~ .

Proof. If1{ ~ ¢ then it is immediate that 1) ~ . For the converse, let p € G,  be
such that ¢ = p~19¢p and observe that we may assume, without loss of generality,
that ¢ > 0. Suppose that ¢ and ¢ are in quasi-normal form with respect to A-bases
X and Y, respectively. From Lemma 6.1, My = {(m,I'*)|(m,T") € My} and
ch = {(m7 A°) ‘ (m,A) € Mw}

Let u be an element of V,, ,, which is characteristic for v, with 1-characteristic
(m,T'). Then, from Lemma 6.1 (and its proof), u has ¢ “-characteristic (m,'¢) and,
as ¢ = p~11)°p, its image up has p°-characteristic (m, I'¢). Hence, from Lemma 6.1
again, up has p-characteristic (m,T'). As ged(e,m) = 1, there exist integers s and
t such that ms + ct = 1. Since ¥°p = pp° we have, in the case where s > 0,

wpp = up™ " p = (u(y™)* )Y p = ul Y p = ul* pp

ms, ct ms—+ct

= (up)T°¢" = (up)p™ ¢ = (up)p
= upp.
If s < 0 then we have m(—s) + ¢(—t) = —1, with —s > 0 and the argument
above implies instead that uy~'p = upp~!. In this case, let v = w1, so v also
has 1-characteristic (m,I") and, applying the argument above to v instead of u,
consequently vy~ 1p = vpp !, from which it follows that uyp = upp. This applies
in particular to all elements of X of type (B), with respect to .
Let y’ be an element of type (C), with respect to 1; so there exists an integer
k and an element y € X of type (B) such that y'4)* = yQ. Then 3y’ = yQ~*, and
y17 has the same 1-characteristic as y, for all j: and so is a characteristic element
for 1. From the above then yi/p = (yp)y?, for all j. Now

Yy =y p =yt FpQ = yp! T = ypp~FeQ
=y ppQ =y T Qpp = o pp.
Therefore, y1p = ypyp, for all y € X, so ¢ ~ . |
Definition 6.4. Let ¢ be a regular infinite element of Gn,» and let a be a pos-

itive integer. Define a map 9 : My — Mya by o(m,T) = (p,T'®), where
d = ged(m,a), p=m/d and o = a/d.

Example 6.5. For ¢ in Example 6.2, with a = 2, the map $* : M, — M2 is
given by

@2(—2,04) =(—1,aq) and P? (1, a0) = (1, a2)

From Lemma 6.1 this is a well defined map, and is surjective. In general it is not
injective. For instance if p, s and ¢ are pairwise coprime positive integers and we have
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my = ps, mg = pt and a = st, then dy = ged(my,a) = s and dy = ged(ma, a) = t.
If, for some nontrivial A € A*, we have (my,A*) and (m2, A") in M, then both
these elements are mapped by 92 to (p, A?).

Proposition 6.6. Let v and ¢ be regular infinite elements of G, ,, let a and b be
positive integers and let the images of 1 and @° be

Mya ={(py, T8 [i=1,...,M} and My = {(¢;,A))]i=1,...,N}.
Fori=1,..., M, let
(6% i, T8) = {1, Tg) |1 < 5 < My}
and, fori=1,..., N, let
(@) g A7) = {(ni Aiy) 1< j < Ni
If Y® ~ @ then M = N and, after reordering if necessary, we have p; = q; and

% = A% Moreover, there exist positive integers v, 8, g, di j, €i ki ik tijikes fiojibs
and N jr € A, for 1 <i <M, 1< j<M;and 1<k <Ny, such that

a b .
o= p =dijfijrtijr and = p = ek fijkSi kK, foralli,jk,

and

P~
where d; j is a positive divisor of m; j, e is a positive divisor of n;, T ; = Af/k"
and A; j = Af]7,:7 and

g || TT tigndig) | ftor o rdio g,

ik
for all ', 5" K.

Proof. Assume 9)® ~ ¢, with a,b > 0, and that p~'9*p = ¢©°. From Lemma 5.16,
Mya and M are equal, so M = N, and we may order My so that (p;, I'7*) =
(¢, A%), so p; = ¢; and T = AP With the notation for (12“)’1(]91»,1“?1‘) and
(2°)"1(gi, AS?) given in the statement of the proposition, let d; ; = ged(a,m; ;)
and e; ;, = ged(b,n; ), so

mij/di; = pi = ¢ = Nik/€ik

and let
iy =aldij, Bir="0b/eir,
and
Qg a; i Bik
Ly == A? = Ai,kky (6.2)

by Definition 6.4, for 1 <i < M, 1<j7< M, and 1 <k < N;.
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As I‘?JJ = A?’k’ﬁ by Proposition 3.9, there exist A; ; € A* and positive integers
Si ks tijk such that Ty = AS%* and A, ; = Al9*. Taking a power of A, if

.3,k i,k
necessary, we may assume that ged(s; jx,tij,5) = 1. Then
Sig ki _ pQig _ APik _ pAtigkBik
A =Ty = A =A™ (6.3)

SO 8; j ki j = t¢7j,kﬂi7k. As Si gk and t; ) are coprime this implies that Ozﬁj/ti’j,k =
Bik/sijk = Cijn € L, and aij = ¢ jktijr and Bk = CijkSi k-
Let

g=ged({cijk|l <t <M, 1<j<M;,1<k<N;}).

Then there exist integers f;;x such that c;;r = g¢fijkr, for all 4,7 k. From
Lemma 6.1, M/, consists of elements (m/p,I'*), where (m,I') € My, p =
ged(m,a/g) and o = a/gp. Similarly, elements of M.,/ are of the form (n/q, AP),
where (n,A) € M., ¢ = ged(n,b/g) and 8 = b/gq. Now glc; ;r and ¢; j x|
and ¢; jx|0i k. Therefore ged(m;j,a/g) = ged(m,j,a) = d;; and similarly
ged(nik,b/g) = e; . Thus g is coprime to

- mi j - N,k
ng(miJa a/g) ng(niJﬂ b/g) '

for all 4, j, k. From Lemma 6.3, it follows that ©%/9 ~ /9.
Now

pi

a/g = aijdi;/g= cijrtijrdij/9= fijktijrdi;
and similarly
b/g = fijkSijkCiks
for all 7, j, k. Also
ged({fijr|1 i< M1<j<M;,1<k<N;})=1

so, for fixed 7, 7', K/,

g || T] i) | Jtir g podin o
0ok .
Corollary 6.7. The power conjugacy problem for regular infinite elements of Gy,

is solvable.

Proof. Let 1 and ¢ be regular infinite elements of G, . Suppose that ¢ is conju-
gate to ¢’ for some nonzero a, b. Replacing either ¢ or ¢ or both by their inverse,
we may assume that a,b > 0. Then, in the notation of the proposition above, we
have 1 ~ ¢©?, where a = f; j iti jrdi; and B = f; j kSi j k€. From the conclusion
of the theorem it is clear that there are finitely many choices for f; ; k. i j ks ti j ks
d;; and e; ). Hence there are finitely many possible o and 3, and we may effec-
tively construct a list of all possible pairs («, 3). Having constructed this list we
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may check whether or not ® ~ ?, using Algorithm 5.27. Hence we may decide
whether or not there exist a, b such that ¢* ~ . ]

The proof of Proposition 6.6 forms the basis for the algorithm for the power
conjugacy problem. Given regular infinite elements i, ¢ € G, , we construct bounds
a and b such that if some (positive) power of 1 is conjugate to a (positive) power of
@ then ¢ ~ p? for0 < c < aand 0 < d < b. Following the proof of the proposition,
if 9% ~ P, for some a,b > 0, then the inverse images ﬁa and ¢y partition My, and
M., so we have integers L, M;, N; such that

L
My = J{tmij.Tij) 1< j < M;}
=1

and
L

M, = U{(mk,Azk) |1 <k <N}
i=1
Given any I' € A* there exists unique A € A* and r € N such that I' = A"
and if I' = A’* then s < r. We denote A by vT and 7 by m(T). From Egs. (6.2)
and (6.3), it follows that

VR = VI = VI = V& = VBT
and

sigk <m(Tiy) and  t55 < m(Aq),
for1<i<L,1<j<M;and1<k<N;.

From Proposition 6.6 we have a = diifiiiti11 and fiin <
i jmzai0) digtige As dij < |m; ;| and t; j < m(A; k), this means that

L M; N;
a < dijti gk
i=1 =1 k=1
M; N;
< H m [ m(Aqr)
i=1j=1k=1
L M; N;
< H <|mz,j|Ni H m(Al,k)>
i=1j=1 k=1
L [ M Nio N, M;
<TI (11w ( m(a, k>> (6.4)
i=1 \j=1 k=1

Similarly
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Now suppose that a solution w“/ ~ npb/ gives rise to sub-partitions of the partitions of
My, and M, above. Straightforward calculation shows that in this case, the bounds
on « and (§ obtained are again less than or equal to the right-hand sides of (6.4)
and (6.5) (calculated using the original partitions). Thus, in computing (upper)
bounds a and b we may take partitions of My = PU---UP, and M, = Q1U---UQL
with L as small as possible, subject to the constraint that, for each i such that
1 <4 < L we have VT = VA, for all (m,I'") € P, and (n,A) € Q. If these
partitions satisfy these properties, and this does not hold for any partition of fewer
than L subsets, (in other words the partitions are formed by gathering together
characteristics with the same root) then the bounds a and b are given by

L [Qil [P
a=TIl I M m@) (6.6)
i=1 (m,D)EP; (n,A)€Q;
and
I | P [Qil
b=1]] II Inl I mmo : (6.7)
i=1 (n,A)eQ; (m,I)eP;

Example 6.8. Let n =2 and r =1 and V51 be free on {z}. Let ¢ be the regular
infinite element of G, of Examples 4.1 and 4.11. Then 1 is in quasi-normal form
with respect to the A-basis X = {za1,zas} and My = {(1, a2), (-1,a1)}.

Let ¢ be the regular infinite element of G2 1 defined by a bijective map from

3 2 2
Y, = {za1, zazay, zasaias, zasonag, zos}
to
7 2 2 3
» = {za7, zoason, zaason, zon o, T}

given as illustrated below.

Then Y, is the minimal expansion of {z} associated to ¢ and the min-
imal expansion of {z} contained in Y,(A4) U Z,(A4) is X. We have X(A4)\
Y, (A) = {zas, zasar, zasa?} and X (AN\Z,(A) = {ra1, zayas, zaiad}. The X-
components of these elements are:

roy — xalag = xalag = e
4 7
IO > T Op F> TO 0 >+ - 0
2 5 8
IOy = T Oy B> TO 0y >+ 0

S J;aga? — J?OlQOé:f — TQg,
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g {IJOéQOzI — xa2a411 = T,
8 5 2
Y Ty > XTO0 > Ty

s0 ¢ is in quasi-normal form with respect to X and M, = {(1,a3),(-1,a3)}. In
the notation above, we have partitions My, = P U P, and M, = Q1 U Q2 with
b = {(170‘2)}7 P, = {7(A_17O‘1)}7 Q1 = {(170‘3)} and (2 = {(_170‘%)}7 50 we
obtain bounds @ =9 and b = 1.

Assume there exists positive integers a,b such that 1)* ~ ¢’ We may now

assume that a < 9 and b = 1. The map 12“ : My — Mya is given by
(L) = (1/di,a5'™), 9 (=1an) = (~1/da,af'™),
where d; = ged(1,a) = 1 and dy = ged(—1,a) = 1. Thus
Mwa = {(170‘3)7 (_170‘?)}'

The only possible choice for a making My« = M, = M, is a = 3. Applying
Algorithm 5.27 to 13 and ¢ we find a conjugating element p, given by zaip = zas
and zagp = z0y.

Remark 6.9. In Corollary 6.7 the powers a and b were positive, giving us upper
bounds a < a and b < b for the minimal powers which solve the power conjugacy
problem. Now suppose that a < 0 and b > 0. We may write ¥* = (1)~ and
then —a > 0. If we apply Corollary 6.7 to (»~!, ), we obtain a second pair of
bounds —a < @ and b < b. Observing that (m,I') € My if and only if (—m,T") €
M1, we note that this replacement ¢ 1h)~1 preserves the absolute value |m|
of all characteristic multipliers. Thus each of the terms |m; j|, |n; x|, |m| and |n| in
Eq. (6.4)(6.7) is unchanged. We conclude that @ = a and b = b.

The same argument applies equally well to the remaining two cases a > 0, b < 0
and a < 0, b < 0. Thus, once we have obtained a and 5, we need only to check the
ranges 1 < |a| < aand 1 < |b| < b to find minimal conjugating powers.

Example 6.10. Let ¢ be as in Example 6.8 and let ¢ be as in Example 6.2. Then
My = {(1,a2),(—1,a1)} and M, = {(=2, 1), (1,2)}. In the notation above,
we have partitions My, = P U P, and M, = Q1 U Q2 with P, = {(1,2)},
Py ={(-1,01)}, @1 = {(1,a2)} and Q2 = {(—2,a1)}, so we obtain bounds a = 1
and b = 2.

Assume there exist positive integers a,b such that 1* ~ ¢’ with a = 1 and
b < 2. The map @° : M, — M is given by

2(1,02) = (1/dr, a5 ™), 3*(=2,01) = (~2/da, a)/™),
where d; = ged(1,b) = 1 and dy = ged(-2,0) = b. Thus,
My ={(1,a2),(=2,a1)} or {(1,a3), (=1,01)}.
As My, # My, for b =1 and b = 2, there is no pair of positive integers a, b such

that ¢¥* ~ ¢’ The same argument applies on replacing ¢ or 1 by ¢~! or =1,
respectively, so no nontrivial power of ¢ is conjugate to a power of .
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In order to solve the power conjugacy problem for general regular infinite ele-
ments of G,, , we require an algorithm which finds all pairs (a, b), within the bounds
calculated, rather than merely deciding whether or not such a pair exists. This is the
algorithm we describe here. It constructs a set PCp; consisting of triples (a, b, p),
such that p~19%p = ¢°.

Algorithm 6.11. Let ) and ¢ be regular infinite elements of G,, .

Step 1: Construct A-bases X, and X, with respect to which 9 and ¢ are in
quasi-normal form (Lemma 4.28).

Step 2: Construct the sets M, and M., (see Definition 5.14).

Step 3: Calculate the bounds on & and b, using Eqs. (6.6) and (6.7).

Step 4: For all pairs a,b such that 1 < |a] < d and 1 < [b] < b, input ¢ and ¢” to
Algorithm 5.27. If a conjugating automorphism p is returned, add (a, b, p)
to the set PCry.

Step 5: If PCrr = 0, output “No” and halt. Otherwise output PCr;.

Corollary 6.7 may be strengthened.

Corollary 6.12. Given regular infinite elements 1, p € Gy, there is a finite subset
PCrr of Z x Z % Gy, which may be effectively constructed, such that ¢ ~ @ if
and only if a = cg and b = dg, for some (¢,d, p) € PCrr and g € Z. Moreover, for
all (¢,d,p) € PCrr and g € 7, we have p~ 49 p = o9,

Proof. From Lemma 6.6 and the description of Algorithm 6.11, PCr; is a finite set
and it follows that if ¢)® ~ ¢®, for some positive a,b € Z, then (a/g,b/g, p) € PCrr
and in this case p~19)%p = ¢P. Replacing one or other, or both, of ¥» and ¢ by their
inverses the same holds, without the constraint that a,b be positive. On the other
hand if (c,d, p) is in PCrr then p~19¢p = % so p~tp9p = o forallg € Z. O

6.3. The power conjugacy algorithm

We combine the algorithms of Secs. 6.1 and 6.2 to give an algorithm for the power
conjugacy problem in G,, . In fact in Secs. 6.1 and 6.2 we find a description of all
solutions of the power conjugacy problem for periodic and regular infinite automor-
phisms, respectively and the algorithm in this section does the same for arbitrary
elements of G, .

If we are only interested in the existence of a solution to the power conjugacy
problem then we may essentially ignore the periodic part of automorphisms, as
long as the regular infinite part is nontrivial. To see this, suppose ¥ and ¢ are
elements of G, and we have decompositions ) = Yp*rr, ¢ = @p *@rr. Assume
that we have found that Vi, is nontrivial and %, is conjugate to ¢%;, a,b # 0.
In this case, ¥p and ¢p have finite-orders, m and k say, and so we immediately
have a solution ™% ~ "% amk, bmk # 0, of the power conjugacy problem.
The algorithm described below allows this type of solution but also tries to find a
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solution to the power conjugacy problem corresponding to each pair (¢, d) such that
Vp ~ ap‘}_,. Thus, in Theorem 6.14, we obtain a description of all solutions to the
power conjugacy problem, for ¢ and . (That is, all pairs (a,b) such that ¢® ~ ¢P.
We do not find all possible conjugators p.)

Algorithm 6.13. Let ¢ and ¢ be elements of G, ;.

Step 1: Run Steps 1, 2, and 3 of Algorithm 5.6.

Step 2: Input ¢r; and @pr; to Algorithm 6.11.

Step 3: If Xgs,y is non-empty (that is, Vrr .y is non-empty) and PCr; is empty,
output “No” and stop.

Step 4: Compute the orders k and m of ¥p and pp. Input 1% and ¢% to Algo-
rithm 5.13, for all ¢,d such that 1 < ¢ <k and 1 < d < m. Construct the
set PCp of all triples (c,d, p) found such that p~'4¢p is conjugate to .
If Xrr, is non-empty, adjoin the triple (0,0, 6p) to PCp, where 6y is the
identity map of the algebra V,, 5., of Step 3 of Algorithm 5.6.

Step 5: If PCp is empty, output “No” and stop. If PCp is non-empty and Xprr
is empty output PCp and stop.

Step 6: If this step is reached then both PCp and PCr; are non-empty. For all
(o, B, prr) in PCrr and all pairs (¢,d, pp) in PCp consider the simulta-
neous congruences

ar =cmodk and [z =dmodm,

where k& and m are the orders of ¢p and ¢p found in Step 4. For each
positive solution x = g (less than lem(k, m)) add («ag, Bg, g, pp * pri) to
the set PC (which is empty at the start).

We verify that this algorithm solves the power conjugacy problem in the proof
of the following theorem.

Theorem 6.14. The power conjugacy problem for the Higman—Thompson group
G, is solvable. Furthermore, given elements 1, € Gy, let 1p have order
k, let op have order m and let | = lem(k,m). There is a finite subset PC C
73 x Gy, which may be effectively constructed, such that ¢ ~ ¢ if and only if
(ag/h,bg/h,g,p) € PC, where p € Gy and g, h € Z such that h = g modl, hla and
h|b. In this case p~'9%p = ©P.

Proof. Apply Algorithm 6.13 to 1 and . If there exist a, b € Z such that ¢* ~ ¢°
then 9% ~ ¢% and 9%, ~ ¢%;. In this case let ¥p and pp have orders k and
m, respectively and let ay,b; € Z be such that 1 < a; < kand 1 < b; < m and
a1 = a modk, by = b modm. Then there exists pp such that (ai,b1,pp) € PCy.
Furthermore, from Corollary 6.12, there exists (az,ba, prr) € PCrr and h € Z
such that a = agh and b = byh. Let g be such that 1 < g < lem(k,m), and
g = h modlem(k,m) so ¢ = h modk and ¢ = h modm. As h is a solution to
the congruences asx = a1 mod k and box = by modm, it follows that g is also a
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solution to these congruences. Therefore (aag, bag, g, pp * prr) € PC. As ay = a/h
and by = b/h, this is an element of Z* x G, , of the required form.

Conversely, assume (u,v, g, pp * prr) € PC, where u = ag/h and v = bg/h, for
some a, h € Z satisfying the hypotheses of the theorem. Then there exist («, 8, prr)
in PCgr and (¢, d, pp) in PCp such that u = ag = ¢ mod k and v = B9 = d mod m.
As g = h mod! this implies that a = (u/g)h = ah = ¢ modk and b = (v/g)h =
Bh = d modm. Therefore % = 1% ~ ¢4 = ¢Y%, by definition of PCp, and
indeed p}le%,pp = ¢%. Also, a = ah and b = Bh implies pg}w?ﬂpm = @l}H, by
Corollary 6.12, so

P = (p * Pr1)* = Vb E ~ O x O = (op * or1)" = ¢

and pp * pryr is a conjugating element. O

Examples which illustrate how the algorithm works on automorphisms which
are not necessarily periodic or regular infinite can be found in [26]: follow the
link to “Examples” and refer to the examples named “mixed pconj phi” and
“mixed_pconj_psi”.
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