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Infinitely generated semigroups and polynomial complexity

J.C. Birget

Abstract

This paper continues the functional approach to the P-versus-NP problem, begun in [2]. Here
we focus on the monoid RMP

2
of right-ideal morphisms of the free monoid, that have polynomial

input balance and polynomial time-complexity. We construct a machine model for the functions
in RMP

2
, and evaluation functions. We prove that RMP

2
is not finitely generated, and use this to

show separation results for time-complexity.

1 Introduction

In [2] we defined the monoids of partial functions fP and RMP
2 . The question whether P = NP is

equivalent to the question whether these monoids are regular. The monoid fP consists of all partial
functions A∗ → A∗ that are computable by deterministic Turing machines in polynomial time, and that
have polynomial I/O-balance. The submonoid RMP

2 consists of the elements of fP that are right-ideal
morphisms of A∗. One-way functions (according to worst-case time-complexity) are exactly the non-
regular elements of fP. It is known that one-way functions (according to worst-case time-complexity)
exist iff P 6= NP. Also, f ∈ RMP

2 is regular in fP iff f is regular in RMP
2 . Hence, P = NP iff fP is

regular, iff RMP
2 is regular. We refer to [9, 15] for background on P and NP.

The original motivation for studying RMP
2 in addition to fP was that RMP

2 is reminiscent of the
Thompson-Higman groups [14, 16, 12, 7, 6, 5] and the Thompson-Higman monoids [4]. It also quickly
turned out that RMP

2 , while having the same connection to P-vs.-NP as fP, has different properties
than fP (e.g., regarding the Green relations, and actions on {0, 1}ω ; see [2, 3]). It is hard to know
whether this approach will contribute to a solution of the P-vs.-NP problem, but the monoids fP and
RMP

2 are interesting by themselves.

Above and in the rest of the paper we use the following notation and terminology. We have an
alphabet A, which will be {0, 1} unless the contrary is explicitly stated, and A∗ denotes the set of all
strings over A, including the empty string ε. For x ∈ A∗, |x| denotes the length of the string x. For
a partial function f : A∗ → A∗, the domain is Dom(f) = {x ∈ A∗ : f(x) is defined}, and the image
is Im(f) = f(A∗) = f(Dom(f)). When we say “function”, we mean partial function (except when
we explicitly say “total function”). Similarly, for a deterministic input-output Turing machine with
input-output alphabet A, the domain of the machine is the set of input words for which the machine
produces an output; and the set of output words is the image of the machine.

A function f : A∗ → A∗ is called polynomially balanced iff there exists polynomials p, q such that
for all x ∈ Dom(f): |f(x)| ≤ p(|x|) and |x| ≤ q(|f(x)|). The polynomial q is called an input balance
function for f .

As we said already, fP is the set of partial functions f : A∗ → A∗ that are polynomially balanced,
and such that x ∈ Dom(f) 7−→ f(x) is computable by a deterministic polynomial-time Turing machine.
Hence, Dom(f) is in P when f ∈ fP, and it is not hard to show that Im(f) is in NP. Clearly, fP is a
monoid under function composition.

A function f : A∗ → A∗ is said to be one-way (with respect to worst-case complexity) iff f ∈ fP, but
there exists no deterministic polynomial-time algorithm which, on every input y ∈ Im(f), outputs some
x ∈ A∗ such that f(x) = y. By “one-way” we will always mean one-way with respect to worst-case
complexity; hence, these functions are not “cryptographic one-way functions” (in the sense of, e.g.,
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[8, 13, 10]). However, they are important for the P-vs.-NP problem because of the following folklore
fact (see e.g., [11] p. 33): One-way functions exist iff P 6= NP.

As is easy to prove (see the Introduction of [2]), f ∈ fP is not one-way iff f is regular in fP. By
definition, an element f in a monoid M is regular iff there exists f ′ ∈ M such that ff ′f = f ; in this
case, f ′ is called an inverse of f .1 A monoid M is called regular iff all the elements of M are regular.
In summary we have: The monoid fP is regular iff P = NP.

Let us look in more detail at the monoid RMP
2 . A right ideal of A∗ is a subset R ⊆ A∗ such that

RA∗ = R (i.e., R is closed under right-concatenation by any string). For two strings v,w ∈ A∗, we
say that v is a prefix of w iff (∃x ∈ A∗)[ vx = w ]. A prefix code in A∗ is a set P ⊂ A∗ such that no
word in P is a prefix of another word in P . For any right ideal R there exists a unique prefix code P

R

such that R = P
R
A∗; we say that P

R
generates R as a right ideal. For details, see e.g. [6, 4]; a good

reference on prefix codes, and variable-length codes in general is [1].
A right-ideal morphism is a partial function h : A∗ → A∗ such that for all x ∈ Dom(h) and

all w ∈ A∗: h(xw) = h(x)w. In that case, Dom(h) and Im(h) are right ideals. For a right-ideal
morphism h, let domC(h) (called the domain code) be the prefix code that generates Dom(h) as a
right ideal. Similarly, let imC(h), called the image code, be the prefix code that generates Im(h). So a
right-ideal morphism h is determined by h|domC(h) (the restriction of h to its domain code). In general,
imC(h) ⊆ h(domC(h)), and it can happen that imC(h) 6= h(domC(h)). We define

RMP
2 = {f ∈ fP : f is a right-ideal morphism of A∗}.

By Prop. 2.6 in [2], f ∈ RMP
2 is regular in RMP

2 iff f is regular in fP. The monoid RMP
2 is regular

iff P = NP.
We saw (Cor. 2.9 in [2]) that fP and RMP

2 are not isomorphic, that the group of units of RMP
2 is

trivial (Prop. 2.12 in [2]), and that RMP
2 has only one non-0 J -class (Prop. 2.7 in [2]). In [3] we will

see that RMP
2 has interesting actions on {0, 1}ω , and has interesting homomorphic images (some of

which are regular monoids, and some of which are regular iff P = NP). Overall, RMP
2 seems to have

“more structure” than fP.
It is proved in [2] (Section 3) that fP is isomorphic to a submonoid of RMP

2 . To prove this, we use
an encoding of the three-letter alphabet {0, 1,#} into words over the two-letter alphabet {0, 1}; this
encoding will also be used here. First, we encode the alphabet {0, 1,#} by code(0) = 00, code(1) = 01,
code(#) = 11. A word x1 . . . xn ∈ {0, 1,#}∗ is encoded to code(x1) . . . code(xn). For a fixed k > 0,
a k-tuple of words (u1, . . . , uk−1, uk) ∈ {0, 1}∗ × . . .×{0, 1}∗ is encoded to code(u1 # . . . uk−1#) uk
= code(u1) 11 . . . code(uk−1) 11 uk ∈ {0, 1}∗. A function f ∈ fP is encoded to fC ∈ RMP

2 , defined
by domC(fC) = code(Dom(f)#), so Dom(fC) = code(Dom(f)) 11 {0, 1}∗ ; and

fC(code(x#) v) = code(f(x) #) v,

for all x ∈ Dom(f) and v ∈ {0, 1}∗; equivalently, fC(code(x) 11 v) = code(f(x)) 11 v. Then for every
L ⊆ {0, 1}∗, code(L#) is a prefix code, which belongs to P iff L is in P. And f ∈ fP iff fC ∈ RMP

2 .
The transformation f 7→ fC is a isomorphic embedding of fP into RMP

2 ; moreover, fC is regular in
RMP

2 iff f is regular in fP. From here on, the alphabet denoted by A will always be {0, 1}.
In [2] (Section 4) we introduced a notion of polynomial program for Turing machines with built-in

polynomial counter (for input balance and time-complexity). These programs form a machine model
that characterizes the functions in fP. For a polynomial program w, we let φw ∈ fP denote the function
computed by this program. For every polynomial q of the form q(n) = ank+a (where a, k are positive
integers), we constructed an evaluation map evCq ∈ fP such that for every polynomial program w with
built-in polynomial pw(n) ≤ q(n) (for all n ≥ 0), and all x ∈ A∗,

evCq
(

code(w) 11 x
)

= code(w) 11 φw(x)

1The terminology varies, depending on the field. In semigroup theory f ′ such that ff ′f = f is called a semi-inverse
or a pseudo-inverse of f , in numerical mathematics f ′ is called a generalized inverse, in ring theory and in category
theory it’s called a weak inverse. In semigroup theory the term “inverse” of f is only applied to f ′ if f ′ff ′ = f ′ holds
in addition to ff ′f = f . It is easy to see that if ff ′f = f then f ′ff ′ (= v) satisfies fvf = f and vfv = v.
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if x ∈ Dom(φw); if x 6∈ Dom(φw) then evCq
(

code(w) 11x
)

is undefined. We used evCq , with any
polynomial q of degree ≥ 2 with large enough coefficient, to prove the following: First, fP is finitely
generated (Theorem 4.5 in [2]). Second, evCq is complete in fP with respect to inversive polynomial
reduction (Section 5 of [2]). Later in this paper (Def. 2.4 and following) we define completeness and
various reductions for RMP

2 , along the same lines as for fP.
Note that fP and RMP

2 , in their entirety, do not have evaluation maps that belong to fP, respec-
tively RMP

2 (since such maps would not have polynomially bounded complexity). That is the reason
why we restrict ev and evR to complexity ≤ q(.), and why we need precise machine models for fP and
RMP

2 (as opposed to more intuitive “higher-level” models).

In Section 2 we define a machine model that characterizes the functions in RMP
2 ; and for any large

enough polynomial q we construct evaluation maps evRC
q and evRCC

q for the functions in RMP
2 that

have balance and time-complexity ≤ q. We prove that evRCC
q is complete in RMP

2 (and in fP) with

respect to inversive Turing reduction. In Section 3 we prove that RMP
2 is not finitely generated, and in

Section 4 we show that infinite generation has some complexity consequences, i.e., infinite generation
can be used for a time-complexity lower-bound argument.

2 Machine model and evaluation maps for RMP
2

The evaluation map evCq : code(w) 11 x 7−→ code(w) 11 φw(x), that we constructed for fP in [2], works

in particular when φw ∈ RMP
2 (provided that φw has time-complexity and input-balance ≤ q). But

evCq is not a right-ideal morphism and, moreover, evCq can evaluate functions that are not in RMP
2 . We

want to construct an evaluation map that belongs to RMP
2 , and that evaluates exactly the elements of

RMP
2 that have balance and complexity ≤ q. In [2] we constructed a machine model for fP, namely a

class of Turing machines with built-in polynomial counter (for controlling the time-complexity and the
input-balance). We will refine these Turing machines in order to obtain a machine model for accepting
the right ideals in P, and for computing the functions in RMP

2 .
We will consider deterministic multi-tape Turing machines with input-output alphabet A, with

a read-only input tape, and a write-only output tape. Moreover we assume that on the input tape
and on the output tape, the head can only move to the right, or stay in place (but cannot move
left). We assume that the input tape has a left endmarker #, and a right endmarker B (the blank
symbol). At the beginning of a computation of such a machine M on input z ∈ A∗, the input tape
has content # z B, with the input tape head on # ; initially, all other tapes are blank (i.e., they are
filled with infinitely many copies of the letter B). The output tape does not need endmarkers (since
it is write-only). We assume that M has a special output state qout, and that M only goes to state
qout when the output is complete; the output state is a halting state (i.e., M has no transition from
state qout). An important convention for a Turing machine M with non-total input-output function
fM is the following: If M on input x halts in a state that is not qout, then there is no output (even if
the output tape contains a non-blank word). So, in that case, fM(x) is undefined. The content of the
output tape is considered unreadable, or hidden, until the output state qout is reached.

This kind of Turing machine can compute any partial recursive function (the restrictions on the
input and output tapes do not limit the machine, because of the work-tapes). To compute a function
in fP, we add a built-in polynomial (used as a bound on input balance and time-complexity); see
Section 4 in [2].

In order to obtain a machine model for the functions in RMP
2 the above Turing machines (with

built-in polynomial) will be restricted so that they compute right-ideal morphisms of A∗. This is done
in two steps: First, sequential functions and sequential Turing machines are introduced. From this it
is easy to obtain a class of Turing machines that compute right-ideal morphisms (which are a special
kind of sequential functions). Recall that by “function” we mean partial function. By definition, a
function f : A∗ → A∗ is sequential iff
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for all x1, x2 ∈ Dom(f): if x1 is a prefix of x2 then f(x1) is a prefix of f(x2).

Obviously, every right-ideal morphism is a sequential function.
A sequential Turing machine is a deterministic multi-tape Turing machine M (with special input

tape and special output tape and output state, according to the conventions above), with input-output
function fM , such that the following holds.

For every x ∈ Dom(fM) and every word z ∈ A∗: in the computation of M on input xz,
the input-tape head does not start reading z B until fM (x) has been written on the output tape.

To “read a letter ℓ” (in zB) means to make a transition whose input letter is ℓ. So, the input tape
has content #xz B, with the input-tape head on the left-most letter of zB (but no transition has been
made on that letter yet), and the output tape now has content fM (x). Of course, at this moment the
computation of M on input xz is not necessarily finished; the state is not necessarily qout, the output
might still grow, and qout might be reached eventually, or not; if qout is never reached, there is no final
output.

The sequential Turing machines form a machine model for the partial recursive sequential functions.
If we let the machines have a built-in polynomial we obtain a machine model for the sequential functions
in fP.

Finally, to obtain a machine model for the functions in RMP
2 we take the sequential Turing

machines with built-in polynomial, with the following additional condition.

For every x ∈ Dom(fM) and every word z ∈ A∗: in the computation of M on input xz,
once fM(x) has been written on the output tape (after x was read on the input tape),
the remaining input z is copied to the output tape; at this point the state qout is reached.

We call such a machine an RMP
2 -machine.

The following shows how, from an fP-machine for a function f , an RMP
2 -machine for f can be

constructed, provided that f ∈ RMP
2 .

Let us first consider right ideals in P, rather than functions. For any polynomial program w for
a Turing machine Mw that accepts a language L ∈ P, we construct a new polynomial program v
describing a Turing machine Mv that behaves as follows: On any input x ∈ {0, 1}∗, Mv successively
examines prefixes of x until it finds a prefix, say p, that is accepted by Mw; Mv does not read the letter
of x that comes after p until it has decided that p 6∈ L. As soon as Mv finds a prefix p of x such that
p ∈ L, Mv accepts the whole input x. If Mw accepts no prefix of x, Mv rejects x. Thus, Mv accepts
LA∗ (the right ideal generated by L); if L is a right ideal then LA∗ = L. If Mw has time-complexity
≤ T (.) (a polynomial) then Mv has time-complexity ≤ T (.)2.

Let us now consider functions in RMP
2 . Given any polynomial program w for a function φw ∈ fP,

we construct a new polynomial program v such that Mv, on input x, successively examines all prefixes
of x until it finds a prefix p in Dom(φw); let φw(p) = y. Then, on input x, the machine Mv outputs y z,
where z is such that x = p z. Note that since p is the shortest prefix of x such that p ∈ Dom(φw), we
actually have p ∈ domC(φw) (if Dom(φw) is a right ideal). The machineMv does not read the letter of x
that comes after a prefix p until it has decided that p 6∈ Dom(φw) or p ∈ domC(φw). Hence, the function
computed by Mv is in RMP

2 . This construction describes a transformation f ∈ fP 7−→ fpref ∈ RMP
2 ,

where fpref is defined as follows:

fpref(x) = f(p) z,

where x = p z, and p is the shortest prefix of x that belongs to Dom(f); so, p ∈ domC(fpref). Thus for
every f ∈ fP we have: f ∈ RMP

2 iff fpref = f .

Based on RMP
2 -machines we can construct evaluation maps for RMP

2 . Let q be a polynomial
where q(n) = ank + a for some integers a, k ≥ 1. We define evRC

q , as follows:

evRC
q

(

code(w) 11 x
)

= code(w) 11 φw(x),

for all RMP
2 -programs w with built-in polynomial pw ≤ q, and for all x ∈ Dom(φw). The details of

the construction are the same as for evCq ; see Section 4 in [2]. Although evRC
q belongs to RMP

2 and
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evaluates all RMP
2 -programs w with built-in polynomial ≤ q, we will prove in Theorem 4.3 that the

complexity of evRC
q is higher than q.

The following doubly coded evaluation function is usually more useful for RMP
2 -programs. It is

defined by

evRCC
q

(

code(w) 11 code(u) 11 v
)

= code(w) 11 code(φw(u)) 11 v,

when u ∈ domC(φw), v ∈ A∗, and w is as before.

To give a relation between evRC
q and evRCC

q we will use the following partial recursive right-ideal

morphism γ, defined for very RMP
2 -program w ∈ A∗ and every x ∈ Dom(φw) by

γ
(

code(w) 11x
)

= code(w) 11 code(u) 11 v,

where x = uv, and u is the shortest prefix of x such that u ∈ Dom(φw); equivalently, u ∈ domC(φw).
When x 6∈ Dom(φw), γ

(

code(w) 11x
)

is undefined. Essentially, γ finds the shortest prefix of x that
belongs to Dom(φw) (or equivalently, to domC(φw)). The function γ can be evaluated by examining
successively longer prefixes of x until a prefix u ∈ Dom(φw) is fund. So γ is computable with recursive
domain, when w ranges over RMP

2 -programs.
For any fixed RMP

2 -program w, let γw be γ restricted to this w, i.e., γw = γ|code(w) 11A∗ . In other
words, Dom(γw) = code(w) 11 Dom(φw), and

γw(code(w) 11uv) = code(w) 11 code(u) 11 v

when u ∈ domC(φw), v ∈ A∗. Similarly we define γow by Dom(γow) = Dom(φw) (as opposed to
code(w) 11 Dom(φw)), and

γow(uv) = code(w) 11 code(u) 11 v

when u ∈ domC(φw), v ∈ A∗. So, Im(γow) = Im(γw) = code(w) 11 domC(φw) 11A
∗.

Then γw and γow belong to RMP
2 for every fixed w. But γ itself is not polynomial-time computable,

since it has to work for all possible RMP
2 -programs w.

Another restricted form of γ that belongs to RMP
2 is obtained by choosing a fixed polynomial q,

and defining γq as the restriction of γ to the set

{code(w) 11x : w is a RMP
2 -program with built-in polynomial ≤ q, and x ∈ Dom(φw)}.

Hence, γq ∈ RMP
2 .

We also define the functions π0, π1, ρ0, ρ1 ∈ RMP
2 by πa(x) = ax, ρa(ax) = x, for all x ∈ {0, 1}∗

and a ∈ {0, 1}. For a word w = an . . . a1 with ai ∈ {0, 1} we denote πan ◦ . . . ◦ πa1 by πw, and
ρan ◦ . . . ◦ ρa1 by ρw.

Then we have: γow = γw ◦ πcode(w) 11, and γw = γow ◦ ρcode(w) 11.

Another important function in RMP
2 is the decoding function, defined for any u, v ∈ A∗ by

decode(code(u) 11 v) = uv,

so domC(decode) = {00, 01}∗ 11, and imC(decode) = {ε}. We also define a second-coordinate decoding
function, for all u1, u2, v ∈ A∗, by

decode2
(

code(u1) 11 code(u2) 11 v
)

= code(u1) 11 u2 v.

So, decode2 ∈ RMP
2 , domC(decode2) = {00, 01}∗ 11 {00, 01}∗ 11, and imC(decode2) = {00, 01}∗ 11.

Now we can formulate a relation between evRC
q and evRCC

q :

evRC
q = decode2 ◦ evRCC

q ◦ γq.

In order to show that evRCC
q is complete with respect to inversive reduction in RMP

2 , we will

adapt the padding and unpadding functions (defined for fP in [2], Section 4) to RMP
2 . Although for
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RMP
2 we keep the same names as for the corresponding (un)padding functions in fP, the functions

are slightly different. The padding procedure begins with the function expand(.), defined by

expand
(

code(w) 11 code(u) 11 v
)

= code(ex(w)) 11 04 |code(u)|
2+8 |code(u)|+2 01 code(u) 11 v,

for all u ∈ domC(φw), v ∈ A∗, and RMP
2 -programs w. The word 04 |code(u)|

2+8 |code(u)|+2 01 is of the
form code(s) for a word s ∈ 0∗1; and 04 |code(u)|

2+8 |code(u)|+2 01 code(u) is also a code word, namely
code(su). Since 0∗1 and its subset (00)∗ 01 are prefix codes, code(s) = 04 |code(u)|

2+8 |code(u)|+2 01 is
uniquely determined as a prefix of code(su).

Here, ex(w) is an RMP
2 -program obtained from w so that

φex(w)

(

(00)h 01 code(u) 11 v
)

= (00)h 01 code(φw(u)) 11 v,

for all u ∈ domC(φw), v ∈ A∗, and h > 0. Moreover, if n 7→ ank + a is the built-in polynomial of the
program w then the built-in polynomial of ex(w) is

pe(n) = ae n
⌈k/2⌉ + ae, with ae = max{12, ⌈a/2k⌉+ 1}.

The detailed justification of the numbers used in the definition of expand and ex (as well as reexpand,
recontr, and contr below) is given in [2], Section 4.

It is important that expand uses the prefix u of x for padding (in the format code(u) 11, where
u ∈ domC(φw)). If the whole input x were used for computing the amount of padding, expand would
not be a right-ideal morphism. This is the reason why we introduce γw or γow, in order to isolate the
prefix u ∈ domC(φw) of x.

We iterate expansion (padding) by applying the following function, where ex(.) is as above:

reexpand
(

code(ex(z)) 11 0k 01 code(u) 11 v
)

= code(ex(z)) 11 04k
2+8k+2 01 code(u) 11 v,

where k > 0, u, v ∈ A∗, and z is any RMP
2 -program; k is even in the context where reexpand will be

used.
Repeated contraction (unpadding) is carried out by applying the following function, for k > 0:

recontr
(

code(ex(z)) 11 (00)k 01 code(y) 11 v
)

= code(ex(z)) 11 (00)max{1, ⌊
√
k/2⌋−1} 01 code(y) 11 v;

note that max{1, ⌊
√
k/2⌋ − 1} ≥ 1.

The unpadding procedure ends with the application of the function

contr
(

code(ex(z)) 11 (00)k 01 code(y) 11 v
)

= code(z) 11 code(y) 11 v,

if 2 ≤ |(00)k | = 2k ≤ 4 |code(y)|2 + 8 |code(y)|+ 2.

The functions expand(.), ex(.), reexpand(.), recontr(.), and contr(.), are undefined in the cases where
no output has been specified above.

Lemma 2.1 Let q2 be the polynomial defined by q2(n) = 12n2 + 12. For any φw ∈ RMP
2 , where w

is a RMP
2 -program with built-in polynomial q (of the form q(n) = ank + a for positive integers a, k),

we have for all u ∈ domC(φw), v ∈ A∗:

(⋆) φw(uv)

= decode ◦ ρcode(w) 11 ◦ contr ◦ recontr2m ◦ evRCC
q2 ◦ reexpandm ◦ expand ◦ γow(uv)

= ρcode(w) 11 ◦ decode2 ◦ contr ◦ recontr2m ◦ evRCC
q2 ◦ reexpandm ◦ expand ◦ γow(uv),

where m = ⌈log2(a+ k)⌉.
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Proof. This is similar to the proof of Prop. 4.5 in [2], with a few modifications. For u ∈ domC(φw),
v ∈ A∗,

uv
γo
w7−→ code(w) 11 code(u) 11 v

expand7−→ code(ex(w)) 11 04 |code(u)|
2+8 |code(u)|+2 01 code(u) 11 v

reexpandm7−→ code(ex(w)) 11 0Nm+1 01 code(u) 11 v,

where N1 = 4 |code(u)|2 + 8 |code(u)| + 2, so |0N1 01| = (2 (|code(u)| + 1))2; by induction, Ni =
4N2

i−1 + 8Ni−1 + 2 for 1 < i ≤ 2m+ 1, and |0Ni 01| = (2 (Ni−1 + 1))2. The above string, which will
now be the argument of evCC

q2 , has length > Nm+1 +2+ |code(u)|, which is much larger than the time

it takes to simulate the machine with program w on input u. So evRCC
q2 can now be applied correctly.

Continuing the calculation,

evRCC
q27−→ code(ex(w)) 11 0Nm+1 01 code(φw(u)) 11 v

recontr2m7−→ code(w) 11 00 01 code(φw(u)) 11 v.

We use 2m in recontr2m because φw(u) could be much shorter than u; but because of polynomial input
balance, |u| ≤ pw(|φw(u)|). Note that doing more input padding than necessary does not do any harm;
and recontracting (unpadding) more than needed has no effect (by the definition of recontr). Hence
contr can now be applied correctly. We complete the calculation:

contr7−→ code(w) 11 code(φw(u)) 11 v
decode27−→ code(w) 11 φw(u) v

ρcode(w) 117−→ φw(u) v. ✷

Lemma 2.2. RMP
2 has the following infinite generating set:

{decode, ρ0, ρ1, π0, π1, contr, recontr, evRCC
q2 , reexpand, expand}

∪ {γw : w is any RMP
2 -program}.

Here, decode can be replaced by decode2. Yet another infinite generating set of RMP
2 is

{ρ0, ρ1, π0, π1} ∪ {evRC
q : q is any polynomial of the form q(n) = ank + a with a, k ∈ N≥1}.

Proof. The first infinite generating set follows from Lemma 2.1. Recall that γow = γw ◦ πcode(w) 11.
The second generating set follows in a straightforward way from the proof of Prop. 4.5 in [2]. ✷

Proposition 2.3 RMP
2 is generated by a set of regular elements of RMP

2 .

Proof. The generators ρ0, ρ1, π0, π1 are easily seen to be regular. Thus, using the second infinite
generating set in Lemma 2.2, it is enough to factor evRC

q into regular elements. We have:

evRC
q = ρ2,q ◦ Eq,

where Eq and ρ2,q are defined as follows: For every RMP
2 -program w with built-in polynomial ≤ q,

and every u ∈ domC(φw) and v ∈ A∗,

Eq

(

code(w) 11 code(u) 11 v
)

= code(w) 11 code(u) 11 code(φw(u)) 11 v;

and for all z, y, x, v ∈ A∗ such that |x| ≤ q(|y|),
ρ2,q

(

code(z) 11 code(x) 11 code(y) 11 v
)

= code(z) 11 code(y) 11 v.

The functions are undefined otherwise. It is easy to see that Eq and ρ2,q have polynomial-time inversion
algorithms (i.e., they are regular), and belong to RMP

2 . ✷

We will show now that evRCC
q2 is complete in RMP

2 and in fP, with respect to a certain “inversive
reduction”. We need to recall some definitions from [2] concerning reductions between functions in fP

or RMP
2 , and in particular, reductions that “preserve one-wayness” (inversive reductions).
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Definition 2.4 Let f1, f2 : A
∗ → A∗ be two polynomially balanced right-ideal morphisms.

(1) We say that f2 simulates f1 (denoted by f1 4 f2) iff there exist α, β ∈ RMP
2 such that f1 = β◦f2◦α.

(2) We have a polynomial-time Turing simulation of f1 by f2 (denoted by f1 4T f2) iff f1 can be
computed by an oracle RMP

2 -machine that can make oracle calls to f2; such oracle calls can, in
particular, be calls on the membership problem of Dom(f2).

In the above definition, f1, f2 need not be polynomial-time computable.
Since RMP

2 is J 0-simple (Prop. 2.7 in [2]), every f1 ∈ RMP
2 is simulated by every f2 ∈ RMP

2 −{0}
(for each of the above simulations).

Definition 2.5 (Inversive reduction). If 4X is a simulation between right-ideal morphisms (e.g.,
as in the previous definition) then the corresponding inversive reduction is defined as follows. We say
that f1 inversively X-reduces to f2 (denoted by f1 6inv,X f2) iff
(1) f1 4X f2, and
(2) for every inverse f ′

2 of f2 there exists an inverse f ′
1 of f1 such that f ′

1 4X f ′
2; here, f ′

2 and f ′
1

range over all polynomially balanced right-ideal morphisms A∗ → A∗.

Note that J 0-simplicity (Prop. 2.7 in [2]) does not apply for inversive reduction since f ′
2, f

′
1 do not range

over just RMP
2 . One easily proves the following about polynomially balanced right-ideal morphisms

f1, f2 (see [2], Section 5):
If f1 6inv,T f2 and f2 ∈ RMP

2 , then f1 ∈ RMP
2 ; if, in addition, f2 is regular, then f1 is regular

(equivalently, if, in addition, f1 is one-way, then f2 is one-way).

Definition 2.6 A polynomially balanced right-ideal morphism f0 is complete in a set S (of right-ideal
morphisms) with respect to an (inversive) reduction 6inv,X iff f0 ∈ S, and for all φ ∈ S: φ 6inv,X f0.

See Section 5 of [2] for more details and properties of these simulations and reductions; in [2] the
focus was on fP, whereas here we concentrate on RMP

2 . The simulations in Def. 2.4 are similar to the
standard notions of reductions between decision problems. The concept of inversive reduction was first
introduced in [2]; it is the appropriate notion of reduction between functions when one-wayness is to
be preserved under upward reduction (and regularity is to be preserved under downward reduction).

In the above definitions we only refer to polynomially balanced inverses; this is justified by the
following Proposition, according to which “balanced functions have balanced inverses”.

Proposition 2.7 Suppose f is a right-ideal morphism with balance ≤ q(.) (where q(.) is a polyno-
mial), and f has an inverse f ′

1 with time-complexity ≤ T (.). Then f has an inverse f ′ with balance
≤ q and time-complexity ≤ T (.) + c q(.) (for some constant c > 1). The inverse f ′ can be chosen as
a restriction of f ′

1.

Proof. Let f ′ be the restriction of f ′
1 to the set

{y ∈ Dom(f ′
1) : |y| ≤ q(|f ′

1(y)|) and |f ′
1(y)| ≤ q(|y|)}.

Then f ′ obviously has balance ≤ q. Note that since f ′
1 is an inverse of f we have Im(f) ⊆ Dom(f ′

1).
To show that f ′ is an inverse of f it is sufficient to check that the domain of f ′ contains Im(f). Let
y = f(x) ∈ Im(f) for some x ∈ Dom(f). Then f(f ′

1(y)) = y, since f ′
1 is an inverse.

Checking |y| ≤ q(|f ′
1(y)|): |y| = |f(f ′

1(y))| ≤ q(|f ′
1(y)|; the inequality holds since q is a balance for

f on input f ′
1(y).

Checking |f ′
1(y)| ≤ q(|y|): |f ′

1(y)| ≤ q(|f(f ′
1(y))|) since q is a balance for f on input f ′

1(y); and
q(|f(f ′

1(y))|) = q(|y|) since f(f ′
1(y)) = y.

To find a time-complexity bound for f ′, we first compute f ′
1(y) in time ≤ T (|y|); thereby we also

verify that y ∈ Dom(f ′
1). To check whether y is in the domain of f ′ we first compare |y| and |f ′

1(y)| in
time ≤ |y|+ 1.
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Checking |y| ≤ q(|f ′
1(y)|): If |y| ≤ |f ′

1(y)| then we automatically have |y| ≤ q(|f ′
1(y)|). If |y| ≥

|f ′
1(y)| we compute q(|f ′

1(y)|) in time O(q(|f ′
1(y)|)) (≤ O(q(|y|))), by writing the number |f ′

1(y)| in
binary, and then evaluating q (see Section 4 of [2] for a similar computation). Then we check |y| ≤
q(|f ′

1(y)|) in time ≤ |y| + 1. Checking |f ′
1(y)| ≤ q(|y|) is done in a similar way, in time ≤ O(q(|y|)) +

|y|+ 1. ✷

Theorem 2.8 The map evRCC
q2 is complete for RMP

2 with respect to inversive Turing reduction.

Proof. Lemma 2.1 provides the following simulation of φw by evRCC
q2 :

φw = decode ◦ ρcode(w′) 11 ◦ contr ◦ recontr2m ◦ evRCC
q2 ◦ reexpandm ◦ expand ◦ γow .

To obtain an inversive Turing simulation, let e′ be any inverse of evRCC
q2 . Slightly modifying the proof

of Prop. 5.6 in [2], we apply e′ to any string of the form

code(ex(w)) 11 0Nm+1 11 code(p) 11 z,

where p ∈ φw(domC(φw)), and z ∈ A∗; then for any p ∈ imC(φw) (⊆ φw(domC(φw))), and z ∈ A∗:

e′
(

code(ex(w)) 11 0Nm+1 11 code(p) 11 z
)

= code(ex(w)) 11 0Nm+1 11 code(t) 11 z,

for some t ∈ φ−1
w (p) ⊆ Dom(φw). Based on e′ we now construct an inverse φ′

w of φw such that φ′
w 4T e′;

for any y ∈ Im(φw) we define

φ′
w(y) = decode ◦ ρcode(w′) 11 ◦ contr ◦ recontr2m ◦ e′ ◦ reexpandm ◦ expand ◦ δow(y).

Here, δow(y) is defined by

δow(y) = code(w) 11 code(p) 11 z,

when y = pz with p ∈ imC(φw), z ∈ A∗. So, δow(.) is similar to γow(.), except that δ
o
w(.) uses imC(φw),

whereas γow(.) uses domC(φw). We saw that γow ∈ RMP
2 ; but unless P = NP, δow will not be in RMP

2

in general.
The value δow(y) can be computed by an RMP

2 -machine M that makes oracle calls to Dom(e′)
and to e′ as follows. On input y, M considers all prefixes of y of increasing lengths, p1, . . . , pk,
until pj ∈ Im(φw) is found. Since pj is the first prefix in Im(φw), we have pj ∈ imC(φw) and
δow(y) = code(w) 11 code(pj) 11 z. To test for each pi whether pi ∈ Im(φw), M pads pi to produce
0Nm+1 11 code(pi); if pi ∈ Im(φw) then e′

(

code(ex(w)) 11 •
)

is defined on input 0Nm+1 11 code(pi).
Thus, if code

(

ex(w)) 11 0Nm+1 11 code(pi)
)

6∈ Dom(e′), then pi 6∈ Im(φw). On the other hand, if
code

(

ex(w)) 11 0Nm+1 11 code(pi)
)

∈ Dom(e′), then let ti ∈ φ−1
w (pi) be such that

e′
(

code(ex(w)) 11 0Nm+1 11 code(pi)
)

= code(ex(w)) 11 0Nm+1 11 code(ti).

One oracle call to e′ yields this, and hence ti. Then we can use φw to check whether ti ∈ Dom(φw);
and this holds iff pi ∈ Im(φw). This way, M can check whether pi ∈ Im(φw). Thus, if y ∈ Im(φw), M
will find pj ∈ Im(φw). When y 6∈ Im(φw), M produces no output; this doesn’t matter since we do not
care how φ′

w is defined outside of Im(φw).
Once δow(y) is known, the remaining simulation

decode ◦ ρcode(w′) 11 ◦ contr ◦ recontr2m ◦ e′ ◦ reexpandm ◦ expand
of e′, applied to δow(y) = code(w) 11 code(p) 11 z, yields φ′

w(y).
The function φ′

w is an inverse of φw: Indeed, for x ∈ Dom(φw), we have φw(x) = pz for some
p ∈ imC(φw), z ∈ A∗. Then

reexpandm ◦ expand ◦ δow(pz) = code(ex(w)) 11 0Nm+1 11 code(p) 11 z;

and applying e′ then yields

code(ex(w)) 11 0Nm+1 11 code(t) 11 z,
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for some t ∈ φ−1
w (p). Applying

decode ◦ ρcode(w′) 11 ◦ contr ◦ recontr2m

now yields tz. Finally, φw(tz) = pz, since t ∈ φ−1
w (p). So, φwφ

′
wφw(x) = φwφ

′
w(pz) = φw(tz) = pz =

φw(x). ✷

We show next that evRCC
q2 is not only complete for RMP

2 , but for all of fP.

Proposition 2.9 The map evRCC
q2 (∈ RMP

2 ) is complete for fP with respect to 6inv,T.

Proof. By Prop. 5.6 in [2], evCq2 is complete in fP for inversive simulation. By Prop. 5.17 in [2],

evCq2 6inv (evCq2)
C . Moreover, (evCq2)

C 6inv,T evRCC
q2 ; indeed, (evCq2)

C ∈ RMP
2 (since f 7→ fC maps into

RMP
2 ), and we just saw that evRCC

q2 is complete in RMP
2 . Hence evCq2 6inv (evCq2)

C 6inv,T evRCC
q2 . ✷

3 Non-finite generation

In [2] we proved that fP is finitely generated, and we left open the question whether RMP
2 is also

finitely generated. We will now answer this question negatively. We will use the following general
compactness property: If a semigroup S is finitely generated, and if Γ is any infinite generating set of
S, then S is generated by some finite subset of this set Γ.

Theorem 3.1. RMP
2 is not finitely generated.

Proof. We saw that RMP
2 is generated by the infinite set

{ρ0, ρ1, π0, π1, decode2, contr, recontr, evRCC
q2 , reexpand, expand}

∪ {γw : w is an RMP
2 -program}.

Let us assume, by contradiction, that RMP
2 is finitely generated. Then a finite generating set can be

extracted from this infinite generating set, so RMP
2 is generated by

Γfin = {ρ0, ρ1, π0, π1, decode2, contr, recontr, evRCC
q2 , reexpand, expand} ∪ {γi : i ∈ F},

where F is some finite set of RMP
2 -programs. So for every γw there is a word in Γ∗

fin that expresses
γw as a finite sequence of generators. Recall that Dom(γw) = code(w) 11 Dom(φw), and for any
x ∈ Dom(φw),

γw(code(w) 11x) = code(w) 11 code(u) 11 v,

where x = uv and u ∈ domC(φw).

The proof strategy will consist in showing that there are infinitely many functions γw that do not
have a correct representation over Γfin. More precisely, for all RMP

2 -programs w and all u ∈ domC(φw),
we have γw(code(w) 11u) = code(w) 11 code(u) 11; so γw(code(w) 11u) ∈ {00, 01}∗ 11 {00, 01}∗ 11. On
the other hand, we will show that there exist (infinitely many) RMP

2 -programs w such that for every
X ∈ (Γfin)

∗ that represents γw, there exist (infinitely many) u ∈ domC(φw) such that: X(code(w) 11u)
= code(w) 11 code(u1) 11u2, where u2 is non-empty; so, X(code(w) 11u) 6∈ {00, 01}∗ 11 {00, 01}∗ 11.
Thus we obtain a contradiction.

We consider the RMP
2 -programs w such that domC(φw) satisfies:

(1) no word in domC(φw) contains 11 as a subsegment;
(2) for all i ∈ F , domC(φi) 6= domC(φw);
(3) for any u ∈ domC(φw) and any integer n > 0, there exists v ∈ domC(φw) of length |v| > n such
that u = u0c, u0 is a prefix of v, and |c| ≤ 4. Equivalently:
(

∀u ∈ domC(φw)
)(

∀n > 0
)(

∃v ∈ domC(φw), |v| > n
)(

∃u0, c, z ∈ A∗) [ v = u0z, u = u0c, |c| ≤ 4 ].
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We can picture this as a path in the tree of A∗, labeled by u and ending at vertex u; at vertex u0
along this path, at distance ≤ 4 from vertex u, a second path branches off and ends at vertex v (of
length |v| > n).

The following family of examples shows that there exist infinitely many RMP
2 -programs w that

satisfy properties (1)-(3). In each of these examples (parameterized by a ∈ {0, 1}∗) we have

domC(φw) = {code(an) 0010 : n > 0},
where a ∈ {0, 1}∗ is any fixed non-empty word (depending on w), chosen so that domC(φw) 6= domC(φi)
for all i ∈ F (thus property (2) holds). Any word a that is long enough will work; indeed, for
different words a the above prefix codes are different, whereas F is finite. Property (1) follows from
the definition of code (namely, code(0) = 00, code(1) = 01). Property (3) holds because for every
u = code(am) 0010 and every n > 0, we can take u0 = code(am) and v = code(an+m) 0010. The set
{code(an) 0010 : n > 0} is a regular language, with regular expression (code(a))+ 0010.

Let X ∈ Γ∗
fin be a representation of γw, where w is any RMP

2 -program from the family of examples
above with properties (1)-(3). We will consider certain suffixes Si of X, over Γfin.

Let S0 be the shortest suffix of X such that for all u ∈ domC(φw), S0(code(w) 11u) is of the form
code(x) 11 code(y) 11 z ∈ {00, 01}∗ 11 {00, 01}∗ 11 {0, 1}∗ . Then S0 exists since X itself (representing
γw) maps code(w) 11u to code(w) 11 code(u) 11 ∈ {00, 01}∗ 11 {00, 01}∗ 11 {0, 1}∗ .

Inductively we define S1, S2, . . . , Si, . . . , where Si is the shortest suffix of X that has Si−1 as a
strict suffix, and such that for all u ∈ domC(φw) we have:

Si

(

code(w) 11u
)

∈ {00, 01}∗ 11 {00, 01}∗ 11 {0, 1}∗ .
So, Si

(

code(w) 11u
)

is of the form code(w1) 11 code(u1) 11u2 with w1, u1, u2 ∈ A∗. Then X = SN

for some N ≥ 0 (and |X| > N).

Theorem 3.1 now follows from the next Lemma, according to which there are (infinitely many)
u ∈ domC(φw) such that SN (code(w) 11u) = code(w) 11 code(u1) 11u2, with u2 non-empty. On
the other hand, X = SN , and X represents γw, hence by the definition of γw we have for every
u ∈ domC(φw): SN (code(w) 11u) = code(w) 11 code(u) 11; so u2 is empty. Thus, the assumption
that X (over the finite generating set Γfin) represents γw, leads to a contradiction.

Lemma 3.2 Let γw be such that domC(φw) = {code(an) 0010 : n > 0} for some word a ∈ {0, 1}∗,
chosen so that the program w satisfies properties (1)-(3). Let X be a word over Γfin that represents
γw, and let |X| be the length of X over Γfin. Let S0, . . . , SN be the suffixes of X defined above, with
SN = X. Then there exist ℓ and n with ℓ > n > 0 such that for all i = 0, . . . , N and all u ∈ domC(φw)
with |u| ≥ ℓ:

Si(code(w) 11u) = code(w1) 11 code(u1) 11u2,

for some w1, u1, u2 ∈ A∗. Moreover, u2 has a non-empty common suffix with u, and this common
suffix has length at least n.

Proof. We have for all u ∈ domC(φw): Si(code(w) 11u) = code(w1) 11 code(u1) 11u2, for some
w1, u1, u2 ∈ A∗. We want to show that there is ℓ such that for all u ∈ domC(φw) with |u| ≥ ℓ: u2 has
a non-empty (sufficiently long) suffix in common with u; the number n is an auxiliary parameter. We
take u of the form u = code(am) 0010 and use induction on i = 0, . . . , N .

Proof for S0: The only generators from Γfin that can occur in S0 are π0, π1, ρ0, ρ1 and γj (for j ∈ F ).
Indeed, the other generators in Γfin (namely decode2, contr, recontr, evR

CC
q2 , reexpand, expand) are only

applicable to inputs of the form code(x) 11 code(y) 11 z; so, S0 would end before a generator in {decode2,
contr, recontr, evRCC

q2 , reexpand, expand} can be applied. Moreover, S0 cannot start with a generator

in {decode2, contr, recontr, evRCC
q2 , reexpand, expand}; indeed, for all inputs code(w) 11u ∈ domC(X),

u = code(am) 0010 contains no 11, so these generators are not defined on any element of domC(X).
So, S0 is over {π0, π1, ρ0, ρ1} ∪ {γj : j ∈ F}.
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The actions of π0, π1, ρ0, ρ1 can change an input in at most |S0| positions at the left end of the
input, so these actions preserve a common suffix u2 and u of length ≥ |u| − |S0|. Thus, if S0 consists
only of instances of π0, π1, ρ0, ρ1, the Lemma holds for S0 if |u| ≥ ℓ ≥ n+ |S0| and n > 0.

Suppose now that S0 contains γj for some j ∈ F . Then (if m > |S0|/|a|), instances of π0, π1, ρ0, ρ1
will transform the input u = code(w) 11 code(am) 0010 into a word code(x) 11 s code(ak) 0010 (for
some x, s ∈ A∗, k > 0), such that γj can be applied. This action changes an input in < |S0| positions
at the left end of the input. Since γj is assumed to be applicable now, we must also have x = j and
s = y0z for some y0 ∈ domC(φj), z ∈ A∗. Then the output of γj is γj

(

code(j) 11 s code(ak) 0010
)

= code(j) 11 code(y0) 11 z code(a
k) 0010, thus the common suffix of u2 and u could decrease by length

≤ |y0| under the action of γj. So we let ℓ ≥ n + |S0| + |y0| and n > 0. Also, at most one γj (with
j ∈ F ) occurs in S0, since after γj the output is of the form code(w1) 11 code(u1) 11u2, which marks
the end of the action of S0. This proves the Lemma for S0.

Inductive step “Si → Si+1”, for 0 ≤ i < N : By induction we assume that for all u ∈ domC(φw)
with |u| ≥ ℓ, we have Si(code(w) 11u) = code(w1) 11 code(u1) 11u2 for some w1, u1, u2 ∈ A∗, where u2
and u have a common suffix of length ≥ n (> 0). Let us write Si+1 = Ti+1Si; then Ti+1 is non-empty
(by the definition of Si+1). We also let T0 = S0.

Claim 1: If Ti+1 contains a generator g ∈ {contr, recontr, evRCC
q2 , reexpand, expand, decode2}, then g

is the first (i.e., rightmost) letter of Ti+1, and g occurs only once.
Indeed, if g were applicable later in Ti+1, the output of the generator preceding g would be of the

form code(w1) 11 code(u1) 11u2, so Si+1 would have ended before g was applied.

Claim 2: If Ti+1 contains a generator g ∈ {contr, recontr, evRCC
q2 , reexpand, expand} ∪ {γj : j ∈ F},

then g is the last (i.e., leftmost) letter of Ti+1, and g occurs only once.
Indeed, such a generator outputs a word of the form code(w1) 11 code(u1) 11u2. So, Si+1 ends after

such a generator.

As a consequence of Claims 1 and 2, if Ti+1 contains a generator g ∈ {contr, recontr, evRCC
q2 ,

reexpand, expand}, then Ti+1 consists of just g. A generator of this form does not change u2.

So we can assume for the remaining cases that Ti+1 is of the form ti+1, or ti+1 ·decode2, or γj ·ti+1,
or γj · ti+1 · decode2, where j ∈ F and ti+1 is over the generators π0, π1, ρ0, ρ1.

Let code(w1) 11 code(u1) 11u2 be the input of Ti+1 (and this is also the output of Si), where u2
and u have a common suffix of length ≥ n.

• Case where Ti+1 is over the generators π0, π1, ρ0, ρ1: Then Ti+1 changes the input in at most |Ti+1|
positions at the left end of the input, so u2 will not be affected if ℓ− n ≥ |Ti+1| (and n > 0).

• Case where Ti+1 = ti+1 · decode2, with ti+1 over π0, π1, ρ0, ρ1: The output of decode2 is of the form
code(w1) 11u1 u2, so the common suffix of u2 and u is preserved by decode2. The action of ti+1,
containing only generators from {π0, π1, ρ0, ρ1}, affects at most |ti+1| positions near the left side of the
input, so u2 is not changed if ℓ− n ≥ |Ti+1| (and n > 0).

• Case where Ti+1 = γj · ti+1, with ti+1 over π0, π1, ρ0, ρ1: Applications of π0, π1, ρ0, ρ1 change fewer
than |ti+1| letters of the input near the left end, so the common suffix is not affected if ℓ−n ≥ |Ti+1|.
When γj is applied, the output produced will be of the form code(j) 11 code(yi+1) 11 z code(a

n) 0010,
where yi+1 ∈ domC(φj). Then u2 will not be affected if we pick ℓ ≥ n+ |Ti+1|+ |yi+1| and n > 0.

• Case where Ti+1 = γj · ti+1 · decode2, with ti+1 over π0, π1, ρ0, ρ1: This case can be handled as a
combination of the previous two cases.

In all the above cases the constraints are fulfilled for all i = 0, . . . , N , and for all u = code(am) 0010, if
m ≥ N+ |X|+∑N

i=0 |yi| (using the fact that
∑N

i=0 |Ti| = |X|). Note that the words yi do not depend
on the choice of the input u = code(am) 0010, whenever m is long enough; indeed, to determine all yi
we can apply each Si to the infinite word code(a)ω ∈ {0, 1}ω . ✷
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Notation. For a given polynomial q (of the form q(n) = ank + a with integers a, k ≥ 1), let

S(q)
2 = {f ∈ RMP

2 : f is computed by an RMP
2 -program with built-in polynomial ≤ q}.

We call w an S(q)
2 -program iff w is an RMP

2 -program with built-in balance and time-complexity
polynomial ≤ q.

Let RM(q)
2 = 〈S(q)

2 〉, i.e., the submonoid of RMP
2 generated by the set S(q)

2 . Obviously, we have:

Proposition 3.3 For any set of polynomials {qi : i ∈ N} of the form qi(n) = ai n
ki + ai, such that

sup{ai : i ∈ N} = +∞ = sup{ki : i ∈ N}, we have:
⋃

i∈N RM(qi)
2 = RMP

2 . ✷

The non-finite generation result for RMP
2 also holds for RM(q)

2 , and the proof is similar. We need a
few preliminary facts.

Lemma 3.4 For every polynomial q of the form q(n) = ank+a with a, k ≥ 2, and every S(q)
2 -program

w we have: γw ∈ S(q)
2 .

Proof. Recall that γw(code(w) 11uv) = code(w) 11 code(u) 11 v, where u ∈ domC(φw). The input
balance of γw is ≤ q. Indeed, the input is shorter than the output; and the output length is 2 |w|+2+
2 |u|+2+ |v|, which is less than q(|code(w) 11uv|) = q(2 |w|+2+ |u|+2+ |v|) when q(n) ≥ 2n2 +2.

To compute code(w) 11 code(u) 11 v from input code(w) 11uv, an RMP
2 -machine can proceed as

follows: First, the machine reads and outputs code(w) 11. Then it runs the program w on input
uv, i.e., it simulates the corresponding RMP

2 -machine Mw (which has built-in polynomial q), with
an extra tape and a few modifications. While searching for a prefix of uv in domC(φw), the longest
prefix examined so far is kept on the extra tape; the output φw(u) of Mw will not be written on the
output tape. Once u (the prefix of uv in domC(φw)) has been found (and written on the extra tape),
code(u) 11 v is appended on the output tape.

All this takes time ≤ |code(w) 11|+ q(|u|)+ |code(u) 11 v| = 2 |w|+2+ q(|u|) + 2 |u|+2+ |v|; this
is < q(2 |w| + 2 + |u|+ 2 + |v|) = q(|code(w) 11uv|) when q(n) ≥ 2n2 + 2. ✷

Lemma 3.5 Let q be a polynomial that is larger than a certain polynomial of degree 5. Then RM(q)
2

is generated by

{ρ0, ρ1, π0, π1, decode2, contr, recontr, evRCC
q2 , reexpand, expand} ∪ {γz : z is an S(q)

2 -program}.

Proof. When w is an S(q)
2 -program then as a consequence of Lemma 2.1,

φw = ρcode(w′) 11 ◦ decode2 ◦ contr ◦ recontr2m ◦ evRCC
q2 ◦ reexpandm ◦ expand ◦ γow,

= ρcode(w′) 11 ◦ decode2 ◦ contr ◦ recontr2m ◦ evRCC
q2 ◦ reexpandm ◦ expand ◦ γw ◦ πcode(w) 11,

where q2 is a certain polynomial of degree 2. So the above generating set does indeed generate RM(q)
2 .

We still need to show that these generators belong to RM(q)
2 .

The functions ρ0, ρ1, decode2, contr, recontr, reexpand, expand, π0, π1 have balance and complexity

≤ 4 (n+1)2. And γw ∈ RM(q)
2 if w is an S(q)

2 -program (by Lemma 3.4). Let us verify that evRCC
q2 has

balance ≤ q2 and complexity O(n5). By definition,

evRCC
q2 (code(w) 11 code(u) 11 v) = code(w) 11 code(φw(u)) 11 v.

Then evRCC
q2 has balance ≤ q2, since on an output of length n = 2 |w| + 2 + 2 |φw(u)| + 2, the input

length is ≤ 2 |w| + 2 + 2 q2(|φw(u)|) + 2 ≤ q2
(

2 |w| + 2 + 2 |φw(u)| + 2
)

= q2(n).

When φw can be computed by an RM(q)
2 -machine with built-in polynomial pw (≤ q2), then

evRCC
q2 (code(w) 11 code(u) 11) can be computed in time ≤ c |w| pw(|u|)2 ≤ c |w| q2(|u|)2, for some

constant c > 0 (see the proof of Prop. 4.4 in [2]). Since q2 has degree 2, evRCC
q2 has complexity O(n5).

Thus, there exists q of degree 5 such that the above generators belong to RM(q)
2 . ✷
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Theorem 3.6 For any polynomial q such that q(n) = ank + a, with k ≥ 5 and a > a0 (for some

constant a0 > 1), we have: RM(q)
2 is not finitely generated.

Proof. The proof is very similar to the proof of Theorem 3.1. We saw in Lemma 3.5 that RM(q)
2 is

generated by the infinite set

{ρ0, ρ1, π0, π1, decode2, contr, recontr, evRCC
q2 , reexpand, expand} ∪ {γz : z is an S(q)

2 -program}.
Let us assume, by contradiction, that RM(q)

2 is finitely generated. Then a finite generating set can

be extracted from this infinite generating set; so RM(q)
2 is generated by

Γfin = {ρ0, ρ1, π0, π1, decode2, contr, recontr, evRCC
q2 , reexpand, expand} ∪ {γi : i ∈ F},

where F is some finite set of S(q)
2 -programs. For every S(q)

2 -program w let X be a word in Γ∗
fin that

expresses γw as a finite sequence of generators.
From here on, the proof is identical to the proof of Theorem 3.1. We use the fact that domC(φw) =

{code(an) 0010 : n > 0} is a finite-state language, so for such a program w, γw has linear complexity

(being computable by a Mealy machine) and belongs to S(q)
2 . ✷

4 Some complexity consequences of non-finite generation

4.1 Hierarchy and separation

Proposition 4.1 Let q be a polynomial of the form q(n) = ank + a such that a, k ≥ 1. The set S(q)
2 ,

and hence the monoid RM(q)
2 , are contained in a finitely generated submonoid of RMP

2 .

Proof. Let w be a RMP
2 -program such that φw has I/O-balance and time-complexity ≤ q. Then

evRC
q can simulate φw directly, without any need of padding and unpadding. So we have for all

u ∈ domC(φw), v ∈ A∗:

φw(uv) = ρ
code(w) 11

◦ evRC
q ◦ π

code(w) 11
(uv).

So S(q)
2 is contained in the submonoid generated by {π0, π1, ρ0, ρ1, evRC

q }. (Compare with Lemma 2.2
and the proof of Prop. 4.5 in [2].) ✷

The proof of Prop. 4.1 yields the following chain of submonoids in which non-finitely generated and
finitely generated submonoids alternate.

Corollary 4.2 Let . . . < qi < qi+1 < . . . be any sequence of polynomials such that for all i ≥ 0,
qi+1 is is large enough so that evRC

qi has an RMP
2 -program with built-in polynomial qi+1. Then RMP

2

contains a strict inclusion chain, which is infinite in the upward direction,

. . . $ RM(qi)
2 $ 〈π0, π1, ρ0, ρ1, evRC

qi〉RMP
2

$ RM(qi+1)
2 $ . . . . . . .

Proof. The strictness of the inclusions in the chain follows from the fact that non-finite generation
and finite generation alternate. ✷

Theorem 4.3 Let q be a polynomial of the form q(n) = ank + a such that a > 1, k ≥ 1. The

submonoid RM(q)
2 ⊆ RMP

2 has the following properties:

(1) RM(q)
2 6= RMP

2 .

(2) If q(n) ≥ 2 (n+1)2 (for all n ∈ N), then RM(q)
2 contains elements of arbitrarily high polynomial

balance and time-complexity.

(3) S(q)
2 6= RM(q)

2 , if q(n) ≥ 2 (n+ 1)2.
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(4) evRC
q 6∈ RM(q)

2 , if k ≥ 5 and a ≥ a0 (where a0 is as in Theorem 3.6).

Moreover, evRC
q has balance ≤ q, but its time-complexity is not ≤ q.

(5) Let q1, q2 be polynomials of the above form, such that q1(n) < q2(n) for all n ∈ N. Suppose
also that q1(n) = ank + a with k ≥ 5 and a ≥ a0 (as in (4)), and that q2 is large enough so that

evRC
q1 ∈ RM(q2)

2 . Then RM(q1)
2 $ RM(q2)

2 .

Proof. (1) Since RM(q)
2 is contained in a finitely generated submonoid of RMP

2 (Prop. 4.1), and
RMP

2 is not contained (by ⊆) in a finitely generated submonoid of RMP
2 (itself), inequality follows.

(2) Consider the function s : 0n1x 7→ 02n
2
1x, for all n ≥ 0, x ∈ {0, 1}∗. Then s has time-complexity

≤ 2 (n + 1)2. Indeed, a Turing machine on input 0n1 can read this word n times, each time turning
an input 0 into some new letter a, and each time writing 0n on the output tape; this produces 0n

2
in

the output; then one more copy of 0n
2
is made, followed by 1. This takes time ≤ 2 (n + 1)2.

Then, sm (i.e., the composition of m instances of s) has complexity ≥ 2m n2m (since the output

length is that high, the time must be at least that much too). Thus the functions sm ∈ RM(q)
2 (as m

grows) have unbounded complexity, both in their degree and in their coefficient.

(3) By (2), RM(q)
2 contains functions with arbitrarily high polynomial balance and time-complexity,

whereas S(q)
2 only contains functions with balance and complexity ≤ q.

(4) By Prop. 4.1, RM(q)
2 is contained in the submonoid generated by {π0, π1, ρ0, ρ1, evRC

q }; and we

easily see that π0, π1, ρ0, ρ1 ∈ RM(q)
2 . Hence, if evRC

q belonged to RM(q)
2 , the monoid RM(q)

2 would
be finitely generated, contradicting Theorem 3.6.

The input balance of evRC
q is ≤ q (see Lemma 3.5, where this is proved for q2). It follows that the

time-complexity of evRC
q is not ≤ q, otherwise we would have evRC

q ∈ RM(q)
2 .

(5) This follows from (4) since evRC
q 6∈ RM(q1)

2 , but evRC
q ∈ RM(q2)

2 . ✷

Corollary 4.4 (Strict complexity hierarchy of submonoids in RMP
2 ). There exists an infinite

sequence of polynomials (qi : i ∈ N), each of the form qi(n) = ai n
ki + ai with ki, ai > 1, and with

qi(n) < qi+1(n) for all i, n ∈ N, such that the following holds:

RM(qi)
2 $ RM(qi+1)

2 for all i, and
⋃

i∈NRM(qi)
2 = RMP

2 .

Moreover, RMP
2 (which is not finitely generated) is the union of a ⊂-chain of 4-generated submonoids.

Proof. The first statements follow from Theorem 4.3 (1) and Prop. 3.3. The last statement follows
from Cor. 4.2. ✷

Since each RM(qi)
2 contains functions of arbitrarily high polynomial complexity (by Theorem 4.3

(2)), the monoids RM(qi)
2 form a strict complexity hierarchy of a new sort, different from the usual

complexity hierarchies. The fact that S(q)
2 6= RMP

2 could have been shown by a diagonal argument.
It is not clear whether classical separation techniques from complexity theory would show the results
(1), (3), (4), (5) of Theorem 4.3.

Remark: The monoid fP, being finitely generated, does not contain an infinite strict complexity
hierarchy of monoids (but it can contain hierarchies of sets). Indeed, we have in general:

Fact. A finitely generated monoid M does not contain any infinite strict ω-chain of submonoids whose
union is M .

Indeed, if we had a chain (Mi : i ∈ ω) with M0 $ . . . $ Mi $ Mi+1 $ . . . . . . $
⋃

i∈ω Mi = M , then
there would exist j such that Mj contains a finite set of generators of M (since

⋃

i∈ω Mi = M). Then
Mj = M , contradicting the strict hierarchy.
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This Fact does not hold for chains over arbitrary order types; it holds for limit ordinals. The
non-finitely generated monoid RMP

2 contains the encoding fPC as a submonoid (see Section 3 in [2]).
And fPC is finitely generated (being an isomorphic copy of fP), and fPC contains an isomorphic copy
of RMP

2 . This leads to non-ω strict chains of submonoids of fP and of RMP
2 .

4.2 Irreducible functions

Another consequence of non-finite generation is that RMP
2 and RM(q)

2 have “irreducible” elements,
i.e., elements that cannot be expressed by composition of lower-complexity elements. We make this
precise in the next definitions.

In this subsection we do not use evaluation maps, so we can use “polynomials” q(n) = ank + a
where we drop the requirement that a, k are integers, i.e., we now allow real numbers ≥ 1.

Definition 4.5 The inf complexity degree of f ∈ RMP
2 is

df = inf{k ∈ R≥1 : f ∈ S(q)
2 for some polynomial q of the form q(n) = b nk + b,

for some b > 1 }.
We also define the inf complexity coefficient cf of f by

cf = inf{Cf (ε) : ε ∈ R>0}, where

Cf (ε) = inf{a ∈ R≥1 : f ∈ S(q)
2 for some polynomial q of the form q(n) = andf+ε + a}.

The inf complexity polynomial of f is the polynomial qf given by qf (n) = cf · (ndf +1) (for all n ∈ N).

Since df and cf are defined by infimum, f might not be in S(qf )
2 . By the definition of inf we have the

following.

Proposition 4.6 For any polynomial q(n) = ank + a with k > df and a > cf : f ∈ RM(q)
2 . ✷

On the other hand, for every ε1 > 0, ε2 > 0:

f 6∈ S(p1)
2 for any polynomial p1(n) = b ndf−ε1 + b with any b > 1;

f 6∈ S(p2)
2 where p2(n) = (cf − ε2) · (ndf + 1).

Definition 4.7 Let us choose δ1, δ2 ∈ R>0. A function f ∈ RMP
2 is called (δ1, δ2)-reducible iff

f ∈ RM(q)
2 for some polynomial q(n) = (cf − δ2) · (ndf−δ1 + 1). And f is called (δ1, δ2)-irreducible iff

f is not (δ1, δ2)-reducible.

In other words, f is (δ1, δ2)-reducible iff f is a composite of elements of S(q)
2 i.e., f ∈ RM(q)

2 , where
q(n) = (cf −δ2) ·(ndf−δ1 +1). So, f can be factored into functions that “have strictly lower complexity
than f” (regarding both the degree and the coefficient). Note that in the definition of df and cf we

used S(q)
2 , not RM(q)

2 (Def. 4.5).

Proposition 4.8 For all δ1, δ2 ∈ R>0 and all polynomials q1, q2 such that RM(q1)
2 $ RM(q2)

2 , there

exist (δ1, δ2)-irreducible functions in RM(q2)
2 −RM(q1)

2 .

Proof. By contradiction, assume that there exist δ1, δ2 such that every f ∈ RM(q2)
2 − RM(q1)

2 is

(δ1, δ2)-reducible, i.e., f can be factored as f = fm ◦ . . . ◦ f1, where fi ∈ RM(q2)
2 (i = 1, . . . ,m) with

inf degree dfi < df −δ1 and inf coefficient cfi < cf −δ2. By the contradiction assumption, among these

factors, those that are in RM(q2)
2 − RM(q1)

2 can themselves be factored into elements of degree and

coefficient lower by amount δ1, respectively δ2. I.e., a factor fi ∈ RM(q2)
2 −RM(q1)

2 can be factored as
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fi = fi,mi
◦ . . . fi,1 with dfi,j < dfi −δ1 and cfi,j < cfi −δ2; hence, dfi,j < df −2 δ1 and cfi,j < cf −2 δ2,

for j = 1, . . . ,mi. By repeating this process we keep reducing the degree and the coefficient by at
least δ1, respectively δ2, in each step. After a finite number of steps we obtain a factorization of f into

functions in RM(q1)
2 , contradicting the assumption that RM(q1)

2 $ RM(q2)
2 . ✷

Remark: A finitely generated monoid, like fP, does not contain irreducible functions of arbitrarily
large complexity. Indeed, all elements are expressible as a composite of elements of bounded complexity
(namely the maximum complexity of the finitely many generators).
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