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GROWTH OF ÉTALE GROUPOIDS AND SIMPLE ALGEBRAS

VOLODYMYR NEKRASHEVYCH

Abstract. We study growth and complexity of étale groupoids in relation to
growth of their convolution algebras. As an application, we construct simple
finitely generated algebras of arbitrary Gelfand-Kirillov dimension ≥ 2 and
simple finitely generated algebras of quadratic growth over arbitrary fields.
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1. Introduction

Topological groupoids are extensively used in dynamics, topology, non-commutative
geometry, and C∗-algebras, see [13, 29, 30]. With recent results on topological full
groups (see [22, 15, 16]) new applications of groupoids to group theory were dis-
covered.

Our paper studies growth and complexity for étale groupoids with applications to
the theory of growth and Gelfand-Kirillov dimension of algebras. We give examples
of groupoids whose convolution algebras (over an arbitrary field) have prescribed
growth. In particular, we give first examples of simple algebras of quadratic growth
over finite fields and simple algebras of Gelfand-Kirillov dimension 2 that do not
have quadratic growth.

A groupoid G is the set of isomorphisms of a small category, i.e., a set G with
partially defined multiplication and everywhere defined operation of taking inverse
satisfying the following axioms:

(1) If the products ab and bc are defined, then (ab)c and a(bc) are defined and
are equal.
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(2) The products a−1a and bb−1 are always defined and satisfy abb−1 = a and
a−1ab = b whenever the product ab is defined.

It follows from the axioms that (a−1)−1 = a and that a product ab is defined if
and only if bb−1 = a−1a. The elements of the form aa−1 are called units of the
groupoid. We call o(g) = g−1g and t(g) = gg−1 the origin and the target of the
element g ∈ G.

A topological groupoid is a groupoid together with topology such that multipli-
cation and taking inverse are continuous. It is called étale if every element has a
basis of neighborhoods consisting of bisections, i.e., sets F such that o : F −→ o(F )
and t : F −→ t(F ) are homeomorphisms.

For example, if G is a discrete group acting (from the left) by homeomorphisms
on a topological space X , then the topological space G×X has a natural structure
of an étale groupoid with respect to the multiplication

(g1, g2(x)) · (g2, x) = (g1g2, x).

In some sense étale groupoids are generalization of actions of discrete groups on
topological spaces.

We consider two growth functions for an étale groupoid G with compact totally
disconnected space of units. The first one is the most straightforward and classical:
growth of fibers of the origin map. If S is an open compact generating set of G then,
for a given unit x, we can consider the growth function γS(r, x) equal to the number
of groupoid elements with origin in x that can be expressed as a product of at most
n elements of S ∪ S−1. This notion of growth of a groupoid has appeared in many
situations, especially in amenability theory for topological groupoids, see [17, 1].
See also Theorem 3.1 of our paper, where for a class of groupoids we show how
sub-exponential growth implies absence of free subgroups in the topological full
group of the groupoid.

This notion of growth does not capture full complexity of a groupoid precisely
because it is “fiberwise”. Therefore, we introduce the second growth function:
complexity of the groupoid. Let S be a finite covering by open bisections of an
open compact generating set S of G. For a given natural number r and units
x, y ∈ G

(0) we write x ∼r y if for any two products S1S2 . . . Sn and R1R2 . . . Rm

of elements of S ∪ S−1 such that n,m ≤ r we have S1S2 . . . Snx = R1R2 . . . Rmx if
and only if S1S2 . . . Sny = R1R2 . . . Rmy. In other words, x ∼r y if and only if balls
of radius r with centers in x and y in the natural S-labeled Cayley graphs of G are
isomorphic. Then the complexity function δ(r,S) is the number of ∼r-equivalence
classes of points of G(0).

This notion of complexity (called in this case factor complexity, or subword com-

plexity) is well known and studied for groupoids of the action of shifts on closed
shift-invariant subsets of XZ, where X is a finite alphabet. There is an extensive
literature on it, see [8, 10] An interesting result from the group-theoretic point of
view is a theorem of N. Matte Bon [21] stating that if complexity of a subshift is
strictly sub-quadratic, then the topological full group of the corresponding groupoid
is Liouville. Here the topological full group of an étale groupoid G is the group of
all G-bisections A such that o(A) = t(A) = G

(0).
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It seems that complexity of groupoids in more general étale groupoids has not
been well studied yet. It would be interesting to understand how complexity func-
tion (together with the growth of fibers) is related with the properties of the topo-
logical full group of an étale groupoid. For example, it would be interesting to
know if there exists a non-amenable (e.g., free) group acting faithfully on a compact
topological space so that the corresponding groupoid of germs has sub-exponential
growth and sub-exponential complexity functions.

We relate growth and complexity of groupoids with growth of algebras naturally
associated with them. Suppose that A is a finitely generated algebra with a unit
over a field k. Let V be the k-linear span of a finite generating set containing the
unit. Denote by V n the linear span of all products a1a2 . . . an for ai ∈ V . Then
A =

⋃∞
n=1 V

n. Growth of A is the function

γ(n) = dimV n.

It is easy to see that if γ1, γ2 are growth functions defined using different finite
generating sets, then there exists C > 1 such that γ1(n) ≤ γ2(Cn) and γ2(n) ≤
γ1(Cn).

Gelfand-Kirillov dimension of A is defined as lim supn→∞
log dimV n

logn , which in-

formally is the degree of polynomial growth of the algebra. If A is not finitely
generated, then its Gelfand-Kirillov dimension is defined as the supremum of the
Gelfand-Kirillov dimensions of all its sub-algebras. See the monograph [19] for a
survey of results on growth of algebras and their Gelfand-Kirillov dimension.

It is known, see [34] and [19, Theorem 2.9], that Gelfand-Kirillov dimension
can be any number in the set {0, 1} ∪ [2,∞]. The values in the interval (1, 2)
are prohibited by a theorem of G.M. Bergman, see [19, Theorem 2.5]. There are
examples of prime algebras of arbitrary Gelfand-Kirillov dimension d ∈ [2,∞],
see [33], but it seems that no examples of simple algebras of arbitrary Gelfand-
Kirillov dimension over finite fields were known so far.

A naturally defined convolution algebra k[G] over arbitrary field k is associated
with every étale groupoidG with totally disconnected space of units. If the groupoid
G is Hausdorff, then k[G] is the convolution algebra of all continuous functions
f : G −→ k with compact support, where k is taken with the discrete topology.
Here convolution f1 · f2 of two functions is the function given by the formula

f(g) =
∑

g1g2=g

f1(g1)f2(g2).

In the non-Hausdorff case we follow A. Connes [9] and B. Steinberg [32], and
define k[G] as the linear span of the functions that are continuous on open compact
subsets of G. Equivalently, k[G] is the linear span of the characteristic functions of
open compact G-bisections.

Note that the set B(G) of all open compact G-bisections (together with the
empty one) is a semigroup. The algebra k[G] is isomorphic to the quotient of the
semigroup algebra of B(G) by the ideal generated by the relations F − (F1 + F2)
for all triples F, F1, F2 ∈ B(G) such that F = F1 ∪ F2 and F1 ∩ F2 = ∅.

We prove the following relation between growth of groupoids and growth of their
convolution algebras.

Theorem 1.1. Let G be an étale groupoid with compact totally disconnected space

of units. Let S be a finite set of open compact G-bisections such that S =
⋃
S is a
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generating set of G. Let V ⊂ k[G] be the linear span of the characteristic functions

of elements of S. Then

dimV n ≤ γ(r,S)δ(r,S),

where γ(r,S) = maxx∈G(0) γS(r, x).

We say that a groupoid G is minimal if every G-orbit is dense in G
(0). We say

that G is essentially principal if the set of points x with trivial isotropy group is
dense in G

(0). Here the isotropy group of a point x is the set {g ∈ G : o(g) = t(g) =
x}. It is known, see [7], that for a Hausdorff minimal essentially principal groupoid
G with compact totally disconnected set of units the algebra k[G] is simple. We
give a proof of this fact for completeness in Proposition 4.1.

We give in Proposition 4.4 a condition (related to the classical notion of an
expansive dynamical system) ensuring that k[G] is finitely generated.

Fibers of the origin map provide us with naturally defined k[G]-modules. Namely,
for a given unit x ∈ G

(0) consider the vector space kGx of functions φ : Gx −→ k

with finite support, where Gx = o
−1(x) is the set of elements of the groupoid G

with origin in x. Then convolution f ·φ for any f ∈ k[G] and φ ∈ kGx is an element
of kGx, and hence kGx is a left k[G]-module.

It is easy to prove that if the isotropy group of x is trivial, then kGx is simple
and that growth of kGx is bounded by γS(x, r), see Proposition 4.8.

As an example of applications of these results, we consider the following family of
algebras. Let X be a finite alphabet, and let w : X −→ Z be a bi-infinite sequence
of elements of X . Denote by Dx, for x ∈ X the diagonal matrix (ai,j)i,j∈Z given by

ai,j =

{
1 if i = j and w(i) = x,
0 otherwise.

Let T be the matrix (ti,j)i,j∈Z of the shift given by

ti,j =

{
1 if i = j + 1,
0 otherwise.

Fix a field k, and let Aw be the k-algebra generated by the matrices Dx, for x ∈ X ,
by T , and its transpose T⊤.

We say that w isminimal if for every finite subword (w(n), w(n+1), . . . , w(n+k))
there exists R > 0 such that for any i ∈ Z there exists j ∈ Z such that |i− j| ≤ R
and (w(j), w(j + 1), . . . , w(j + k)) = (w(n), w(n + 1), . . . , w(n + k)). We say that
w is non-periodic if there does not exist p 6= 0 such that w(n + p) = w(n) for
all n ∈ Z. Complexity function pw(n) of the sequence w ∈ XZ is the number of
different subwords (w(i), w(i + 1), . . . , w(i + n− 1)) of length n in w.

The following theorem is a corollary of the results of our paper, see Subsec-
tion 4.4.1 and Example 4.6.

Theorem 1.2. Suppose that w ∈ XZ is minimal and non-periodic. Then the

algebra Aw is simple, and its growth γ(n) satisfies

C−1n · pw(C
−1n) ≤ Cn · pw(Cn)

for some C > 1.

We can apply now results on complexity of sequences to construct simple algebras
of various growths. For example, if w is Sturmian, then pw(n) = n+ 1, and hence
Aw has quadratic growth. For different Toeplitz sequences we can obtain simple
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algebras of arbitrary Gelfand-Kirillov dimension d ≥ 2, or simple algebras of growth
n logn, etc., see Subsection 4.4.1.

Another class of examples of groupoids considered in our paper are groupoids
associated with groups acting on a rooted tree. If G acts by automorphisms on
a locally finite rooted tree T , then it acts by homeomorphisms on the boundary
∂T . One can consider the groupoid of germs G of the action. Convolution algebras
k[G] are related to the thinned algebras studied in [31, 2]. In the case when G
is a contracting self-similar group, Theorem 1.1 implies a result of L. Bartholdi
from [2] giving an estimate of Gelfand-Kirillov dimension for the thinned algebras
of contracting self-similar groups.

2. Étale groupoids

A groupoid is a small category of isomorphisms (more precisely, the set of its
morphisms). For a groupoid G, we denote by G

(2) the set of composable pairs, i.e.,
the set of pairs (g1, g2) ∈ G×G such that the product g1g2 is defined. We denote
by G

(0) the set of units of G, i.e., the set of identical isomorphisms. We also denote
by o, t : G −→ G

(0) the origin and target maps given by

o(g) = g−1g, t(g) = gg−1.

We interpret then an element g ∈ G as an arrow from o(g) to t(g). The product
g1g2 is defined if and only if t(g2) = o(g1).

For x ∈ G
(0), denote

Gx = {g ∈ G : o(g) = x}, G
x = {g ∈ G : t(g) = x}.

The set Gx ∩ G
x is called the isotropy group of x. A groupoid is said to be

principal (or an equivalence relation) if the isotropy group of every point is trivial.
Two units x, y ∈ G

(0) belong to one orbit if there exists g ∈ G such that o(g) = x
and t(g) = y. It is easy to see that belonging to one orbit is an equivalence relation.

A topological groupoid is a groupoid G with a topology on it such that multi-
plication G

(2) −→ G and taking inverse G −→ G are continuous maps. We do
not require that G is Hausdorff, though we assume that the space of units G

(0) is
metrizable and locally compact.

A G-bisection is a subset F ⊂ G such that the maps o : F −→ o(F ) and
t : F −→ t(F ) are homeomorphisms.

Definition 2.1. A topological groupoid G is étale if the set of all open G-bisections
is a basis of the topology of G.

Let G be an étale groupoid. It is easy to see that product of two open bisections
is an open bisection. It follows that for every bisection F the sets o(F ) = F−1F
and t(F ) = FF−1 are open, which in turn implies that G(0) is an open subset of G.

If G is not Hausdorff, then there exist g1, g2 ∈ G that do not have disjoint
bisections. Since G(0) is Hausdorff, this implies that o(g1) = o(g2) and t(g1) = t(g2).
It follows that the unit x = o(g1) and the element g−1

2 g1 of the isotropy group of
x do not have disjoint open neighborhoods. In particular, it means that principal
étale groupoids are always Hausdorff, and that an étale groupoid is Hausdorff if
and only if G(0) is a closed subset of G.

Example 2.1. Let G be a discrete group acting by homeomorphisms on a space
X . Then the space G × X has a natural groupoid structure with given by the
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multiplication

(g2, g1(x))(g1, x) = (g2g1, x).

This is an étale groupoid, since every set {g}×X is an open bisection. The groupoid
G×X is called the groupoid of the action, and is denoted G⋉ X .

Our main class of groupoids will be naturally defined quotients of the groupoids
of actions, called groupoids of germs.

Example 2.2. Let G and X be as in the previous example. A germ is an equiva-
lence class of a pair (g, x) ∈ G×X where (g1, x) and (g2, x) are equivalent if there
exists a neighborhood U of x such that the maps g1 : U −→ X and g2 : U −→ X
coincide. The set of germs is also an étale groupoid with the same multiplication
rule as in the previous example. We call it groupoid of germs of the action.

The spaces of units in both groupoids are naturally identified with the space X
(namely, we identify the pair or the germ (1, x) with x). The groupoid of the action
is Hausdorff if X is Hausdorff, since it is homeomorphic to G×X . The groupoid of
germs, on the other hand, is frequently non-Hausdorff, even for a Hausdorff space
X .

If every germ of every non-trivial element of G is not a unit (i.e., not equal to a
germ of the identical homeomorphism), then the groupoid of the action coincides
with the groupoid of germs.

Many interesting examples of étale groupoids appear in dynamics and topology,
see [13, 6, 27].

3. Compactly generated groupoids

For the rest of the paper, G is an étale groupoid such that G
(0) is a compact

totally disconnected metrizable space. Note that then there exists a basis of topol-
ogy of G consisting of open compact G-bisections. Note that we allow compact
non-closed and compact non-Hausdorff sets, since G in general is not Hausdorff.
However, if F is an open compact bisection, then o(F ) and t(F ) are clopen (i.e.,
closed and open) and F is Hausdorff.

3.1. Cayley graphs and their growth.

Definition 3.1. A groupoid G with compact totally disconnected unit space is
compactly generated if there exists a open compact subset S ⊂ G such that G =⋃

n≥0(S ∪ S−1)n. The set S is called the generating set of G.

This definition is equivalent (for étale groupoids with compact totally discon-
nected unit space) to the definition of [14].

Example 3.1. LetG be a group acting on a Cantor set X . If S is a finite generating
set of G, then S × X is an open compact generating set of the groupoid G ⋉ X .
The set all of germs of elements of S is an open compact generating set of the
groupoid of germs of the action. Thus, both groupoids are compactly generated if
G is finitely generated.

Let S be an open compact generating set of G. Let x ∈ G
(0). The Cayley graph

G(x, S) is the directed graph with the set of vertices Gx in which we have an arrow
from g1 to g2 whenever there exists s ∈ S such that g2 = sg1.
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We will often consider the graphG(x, S) as a rooted graph with root x. Morphism
φ : Γ1 −→ Γ2 of rooted graphs is a morphism of graphs that maps the root of Γ1

to the root of Γ2.
Note that since S can be covered by a finite set of bisections, the degrees of

vertices of the graphs G(x, S) are uniformly bounded.

Example 3.2. Let G be a finitely generated group acting on a totally disconnected
compact space X . Let S be a finite generating set of G, and let S × X be the
corresponding generating set of the groupoid of action G⋉ X . The Cayley graphs
G ⋉ X (x, S × X ) coincide then with the Cayley graphs of G (with respect to the
generating set S).

The groupoid of germs G will have smaller Cayley graphs. Let S′ ⊂ G be the
set of all germs of elements of S. Denote, for x ∈ X , by G(x) the subgroup of G
consisting of all elements g ∈ G such that there exists a neighborhood U of x such
that g fixes every point of U . Then G(x, S′) is isomorphic to the Schreier graph of
Gmodulo G(x). Its vertices are the cosets hG(x), and a coset h1G(x) is connected by
an arrow with h2G(x) if there exists a generator s ∈ S such that sh1G(x) = h2G(x).

Cayley graphs G(x, S) are closely related to the orbital graphs, which are defined
as graphs Γ(x, S) with the set of vertices equal to the orbit of x, in which a vertex
x1 is connected by an arrow to a vertex x2 if there exists g ∈ S such that o(s) = x1

and t(s) = x2. Orbital graph Γ(x, S) is the quotient on the Cayley graph G(x, S)
by the natural right action of the isotropy group of x. In particular, orbital graph
and the Cayley graph coincide if the isotropy group of x is trivial.

Denote by BS(x, n) the ball of radius n with center x in the graph G(x, S) seen
as a rooted graph (with root x). Let

γS(x, n) = |BS(x, n)|, γ(n, S) = max
x∈G(0)

γS(x, n).

If S1 and S2 are two open compact generating sets of G, then there exists m such
that S2 ⊂

⋃
1≤k≤m(S1 ∪ S−1

1 )k and S1 ⊂
⋃

1≤k≤m(S2 ∪ S−1
2 )k. Then γS1(x,mn) ≥

γS2(x, n) and γS2(x,mn) ≥ γS1(x, n) for all n. It also follows that γ(mn, S1) ≥
γ(n, S2) and γ(mn, S2) ≥ γ(n, S1) for all n. In other words, the growth rate of the
functions γS(x, n) and γ(n, S) do not depend on the choice of S, if S is a generating
set.

Condition of polynomial growth of Cayley graphs of groupoids (or, in the measure-
theoretic category, of connected components of graphings of equivalence relations)
appear in the study of amenability of groupoids, see [17, 1].

Here is another example of applications of the notion of growth of groupoids.

Theorem 3.1. Let G be a finitely generated subgroup of the automorphism group

of a locally finite rooted tree T . Consider the groupoid of germs G of the action of

G on the boundary ∂T of the tree. If γS(x, n) has sub-exponential growth for every

x ∈ ∂T , then G has no free subgroups.

Proof. By [26, Theorem 3.3], if G has a free subgroup, then either there exists a
free subgroup F and a point x ∈ ∂T such that the stabilizer of x in F is trivial, or
there exists a free subgroup F and a point x ∈ ∂T such that x is fixed by F and
every non-trivial element g of F the germ (g, x) is non-trivial. But both conditions
imply that the Cayley graph G(x, S) has exponential growth. �
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3.2. Complexity. Let S be a finite set of open compact G-bisections such that
S =

⋃
S is a generating set. Note that every compact subset of G can be covered

by a finite number of open compact G-bisections.
Denote by G(x,S) the oriented labeled graph with the set of vertices Gx in which

we have an arrow from g1 to g2 labeled by A ∈ S if there exists s ∈ A such that
g2 = sg1.

The graph G(x,S) basically coincides with G(x, S) for S =
⋃
S. The only

difference is the labeling and that some arrows of G(x, S) become multiple arrows
in G(x,S). In particular, the metrics induced on the sets of vertices of graphs
G(x, S) and G(x,S) coincide.

We denote by BS(x, r) or just by B(x, r) the ball of radius r with center in x,
seen as a rooted oriented labeled graph. We write x ∼r y if BS(x, r) and BS(y, r)
are isomorphic.

Definition 3.2. Complexity of S is the function δ(r,S) equal to the number of
∼r-equivalence classes.

It is easy to see that δ(r,S) is finite for every r and S.

3.3. Examples.

3.3.1. Shifts. Let X be a finite alphabet containing more than one letter. Consider
the space XZ of all bi-infinite words over X , i.e., maps w : Z −→ X . Denote by
s : XZ −→ XZ the shift map given by the rule s(w)(i) = w(i + 1). The space
XZ is homeomorphic to the Cantor set with respect to the direct product topology
(where X is discrete).

A sub-shift is a closed s-invariant subset X ⊂ XZ. We always assume that X
has no isolated points. For a sub-shift X , consider the groupoid S of the germs
of the action of Z on X generated by the shift. It is easy to see that all germs of
non-zero powers of the shift are non-trivial, hence the groupoid S coincides with
the groupoid Z ⋉ X of the action. As usual, we will identify X with the space of
units S(0). The set S = {(s, x) : x ∈ X} is an open compact generating set of S.
The Cayley graphs S(w, S) are isomorphic to the Cayley graph of Z with respect
to the generating set {1}.

If X is aperiodic, i.e., if it does not contain periodic sequences, thenS is principal.
Note that S is always Hausdorff.

For x ∈ X , denote by Sx set of germs of the restriction of s onto the cylindrical
set {w ∈ X : w(0) = x}. Then S = {Sx}x∈X is a covering of S by disjoint clopen
subsets of S. Then for every w ∈ X , the Cayley graph S(w,S) basically repeats w:
its set of vertices is the set of germs (sn, w), n ∈ Z; for every n we have an arrow
from (sn, w) to (sn+1, w) labeled by Sw(n).

In particular, we have

δ(n,S) = pX (2n),

where pX (k) denotes the number of words of length k that appear as subwords of
elements of X .

Complexity pX (n) of subshifts is a well studied subject, see [20, 10, 8] and ref-
erences therein.

Two classes of subshifts are especially interesting for us: Sturmian and Toeplitz
subshifts.
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Let θ ∈ (0, 1) be an irrational number, and consider the rotation

Rθ : x 7→ x+ θ (mod 1)

of the circle R/Z. For a number x ∈ R/Z not belonging to the Rθ-orbit of 0,
consider the θ-itinerary Iθ,x ∈ {0, 1}Z given by

Iθ,x(n) =

{
0 if x+ nθ ∈ (0, θ) (mod 1),
1 if x+ nθ ∈ (θ, 1) (mod 1).

In other words, Iθ,x describes the itinerary of x ∈ R/Z under the rotation Rθ with
respect to the partition [0, θ), [θ, 1) of the circle R/Z. If x belongs to the orbit of
0, then we define two itineraries Iθ,x+0 = limt→x+0 Iθ,t and Iθ,x−0 = limt→x−0 Iθ,t,
where t in the limits belongs to the complement of the orbit of 0.

The set Xθ of all itineraries is a subshift of {0, 1}Z called the Sturmian subshift

associated with θ. Informally, the space Xθ is obtained from the circle R/Z by
“cutting” it along the Rθ-orbit of 0, i.e., by replacing each point x = nθ by two
copies x + 0 and x − 0. A basis of topology of Xθ is the set of arcs of the form
[nθ+0,mθ− 0]. The shift is identified in this model with the natural map induced
by the rotation Rθ.

Complexity pXθ
(n) of the Sturmian subshift is equal to the number of all possible

Rθ-itineraries of length n. Consider the set {R−k
θ (θ)}k=0,1,...,n. It separates the

circle R/Z into n + 1 arcs such that two points x, y have equal length n segments
{0, . . . , n − 1} −→ {0, 1} of their itineraries Iθ,x, Iθ,y if and only if they belong to
one arc. It follows that pXθ

(n) = n + 1. The subshifts of the form Xθ and their
elements are called Sturmian subshifts and Sturmian sequences.

A sequence w : X −→ Z is a Toeplitz sequence if it is not periodic and for every
n ∈ Z there exists p ∈ N such that w(n + kp) = w(n) for all k ∈ Z. Complexity of
Toeplitz sequences is well studied.

It is known, for example, (see [20, Proposition 4.79]) that for any 1 ≤ α ≤ β ≤ ∞
there exists a Toeplitz subshift X (i.e., closure of the shift orbit of a Toeplitz
sequence) such that

lim inf
n→∞

ln pX (n)

lnn
= α, lim sup

n→∞

ln pX (n)

lnn
= β.

The following theorem is proved by M. Koskas in [18].

Theorem 3.2. For every rational number p/q > 1 and every positive increasing

differentiable function f(x) satisfying f(n) = o(nα) for all α > 0, and nf ′(n) =
o(nα) for all α > 0, there exists a Toeplitz subshift X and two constants c1, c2 > 0
satisfying c1f(n)n

p/q ≤ pX (n) ≤ c2f(n)n
p/q for all n ∈ N.

3.3.2. Groups acting on rooted trees. Let X be a finite alphabet, |X | ≥ 2. Denote
by X∗ the set of all finite words (including the empty word ∅). We consider X∗ as
a rooted tree with root ∅ in which every word v ∈ X∗ is connected to the words of
the form vx for all x ∈ X . The boundary of the tree is naturally identified with the
space XN of all one-sided sequences x1x2x3 . . .. Every automorphism of the rooted
tree X∗ naturally induces a homeomorphism of XN.

Let g be an automorphism of the tree X∗. For every v ∈ X∗ there exists a
unique automorphism g|v of the tree X∗ such that

g(vw) = g(v)g|v(w)
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for all w ∈ X∗. We say that a group G of automorphisms of X∗ is self-similar if
g|v ∈ G for every g ∈ G and v ∈ X∗. For every v ∈ X∗ and w ∈ XN the germ
(g, vw) depends only on the quadruple (v, g(v), g|v, w).

Example 3.3. Consider the automorphism a of the binary tree {0, 1}∗ defined by
the recursive rules

a(0w) = 1w, a(1w) = 0a(w).

It is called the adding machine, or odometer. The cyclic group generated by a is
self-similar.

Example 3.4. Consider the automorphisms of {0, 1}∗ defined by the recursive
rules

a(0w) = 1w, a(1w) = 0w

and

b(0w) = 0a(w), b(1w) = 1c(w),

c(0w) = 0a(w), c(1w) = 1d(w),

d(0w) = 0w, d(1w) = 1b(w).

The group generated by a, b, c, d is the Grigorchuk group, see [12].

For more examples of self-similar groups and their applications, see [24].
Let G be a finitely generated self-similar group, and let l(g) denote the length

of an element g ∈ G with respect to some fixed finite generating set of G. The
contraction coefficient of the group G is the number

λ = lim sup
n→∞

lim sup
g∈G,l(g)→∞

max
v∈Xn

l(g|v)

l(g)
.

The group is said to be contracting if λ < 1.
For example, the adding machine action of Z and the Grigorchuk group are both

contracting with contraction coefficient λ = 1/2.

Proposition 3.3. Let G be a contracting self-similar group acting on the tree X∗,
and let λ be the contraction coefficient. Consider the groupoid of germs G of the

action of G on XN, let S be a finite generating set of G, and let S be the set of

G-bisets of the form {(s, w) : w ∈ XN} for s ∈ S. Then we have

lim sup
n→∞

log γ(n,S)

logn
≤

log |X |

− logλ
, lim sup

n→∞

log δ(n,S)

logn
≤

log |X |

− logλ
.

Proof. Let ρ be any number in the interval (λ, 1). Then there exist n0, l0 such that
for all elements g ∈ G such that l(g) > l0 we have l(g|v) ≤ ρn0 l(g) for all v ∈ Xn0 .
It follows that there exists a finite set N such that g|v ∈ N for all v ∈ X∗ and for
every g ∈ G \N we have l(g|v) ≤ ρn0 l(g) for all words v ∈ X∗ of length at least n0.

Then for every g ∈ G and for every word v ∈ X∗ of length at least
⌊
log l(g)−log l0

− log ρ

⌋
+

n0 we have g|v ∈ N . Let w = x1x2 . . . ∈ XN, and denote v = x1x2 . . . xn,

w′ = xn+1xn+2 . . . for n =
⌊
log r−log l0

− log ρ

⌋
+ n0. Then for fixed w and all g such

that l(g) ≤ r, the germ (g, w) depends only on g(v) and g|v. There are not more
than |X |n possibilities for g(v), hence the number of germs (g, w) is not more than

|N | · |X |n ≤ |N | exp

(
log |X |

(
log r − log l0

− log ρ
+ n0

))
≤ C1r

log |X|
− log ρ
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for C1 = |N | · |X |
log l0
log ρ

+n0 . Consequently, for every ρ ∈ (λ, 1) there exists C1 > 0
such that

γ(r,S) ≤ C1r
log |X|
− log ρ ,

hence lim supr→∞
log γ(r,S)

log r ≤ log |X|
− log λ .

It is enough, in order to know the ball BS(w, r), to know for every word g ∈ G of
length at most 2r whether the germ (g, w) is a unit. Let, as above, w = vw′, where

length of v is n =
⌊
log 2r−log l0

− log ρ

⌋
+n0. For every g ∈ G of length at most 2r the germ

(g, w) is a unit if and only if g(v) = v and (g|v, w′) is a unit. We have g|v ∈ N ,
so BS(w, r) depends only on v and the set Tw′ = {h ∈ N : (h,w′) ∈ G

(0)}.
Consequently,

δ(r,S) ≤ 2|N | · |X |n ≤ C2r
log |X|
− log ρ ,

where C2 = 2|N ||X |
log l0−log 2

log ρ
+n0 , which shows that lim supr→∞

log δ(r,S)
log r ≤ log |X|

− log λ .

�

Both estimates in Proposition 3.3 are not sharp in general. For example, consider
a self-similar action of Z2 over the alphabet X of size 5 associated with the virtual

endomorphism given by the matrix A =

(
2 1
1 3

)−1

=

(
3/5 −1/5

−1/5 2/5

)
, see [24,

2.9, 2.12] and [28] for details. Note that the eigenvalues of A are
(

5±
√
5

2

)−1

∈ (0, 1),

hence the contraction coefficient is λ = 2
5−

√
5
= 5+

√
5

10 . On the other hand γ(r,S)

grows as a quadratic polynomial, while δ(r,S) is bounded.

4. Convolution algebras

4.1. Definitions. Let G be an étale groupoid, and let k be a field. Support of a
function f : G −→ k is closure of the set of points x ∈ G such that f(x) 6= 0. If
f1, f2 are functions with compact support, then their convolution is given by the
formula

f1 ∗ f2(g) =
∑

h∈G
o(g)

f1(gh
−1)f2(h).

Note that since f2 has compact support, the set of elements h ∈ G
o(g) such that

f2(h) 6= 0 is finite.
It is easy to see that if f1, f2 are supported on the space of units, then their

convolution coincides with their pointwise product. If F1, F2 are bisections, then
their characteristic functions satisfy 1F1 ∗ 1F2 = 1F1F2 .

The set of all functions f : G −→ k with compact support forms an algebra over
k with respect to convolution. But this algebra is too big, and its definition does
not use the topology of G much. On the other hand, the algebra of all continuous
functions (with discrete topology on k) is too small in the non-Hausdorff case.
Therefore, we adopt the next definition, following Connes [9], see also [29] and [32].

Definition 4.1. The convolution algebra k[G] is the k-algebra generated by the
characteristic functions 1F of open compact G-bisections (with respect to convolu-
tion).

If G is Hausdorff, then k[G] is the algebra of all continuous (i.e., locally constant)
functions f : G −→ k, where k has discrete topology. In the non-Hausdorff case
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the algebra k[G] contains discontinuous functions (e.g., characteristic functions of
non-closed open compact bisections).

From now on we will use the usual multiplication sign for convolution. The unit
of the algebra k[G] is the characteristic function of G(0), which we will often denote
just by 1.

If G = G ⋉ X is the groupoid of an action, then k[G] is generated by the
commutative algebra of locally constant functions f : X −→ k (with pointwise
multiplication and addition) and the group ring k[G] subject to relations

g−1 · f · g = f ◦ g,

for all f : X −→ k and g ∈ G, where f ◦g : X −→ k is given by (f ◦g)(x) = f(g(x)).
In other words, it is the cross-product of the algebra of functions and the group
ring.

Let T ⊂ G
(0) be the set of units with trivial isotropy groups. The set T is

G-invariant, i.e., is a union of G-orbits.

Definition 4.2. We say that G is essentially principal if the set T is dense in G
(0).

It is principal if T = G
(0). The groupoid G is said to be minimal if every G-orbit

is dense in G
(0).

Example 4.1. For every homeomorphism g of a metric space X , the set of points
x ∈ X such that g(x) = x and the germ (g, x) is non-trivial is a closed nowhere
dense set. It follows that if G is a countable group of homeomorphisms of X , then
groupoid of germs of the action is essentially principal.

Simplicity of essentially principal minimal groupoids is a well known fact, see [7]
and a C∗-version in [30, Proposition 4.6]. We provide a proof of the following simple
proposition just for completeness.

Proposition 4.1. Suppose that G is essentially principal and minimal. Let I
be the set of functions f ∈ k[G] such that f(g) = 0 for every g ∈ G such that

o(g), t(g) ∈ T . Then I is a two-sided ideal, and the algebra k[G]/I is simple. In

particular, if G is Hausdorff, then k[G] is simple.

Proof. The fact that I is a two-sided ideal follows directly from the fact that T is
G-invariant.

In order to prove simplicity of k[G] it is enough to show that if f ∈ k[G]\ I, then

there exist elements ai, bi ∈ k[G] such that
∑k

i=1 aifbi = 1.
If f ∈ k[G] \ I, then there exists g ∈ G such that o(g), t(g) ∈ T and f(g) 6= 0.

Let f =
∑m

i=1 αi1Fi
, where Fi are open compact G-bisections. Let A = {1 ≤

i ≤ m : g ∈ Fi}. Then f(g) =
∑

i∈A αi. Since o(g) ∈ T , an equality of
targets t(Fio(g)) = t(Fjo(g)) implies the equality Fio(g) = Fjo(g) of groupoid
elements. It follows that t(Fio(g)) 6= t(g) for every i /∈ A. We can find therefore a
clopen neighborhood U of o(g) such that U ⊂ o(Fi), FiU = FjU , for all i, j ∈ A,
U ∩ o(Fj) = ∅ for all j /∈ A, and t(FiU) ∩ t(FjU) = ∅ for all i ∈ A and j /∈ A.
Denote FiU = F for any i ∈ A. We have 1F−1f1U =

∑
i∈A αi1U . It follows that

1U = α1F−1f1U for some α ∈ k.
The groupoid G is minimal, hence for every x ∈ G

(0) there exists h ∈ G such
that o(h) = x and t(h) ∈ U . There exists therefore an open compact G-bisection H
such that x ∈ o(H) and t(H) ⊂ U . Then 1

o(H) = 1H−11U1H = α1H−1F−1f1U1H .

It follows that G
(0) can be covered by a finite collection of sets Vi such that 1Vi
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can be written in the form aifbi for some a, b ∈ k[G]. Note that if V ′
i is a clopen

subset of Vi, then 1V ′
i
= 1V ′

i
1Vi

, hence we may replace the covering {Vi} by a finite

covering by disjoint clopen sets. But in that case we have 1 =
∑

1Vi
. �

4.2. Growth of k[G].

Theorem 4.2. Let G be an étale groupoid with compact totally disconnected unit

space. Let S be a finite set of open compact G-bisections. Let V ⊂ k[G] be the

k-subspace generated by the characteristic functions of the elements of S. Then

dim V n ≤ γ(n,S)δ(n,S).

Proof. Fix n, and let Sn be the set of all products S1S2 . . . Sn of length n of elements
of S. Then V n is the linear span of the characteristic functions of elements of Sn.
Denote, for x ∈ G

(0),

Ax =
⋂

F∈Sn,x∈o(F )

o(F ) \
⋃

F∈Sn,x/∈o(F )

o(F ).

Since o(F ) is clopen for every F ∈ Sn, the sets Ax are also clopen. Note that for
every F ∈ Sn and x ∈ G

(0), either Ax ⊂ o(F ), or Ax ∩ o(F ) = ∅.
If F1, F2 are open G-bisections and F1 · x = F2 · x for a unit x, then the set of

points y such that F1 · y = F2 · y is equal to the intersection of F−1
1 F2 with G

(0).
Since G is étale, this set is open. Denote by Bx the set of all points y ∈ Ax such
that F1 · x = F2 · x implies F1 · y = F2 · y for all F1, F2 ∈ Sn. Then Bx is open and
x ∈ Bx.

Note that if x ∼n y, then Ax = Ay, as belonging of a point y to the domain
of a product S1S2 . . . Sn of elements of S is equivalent to the existence of a path
in G(y,S) of length n starting at y and labeled by the sequence Sn, Sn−1, . . . , S1.
Similarly, if x ∼n y, then Bx = By, since an equality F1 · x = F2 · x is equivalent
to coincidence of endpoints of the paths corresponding to the products F1 and F2

starting at x.
Let B = {Bx : x ∈ G

(0}. Since Bx = By for x ∼n y, the set B consists of at
most δ(n,S) elements.

Lemma 4.3. There exists a covering B̃ = {B̃}B∈B of G(0) by disjoint clopen sets

such that B̃ ⊂ B for every B ∈ B.

We allow some of the sets B̃ to be empty.

Proof. By the Shrinking Lemma, we can find for every B ∈ B an open set B′ ⊂ B
such that {B′}B∈B is a covering of G(0), and closure of B′ is contained in B. Then
closure of B′ is compact, and can be covered by a finite collection of clopen subsets
of B. Hence, after replacing B′ by the union of these clopen subsets, we may
assume that B′ are clopen. Order the set B into a sequence B1, B2, . . . , Bm, define

B̃1 = B′
1, and inductively, B̃i = B′

i \ (B
′
1 ∪B′

2 ∪ · · · ∪B′
i−1). Then {B̃}B∈B satisfies

the conditions of the lemma. �

Let x1, x2, . . . , xm be a transversal of the ∼n equivalence relation, where m =

δ(n,S). For every F ∈ Sn and xi ∈ o(F ), consider the restriction F · B̃xi
of F onto

B̃xi
. Since {B̃xi

}i=1,...,m is a covering of G(0) by disjoint subsets, the sets F · B̃xi

form a covering of F by disjoint subsets, and 1F =
∑m

i=1 1F ·B̃xi

.
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If F1, F2 ∈ Sn and xi are such that xi ∈ o(F1) ∩ o(F2), and F1 · xi = F2 · xi,

then for every y ∈ B̃xi
we have y ∈ o(F1) ∩ o(F2) and F1 · y = F2 · y, hence

F1 · B̃xi
= F2 · B̃xi

. It follows that F · B̃xi
depends only on F · xi, and we have not

more than γ(n, xi,S) ≤ γ(n,S) non-empty sets of the form F · B̃xi
, for every given

xi. Hence we have at most γ(n,S)δ(n,S) functions of the form 1F ·xi
in total, and

every function 1F , for F ∈ Sn is equal to the sum of a subset of these functions,
which finishes the proof of the theorem. �

4.3. Finite generation. For a given finite set S of open compact G-bisections,
generating G, denote

Ax,n =
⋂

F∈Sn,x∈o(F )

o(F ) \
⋃

F∈Sn,x/∈o(F )

o(F ),

see the proof of Theorem 4.2. Recall that the sets Ax,n are clopen. It is also easy
to see that two sets Ax,n and Ay,n are either disjoint or coincide. Note also that

Ax,n ⊂ Ax,m if n > m. It follows that for any x, y ∈ G
(0) and n > m, either

Ax,n ⊂ Ay,m, or Ax,n ∩Ay,m = ∅.

Definition 4.3. We say that S is expansive if for any two different points x, y ∈
G

(0) there exists n such that Ax,n and Ay,n are disjoint.

Proposition 4.4. If S is expansive, then the set {1S : S ∈ S ∪ S−1} generates

k[G].

Proof. Let A be the algebra generated by the functions 1S for S ∈ S ∪ S−1. Note
that o(F ) = F−1F , hence 1F ∈ A for every F ∈ (S ∪ S−1)n. Note also that
1A∩B = 1A · 1B, 1A\B = 1A · (1A − 1B), and 1A∪B = 1A + 1B − 1A1B for every

A,B ⊂ G
(0). It follows that 1Ax,n

∈ A for all x ∈ G
(0) and n.

Let us show that for every open set A ⊂ G
(0) and every x ∈ A there exists n such

that Ax,n ⊂ A. For every y /∈ A there exists ny such that Ax,ny
∩Ay,ny

= ∅. Since

G
(0) \ A is compact, there exists a finite covering Ay1,ny1

, Ay2,ny2
, . . . , Aym,nym

of

G
(0) \A. Let n = maxnyi

. Then Ax,n ⊂ A.
Let F be an arbitrary open compact G-bisection. For every g ∈ F there exists

n and F ′ ∈ (S ∪ S−1)n such that g ∈ F ′. There also exists ng such that A
o(g),ng

⊂
o(F ) and F · A

o(g),ng
= F ′ · A

o(g),ng
. We get a covering of F by sets of the form

F ′ · Ax,m, where F ′ ∈ (S ∪ S−1)n. Since any two sets of the form Ax,n are either
disjoint or one is a subset of the other, we can find a covering of F by disjoint sets
of the form F ′ ·Ax,m for F ′ ∈ (S ∪S−1)n. This implies that 1F ∈ A, which finishes
the proof. �

4.4. Examples.

4.4.1. Subshifts. Let X ⊂ XZ be a subshift, and let S be the groupoid of germs
generated by the shift s : X −→ X . Let, as in 3.3.1, Sx = {(s, w) : w(0) =
x}, S = {Sx}x∈X . Note that for every word x1x2 . . . xn domain of the product
Sx1Sx2 · · ·Sxn

is the set of words w ∈ X such that w(0) = xn, w(1) = xn−1, . . . ,
w(n− 1) = x1. It follows that the set S ∪S−1 is expansive, and by Proposition 4.4,
{1S}S∈S∪S−1 is a generating set of k[S].

Since S coincides with the groupoid of the Z-action on X defined by the shift,
the algebra k[S] is the corresponding cross-product of the algebra of continuous k-
valued functions with the group algebra of Z. Every its element is uniquely written
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as a Laurent polynomial
∑

an · tn, where t ∈ k[G] is the characteristic function of
the set of germs of the shift s : X −→ X , and an are continuous k-valued functions.
Multiplication rule for such polynomials follows from the relations t ·a = b · t, where
a, b : X −→ k satisfy b(w) = a(s−1(w)) for every w ∈ X .

Proposition 4.5. Let V be the linear span of {1} ∪ {1S}S∈S∪S−1 . Then
⌊n
2

⌋
pX

(⌊n
2

⌋)
≤ dimV n ≤ (2n+ 1)pX (2n).

Proof. The upper bound follows from Theorem 4.2. For the lower bound note that
Sx1Sx2 . . . Sxn

and Sy1Sy2 . . . Sym
are disjoint if x1x2 . . . xn 6= y1y2 . . . ym, hence the

set of characteristic functions of all non-zero products of elements of S is linearly
independent, so that

∑n
k=0 pX (n) ≤ dimV n. Since pX (n) is non-decreasing, we

have
⌊
n
2

⌋
pX

(⌊
n
2

⌋)
≤

∑n
k=0 pX (n). �

Note that since the characteristic functions of the products Sx1Sx2 . . . Sxn
are

linearly independent, their linear span is a sub-algebra of k[S] isomorphic to the
semigroup algebra MX of the semigroup generated by the set {Sx : x ∈ X}. It
is easy to see that MX is isomorphic to the quotient of the free associative algebra
generated by X modulo the ideal generated by all words w ∈ X∗ such that w is
not a subword of any element of the subshift X . It follows from Proposition 4.5
that growths of k[S] and MX are equivalent. Note that the algebras MX are
the original examples of algebras of arbitrary Gelfand-Kirillov dimension, see [34]
and [19, Theorem 2.9].

Example 4.2. Let X be a Sturmian subshift. It is minimal and pX (n) = n + 1,
hence

(n+ 1)(n+ 2)

2
≤ dimV n ≤ 2n(2n+ 1),

so that k[S] is a quadratically growing finitely generated algebra. Note that it is
simple by Proposition 4.1. This disproves Conjecture 3.1 in [4].

Example 4.3. It is easy to see that every Toeplitz subshift is minimal. Conse-
quently, known examples of Toeplitz subshifts (see Subsection 3.3.1) provide us with
simple finitely generated algebras of arbitrary Gelfand-Kirillov dimension α ≥ 2,
and also uncountably many different growth types of simple finitely generated alge-
bras of Gelfand-Kirillov dimension two (see a question on existence of such algebras
on page 832 of [5]).

4.4.2. Self-similar groups. Let G be a self-similar group of automorphisms of the
tree X∗. Let G be the groupoid of germs of its action on the boundary XN of the
tree. Suppose that G is self-replicating, i.e., for all x, y ∈ X and g ∈ G there exists
h ∈ G such that g(x) = y and h|x = g. Then for all pairs of words v, u ∈ X∗ of
equal length and every g ∈ G there exists h ∈ G such that h(v) = u and h|v = g. In
other words, the transformation vw 7→ ug(w) is an open compact G-bisection (more
pedantically, the set of its germs is a bisection, but we will identify a G bisection
F with the map o(g) 7→ t(g), g ∈ F ).

Fix n ≥ 0, and consider the set of all G-bisections of the form Ru,g,v : vw 7→
ug(w) for v, u ∈ Xn and g ∈ G. Note that these bisections are multiplied by the
rule

(1) Ru1,g1,v1Ru2,g2,v2 =

{
0 if v1 6= u2;
Ru1,g1g2,v2 if v1 = u2.
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Let An be the formal linear span of the elements Ru,g,v for u, v ∈ Xn and g ∈ G.
Extend multiplication rule (1) to An. It is easy to see then that An is isomorphic
to the algebra Mdn×dn(k[G]) of matrices of size dn × dn over the group ring k[G].

The map Ru,g,v 7→
∑

x∈X Rug(x),g|x,vx induces a homomorphism An 7→ An+1

called the matrix recursion. More on matrix recursions for self-similar groups see [3,
2, 23, 25, 11].

Example 4.4. For the adding machine action (see Example 3.3) the matrix recur-

sions replace every entry an by

(
0 a
1 0

)n

, i.e., are induced by the map

a 7→

(
0 a
1 0

)
.

For example, the image of a in A2 is



0 0 0 a
0 0 1 0
1 0 0 0
0 1 0 0


 .

For the Grigorchuk group the matrix recursions are induced by the map

a 7→

(
0 1
1 0

)
, b 7→

(
a 0
0 c

)
,

c 7→

(
a 0
0 d

)
, d 7→

(
1 0
0 b

)
.

Proposition 4.6. The convolution algebra k[G] of the groupoid of germs of the

action of G on XN is isomorphic to the direct limit of the matrix algebras An
∼=

Mdn×dn(k[G]) with respect to the matrix recursions.

Proof. Denote by A∞ the direct limit of the algebras An with respect to the matrix
recursions. Let φ : A∞ −→ k[G] be the natural map given by φ(Ru,g,v) = 1Ru,g,v

.
Note that 1Ru,g,v

=
∑

x∈X 1Rug(x),g|x,vx
, hence the map φ is well defined. It also

follows from equation (1) that φ is a homomorphism of algebras. It remains to show
that φ is injective. Let f be a non-zero element of k[G], and let (g, w) ∈ G be such
that f(g, w) 6= 0. Suppose that φ(f) =

∑
u,v∈Xn αu,vRu,gu,v ,v for some αu,v ∈ k and

gu,v ∈ G. Denote the set of all pairs (u, v) such that (g, w) ∈ Ru,gu,v ,v and αu,v 6= 0
by P . The set

⋂
(u,v)∈P Ru,gu,v ,v is an open neighborhood of (g, w), hence there

exists a G-bisection Rw1,h,w2 contained in
⋂

(u,v)∈P Ru,gu,v ,v. Applying the matrix

recursion, we get a representation of f as an element
∑

u,v∈X|w1| βu,vRu,hu,v ,v ∈

A|w1| such that (g, w) does not belong to any set Ru,hu,v ,v, u, v ∈ X |w1|, (u, v) 6=
(w1, w2). Then f(g, w) = βu,v 6= 0, hence φ(f) 6= 0. �

As a corollary of Proposition 3.3 and Theorem 4.2 we get the following result of
L. Bartholdi [2].

Proposition 4.7. Let G be a contracting self-replicating group, and let G be the

groupoid of germs of its action on XN. Every finitely generated sub-algebra of

k[G] has Gelfand-Kirillov dimension at most
2 log |X|
− log λ , where λ is the contraction

coefficient of G.
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The image of the group ring k[G] in k[G] is called the thinned algebra. It was
defined in [31], see also [2].

Let us come back to the case of the Grigorchuk group. Since its contraction
coefficient is equal to 1/2, every finitely generated sub-algebra of k[G] has Gelfand-
Kirillov dimension at most 2. It is easy to prove that it is actually equal to 2 in
this case. Moreover, it has quadratic growth, see [2].

This example is also an illustration of the non-Hausdorffness phenomenon. The
groupoid of germs of the Grigorchuk group is not Hausdorff: the germs (b, 111 . . .),
(c, 111 . . .), (d, 111 . . .), and (1, 111 . . .) do not have disjoint neighborhoods.

Example 4.5. Consider the convolution algebra F2[G] for the groupoid of germs
of the Grigorchuk group over the field with two elements. The matrix recursion for
the element b+ c+ d+ 1 is

b+ c+ d+ 1 7→

(
0 0
0 b+ c+ d

)
.

It follows that b+ c+ d is a non-trivial element of F2[G] but, as a function on G is
zero everywhere except for the germs of b, c, d, 1 at 111 . . ., where it is equal to 1.
This shows that the ideal I from Proposition 4.1 is non-zero in this case, and the
algebra F2[G] is not simple.

4.5. Modules kGx. Let G be an étale minimal groupoid. Consider the space kGx

of maps φ : Gx −→ k with finite support, where Gx = {g ∈ G : o(g) = x}. It is
easy to see that for every φ ∈ kGx and f ∈ k[G] the convolution f · φ is an element
of kGx, and that kGx is a left k[G]-module with respect to the convolution.

Proposition 4.8. Let S be an finite set of open compact G-bisections, and let

V ⊂ k[G] be the linear span of their characteristic functions and 1G(0). Then for

every n ≥ 1 we have

dimV n · δx ≤ γS(x, n),

where δx ∈ kGx is the characteristic function of x ∈ Gx, and γS(x, n) is the growth

of the Cayley graph based at x of the groupoid generated by the union of the elements

of S.
If the isotropy group of x is trivial, then the module kGx is simple.

Proof. The growth estimate is obvious, since for every g ∈ Gx and S ∈ S we have
1S · δg = δSg, if Sg 6= ∅, and 1S · δg = 0 otherwise.

Let us show that kGx is simple if the isotropy group of x is trivial. It is enough
to show that for every non-zero element φ ∈ kGx there exist elements f1, f2 ∈ k[G]
such that f1 · φ = δx and f2 · δx = φ.

Let φ ∈ kGx, and let {g1, g2, . . . , gk} be the support of φ. Since the isotropy
group of x is trivial, t(gi) are pairwise different. Let U1, U2, . . . , Uk be open compact

G-bisections such that gi ∈ Ui and t(Ui) are disjoint. Then
(∑k

i=1 φ(gi)1Ui

)
·δx = φ

and φ(g1)
−11U−1

1
φ = δx. �

Example 4.6. Let X be a finite alphabet, and let w ∈ XZ be a non-periodic
sequence such that closure Xw of the shift orbit of w is minimal. Let S be the
groupoid generated by the action of the shift on Xw. Denote by T and T−1 the
characteristic functions of the sets of germs of the shift and its inverse, and for
every x ∈ X , denote by Dx the characteristic function of the cylindrical set {w ∈
Xw : w(0) = x}. Then k[S] is generated by T, T−1 and Dx for x ∈ X . Note that
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we can remove one of the generators Dx, since
∑

x∈X Dx = 1 = TT−1. Consider
the set Sw = {(sn, w) : n ∈ Z} and the corresponding module kSw. Its basis as a
k-vector space consists of the delta-functions en = δ(sn,w), n ∈ Z. In this naturally
ordered basis left multiplication by T is given by the matrix

T =




. . .
...

...
...

...
· · · 0 0 0 0 · · ·
· · · 1 0 0 0 · · ·
· · · 0 1 0 0 · · ·
· · · 0 0 1 0 · · ·

...
...

...
...

. . .




= (tij)i∈Z,j∈Z

with the entries tm,n = δm−1,n. The element T−1 is given by the transposed matrix,
and an element Dx is given by the diagonal matrix (aij) with entries given by the
rule

ann =

{
1 if w(n) = x,
0 otherwise.

It follows that the algebra k[S] is isomorphic to the algebra generated by such
matrices. For example, if X = {0, 1}, then the algebra is generated by the matrices
T , T⊤, and the diagonal matrix with the sequence w on the diagonal.
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