
NON-TRIVIALITY OF SOME ONE-RELATOR
PRODUCTS OF THREE GROUPS

I. CHINYERE AND J. HOWIE

Abstract. In this paper we study a group G which is the quotient
of a free product of three non-trivial groups by the normal closure
of a single element. In particular we show that if the relator has
length at most eight, then G is non-trivial. In the case where the
factors are cyclic, we prove the stronger result that at least one of
the factors embeds in G.

1. Introduction

A one-relator product of groups is the quotient of a free product by the
normal closure of a single element, called the relator. In [10] and [13]
(see also [18]) the following conjecture was proposed.

Conjecture 1.1. A one-relator product on three non-trivial groups is
non-trivial.

Conjecture 1.1 is an extension of the Scott-Wiegold conjecture (see
Problem 5.53 in [24]). The latter problem was solved by the second
author [18], who also conjectured that a free product of (2n−1) groups
is not the normal closure of n elements.

Our aim in this paper is to prove Conjecture 1.1 under certain con-
ditions. First we assume that the factors are all finite cyclic groups.
Under this condition the conjecture is already known [18], but here we
prove a stronger result.

Theorem 1.2. Let Ga, Gb and Gc be non-trivial cyclic groups with
generators a, b and c respectively. For any word w ∈ Ga ∗ Gb ∗ Gc

whose exponent sum in each of the generators is non-zero modulo the
order of that generator, each of the factors Ga, Gb and Gc embed in

G =
Ga ∗Gb ∗Gc

N(w)
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2 CHINYERE AND HOWIE

via the natural maps.

An immediate consequence (Corollary 4.2) is that in any one-relator
product G of three cyclic groups, at least one of the factors embeds in
G; this is Conjecture 9.4 of [13] for cyclic groups.
Also we can place a restriction on the length of the relator.

Theorem 1.3. The one-relator product on three non-trivial groups is
non-trivial when the relator has length at most eight.

Placing an upper bound on the relator allows us to apply techniques
in combinatorial group theory such as pictures.

The rest of the paper is organised as follows. Chapter 2 discusses
pictures. As mentioned in the introduction, pictures combined with
curvature arguments (discussed in Chapter 3) are used in the proof of
Theorem 1.3. In Chapters 4 and 5, we give a proof of Theorems 1.2
and 1.3 respectively.

Throughout, we shall use the following notations. Normal closure,
N(.); length, `(.); real part, <(.); imaginary part, =(.); homeomorphic,
≈; conjugate, '; isomorphic, ∼=; union ∪, and disjoint union, t.

2. Pictures

Pictures are one of the most powerful tools available in combinato-
rial group theory. Essentially, pictures are the duals of van Kam-
pen diagrams [22]. We will describe pictures briefly as it relates to
groups with presentations of the form G = 〈X1, X2 | R1, R2, R〉, where
G1 = 〈X1 | R1〉, G1 = 〈X2 | R2〉, and R is a word with free product
length at least two.

Groups of the form G above are called one-relator products of groups
G1 and G2. In the next section we shall discuss such groups in more
details. Pictures were first introduced by Rourke [26] and adapted to
work for such groups (as G) by Short [27]. Since then they have been
used extensively and successfully by various authors in a variety of
different ways (see [[5], [6], [7], [12], [16], [17], [20]]). We describe below
the basic idea, following closely the account in [19]. A more detailed
description can be found in [15] and also [[4], [1], [21], [9], [25]].

Let G be as above, a picture Γ over G on an oriented surface S (usually
D2) consists of the following:

(1) A collection of disjoint closed discs in the interior of S called
vertices;

(2) A finite number of disjoint arcs, each of which is either:
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(a) a simple closed curve in the interior of S that meets no
vertex,

(b) an arc joining two vertices (or one vertex to itself),
(c) an arc joining a vertex to the boundary ∂S of S, or
(d) an arc joining ∂S to ∂S;

(3) A collection of labels, one at each corner of each region of S
(i.e. connected component of the complement in S of the arcs
and vertices) at a vertex, and one along each component of the
intersection of the region with ∂S. The label at each corner is
an element of G1 or G2. Reading the labels round a vertex in
the clockwise direction yields R±1 (up to cyclic permutation),
as a cyclically reduced word in G1 ∗G2.

A region is a boundary region if it meets ∂S, and an interior region
otherwise. If S ≈ S2 or if S ≈ D2 and no arcs of meet D2, then
Γ is called spherical. In the latter case ∂D2 is one of the boundary
components of a non-simply connected region (provided, of course, that
Γ contains at least one vertex or arc), which is called the exceptional
region. All other regions are interior. The labels of any region 4 of Γ
are required all to belong to either G1 or G2. Hence we can refer to
regions as G1-regions and G2-regions accordingly. Similarly a corner
is called a Gi-corner or more specially a gi-corner if it is labelled by
the element gi ∈ Gi. Each arc is required to separate a G1-region
from a G2-region. Observe that this is compatible with the alignment
of regions around a vertex, where the labels spell a cyclically reduced
word, so must come alternately from G1 and G2. A region bounded
by arcs that are closed curves will have no labels; nevertheless the
above convention requires that it be designated a G1- or G2-region.
An important rule for pictures is that the labels within any G1-region
(respectivelyG2-region) allow the solution of a quadratic equation inG1

(respectively G2). The labels around any given boundary component
of the region are formed into a single word read anti-clockwise. The
resulting collection of elements of G1 or G2 is required to have genus
no greater than that of the region (in the sense of [7]). This technical
general requirement is much simpler in the commonest case of a simply
connected region - it means merely that the resulting word represents
the identity element in G1 or G2.

Two distinct vertices of a picture are said to cancel along an arc e if
they are joined by e and if their labels, read from the endpoints of e,
are mutually inverse words in G1 ∗ G2. Such vertices can be removed
from a picture via a sequence of bridge moves (see Figure 1 and [7]
for more details), followed by deletion of a dipole without changing the
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boundary label. A dipole is a connected spherical picture containing
precisely two vertices, does not meet ∂S, and none of its interior regions
contain other components of Γ. This gives an alternative picture with
the same boundary label and two fewer vertices.

Figure 1. Diagram showing bridge-move.

We say that a picture Γ is reduced if it cannot be altered by bridge
moves to a picture with a pair of cancelling vertices. If W is a set of
words, then a picture isW-minimal if it is non-empty and has the min-
imum number of vertices amongst all pictures over G with boundary
label in W . Any cyclically reduced word in G1 ∗ G2 representing the
identity element of G occurs as the boundary label of some reduced
picture on D2. A picture is connected if the union of its vertices and
arcs is connected. In particular, no arc of a connected picture is a
closed arc or joins two points of ∂S, unless the picture consists only of
that arc.

Two arcs of Γ are said to be parallel if they are the only two arcs in the
boundary of some simply-connected region 4 of Γ. We will also use
the term parallel to denote the equivalence relation generated by this
relation, and refer to any of the corresponding equivalence classes as a
class of ω parallel arcs or ω-zone. Given a ω-zone joining vertices u
and v of Γ, consider the ω − 1 two-sided regions separating these arcs.
Each such region has a corner label xu at u and a corner label xv at v,
and the picture axioms imply that xuxv = 1 in G1 or G2. The ω − 1
corner labels at v spell a cyclic subword s of length ω − 1 of the label
of v. Similarly the corner labels at u spell out a cyclic subword t of
length ω − 1. Moreover, s = t−1. If we assume that Γ is reduced, then
u and v do not cancel. Hence the cyclic permutations of the labels at v
and u of which s and t are initial segments respectively are not equal.
Hence t and s are pieces.
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3. Combinatorial curvature

For any compact orientable surface (with or without boundary) S with
a triangulation, we assign real numbers β to the corners of the faces
in S. We will think of these numbers as interior angles. A vertex
which is on ∂S is called a boundary vertex, and otherwise interior.
The curvature of an interior vertex v in S is defined as

κ(v) =

[
2−

∑
i

β(v)i

]
π,

where the β(v)i range over the angles at v. If v is a boundary vertex
then we define

κ(v) =

[
1−

∑
i

β(v)i

]
π.

The curvature of a face ∆ is defined as

κ(∆) =

[
2− d(∆) +

∑
i

β(∆)i

]
π

where β(∆)i are the interior angles of ∆. The combinatorial version
of the Gauss-Bonnet theorem states that the total curvature is the
multiple of Euler characteristic of the surface by 2π:

κ(S) =

[∑
v

κ(v) +
∑

∆

κ(∆)

]
π = 2πχ(S).

We use curvature to prove results by showing that this value cannot
be realised. We assign to each corner of a region of degree k an angle
(k − 2)/k. This will mean that regions are flat in the sense that they
have zero curvature (alternatively we can make vertices flat instead).
This will be the standard assignment for this work. In other words,
wherever curvature is mentioned with no specified assignments, it is
implicitly assumed that we are using the one described above.

In some cases, it may be needful to redistribute curvature (see [8]).
This involves locating positively-curved vertices (or regions), and using
its excess curvature to compensate its negatively curved neighbours.
Hence the total curvature is preserved. We shall describe how to do
this in Section 5.
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4. One-relator product of cyclics

In this Section we give a proof of Theorem 1.2. Recall that Ga =
〈a | ap〉, Gb = 〈b | bq〉, Gc = 〈c | cr〉, and w is a word in the free product
Ga ∗ Gb ∗ Gc with non-zero exponent sum in each of the generators a,
b and c. The proof we present follows closely the one in [18].

Lemma 4.1. Suppose that p, q and r are prime powers. Then each of
Ga, Gb, Gc embeds via the natural map into

G =
(Ga ∗Gb ∗Gc)

N(w)
.

Proof. We know the result holds when p, q, r are primes by [[18], The-
orem 4.1]. He we assume that at least one of p, q, r is a prime power
but not prime.

Suppose that n is the exponent sum of a in w. The assumption that
n is not divisible by p implies that n = tp + s with 0 < s < p. By
replacing w with wa−tp which changes n to s (leaving G unchanged),
we can always assume that n < p. If m is co-prime to p then a 7→ am

induces an automorphism of Ga. Thus, replacing a by am in w gives a
new word w′ ∈ Ga ∗Gb ∗Gc such that the resulting group

G′ =
(Ga ∗Gb ∗Gc)

N(w′)

is isomorphic to G (and such that Ga embeds in G′ if and only if it
embeds in G). Moreover, the exponent sum of a in w′ is mn. By
Bezout’s Lemma we may choose m such that mn ≡ gcd(n, p) mod p.
Thus without loss of generality we may assume that n divides p (and
similarly the exponent sums of b, c in w divide q, r respectively). So in
particular if p is prime, then n = 1.

Now suppose that p and n (the exponent sum of a in w) are powers of
a prime τ – say p = τ t and n = τ s where 0 ≤ s < t. If τ is an odd
prime, define

θp =
(τ t−s − 1)π

2τ t
.

If τ = 2, define

θp =
(2t−s−1 − 1)π

2t

unless s = t − 1, in which case define θp = π
2
. Recall that an element

cos(θp) + v sin(θp)v ∈ SO(3) ≈ S3/{±1} has order p if and only if θp
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is a multiple of π/p but not π/τ t−1, for any vector v ∈ S2. Hence for
any v ∈ S2, the map

αv : Ga → H, a 7→ cos(θp) + sin(θp)v,

induces a faithful representation Ga → SO(3) (where H denotes the
quaternions). Moreover, <(αv(a

n)) = cos(ψp) where ψp := nθp and
π
4
≤ ψp ≤ π

2
.

Similarly, we can define maps βv : Gb → H and γv : Gc → H that
induce faithful representations Gb, Gc → SO(3), and such that, if e, f
denote the exponent-sums of b, c in w, then <(βv(be)) = cos(ψq) and
<(γv(cf )) = cos(ψr) where ψq, ψr ∈ [π

4
, π

2
].

The numbers ψp, ψq, and ψr satisfy a triangle inequality. In other words
none is greater than the sum of the other two. Hence, for example, the
triple (αi, βi, γ−i) induces a homomorphism

δ : Ga ∗Gb ∗Gc → S3

that sends w to cos(θ)+i sin(θ) with 0 ≤ θ ≤ 3π
4

. If θ = 0 then δ induces
a representation G→ SO(3) that is faithful on each of Ga, Gb, Gc and
we are done. So assume that θ > 0. In other words =(δ(w)) > 0.

Similar remarks apply to the triples (αi, β−i, γi) and (α−i, βi, γi). Hence
also the triple (αi, β−i, γ−i) induces a representation δ with =(δ(w)) <
0. The map S2 → S3, v 7→ (αi, β−i, γv)(w) is an S1-equivariant map
under the conjugation action. It follows that it either sends some v to
±1 ∈ S3 (in which case (αi, β−i, γv) gives a representation G→ SO(3)
that is faithful on each of Ga, Gb, Gc), or by [[18] Corollary 2.2], it
represents +1 ∈ H2(S3 − {±1}) ∼= Z.

Similarly, the map v 7→ (αi, βi, γv)(w) either maps some v ∈ S2 to
±1 ∈ S3 and so gives a representation G → SO(3) that is faithful on
each of Ga, Gb, Gc, or represents one of 0,−1 ∈ H2(S3 − {±1}) ∼= Z.
Now any path P : [0, 1]→ S2 from −i to i gives rise to a homotopy

t 7→
(
v 7→ (αi, βP (t), γv)(w)

)
between the above two maps. If (αi, βP (t), γv)(w) 6= ±1 for all t and for
all v, then we can regard this as a homotopy of maps S2 → S3 \ {±1}.
This is a contradiction since the two maps belong to different homology
classes in H2(S3 \ {±1}). Hence for some t and some v ∈ S2, the map
(αi, βP (t), γv) sends w to±1 and so induces a representationG→ SO(3)
that is faithful on each of Ga, Gb and Gc.
It follows that each of the natural maps from Ga, Gb and Gc to G is
injective, as required. �
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The general case of the Freiheitssatz for G follows from the special case
of prime powers together with the Chinese Remainder Theorem by an
easy induction.

Proof of Theorem 1.2. For the inductive step, suppose that p = mn
with gcd(m,n) = 1. Since the exponent sum of the generator a in w is
non-zero modulo p, we can assume that it is non-zero modulo m. Now
factor out am and apply the inductive hypothesis. This shows that the
maps Gb → H and Gc → H are injective. It also shows that the kernel
K of Ga → H is contained in the subgroup 〈m〉.

If the exponent sum of a in w is also non-zero modulo n, then by
interchanging the roles of m and n in the above we see that K is
contained in 〈n〉. However, if the exponent-sum of a in w is divisible by
n, then the same is automatically true: K is contained in 〈n〉. Finally,
we know that K is contained in the intersection of 〈m〉 and 〈n〉. But
this intersection is trivial by the Chinese Remainder Theorem, so we
deduce that Ga → H is injective. �

In a one-relator product of groups G = (∗λGλ)/N(R), we say that a
factor group Gλ is a Freiheitssatz factor if the natural map Gλ → G
is injective. It is clear that any Gλ such that the product of the Gλ-
letters in R is trivial is a Freiheitssatz factor. Combining this remark
with Theorem 4.1 we obtain:

Corollary 4.2. Any one-relator product of three cyclic groups contains
a Freiheitssatz factor.

In [3], Chiodo used the result of [18] to show that the free product G
of three cyclic groups of distinct prime orders is finitely annihiliated.
In other words, for every non-trivial element g ∈ G, there exist a finite
index normal subgroup N of G such that g is trivial in G/N . The proof
uses nothing more than the fact that finitely generated subgroups of
SO(3) are residually finite. Hence our result extends this to the case
where the cyclic groups are arbitrary.

Corollary 4.3. Any free product of three cyclic groups is finitely an-
nihiliated.

5. One-relator product with short relator

In this Section we give a proof of Theorem 1.3. As mentioned in the
introduction the proof uses pictures, as well as Bass-Serre theory and
Nielsen transformations, and is broken down into a number of Lemmas.
Also we shall need the following results.
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Theorem 5.1. Suppose that A and B are non-cyclic two-generator
groups with generators {a, c} and {b, d} respectively. If A and B have
faithful representations in PSL2(C), then G = (A ∗ B)/N(abcd) sat-
isfies the Freiheitssatz: the natural maps A → G and B → G are
injective.

Proof. Let X, Y and Z be variable matrices in SL2(C). The aim of the
proof is to show that one can choose X, Y and Z such that a 7→ X,
c 7→ Z gives a faithful representation A 7→ PSL2(C) and b 7→ Y ,
d 7→ (XY Z)−1 gives a faithful representation B 7→ PSL2(C).
Such a triple of matrices is a representation of the free group F3 of
rank 3. Recall [11] that the character variety of representations F3 →
PSL(2,C) is given by the seven parameters Tr(X), Tr(Z), Tr(Y ),
Tr(XY ), Tr(XZ), Tr(Y Z) and Tr(XY Z) subject to a single polyno-
mial equation

Tr(X)2 + Tr(Y )2 + Tr(Z)2 + Tr(XY )2 + Tr(XZ)2 + Tr(Y Z)2

+ Tr(XY Z)2 + Tr(XY )Tr(XZ)Tr(Y Z)

− Tr(X)Tr(Y )Tr(XY )− Tr(X)Tr(Z)Tr(XZ)− Tr(Y )Tr(Z)Tr(Y Z)

+ Tr(X)Tr(Y )Tr(Z)Tr(XY Z)− Tr(X)Tr(Y Z)Tr(XY Z)

− Tr(Y )Tr(XZ)Tr(XY Z)− Tr(Z)Tr(XY )Tr(XY Z) = 4

(5.2)

By hypothesis, faithful representations of A and B in PSL2(C) exist.
Moreover they are parametrised by fixing suitable values for Tr(X),
Tr(Z), Tr(XZ), Tr(Y ), Tr(XY Z) and Tr(XY ZY −1). By the repeated
application of trace relation

Tr(MN) = Tr(M)Tr(N)− Tr(MN−1)

for arbitrary matrices M and N can write:

Tr(XY ZY −1)=Tr(Y )Tr(XY Z)−Tr(XY )Tr(Y Z)+Tr(X)Tr(Z)−Tr(XZ).

Hence if we fix suitable values for Tr(X), Tr(Y ), Tr(Z), Tr(XZ) and
Tr(XY Z), we have two free variables α := Tr(XY ) and β := Tr(Y Z)
which are required to satisfy the quadratic equation which fixes the
value of

Tr(XY ZY −1) = Tr(Y )Tr(XY Z)− αβ + Tr(X)Tr(Z)− Tr(XZ).

Combining this with Equation (5.2), and fixing Tr(X), Tr(Z), Tr(XZ),
Tr(Y ), Tr(XY Z), we have a pair of quadratic equations in α, β of the
form
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αβ = c1,

α2 + β2 + c2αβ + c3α + c4β = c5

for suitable constants c1, . . . , c5. It is routine to check that any such pair
of equations can be solved in C. Any solution gives a representation
〈a, b, c, d〉 −→ SL2(C) that induces the given faithful representations
of A and B in PSL2(C) up to conjugacy, mapping the word abcd to
the identity element. This completes the proof. �

Theorem 5.3. Let G be a one-relator product of non-trivial groups A
and B, with relator rn for some integer n. If 2 ≤ `(r) ≤ 6 and n ≥ 2,
then r has order n in G.

Theorem 5.3 is a consequence of various results proved in Chapter 4
of [2]. We omit the proof which is straightforward but lengthy. It uses
standard curvature arguments on pictures.

Theorem 1.2 holds trivially if w is in the normal closure of any of the
factors. Hence we can assume by Theorem 5.3 that w contains at least
two letters in each of the three factors. To see this, suppose that w
contains one letter from A, say α. Then a cyclic conjugate of w has the
form αW , where W ∈ B∗C and `(W ) ≤ 7 (and so some conjugate of W
has length at most 6). If n is the order of α in A, then by Theorem 5.3,
G is the free product of A and (B ∗C)/N(W n) amalgamated over the
subgroups 〈α〉 and 〈W 〉 of A and B ∗C respectively. So G is non-trivial
and in particular we can assume that `(w) ≥ 6.

We can also assume that up to cyclic permutation w has the form
c1Uc2V , where c1, c2 ∈ C and U, V ∈ A ∗ B, with `(U) + `(V ) ≤ 6.
The group G is non-trivial if c1c2 = 1 or UV ∈ N(A) ∪ N(B). Hence
we assume that neither of the two conditions holds. If without loss of
generality we assume `(U) ≤ `(V ), then the possibilities for U and V
as words in the free product A ∗B are as follows:

(1) U or V is in the normal closure of A or B;
(2) U = (αβ)±1 and V ∈ {α1β1, α1β1α2, α1β1α2β2};
(3) U = αβα1 and V ∈ {β1α2β2, α2β1α3} (by symmetry),

where α (with or without subscript) is an element of A and β (with
or without subscript) is an element of B. We show that in each of the
possibilities listed above G is non-trivial.

Lemma 5.4. If U or V is in the normal closure of A or B, then G is
non-trivial.
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Proof. Without loss of generality, we can assume that U is in the normal
closure of A. In other words, there exist a word γ ∈ A ∗ B such that
U = γ−1αγ. Hence

w =c1γ
−1αγc2V

'γc1γ
−1αγc2γ

−1γV γ−1.

So G is trivial if and only if

G′ =
(A ∗B ∗ C̃)

N(W )

is trivial, where C̃ = γCγ−1 and W = c̃1αc̃2V . Hence it is enough to
consider the case where U = α (i.e γ = 1).

By assumption c1 6= c−1
2 . Hence c1αc2 has infinite order in A ∗ C.

It follows that the subgroup of A ∗ C generated by A and c1αc2 is
isomorphic to the free product A ∗ Z. If A and V generate a subgroup
of A ∗B which is also isomorphic to A ∗ Z, then

G = (A ∗B)〈A,V 〉 ∗〈A,c1αc2〉 (A ∗ C).

So in this case G is non-trivial.

Suppose then that 〈A, V 〉 is not isomorphic to A ∗ Z. We can assume
that V contains at least two B letters and `(V ) ≤ 5. If V contains
exactly two B letters, then the two letters must be inverses of each
other. This implies that B is a homomorphic image of G, so G is non-
trivial. Hence V contains exactly three B letters. It follows that V is
conjugate in A ∗ B to a letter β ∈ B with order r < ∞. Define H to
be the group

H :=
A ∗ C

N((c1αc2)r)

=A ∗
〈α〉 T

∗
〈γ〉=〈c2c1〉 C,

where T = 〈α, γ | αp, γq, (αγ)r〉 and p, q are the orders of α and c2c1

respectively. Then G = (A∗B)〈A,V 〉∗〈A,c1αc2〉H, provided of course that
〈A, c1αc2〉 embeds in H. We show below that this is in fact the case.

By Bass-Serre theory, H acts on a tree Γ. Let the vertex set of Γ
be X. The edge e divides Γ (see Figure 2) into two components Γ1

and Γ2 with vertex sets X1 (containing vertices uA and uT ) and X2

(containing vertices uC and uc1(uT )) respectively such that X = X1tX2.
The vertices uA, uT and uC have stabilizers A, T and C respectively.
Similarly, 〈α〉 and 〈γ〉 are the stabilizers of e1 and e respectively. Let
e2 = c1(e), then the stabilizer of e2 is c1〈γ〉c−1

1 .
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Figure 2. Diagram showing a section of the tree Γ on
which H acts.

We aim to apply the Ping-Pong Lemma to show that the subgroup of
H generated by A and 〈c1αc2〉 is their free product. Since

A ∩ 〈γ〉 = 〈α〉 ∩ 〈γ〉 = 1

it follows that a(X2) ⊂ X1 for all a 6= 1 in A.
In a similar way, since αγ stabilizes an edge e3 incident to uT other
than e, c1αc2 = c1αγc

−1
1 stabilizes an edge e4 = c1(e3) incident to

uc1(uT ) other than c1(e) = e2. If we can show that 〈γ〉 ∩ 〈c1αc2〉 = 1,
then it follows that b(X1) ⊂ X2 for every b 6= 1 in 〈c1αc2〉, and the
Ping-Pong Lemma will yield the result.

But 〈γ〉∩〈c1αc2〉 stabilizes e and e4, and hence also e2, so it is contained
in c1〈γ〉c−1

1 . Hence, 〈γ〉 ∩ 〈αγ〉 = 1 in T implies that in c1Tc
−1
1 ,

c1〈γ〉c−1
1 ∩ c1〈αγ〉c−1

1 = 1.

Thus 〈γ〉 ∩ 〈c1αc2〉 = 1, as required. �

It follows in particular from Lemma 5.4 that `(U) ≥ 2. The rest of
the arguments we present rely heavily on Nielsen transformations. We
transform {U, V } into a more suitable Nielsen equivalent set depending
on the subgroup they generate.

Lemma 5.5. Suppose 〈U, V 〉 is free. Then G is non-trivial.

Proof. First we suppose 〈U, V 〉 is free of rank 1 say with generator t.
Then w can be expressed in the form w = c1t

rc2t
s, where V = ts and

U = tr for integers s, r. If s + r = 0, then G 6= 1 since w ∈ N(C).
Otherwise w = 1 is a non-singular equation over C. We assume that
t 6∈ N(A) ∪ N(B) for otherwise G 6= 1 by Lemma 5.4. It follows that
any cyclically reduced conjugate of t has length at least 2. So since
s, r 6= 0 and `(tn) ≥ 2n for any n,

|s|+ |r| ≤ 3.
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Consider the group

H :=
(C ∗ 〈t〉)
N(w)

.

If s, r ≥ 1, then C embeds in H by [23]. Otherwise without loss of
generality s = −1 and r = 2. Again C embeds in H by [14]. If t is
trivial in H, then H = C and so w ∈ N(A ∗ B); again G 6= 1. If t has
finite order m > 1 in H, then

G =
(A ∗B)

N(tm)
∗〈t〉 H.

By the previous comment it follows that `(t) = 2, say t = αβ. Hence

(A ∗B)/N(tm) ∼= A ∗〈α〉 T ∗〈β〉 B,
where T = 〈α, β|α|α| = β|β| = (αβ)m = 1〉 is a triangle group, and so t
has order m as required.

Finally if t has infinite order in H, then

G = (A ∗B) ∗〈t〉 H.
Hence G is non-trivial.

Now suppose 〈U, V 〉 is free of rank 2. Let

H := (C ∗ 〈U, V 〉)/N(w) = C ∗ 〈U〉.
Note that the subgroup of H generated by {U, c1Uc2} is a free group
of rank 2. It follows that G is the free product of H and A ∗ B amal-
gamated over the subgroups 〈U, c1Uc2〉 and 〈U, V 〉. It follows that G
is non-trivial. �

Lemma 5.6. Suppose 〈U, V 〉 is isomorphic to Cp ∗Cq or Cp ∗Z, where
Cp and Cq are finite cyclic groups. Suppose further that `(U) ≤ `(V ) <
4. Then G is non-trivial.

By assumption 〈U, V 〉 has an element of finite order. So Nielsen trans-
formations can be applied to {U, V } to get a new set {u, v} with u or
v having finite order. Note also that V 6= α1β1α2β2. Lemma 5.6 is a
corollary to Propositions 5.7–5.10 below.

Proposition 5.7. If U = (αβ)±1 and V = α1β1, then G is non-trivial.

Proof. First suppose U = (αβ)−1. Since UV is not in the normal
closure of A or B, neither α = α1 nor β = β1 holds. Hence 〈U, V 〉 is
free of rank 2. The result follows from Lemma 5.5.

Suppose then that U = αβ. If α 6= α1 and β 6= β1, then {U, V }
is Nielsen reduced, so 〈U, V 〉 is free of rank 2 and the result follows
from Lemma 5.5. Hence we may assume without loss of generality that
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α = α1. If β = β1, then 〈U, V 〉 is isomorphic to Z. In this case the
result follows from Lemma 5.5.

If c1 = c2 = c then we can replace w with ÛβÛβ1, where Û = cα. In
this case 〈Û〉 is free of rank 1 and the result follows from Lemma 5.5.
Hence we may assume that β 6= β1 and c1 6= c2, so 〈βc2, β1c1〉 is free of
rank 2. Again we apply Lemma 5.5 to show that G is non-trivial. �

Proposition 5.8. If U = (αβ)±1 and V = α1β1α2, then G is non-
trivial.

Proof. Suppose U = αβ. We can assume that β 6= β−1
1 as otherwise G

maps onto B, hence non-trivial. Also α1 6= α−1
2 by Lemma 5.4. Since

α1α2 6= 1, either α = α1 and β = β1 or α = α−1
2 and β = β−1

1 , as
otherwise 〈U, V 〉 is free. Since β 6= β−1

1 we assume β = β1 and α = α1.
If c1 = c2 = c, then G surjects onto (B ∗C)/N((βc)2), so is non-trivial.
Otherwise take U ′ = c2α and V ′ = α2c1α, and so 〈U ′, V ′〉 is free. Hence
G is non-trivial by Lemma 5.5.
The proof for the case where U = (αβ)−1 is similar by symmetry. �

Proposition 5.9. If U = αβα1 and V = α2β1α3, then G is non-trivial.

Proof. We may assume that β 6= β−1
1 , as otherwise G surjects onto

B. Without loss of generality, there are two possibilities to consider.
Either α = α2 and β = β1 or α = α2 and α1 = α3. (Note that we can
not have α = α−1

3 and α1 = α−1
2 , for otherwise w is contained in the

normal closure of B ∗ C).

In the first case, we take take U ′ = α1c2α and V ′ = α3c1α. By Lemma
5.5, we can assume that 〈U ′, V ′〉 is not free. Hence either c1 = c2 = c
or α1 = α3. In either case G maps onto

(B ∗ C)

N((cβ)2
or

(A ∗B)

N((αβα1)2)

respectively. Hence G is non-trivial.

In the second case where α = α2 and α1 = α3, we can replace B with
its conjugate by α, and w by W = c1βα̃c2β1α̃, where α̃ = αα1. Since
G is isomorphic to

G′ =
(A ∗ α−1Bα ∗ C)

N(W )
,

the result follows from Lemma 5.7. �

Proposition 5.10. If U = αβα1 and V = β1α2β2, then G is non-
trivial.
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Proof. In this case, the only possibility is α = α−1
1 or β1 = β−1

2 . In
either case, the result follows from Lemma 5.4. �

Finally, we consider the case where U = (αβ)±1 and V = α1β1α2β2. In
this case we can prove the stronger result that each of A∗B,C embeds
in G (the Freiheitssatz). To this end, standard arguments allow us to
make the additional assumption that each of A,B,C is generated by
the letters occurring in w.
Since 〈U, V 〉 = Cp ∗ K, without loss of generality we have by Nielsen
transformations that either

(1) U = αβ and V ∈ {αβαβ2, αβα2β} with β 6= β2, or
(2) U = β−1α−1 and V ∈ {αβαβ2, αβα2β} with α 6= α2.

Remark 5.11. In (1) and (2) above we gave two forms of V . If V =
αβα2β we can replace U and V by βUβ−1 and βV β−1 respectively (or
equivalently replace C by β−1Cβ) and interchange A and B to get the
first form, αβαβ2.

In what follows we regard G as a one-relator product of A ∗ B and C.
For convenience we let U1 = αβ and U2 = β−1α−1, so U2 = U−1

1 . We
use R to denote a relator in G which is a cyclically reduced word in
{U, V } and `(R) denotes its length also as a word in {U, V } .

Definition 5.12. The index of R is the number of cyclic sub-words of
the form (UU)±1, (V V )±1, (V U−1)±1 or (U−1V )±1.

Definition 5.12 generalizes the notion of sign-index. Recall that the
sign-index of R is n (necessarily even) if a cyclic permutation of R has
the form

W1W
−1
2 W3 . . .Wn−1W

−1
n ,

with each Wi a positive word in {U, V }. In particular the index of R
is bounded below by its sign-index, and above by `(R).

By Remark 5.11

{U, V } = {(αβ)±1, αβαβ2}
Nielsen transformation−−−−−−−−−−−−→ {αβ, β−1β2}.

There are two possibilities to consider. If {αβ, β−1β2} is Nielsen re-
duced, then 〈U, V 〉 is free (if β−1β2 has infinite order), or Z ∗ Zm (if
β−1β2 has order m). A second possibility is that {αβ, β−1β2} is not
Nielsen reduced. In which case β is a power of β−1β2, so B is cyclic
(generated by β−1β2). In particular it follows that β−1β2 must have
order at least 3 (since by assumption β 6= β2).
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Proposition 5.13. Suppose R is a cyclically reduced word in {U, V }
of index k. Suppose also that (β−1β2)2 6= 1. If R is trivial, then
2k + `(R) ≥ 12.

Proof. Note that 〈U〉 ∩ 〈V 〉 = 1 so no word of the form UmV n is a
relator. In particular `(R) ≥ 4. Hence we can assume that k ≤ 3, and
so in particular we only need to consider words with sign-index 0 or 2.

First suppose that R has sign-index 0. Since β 6= β2, {U1, V } generates
a free sub-semigroup of A∗B of rank 2. Hence we assume that U = U2.
Now `(R) ≤ 12 − 3k where k ≤ 3 is the number of cyclic subwords of
the form U±2 or V ±2. This leaves us with a short list of words that can
be checked directly to show that none is trivial.

Suppose that R has sign-index 2. If U = U1, we get an equality between
two positive words in a free sub-semigroup. Since this can not happen,
we assume that U = U2. We can assume that `(R) = 4 or 5 and R has
at most a single occurrence of the subword U±2 or V ±2. Again there is
a very short list of such words which can checked directly to show that
none is trivial. �

Remark 5.14. Note that if (β−1β2)2 = 1, then B can not be cyclic
since that will imply that β = β2. In other words {U, β−1β2} is Nielsen
reduced.

Lemma 5.15. If U = (αβ)±1, V = αβαβ2 and {U, β−1β2} is not
Nielsen reduced, then each of A ∗ B,C embeds in G via the natural
map.

Proof. Suppose by contradiction that the result fails, then we get a
non-trivial W-minimal spherical picture M over G where W is the set
of non-trivial elements of (A ∗B) ∪ C.

Note that both A = 〈α〉 and B = 〈β−1β2〉 are cyclic. So by Theorem
5.1 we may assume that C is not cyclic or dihedral. Thus at most one
of c1, c2 can have order 2. Without loss of generality we assume that
c2 has order greater than 2.

Assign angles to corners of a picture over G as follows. Every c1-
corner gets angle 0, every c2-corner gets angle π/3, and every U - and
V -corner gets angle 5π/6. This ensures that vertices have curvature 0,
and C-regions have non-positive curvature. However, (A ∗ B)-regions
can have positive curvature. We overcome this by redistributing any
such positive curvature to neighbouring negatively curved C-regions,
as follows.
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Let ∆ be an interior (A∗B)-region of M . We transfer π/3 of curvature
across each of the edges of ∆ joining a c1-corner to c2-corner of an
adjacent C-region.

Now any interior (A∗B)-region whose label is of the form (U2U2V )n has
label of index n and curvature at most π/2. However, n > 2 by Remark
5.14. Hence it has transferred at least π of curvature to neighbours,
so becomes negatively curved. Similarly, it follows from Proposition
5.13 that any interior (A ∗ B)-region whose label is not of the form
(U2U2V )n has curvature at most π and that it has transferred at least
π of curvature to neighbours, so it becomes non-positively curved as
well.

A C-region ∆ receives π/3 of positive curvature across each edge sep-
arating a c1-corner from a c2-corner. Suppose that in ∆ there are p
c1-corners, q c2-corners, and r edges separating a c1-corner from a
c2-corner. The curvature of ∆ after transfer is at most

2π − (p+ q)π +
qπ

3
+
rπ

3
≤ (6− 2p− q)π

3
.

If 2p + q ≥ 6, then ∆ still has non-positive curvature after transfer.
Suppose ∆ is an interior C-region and 2p + q ≤ 5. Then either p = 0
or q = 0 (since p, q 6= 1). Hence also r = 0: so there is no transfer of
curvature into ∆ and it remains non-positively curved.

Since the curvature of the exceptional region is less than 4π, we get
a contradiction that curvature of M is 4π. Hence each of A ∗ B,C
embeds in G via the natural map. �

Lemma 5.16. If U = (αβ)±1, V = αβαβ2 and {U, β−1β2} is Nielsen
reduced, then each of A ∗B,C embeds in G via the natural map.

Proof. By assumption 〈U, V 〉 = 〈U〉 ∗ 〈β−1β2〉, and is isomorphic to
Z ∗ Zn, where n > 1 is the order of β−1β2. Consider the relative
presentation

H = 〈C, t | r = (t±2c1tc2)n〉.
The aim is to show that G is the free product of H and A ∗ B amal-
gamated over the subgroups 〈U, V 〉 and 〈t, c1tc2〉. To this end we must
show that the latter is also isomorphic to Z∗Zn. In other words, any re-
lation in H which is a word in {t, c1tc2} is a consequence of (t±2c1tc2)n.

If this is not so, we obtain a W-minimal non-trivial picture Γ over H
on D2 where W is the set of non-trivial words in {t, c1tc2}. Figure 3
shows typical vertices with positive orientation in the case of n = 2.
Note that there are no 2-zones with corners labelled by 1±1, for in
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Figure 3. Positively oriented vertices of Γ when n = 2.
The figure on the left corresponds to a vertex of Γ when
r = (t2c1tc2)n and the other is when r = (t−2c1tc2)n.

such case, either the two vertices cancel, or we can combine the vertex
with the boundary. In both cases we get a smaller picture, thereby
contradicting minimality of Γ.

Make regions of Γ flat by assigning angle (d(∆)− 2)π/d(∆) to each of
the corners of a degree d(∆) region ∆. We claim that interior vertices
Γ are non-positively curved. The proof is in two stages depending on
whether r = (t2c1tc2)n or r = (t−2c1tc2)n.

Suppose that r = (t2c1tc2)n. Since r is a positive word, Γ is bipartite.
More precisely, only vertices of opposite orientations are adjacent in
Γ. In particular this implies that regions have even degrees. Every
interior vertex v bounds at least two regions with a corner labelled 1.
By minimality of Γ, every such region has degree at least 4. Also every
2-zone gives the relation c1 = c2, and so each of the two regions on
both sides of the 2-zone has a corner labelled 1, hence is at least a
4-gon. Hence v bounds at least four regions of degree at least 4 and so
is non-positively curved.

The case of (t−2c1tc2)n is slightly different as regions can have odd
degree. Note that any corner is either a source (the two arrows point
outwards), sink (the two arrows point inwards), or saddle (one arrow
points inwards and the other points outwards) depending on whether
it is a c1-, c2- or 1-corner (see Figure 3). So in particular any 2-zone
gives the relation c2

1 = 1 or c2
2 = 1. If an interior vertex v does not

bound a 2-zone, then v satisfies C(3n). Suppose it does. As before any
region adjacent to a 2-zone has a 1-corner (a saddle). But any region
must have an even number of saddles, no two of which are adjacent
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(for otherwise a cancellation would be possible). It follows that such
a region has degree at least 4. There are at least two regions with
1-corner at v. If v bounds only one 2-zone, then it has degree at least
5 and bounds at least three regions of degree 4. Otherwise v bounds
at least four 4-gons. In all cases v has non-positive curvature.

It follows that there exists a boundary vertex of degree at most 3. This
is clearly impossible if n > 2 (since we will get a 2-zone with corners
labelled 1). So we assume that n = 2. An argument similar to the
ones given above shows that such a vertex must connect to ∂D2 by an
ω-zone, with ω ≥ 3. It follows that either one of c1 or c2 is trivial or
we can combine such a vertex with ∂D2 to get a smaller picture. Both
possibilities lead to a contradiction which completes the proof. �

Proof of Theorem 1.3. By earlier comments we can assume 6 ≤ `(w) <
9 and w has the form w = c1Uc2V (up to cyclic permutation) where
U, V ∈ A ∗ B and c1, c2 ∈ C with c1c2 6= 1. It follows from Grushko’s
theorem that the subgroup of A∗B generated by U and V is isomorphic
to one of the following:

(1) Conjugate to subgroup of A (or B).
(2) Free group of rank one.
(3) Free group of rank two.
(4) Free product of two finite cyclic groups.
(5) Free product of finite and infinite cyclic groups.

In the case of part (1) the result is immediate. Parts (2) and (3) follow
from Lemma 5.5. And finally parts (4) and (5) follow from Lemmas
5.6, 5.15 and 5.16. �
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