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A Birman exact sequence for the Torelli subgroup of AutpFnq

Matthew Day˚ and Andrew Putman:

March 30, 2016

Abstract

We develop an analogue of the Birman exact sequence for the Torelli subgroup of
AutpFnq. This builds on earlier work of the authors who studied an analogue of the
Birman exact sequence for the entire group AutpFnq. These results play an important
role in the authors’ recent work on the second homology group of the Torelli group.

1 Introduction

The Birman exact sequence [2, 9] is a fundamental result that relates the mapping class
groups of surfaces with differing numbers of boundary components. It is frequently used to
understand the stabilizers in the mapping class group of simple closed curves on a surface.
In [5], the authors constructed an analogous exact sequence for the automorphism group
AutpFnq of the free group Fn on n letters tx1, . . . , xnu. The Torelli subgroup of AutpFnq,
denoted IAn, is the kernel of the map AutpFnq Ñ GLnpZq obtained from the action of
AutpFnq on F ab

n – Zn. In this paper, we construct a version of the Birman exact sequence
for IAn. This new exact sequence plays a key role in our recent paper [6] on H2pIAn;Zq.

Birman exact sequence. Let Fn,k be the free group on the set tx1, . . . , xn, y1, . . . , yku.
For z P Fn,k, let vzw denote the conjugacy class of z. Define

An,k “ tf P AutpFn,kq | vfpyiqw “ vyiw for 1 ď i ď ku.

The map Fn,k Ñ Fn whose kernel is the normal closure of ty1, . . . , yku induces a map
π : An,k Ñ AutpFnq. The inclusion AutpFnq ãÑ An,k whose image consists of automorphisms
that fix the yi pointwise is a right inverse for π, so π is a split surjection. Let Kn,k “ kerpπq,
so we have a split short exact sequence

1 ÝÑ Kn,k ÝÑ An,k
π

ÝÑ AutpFnq ÝÑ 1. (1)

This is the Birman exact sequence for AutpFnq that was studied in [5]. In that paper, the
authors proved that Kn,k is finitely generated but not finitely presentable, constructed a
simple infinite presentation for it, and computed its abelianization. We say more about
these results below.

Remark 1.1. In [5], slightly more general groups An,k,l and Kn,k,l were studied. To simplify
our exposition, we decided to focus on the case l “ 0 in this paper.
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Analogue for Torelli. Define IAn,k to be the Torelli subgroup of AutpFn,kq. Set AIA
n,k “

An,k X IAn,k and KIA
n,k “ Kn,k X IAn,k. The exact sequence (1) restricts to a split short exact

sequence
1 ÝÑ KIA

n,k ÝÑ AIA
n,k ÝÑ IAn ÝÑ 1. (2)

This is our Birman exact sequence for IAn. The purpose of this paper is to prove results
for KIA

n,k that are analogous to the results for Kn,k that we listed above.

Comparing the kernels. The group KIA
n,k is the kernel of the restriction of the map

AutpFn,kq Ñ GLnpZq to Kn,k. The image of this restriction is isomorphic to Znk. Indeed,
using the generating set for Kn,k constructed in [5] (see below), one can show that with
respect to the basis trx1s, . . . , rxns, ry1s, . . . , rxksu for Zn`k, it consists of matrices of the
form ˆ

1n 0
A 1k

˙
,

where 1n and 1k are the n ˆ n and k ˆ k identity matrices and A is an arbitrary k ˆ n

integer matrix. We thus have a short exact sequence

1 ÝÑ KIA
n,k ÝÑ Kn,k ÝÑ Znk ÝÑ 1. (3)

Unfortunately, it is difficult to use this exact sequence to deduce results about the combi-
natorial group theory of KIA

n,k from analogous results for Kn,k (although in a sense we do
this in the proof of Theorem B below). For instance, the authors proved in [5] that Kn,k is
finitely generated, but this does not directly imply anything about generating sets for KIA

n,k.

Generators. We now turn to our theorems. Set X “ tx1, . . . , xnu and Y “ ty1, . . . , yku.
For distinct z, z1 P X Y Y , define Cz,z1 P AutpFn,kq via the formula

Cz,z1psq “

#
z1spz1q´1 if s “ z,

s otherwise.
ps P X Y Y q.

Also, for z P X Y Y and α “ ˘1 and v P Fn,k in the subgroup generated by pX Y Y qztzu,
define Mzα,v P AutpFn,kq via the formula

Mzα,vpsq “

$
’&
’%

vs if s “ z and α “ 1,

sv´1 if s “ z and α “ ´1,

s otherwise.

ps P X Y Y q.

Observe that with this definition we have Mzα,vpzαq “ vzα. The authors proved in [5] that
Kn,k is generated by the finite set

tMx,y | x P X, y P Y u Y tCy,z, Cz,y | y P Y , z P pX Y Y qztyuu. (4)

Remark 1.2. This is a little different from the generating set given in [5], which includes
generators of the form Mx´1,y for x P X and y P Y ; however, these are unnecessary here
since Mx´1,y “ Mx,yC

´1
x,y. The generators Cx,y were not included in the generating set in

[5]. We give the above form because it is a little more convenient for our purposes.
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The analogue of this for KIA
n,k is as follows.

Theorem A. The group KIA

n,k is generated by the finite set

tMx,ry,zs | x P X, y P Y , z P pX Y Y qztx, yuu Y tCy,z, Cz,y | y P Y , z P pX Y Y qztyuu.

The Torelli kernel is not finitely presentable. Though Kn,k is finitely generated,
the authors proved in [5] that it is not finitely presentable if n ě 2 and k ě 1; in fact,
H2pKn,k;Qq is infinite dimensional. If KIA

n,k were finitely presentable, then one could use

the exact sequence (3) to build a finite presentation for Kn,k. We deduce that KIA
n,k is not

finitely presentable. Our second main theorem strengthens this observation.

Theorem B. If n ě 2 and k ě 1, then H2pKIA

n,k;Qq is infinite dimensional. Consequently,

KIA

n,k is not finitely presentable.

Abelianization. The authors proved in [5] that

H1pKn,kq “

#
Zkpk´1q if n “ 0,

Z2kn if n ą 0.

These abelian quotients of Kn,k come from two sources.

• The restriction of the map AutpFn,kq Ñ GLn`kpZq to Kn,k, which has image Zkn (see
the exact sequence (3)).

• The Johnson homomorphisms, which are homomorphisms

τ : IAn,k Ñ HompZn`k,
Ź

2
Zn`kq

constructed from the action of IAn,k on the second nilpotent truncation of Fn,k (see §4
below). If n “ 0, then Kn,k Ă IAn,k and the restriction of τ to Kn,k has image Zkpk´1q;
this provides the entire abelianization. If n ą 0, then Kn,k does not lie in IAn,k and
we cannot use the Johnson homomorphism directly; however, in [5] we construct a
modified version of it which is defined on Kn,k and has image Zkn.

The analogue of these calculations for KIA
n,k is as follows.

Theorem C. The group H1pKIA

n,k;Zq is free abelian of rank

npn´ 1qk ` n

ˆ
k

2

˙
` 2nk ` kpk ´ 1q.

The abelianization map is given by the restriction of the Johnson homomorphism to KIA

n,k.

Remark 1.3. Theorem C is related to the fact that the Johnson homomorphism gives the
abelianization of IAn,k, a theorem which was proved independently by Farb [8], Cohen–
Pakianathan [4], and Kawazumi [11].
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Finite L-presentation. Our final theorem gives an infinite presentation for the group
KIA

n,1 by generators and relations. Though this result may appear technical, it is actually
the most important theorem in this paper for our study in [6] of H2pIAn;Zq. To simplify
our notation, we will write the generators of Fn,1 as tx1, . . . , xn, yu. The generators for our
presentation will be the finite set

SK – tMxα,ryβ ,zγs | x P X, z P Xztxu, α, β, γ “ ˘1u Y tCy,x, Cx,y | x P Xu.

This is larger than the generating set given by Theorem A; using SK will simplify our
relations. By Theorem B, the set of relations will have to be infinite. They will be generated
from a finite list of relations by a simple recursive procedure which we will encode using
the notion of an L-presentation, which was introduced by Bartholdi [1].

A finite L-presentation for a group G is a triple xS | R0 | Ey as follows.

• S is a finite generating set for G.
• R0 is a finite subset of the free group F pSq on S consisting of relations for G. It is

not necessarily a complete set of relations.
• E is a finite subset of EndpF pSqq.

This triple must satisfy the following. Let M Ă EndpF pSqq be the monoid generated by E.
Define R “ tfprq | f P M , r P R0u. Then we require that G “ xS | Ry. Each element of E
descends to an element of EndpGq; we call the resulting subset rE Ă EndpGq the induced
endomorphisms of our L-presentation.

In this paper, the induced endomorphisms of our L-presentations will actually be automor-
phisms. Thus in the context of this paper one should think of an L-presentation as a group
presentation incorporating certain symmetries of a group. Here is an example.

Example. Fix ℓ ě 1. Let S “ tzi | i P Z{ℓu and R0 “ tz20u. Let ψ : F pSq Ñ F pSq be
the homomorphism defined via the formula ψpziq “ zi`1. Then xS | R0 | tψuy is a finite
L-presentation for the free product of ℓ copies of Z{2.

We now return to the automorphism group of a free group. The group Kn,1 is a normal
subgroup of An,1, so An,1 acts on Kn,1 by conjugation. In [5], the authors constructed a
finite L-presentation for Kn,1 whose set of induced endomorphisms generates

An,1 Ă AutpKn,1q Ă EndpKn,1q.

The group KIA
n,1 is also a normal subgroup of An,1, and hence An,1 acts on KIA

n,1 by conjuga-
tion. Our final main theorem is as follows.

Theorem D. For all n ě 2, there exists a finite L-presentation KIA
n,1 “ xSK | R0

K | EKy

whose set of induced endomorphisms generates An,1 Ă AutpKIA
n,1q Ă EndpKIA

n,1q.

See the tables in §6 for explicit lists enumerating R0
K and EK .

Verifying the L-presentation. We obtained the list of relations in R0
K by starting with

a guess of a presentation and then trying to run the following proof sketch. Every time it
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failed, that failure revealed a relation we had missed. Let Γn be the group given by the
purported presentation in Theorem D. There is a natural surjection Γn Ñ KIA

n,1 that we want
to prove is an isomorphism. As we will see in §6 below, we have a short exact sequence

1 ÝÑ KIA
n,1 ÝÑ An,1

ρ
ÝÑ Zn ¸ AutpFnq ÝÑ 1, (5)

where AutpFnq acts on Zn via the natural surjection AutpFnq Ñ GLnpZq. The heart of our
proof is the construction of a similar extension ∆n of Zn ¸ AutpFnq by Γn which fits into a
commutative diagram

1 ÝÝÝÝÑ Γn ÝÝÝÝÑ ∆n ÝÝÝÝÑ Zn ¸ AutpFnq ÝÝÝÝÑ 1
§§đ

§§đ
§§đ“

1 ÝÝÝÝÑ KIA
n,1 ÝÝÝÝÑ An,1

ρ
ÝÝÝÝÑ Zn ¸ AutpFnq ÝÝÝÝÑ 1.

(6)

This construction is very involved; the exact sequences in (6) do not split, and constructing
group extensions with nonabelian kernels is delicate. We will say more about how we do
this in the next paragraph. In any case, once we have constructed (6) we can use a known
presentation of An,1 due to Jensen–Wahl [10] to show that the map ∆n Ñ An,1 is an
isomorphism. The five-lemma then implies that the map Γn Ñ KIA

n,1 is an isomorphism, as
desired.

The trouble with non-split extensions. If

1 ÝÑ K ÝÑ G ÝÑ Q ÝÑ 1 (7)

is a group extension and presentations of Q and K are known, then it is straightforward to
construct a presentation of G. However, when constructing the group ∆n in (6) we have to
confront a serious problem, namely we need to first verify that the desired extension exists.
To put it another way, it is clear how to combine a known presentation of Zn ¸ AutpFnq
with our purported presentation for Γn to form a group ∆n which fits into a commutative
diagram

Γn ÝÝÝÝÑ ∆n ÝÝÝÝÑ Zn ¸ AutpFnq ÝÝÝÝÑ 1
§§đ

§§đ
§§đ“

1 ÝÝÝÝÑ KIA
n,1 ÝÝÝÝÑ An,1

ρ
ÝÝÝÝÑ Zn ¸ AutpFnq ÝÝÝÝÑ 1.

However, it is difficult to show that the map Γn Ñ ∆n is injective. Standard techniques
show that proving the existence of the extension (7) is equivalent to constructing a sort of
“nonabelian K-valued 2-cocycle” on Q; see [3, §IV.6]. Such a 2-cocyle is not determined by
its values on generators for Q. This holds even in the simple case of a central extension; the
general case is even worse. It is therefore very difficult to construct such a 2-cocycle using
generators and relations.

But the extensions in (6) we are trying to understand are very special. While they do
not split, there do exist “partial splittings”, namely homomorphisms ι1 : Z

n Ñ An,1 and
ι2 : AutpFnq Ñ An,1 such that ρ ˝ ι1 “ id and ρ ˝ ι2 “ id. Letting Λ1 “ ρ´1pZnq and
Λ2 “ ρ´1pAutpFnqq we therefore have Λ1 – KIA

n,1 ¸ Zn and Λ2 – KIA
n,1 ¸ AutpFnq. The data
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needed to combine Λ1 and Λ2 into a group An,1 that fits into (5) is what we will call a
“twisted bilinear map” from AutpFnq ˆZn to KIA

n,1. The definition is complicated, so to give
the flavor of it in this introduction we will discuss a simpler situation.

Splicing together direct products. Let A and B and K be abelian groups. We want
to construct a not necessarily abelian group G with the following property.

• There is a short exact sequence

1 ÝÑ K ÝÑ G
ρ

ÝÑ AˆB ÝÑ 1

together with homomorphisms ι1 : A Ñ G and ι2 : B Ñ G such that ρ´1pAq and
ρ´1pBq are the internal direct products K ˆ ι1pAq and K ˆ ι2pBq, respectively.

Given this data, we can define a set map λ : A ˆB Ñ K via the formula

λpa, bq “ rι1paq, ι2pbqs pa P A, b P Bq;

here the bracket is the commutator bracket in G. It is easy to see that λ is bilinear.
Conversely, given a bilinear map λ : AˆB Ñ K we can construct a group G with the above
properties by letting G consist of all triples pk, b, aq P K ˆB ˆA with the multiplication

pk, b, aqpk1, b1, a1q “ pk ` k1 ` φpa, b1q, b ` b1, a` a1q.

The bilinearity of φ is needed for this multiplication to be associative.

Adding the twisting. The groups we are interested in fit into semidirect products, so we
will have to incorporate the various group actions into our bilinear maps. The key property
of the resulting theory of twisted bilinear maps is that (unlike general 2-cocycles but like
ordinary bilinear maps) they are determined by their values on generators. Letting Γn be
the group in (6), we will therefore be able to use combinatorial group theory to construct an
appropriate twisted bilinear map Zn ˆAutpFnq Ñ Γn that behaves like the twisted bilinear
map Zn ˆ AutpFnq Ñ KIA

n,1 that determines An,1. This will allow us to construct the group
∆n fitting into (6) and complete the proof of Theorem D.

Outline. We prove Theorem A in §2, Theorem B in §3, and Theorem C in §4. Prelimi-
naries for the proof Theorem D are in §5, and the proof itself appears in §6. The proof of
Theorem D depends on computer calculations that are described in §7.

2 Generators

In this section, we prove Theorem A. Letting X “ tx1, . . . , xnu and Y “ ty1, . . . , yku, recall
that this theorem asserts that the set

T – tMx,ry,zs | x P X, y P Y , z P pX Y Y qztx, yuu Y tCy,z, Cz,y | y P Y , z P pX Y Y qztyuu

generates KIA
n,k.
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t P T sts´1 s´1ts

Mxa,ryd,xbs Cxa,yd
Mxa,ryd,xbsC

´1

xa,yd
C´1

xa,yd
Mxa,ryd,xbsCxa,yd

Mxb,ryd,xas Cxa,yd
Mxb,ryd,xasC

´1

xa,yd
C´1

xa,yd
Mxb,ryd,xasCxa,yd

Mxa,rye,xbs Cxa,yd
Mxa,rye,xbsC

´1

xa,yd
C´1

xa,yd
Mxa,rye,xbsCxa,yd

Mxb,rye,xas C´1

xb,yd
Mxb,rye,xasCxb,yd

Mxb,rye,yds Cxb,yd
Mxb,rye,xasMxb,ryd,yesC

´1

xb,yd

Mxa,ryd,yes Cxa,yd
Mxa,ryd,yesC

´1

xa,yd
C´1

xa,yd
Mxa,ryd,yesCxa,yd

Mxa,rye,yf s Cxa,yd
Mxa,rye,yf sC

´1

xa,yd
C´1

xa,yd
Mxa,rye,yf sCxa,yd

Cyd,ye Cxa,yd
Mxa,ryd,yesC

´1

xa,yd
Cyd,ye Mxa,rye,ydsCyd,ye

Cyd,xa Cxa,yd
Cyd,xa C´1

xa,yd
Cyd,xa

Cyd,xb
Cyd,xb

Cxa,yd
C´1

yd,xb
Mxa,ryd,xbsCyd,xb

Cxa,yd
Cxa,yd

C´1

yd,xb
M

´1

xa,ryd,xbs
Cyd,xb

Cye,xa Cye,xaCye,yd
Cye,xaC´1

ye,yd

Cxa,ye Cxa,yeCxa,yd
Mxa,rye,ydsC

´1

xa,yd
Cxa,yeMxa,ryd,yes

Table 1: Fix s “ Mxa,yd
. This table shows how to write sts´1 and s´1ts as a word in T for all

t P T . Basis elements with distinct subscripts are assumed to be distinct. If a formula is not listed,
then sts´1 “ s´1ts “ t. All these formulas can be easily proved by checking the effect of the indicated
automorphisms on a basis for the free group.

Proof of Theorem A. The key is the exact sequence

1 ÝÑ KIA
n,k ÝÑ Kn,k

ρ
ÝÑ Znk ÝÑ 1

discussed in the introduction (see (3)). Define

S1 “ tMx,y | x P X, y P Y u and S2 “ tCy,z, Cz,y | y P Y , z P pX Y Y qztyuu.

As we discussed in the introduction (see the equation (4) and the remark following it), the
authors proved in [5] that S1 Y S2 generates Kn,k. We have S2 Ă KIA

n,k “ kerpρq. Also, ρ

maps the elements of S1 to a basis of Znk. We therefore see that Znk is the quotient of Kn,k

by the normal closure of the set S1
1

Y S2, where

S1
1 “ trs, s1s | s, s1 P S1u

“ trMx,y,Mx,y1s | x P X, y, y1 P Y, y ‰ y1u

Y trMx,y,Mx1,y1s | x, x1 P X, y, y1 P Y , x ‰ x1u

“ tMx,ry,y1s | x P X, y, y1 P Y , y ‰ y1u.

Here we are using the fact that rMx,y,Mx1,ys “ 1 for x, x1 P X and y P Y with x ‰ x1. Since
S1
1

Y S2 Ă T , we conclude that T normally generates KIA
n,k.

Letting G Ă KIA
n,k be the subgroup generated by T , it is therefore enough to prove that G

is a normal subgroup. To do this, it is enough to prove that for s P S1 Y S2 and t P T , we
have sts´1 P G and s´1ts P G. In fact, since S2 Ă T it is enough to do this for s P S1. The
identities that show this are in Table 1.

3 The Torelli kernel is not finitely presentable

In this section, we prove Theorem B. Recall that this theorem asserts that H2pKIA
n,k;Qq is

infinite dimensional when n ě 2 and k ě 1.
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Proof of Theorem B. Consider the Hochschild–Serre spectral sequence associated to the
short exact sequence

1 ÝÑ KIA
n,k ÝÑ Kn,k

ρ
ÝÑ Znk ÝÑ 1

discussed in the introduction (see (3)). It is of the form

E2
pq “ HppZnk; HqpKIA

n,k;Qqq ñ Hp`qpKn,k;Qq.

The authors proved in [5] that H2pKn,k;Qq is infinite dimensional, so at least one of E2
20

and E2
11

and E2
02

must be infinite dimensional. Clearly E2
20

“ H2pZnk;Qq is finite di-
mensional. Also, Theorem A implies that H1pKIA

n,k;Qq is finite-dimensional, so E2
11

“

H1pZnk; H1pKIA
n,k;Qqq is finite dimensional We conclude that E2

02
“ H0pZnk; H2pKIA

n,k;Qqq

is infinite dimensional, so H2pKIA
n,k;Qq is infinite dimensional, as desired.

4 Abelianization

In this section, we prove Theorem C. Recall that this theorem asserts that H1pKIA
n,k;Zq

is free abelian and that the abelianization map is given by the restriction of the Johnson
homomorphism to KIA

n,k. The theorem also gives the rank of the abelianization of KIA
n,k as a

polynomial in n and k.

Proof of Theorem C. We begin by recalling the definition of the Johnson homomorphism;
see [12] for more details and references. Let π : rFn,k, Fn,ks Ñ

Ź
2
Zn`k be the projection

whose kernel is rFn,k, rFn,k, Fn,kss. This map satisfies πprz, z1sq “ rzs ^ rz1s for z, z1 P Fn,k;
here rzs, rz1s P Zn`k are the images of z and z1 in the abelianization of Fn,k. The Johnson
homomorphism is then a homomorphism

τ : IAn,k Ñ HompZn`k,
Ź

2
Zn`kq

that satisfies the formula

τpfqprzsq “ πpfpzqz´1q pf P IAn,k, z P Fn,kq.

Letting X “ tx1, . . . , xnu and Y “ ty1, . . . , yku, the Johnson homomorphism has the follow-
ing effect on the basic elements of IAn,k defined in the introduction.

• For distinct z, z1 P X Y Y , we have

τpCz,z1qprwsq “

#
rzs ^ rz1s if w “ z,

0 otherwise
pw P X Y Y q.

• For distinct z, z1, z2 P X Y Y , we have

τpMz,rz1,z2sqprwsq “

#
rz1s ^ rz2s if w “ z,

0 otherwise
pw P X Y Y q.

8



Set

T “tMx,ry,x1s | x P X, y P Y , x1 P Xztxuu

Y tMx,rya,ybs | x P X, 1 ď a ă b ď ku

Y tCy,z, Cz,y | y P Y , z P pX Y Y qztyuu.

Since Mx,ryb,yas “ M´1

x,rya,ybs
for x P X and 1 ď a ă b ď k, Theorem A implies that T

generates KIA
n,k. Examining the above formulas, we see that τ takes T injectively to a

linearly independent subset of the free abelian group HompZn`k,
Ź

2
Zn`kq. This implies

that if u is an element of the free group F pT q on T which maps to a relation in KIA
n,k, then

u P rF pT q, F pT qs (otherwise, τ would take the image of u in KIA
n,k to a nontrivial element

of HompZn`k,
Ź

2
Zn`kq). We conclude that τ induces the abelianization of KIA

n,k and that

H1pKIA
n,k;Zq “ Z|T |. This is free abelian of rank

|T | “ npn´ 1qk ` n

ˆ
k

2

˙
` 2nk ` kpk ´ 1q.

5 Preliminaries for the proof of Theorem D

The rest of this paper is devoted to proving Theorem D, which gives a finite L-presentation
for KIA

n,1. This section contains three subsections of preliminaries: §5.1 constructs a needed
exact sequence, §5.2 discusses twisted bilinear maps, and §5.3 discusses presentations for
some related groups.

To simplify our notation, we will set y “ y1, so tx1, . . . , xn, yu is the basis for Fn,1. When
writing matrices in GLn`1pZq, we will always use the basis trx1s, . . . , rxns, rysu for Zn`1.

5.1 Relating the two kernels

This is the first of three preliminary sections for the proof of Theorem D. In it, we construct
the exact sequence

1 ÝÑ KIA
n,1 ÝÑ An,1

ρ
ÝÑ Zn ¸ AutpFnq ÝÑ 1

discussed in the introduction (see Lemma 5.3 below). We first address an irritating technical
point. Throughout this paper, all group actions are left actions. In particular, elements
of Zn will be regarded as column vectors and matrices in GLnpZq act on these column
vectors on the left (we have already silently used this convention when we wrote matrices).
However, it turns out that the action of AutpFnq on Zn in the semidirect product appearing
the above exact sequence is induced by the natural right action of GLnpZq on row vectors.
We do not wish to mix up right and left actions, so we convert this into a left action and
define Zn ¸r GLnpZq to be the semidirect product associated to the action of GLnpZq on
Zn defined by the formula

M ¨ z “ pM´1qtz pM P GLnpZq, z P Znq.

9



To understand this formula, observe that pM´1qtz is the transpose of pztqM´1; the inverse
appears because we are converting a right action into a left action. We then have the
following.

Lemma 5.1. The stabilizer subgroup pGLn`1pZqqrys is isomorphic to Zn ¸r GLnpZq.

Proof. We define a homomorphism ψ : pGLn`1pZqqrys Ñ Zn ¸rGLnpZq as follows. Consider

M P pGLn`1pZqqrys. There exist xM P GLnpZq and M P Zn such that

M “

˜
xM 0

M
t

1

¸
;

here we are using our convention that elements of Zn are column vectors, so the transpose

M
t
of M P Zn is a row. We then define ψpMq “

ˆ´
xM´1

¯t

M, xM
˙
. To see that this is a

homomorphism, observe that for M1,M2 P pGLn`1pZqqrys we have

M1M2 “

˜
xM1 0

M
t
1 1

¸ ˜
xM2 0

M
t
2 1

¸
“

˜
xM1

xM2 0

M
t
1

xM2 `M
t
2 1

¸
“

˜
xM1

xM2 0

pxM t
2M1 `M2qt 1

¸
,

and hence

ψpM1qψpM2q “

ˆ´
xM´1

1

¯t

M1, xM1

˙ ˆ´
xM´1

2

¯t

M2, xM2

˙

“

ˆ´
xM´1

1

¯t

M1 `
´

xM´1

1

¯t ´
xM´1

2

¯t

M2, xM1
xM2

˙

“

ˆ´
xM´1

1

¯t ´
xM´1

2

¯t ´
xM t

2M1 `M2

¯
, xM1

xM2

˙

“ ψpM1M2q.

That ψ is a bijection is obvious.

Remark 5.2. There is an isomorphism between Zn ¸r GLnpZq and the semidirect product
of Zn and GLnpZq with respect to the standard left action of GLnpZq on Zn. However, this
isomorphism acts as the inverse transpose on the GLnpZq factor, and to keep our formulas
from getting out of hand we want to not change this factor. Throughout this paper, we will
use the explicit isomorphism described in the proof of Lemma 5.1.

Define Zn ¸r AutpFnq to be the semidirect product induced by the action of AutpFnq on
Zn obtained by composing the projection AutpFnq Ñ GLnpZq with the action of GLnpZq
on Zn discussed above. We then have the following lemma, which is the main result of this
section.

Lemma 5.3. There is a short exact sequence

1 ÝÑ KIA

n,1 ÝÑ An,1
ρ

ÝÑ Zn ¸r AutpFnq ÝÑ 1.

Also, there exist homomorphisms ι1 : AutpFnq Ñ An,1 and ι2 : Z
n Ñ An,1 such that ρ ˝ ι1

and ρ ˝ ι2 are the standard inclusions of AutpFnq and Zn into Zn ¸r AutpFnq respectively.
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Proof. Let π1 : An,1 Ñ AutpFnq be the map induced by the projection Fn,1 Ñ Fn whose
kernel is normally generated by y. Also, let π2 : An,1 Ñ Zn ¸r GLnpZq be the composition

An,1 ÝÑ pGLn`1pZqqrys
–

ÝÑ Zn ¸r GLnpZq,

where the second map is the isomorphism given by Lemma 5.1. By definition, Kn,1 “ kerpπ1q
and AIA

n,1 “ kerpπ2q. Recalling that KIA
n,1 “ Kn,1 XAIA

n,1, it follows that K
IA
n,1 “ kerpρq, where

ρ is the composition

An,1
π1‘π2ÝÑ pAutpFnqq ‘ pZn ¸r GLn pZqq .

Let η : AutpFnq Ñ GLnpZq be the natural projection. The image of ρ is contained in the
subgroup

tpf, pz, η pfqqq | f P AutpFnq, z P Znu Ă pAutpFnqq ‘ pZn ¸r GLn pZqq ,

which is clearly isomorphic to Zn¸rAutpFnq. We can therefore regard ρ as a homomorphism
ρ : An,1 Ñ Zn ¸r AutpFnq, and we have an exact sequence

1 ÝÑ KIA
n,1 ÝÑ An,1

ρ
ÝÑ Zn ¸r AutpFnq.

Let ι1 : AutpFnq Ñ An,1 be the evident inclusion whose image is the stabilizer subgroup
pAn,1qy and let ι2 : Z

n Ñ An,1 be the map defined via the formula

ι2pz1, . . . , znq “ Mz1
x1,y

Mz2
x2,y

¨ ¨ ¨Mzn
xn,y

pz1, . . . , zn P Zq,

where the automorphismsMxi,y are as in the introduction. The map ι2 is a homomorphism
because the Mxi,y commute. It is clear that ρ ˝ ι1 “ id and ρ ˝ ι2 “ id. This implies that ρ
is surjective, and the lemma follows.

5.2 Twisted bilinear maps and group extensions

This is the second section containing preliminaries for the proof of Theorem D. In it, we
discuss the theory of twisted bilinear maps alluded to in the introduction. Throughout this
section, let A and B and K be groups equipped with the following left actions.

• The group A acts on B; for a P A and b P B, we will write ab for the image of b under
the action of a.

• The groups A and B both act on K. For k P K and a P A and b P B, we will write
αa pkq and βb pkq for the images of k under the actions of a and b, respectively.

A twisted bilinear map from AˆB to K is a set map λ : AˆB Ñ K satisfying the following
three properties.

TB1. For all a P A and b1, b2 P B, we have λpa, b1b2q “ λpa, b1q ¨ βab1 pλpa, b2qq.
TB2. For all a1, a2 P A and b P B, we have λpa1a2, bq “ αa1 pλpa2, bqq ¨ λpa1,

a2bq.
TB3. For all a P A and b P B and k P K, we have λpa, bq¨βab pαa pkqq¨λpa, bq´1 “ αa pβb pkqq.
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Observe that this reduces to the definition of a bilinear map if all the actions are trivial and
all the groups are abelian. The key example is as follows.

Example. Consider a short exact sequence of groups

1 ÝÑ K ÝÑ G
ρ

ÝÑ B ¸A ÝÑ 1

together with homomorphisms ι1 : A Ñ G and ι2 : B Ñ G such that ρ ˝ ι1 and ρ ˝ ι2 are the
standard inclusions of A and B in B¸A respectively. Observe that this implies that ρ´1pAq
and ρ´1pBq are the internal semidirect products K¸ ι1pAq and K¸ ι2pBq, respectively. Let
ab be the action a ¨ b defining the semidirect product B ¸A, and define actions of A and B
on K by

αa pkq “ ι1paq ¨ k ¨ ι1paq´1 and βb pkq “ ι2pbq ¨ k ¨ ι2pbq´1

for all a P A and b P B and k P K. Define a set map λ : A ˆB Ñ K via the formula

λpa, bq “ ι1paq ¨ ι2pbq ¨ ι1paq´1ι2pabq´1.

Note that this is a kind of “twisted commutator” map; it reduces to the commutator bracket
if the action of A on B is trivial. Given these definitions, an easy algebraic juggle shows
that λ is a twisted bilinear map. We will say that λ is the twisted bilinear map associated
to G and ι1 and ι2.

Remark 5.4. We take a moment to explain the different aspects of the definition of a twisted
bilinear map. For a fixed a P A, we can twist the action of B on K by the action of A
on B by a, to get an action b ¨ k “ βab pkq. Property TB1 simply states that the function
λpa, ¨q : B Ñ K is a crossed homomorphism with respect to this action twisted by a.

Property TB2 is similar, but involves two kinds of twisting. The set of functions B Ñ K

is a group with the pointwise product. The group A acts on this group in two ways. The
first is by post-composition: for a P A and f : B Ñ K, define a ¨ f by pa ¨ fqpbq “ αa pfpbqq.
The second is by pre-composition, and is a right action: for a, f as above, define f ¨ a by
pf ¨ aqpbq “ fpabq. So property TB2 says that λ is like a crossed homomorphism from A to
the group of functions B Ñ K, but simultaneously twisted by both of these actions.

Property TB3 can be explained in the context of Example 5.2. As usual in group extensions,
there is a well defined outer action of B¸A on K: to act on k by pb, aq, lift pb, aq to G and
conjugate k by this lift. The conjugate of k depends on the choice of lift, but the resulting
map B¸A Ñ OutpKq is well defined. Using our maps ι1 and ι2, we have two ways to build
lifts. By the definition of the product in B ¸A, we have

p1, aqpb, 1q “ pab, aq “ pab, 1qp1, aq.

So we may view the outer action of pab, aq on K as coming from conjugation either by
ι1paqι2pbq or by ι2pabqι1paq. These conjugations are given by k ÞÑ αa pβb pkqq and k ÞÑ
βab pαa pkqq respectively. Since they define the same outer automorphism, they differ by
conjugation by some element; TB3 says that λpa, bq is such an element.

The following theorem shows that every twisted bilinear map is associated to some group
extension.
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Theorem 5.5. Let the groups and actions be as above and let λ : A ˆB Ñ K be a twisted
bilinear map. Then λ is the twisted bilinear map associated to some group G, some short
exact sequence

1 ÝÑ K ÝÑ G
ρ

ÝÑ B ¸A ÝÑ 1,

and some homomorphisms ι1 : A Ñ G and ι2 : B Ñ G.

Proof. Set Q “ B¸A. We will construct G using the theory of nonabelian group extensions
sketched in [3, §IV.6] and proven in detail in [7]. This machine needs two inputs.

• The first is a set map φ : Q Ñ AutpKq satisfying φp1q “ id. For q P Q, we define
φpqq P AutpKq as follows. We can uniquely write q “ ba with b P B and a P A. We
then define

φpqqpkq “ βb pαa pkqq pk P Kq.

• The second is a set map γ : Q ˆ Q Ñ K satisfying γp1, qq “ γpq, 1q “ 1 for all q P Q,
which we define as follows. Consider q1, q2 P Q. We can uniquely write q1 “ b1a1 and
q2 “ b2a2 with b1, b2 P B and a1, a2 P A. We then define

γpq1, q2q “ βb1 pλpa1, b2qq .

We remark that these pieces of data are not homomorphisms. They must satisfy two key
identities which we will verify below in Claims 1 and 2. We postpone these verifications
momentarily to explain the output of the machine.

Let G be the set of pairs pk, qq with K P K and q P Q. Define a multiplication in G via the
formula

pk1, q1qpk2, q2q “
`
k1 ¨ φpq1qpk2q ¨ γpq1, q2q, q1q2

˘
.

The machine says that this G is a group (the purpose of the postponed identities is to show
that the above multiplication is associative). It clearly lies in a short exact sequence

1 ÝÑ K ÝÑ G
ρ

ÝÑ B ¸A ÝÑ 1,

and we can define the desired homomorphisms ι1 : A Ñ G and ι2 : B Ñ G via the formulas
ι1paq “ p1, p1, aqq and ι2pbq “ p1, pb, 1qq. An easy calculation shows that the conclusions of
the theorem are satisfied.

It remains to verify the two needed identities, which are as follows.

Claim 1. For q1, q2 P Q and k P K, we have

φpq1qpφpq2qpkqq “ γpq1, q2q ¨ φpq1q2qpkq ¨ γpq1, q2q´1.

For i “ 1, 2, write qi “ biai with bi P B and ai P A, so q1q2 “ pb1
a1b2qpa1a2q. We then have

γpq1, q2q ¨ φpq1q2qpkq ¨ γpq1, q2q´1 “ βb1 pλpa1, b2qq ¨ βb1 a1b2 pαa1a2 pkqq ¨ βb1 pλpa1, b2qq´1

“ βb1

´
λpa1, b2q ¨ βa1 b2 pαa1 pαa2 pkqqq ¨ λpa1, b2q´1

¯
.
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Property TB3 of a twisted bilinear map says that this equals

βb1 pαa1 pβb2 pαa2 pkqqqq “ φpq1qpφpq2qpkqq,

as claimed.

Claim 2. For q1, q2, q3 P Q, we have γpq1, q2q ¨ γpq1q2, q3q “ φpq1qpγpq2, q3qq ¨ γpq1, q2q3q.

For i “ 1, 2, 3, write qi “ biai with bi P B and ai P A. We begin by examining the left side
of the purported equality. Since q1q2 “ pb1

a1b2qpa1a2q, it equals

γpq1, q2q ¨ γpq1q2, q3q “ βb1 pλpa1, b2qq ¨ βb1 a1 b2 pλpa1a2, b3qq

“ βb1

´
λpa1, b2q ¨ βa1 b2 pλpa1a2, b3qq

¯
.

Using property TB2 of a twisted bilinear map, this equals

βb1

´
λpa1, b2q ¨ βa1 b2 pαa1 pλpa2, b3qq ¨ λpa1,

a2b3qq
¯

(8)

Property TB3 of a twisted bilinear map with a “ a1 and b “ b2 and k “ λpa2, b3q says that

λpa1, b2q ¨ βa1 b2 pαa1 pλpa2, b3qqq “ αa1 pβb2 pλpa2, b3qqq ¨ λpa1, b2q.

Plugging this into (8) (and remembering to distribute the βa1b2 over the last term), we get

βb1

´
αa1 pβb2 pλpa2, b3qqq ¨ λpa1, b2q ¨ βa1 b2 pλpa1,

a2b3qq
¯
. (9)

We now turn to the right hand side of the purported equality. Since q2q3 “ pb2
a2b3qpa2a3q,

it equals

βb1 pαa1 pβb2 pλpa2, b3qqqq ¨ βb1 pλpa1, b2
a2b3qq “ βb1 pαa1 pβb2 pλpa2, b3qqq ¨ λpa1, b2

a2b3qq .

Property TB1 of a twisted bilinear map says that this equals

βb1

´
αa1 pβb2 pλpa2, b3qqq ¨ λpa1, b2q ¨ βa1 b2 pλpa1,

a2b3qq
¯
. (10)

Since (9) and (10) are equal, the claim follows.

5.3 Presentations of AutpFnq and An,1

This is the third and final section of preliminaries for the proof of Theorem D. In it, we give
presentations for the groups AutpFnq and An,1.

We begin with AutpFnq. Recall that X “ tx1, . . . , xnu is the standard basis for Fn. The
presentation for AutpFnq we will use has three classes of generators.

• For α P t1,´1u and distinct xa, xb P X, we need the automorphisms Mxα
a ,xb

defined
in the introduction. Recall that their characteristic properties are that

Mxα
a ,xb

pxαa q “ xbx
α
a and Mxα

a ,xb
pxcq “ xc

for xc P X with xc ‰ xa. The elements Mxα
a ,xb

will be called transvections.
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N1. relations for the subgroup generated by inversions and swaps, a signed permuta-
tion group:

– I2a “ 1 and rIa, Ibs “ 1,
– P 2

a,b “ 1, rPa,b, Pc,ds “ 1, and Pa,bPb,cP
´1

a,b “ Pa,c,

– Pa,bIaP
´1

a,b “ Ib and rPa,b, Ics “ 1;
N2. relations for conjugating transvections by inversions and swaps, coming from the

natural action of inversions and swaps on tx1, . . . , xnu:
– Pa,bMx

γ
c ,xd

P´1

a,b “ MPa,bpxγ
c q,Pa,bpxdq even if ta, bu X tc, du ‰ ∅,

– IaMx
γ
c ,xd

I´1
a “ MIapxγ

c q,Iapxdq even if a P tc, du;

N3. M
β

x´α
a ,xb

Mα

x
β
b ,xa

M
´β
xα
a ,xb

“ IbPa,b;

N4. rMxα
a ,xb

,Mx
γ
c ,xd

s “ 1 with a, b, c, d not necessarily all distinct, such that a ‰ b,

c ‰ d, xαa R txγc , xd, x
´1

d u and xγc R txb, x
´1

b u;

N5. Mα

x
β
b ,xa

M
β

x
γ
c ,xb

“ M
β

x
γ
c ,xb

Mα

x
β
b ,xa

Mα
x
γ
c ,xa

.

Table 2: Nielsen’s relations for AutpFnq consist of the set RA of relations listed above. The letters
a, b, c, d are elements of t1, . . . , nu (assumed distinct unless otherwise stated) and α, β, γ, P t1,´1u.

• For distinct xa, xb P X, we will need the automorphisms Pa,b defined via the formula

Pa,bpxcq “

$
’&
’%

xb if c “ a,

xa if c “ b,

xc otherwise

p1 ď c ď nq.

The elements Pa,b will be called swaps.
• For xa P X, we will need the automorphisms Ia defined via the formula

Iapxbq “

#
x´1

b if b “ a,

xb otherwise
p1 ď b ď nq.

The elements Ia will be called inversions.

Let SA be the set consisting of the above generators. The set SA does not contain elements
of the form M

xα
a ,x

´1

b
, but we will frequently use M

xα
a ,x

´1

b
as an alternate notation for M´1

xα
a ,xb

.

We then have the following theorem of Nielsen.

Theorem 5.6 (Nielsen [13]). The group AutpFnq has the presentation xSA | RAy, where
RA is given in Table 2.

We now turn to An,1. Recall that this is a subgroup of AutpFn,1q, where Fn,1 is the free
group on tx1, . . . , xn, yu. We will use a presentation that is due to Jensen–Wahl [10]. See
[5, Theorem 5.2] for a small correction to Jensen–Wahl’s original statement.

Theorem 5.7 (Jensen–Wahl [10]). The group An,1 has the presentation whose generators
are the union of SA with the set

tMxα
a ,y,Cy,xa | xa P X, α P t1,´1uu
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Q1. Nielsen’s relations among SA from Table 2,
Q2. Commuting relations:

– rMxα
a ,y,Mx

β
b ,y

s “ 1 if xαa ‰ x
β
b ,

– rMxα
a ,xb

,Mx
γ
c ,y

s “ 1 if xαa ‰ x
γ
c ,

– rMxα
a ,xb

, Cy,xcs “ 1 if c ‰ a.

Q3. The obvious analogues of the N2 relations from Table 2 giving the effect of con-
jugating Cy,xa and Mxα

a ,y
by swaps and inversions,

Q4. M
´β
xα
a ,xb

M
x
β
b ,y
M

β
xα
a ,xb

“ Mxα
a ,y
M

x
β
b ,y

, and

Q5. C´α
y,xa

Mx´α
a ,yC

α
y,xa

“ M´1
xα
a ,y

.

Table 3: Jensen–Wahl’s relations for An,1 consist of the relations above. The letters a, b, c are
elements of t1, . . . , nu (assumed distinct unless otherwise stated) and α, β, γ, P t1,´1u.

and whose relations are those appearing in Table 3.

6 A finite L-presentation for KIA
n,1

This section contains the proof of Theorem D, which asserts that KIA
n,1 has a finite L-

presentation. We begin in §6.1 by describing the generators, relations, and endomorphisms
which make up our L-presentation. Next, in §6.2 we construct the data needed to use the
theory of twisted bilinear maps to construct an appropriate extension of our purported
presentation for KIA

n,1. Finally, in §6.3 we prove that our presentation is complete.

The proofs of several of our lemmas will depend on computer calculations. These computer
calculations will be discussed in §7.

Just like in §5, we will denote the free basis for Fn,1 by tx1, . . . , xn, yu.

6.1 Statement of L-presentation

In this section, we will describe the generators, relations, and endomorphisms that make up
the finite L-presentation for KIA

n,1 whose existence is asserted by Theorem D. To help us keep
track of the role that our symbols are playing, we will change the font for the generators of
KIA

n,1 and use

SK “ tCy,xa , Cxa,y | xa P Xu Y tM
xα
a ,ry

ǫ,x
β
b s

| xa, xb P X, xa ‰ xb, α, β, ǫ P t1,´1, uu

as our generating set. We remark that elements of the form M
xα
a ,rx

β
b ,y

ǫs
are not included

in SK ; however, we will frequently use the symbol M
xα
a ,rx

β
b ,y

ǫs
as a synonym for M´1

xα
a ,ry

ǫ,x
β
b s
,

which is the inverse of an element of SK .
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Next, we explain our endomorphisms EK for our L-presentation. These endomorphisms
are indexed by the generators for An,1 given by Theorem 5.7 that do not lie in KIA

n,1. More
precisely, define

SQ “ tPa,b, Ia, Mxa,y, Mxα
a ,xb

| xa, xn P X, xa ‰ xb, α P t1,´1uu.

We use S˘1

Q to denote SQ Y ts´1|s P SQu (and similarly for other sets). We remark that in
SQ, we regard Pa,b and Pb,a as being the same element.

We now define a function φ : S˘1

Q Ñ EndpF pSKqq (see Lemma 6.1 below for an elucidation
of the purpose of this definition). By the universal property of a free group, to do this it
is enough to give φpsqptq for each choice of s P S˘1

Q and t P SK . Once we have given these
formulas, we define EK to be the image of the map φ. In our defining formulas, we use
xa, xb, xc, . . . for elements of X and α, β, γ, ǫ, . . . for elements of t1,´1u. Elements with
distinct subscripts are assumed to be distinct unless noted.

The action of swaps and inversions through φ is by acting on the elements of X indexing
our generators: if s is a swap or inversion, then

φpsqpCxa,yq “ Cspxaq,y, φpsqpCy,xaq “ Cy,spxaq, and φpsqpM
xα
a ,ry

ǫ,x
β
b s

q “ M
spxα

a q,ryǫ,spxβ
b qs
.

Here we interpret
C
x´1
a ,y

“ Cxa,y and C
y,x´1

a
“ C´1

y,xa
.

Furthermore, for s a swap or inversion we define φps´1qptq “ φpsqptq for any t P SK .

If s P SQ is of the form Mxα
a ,y

, we define φpsqptq “ φps´1qptq “ t if t P SK is anything of the
form

Cxa,y, Cxb,y, M
x´α
a ,ryǫ,xβ

b s
, or M

x
β
b ,ry

ǫ,x
γ
c s
.

If s P SQ is of the form Mxα
a ,xb

, we define φpsqptq “ φps´1qptq “ t if t P SK is anything of
the form

Cxc,y, Cy,xb
, Cy,xc , M

x´α
a ,ryǫ,xβ

b s
, Mx´α

a ,ryǫ,xγ
c s, M

x
γ
c ,ryǫ,x

β
b s
, or Mx

γ
c ,ryǫ,xδ

ds.

The other cases for φpsqptq P F pSKq, for s P S˘1

Q and t P SK , are given in Table 4.

The key property of the map φ is as follows.

Lemma 6.1. Let Ψ: F pSKq Ñ KIA
n,1 be the natural surjection. Then regarding SQ as a

subset of An,1, we have

Ψpφpsqptqq “ sΨptqs´1 ps P SQ, t P SKq.

Proof. This is a computer calculation which is described in Lemma 7.3 below.

We can now give a statement of our L-presentation. The following theorem (which will be
proven in §6.3) is a more precise version of Theorem D.

Theorem 6.2. Let SK and SQ and φ be as above and let R0
K be the set of relations in Table

5. Then the group KIA
n,1 has the finite L-presentation KIA

n,1 “ xSK | R0
K | φpS˘1

Q qy.
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s P S
˘1

Q t P SK φpsqptq

Mǫ
xa,y Cy,xb

Cy,xb
M

xa,ry´ǫ,x
´1

b
s

Cy,xa C
ǫ
xa,yCy,xa

M
xa,ryζ ,x

β
b

s
C

ǫ
xa,yMxa,ryζ ,x

β
b

s
C

´ǫ
xa,y

M
x
β
b
,ryζ ,xas

C
ǫ
xa,yMx

β
b
,ryζ ,xas

C
´ǫ
xa,y

M
β
xα
a ,xb

Cy,xa pCα
y,xa

C
β
y,xb

qα

Cxa,y Cxa,yM
xα
a ,rx

´β
b

,ys

Cxb,y
Cxb,y

M
xα
a ,rx

´β
b

,y´1s

M
xα
a ,ryǫ,x

γ
c s

C
γ
y,xc

M
xα
a ,ryǫ,x

´β
b

s
C

´γ
y,xc

M
xα
a ,ryǫ,x

γ
c s

M
xα
a ,rx

´β
b

,yǫs

M
x
β
b
,ryǫ,x

γ
c s

M
x
β
b
,ryǫ,x

γ
c s

M
xα
a ,ryǫ,x

´β
b

s
M

xα
a ,rx

γ
c ,yǫs

C
yǫ,x

γ
c
M

xα
a ,rx

´β
b

,yǫs
C

´γ
yǫ,xc

M
x

´β
b

,ryǫ,x
γ
c s

M
x

´β
b

,ryǫ,x
γ
c s

M
xα
a ,ryǫ,x

γ
c s

M
x
γ
c ,ryǫ,xα

a s
C

α
y,xa

M
x
γ
c ,ryǫ,x

β
b

s
C

´α
y,xa

M
x
γ
c ,ryǫ,xα

a s

M
x
γ
c ,ryǫ,x

´α
a s

C
´β
y,xb

M
x
γ
c ,ryǫ,x

´α
a s

M
x
γ
c ,rx

β
b
,yǫs

C
y,x

β
b

M
xα
a ,ryǫ,x

β
b

s
M

xα
a ,rx

´β
b

,yǫs

M
xα
a ,ryǫ,x

´β
b

s
C

´β
y,xb

M
xα
a ,ryǫ,x

´β
b

s
C

β
y,xb

M
x
β
b
,ryǫ,xα

a s
M

x
´β
b

,ry´ǫ,xα
a s

C
ǫ
xb,y

M
xα
a ,ryǫ,x

´β
b

s
C

´ǫ
xa,y

M
x

´β
b

,ryǫ,xα
a s

C
α
y,xa

C
β
y,xb

C
´ǫ
xb,y

M
xα
a ,rx

´β
b

,yǫs
C

´β
y,xb

M
x

´β
b

,rx
´α
a ,yǫs

C
´α
y,xa

C
ǫ
xa,y

M
x
β
b
,ryǫ,x

´α
a s

C
´β
y,xb

C
´α
y,xa

C
ǫ
xa,yMxα

a ,rx
´β
b

,yǫs
C

´ǫ
xb,y

M
x

´β
b

,rxα
a ,y´ǫs

C
α
y,xa

C
β
y,xb

M
x

´β
b

,ryǫ,x
´α
a s

C
´β
y,xb

C
´α
y,xa

C
´ǫ
xa,yC

α
y,xa

M
x

´β
b

,ryǫ,x
´α
a s

C
β
y,xb

M
xα
a ,ryǫ,x

´β
b

s
Cxb,y

Table 4: The defining formulas for φ. The letters a, b, c are distinct elements of t1, . . . , nu α, β, γ, ζ P
t1,´1u.

R1. rCxa,y,Cxb,ys “ 1;

R2. rMxα
a ,ry

ǫ,x
γ
c s,Mx

β
b ,ry,x

δ
ds

s “ 1, possibly with xαa “ x
´β
b or xc “ xd (or both), as long

as xαa ‰ x
β
b , xa ‰ xd and xb ‰ xc;

R3. rCxa,y,Mx
β
b ,ry

ǫ,x
γ
c s

s “ 1;

R4. C
´β
y,xbMxα

a ,ry
ǫ,x

β
b s
C
β
y,xb “ M

xα
a ,rx

´β
b ,yǫs

;

R5. C´ǫ
xb,y

M
xα
a ,ry

ǫ,x
β
b s
Cǫ
xb,y

“ M
xα
a ,rx

β
b ,y

´ǫs
;

R6. Cǫ
xa,y

M
xα
a ,ry

ǫ,x
β
b s
C´ǫ
xa,y

“ M
xα
a ,rx

β
b ,y

´ǫs
;

R7. M
xα
a ,ry

ǫ,x
β
b s
M

x´α
a ,ryǫ,xβ

b s
“ C

β
y,xb

C´ǫ
xa,yC

´β
y,xb

Cǫ
xa,y;

R8. M
x
β
b ,ry

´ǫ,x
γ
c s
M

xα
a ,ry

ǫ,x
β
b s
M

x
β
b ,rx

γ
c ,y´ǫs

“ Mxα
a ,rx

γ
c ,y´ǫsMxα

a ,ry
ǫ,x

β
b s
Mxα

a ,rx
γ
c ,yǫs;

R9. C´ǫ
xb,y

C
γ
y,xcMxα

a ,ry
ǫ,x

β
b s
C

´γ
y,xcC

ǫ
xb,y

“ M
xα
a ,rx

β
b ,y

´ǫs
C
γ
y,xcMxα

a ,ry
ǫ,x

β
b s
C

´γ
y,xcMxα

a ,ry
ǫ,x

γ
c sMxα

a ,rx
β
b ,y

ǫs
Mxα

a ,rx
γ
c ,yǫs;

R10. C´ǫ
xc,yC

γ
y,xcMxα

a ,ry
ǫ,x

β
b s
C

´γ
y,xcC

ǫ
xc,y

“ M
xα
a ,ry

´ǫ,x
β
b s
Mxα

a ,rx
γ
c ,y´ǫsC

γ
y,xcMxα

a ,rx
β
b ,y

´ǫs
C

´γ
y,xcMxα

a ,ry
ǫ,x

β
b s
Mxα

a ,ry
´ǫ,x

γ
c s.

Table 5: The relations R0

K for the L-presentation of KIA
n,1. The letters a, b, c, d are elements of

t1, . . . , nu (assumed distinct unless otherwise stated) and α, β, γ, δ, ǫ P t1,´1u.
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6.2 Constructing the extension

Let Γn “ xSK | R0
K | φpS˘1

Q qy be the group with the presentation described in Theorem

6.2. There is thus a surjection Ψ: Γn Ñ KIA
n,1 which Theorem 6.2 claims is an isomorphism.

Lemma 5.3 says that there exists a short exact sequence

1 ÝÑ KIA
n,1 ÝÑ An,1

ρ
ÝÑ Zn ¸r AutpFnq ÝÑ 1 (11)

together with homomorphisms ι1 : AutpFnq Ñ An,1 and ι2 : Z
n Ñ An,1 such that ρ˝ ι1 “ id

and ρ˝ι2 “ id. The purpose of this section is to construct the data needed to apply Theorem
5.5 and deduce that there exists a similar extension involving Γn instead of KIA

n,1.

For f P AutpFnq and z P Zn, define homomorphisms αf : K
IA
n,1 Ñ KIA

n,1 and βz : K
IA
n,1 Ñ KIA

n,1

via the formulas

αf pxq “ ι1pfqxι1pfq´1 and βzpxq “ ι2pzqxι2pzq´1 px P KIA
n,1q.

These define actions of AutpFnq and Zn on KIA
n,1. Using the construction described in

Example 5.2, we obtain from (11) a twisted bilinear map λ : AutpFnq ˆ Zn Ñ KIA
n,1. We

must lift all of this data to Γn. This is accomplished in the following three lemmas. For a
set S, let S˚ denote the free monoid on S, so S˚ consists of words in S.

Lemma 6.3. There exists an action of AutpFnq on Γn with the following property. For
f P AutpFnq, denote by αf : Γn Ñ Γn the associated automorphism. Then

Ψpαf pxqq “ αf pΨpxqq pf P AutpFnq, x P Γnq.

Proof. Let AutpFnq “ xSA | RAy be the presentation given by Theorem 5.6. We have
SA Ă SQ, so the map φ : S˘1

Q Ñ EndpF pSKqq used in the construction of the L-presentation

for Γn restricts to a set map S˘1

A Ñ EndpF pSKqq. By the definition of an L-presentation,
the image of this set map preserves the relations between elements of SK that make up Γn,
so we get a set map S˘1

A Ñ EndpΓnq. By the universal property of the free monoid, this
induces a monoid homomorphism ζ : pS˘1

A q˚ Ñ EndpΓnq. Computer calculations described
in Lemma 7.4 below show that ζpsqpζps´1qptqq “ t for all s P S˘1

A and t P SK , which implies
that the image of ζ is contained in AutpΓnq and that ζ descends to a group homomorphism
η : F pSAq Ñ AutpΓnq. Further computer calculations described in Lemma 7.5 below show
that ηprqptq “ t for all r P RA and all t P SK . This implies that η descends to a group
homomorphism AutpFnq Ñ AutpΓnq. This is the desired action; the claimed naturality
property follows from Lemma 6.1.

Lemma 6.4. There exists an action of Zn on Γn with the following property. For z P Zn,
denote by βz : Γn Ñ Γn the associated automorphism. Then

Ψpβzpxqq “ βzpΨpxqq pz P Zn, x P Γnq.

Proof. Set SZ “ tMx1,y, . . . ,Mxn,yu and RZ “ trMxi,y,Mxj ,ys | 1 ď i ă j ď nu, so SZ Ă

SQ and Zn “ xSZ | RZy. Just like in the proof of Lemma 6.3, the map φ : S˘1

Q Ñ
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f P S˘1

A z P S˘1

Z λpf, zq P F pSKq

I˘1
a M ǫ

xa,y Cǫ
xa,y

M
β
xa,xb

M ǫ
xa,y M

xa,ry´ǫ,x
´β
b s

Mxa,xb
M ǫ

xb,y
Mxa,ryǫ,x

´1

b s

Mx´1
a ,xb

M ǫ
xb,y

pMx´1
a ,ry,x´1

b sC
´1
xa,yqǫ

M´1

x´1
a ,xb

M ǫ
xb,y

Cǫ
xa,y

Table 6: The effect of λp¨, ¨q on generators. For f P S˘1

A and z P S˘1

Z such that there is no entry
in the above table, we have λpf, zq “ 1.

EndpF pSKqq restricts to a set map S˘1

Z Ñ EndpF pSKqq which induces a monoid homo-
morphism ζ : pS˘1

Z q˚ Ñ EndpΓnq. Computer calculations described in Lemma 7.6 below
show that ζpsqpζps´1qptqq “ t for all s P S˘1

Z and t P SK , so ζ induces a group homomor-
phism η : F pSZq Ñ AutpΓnq. Further computer calculations described in Lemma 7.7 below
show that ηprqptq “ t for all r P RZ and all t P SK . This implies that η descends to a group
homomorphism Zn Ñ AutpΓnq. This is the desired action; the claimed naturality property
follows from Lemma 6.1.

Lemma 6.5. With respect to the action of AutpFnq on Zn introduced in §5.1 and the actions
of Zn and AutpFnq on Γn given by Lemmas 6.3 and 6.4, there exists a twisted bilinear map
λ : AutpFnq ˆ Zn Ñ Γn such that

Ψpλpf, zqq “ λpf, zq pf P AutpFnq, z P Znq.

Proof. Let αf and βz be as in Lemmas 6.3 and 6.4, respectively. Let AutpFnq “ xSA | RAy
be the presentation given by Theorem 5.6. Also, let SZ “ tMx1,y, . . . ,Mxn,yu and RZ “
trMxi,y,Mxj ,ys | 1 ď i ă j ď nu, so Zn “ xSZ | RZy. We claim that it is enough to construct
a twisted bilinear map λ : AutpFnq ˆ Zn Ñ Γn such that

Ψpλpf, zqq “ λpf, zq pf P S˘1

A , z P S˘1

Z q. (12)

Indeed, the axioms of a twisted bilinear map show that λ is determined by its values on
generators: property TB2 says that λpa1a2, bq “ αa1 pλpa2, bqq ¨ λpa1,

a2bq for all a1, a2 P
AutpFnq and b P Zn, so the values of λ are determined by the values of λpf, zq for f P S˘1

A

and z P Zn, and then property TB1 says that λpa, b1b2q “ λpa, b1q ¨ βab1 pλpa, b2qq for all
a P AutpFnq and b1, b2 P Zn, so the values of λ are determined by the values of λpf, zq for
f P S˘1

A and z P S˘1

Z . An analogous fact holds for λ, whence the claim.

We will construct λ such that λpf, zq is as in Table 6 for f P S˘1

A and z P S˘1

Z . It is easy
to check that these values satisfy (12). We will do this in four steps. For a set S, let S˚ be
the free monoid on S, so S˚ consists of words in S.

• First, for f P S˘1

A we will use the “expansion rule” TB1 to construct a map rλ1pf, ¨q

from pS˘1

Z q˚ to Γn with rλ1pf, zq equal to the value of λpf, zq from Table 6 for z P S˘1

Z .

• Next, we will show that rλ1pf, ¨q descends to a map λ1pf, ¨q from Zn to Γn.
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• Next, for z P Zn we will use the “expansion rule” TB2 to construct a map rλ2p¨, zq
from pS˘1

A q˚ to Γn with rλ2pf, zq “ rλ1pf, zq for f P S˘1

A .

• Finally, we will show that rλ2pf, ¨q descends to a map λ2pf, ¨q from AutpFnq to Γn.

The desired twisted bilinear map will then be defined by λpf, zq “ λ2pf, zq. It will follow
from the various intermediate steps in our construction that λp¨, ¨q is a twisted bilinear map.

As notation, for w P pS˘1

A q˚, let pw denote the image of w in AutpFnq. Similarly, for
w P pS˘1

Z q˚, let pw denote the image of w in Zn.

We now construct rλ1. For f P S˘1

A and w P pS˘1

Z q˚, we define rλ1pf,wq P Γn by induction on

the length of w. If w “ 1 (i.e. w has length 0), then we define rλ1pf,wq “ 1. If w P S˘1

Z (i.e.

w has length 1), then we define rλ1pf,wq to be the value of λpf,wq from Table 6. Finally,
if w has length at least 2 and rλ1pf, ¨q has been defined for all shorter words, then write
w “ sw1 with s P S˘1

Z and define

rλ1pf,wq “ rλ1pf, sq ¨ β pf ps

´
rλ1pf,w1q

¯
.

This formula should remind the reader of property TB1 from the definition of a twisted
bilinear map, as should the following claim.

Claim 1. rλ1pf,ww1q “ rλ1pf,wq ¨ β pf pw

´
rλ1pf,w1q

¯
for f P S˘1

A and w,w1 P pS˘1

Z q˚.

Proof of claim. The proof is by induction on the length of w. For w of length 0, this is
trivial, and for w of length 1, it holds by definition. Now assume that w has length at least 2
and that the desired formula holds whenever w has smaller length. Write w “ w1w2, where
w1 and w2 are shorter words than w. Applying our inductive hypothesis twice, we see that

rλ1pf,ww1q “ rλ1pf,w1w2w
1q “ rλ1pf,w1q ¨ β pf pw1

´
rλ1pf,w2w

1q
¯

“ rλ1pf,w1q ¨ β pf pw1

ˆ
rλ1pf,w2q ¨ β pf pw2

´
rλ1pf,w1q

¯˙

“ rλ1pf,w1q ¨ β pf pw1

´
rλ1pf,w2q

¯
¨ β pf {w1w2

´
rλ1pf,w1q

¯
.

Applying our inductive hypothesis to the first two terms, we see that this equals

rλ1pf,w1w2q ¨ β pf {w1w2

´
rλ1pf,w1q

¯
“ rλ1pf,wq ¨ β pf pw

´
rλ1pf,w1q

¯
.

Claim 2. For w,w1 P pS˘1

Z q˚ with pw “ pw1 P Zn, we have rλ1pf,wq “ rλ1pf,w1q for f P S˘1

A .

Proof of claim. Recall that Zn “ xSZ | RZy. Define R1
Z “ RZ Y tss´1 | s P S˘1

Z u Ă pS˘1

Z q˚.
Since any two elements of pS˘1

Z q˚ that map to the same element of Zn must differ by
a sequence of insertions and deletions of elements of R1

Z , we can assume without loss of
generality that w “ uv and w1 “ urv for some u, v P pS˘1

Z q˚ and r P R1
Z . A computer
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calculation described in Lemma 7.8 below shows that rλ1pf, rq “ 1. We now apply Claim 1
several times to deduce that

rλ1pf,w1q “ rλ1pf, urvq “ rλ1pf, uq ¨ β pf pu

´
rλ1pf, rq

¯
¨ β pf xur

´
rλ1pf, vq

¯

“ rλ1pf, uq ¨ β pf pu

´
rλ1pf, vq

¯
“ rλ1pf, uvq “ rλ1pf,wq.

For f P S˘1

A , Claim 2 implies that the map rλ1pf, ¨q from pS˘1

Z q˚ to Γn descends to a map
λ1pf, ¨q from Zn to Γn. Claim 1 implies that λ1pf, ¨q satisfies a version of condition TB1 from
the definition of a twisted bilinear map, namely that λ1pf, z1z2q “ λ1pf, z1q ¨β pf z1

pλ1pf, z2qq

for all z1, z2 P Zn. Our next claim is a version of condition TB3. We remark that the
condition f P SA in it is not a typo; we will extend it to f P S˘1

A later.

Claim 3. λ1pf, zq ¨ β pf z

´
α pf pkq

¯
¨ λ1pf, zq´1 “ α pf pβz pkqq for f P SA, z P Zn, and k P Γn.

Proof of claim. Let w P pS˘1

Z q˚ satisfy pw “ z. The proof is by induction on the length of w.
For w of length 0, the claim is trivial. For w of length 1, there are two cases. For w P SZ ,
the claim follows from a computer calculation described below in Lemma 7.9. For w “ v´1

with v P SZ , Claim 1 implies that

1 “ rλ1pf, v´1vq “ rλ1pf, v´1q ¨ β pf pv´1

´
rλ1pf, vq

¯
,

so rλ1pf, v´1q “ β pf pv´1

´
rλ1pf, vq´1

¯
. Our goal is to show that

rλ1pf, v´1q ¨ β pf pv´1

´
α pf pkq

¯
¨ rλ1pf, v´1q´1 “ α pf pβpv´1 pkqq .

Plugging in our formula for rλ1pf, v´1q, we see that this is equivalent to showing that

β pf pv´1

´
rλ1pf, vq´1 ¨ α pf pkq ¨ rλ1pf, vq

¯
“ α pf pβpv´1 pkqq .

Manipulating this a bit, we see that it is equivalent to showing that

α pf pkq “ rλ1pf, vq ¨ β pf pv

´
α pf pβpv´1 pkqq

¯
¨ rλ1pf, vq´1.

Using the already proven case w “ v of the claim, the right hand side equals

α pf pβpv pβpv´1 pkqqq “ α pf pkq ,

as desired.

Now assume that w has length at least 2 and that the claim is true for all shorter words.
Write w “ w1w2, where w1 and w2 are shorter words than w. Applying Claim 1, we see

that rλ1pf,w1w2q ¨ β pf {w1w2

´
α pf pkq

¯
¨ rλ1pf,w1w2q´1 equals

rλ1pf,w1q ¨ β pf pw1

ˆ
rλ1pf,w2q ¨ β pf pw2

´
α pf pkq

¯
¨ rλ1pf,w2q´1

˙
¨ rλ1pf,w1q´1. (13)
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Our inductive hypothesis implies that

rλ1pf,w2q ¨ β pf pw2

´
α pf pkq

¯
¨ rλ1pf,w2q´1 “ α pf pβ pw2

pkqq .

Thus (13) equals
rλ1pf,w1q ¨ β pf pw1

´
α pf pβ pw2

pkqq
¯

¨ rλ1pf,w1q´1.

Another application of our inductive hypothesis shows that this equals

α pf pβ pw1
pβ pw2

pkqqq “ α pf pβ{w1w2
pkqq .

We now construct rλ2. For w P pS˘1

A q˚ and z P Zn, we define rλ2pw, zq P Γn by induction on

the length of w. If w “ 1 (i.e. w has length 0), then we define rλ2pw, zq “ 1. If w P S˘1

A (i.e.

w has length 1), then we define rλ2pw, zq “ λ1pw, zq. Finally, if w has length at least 2 and
rλ2p¨, zq has been defined for all shorter words, then write w “ sw1 with s P S˘1

A and define

rλ2pw, zq “ αps
´

rλ2pw1, zq
¯

¨ rλ2pa1,
pw1
zq.

This formula should remind the reader of property TB2 from the definition of a twisted
bilinear map, as should the following claim.

Claim 4. rλ2pww1, zq “ α pw
´

rλ2pw1, zq
¯

¨ rλ2pw, pw1
zq for w,w1 P pS˘1

A q˚ and z P Zn.

Proof of claim. This can be proved by induction on the length of w just like Claim 1. The
details are left to the reader.

The reader might expect at this point that we would prove an analogue of Claim 2 and thus
show that rλ2 descends to a map λ2 : AutpFnq ˆ Zn Ñ Γn. However, before we can do this
we must prove two preliminary results. The first extends Claim 3 to show that rλ2 satisfies
a version of condition TB3.

Claim 5. rλ2pw, zq¨β pwz
pα pw pkqq¨rλ2pw, zq´1 “ α pw pβz pkqq for w P pS˘

A q˚, z P Zn and k P Γn.

Proof of claim. This can be proved by induction on the length of w just like Claim 3. The
details are left to the reader.

The next claim extends Claim 1 to show that rλ2 satisfies a version of condition TB1.

Claim 6. rλ2pw, zz1q “ rλ2pw, zq ¨ β pwz

´
rλ2pw, z1q

¯
for w P pS˘1

A q˚ and z, z1 P Zn.

Proof of claim. The proof is by induction on the length of w. For w of length 0, this is
trivial, and for w of length 1, it holds by Claim 1. Now assume that w has length at least 2
and that the desired formula holds whenever w has smaller length. Write w “ w1w2, where

23



w1 and w2 are shorter words than w. Applying Claim 4 and our inductive hypothesis, we
see that

rλ2pw, zz1q “ α pw1

´
rλ2pw2, zz

1q
¯

¨ rλ2pw1,
pw2z

pw2z1q

“ α pw1

´
rλ2pw2, zq ¨ β pw2z

´
rλ2pw2, z

1q
¯¯

¨ rλ2pw1,
pw2zq ¨ β pw1z

´
rλ2pw1,

pw2z1q
¯
. (14)

Also, Claim 4 implies that rλ2pw, zq ¨ β pwz

´
rλ2pw, z1q

¯
equals

α pw1

´
rλ2pw2, zq

¯
¨ rλ2pw1,

pw2zq ¨ β{w1w2z

´
α pw1

´
rλ2pw2, z

1q
¯

¨ rλ2pw1,
pw2z1q

¯
. (15)

Our goal is to prove that (14) equals (15). Manipulating this, we see that our goal is
equivalent to showing that

rλ2pw1,
pw2zq ¨ β{w1w2z

´
α pw1

´
rλ2pw2, z

1q
¯¯

¨ rλ2pw1,
pw2zq´1 “ α pw1

´
β pw2z

´
rλ2pw2, z

1q
¯¯

.

This is an immediate consequence of Claim 5.

We finally prove the promised analogue of Claim 2.

Claim 7. For w,w1 P pS˘1

A q˚ with pw “ pw1 P AutpFnq, we have rλ2pw, zq “ rλ2pw1, zq for
z P Zn.

Proof of claim. Recall that AutpFnq “ xSA | RAy. Define R1
A “ RA Y tss´1 | s P S˘1

A u Ă

pS˘1

A q˚. A computer calculation described below in Lemma 7.10 shows that rλ2pr, psq “ 1 for
r P R1

A and s P S˘1

Z . Writing z as a product of elements of S˘1

Z , we can use Claim 6 to show

that rλ2pr, zq “ 1 for r P R1
A. The proof now is identical to the proof of Claim 2; the details

are left to the reader.

Claim 7 implies that rλ2 descends to a map λ2 : AutpFnq ˆ Zn Ñ Γn. This map is a twisted
bilinear map: Claim 6 implies that it satisfies condition TB1, Claim 4 implies that it satisfies
condition TB2, and Claim 5 implies that it satisfies condition TB3. As discussed at the
beginning of the proof, λ “ λ2 is the twisted bilinear map whose existence we are trying to
prove.

6.3 Proof of L-presentation

We now prove Theorem 6.2.

Proof of Theorem 6.2. Let Γn “ xSK | R0
K | φpS˘1

Q qy be the group with the presentation

described in Theorem 6.2. We map each generator of Γn to the generator of KIA
n,1 with the

same name. Lemma 7.11 below checks that the basic relations R0
K are true in KIA

n,1; it then
follows from the naturality from Lemmas 6.3 and 6.4 that the extended relations of Γn are
also true in KIA

n,1. Therefore we have defined a homomorphism Ψ: Γn Ñ KIA
n,1. Since our
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generating set from Theorem A is in the image of Ψ, we know Ψ is a surjection; our goal is
to show that Ψ is an isomorphism.

For f P AutpFnq, let αf : Γn Ñ Γn be the homomorphism given by Lemma 6.3. Also,
for z P Zn, let βz : Γn Ñ Γn be the homomorphism given by Lemma 6.4. Finally, let
λ : AutpFnq ˆ Zn Ñ Γn be the twisted bilinear map given by Lemma 6.5. Plugging this
data into Theorem 5.5, we obtain a short exact sequence

1 ÝÑ Γn ÝÑ ∆n
ρ

ÝÑ Zn ¸r AutpFnq ÝÑ 1

together with homomorphisms ι1 : AutpFnq Ñ ∆n and ι2 : Z
n Ñ ∆n such that ρ ˝ ι1 “ id

and ρ ˝ ι2 “ id. The naturality properties of the data in Lemmas 6.3, 6.4, and 6.5 imply
that this short exact sequence fits into a commutative diagram

1 ÝÝÝÝÑ Γn ÝÝÝÝÑ ∆n ÝÝÝÝÑ Zn ¸ AutpFnq ÝÝÝÝÑ 1
§§đΨ

§§đΦ

§§đ“

1 ÝÝÝÝÑ KIA
n,1 ÝÝÝÝÑ An,1 ÝÝÝÝÑ Zn ¸ AutpFnq ÝÝÝÝÑ 1.

(16)

By the five lemma, we see that to prove that Ψ is an isomorphism, it is enough to prove that
Φ is an isomorphism. We will do this by constructing an explicit inverse homomorphism
Φ´1 : An,1 Ñ ∆n.

To do this, we first need some explicit elements of ∆n and some relations between those
elements. The needed elements are as follows.

• We will identify the generating set

SK “ tCy,xa , Cxa,y | xa P Xu Y tM
xα
a ,ry

ǫ,x
β
b s

| xa, xb P X, xa ‰ xb, α, β, ǫ P t1,´1, uu

for Γn with its image in ∆n.
• For α P t1,´1u and distinct xa, xb P X, we define Mxα

a ,xb
P ∆n to equal ιApMxα

a ,xb
q.

• For distinct xa, xb P X, we define Pa,b to equal ιApPa,bq.
• For xa P X, we define Ia to equal ιApIaq.
• As in the proof of Lemma 6.4, we will regard Zn as being generated by the set

tMxa,y | xa P Xu, and for xa P X we define Mxa,y to equal ιBpMxa,yq.

The needed relations are as follows. That they hold is immediate from the construction of
∆n in the proof of Theorem 5.5.

• The relations R0
K from the L-presentation for Γn.

• By construction, the group ∆n contains subgroups Γn ¸ AutpFnq and Γn ¸ Zn. Any
relation which holds in Γn ¸AutpFnq or Γn ¸ Zn (which are generated by the evident
elements) also holds in ∆n.

• For f P AutpFnq and z P Zn, we have λpf, zq “ fzf´1 fz´1. Here fz comes from the
action of AutpFnq on Zn in the semidirect product Zn ¸ AutpFnq. Also, f P AutpFnq
and z P Zn and fz P Zn should be identified with their images in ∆n.

Let An,1 “ xSC | RCy be the presentation given by Theorem 5.7, so

SC “tMxα
a ,xb

| 1 ď a, b ď n distinct, α P t1,´1uu Y tPa,b | 1 ď a ă b ď nu

Y tIa | 1 ď a ď nu Y tMxα
a ,y,Cy,xa | 1 ď a ď n, α P t1,´1uu.
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We define a set map rΦ´1 : SC Ñ ∆n as follows. First, most of the elements in SC have
evident analogues in ∆n, so we define

rΦ´1pMxα
a ,xb

q “ Mxα
a ,xb

and rΦ´1pPa,bq “ Pa,b and rΦ´1pIaq “ Ia

and rΦ´1pMxa,yq “ Mxa,y and rΦ´1pCy,xaq “ Cy,xa.

The only remaining element of SC is M
x´1
a ,y

, and we define

rΦ´1pM
x´1
a ,y

q “ Cxa,yM
´1
xa,y

.

The map rΦ´1 extends to a homomorphism rΦ´1 : F pSCq Ñ ∆n. Computer calculations
described in Lemma 7.12 below show that rΦ´1prq “ 1 for r P RC , so rΦ´1 descends to a
homomorphism Φ´1 : An,1 Ñ ∆n. Examining its effect on generators, we see that Φ´1 is
the desired inverse to Φ, and the proof is complete.

7 Computer calculations

This section discusses the computer calculations used in the previous section. The prelim-
inary section §7.1 discusses the basic framework we use. The actual computations are in
§7.2.

7.1 Framework for calculations

We model AutpFn`1q using GAP, a software algebra system available for free at http://www.
gap-system.org/. We encourage our readers to experiment with the included functions,
and to look at the code that performs the verifications below. We use the same framework
that the authors used in [6], so we quote part of our explanation of the framework from
there. From [6]:

We use GAP’s built-in functionality to model Fn as a free group on the eight
generators xa, xb, xc, xd, xe, xf, xg, and y. Since our computations never
involve more than 8 variables, computations in this group suffice to show that
our computations hold in general.

We found it more convenient to model the free groups F pSAq, F pSQq, and F pSKq without
using the built-in free group functionality. Instead we model the generators using lists and
program the basic free group operations directly. Continuing from [6]:

For example, we model the generator Mxa,xb
as the list ["M",xa,xb], Cy,xa

as ["C",y,xa], and M
x´1
a ,ry,xcs as ["Mc",xa^-1,y,xc]. We model Pa,b as

["P",xa,xb] and Ia as ["I",xa]. The examples should make clear: the first
entry in the list is a string key "M", "C", "Mc", "P", or "I", indicating whether
the list represents a transvection, conjugation move, commutator transvection,
swap or inversion. The parameters given as subscripts in the generator are then
the remaining elements of the list, in the same order.
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We model words in any of the free groups F pSAq, F pSQq, and F pSKq as lists of generators.
Continuing from [6]:

We model inverses of generators as follows: the inverse of ["M",xa,xb] is
["M",xa,xb^-1] and the inverse of ["C",xa,xb] is ["C",xa,xb^-1], but the
inverse of ["Mc",xa,xb,xc] is ["Mc",xa,xc,xb]. Swaps and inversions are
their own inverses. Technically, this means that . . . we model structures where
the order relations for swaps and inversions and the relation . . . for inverting
commutator transvections are built in. This is not a problem because our ver-
ifications always show that certain formulas are trivial modulo our relations
. . . .

In particular, the inverse of ["Mc",xa,y,xb] is modeled as ["Mc",xa,xb,y]. Continuing
from [6]:

The empty word [] represents the trivial element. We wrote several functions
. . . that perform common tasks on words. The function pw takes any number
of words (reduced or not) as arguments and returns the freely reduced product
of those words in the given order, as a single word. The function iw inverts its
input word and the function cyw cyclically permutes its input word.

. . . The function applyrels is particularly useful, because it inserts multiple
relations into a word. It takes in two inputs: a starting word and a list of words
with placement indicators. The function recursively inserts the first word from
the list in the starting word at the given position, reduces the word, and then
calls itself with the new word as the starting word and with the same list of
insertions, with the first dropped.

Most of the verifications amount to showing that some formula can be expressed as a product
of conjugates of images of relations under the substitution rules. We model the substitution
rule function φ using a function named phi. This takes a word in pS˘1

Q q
˚
as its first input

and a word from F pSKq as its second input and applies to the second word the composition
of substitution rules given by the first one. We use a function krel to encode the basic
relations R0

K from Theorem 6.2. Given a number n and a list of basis elements (or inverse
basis elements) from Fn`1, krel returns the nth relation from Table 5, with the supplied
basis elements as subscripts on the SK-generators. If the parameters are inconsistent, it
returns the empty word. We define a function psi that encodes the action of AutpFnq on
Zn from Section 5.1. We also defines a function lambda that computes the definition of rλ2
above; in the special case that its first input is in S˘1

A , it computes rλ1 as well (this is also

true of rλ2 by definition).

The functions described here and the checklists for the computations described below are
all given in the file BirmanIA.g, which we make available with this paper. Each of the
following lemmas refers to lists of outputs in BirmanIA.g. To check the validity of a given
lemma, one needs to read the code that generates the list, evaluate the code, and make sure
the output is correct (usually the desired output is a list of copies of the trivial word). We

27



have provided a list BirmanIAchecklist that gives the output of all the verifications in the
paper.

7.2 The actual calculations

In addition to the relations from Table 5, we use some derived relations for convenience.
These are output by a function exkrel and we do not list them here (they can be found
by inspecting the code and the outputs from that function). What matters is that these
relations always follow from the relations in the presentation.

Lemma 7.1. All the relations output by exkrel are true in Γn.

Proof. The source for the list exkrellist contains a reduction of one instance of each
output of exkrel to the trivial word using only outputs from krel, images of outputs from
krel under the action of phi, and previously verified relations from exkrel. Each of the
entries in the list evaluates to the trivial word, so the reductions are correct.

There are a few places where we verify identities that are homomorphisms on both sides.
To verify these most efficiently, we use generating sets for Γn that are smaller than SK .

Lemma 7.2. Suppose S is a set containing all the tCxa,yua and tCy,xaua, and for each
choice of a, b, suppose S contains at least one of the eight elements tM

xα
a ,ry

ǫ,x
β
b s

uα,β,ǫ. Then

S is a generating set for Γn.

Proof. Suppose S contains M
xα
a ,ry

ǫ,x
β
b s

and all the conjugation moves above. Then: we

can use R4 to express M
xα
a ,ry

ǫ,x
´β
b s

in terms of elements of S, we can use R5 to express

M
xα
a ,ry

´ǫ,x
β
b s

in terms of elements of S, and we can use R7 to express M
x´α
a ,ryǫ,xβ

b s
in terms

of elements of S. Applying these relations repeatedly allows us to get all of the eight
commutator transvections involving xa and xb from one of them.

Lemma 7.3. Let Ψ: F pSKq Ñ KIA
n,1 be the natural surjection. Then regarding SQ as a

subset of An,1, we have

Ψpφpsqptqq “ sΨptqs´1 ps P SQ, t P SKq.

Proof. First we note that this is clearly true, by definition, if s is a swap or inversion.
Further, if we verify this for s “ Mxa,xb

, then it follows for s “ M
x´1
a ,xb

by conjugating
the entire expression by an inversion. So it is enough to verify it for s of the form Mxa,xb

or Mxa,y. In the code generating the list phiconjugationlist, we check this equation for
both such choices of s, and for all possible configurations of generator t with respect to the
choice of s.

Lemma 7.4. The map ζ : pS˘1

A q˚ Ñ EndpΓnq induced by φ : S˘1

Q Ñ EndpF pSKqq satisfies

ζpsqpζps´1qptqq “ t

for all s P S˘1

A and all t P SK .
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Proof. In fact, it is enough to show this for t in a generating set for Γn, since then ζpsq˝ζps´1q
is the identity endomorphism of Γn. If s is a swap or inversion, then the lemma follows
immediately from the definition. So we verify that φpsqpφps´1qptqq “ t (up to relations of
Γnq for s of the formMxa,xb

, and for enough choices of t to give a generating set for Γn (using
Lemma 7.2. This computation appears in the code generating the list phiAinverselist.
For s of the form Mx´1

a ,xb
, our computations for s “ Mxa,xb

suffice, after substituting xa
for x´1

a in each computation.

Lemma 7.5. The map η : F pSAq Ñ AutpΓnq induced by φ : S˘1

Q Ñ EndpF pSKqq satisfies

ηprqptq “ t

for all t P SK and for every relation r P RA from Nielsen’s presentation for AutpFnq “
xSA|RAy.

Proof. It is enough to check that the equation

φprqptq “ t (17)

holds in Γn for every relation r from Nielsen’s presentation, for choices of t ranging through
a generating set for Γn.

Equation (17) works automatically for r a relation of type N1, since the action φ is defined
for swaps and inversions using the natural action on tx˘1

1
, . . . , x˘1

n u, and these relations
hold for that action.

Equation (17) also works automatically for r a relation of type N2. In this case, the equation
says that s ÞÑ φpsq, for s a transvection, is equivariant with respect to the action of swaps
and inversions. This is apparent from the definition of φ: the definition does not refer to
specific elements xi, but instead treats configurations the same way based on coincidences
between them.

For the other cases, we use computations given in the source code for the lists phiN3list,
phiN4list, and phiN5list. In each list we select a relation r and reduce φprqptqt´1 to 1
in Γn, for choices of t constituting a generating set by Lemma 7.2. In each list we exploit
natural symmetries of the equation to reduce the number of cases considered.

Lemma 7.6. The map ζ : pS˘1

Z q˚ Ñ EndpΓnq induced by φ : S˘1

Q Ñ EndpF pSKqq satisfies

ζpsqpζps´1qptqq “ t

for all s P S˘1

Z and t P SK .

Proof. This is like the proof of Lemma 7.4, but simpler. We verify that φpsqpφps´1qptq “ t

in Γn for s of the form Mxa,y, for t ranging over a generating set for Γn. This computation
is in the code generating the list phiZinverselist.
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Lemma 7.7. The map η : F pSZq Ñ AutpΓnq induced by φ : S˘1

Q Ñ EndpF pSKqq satisfies

ηprqptq “ t,

whenever r is a basic commutator of generators from SZ and t P SK .

Proof. The computations showing this appear in phiznlist.

Lemma 7.8. For r of the form ss´1 for s P SZ , or rs, ts for s, t P SZ, we have

rλ1pf, rq “ 1

in Γn for any f P S˘1

A .

Proof. The meaning here is that we must expand rλ1pf, rq according the definition without
simplifying r (not even cancelling inverse pairs), and then verify that the expression we get
is a relation in Γn. To check the lemma, it is enough to verify that the function lambda

returns relations in Γn when the first input is a generator or inverse generator and the second
input is commutator or the product of a generator and its inverse. The computations for
this lemma this appear in lambda2ndinverselist and lambda2ndrellist.

Lemma 7.9. We have

λ1pf, zq ¨ β pf z

´
α pf ptq

¯
¨ λ1pf, zq´1 “ α pf pβz ptqq

for f P SA, z P SZ, and t P Γn.

Proof. The function psi takes as input a word a in SA and a word b in SZ and returns a
word in SZ representing ab. Since the actions α and β are given by φ, we may rewrite the
expression we are trying to prove as

λ1pf, zq ¨ φpψpfqpzqq ˝ φpfqptq ¨ λ1pf, zq´1 “ φpfq ˝ φpzqptq.

We note that this equation is an automorphism of Γn on both sides, so it is enough to verify
it for t in a generating set. Computations checking this identity for all choices of f , z and
t appear in the code generating tb3list.

Lemma 7.10. Suppose r P pSAq˚ is one of Nielsen’s relations for AutpFnq or is a product
ff´1 for some f P S˘1

A . Then for any z P Zn, we have

λ2pr, zq “ 1

in Γn.

Proof. It is enough to show this for generators of Zn. We show this using the function lambda
that encodes the definition of λ2. The code checking these identities generates the lists
lambda1stinversecheck, lambdaN1list, lambdaN2list, lambdaN3list, lambdaN4list,
and lambdaN5list.
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Lemma 7.11. The basic relations R0
K of the L-presentation for Γn are true when interpreted

as identities in KIA
n,1.

Proof. This is verified in the list verifyGammarellist, which uses the function krel to
generate the relations. All generic and non-generic forms of the relations are checked sepa-
rately.

Lemma 7.12. The relations from Jensen–Wahl’s presentation for An,1 map to relations

of ∆n under the map rΦ´1, so the map as defined on generators extends to a well defined
homomorphism Φ´1 : An,1 Ñ ∆n.

Proof. This is verified in the list JWfromDeltalist.
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