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Abstract

We develop an analogue of the Birman exact sequence for the Torelli subgroup of
Aut(F,). This builds on earlier work of the authors who studied an analogue of the
Birman exact sequence for the entire group Aut(F},,). These results play an important
role in the authors’ recent work on the second homology group of the Torelli group.

1 Introduction

The Birman exact sequence [2, 9] is a fundamental result that relates the mapping class
groups of surfaces with differing numbers of boundary components. It is frequently used to
understand the stabilizers in the mapping class group of simple closed curves on a surface.
In [5], the authors constructed an analogous exact sequence for the automorphism group
Aut(F,) of the free group F), on n letters {z1,...,2,}. The Torelli subgroup of Aut(F},),
denoted IA,, is the kernel of the map Aut(F,) — GL,(Z) obtained from the action of
Aut(F,) on Fﬁb >~ 7™. In this paper, we construct a version of the Birman exact sequence
for TA,,. This new exact sequence plays a key role in our recent paper [6] on Ha(IA,;Z).

Birman exact sequence. Let F), ; be the free group on the set {z1,..., 2y, y1,..., Uk}
For z € F,, ;, let [2] denote the conjugacy class of z. Define

A = {f € Aut(Fop) | [f(yi)] = [yi] for 1 <i <k}

The map F, — F, whose kernel is the normal closure of {y1,...,y;} induces a map
w1 Ay — Aut(F),). The inclusion Aut(F,,) — A, ; whose image consists of automorphisms
that fix the y; pointwise is a right inverse for 7, so 7 is a split surjection. Let K, j = ker(7),
so we have a split short exact sequence

1 — Kpgp — Apg — Aut(F,) — 1. (1)

This is the Birman exact sequence for Aut(F,) that was studied in [5]. In that paper, the
authors proved that I, ; is finitely generated but not finitely presentable, constructed a
simple infinite presentation for it, and computed its abelianization. We say more about
these results below.

Remark 1.1. In [5], slightly more general groups A,, j; and KC,, ,; were studied. To simplify
our exposition, we decided to focus on the case [ = 0 in this paper.
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Analogue for Torelli. Define IA,, j, to be the Torelli subgroup of Aut(F), ;). Set AI% =

n
Ay nIA,  and lC;‘}k = ICp e nIA,, ;. The exact sequence (1) restricts to a split short exact
sequence
1— K, — ALY — TA, — 1 (2)

This is our Birman exact sequence for IA,,. The purpose of this paper is to prove results
for IC;LA,C that are analogous to the results for ), ;, that we listed above.

Comparing the kernels. The group IC;‘}I,C is the kernel of the restriction of the map

Aut(F, ) — GL,(Z) to K, 5. The image of this restriction is isomorphic to Z"*. Indeed,
using the generating set for KC, j constructed in [5] (see below), one can show that with
respect to the basis {[x1],..., [zn],[v1],. .., [zx]} for Z"*F, it consists of matrices of the

form
1, O
A 1)’

where 1,, and 1 are the n x n and k x k identity matrices and A is an arbitrary k x n
integer matrix. We thus have a short exact sequence

1— ’C}fk — Kprp — 7 1. (3)

Unfortunately, it is difficult to use this exact sequence to deduce results about the combi-
natorial group theory of ICL/},C from analogous results for K, ; (although in a sense we do
this in the proof of Theorem B below). For instance, the authors proved in [5] that IC,, j, is
finitely generated, but this does not directly imply anything about generating sets for lC,Ifk.

Generators. We now turn to our theorems. Set X = {x1,...,x,} and Y = {y1,...,yx}.
For distinct 2,2’ € X UY, define C, ,» € Aut(F), ;) via the formula

/ NnN—1 ; _
C.(s) = {zs(z) if s = z,

)

i (se X UY).
s otherwise.

Also, for z€ X UY and a = £1 and v € F,, ; in the subgroup generated by (X u Y)\{z},
define Mo ,, € Aut(F), ;) via the formula

vS ifs=zand a=1,
Mzo‘,v(s) =<{sv ! ifs=zand a= -1, (se X UY).
s otherwise.

Observe that with this definition we have M.a ,(2%) = vz®. The authors proved in [5] that
Kn.k is generated by the finite set

{Myy|zeX, yeY}u{Cy., C.y|yeY, ze (X UY)\{y}}. (4)

Remark 1.2. This is a little different from the generating set given in [5], which includes
generators of the form M, , for x € X and y € Y; however, these are unnecessary here
since M1, = M, ,Cp zl/ The generators C,, were not included in the generating set in
[5]. We give the above form because it is a little more convenient for our purposes.



The analogue of this for IC;‘},C is as follows.
Theorem A. The group Kfl’jlk 18 generated by the finite set

{(MyylzeX, yeY, ze (X UY)N\{z,y}} U{Cy., C.py | yeY, ze (X UY)\{y}}.

The Torelli kernel is not finitely presentable. Though K, ; is finitely generated,
the authors proved in [5] that it is not finitely presentable if n > 2 and k& > 1; in fact,
Ho(KCp, k; Q) is infinite dimensional. If lC}lAk were finitely presentable, then one could use

the exact sequence (3) to build a finite presentation for /C,, . We deduce that IC;‘},C is not
finitely presentable. Our second main theorem strengthens this observation.

Theorem B. Ifn >2 and k > 1, then Hg(le:‘k;Q) is infinite dimensional. Consequently,
lCr[fk is not finitely presentable.

Abelianization. The authors proved in [5] that

{w@1>ﬁn_m

Kk =S 2000 40 = 0,

)

These abelian quotients of K, j, come from two sources.

e The restriction of the map Aut(F, ;) — GL,x(Z) to I, x, which has image ZF" (see
the exact sequence (3)).
e The Johnson homomorphisms, which are homomorphisms

71 IA, , — Hom(Z" Tk A2Z7+F)

constructed from the action of IA,, j, on the second nilpotent truncation of F,, ;, (see §4
below). If n = 0, then KC,, ;, < IA,, ;, and the restriction of 7 to IC,, j, has image Zkk=1).
this provides the entire abelianization. If n > 0, then K, ; does not lie in IA,, ; and
we cannot use the Johnson homomorphism directly; however, in [5] we construct a
modified version of it which is defined on K, ; and has image Zkn,

The analogue of these calculations for IC;LA,C is as follows.

Theorem C. The group Hi (K™ ;7Z) is free abelian of rank

n,k?
k
n(n—1)k + n<2> + 2nk + k(k —1).

The abelianization map is given by the restriction of the Johnson homomorphism to IC{LA,C.

Remark 1.3. Theorem C is related to the fact that the Johnson homomorphism gives the
abelianization of IA,, ;, a theorem which was proved independently by Farb [8], Cohen-
Pakianathan [4], and Kawazumi [11].



Finite L-presentation. Our final theorem gives an infinite presentation for the group
IC,I{}I by generators and relations. Though this result may appear technical, it is actually
the most important theorem in this paper for our study in [6] of Ha(IA,;Z). To simplify
our notation, we will write the generators of F;, ; as {x1,...,2p,y}. The generators for our
presentation will be the finite set

Sk = {Mya s | 1€ X, 26 X\{z},0, 8,7 = £1} U{Cy s, Cuy | z € X}

This is larger than the generating set given by Theorem A; using Sk will simplify our
relations. By Theorem B, the set of relations will have to be infinite. They will be generated
from a finite list of relations by a simple recursive procedure which we will encode using
the notion of an L-presentation, which was introduced by Bartholdi [1].

A finite L-presentation for a group G is a triple (S | R | E) as follows.

e S is a finite generating set for G.

e RY is a finite subset of the free group F(S) on S consisting of relations for G. It is
not necessarily a complete set of relations.

e [ is a finite subset of End(F'(S)).

This triple must satisfy the following. Let M < End(F(S)) be the monoid generated by E.
Define R = {f(r) | f € M, r € R%}. Then we require that G = (S | R). Each element of E
descends to an element of End(G); we call the resulting subset E c End(G) the induced
endomorphisms of our L-presentation.

In this paper, the induced endomorphisms of our L-presentations will actually be automor-
phisms. Thus in the context of this paper one should think of an L-presentation as a group
presentation incorporating certain symmetries of a group. Here is an example.

Ezample. Fix ¢ > 1. Let S = {z |i€Z/{} and R = {2%}. Let ¢: F(S) — F(S) be
the homomorphism defined via the formula v (z;) = 2z;41. Then (S | R? | {1}) is a finite
L-presentation for the free product of ¢ copies of Z/2.

We now return to the automorphism group of a free group. The group K, ; is a normal
subgroup of A, 1, so Ay 1 acts on K, 1 by conjugation. In [5], the authors constructed a
finite L-presentation for K, 1 whose set of induced endomorphisms generates

An,l C Aut(lCn,l) e EHd(’Cn,l).

The group lCL‘}l is also a normal subgroup of A,, 1, and hence A,, ; acts on ICifl by conjuga-
tion. Our final main theorem is as follows.

Theorem D. For all n > 2, there exists a finite L-presentation IC,Ifl = (Sk | R% | Ex)
whose set of induced endomorphisms generates A, 1 < Aut(lC{fl) c End(lefl).

See the tables in §6 for explicit lists enumerating Rg{ and Fg.

Verifying the L-presentation. We obtained the list of relations in R?{ by starting with
a guess of a presentation and then trying to run the following proof sketch. Every time it



failed, that failure revealed a relation we had missed. Let I',, be the group given by the
purported presentation in Theorem D. There is a natural surjection I',, — IC,I{}I that we want
to prove is an isomorphism. As we will see in §6 below, we have a short exact sequence

1— KN — Ay 5 27 % Aut(F,) — 1, (5)

where Aut(F),) acts on Z" via the natural surjection Aut(F,) — GL,(Z). The heart of our
proof is the construction of a similar extension A,, of Z" x Aut(F,,) by I',, which fits into a
commutative diagram

1 T, A, —— 7" x Aut(F,) —— 1
| | |- (®
1 KA Apy —L— 7" x Aut(F,) —— 1.

This construction is very involved; the exact sequences in (6) do not split, and constructing
group extensions with nonabelian kernels is delicate. We will say more about how we do
this in the next paragraph. In any case, once we have constructed (6) we can use a known
presentation of A, 1 due to Jensen-Wahl [10] to show that the map A, — A, is an
isomorphism. The five-lemma then implies that the map I';, — lCL‘}l is an isomorphism, as
desired.

The trouble with non-split extensions. If
1l —-K—5G—Q—01 (7)

is a group extension and presentations of () and K are known, then it is straightforward to
construct a presentation of G. However, when constructing the group A,, in (6) we have to
confront a serious problem, namely we need to first verify that the desired extension exists.
To put it another way, it is clear how to combine a known presentation of Z"™ x Aut(F,,)
with our purported presentation for I',, to form a group A,, which fits into a commutative
diagram

r, — A, — Z"xAut(F, —— 1

| J |-

1 KA Ap1 —E— 7 x Aut(F,) —— 1.

However, it is difficult to show that the map I';, — A, is injective. Standard techniques
show that proving the existence of the extension (7) is equivalent to constructing a sort of
“nonabelian K-valued 2-cocycle” on Q; see [3, §IV.6]. Such a 2-cocyle is not determined by
its values on generators for (). This holds even in the simple case of a central extension; the
general case is even worse. It is therefore very difficult to construct such a 2-cocycle using
generators and relations.

But the extensions in (6) we are trying to understand are very special. While they do
not split, there do exist “partial splittings”, namely homomorphisms ¢1: Z" — A, and
ta: Aut(F,) — Ap such that po; = id and p o = id. Letting Ay = p~Y(Z"™) and
Ay = p~H(Aut(F,)) we therefore have A; = ICgfl X 7™ and Ag =~ IC}?l x Aut(F,). The data



needed to combine A; and A into a group A, that fits into (5) is what we will call a
“twisted bilinear map” from Aut(F,) x Z" to ICL‘}I. The definition is complicated, so to give
the flavor of it in this introduction we will discuss a simpler situation.

Splicing together direct products. Let A and B and K be abelian groups. We want
to construct a not necessarily abelian group G with the following property.

e There is a short exact sequence
1—-K-—G-25AxB—1

together with homomorphisms t1: A — G and 12: B — G such that p~!(A) and
p~1(B) are the internal direct products K x t1(A) and K x 15(B), respectively.

Given this data, we can define a set map A: A x B — K via the formula
Aa,b) = [n(a),i2(0)]  (ae Abe BY;

here the bracket is the commutator bracket in G. It is easy to see that A\ is bilinear.
Conversely, given a bilinear map A\: A x B — K we can construct a group G with the above
properties by letting G consist of all triples (k,b,a) € K x B x A with the multiplication

(k,b,a)(K', b d') = (k+ K + ¢(a, V), b+ ,a+d).

The bilinearity of ¢ is needed for this multiplication to be associative.

Adding the twisting. The groups we are interested in fit into semidirect products, so we
will have to incorporate the various group actions into our bilinear maps. The key property
of the resulting theory of twisted bilinear maps is that (unlike general 2-cocycles but like
ordinary bilinear maps) they are determined by their values on generators. Letting I';, be
the group in (6), we will therefore be able to use combinatorial group theory to construct an
appropriate twisted bilinear map Z" x Aut(F,,) — I';, that behaves like the twisted bilinear
map Z" x Aut(F,) — IC,I;\1 that determines A,, ;. This will allow us to construct the group
A, fitting into (6) and complete the proof of Theorem D.

Outline. We prove Theorem A in §2, Theorem B in §3, and Theorem C in §4. Prelimi-
naries for the proof Theorem D are in §5, and the proof itself appears in §6. The proof of
Theorem D depends on computer calculations that are described in §7.

2 Generators

In this section, we prove Theorem A. Letting X = {z1,...,z,} and Y = {y1, ..., yx}, recall
that this theorem asserts that the set

T = {Mm,[y,z] | T e Xv y € Y> zZ € (X Y Y)\{ﬂi‘,y}} v {Cy,m CZ,y | y € Y7 zZ e (X Y Y)\{y}}

TA
generates lCm e



teT sts™ b s 1ts

]\/Ila,[yd,lb] Caa,yg Mag, [yg.2p] Ial Y4 C;al,ysza [ya. zb]Cza Yad
]\/Ilb,[yd,za] Cza’yd]\/[ﬂﬂb [yq: 2a1C2q, Y4 C;a yszb [yaq. 2a1C%a,uq
Mo [ye o) CavgMaa.lye. =) Coa ug CrawgMaa.lye ) Cra vg
My [ye zal Capovg May.lve.wal CoyvaMay [y ug) Cay, vaMey, lve.zalMay.[yg.ve] Caprug
M:a,[yd,yc] Cza’ydMIa,[yd,yc]C;; Y4 C;a. ysza,[yd,yc]CIa’yd
MZa,[yc,yf] Cra,ygMag,lye, yf]CZal Yyq Czal ydMIa [ve., yf]CIa Yd

Cyq.ue Coa,ygMaq, [vg, ye]czal Yd Cyg.ue Mgy, [ye ydlcyd Ye

Cyd,za Cta Yd Cyd Ta Cza Yd Cyd Ta

Cyg.zp Cyd,zbcla,ydcyidlymbMza,[yd,zblcydﬂbcza’yd Cza’ydcyd mbM::al,[yd,zb]cyd’Ib

Cyevl'a Cyevl'a Cye,yd Cyewmacqjel Yd

Caq,ye CzauchICL’yd]\/IIa’[yeuyd]C;a,l,yd Caa,ye Mz, [vg,vel

Table 1: Fiz s = M, ,,. This table shows how to write sts~* and s~ts as a word in T for all
t € T. Basis elements with distinct subscripts are assumed to be distinct. If a formula is not listed,

then sts~! = s~ 'ts = t. All these formulas can be easily proved by checking the effect of the indicated
automorphisms on a basis for the free group.

Proof of Theorem A. The key is the exact sequence
1— K — Ko 52" — 1
discussed in the introduction (see (3)). Define
Si={Myy|zeX,yeY} and Sy ={Cy., C.,|yeY,ze (X UY)\{y}}.

As we discussed in the introduction (see the equation (4) and the remark following it), the
authors proved in [5] that S; U Sy generates K, ;. We have Sy < IC;LA,C = ker(p). Also, p

maps the elements of S; to a basis of Z". We therefore see that Z"* is the quotient of Kok
by the normal closure of the set S} U Sa, where

= {[s, ]|38€51}
= {[Mz,y, M, ]IwGX v,y €Y,y #y'}
UA{[Myy, My ] | 22" € X, y,y €Y, x # 2’}
= { My [y |<E€X, vy eY,y+y'}

Here we are using the fact that [M, ,, My | = 1 for z,2’ € X and y € Y with = # 2’. Since
S u Sy T, we conclude that T normally generates ICLAk.

Letting G < ICI be the subgroup generated by T, it is therefore enough to prove that G
is a normal subgroup. To do this, it is enough to prove that for s € S U Sy and t € T', we
have sts~' € G and s~ 'ts € G. In fact, since Sy < T it is enough to do this for s € S;. The
identities that show this are in Table 1. O

3 The Torelli kernel is not finitely presentable

In this section, we prove Theorem B. Recall that this theorem asserts that HQ(IC}{},C; Q) is
infinite dimensional when n > 2 and k£ > 1



Proof of Theorem B. Consider the Hochschild—Serre spectral sequence associated to the
short exact sequence
1— /C;Ak — Kk Lozt 1

discussed in the introduction (see (3)). It is of the form
Ezq - Hp(an; HQ(]C;%; Q)) = Hp+q(lcn,k§ Q)

The authors proved in [5] that Hy (K, x; Q) is infinite dimensional, so at least one of E3,
and E? and E2, must be infinite dimensional. Clearly E2, = Ho(Z"¥;Q) is finite di-
mensional. Also, Theorem A implies that Hl(lC}lAk;Q) is finite-dimensional, so E? =

H; (Z“k;Hl(lC}fk;Q)) is finite dimensional We conclude that E3, = HO(Z”k;Hg(IC};\k;Q))
is infinite dimensional, so Hg(lC;fk; Q) is infinite dimensional, as desired. O

4 Abelianization

In this section, we prove Theorem C. Recall that this theorem asserts that Hl(ICLAk;Z)
is free abelian and that the abelianization map is given by the restriction of the Johnson
homomorphism to ICL%. The theorem also gives the rank of the abelianization of ICL/},C as a
polynomial in n and k.

Proof of Theorem C. We begin by recalling the definition of the Johnson homomorphism;
see [12] for more details and references. Let m: [F, x, Fyr] — A?Z"* be the projection
whose kernel is [F), g, [Fyk, Fnk]]. This map satisfies 7([z, 2']) = [2] A [¢/] for 2,2" € F, i;
here [2], [2] € Z"** are the images of z and 2’ in the abelianization of F}, ;. The Johnson
homomorphism is then a homomorphism

7: 1A, — Hom(Z" T A2Z7+F)
that satisfies the formula
T()([2) =7(f(2)z7")  (felAnk,z€ Fup).

Letting X = {z1,...,z,} and Y = {y1,...,yx}, the Johnson homomorphism has the follow-
ing effect on the basic elements of IA,, ;. defined in the introduction.

e For distinct 2,2’ € X UY, we have

/ f —
r(Com(u)) = { AN EL =2 Gy,
' 0 otherwise
e For distinct 2,2/,2”" € X uY, we have
[Z] A [2'] ifw=z,
(Mo g ([w]) = 5 wexuy)
0 otherwise



Set

T :{Mx,[y,x’] |lzeX,yeY, 2 e X\{z}}
U{Mx’[ymyb] | re X, 1 <a<b<kz}
U{Cy., Coy lyeY, ze (X UY)\{y}}.

Since My, [y, ya] = Mx_’[lya’yb] for x € X and 1 < a < b < k, Theorem A implies that T

generates ng}k. Examining the above formulas, we see that 7 takes T injectively to a
linearly independent subset of the free abelian group Hom(Z" ™%, A? Z"**). This implies
that if w is an element of the free group F(T') on T which maps to a relation in ICB}k, then

ue [F(T),F(T)] (otherwise, 7 would take the image of u in lC;‘}k to a nontrivial element
of Hom(Z"** A2 Z"**)). We conclude that 7 induces the abelianization of ]sz[,\k and that
Hy (ICL/?,Q; Z) = ZIT|. This is free abelian of rank

k
|T\—n(n—1)k+n<2>+2n/<;+/<;(k:—1). O

5 Preliminaries for the proof of Theorem D

The rest of this paper is devoted to proving Theorem D, which gives a finite L-presentation
for ICL‘?l. This section contains three subsections of preliminaries: §5.1 constructs a needed
exact sequence, §5.2 discusses twisted bilinear maps, and §5.3 discusses presentations for
some related groups.

To simplify our notation, we will set y = y1, so {x1,...,2,,y} is the basis for F}, ;. When
writing matrices in GL,,11(Z), we will always use the basis {[x1],..., [zs], [y]} for Z" L.

5.1 Relating the two kernels

This is the first of three preliminary sections for the proof of Theorem D. In it, we construct
the exact sequence

1— KN — Ap1 -5 2" % Aut(F,) — 1

discussed in the introduction (see Lemma 5.3 below). We first address an irritating technical
point. Throughout this paper, all group actions are left actions. In particular, elements
of Z™ will be regarded as column vectors and matrices in GL,(Z) act on these column
vectors on the left (we have already silently used this convention when we wrote matrices).
However, it turns out that the action of Aut(F},) on Z" in the semidirect product appearing
the above exact sequence is induced by the natural right action of GL,(Z) on row vectors.
We do not wish to mix up right and left actions, so we convert this into a left action and
define Z" x, GL,(Z) to be the semidirect product associated to the action of GL,(Z) on
7" defined by the formula

M-z= MYz (MeGL,(Z),z€Z").



To understand this formula, observe that (M ~!)!z is the transpose of (2/)M~!; the inverse
appears because we are converting a right action into a left action. We then have the
following.

Lemma 5.1. The stabilizer subgroup (GLy,11(Z))[y) is isomorphic to Z" x, GLy(Z).

Proof. We define a homomorphism t: (GLy1(Z))[y] — Z" %, GL,(Z) as follows. Consider
M € (GLyp11(Z))py)- There exist Me GL,(Z) and M € Z" such that

- (B)

here we are using our convention that elements of Z™ are column vectors, so the transpose
—_ —_ —~ t — —~
M' of M € Z" is a row. We then define (M) = <M_1) M,M). To see that this is a

homomorphism, observe that for My, My € (GLy41(2))j,

o (o (o) _ (Wi [0\ _( Wi |o
UML)\ MM, + M | 1 (MIM, + o) | 1)

and hence

] we have

(M )p(Ms) = <<M\_1)tﬁl,f\4\1> <<M;1)tﬁ2,z\%>
_ <<z\7—1)tm + () (ﬂ;l)tmﬁlz\%)
- <<J\711)t 115" (WIS, + 77 Mﬁ)
= (M1 Mo)
That 1 is a bijection is obvious. O

Remark 5.2. There is an isomorphism between Z" x, GL,(Z) and the semidirect product
of Z™ and GL,(Z) with respect to the standard left action of GL,,(Z) on Z". However, this
isomorphism acts as the inverse transpose on the GL,(Z) factor, and to keep our formulas
from getting out of hand we want to not change this factor. Throughout this paper, we will
use the explicit isomorphism described in the proof of Lemma 5.1.

Define Z™ x, Aut(F},) to be the semidirect product induced by the action of Aut(F;,) on
Z'™ obtained by composing the projection Aut(F,,) — GL,(Z) with the action of GL,(Z)
on 7™ discussed above. We then have the following lemma, which is the main result of this
section.

Lemma 5.3. There is a short exact sequence
l— Kﬁﬁ — An1 L X, Aut(F,) — 1.

Also, there exist homomorphisms v1: Aut(F,) — A, 1 and 1a: Z" — Ay such that p oy
and p oty are the standard inclusions of Aut(F,) and Z" into Z™ x, Aut(F,) respectively.

10



Proof. Let m: Ap1 — Aut(F,) be the map induced by the projection F,,; — F,, whose
kernel is normally generated by y. Also, let mo: A, 1 — Z™ %, GL,(Z) be the composition

An1 — (GLn11(2))py) — Z" %, GL,(Z),

where the second map is the isomorphism given by Lemma 5.1. By definition, K, ; = ker(m;)
and A;fl = ker(m). Recalling that IC}?l =Kp1n Aifl, it follows that IC}fl = ker(p), where
p is the composition

An1 MO (Aut(F,)) @ (Z" %, GL, (Z)).

Let n: Aut(F,) — GL,(Z) be the natural projection. The image of p is contained in the
subgroup

{(f; () | f e Aut(Frn), z € 2"} < (Aut(F,)) @ (2" »r GLy (2))

which is clearly isomorphic to Z™ x, Aut(F,,). We can therefore regard p as a homomorphism
p: Ap1 — Z™ x, Aut(F),), and we have an exact sequence

1— Ky — Apq 2 27 %, Aut(F,).

Let ¢1: Aut(F,) — A, 1 be the evident inclusion whose image is the stabilizer subgroup
(Ap1)y and let 1p: Z™ — A,, 1 be the map defined via the formula
121y zn) = MZ, MZ2 - MZ™ (z1,...,2n € Z),

1,y T2,y Tn,Y

where the automorphisms M, , are as in the introduction. The map ¢o is a homomorphism
because the M, , commute. It is clear that po¢; = id and p oy = id. This implies that p
is surjective, and the lemma follows. O

5.2 Twisted bilinear maps and group extensions

This is the second section containing preliminaries for the proof of Theorem D. In it, we
discuss the theory of twisted bilinear maps alluded to in the introduction. Throughout this
section, let A and B and K be groups equipped with the following left actions.

e The group A acts on B; for a € A and b € B, we will write *b for the image of b under
the action of a.

e The groups A and B both act on K. For k€ K and a € A and b € B, we will write
aq (k) and By (k) for the images of k under the actions of a and b, respectively.

A twisted bilinear map from A x B to K is a set map \: A x B — K satisfying the following
three properties.

TB1. For all a € A and b1,by € B, we have A(a,b1b2) = A(a,b1) - Bay, (Ma,bz)).
TB2. For all aj,as € A and b € B, we have A(ajaz,b) = aq, (A(az,b)) - A(ay, *2b).
TB3. Forallae Aandbe Bandk € K, we have A(a, b)-Bay, (g (K))-Ma,b) ™! = aq (B (k).

11



Observe that this reduces to the definition of a bilinear map if all the actions are trivial and
all the groups are abelian. The key example is as follows.

FEzample. Consider a short exact sequence of groups
1—wK-—>G-5BxA—1

together with homomorphisms ¢1: A — G and t5: B — G such that poty and poy are the
standard inclusions of A and B in B x A respectively. Observe that this implies that p~!(A)
and p~1(B) are the internal semidirect products K x 11(A) and K x 15(B), respectively. Let
%b be the action a - b defining the semidirect product B x A, and define actions of A and B
on K by

g (k) =u1(a) - k-1 (a)™r and By (k) = 1a(b) - k- 12(D)

forallae A and be B and k € K. Define a set map \: A x B — K via the formula
Ma,b) = u1(a) - e2(b) - ea(a) " ea(*0) 71

Note that this is a kind of “twisted commutator” map; it reduces to the commutator bracket
if the action of A on B is trivial. Given these definitions, an easy algebraic juggle shows
that X is a twisted bilinear map. We will say that A is the twisted bilinear map associated
to G and ¢ and 9.

Remark 5.4. We take a moment to explain the different aspects of the definition of a twisted
bilinear map. For a fixed a € A, we can twist the action of B on K by the action of A
on B by a, to get an action b -k = fa; (k). Property TB1 simply states that the function
A a,-): B — K is a crossed homomorphism with respect to this action twisted by a.

Property TB2 is similar, but involves two kinds of twisting. The set of functions B — K
is a group with the pointwise product. The group A acts on this group in two ways. The
first is by post-composition: for a € A and f: B — K, define a - f by (a- f)(b) = aq (f(D)).
The second is by pre-composition, and is a right action: for a, f as above, define f - a by
(f -a)(b) = f(?b). So property TB2 says that A is like a crossed homomorphism from A to
the group of functions B — K, but simultaneously twisted by both of these actions.

Property TB3 can be explained in the context of Example 5.2. As usual in group extensions,
there is a well defined outer action of B x A on K: to act on k by (b, a), lift (b,a) to G and
conjugate k by this lift. The conjugate of k depends on the choice of lift, but the resulting
map B x A — Out(K) is well defined. Using our maps ¢1 and t2, we have two ways to build
lifts. By the definition of the product in B x A, we have

(1,a)(b,1) = (“b,a) = (“b,1)(1,a).

So we may view the outer action of (“b,a) on K as coming from conjugation either by
t1(a)e2(b) or by t2(*b)i1(a). These conjugations are given by k — «, (5 (k) and k —
Bay, (g (k)) respectively. Since they define the same outer automorphism, they differ by
conjugation by some element; TB3 says that A(a,b) is such an element.

The following theorem shows that every twisted bilinear map is associated to some group
extension.

12



Theorem 5.5. Let the groups and actions be as above and let A: A x B — K be a twisted
bilinear map. Then X is the twisted bilinear map associated to some group G, some short
ezxact sequence

1—-K-—G-5BxA—1,

and some homomorphisms 11: A — G and 15: B — G.

Proof. Set Q = Bx A. We will construct G using the theory of nonabelian group extensions
sketched in [3, §IV.6] and proven in detail in [7]. This machine needs two inputs.

e The first is a set map ¢: @ — Aut(K) satisfying ¢(1) = id. For ¢ € @, we define
#(q) € Aut(K) as follows. We can uniquely write ¢ = ba with b € B and a € A. We
then define

P(Q)(k) = By (aa (k) (ke K).

e The second is a set map v: @ x @ — K satisfying v(1,q) = v(q,1) = 1 for all g € Q,
which we define as follows. Consider ¢, g2 € Q. We can uniquely write ¢; = bya; and
qo = boao with by,bs € B and aq,a2 € A. We then define

Y(q1,q2) = B, (Ma1,b2)).

We remark that these pieces of data are not homomorphisms. They must satisfy two key
identities which we will verify below in Claims 1 and 2. We postpone these verifications
momentarily to explain the output of the machine.

Let G be the set of pairs (k,q) with K € K and ¢ € ). Define a multiplication in G via the
formula

(k1 q1) (k2 q2) = (k1 - d(q1)(k2) - v(q1, q2), 1g2)-

The machine says that this G is a group (the purpose of the postponed identities is to show
that the above multiplication is associative). It clearly lies in a short exact sequence

1 —-K-—G-5BxA—1,

and we can define the desired homomorphisms ¢1: A — G and 19: B — G via the formulas
t1(a) = (1,(1,a)) and ¢2(b) = (1,(b,1)). An easy calculation shows that the conclusions of
the theorem are satisfied.

It remains to verify the two needed identities, which are as follows.

Claim 1. For q1,q2 € Q and k € K, we have

o(q1)(B(a2)(k)) = v(a1, a2) - dlara2) (k) - (a1, q2) "

For i = 1,2, write ¢; = b;a; with b; € B and a; € A, so q1q2 = (b1 “'b2)(a1a2). We then have

Ya1:02) - arg2) (k) - 1(@1,02) ™" = By (A@r,b2) - By, anp, (@aras (k) - By (Mar, b2)) ™!
= By (Marba) - Bory, (0, (s (K))) - Mar, b))

13



Property TB3 of a twisted bilinear map says that this equals
Bo, (ay (Br, (ay (K)))) = d(q1)((q2)(K)),
as claimed.

Claim 2. For qi,q2,q3 € Q, we have v(q1,q2) - Y(q162,93) = ¢(q1)(7(q2,93)) - v(q1,9293)-

For i = 1,2, 3, write ¢; = b;a; with b; € B and a; € A. We begin by examining the left side
of the purported equality. Since gi1q2 = (b1 “*b9)(ayas9), it equals

(a1, q2) - 7(q192,43) = By, (AM(a1,02)) - By, a1y, (Aaraz, b3))
= oy (a1, bo) - Basy, (Maraz, b))
Using property TB2 of a twisted bilinear map, this equals
By (Mas,b2) - Bary, (e, ((az, b)) - Mas, *2bg)) ) (8)
Property TB3 of a twisted bilinear map with a = a1 and b = by and k = \(aqg, b3) says that

Aar, bp) - fary, (aay (AMaz,b3))) = aay (Bo, (Maz, b3))) - Aaa, ba).
Plugging this into (8) (and remembering to distribute the fa1;, over the last term), we get

By (0tar (B (Maz, ) - Mar, ba) - Bang, (Mar, 263)) ). ©)

We now turn to the right hand side of the purported equality. Since gags = (ba “?b3)(azas),
it equals

Boy (tay (Bby (Aaz,b3)))) - Bey (Aa1,b2 *b3)) = Bby (s (B, (Maz,b3))) - Alar, b2 ©b3)) .

Property TB1 of a twisted bilinear map says that this equals

Bor (ar (Bra (A(az, b)) - Aar, bo) - Bang, (Aar,*2b3)) ) (10)

Since (9) and (10) are equal, the claim follows. O

5.3 Presentations of Aut(F),) and A, ;
This is the third and final section of preliminaries for the proof of Theorem D. In it, we give
presentations for the groups Aut(F,) and A, 1.

We begin with Aut(F,,). Recall that X = {x;,...,2,} is the standard basis for F,,. The
presentation for Aut(F),) we will use has three classes of generators.

e For o € {1, -1} and distinct x4, 2, € X, we need the automorphisms M, ;, defined
in the introduction. Recall that their characteristic properties are that

Mo 2, (25) = mprg  and  Mga 4 (2c) = 2.

for x. € X with x. # x,. The elements M,a ,, will be called transvections.
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N1. relations for the subgroup generated by inversions and swaps, a signed permuta-
tion group:
— I?=1and [I,, ;] =1,
— P2, =1, [Pyy, Peg]l = 1, and Py Py P, = P,
— avalP;bl = Iy and [Poy, I.] = 1;
N2. relations for conjugating transvections by inversions and swaps, coming from the
natural action of inversions and swaps on {x1,...,z,}:
— a7bM:vZ,:vdP¢1_,1)1 = Mp, ,(c2),P, »(zq) €ven if {a,b} N {c,d} # &,
— 1My, It = My, (22, 10(2) €ven if a € {c, d};

N3, M7, MY ML = LPay

¢ ,x
a »Th Ty Za a b

N4. [Mya 4, My, | = 1 with a,b,c,d not necessarily all distinct, such that a # b,

Tc,Tqd
c#d, 2y ¢ {zd,zg,2;"} and ol ¢ {zy, 7, '};
N5, M M = MP, Mo, M

y Y 2.
ZE?,IEQ Tc,Th Teyly  xp,xq Terla

Table 2: Nielsen’s relations for Aut(F,,) consist of the set Ra of relations listed above. The letters
a,b,c,d are elements of {1,...,n} (assumed distinct unless otherwise stated) and «, 3,~,€ {1, —1}.

e For distinct z,, 7, € X, we will need the automorphisms F, ; defined via the formula
xp, if c = a,
Poy(ze) =<z ifc=0b, (1<c<n).
r. otherwise

The elements P, ; will be called swaps.
e For z, € X, we will need the automorphisms I, defined via the formula

-1 . o
Lm) = {% 0= (1<b<n).
rp  otherwise

The elements I, will be called inversions.

Let S4 be the set consisting of the above generators. The set S4 does not contain elements
of the form M oz but we will frequently use M 2oyt A5 AN alternate notation for Ma;;lxb
We then have the following theorem of Nielsen.

Theorem 5.6 (Nielsen [13]). The group Aut(F,) has the presentation {(S4 | Ra), where

R4 is given in Table 2.

We now turn to A, ;. Recall that this is a subgroup of Aut(F, 1), where F),; is the free
group on {x1,...,2T,,y}. We will use a presentation that is due to Jensen—Wahl [10]. See
[5, Theorem 5.2] for a small correction to Jensen—Wahl’s original statement.

Theorem 5.7 (Jensen-Wahl [10]). The group Ay 1 has the presentation whose generators
are the union of Sa with the set

{Mag y,Cy | 2a€ X, ae {1, —1}}
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Q1. Nielsen’s relations among S4 from Table 2,
Q2. Commuting relations:

— (Mg Myp ] = 1if aff # ),

— [Mag 2, My ] = 1if 25 # 2,

o [M{Eg,xb, nywc] =1lifc # a.

Q3. The obvious analogues of the N2 relations from Table 2 giving the effect of con-
jugating C, », and Mya , by swaps and inversions,

Q4. My, Mo My o = Mog yM,p , and
Q5. C;OM o C*, =ML

Y, Ta Tg Y YsTa xgvy'

Table 3: Jensen—Wahl’s relations for A, 1 consist of the relations above. The letters a,b,c are
elements of {1,...,n} (assumed distinct unless otherwise stated) and «, 3,v,€ {1, —1}.

and whose relations are those appearing in Table 3.

6 A finite L-presentation for IC};:}

This section contains the proof of Theorem D, which asserts that IC%XI has a finite L-
presentation. We begin in §6.1 by describing the generators, relations, and endomorphisms
which make up our L-presentation. Next, in §6.2 we construct the data needed to use the
theory of twisted bilinear maps to construct an appropriate extension of our purported
presentation for IC;‘}I. Finally, in §6.3 we prove that our presentation is complete.

The proofs of several of our lemmas will depend on computer calculations. These computer
calculations will be discussed in §7.

Just like in §5, we will denote the free basis for F,,; by {z1,...,zn,y}.

6.1 Statement of L-presentation

In this section, we will describe the generators, relations, and endomorphisms that make up
the finite L-presentation for ICifl whose existence is asserted by Theorem D. To help us keep

track of the role that our symbols are playing, we will change the font for the generators of
lCL‘}l and use

Sk ={€y 20> Cauy | zZa€ X} U {mxg,[ye,:vf] | Zayxp € X, To # Ty, a, B, € {1,—1,}}

as our generating set. We remark that elements of the form 90, [2f 4] 1€ not included
a’ Lty

in Sk ; however, we will frequently use the symbol M [ 4] @S & Synonym for 93?_;[

a xb 7y€:| x 6]7

a 7[y€7xb
which is the inverse of an element of Sy
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Next, we explain our endomorphisms Ey for our L-presentation. These endomorphisms
are indexed by the generators for A,, ; given by Theorem 5.7 that do not lie in IC,I{}I. More
precisely, define

SQ = {Pa,ba [ay M:ca,yy ng,xb ‘ Tq,Tn € X: Tq 7 Tp, X E {17 _1}}

We use 551 to denote Sp U {s![s € Sg} (and similarly for other sets). We remark that in
Sq, we regard P, and P, , as being the same element.

We now define a function ¢: 551 — End(F(Sk)) (see Lemma 6.1 below for an elucidation
of the purpose of this definition). By the universal property of a free group, to do this it
is enough to give ¢(s)(t) for each choice of s € 551 and t € Sk. Once we have given these
formulas, we define Ex to be the image of the map ¢. In our defining formulas, we use
Za, Thy Tey - .. for elements of X and «, f3,7,€,... for elements of {1,—1}. Elements with
distinct subscripts are assumed to be distinct unless noted.

The action of swaps and inversions through ¢ is by acting on the elements of X indexing
our generators: if s is a swap or inversion, then
¢(3)(¢wa,y) = Q:s(ma),yv ¢(5)(¢y,ma) = Q:y,s(ma)y and gb(s)(ﬂﬁma{ 5]) =M

o [ye.ap s(2g),[ye,s(z))]’

Here we interpret

¢ Crpy and €, 1 =€ ]

—1 - .
Ta Y Y;Za

Furthermore, for s a swap or inversion we define ¢(s~1)(t) = ¢(s)(t) for any t € Sk

If s € Sq is of the form M ,, we define ¢(s)(t) = ¢(s')(t) =t if t € Sk is anything of the
form

€xa,y7 Q:xbylﬁ M —a

Za 7[y€7xb

If s € Sq is of the form Ma ,,, we define ¢(s)(t) = ¢(s')(t) =t if t € Sk is anything of
the form

€5L‘cvy7 €yy??lﬂ Q:y@’c? m

6y OF M s

xb 7[y€7x;y] '

m ,

zg %[y ,ad] z [y z))

5]7 m

—a
Tq 7[y57mb

s, or M~

va[yevxg]'
The other cases for ¢(s)(t) € F(Sk), for s € 551 and t € Sk, are given in Table 4.

The key property of the map ¢ is as follows.

Lemma 6.1. Let V: F(Sg) — ICf:ll be the natural surjection. Then regarding Sq as a
subset of Ay 1, we have

T(p(s)(t)) = sTU(t)s™t  (seSg,teSk).
Proof. This is a computer calculation which is described in Lemma 7.3 below. U

We can now give a statement of our L-presentation. The following theorem (which will be
proven in §6.3) is a more precise version of Theorem D.

Theorem 6.2. Let Sk and Sqg and ¢ be as above and let Rg{ be the set of relations in Table
5. Then the group /Cfﬁ has the finite L-presentation IC,If}I =(Sk | R% | ¢(S$1)>,
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sesk! te Sk B(s)(t)
oy €y Cvep M e op )
Cy,zq 3 Q‘;a,yqy,ztl .
M .
wa,[yS xp] CrawM, 1y¢af) Tray
9]‘ € —€
. < w6 zal Cra v ™ B 14¢ 001 Tray
Mo o Cy.aq (€5 w0 €hey)”
Cag,y CaqyM o} B
a ey 2,
Sy Emb,yimmgy[mbfﬁyyfl]
v -
Mo fye ] e ng,[ye,z;ﬁ]Ewcng,[ye,ﬂ]mmg,[m;ﬁ,m
t om m [ m [
o [ve,2d] 1o e l) e e ey Bl e Lo w61 S 2l Mpa (0mf ey Cueiee
N jule
ey Py 2] oy B lye,ad] g v e d]
ol s —a
mwz,[ye,zg] Cyeq JﬁzzY[ye,mbB]Ey,xamzz,[yé,zg]
s —B m -
o2 [ ,07 ] Cuep Moy e og @1 el wf ve] Curof
Jule Jule _
=g [y xp] , e [z Py
:
eg v 2y ) Cvien Mg 1ye oy P Ve
jule jle [a8e N [
wp Ty w8 , wp Py gl Ty Bmg,[ye,zgﬁl oy
@ —e - a €
Moy B Ive 291 Cuea Cuey Copv Mon (208 ye) Tomy b gy Cviza Coay
—B g—a ge c—e a B
mbﬂy[yewmafa] Cyrzp Cyiza za,ymtwgy[w;@ye]sz,ymmfﬁy[m(ax,y—e]cy,wa Yoy
B —a —€ o4
sy Pzl | Svm Cviea Caaw Svea T8 e oz oy Cvien Pag pye o8y Coboy

Table 4: The defining formulas for ¢. The letters a, b, ¢ are distinct elements of {1,...,n} «, 8,7, €

(1,-1}.

RL (€ Capy] = 15

R2. [0,

o [ye,22]: M [y ]] = 1, possibly with z§ = xljﬁ or z. = x4 (or both), as long

as g # xbﬁ, Ty # xq and xp # T
R3‘ [Q:ma7y’mtmb67[y€7xz]] - 1;

R4 Q:g;gbm a7[ye 5]¢57mb = mwg,[ZE;B’ye];

RS, €ty My o o€ =Moo
R6. Q:xmymxg’[ye ]Q::Emy mx§7[xgvy7€];
RT7. mmgv[yevmbﬁ]mtmgay[ysymbﬁ] - Q:y’mbew_:y@y’mb@;a y’
R8. mxf,[y*,xl]mxg‘,[yf xbﬁ]ma/‘bﬁ,[ Ty mmgv[m'cyvy%]mxg,[yf,xf]mwgiwz’ys];
RO, €55, Che M, 0 0 &S,

= mmg,[mf,y*€]¢y7mcm o [ye,x ]Q:y wcmxgv[yévxz]mmg,[mg,yg]mafé‘v[wzvyé];
RIO. €, CheM,, | 26l

_ -

- mazg‘,[yfe,xbﬁ]mmg’[xzﬂy ]Qy xcm [:cb Y ]Q:y7xcmxg,[ye,xf]mwg:[97€,$2]'

Table 5: The relations RS, for the L-presentation of ICIA . The letters a,b,c,d are elements of
{1,...,n} (assumed dzstmct unless otherwise stated) and o B, v,0,€ € {1, 71}
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6.2 Constructing the extension

Let I, = (Sk | R% | gb(Sél)} be the group with the presentation described in Theorem

6.2. There is thus a surjection ¥: I');, — ICgfl which Theorem 6.2 claims is an isomorphism.
Lemma 5.3 says that there exists a short exact sequence

1— K — Ay 5 27 %, Aut(F,) — 1 (11)

together with homomorphisms ¢1: Aut(F,) — Ay 1 and tp: Z" — A, 1 such that pou; = id
and poro = id. The purpose of this section is to construct the data needed to apply Theorem
5.5 and deduce that there exists a similar extension involving I',, instead of ICL‘?l.

For f e Aut(F,) and z € Z", define homomorphisms @y : IC%XI — IC%XI and 3, : IC%XI — IC%}l
via the formulas

ay(x) = L1(f)m1(f)—1 and B, (r) = L2(Z)ZEL2(Z)_1 (z € ’Cifl)-

These define actions of Aut(F,) and Z" on ICL‘?I. Using the construction described in
Example 5.2, we obtain from (11) a twisted bilinear map \: Aut(F,) x Z" — IC;‘}I. We
must lift all of this data to I',,. This is accomplished in the following three lemmas. For a
set S, let S* denote the free monoid on S, so S* consists of words in S.

Lemma 6.3. There exists an action of Aut(F,) on I',, with the following property. For
f e Aut(F,), denote by ay: I'yy, — Ty, the associated automorphism. Then

U(ap(z)) =a(¥(x)) (f € Aut(Fy,),z e ly).

Proof. Let Aut(F,,) = (Sa | Ra) be the presentation given by Theorem 5.6. We have
Sa < Sg, so the map ¢: 551 — End(F(Sk)) used in the construction of the L-presentation
for T',, restricts to a set map ST' — End(F(Sk)). By the definition of an L-presentation,
the image of this set map preserves the relations between elements of Sk that make up I',,,
so we get a set map Sil — End(I'y). By the universal property of the free monoid, this
induces a monoid homomorphism ¢: (S3')* — End(T',). Computer calculations described
in Lemma 7.4 below show that ¢(s)(¢(s™!)(t)) = ¢ for all s € ST' and ¢ € Sk, which implies
that the image of ( is contained in Aut(I",,) and that ¢ descends to a group homomorphism
n: F(Sa) — Aut(I',,). Further computer calculations described in Lemma 7.5 below show
that n(r)(t) = ¢ for all r € R4 and all ¢t € Sk. This implies that 7 descends to a group
homomorphism Aut(F,,) — Aut(I',,). This is the desired action; the claimed naturality
property follows from Lemma 6.1. O

Lemma 6.4. There exists an action of Z" on I',, with the following property. For z € 7",
denote by 5,: ', = 'y, the associated automorphism. Then

U(B:(x) = B.(¥(z))  (2€Z"z€Ty).

Proof. Set Sz = {My, y,..., My, } and Rz = {[My, y, My, 4] | 1 <i<j<n}, so Sz c
Sg and Z" = (Sz | Rz). Just like in the proof of Lemma 6.3, the map ¢: 551 —
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Fest | zest | Af.2) e F(Sk)
I ‘ 2
g Ta,y Zasy
€
M-'anmb Mwavy mway[yie,waﬁ]
€
M$a7xb MSEb,y mxav[yevxljl] 1
€ — €
ngll,xb Mz, 4 <9ﬁx51,[y7x;1]¢xavy)
_ € €
Mmgl,xb be’y Q:xa,y

Table 6: The effect of \(-,-) on generators. For f € Sil and z € S’%l such that there is no entry
in the above table, we have \(f,z) = 1.

End(F(Sk)) restricts to a set map S3* — End(F(Sk)) which induces a monoid homo-
morphism ¢: (S£')* — End(T',). Computer calculations described in Lemma 7.6 below
show that ¢(s)(¢(s71)(t)) =t for all s € SE! and t € Sk, so ¢ induces a group homomor-
phism 7: F(Sz) — Aut(I',). Further computer calculations described in Lemma 7.7 below
show that n(r)(t) =t for all r € Rz and all t € Sk. This implies that 7 descends to a group
homomorphism Z" — Aut(I',). This is the desired action; the claimed naturality property
follows from Lemma 6.1. O

Lemma 6.5. With respect to the action of Aut(F,) on Z" introduced in §5.1 and the actions
of Z" and Aut(F,) on Ty, given by Lemmas 6.3 and 6.4, there exists a twisted bilinear map
A Aut(F,) x Z™ — T, such that

U(A(f,2) = A(f,2) (f € Aut(F),),z€Z").

Proof. Let oy and 3, be as in Lemmas 6.3 and 6.4, respectively. Let Aut(F,) = (Sa | Ra)
be the presentation given by Theorem 5.6. Also, let Sz = {M,, y,..., M, y} and Ry =
{[My;y, My, y] | 1 <i<j<n},s0Z" ={Sz | Rz). We claim that it is enough to construct
a twisted bilinear map \: Aut(F),) x Z"™ — T';, such that

VA(f.2) = A(f,2)  (feSilzeS7). (12)

Indeed, the axioms of a twisted bilinear map show that A is determined by its values on
generators: property TB2 says that A(ajag,b) = ag, (Mag,b)) - A(ag,*?b) for all aj,as €
Aut(F,) and b € Z", so the values of A\ are determined by the values of A(f,z) for f € ijl
and z € Z", and then property TB1 says that A(a,biba) = A(a,b1) - Bay, (A(a,b2)) for all
a € Aut(F),) and by, be € Z", so the values of X are determined by the values of \(f, z) for
fe Sil and z € Sé—rl. An analogous fact holds for A, whence the claim.

We will construct A such that A(f,z) is as in Table 6 for f € S:KH and z € S%l. It is easy
to check that these values satisfy (12). We will do this in four steps. For a set S, let S* be
the free monoid on S, so S* consists of words in S.

e First, for f € 52;1 we will use the “expansion rule” TB1 to construct a map 3\1( fi)
from (SZ1)* to T, with A\ (f, 2) equal to the value of A(f,z) from Table 6 for z € SF'.
e Next, we will show that A\i(f,-) descends to a map A{(f,-) from Z™ to T,.
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e Next, for z € Z" we will use the “expansion rule” TB2 to construct a map Xg(',z)
from (STh)* to T, with Xa(f,2) = \i(f, 2) for f e ST
e Finally, we will show that As(f,-) descends to a map Aa(f,-) from Aut(F,) to I',.

The desired twisted bilinear map will then be defined by A(f,z) = A2(f,2). It will follow
from the various intermediate steps in our construction that A(-,-) is a twisted bilinear map.

As notation, for w € (ST')*, let @ denote the image of w in Aut(F,). Similarly, for
w e (S;')*, let @ denote the image of w in Z".

We now construct A;. For f € ST and w e (SE')*, we define X1 (f,w) € T, by induction on
the length of w. If w = 1 (i.e. w has length 0), then we define \; (f,w) = 1. If we S3' (i.e.

w has length 1), then we deﬁne~/~\1 (f,w) to be the value of A\(f,w) from Table 6. Finally,
if w has length at least 2 and A;(f,-) has been defined for all shorter words, then write
w = sw' with s € S5 and define

N(fw) = Mi(f,5) - Bz, (Ma(f.u)

This formula should remind the reader of property TB1 from the definition of a twisted
bilinear map, as should the following claim.

Claim 1. X (f,ww') = Xi(f,w) - 87 (M(f,w)) for [ e S51 and w,w' € (S5')*.

Proof of claim. The proof is by induction on the length of w. For w of length 0, this is
trivial, and for w of length 1, it holds by definition. Now assume that w has length at least 2
and that the desired formula holds whenever w has smaller length. Write w = wyws, where
wy and wsy are shorter words than w. Applying our inductive hypothesis twice, we see that

X(fwn') = Xa(f wrwpe) = Xa(fown) - 87 (Ma(fwan))

Il
>

W(fown) - B <X1<f, wa)- B (Malf, w’)))
w8 (M) -8 ((fw).

wiw2

>

Applying our inductive hypothesis to the first two terms, we see that this equals

M (f, wiwy) - Bf s (Xl(f, ’w/)> = \i(f.w) - 7 (Xl(f, ’w/)> ' O
Claim 2. For w,w' € (S%l)* with w = w' € Z", we have /N\l(f,w) = /N\l(f, w') for f e ijl.
Proof of claim. Recall that Z" = (Sy | Rz). Define R}, = Rz U {ss™! | se S3'} = (S3')*.
Since any two elements of (S%l)* that map to the same element of Z" must differ by

a sequence of insertions and deletions of elements of R’,, we can assume without loss of
generality that w = wv and w' = urv for some u,v € (SE')* and r € R,. A computer
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calculation described in Lemma 7.8 below shows that Xl( fyr) = 1. We now apply Claim 1
several times to deduce that

=X - 87 (Nu(f0) = Xulfouo) = Xi(fw). =

For f € 52;17 Claim 2 implies that the map Xl(f, -) from (S%l)* to I'), descends to a map

A1 (f,) from Z™ to T'y,. Claim 1 implies that A\;(f,-) satisfies a version of condition TB1 from

the definition of a twisted bilinear map, namely that A\ (f, z122) = A1 (f, 21) By (Ml 29))
Z1

for all 21,29 € Z™. Our next claim is a version of condition TB3. We remark that the
condition f € S4 in it is not a typo; we will extend it to f € S:KH later.

Claim 3. Al(f,z)'ﬂfz <af(k:)) A(f,2)7 = ag (B (k) for feSa, ze Z", and ke T,,.

Proof of claim. Let w € (S%l)* satisfy w = z. The proof is by induction on the length of w.
For w of length 0, the claim is trivial. For w of length 1, there are two cases. For w € Sy,
the claim follows from a computer calculation described below in Lemma 7.9. For w = v~!
with v € Sz, Claim 1 implies that

L=X(fo ) = Mo 8 (M),

—1

so A (f,0h) = B » (Xl(f,v)A). Our goal is to show that

N B (ap®) - Xi(fo™) 7 = ap (B (k).

Plugging in our formula for Xl( 1, fufl), we see that this is equivalent to showing that
/Bfafl <)‘1(f7ru)71 ’ af (k) ’ )\1(f,?])) = af (517*1 (k)) :
Manipulating this a bit, we see that it is equivalent to showing that
az (k) = a(f.0) - B (a5 (Bor () - Xalf0) ™
Using the already proven case w = v of the claim, the right hand side equals

o (B (Byr (K)) = aj (k).
as desired.

Now assume that w has length at least 2 and that the claim is true for all shorter words.
Write w = wyws, where wy and wy are shorter words than w. Applying Claim 1, we see

that A1 (f, wiws) - ﬁf@ (ozf(k:)) X (f, wiws) "t equals
Nt -0, (W) 85, (ap®) Do) Dfwn ™ (13)
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Our inductive hypothesis implies that
Mi(fwa)- B (a7 () - alhwe) ™ = af (B, (k).

Thus (13) equals
N(fywn) - B7 (o (Bas (k) - Xa(F0) ™

Another application of our inductive hypothesis shows that this equals

agp (5@1 (5@2 (k) = ag (5171—10\2 (k)) - -

We now construct Xy. For w € (STH* and z € Z", we define Xo(w, z) € T, by induction on
the length of w. If w = 1 (i.e. w has length 0), then we define Ay(w, z) = 1. If w e ST (ie.

w has length 1), then we define Xa(w,z) = A1 (w, z). Finally, if w has length at least 2 and
A2(+, 2) has been defined for all shorter words, then write w = sw’ with s € ijl and define

~ o~

Xo(w, 2) = ag (Xg(w’, z)) alar, ¥ 2).

This formula should remind the reader of property TB2 from the definition of a twisted
bilinear map, as should the following claim.

Claim 4. X (ww', 2) = ag (Xg(w/,z)) Do(w, V' 2) for w,w' € (STH)* and z € Z".

Proof of claim. This can be proved by induction on the length of w just like Claim 1. The
details are left to the reader. O

The reader might expect at this point that we would prove an analogue of Claim 2 and thus
show that Ay descends to a map Ay: Aut(F,) x Z" — T',,. However, before we can do this
we must prove two preliminary results. The first extends Claim 3 to show that Xg satisfies
a version of condition TB3.

Claim 5. Xg(w,z)ﬂ@z (ag (k) Aa(w, 2)™! = ag (B (k) forw e (S3)*, z€Z" and ke T,.

Proof of claim. This can be proved by induction on the length of w just like Claim 3. The
details are left to the reader. O

The next claim extends Claim 1 to show that 3\2 satisfies a version of condition TB1.

Claim 6. X\y(w,22') = Xo(w, 2) Ba, (Xg(w,z’)> forwe (STH)* and 2,2 € 7.

Proof of claim. The proof is by induction on the length of w. For w of length 0, this is
trivial, and for w of length 1, it holds by Claim 1. Now assume that w has length at least 2
and that the desired formula holds whenever w has smaller length. Write w = wyws, where
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wy and wy are shorter words than w. Applying Claim 4 and our inductive hypothesis, we
see that

~

Ao (w, 22') = gy <7\2(w2,zz')> Na(wy, P22 722

Also, Claim 4 implies that Xg(w, z) - Ba, <3\2(w, z’)) equals

g, (Xg(wg,z)> Do(wy, P22) - Bt (aml <X2(w2,z/)> -Xg(wl,@z’)) . (15)

Our goal is to prove that (14) equals (15). Manipulating this, we see that our goal is
equivalent to showing that

~

)\g(wl,ﬁ’?z) . ﬁ@Z (04@1 <X2(w2,z’)>> .Xg(wl,@z)*l = ag, <6@22 <X2(w2,z')>) .

This is an immediate consequence of Claim 5. O

We finally prove the promised analogue of Claim 2.

Claim 7. For w,w' € (S3')* with © = @' € Aut(F,), we have Xa(w,z) = Xa(w', z) for
zel".

Proof of claim. Recall that Aut(F,) = (Sa | Ra). Define Ry = Rqu {ss™! | se ST'}
(ST1)*. A computer calculation described below in Lemma 7.10 shows that \a(r,8) = 1 for
re Ry and s e S}—rl. Writing z as a product of elements of S}l, we can use Claim 6 to show

that 3\2(7“, z) = 1 for r € R;. The proof now is identical to the proof of Claim 2; the details
are left to the reader. O

Claim 7 implies that /~\2 descends to a map Ag: Aut(F),) x Z™ — I',,. This map is a twisted
bilinear map: Claim 6 implies that it satisfies condition TB1, Claim 4 implies that it satisfies
condition TB2, and Claim 5 implies that it satisfies condition TB3. As discussed at the
beginning of the proof, A = A9 is the twisted bilinear map whose existence we are trying to
prove. O

6.3 Proof of L-presentation

We now prove Theorem 6.2.

Proof of Theorem 6.2. Let T'y, = (S | R% | ¢(S$1)> be the group with the presentation
described in Theorem 6.2. We map each generator of I';, to the generator of IC,I{}I with the
same name. Lemma 7.11 below checks that the basic relations R are true in ICL‘}I; it then
follows from the naturality from Lemmas 6.3 and 6.4 that the extended relations of I'), are

also true in KA. Therefore we have defined a homomorphism ¥: ', — KM, Since our
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generating set from Theorem A is in the image of W, we know W is a surjection; our goal is
to show that W is an isomorphism.

For f e Aut(F,), let ay: I', — I'; be the homomorphism given by Lemma 6.3. Also,
for z € Z"™, let B,: I, — I',, be the homomorphism given by Lemma 6.4. Finally, let
A Aut(F,) x Z" — T, be the twisted bilinear map given by Lemma 6.5. Plugging this
data into Theorem 5.5, we obtain a short exact sequence

1—T, — A, AN/ X, Aut(F,) — 1
together with homomorphisms ¢;: Aut(F,) — A, and t9: Z"™ — A, such that po ¢y = id

and p oo = id. The naturality properties of the data in Lemmas 6.3, 6.4, and 6.5 imply
that this short exact sequence fits into a commutative diagram

1 T, A, —— 7" x Aut(F,) —— 1
lxp l@ l: (16)
1 K Ap1 —— Z" x Aut(F,) —— 1.

By the five lemma, we see that to prove that ¥ is an isomorphism, it is enough to prove that
® is an isomorphism. We will do this by constructing an explicit inverse homomorphism
o1 -An,l — A,.

To do this, we first need some explicit elements of A, and some relations between those
elements. The needed elements are as follows.

o We will identify the generating set
Sk ={€y 20> Couy | Ta€ X} U {Eng,[ys,mf] | zg,2p € X, x4 # 3, , B,e € {1,—1,}}

for I';, with its image in A,,.

For o € {1, -1} and distinct x4,z € X, we define Mya 2, € Ay, to equal 14 (Mo 4,).
For distinct 4,z € X, we define P, p, to equal 4 (P, ).

For z, € X, we define J, to equal 14(,).

As in the proof of Lemma 6.4, we will regard Z™ as being generated by the set
{My,y | xq € X}, and for z, € X we define M, ,, to equal tp(M,, ).

The needed relations are as follows. That they hold is immediate from the construction of
A,, in the proof of Theorem 5.5.

e The relations Rg{ from the L-presentation for I[',.

e By construction, the group A, contains subgroups I';, x Aut(F,,) and I';, x Z". Any
relation which holds in T, x Aut(F,) or I',, x Z™ (which are generated by the evident
elements) also holds in A,,.

e For f e Aut(F,) and z € Z", we have \(f,2) = fzf~' /271, Here /2 comes from the
action of Aut(F,,) on Z" in the semidirect product Z" x Aut(F,). Also, f € Aut(F},)
and z € Z" and fz € Z"™ should be identified with their images in A,,.

Let A1 = {(Sc | Rc) be the presentation given by Theorem 5.7, so
Sc ={Mzo 2, | 1 < a,b<ndistinct, « € {1, -1}} U{P,p | L <a<b<n}
O{la [1<a<n} 0 Mg Cha, | 1< a<n, ae{l,~1})
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We define a set map o1 Sc — A, as follows. First, most of the elements in S¢ have
evident analogues in A,, so we define

SN Mo 2,) = Mo o, and S YP,p) =Pap and S7Y(IL,) =7,
and &)*I(Mxmy)zf)ﬁxa’y and &D*I(Cy@a):Qy’xa.

The only remaining element of S¢ is M ety and we define

O (M1 ) = €y, )

Ta,y"®

The map d-1 extends to a homomorphism d-1: F(S¢) — A,. Computer calculations
described in Lemma 7.12 below show that &)_1(7") = 1 for r € R, so @1 descends to a
homomorphism &~ : Ap1 — A,. Examining its effect on generators, we see that o1

the desired inverse to ®, and the proof is complete. O

7 Computer calculations

This section discusses the computer calculations used in the previous section. The prelim-
inary section §7.1 discusses the basic framework we use. The actual computations are in
§7.2.

7.1 Framework for calculations

We model Aut(F,,+1) using GAP, a software algebra system available for free at http://www.
gap-system.org/. We encourage our readers to experiment with the included functions,
and to look at the code that performs the verifications below. We use the same framework
that the authors used in [6], so we quote part of our explanation of the framework from
there. From [6]:

We use GAP’s built-in functionality to model F;, as a free group on the eight
generators xa, xb, xc, xd, xe, xf, xg, and y. Since our computations never
involve more than 8 variables, computations in this group suffice to show that
our computations hold in general.

We found it more convenient to model the free groups F'(S4), F'(Sq), and F(Sk) without
using the built-in free group functionality. Instead we model the generators using lists and

program the basic free group operations directly. Continuing from [6]:

For example, we model the generator M, ,, as the list ["M",xa,xb], Cy,,

as ["C",y,xal, and M ywe] 3 ["Mc",xa"-1,y,xc]. We model P,; as
["P",xa,xb] and I, as ["I" ,xal. The examples should make clear: the first
entry in the list is a string key "M", "C", "Mc", "P", or "I", indicating whether

the list represents a transvection, conjugation move, commutator transvection,
swap or inversion. The parameters given as subscripts in the generator are then
the remaining elements of the list, in the same order.
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We model words in any of the free groups F(Sa), F'(Sg), and F(Sk) as lists of generators.
Continuing from [6]:

We model inverses of generators as follows: the inverse of ["M",xa,xb] is
["M",xa,xb"-1] and the inverse of ["C",xa,xb] is ["C",xa,xb"~-1], but the
inverse of ["Mc",xa,xb,xc] is ["Mc",xa,xc,xb]. Swaps and inversions are
their own inverses. Technically, this means that ...we model structures where
the order relations for swaps and inversions and the relation ... for inverting
commutator transvections are built in. This is not a problem because our ver-
ifications always show that certain formulas are trivial modulo our relations

In particular, the inverse of ["Mc",xa,y,xb] is modeled as ["Mc",xa,xb,y]. Continuing
from [6]:

The empty word [] represents the trivial element. We wrote several functions
...that perform common tasks on words. The function pw takes any number
of words (reduced or not) as arguments and returns the freely reduced product
of those words in the given order, as a single word. The function iw inverts its
input word and the function cyw cyclically permutes its input word.

... The function applyrels is particularly useful, because it inserts multiple
relations into a word. It takes in two inputs: a starting word and a list of words
with placement indicators. The function recursively inserts the first word from
the list in the starting word at the given position, reduces the word, and then
calls itself with the new word as the starting word and with the same list of
insertions, with the first dropped.

Most of the verifications amount to showing that some formula can be expressed as a product
of conjugates of images of relations under the substitution rules. We model the substitution
rule function ¢ using a function named phi. This takes a word in (Sél)* as its first input
and a word from F(Sk) as its second input and applies to the second word the composition
of substitution rules given by the first one. We use a function krel to encode the basic
relations RY- from Theorem 6.2. Given a number n and a list of basis elements (or inverse
basis elements) from F), 1, krel returns the nth relation from Table 5, with the supplied
basis elements as subscripts on the Sk-generators. If the parameters are inconsistent, it
returns the empty word. We define a function psi that encodes the action of Aut(F},) on
Z" from Section 5.1. We also defines a function lambda that computes the definition of 3\2
above; in the special case that its first input is in S!, it computes Xl as well (this is also

true of Ay by definition).

The functions described here and the checklists for the computations described below are
all given in the file BirmanIA.g, which we make available with this paper. Each of the
following lemmas refers to lists of outputs in BirmanIA.g. To check the validity of a given
lemma, one needs to read the code that generates the list, evaluate the code, and make sure
the output is correct (usually the desired output is a list of copies of the trivial word). We
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have provided a list BirmanTAchecklist that gives the output of all the verifications in the
paper.

7.2 The actual calculations

In addition to the relations from Table 5, we use some derived relations for convenience.
These are output by a function exkrel and we do not list them here (they can be found
by inspecting the code and the outputs from that function). What matters is that these
relations always follow from the relations in the presentation.

Lemma 7.1. All the relations output by exkrel are true in I',.

Proof. The source for the list exkrellist contains a reduction of one instance of each
output of exkrel to the trivial word using only outputs from krel, images of outputs from
krel under the action of phi, and previously verified relations from exkrel. Each of the
entries in the list evaluates to the trivial word, so the reductions are correct. O

There are a few places where we verify identities that are homomorphisms on both sides.
To verify these most efficiently, we use generating sets for I';, that are smaller than Sk.

Lemma 7.2. Suppose S is a set containing all the {Cy, y}a and {€y .. }a, and for each
choice of a,b, suppose S contains at least one of the eight elements {9)1 . }a,@ . Then

S is a generating set for I',,.

Proof. Suppose S contains I [y,20] and all the conjugation moves above. Then: we
a7 » Ly,

can use R4 to express I ] in terms of elements of S, we can use R5 to express

%lycoxy
Emwa Ty-<,af] in terms of elements of S, and we can use R7 to express 9 2oyl in terms
of elements of S. Applying these relations repeatedly allows us to get all of the eight
commutator transvections involving z, and xz; from one of them. O

Lemma 7.3. Let V: F(Sg) — ICffl be the natural surjection. Then regarding Sq as a
subset of Ay 1, we have

T(p(s)(t)) = sTU(t)s™t  (seSg,teSk).

Proof. First we note that this is clearly true, by definition, if s is a swap or inversion.
Further, if we verify this for s = 9,, ,,, then it follows for s = 9)?96;17 o by conjugating
the entire expression by an inversion. So it is enough to verify it for s of the form 9, .,
or M, . In the code generating the list phiconjugationlist, we check this equation for
both such choices of s, and for all possible configurations of generator ¢ with respect to the
choice of s. O

Lemma 7.4. The map ¢: (ST')* — End(T',,) induced by ¢: 551 — End(F(Sk)) satisfies

C(s)(C(s™H(t) =t
for all s € 52;1 and all t € Sk.
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Proof. In fact, it is enough to show this for ¢ in a generating set for I',, since then ((s)o((s™!)
is the identity endomorphism of I';,. If s is a swap or inversion, then the lemma follows
immediately from the definition. So we verify that ¢(s)(¢(s71)(t)) = ¢ (up to relations of
I'y,) for s of the form 9M,,, ,,, and for enough choices of ¢ to give a generating set for I';, (using
Lemma 7.2. This computation appears in the code generating the list phiAinverselist.

For s of the form Dﬁxgl our computations for s = M, ., suffice, after substituting z,
1

» Ty

for ;" in each computation. O

Lemma 7.5. The map n: F(Sa) — Aut(T'),) induced by ¢: 551 — End(F(Sk)) satisfies

n(r)(t) =t

for all t € Sk and for every relation r € Ry from Nielsen’s presentation for Aut(F,) =
(SalRa).

Proof. 1t is enough to check that the equation

o(r)(t) =t (17)

holds in I'), for every relation r from Nielsen’s presentation, for choices of ¢ ranging through
a generating set for I',,.

Equation (17) works automatically for r a relation of type N1, since the action ¢ is defined
for swaps and inversions using the natural action on {a:lil, ...,x1} and these relations
hold for that action.

Equation (17) also works automatically for r a relation of type N2. In this case, the equation
says that s — ¢(s), for s a transvection, is equivariant with respect to the action of swaps
and inversions. This is apparent from the definition of ¢: the definition does not refer to
specific elements x;, but instead treats configurations the same way based on coincidences
between them.

For the other cases, we use computations given in the source code for the lists phiN3list,
phiN4list, and phiN51list. In each list we select a relation r and reduce ¢(r)(t)t~! to 1
in I',,, for choices of ¢ constituting a generating set by Lemma 7.2. In each list we exploit
natural symmetries of the equation to reduce the number of cases considered. O

Lemma 7.6. The map (: (SF')* — End(T',,) induced by ¢: 551 — End(F(Sk)) satisfies
C(s)(Cs™H) =t

for all s € Sé—rl and t € Sk.

Proof. This is like the proof of Lemma 7.4, but simpler. We verify that ¢(s)(é¢(s™1)(t) = ¢
in I',, for s of the form M, ., for ¢ ranging over a generating set for I',,. This computation
is in the code generating the list phiZinverselist. O
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Lemma 7.7. The map n: F(Sz) — Aut(l',,) induced by ¢: 551 — End(F(Sk)) satisfies

whenever r is a basic commutator of generators from Sz and t € Sk .

Proof. The computations showing this appear in phiznlist. O

Lemma 7.8. For r of the form ss~! for s € Sy, or [s,t] for s,t € Sz, we have
Xl(fa T) =1

in 'y, for any f € S;{l.

Proof. The meaning here is that we must expand Xl( f,r) according the definition without
simplifying r (not even cancelling inverse pairs), and then verify that the expression we get
is a relation in I',,. To check the lemma, it is enough to verify that the function lambda
returns relations in I';, when the first input is a generator or inverse generator and the second
input is commutator or the product of a generator and its inverse. The computations for
this lemma this appear in lambda2ndinverselist and lambda2ndrellist. O

Lemma 7.9. We have
(287 (ap®) - M(f.2)" = ap (8- (1)
for feSa, z€ Sy, andtel,.
Proof. The function psi takes as input a word a in S4 and a word b in Sz and returns a

word in Sz representing “b. Since the actions « and [ are given by ¢, we may rewrite the
expression we are trying to prove as

M(f,2) - o (f)(2) 0 D)) - M(f.2)7H = d(f) 0 (2)(1).

We note that this equation is an automorphism of I';, on both sides, so it is enough to verify
it for ¢ in a generating set. Computations checking this identity for all choices of f, z and
t appear in the code generating tb3list. O

Lemma 7.10. Suppose r € (Sa)* is one of Nielsen’s relations for Aut(F,) or is a product
ff~1 for some f e S;‘—rl. Then for any z € Z, we have

)\2 (r, Z) =1
m .
Proof. 1t is enough to show this for generators of Z™. We show this using the function lambda
that encodes the definition of Ay. The code checking these identities generates the lists

lambdalstinversecheck, lambdaN1list, lambdaN2list, lambdaN31list, lambdaN4list,
and lambdaN51list. O
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Lemma 7.11. The basic relations R?{ of the L-presentation for 'y, are true when interpreted
as identities in ICffl.

Proof. This is verified in the list verifyGammarellist, which uses the function krel to
generate the relations. All generic and non-generic forms of the relations are checked sepa-
rately. O

Lemma 7.12. The relations from Jensen-Wahl’s presentation for A, 1 map to relations

of A, under the map <T>_1, so the map as defined on generators extends to a well defined
homomorphism ®~1: A1 — Ay

Proof. This is verified in the list JWfromDeltalist. O
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