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GROWTH OF POSITIVE WORDS AND LOWER BOUNDS OF THE

GROWTH RATE FOR THOMPSON’S GROUPS F (p)

JOSÉ BURILLO AND VICTOR GUBA

Abstract. Let F (p), p ≥ 2 be the family of generalized Thompson’s groups. Here F (2)
is the famous Richard Thompson’s group usually denoted by F . We find the growth
rate of the monoid of positive words in F (p) and show that it does not exceed p+ 1/2.
Also we describe new normal forms for elements of F (p) and, using these forms, we find
a lower bound for the growth rate of F (p) in its natural generators. This lower bound
asymptotically equals (p− 1/2) log

2
e+ 1/2 for large values of p.

Introduction

The family of generalized Thompson’s groups F (p) was introduced by K. S. Brown in [6].
Additional facts about these groups can be found in [8, 22]. The case p = 2 corresponds
to the famous Richard Thompson’s group F . See the survey [9] for details about this
group.

The groups F (p) have many common features. All of them are embeddable into each
other [4]. None of them has free non-abelian subgroups. None of these groups satisfy
any nontrivial group law. The derived subgroups of each of the F (p) is simple (infinitely
generated). Every proper homomorphic image of F (p) is abelian (so these groups are not
residually finite). Each F (p) is finitely presented and has quadratic Dehn function [16].

Each of these groups has a faithful representation by piecewise linear functions. The word
problem has an easy solution in each of these groups. Also all these groups are diagram
groups in the sense of [17]. Namely, F (p) is a diagram group over a very simple semigroup
presentation 〈 x | x = xp 〉. It follows then from [17, Section 15] that F (p) has solvable
conjugacy problem. Each group F (p) satisfies homological finiteness condition F∞. All
integer homology groups Hn(F (p),Z) are free abelian of finite rank and the Poincaré series
are rational [19].

However, there is some difference between the groups of this family. Brin [3] described
the group AutF for F = F (2). Some information about automorphisms of F (p), where
p > 2, can be found in [4], where it is shown that already for p = 3 there are “wild”
automorphisms of F (p).

The goal of this article is to obtain analogs of some results for the group F . The first
author found the growth function of the monoid of positive elements of F . This function
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is rational, namely, it equals
1− x2

1− 2x− x2 + x3
.

Notice that the elements x0, x1, . . . , xp−1 generate a free submonoid of rank p in F (p).
Thus the growth rate of positive elements in F (p) is at least p. In this paper we show that
for any p, the exact value of the growth rate of positive elements is only slightly higher
than p — it never exceeds p+ 1/2.

Guba and Sapir [18] found two new normal forms for elements of F . One of them is a
normal form in the infinite set of generators. This normal form is locally testable (unlike
the standard normal form). It has the same feature as the normal form in the free group:
a word is in a normal form if and only if all its subwords of length 2 are in the normal form.
In this paper, we find such a form for every F (p). Another normal form constructed in
[18] for F allows one to construct a regular set of normal forms in F . We find an analogous
construction for each F (p).

Using the above regular normal form, the second author proved in [15] that the growth
rate of the group F in generators x0, x1 is at least (3 +

√
5)/2. Notice that neither the

growth function, nor the growth rate for F is known at the present. In this paper we find
a lower bound of the growth rate for each of the groups F (p), where the generating set
consists of x0, x1, . . . , xp−1. We show that the lower bound is a root of a certain algebraic
equation and find the asymptotic behaviour of this root. For large values of p, this is
(p− 1/2) log2 e + 1/2, where log2 e = 1.442695 . . . .

The plan of the paper is as follows. In Section 1 we recall the definition of the family
F (p) of generalized Thompson’s groups and some basic facts about growth functions and
growth rates. This Section also contains a description of (positive) elements in F (p) in
terms of rooted p-trees.

In Section 2 we describe Fordham’s method to calculate the word length in F (p). We
restrict ourselves to the case of positive words only (the description for this case is much
simpler). Recall that for the case p = 2, a fast algoritm to find the word length metric
was described in [11, 12]. This algorithm is very effective but it has quite a complicated
description. A simplification of the method due to Belk and Brown can be found in [1].
One of the easiest algorithms to find the word length in F (the so-called Length Formula)
is contained in [15, Section 5]. Notice that for p > 2, none of the simplified versions exists
so we use Fordham’s approach from [13].

In Section 3, using Fordham’s method, we find equations for generating functions de-
scribing the growth of F+(p). We solve these equations in Section 4 and show that the
generating function for positive words in F (p) is irrational provided p > 2 (unlike the case
p = 2). Then we find the growth rate of positive words in F (p) as a root of an algebraic
equation. We prove that this growth rate never exceeds p + 1/2 approaching this value
as p approaches infinity. Thus the set F+(p) of all positive words is not much higher than
the free submonoid generated by x0, x1, . . . , xp−1.

Section 5 describes two new normal forms of elements in F (p). The first of these forms is
locally testable (one needs to test only subwords of length 2, similar to a free group). The
second of the normal forms leads to a regular language that represents each element of F (p)
exactly once. Based on that regular language, we construct the corresponding automaton
and find a lower bound for the growth rate of F (p) in Section 6. This lower bound is given



GROWTH OF POSITIVE WORDS AND LOWER BOUNDS OF THE GROWTH RATE FOR THOMPSON’S GROUPS F (p)3

as a root of an algebraic equation. We also describe its asymptotic behaviour showing
that it approaches (p− 1/2) log2 e+ 1/2 for large values of p.

1. Preliminaries

The family of generalized Thompson’s group can be defined as follows. The group F (p)
is the group of all piecewise linear self homeomorphisms of the unit interval [0, 1] that are
orientation preserving (that is, send 0 to zero and 1 to 1) with all slopes integer powers
of p and such that their singularities (breakpoints of the derivative) belong to Z[ 1

p
]. The

group F (p) admits a presentation given by

(1) 〈 xi (i ≥ 0) | xjxi = xixj+p−1 (i < j) 〉.

This presentation is infinite, but a close examination shows that the group is actually
finitely generated, since x0, x1, . . . , xp−1 are sufficient to generate it. In fact, the group
is finitely presented. The finite presentation is awkward and it is not used much. The
symmetric and simple nature of the infinite presentation makes it much more adequate
for almost all purposes.

One such example where the infinite presentation is particularly appropriate is in the
construction of the normal form. A word given in the generators xi and their inverses,
can have its generators moved around according to the relators, and the result is the
following well-known statement:

Theorem 1.1. An element in F (p) always admits an expression of the form

xi1xi2 · · ·ximx
−1
jn

· · ·x−1
j2
x−1
j1
,

where

i1 ≤ i2 ≤ · · · ≤ im, j1 ≤ j2 ≤ · · · ≤ jn.

In general, this expression is not unique, but for every element there is a unique word of
this type which satisfies certain technical condition (see [9] for details). This unique word
is called the standard normal form for the element of F (p).

Observe that the infinite presentation for F (p) is actually a monoid presentation. Hence
F (p) admits a submonoid, the submonoid F+(p) given by the same presentation, whose
elements are called positive words . Theorem 1.1 shows that F (p) is the group of right
fractions of this monoid.

An element of F (p) can be represented by two subdivisions of the interval [0, 1], namely,
the subdivision into intervals which get mapped linearly to each other. A subdivision of
this type, where the dividing points are all in Z[ 1

p
], can always be obtained by subsequent

subdivisions of the interval into p equal pieces. Hence, a subdivision of the interval is
equivalent to a rooted tree where each vertex has valence p+1 except the root, which has
valence p (or 1 in case when the tree consists of the root only), and the leaves , which have
valence 1. A node (except the root and the leaves) is pictured to have one edge going up
and p edges going down to its p children. These trees will be called rooted p-trees . An
element of F (p) is then represented by a pair of rooted p-trees called the source tree and
the target tree. This representation has been extensively studied in the case p = 2. Note
that positive words can be represented by a single p-tree, because the other tree is always
the same: the tree which consists of all right carets.
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A piece of these p-trees consisting of a node and its p edges going down to its children
is called a caret . Carets are the building blocks of the trees and they give rise to the
algorithm for finding the word metric in F (p), see Section 2.

As stated in the introduction, the exact growth function for the groups F (p) is not known.
In this paper we will give lower bounds for growth rates of these groups, computing lower
bounds for the number of elements in each length.

To be precise, given a finitely generated group G with finite generating set X , denote its
sphere of radius n by

S(n) = { g ∈ G | ℓ(g) = n },
where ℓ(g) is the length of g ∈ G in the set of generators X . We also have the ball of
radius n

B(n) =
n
⋃

k=0

S(k).

If γn = #B(n), the series

Γ(x) =
∞
∑

n=0

γnx
n

is called the (general) growth function for G with respect to X , and the number

γ = lim
n→∞

γn

is the growth rate of G with respect to X . The limit always exists due to the submulti-
plicative property of γn, that is, γm+n ≤ γmγn for all m,n ≥ 0. Also, the spherical growth
function is given by σn = #S(n) and

Σ(x) =
∞
∑

n=0

σnx
n,

which has the same growth rate as the general growth function (for all infinite groups).
For details about growth functions, see, for instance, [14].

If P ⊆ G is a subset of a group, not necessarily a subgroup, we can define the growth
functions of the set P by the same formulas as above but where the coefficients are actually
the cardinals of the sets P ∩B(n) or P ∩S(n). The goal for one of the next sections is to
compute the growth series of the subset F+(p) in F (p). In order to do that, we need to
describe the algorithm for calculating the word metric in F (p).

2. Positive words in Thompson’s groups F (p) and Fordham’s method

In 1995, S. Blake Fordham [11] constructed an algorithm which, for any given element in
F = F (2), finds its distance to the identity in the word metric given by generators x0,
x1. This algorithm consists in defining different types of carets, then having each caret of
the source tree paired to its corresponding caret in the target tree, and assigning a weight
to each type of pairs of carets. A table is given for all possible pairs of types, with the
assignment of the weight. The sum of all the weights of all the pairs is the exact distance
from the element to the identity. In a set of unpublished notes [13], Fordham extends his
method to the groups F (p). This method will be the starting block of the computation.
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The method used to compute this growth will be an extension to F (p) of the method
developed in [7] for the case of F = F (2). Consider a positive element of F (p). As we
know, the element can be represented by a rooted p-tree. We are going to define different
types of carets and their weights, following Fordham [13].

A caret will be called left or right if it is situated in the leftmost edge of the tree or in
the rightmost edge, and middle or interior if it is situated in the middle, i.e. if it is not
right or left. For instance, a caret is left if it represents a subinterval of [0, 1] which has
left endpoint equal to zero. Middle carets will be subdivided into p − 1 types, denoted
by M1, M2, . . . , Mp−1 according to which caret they are children of, and its position as
child.

The children of a caret are subdivided in two types, the predecessors and the successors.
This subdivision will give a total order to the set of carets, with a caret being always after
its predecessor children and before its successors. The definitions of the caret types are
as follows:

• The root caret is special. Its children are:
– Its left child is a left caret and it is the only predecessor.
– Its middle children are successors, and have types M1, M2, . . . , Mp−2, in
order-preserving way.

– Its right child is obviously a successor and a right caret.
• A left caret has the following children:

– Its only predecessor is the left child, a left caret.
– All the other children are successors, all middle carets, and of types M1, M2,
. . . , Mp−1, in order.

• A right caret has the following children:
– One single predecessor of type Mp−1.
– It has p− 1 successors, which in order are of types M1, M2, . . . , Mp−2 and
the last one of type R.

• A caret of type Mi (1 ≤ i ≤ p− 1) has the following children:
– The first p− i children are predecessors, and their types are Mi, . . . , Mp−1.
– The other i children are successors, and they are of types M1, M2, . . . , Mi.

For the purposes of computing the length of an element, these caret types are subdivided
in further types depending on the existence of predecessor and successor types. This
classification is actually more complicated in Fordham’s paper but we do not need the
total strength of the method since we are dealing only with positive words. We will
indicate also which is the weight of each caret for the purposes of the computation of the
length of a positive word.

The caret types are as follows:

• The root, which has always weight zero.
• Left carets, which have always weight one.
• Carets of type R∅ are right carets whose all successors are right carets, i.e., it
has no middle successors. Its only successors hang from its rightmost leaf. These
carets carry weight zero.

• Carets of type RM are right carets which are not R∅, that is, which have middle
successors. Observe that the middle successors do not have to be immediate
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successors, they can be successors of successors. Carets of type RM have weight
two.

• Carets of type Mi
∅
are middle carets which do not have any successor children.

They carry weight one.
• Carets of type Mi

M are middle carets which have at least a successor child. These
carets have weight three.

Observe that the index on the middle carets is only necessary to identify its successors,
but it has no role in the weight assignment beyond that one.

Now, the main theorem giving the length is as follows:

Theorem 2.1. (S. B. Fordham) [13] Given a positive word in F (p) represented by a rooted

p-tree, the distance from this element to the identity (in the word metric for F (p) with

generators x0, x1, . . . , xp−1) is equal to the total sum of the weights of its carets.

3. Generating functions for the growth of positive words

Once the theorem for the length has been established, now the computation of the growth
function is reduced to a combinatorial problem, namely, finding how many trees have a
given weight, according to the rules above. The method for finding the number of trees
with a given weight is to split the trees in several ones in such a way that recurrences can
be found. The reader can see details about generating functions in [23], and can see this
method used already in [7].

We will make use of several sequences:

• The sequence sn = #(F+(p) ∩ S(n)). This is the number of trees which have
weight n.

• The sequence ln. This sequence gives the number of subtrees which can be left
subtrees of a rooted p-tree and such that its total weight is n. The subtrees are
required to be strict, that is, the main tree does not qualify as a left subtree.

• Analogously the sequence rn is the sequence of possible right subtrees of weight n.

• The sequence m
(i)
n for i = 1, . . . , p− 1, gives the number of interior subtrees which

start with a caret of type Mi. Observe that this subtree is completely composed
of middle carets, and also with total weight n.

Observe that the subtrees are always considered as subtrees of the main tree, which means
that, for instance, a left subtree never has carets of type R because that would mean it
is the total tree. A subtree which starts in an Mi caret has all interior carets.

Each one of these sequences will have its generating function:

S(x) =

∞
∑

n=0

snx
n L(x) =

∞
∑

n=0

lnx
n R(x) =

∞
∑

n=0

rnx
n Mi(x) =

∞
∑

n=0

m(i)
n xn.

Now we will establish relations between the sequences which will give functional equations
for their generating functions, which then will allow us to find the growth of the submonoid
of positive words. For instance, if one considers the tree representing a word, and assumes
the tree has total weight n, since the root has weight zero, the weight has to be distributed
among all the p children subtrees. Hence, a tree of total weight n will be obtained every
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time that we take a family of subtrees such that the sum of their separate weights as
subtrees is n.

This fact gives the first formula satisfied by the sequences, and also by the generating
functions:

(2) sn =
∑

j0+···+jp−1=n

lj0m
(1)
j1

· · ·m(p−2)
jp−2

rjp−1

(3) S = LM1 · · ·Mp−2R.

To find a formula for the function L(x) of left subtrees, one needs to consider that left
carets have weight 1. Hence the different subtrees only have to add up to n − 1. The
formula is

ln =
∑

j0+···+jp−1=n−1

lj0m
(1)
j1

· · ·m(p−2)
jp−2

m
(p−1)
jp−1

(4) L− 1 = xLM1M2 · · ·Mp−1.

The formula for the generating functions is obtained by multiplying each side of the
formula for sequences by xn. The right hand side has an x multiplying because the
indices are shifted by one.

For the function for right trees, one has to take into account the fact that a right caret can
be of type R∅ or RM , with weights zero and two respectively. For the first possibility, the
caret is of type R∅, and all its successors have no weight. Observe that in a positive word
there can be one and only one caret of type R∅, because any others would be reducible.
Hence, if the caret is of type R∅, all the weight is concentrated in its only predecessor.
So there are as many right subtrees of this type as trees of the type Mp−1 with the same

weight, which gives the first part of the recurrence equal to m
(p−1)
n .

If the right caret is of type RM , it carries weight 2 and one the successors is necessarily
nonempty with a middle caret somewhere. Hence if one of the successors is necessarily
nonempty, the term in the recurrence has all possible weights for these successors. The
formula is

rn = m(p−1)
n +

∑

j0+···+jp−1=n−2
j1+···+jp−1≥1

m
(p−1)
j0

m
(1)
j1

· · ·m(p−2)
jp−2

rjp−1

(5) R = Mp−1 + x2(M1M2 · · ·Mp−1R−Mp−1).

Finally, the middle subtrees are the ones whose children are also middle subtrees and hence
facilitate the resolution of the equations. A middle caret of type Mi has either weight 1
if its successors are empty or weight 3 if one of the successor subtrees is nonempty. Both
cases correspond to the two adding terms of the formula for the sequence:

m(i)
n =

∑

ji+···+jp−1=n−1

m
(i)
ji

· · ·m(p−1)
jp−1

+
∑

j0+j1+···+jp−1=n−3
jp−i+···+jp−1≥1

m
(i)
j0

· · ·m(p−1)
jp−i−1

m
(1)
jp−i

· · ·m(i)
jp−1

which gives the following formula for the generating functions:

(6) Mi − 1 = xMiMi+1 · · ·Mp−1 + x3MiMi+1 · · ·Mp−1(M1 · · ·Mi−1Mi − 1).
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Solving these equations will give us information on the function S(x), which is the one
we are interested in, and the growth of positive elements in the groups F (p).

4. Growth functions and growth rates of F+(p)

Now we collect formulas (3), (4), (5), (6) to find the equation on S(x) and the radius of
convergence of the corresponding series. First of all, we have to mention that F+(p) has a
free submonoid generated by x0, x1, . . . , xp−1 and so the growth rate of F+(p) is at least
p. As we will see at the end of this Section, the exact value of the growth rate is only
slightly larger than p. (In fact, it is always less than p+ 1/2.)

Let
M(x) = M1(x)M2(x) · · ·Mp−1(x).

Lemma 4.1. For all 0 ≤ i ≤ p− 1, we have

M1M2 · · ·Mi =
x−2

(1− x3M)i
+ 1− x2.

Proof. We proceed by induction on i. If i = 0, then the result is obvious. Let 1 ≤ i ≤ p−1.
Formula (6) can be written as

Mi = 1 +
xM

M1 · · ·Mi−1

+ x3

(

MiM − M

M1 · · ·Mi−1

)

.

Therefore,
M1 · · ·Mi = M1 · · ·Mi−1 + xM + x3M ·M1 · · ·Mi − x3M

and so
M1 · · ·Mi(1− x3M) = (x− x3)M +M1 · · ·Mi−1.

Using the inductive assumption, we have

M1 · · ·Mi(1−x3M) = (x−x3)M+
x−2

(1 − x3M)i−1
+1−x2 =

x−2

(1− x3M)i−1
+(1−x2)(1−x3M).

Now the only thing left to do is to divide by 1− x3M . �

Taking i = p− 1 gives us

Corollary 4.2. The function M = M(x) satisfies

x2M =
1

(1− x3M)p−1
+ x2 − 1.

Now we express S(x) in terms of M(x). It follows from (4) and (5) that

L =
1

1− xM
R =

(1− x2)Mp−1

1− x2M
.

Now, using (3), we have

(7) S =
LMR

Mp−1
=

(1− x2)M

(1− xM)(1 − x2M)
.

The first author proved in [7] that the growth function S(x) of positive elements of F =
F (2) is rational (although M(x) is irrational). Now we have the following
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Theorem 4.3. The growth function S(x) of positive elements in F (p) is irrational pro-

vided p ≥ 3.

Proof. Let N = (1− x3M)−1. From Corollary 4.2 we have

1−N−1 = x3M = xNp−1 + x3 − x.

Hence N = N(x) satisfies the equation

(8) xNp + (x3 − x− 1)N + 1 = 0.

Suppose that S(x) is rational. Then it follows from (7) that M(x) satisfies a quadratic
equation with coefficients in the field Q(x) of rational functions. Since M = x−3(1−N−1),
the function N(x) also satisfies an equation of degree at most 2 over Q(x). This implies
that the polynomial f(t) = xtp+(x3−x−1)t+1 from Q(x)[t] is divisible by a polynomial
of degree at most 2. Since p ≥ 3, the polynomial f(t) is reducible over Q(x). A standard
algebraic trick (using Gauss’ lemma) implies that f(t) is a product of two polynomials
from Z[x][t] of degree less than p. Taking x = 1, we obtain that the polynomial tp − t+1
is reducible over Q. However, this contradicts a result from [20]. �

Now we will find the growth rate of F+(p). To do that, we need to take the radius of
convergence of the series for S(x) and take the reciprocal. Observe that from (2) we
deduce mn ≤ sn for all n ≥ 0. This implies that

(lim sup
n→∞

mn)
−1 ≥ (lim sup

n→∞

sn)
−1,

that is, the radius of convergence of the series S(x) does not exceed the one for the series
M(x). Let x > 0 be a real number such that S(x) converges. Then M(x) also converges
and formula (7) holds.

To find the radius of convergence of S(x), we need to find the smallest positive real number
such that the denominator of the right hand side of (7) is zero. Since M(x) is increasing
and 0 < x < 1, the smallest positive solution of the equation M(x) = x−1 will not exceed
the smallest positive solution of the equation M(x) = x−2. Therefore, we need to solve
the equation M(x) = x−1. Notice that M(x) increases and x−1 decreases so we can just
speak about a positive root of this equation. Using (4.2), we get x = (1−x2)−(p−1)+x2−1,
that is, we need to find the positive root of

(9) (1− x2)p−1(1 + x− x2) = 1.

The growth rate of F+(p) will thus be equal to x−1. We already know that the growth
rate of F+(p) is at least p, as it was mentioned in the beginning of this Section. Hence
x ≤ 1/p.

Let us rewrite this equation in the following form:

p− 1 =
ln(1 + x− x2)

− ln(1− x2)
.

From the Taylor formula for ln(1 + y), we deduce the inequality

y − y2/2 < ln(1 + y) < y − y2/2 + y3/3,

where y > 0, and then we get ln(1+x−x2) < x−3x2/2+4x3/3−3x4/2+x5−x6/3 < x−
3x2/2+4x3/3. Since − ln(1−x2) > x2, we have p−1 < x−1−3/2+4x/3 ≤ x−1−3/2+4/3p.
So x−1 > p+ 1/2− 4/3p = p+ 1/2 + o(1) as p → ∞.
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Now we want to show that x−1 < p+1/2. We have ln(1+x−x2) > x−x2− (x−x2)2/2 =
x − 3x2/2 + x3 − x4/2 and − ln(1 − x2) = x2 + x4/2 + x6/3 + · · · < x2 + x4(1 + x2 +
x4 + · · · )/2 = x2 + x4/(2 − 2x2) ≤ x2 + 2x4/3 because x ≤ 1/p ≤ 1/2. This gives
p − 1 > (x − 3x2/2 + x3 − x4/2)/(x2 + 2x4/3) = (1 − 3x/2 + x2 − x3/2)/(x + 2x3/3).
Finally,

p− 1 >
1− 3x/2 + x2 − x3/2

x+ 2x3/3
=

1

x
− 9− 2x+ 3x3

2(3 + 2x2)
> 1/x− 3/2

since 3x2 − 6x − 2 < 0 on [0; 1]. This gives x−1 < p + 1/2, as desired. So we get the
following result.

Theorem 4.4. The growth rate of the monoid F+(p) of positive elements in the group

F (p) generated by x0, x1, . . . , xp−1 is a number ζp, which is the root of equation

(y2 − 1)p−1(y2 + y − 1) = y2p.

This number has the form ζp = p + λp, where 0 < λp < 1/2 for all p and λp → 1/2 as

p → ∞.

Indeed, we proved inequalities p+1/2− 4/3p < x−1 < p+1/2, where x is the solution of
(9). The inequality x−1 > p obviously follows for p ≥ 3; if p = 2, then it is known from
[7] that ζ2 > 2.24.

The equation in the statement of Theorem 4.4 is equivalent to (9) via the substitution
y = 1/x. Notice that x and y are roots of polynomials of degree 2p − 1 with integer
coefficients. Also let us mention without proof that λp is strictly increasing with respect
to p.

The number ζp gives a lower bound for the growth rate of the group F (p). However, this
estimate can be essentially improved.

5. New normal forms for elements of F (p)

We are going to find two new normal forms for elements of F (p). They will be analogs of
the normal forms constructed in [18] for the case F = F (2).

The first of these normal forms will involve the infinite set of generators Σ = { xi (i ≥ 0) }.
Consider the following rewriting system Γ = Γ(p) over the alphabet Σ±1 = Σ∪Σ−1 (basic
facts about rewriting systems can be found in [2, 10]):

(1) xε
ix

−ε
i → 1 (i ≥ 0, ε = ±1)

(2) xε
jxi → xix

ε
j+p−1 (j > i, ε = ±1)

(3) xε
j+p−1x

−1
i → x−1

i xε
j (j > i, ε = ±1)

Notice that for every rewriting rule of Γ, the left hand side and the right hand side are
equal in F (p).

It is easy to see that Γ is terminating , that is, for every word w, the process of applying
rewriting rules to w always terminates. Indeed, Γ either decreases the length of a word or
it preserves the length. In the second case, if we make a vector that consists of subscripts
of a word, the rewriting rules will decrease this vector lexicographically.

Since Γ is terminating, applying the rewriting rules to a word w gives us a word v that
cannot be reduced (that is, no more rewriting rules can be applied to v). We say that v
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is an irreducible form of w. Now we are going to check that Γ is also confluent , that is,
every word has a unique irreducible form. To do that, we apply the Diamond Lemma. In
our case, this means that if we have rewriting rules of the form ab → u, bc → v, where a,
b, c, d are letters and u, v are words, then uc and av have a common descendant. There
are only finitely many cases to check, and all of them are easy. We will show one of these
cases, the rest is left to the reader.

Let us take the rewriting rules xε
k+p−1x

−1
j → x−1

j xε
k and x−1

j xi → xix
−1
j+p−1, where k > j >

i, ε = ±1. We have:

x−1
j xε

kxi → x−1
j xix

ε
k+p−1 → xix

−1
j+p−1x

ε
k+p−1

and
xε
k+p−1xix

−1
j+p−1 → xix

ε
k+2p−2x

−1
j−p−1 → xix

−1
j+p−1x

ε
k+p−1.

So the words have a common descendant.

Now we know that Γ is complete, that is, terminating and confluent. Therefore, each
element of F (p) can be uniquely represented by an irreducible word. So we have proved
the following

Theorem 5.1. Each element g ∈ F (p) can be uniquely represented as a word of the form

N(g) = xε1
i1
xε2
i2
· · ·xεm

im
,

where m ≥ 0, ε1, ε2, . . . , εm = ±1, and for every 1 ≤ k < m one of the following conditions

holds:

• ik < ik+1

• ik = ik+1 and εk = εk+1

• 0 < ik − ik+1 < p and εk+1 = −1.

Indeed, the conditions listed in the statement exactly mean that the word N(g) is irre-
ducible, that is, it has no subwords that are left hand sides of the rewriting rules of Γ.
The set of these irreducible words over Σ±1 will be denoted by Ninf .

Notice that the set Ninf has the following property: a word belongs to Ninf if and only if
all its subwords of length 2 belong to Ninf . That is, the normal form of Theorem 5.1 is
locally testable.

Now we will construct another normal form for elements of F (p). Now all words will
involve only the finite set of generators x±1

0 , x±1
1 , . . . , x±1

p−1. Moreover, these normal forms
will give a regular language closed under taking subwords. Notice that this gives a regular
spanning tree in the Cayley graph of F (p) in the above generators. As in [18] for the case
p = 2, this tree is not geodesic.

It is possible to write down a new rewriting system in order to get the normal form we
wish to construct. However, it will take too much effort to prove that the rewriting system
ijs complete. We choose an approach that differs from [18].

Let j ≥ 1. Then j can be uniquely expressed in the form j = r + d(p − 1), where
1 ≤ r ≤ p − 1, d ≥ 0. In this case xj equals in F (p) to the word x−d

0 xrx
d
0. For any

word w over Σ±1, replace each letter of the form xε
j (j ≥ 1, ε = ±1) by x−d

0 xrx
d
0, where

j = r + d(p − 1), 1 ≤ r ≤ p − 1, d ≥ 0 and then freely reduce all subwords of the form
xε
0x

−ε
0 (ε = ±1). We obtain a word in generators x±1

0 , x±1
1 , . . . , x±1

p−1 denoted by w̄.
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Lemma 5.2. If w ∈ Ninf , then w̄ has no subwords of the following form:

(1) xε
ix

−ε
i (0 ≤ i ≤ r − 1)

(2) xε
αx

k
0xβ (k ≥ 0, 1 ≤ β < α ≤ r − 1)

(3) xε
αx

k+1
0 x−1

β (k ≥ 0, 1 ≤ β < α ≤ r − 1)

(4) xε
αx

k+1
0 xβ (k ≥ 0, 1 ≤ α ≤ β ≤ r − 1)

(5) xε
αx

k+2
0 x−1

β (k ≥ 0, 1 ≤ α ≤ β ≤ r − 1)

The words of the form 1) – 5) are called forbidden subwords . The set of words in
{ x±1

0 , x±1
1 , . . . , x±1

p−1 } without forbidden subwords will be denoted by Nfin.

Proof. Let w ∈ Ninf have the form

(10) w = xk0
0 xl1

α1
xk1
0 xl2

α2
· · ·xkh−1

0 xlh
αh
xkh
0 ,

where h ≥ 0, αi = ri + di(p − 1), 1 ≤ ri ≤ p − 1, di ≥ 0, li 6= 0 for all 1 ≤ i ≤ h. By
definition,

(11) w̄ = xk0−d1
0 xl1

r1
xd1+k1−d2
0 xl2

r2
· · ·xdh−1+kh−1−dh

0 xlh
rh
xdh+kh
0 .

Suppose that w̄ is not freely irreducible. Then there exist an i from 1 to h− 1 such that
di + ki − di+1 = 0, ri = ri+1, and and lili+1 < 0. By definition, words from Ninf have no
subwords of the form x±1

j x0 for j > 0 and also have no subwords of the form x±1
j x−1

0 for
j ≥ p. This implies ki ≤ 0.

Suppose that ki < 0. Then di = 0 (otherwise αi ≥ p). Since di+1 ≥ 0, we obtain
di + ki − di+1 = ki − di+1 < 0. This is a contradiction. Therefore, ki = 0 and so di = di+1.
This implies αi = ri+ di(p−1) = ri+1+ di+1(p−1) = αi+1. Thus the word w is not freely
irreducible since lili+1 < 0. We have a contradiction. This proves that w̄ has no subwords
of the form 1).

Suppose that w̄ has a subword of one of the forms 2) – 5). Let x±1
ri
x
di+ki−di+1

0 x±1
ri+1

be such
a subword, where 1 ≤ i < h. As above, ki ≤ 0. Suppose that ki 6= 0. This implies di = 0
and di + ki − di+1 < 0. But none of the words 2) – 5) can contain x−1

0 . This allows us to

conclude that ki = 0 and w̄ contains v = x±1
ri
x
di−di+1

0 x±1
ri+1

as a subword.

Suppose that v satisfies condition 2). This means that di ≥ di+1, ri > ri+1, li+1 > 0.
Hence w contains x±1

αi
xαi+1

, where αi = ri + di(p− 1) > ri+1 + di+1(p− 1). So w does not
belong to Ninf , which is impossible.

Suppose that v satisfies condition 3). Now di − di+1 ≥ 1, ri > ri+1, li+1 < 0. This leads
to αi − αi+1 = (ri − ri+1) + (di − di+1)(p− 1) ≥ p, which also contradicts w ∈ Ninf .

Suppose that v satisfies condition 4). Then di − di+1 ≥ 1, ri ≤ ri+1, li+1 > 0. Now
ri − ri+1 ≥ 1 − (p − 1) = 2 − p and so αi − αi+1 = (ri − ri+1) + (di − di+1)(p − 1) ≥
(p− 1) + (2− p) > 0. Thus w contains x±1

αi
xαi+1

with αi > αi+1. This cannot happen by
definition of Ninf .

Finally, suppose that v satisfies condition 5). Now we have di−di+1 ≥ 2 and so αi−αi+1 =
(ri−ri+1)+(di−di+1)(p−1) ≥ 2(p−1)+(2−p) = p. However, it should be αi−αi+1 < p
because w ∈ Ninf .

The proof is complete. �
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For every g ∈ F (p), we have the word N(g) ∈ Nfin that represents g. We will prove that
g is represented uniquely by a word from Nfin. This will follow from

Lemma 5.3. The mapping w 7→ w̄ from Ninf to Nfin is a bijection.

Proof. We prove first that the mapping w 7→ w̄ from Ninf to Nfin is injective. As above, let
w ∈ Ninf have the form (10). Thus w̄ equals (11). Suppose that we know the word w̄, that
is, we know the numbers m0 = k0 − d1, m1 = d1 + k1 − d2, . . . , mh−1 = dh−1 + kh−1 − dh,
mh = kh + dh. Our aim is to recover the numbers k0, d1, k1, . . . , dh−1, kh−1, dh, kh.

Let h ≥ 1. It follows from the definition of Ninf that kh ≤ 0. Moreover, either kh < 0
and dh = 0, or kh = 0. In the first case mh = kh + dh = kh < 0, in the second case
mh = kh + dh = dh ≥ 0. Since we know mh, we can distinguish between these two cases.
Namely, if mh < 0, then dh = 0, kh = mh. If mh ≥ 0, then kh = 0, dh = mh. Now we
know dh and kh.

If h ≥ 2, then kh−1 ≤ 0. As above, we have one of the two cases: kh−1 < 0, dh−1 = 0,
or kh−1 = 0. The number kh−1 + dh−1 is negative in the first case and nonnegative in
the second case. But this number equals mh−1 + dh, so we know it and thus we are able
to distinguish these cases. In the first case we have dh−1 = 0, kh−1 = mh−1 + dh; in the
second case — kh−1 = 0, dh−1 = mh−1 + dh. Therefore, we know dh−1 and kh−1.

Continuing in this way, we get the values of dh−2, kh−2, . . . , d1, k1. At the final step we
get k0 = m0 + d1.

Now we show that the mapping is surjective. We start with a word from Nfin. This word
has the form

(12) xm0

0 xl1
r1
xm1

0 xl2
r2
· · ·xmh−1

0 xlh
rh
xmh

0 .

Using the rules described in the first part of the proof, we define the numbers k0, d1, k1,
. . . , dh, kh. It follows that di ≥ 0 for all i from 1 to h. So we can form a word w as in
(10), where αi = ri + di(p− 1) (1 ≤ i ≤ h). It is obvious that w̄ equals the word (12). It
remains to prove that w belongs to Ninf .

Let us assume the contrary. Since w has no subwords of the form xε
0x

−ε
0 , it should contain

one of the following subwords:

a) xε
ix

−ε
i (i ≥ 1, ε = ±1);

b) x±1
j xi (j > i);

c) x±1
j+p−1x

−1
i (j > i).

In case a), w̄ will contain a forbidden subword of the form xε
rx

−ε
r . Notice that ki ≤ 0 for

all 1 ≤ i ≤ h; if ki < 0, then di = 0. This means that in cases b) and c) one has i ≥ 1.
Let j = α + d(p− 1), i = β + d′(p− 1), where 1 ≤ α, β ≤ r − 1, d, d′ ≥ 0. Applying the

“bar” mapping to b) and c), we see that the word w̄ contains u = x±1
α xd−d′

0 xβ in case b)

and v = x±1
α xd−d′+1

0 x−1
β in case c). Since j > i, we have (d−d′)(p−1) > β−α > −(p−1).

Hence d− d′ ≥ 0. If u is not forbidden, then α ≤ β. But in this case d− d′ > 0 so u has
to be forbidden anyway. If v is not forbidden, then we also have α ≤ β, which implies
d− d′ + 1 ≥ 2. We have a final contradiction.

The proof is complete. �
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From Lemmas 5.2 and 5.3 we obtain

Theorem 5.4. Each element g ∈ F (p) can be uniquely represented by a word w ∈ Nfin.

This means that for every g ∈ F (p) there is exactly one word over { x±1
0 , x±1

1 , . . . , x−1
p−1 }

that represents g and has no forbidden subwords. This gives a regular set of normal forms

for the group F (p).

Indeed, the set of forbidden subwords is a regular language. So the set Nfin of words that
do not contain forbidden subwords will be also regular. Throughout the rest of the paper,
we will denote this language by Lp. (For basic properties of regular languages see [21].)

6. Lower bounds for the growth rates of F (p)

A lower bound of (3+
√
5)/2 = 2.618 . . . for the growth rate of F = F (2) was obtained by

the second author in [15]. Now we will find a similar lower bound for each F (p). In the
previous section, we constructed a regular language Lp of normal forms for F (p). Each
word of length n in Lp is at a distance at most n from the identity in the Cayley graph of
F (p). So the growth function of Lp does not exceed the number of elements in the ball of
radius n for F (p). Then, finding the growth function and the growth rate of Lp, we find
a lower bound for the growth rate of the group F (p).

An automaton to recognize the language Lp has 3p + 1 states. However, it is easier to
construct a directed graph with only 2p+ 1 vertices (states). This graph will be denoted
by Ap and we will also call it an automaton although its edges have no labels. The
description of Ap is as follows.

The vertices (states) of Ap are denoted by q, q0, q1, . . . , qp−1, q1,0, q2,0, . . . , qp−1,0, q̄. They
will correspond to the following partition of Lp into disjoint subsets:

• The set { 1 } that consists of the empty word (state q).
• The set of words that end with x±1

0 and do not have a terminal segment of the
form x±1

i xk
0, where 1 ≤ i ≤ p− 1, k ≥ 1 (state q0).

• The set of words that end with x±1
i (state qi for each 1 ≤ i ≤ p− 1).

• The set of words that end with x±1
i x0 (state qi,0 for each 1 ≤ i ≤ p− 1).

• The set of words that end with x±1
i xk

0 for some 1 ≤ i ≤ p− 1 and k ≥ 2 (state q̄).

Let w ∈ Lp. If w is empty, then wx±1
i will be in Lp for all 0 ≤ i ≤ p − 1. We draw two

arrows from q to qi for each 0 ≤ i ≤ p− 1.

Let w correspond to the state q0. Then w = vxε
0 for some word v and for some ε = ±1.

The word wxε
0 will be in Lp; for each 1 ≤ i ≤ p− 1 the word wx±1

i will be also in Lp since
w has no terminal segments of the form x±1

i xk
0 (1 ≤ i ≤ p− 1, k ≥ 1. Thus we draw an

arrow from q0 to itself and two arrows from q0 to each qi (1 ≤ i ≤ p− 1).

Let w correspond to qi (1 ≤ i ≤ p− 1). The words wx−1
0 and wx0 belong to Lp; we draw

an arrow from qi to q0 and an arrow from qi to qi,0. The words wxj belong to Lp whenever
i < j ≤ p− 1; the words wx−1

j belong to Lp for all 1 ≤ j ≤ p− 1. So we draw one arrow
from qi to each q1, . . . , qi and two arrows from qi to each qi+1, . . . , qp−1.

Let w correspond to qi,0 (1 ≤ i ≤ p− 1). The word wx0 is in Lp and we draw an arrow
from qi,0 to q̄. Also wx−1

j ∈ Lp whenever i ≤ j ≤ p − 1. So one arrow goes from qi,0 to
each qi, . . . , qp−1. No other arrows can appear.
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Finally, let w correspond to q̄. Now only wx0 leads to a word in Lp; it corresponds to an
arrow from q̄ to itself.

The description of Ap is complete. Notice that the number of words in Lp of length n is
exactly the number of (directed) paths of length n in Ap starting at q. We would like to
compute the number of paths in Ap of length n starting at q and ending at a given state.
For each state we consider the corresponding generating function. Namely, to each vertex
v we assign a series of the form

∑∞

n=0 ant
n, where an is the number of paths in Ap starting

at q and ending at v. These generating functions will be denoted by f , fi (0 ≤ i ≤ p−1),
fi,0 (1 ≤ i ≤ p− 1), f̄ for each of the states, respectively. We will write down a system of
equations for these functions.

First of all, it is clear that f(t) = 1. To find f0, we mention that two arrows go from q
into q0 and one arrow goes into q0 from each of the states q0, q1, . . . , qp−1. Hence

(13) f0 = t(2f + f0 + f1 + · · ·+ fp−1).

Given a vertex qi (1 ≤ i ≤ p− 1), we observe that two arrows go into qi from q, q0, . . . ,
qi−1 and one arrow from qi, . . . , qp−1. Also one arrow goes into qi from each q1,0, . . . , qi,0.
Thus

(14) fi = t(2f + 2f0 + · · ·+ 2fi−1 + fi + · · ·+ fp−1) + t(f1,0 + · · ·+ fi,0).

Notice that fi,0 = tfi for each 1 ≤ i ≤ p− 1 because only one arrow goes into qi,0 (from
the state qi). Thus we can rewrite (14) as follows:

(15) fi = t(2f + 2f0 + · · ·+ 2fi−1 + fi + · · ·+ fp−1) + t2(f1 + · · ·+ fi).

Finally, there is one arrow that goes into q̄ from each of the states q1,0, . . . , qp−1,0, q̄. So

(16) f̄ = t(f1,0 + · · ·+ fp−1,0 + f̄) = t2(f1 + · · ·+ fp−1) + tf̄ .

In order to solve the system, let us consider the difference of equation (15) with i = 1 and
(13). This gives f1 − f0 = tf0 + t2f1, that is, (1− t2)f1 = (1 + t)f0. So f0 = (1− t)f1.

Now suppose that 1 ≤ i < p− 1. If we take the difference between fi+1 and fi using (15),
we obtain fi+1 − fi = tfi + t2fi+1, which implies fi = (1− t)fi+1.

Now for all 0 ≤ i ≤ p− 1 one has fi = (1− t)p−1−ifp−1. The equation (13) becomes

(1− t)p−1fp−1 = 2t+ tfp−1((1− t)p−1 + · · ·+ (1− t) + 1) = 2t+ fp−1(1− (1− t)p).

This gives

(17) fp−1(t) =
2t

(1− t)p + (1− t)p−1 − 1
.

In order to find the number of words in Lp having length n, we need to add all the
generating functions for all states. The result will be

Φp(t) = 1 + f0 + f1 + · · ·+ fp−1 + t(f1 + · · ·+ fp−1) +
t2

1− t
· (f1 + · · ·+ fp−1)

(here we used (16) to express f̄). Taking into account that

f1 + · · ·+ fp−1 =
1− t

t
· f0 − 2
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from (13), we have

Φp(t) = 1 + f0 +

(

1 + t +
t2

1− t

)

(f1 + · · ·+ fp−1) = 1 +

(

1 +
1

t

)

f0 −
2

1− t
.

Now, using f0 = (1− t)p−1fp−1 and (17), we finally have

(18) Φp(t) =
1 + t

1− t
· 1− t(1− t)p−1

(1− t)p + (1− t)p−1 − 1
.

This is the generating function for Lp. Thus the growth rate of Lp will be the reciprocal
of t, where t is the smallest positive root of the denominator of the right hand side of
(18).

The number y = (1− t)−1 is the root of yp = y + 1. It is clear that y > 1. Let y = 1+ x,
where x > 0. We would like to solve the equation (1+x)p = 2+x. Notice that 0 < x < 1.
Since (1 + x)p < 3, the root x approaches 0 as p goes to infinity.

The equation (1 + x)p = 2 + x can be written as

p =
ln(2 + x)

ln(1 + x)
=

ln 2 + ln(1 + x/2)

ln(1 + x)
=

ln 2 + x/2 + o(x)

x− x2/2 + o(x2)
.

Therefore,

(19)
p− 1

2

ln 2
=

1 + o(x)

x− x2 + ox2
= x−1(1 + x/2 + o(x)) = x−1 +

1

2
+ o(1)

as p → ∞.

We are interested in the number ξp = t−1, where t is the root of (1−t)p+(1−t)p−1−1 = 0.
Here (1 − t)−1 = y, where y = 1 + x is the root of yp = y + 1. It is easy to see that
ξp = 1 + x−1. So we deduce from (19) that

ξp =
p− 1

2

ln 2
+

1

2
+ o(1), p → ∞.

It is also easy to see that ξp = t−1 satisfies the following equation: (2ξ−1)(ξ−1)p−1 = ξp.
So we proved

Theorem 6.1. The growth rate of the group F (p), p ≥ 2 has a lower bound of ξp, where
ξp satisfies the equation

(2ξ − 1)(ξ − 1)p−1 = ξp.

The following asymptotic formula holds:

ξp =
p− 1

2

ln 2
+

1

2
+ o(1), p → ∞.

Here are several numerical values of ξp:

ξ2 = 2.618033989

ξ3 = 4.079595623

ξ4 = 5.530132718

ξ5 = 6.977144180

and so on. For large values of p, the growth rate of F (p) is at least 0.72(2p− 1) (recall
that 2p−1 is the maximum value of the growth rate of a p-generated group; this happens
if and only if the group is free of rank p).
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It would be interesting to find nontrivial upper bounds for the growth rates of F (p). This
means to find a constant c < 1 such that the growth rate of F (p) in its natural generators
does not exceed c(2p− 1).
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