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Abstract

This paper deals with the reducibility property of semidirect products of the form
V x D relatively to graph equation systems, where D denotes the pseudovariety of definite
semigroups. We show that, if the pseudovariety V is reducible with respect to the canonical
signature s consisting of the multiplication and the (w — 1)-power, then V x D is also
reducible with respect to .
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1 Introduction

A semigroup (resp. monoid) pseudovariety is a class of finite semigroups (resp. monoids)
closed under taking subsemigroups (resp. submonoids), homomorphic images and finite direct
products. It is said to be decidable if there is an algorithm to test membership of a finite
semigroup (resp. monoid) in that pseudovariety. The semidirect product of pseudovarieties has
been getting much attention, mainly due to the Krohn-Rhodes decomposition theorem [18]. In
turn, the pseudovarieties of the form VD, where D is the pseudovariety of all finite semigroups
whose idempotents are right zeros, are among the most studied semidirect products [23, 25, 3,
1, 4]. For a pseudovariety V of monoids, LV denotes the pseudovariety of all finite semigroups
S such that eSe € V for all idempotents e of S. We know from [17, 23, 24, 25] that V * D
is contained in LV and that V « D = LV if and only if V is [ocal in the sense of Tilson [25].
In particular, the equalities S1* D = LSI and G * D = LG hold for the pseudovarieties SI of

semilattices and G of groups.
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It is known that the semidirect product operator does not preserve decidability of pseu-
dovarieties [20, 11]. The notion of tameness was introduced by Almeida and Steinberg [7, 8] as
a tool for proving decidability of semidirect products. The fundamental property for tameness
is reducibility. This property was originally formulated in terms of graph equation systems
and latter extended to any system of equations [2, 21]. It is parameterized by an implicit
signature o (a set of implicit operations on semigroups containing the multiplication), and we
speak of o-reducibility. For short, given an equation system X with rational constraints, a
pseudovariety V is o-reducible relatively to 3 when the existence of a solution of ¥ by implicit
operations over V implies the existence of a solution of 3 by o-words over V and satisfying
the same constraints. The pseudovariety V is said to be o-reducible if it is o-reducible with
respect to every finite graph equation system. The implicit signature which is most commonly
encountered in the literature is the canonical signature k = {ab,a*~'} consisting of the mul-
tiplication and the (w — 1)-power. For instance, the pseudovarieties D [9], G [10, 8], J [1, 2]
of all finite #-trivial semigroups, LS1 [16] and R [6] of all finite #-trivial semigroups are

k-reducible.

In this paper, we study the x-reducibility property of semidirect products of the form V«D.
This research is essentially inspired by the papers [15, 16] (see also [13] where a stronger form
of k-reducibility was established for LS1). We prove that, if V is k-reducible then V x D is k-
reducible. In particular, this gives a new and simpler proof (though with the same basic idea)
of the k-reducibility of LS] and establishes the k-reducibility of the pseudovarieties LG, J «* D
and R*D. Combined with the recent proof that the x-word problem for LG is decidable [14],
this shows that LG is k-tame, a problem proposed by Almeida a few years ago. This also
extends part of our work in the paper [15], where we proved that under mild hypotheses
on an implicit signature o, if V is o-reducible relatively to pointlike systems of equations
(i.e., systems of equations of the form z; = -+ = x,,) then V % D is pointlike o-reducible as
well. As in [15], we use results from [5], where various kinds of o-reducibility of semidirect
products with an order-computable pseudovariety were considered. More specifically, we know
from [5] that a pseudovariety of the form V x Dy, is k-reducible when V is k-reducible, where
Dy, is the order-computable pseudovariety defined by the identity yzi---xp = x1---Tk. As
V «D = J, V * Dy, we utilize this result as a way to achieve our property concerning the
pseudovarieties V « D. The method used in this paper is similar to that of [15]. However,
some significant changes, inspired by [16], had to be introduced in order to deal with the much

more intricate graph equation systems.

2 Preliminaries

The reader is referred to the standard bibliography on finite semigroups, namely [1, 21],
for general background and undefined terminology. For basic definitions and results about

combinatorics on words, the reader may wish to consult [19].
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2.1 Words and pseudowords

Throughout this paper, A denotes a finite non-empty set called an alphabet. The free semigroup
and the free monoid generated by A are denoted respectively by A* and A*. The empty word
is represented by 1 and the length of a word w € A* is denoted by |w|. A word is called
primitive if it cannot be written in the form u™ with n > 1. Two words v and v are said to
be conjugate if u = wiws and v = wowy for some words wi,we € A*. A Lyndon word is a
primitive word which is minimal in its conjugacy class, for the lexicographic order on A™.

A left-infinite word on A is a sequence w = (ay), of letters of A indexed by —N also
written w = ---a_sa_;. The set of all left-infinite words on A will be denoted by A~ and
we put A7 = AT U A™N, The set A= is endowed with a semigroup structure by defining

a product as follows: if w,z € AT, then wz is already defined; left-infinite words are right

zeros; finally, if w = ---a_sa_1 is a left-infinite word and z = biby---b, is a finite word,
then wz is the left-infinite word wz = -+ -a_ga_1b1bs - - - b,,. A left-infinite word w of the form
Uy = - - -uuuw, with u € AT and v € A*, is said to be ultimately periodic. In case v = 1, the

word w is named periodic. For a periodic word w = «°, if u is a primitive word, then it will
be called the root of w and its length |u| will be said to be the period of w.

For a pseudovariety V of semigroups, we denote by Q4V the relatively free pro-V semi-
group generated by the set A: for each pro-V semigroup S and each function ¢ : A — S,
there is a unique continuous homomorphism @ : Q4V — S extending ¢. The elements of
QAV are called pseudowords (or implicit operations) over V. A pseudovariety V is called
order-computable when the subsemigroup Q4V of Q4V generated by A is finite, in which case
Q4V = Q4V, and effectively computable. Recall that, for the pseudovariety S of all finite
semigroups, Q48 is (identified with) the free semigroup A*. The elements of Q4S \ A" will
then be called infinite pseudowords.

A pseudoidentity is a formal equality m = p of pseudowords 7, p € QS over S. We say that
V satisfies the pseudoidentity m = p, and write V |E= 7 = p, if pom = ¢p for every continuous
homomorphism ¢ : Q4S8 — S into a semigroup S € V, which is equivalent to saying that
pv T = pvp for the natural projection pyv : QaS — QA V.

2.2 Pseudoidentities over V x D,

For a positive integer k, let Dy be the pseudovariety of all finite semigroups satisfying the
identity yxq - - - ) = o1 - - - 1. Denote by A the set of words over A with length k and by Ay,
the set {w € AT : |w| < k} of non-empty words over A with length at most k. We notice that
QaD;. may be identified with the semigroup whose support set is A and whose multiplication
is given by u - v = ti(uv), where tyw denotes the longest suffix of length at most k of a given
(finite or left-infinite) word w. Then, the Dy are order-computable pseudovarieties such that
D = |J,, Di. Moreover, it is well-known that Q4D is isomorphic to the semigroup A~.

For each pseudoword 7 € Q4S, we denote by tz7 the unique smallest word (of Aj) such
that Dy = m = tgm. Simetrically, we denote by ipm the unique smallest word (of Aj) such
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that Ky = m = ipm, where Ky is the dual pseudovariety of Dy defined by the identity
Ty xRy = x1--- 2. Let @ be the function AT — (A*1)* that sends each word w € A
to the sequence of factors of length k + 1 of w, in the order they occur in w. We still denote
by @ (see [3] and [1, Lemma 10.6.11]) its unique continuous extension QS — (Qr+1S)%.
This function @y is a k-superposition homomorphism, with the meaning that it verifies the
conditions:

i) ®pw =1 for every w € Ag;

ii) ®p(mp) = @@y ((trm)p) = Pi(m(inp)) Prp for every m, p € Q48.

Throughout the paper, V denotes a non-locally trivial pseudovariety of semigroups. For

any pseudowords 7, p € Q48, it is known from [1, Theorem 10.6.12] that

VxDpEn=p <= igm=1igp, tgm=trp and V |= Opm = Dyp. (2.1)

2.3 Implicit signatures and o-reducibility

By an implicit signature we mean a set o of pseudowords (over S) containing the multiplication.
In particular, we represent by x the implicit signature {ab, a“~'}, usually called the canonical
signature. Every profinite semigroup has a natural structure of a o-algebra, via the natural
interpretation of pseudowords on profinite semigroups. The o-subalgebra of Q4S generated
by A is denoted by €298S. It is freely generated by A in the variety of o-algebras generated by
the pseudovariety S and its elements are called o-words (over S). To a (directed multi)graph
I' = V(I'") w E(I'), with vertex set V(I'), edge set E(I'), and two binary operations a,w :
E(I') — V(I') defining, respectively, the beginning and the end vertices of each edge, we
associate the system Xp of all equations of the form (ae)e = we, with e € E(I"). Let S be a
finite A-generated semigroup, ¢ : 24S — S be the continuous homomorphism respecting the
choice of generators and ¢ : I' — S! be an evaluation mapping such that ¢ B(I') C S. We say
that a mapping 1 : I' = (Q4S)! is a V-solution of X with respect to (p,§) when dn = ¢ and
V Enu = nv for all (u = v) € Xp. Furthermore, if nI' C (Q2%S)! for an implicit signature o,
then 7 is called a (V, 0)-solution. The pseudovariety V is said to be o-reducible relatively to
the system X if the existence of a V-solution of X with respect to a pair (p,d) entails the
existence of a (V,o)-solution of X with respect to the same pair (¢,d). We say that V is
o-reducible, if it is o-reducible relatively to X for all finite graphs .

3 k-reducibility of V x D

Let V be a given k-reducible non-locally trivial pseudovariety. The purpose of this paper is
to prove the k-reducibility of the pseudovariety V x D. So, we fix a finite graph I' and a finite
A-generated semigroup S and consider a V * D-solution 1 : I' — (Q4S)! of the system Yr
with respect to a pair (¢,d), where o : I' — S is an evaluation mapping such that ¢ E(T') C S
and 0 : 248 — S is a continuous homomorphism respecting the choice of generators. We have

to construct a (V * D, k)-solution 1’ : T — (2%5S)! of X with respect to the same pair (i, d).



On k-reducibility of pseudovarieties of the form V x D 5

3.1 Initial considerations

Suppose that g € ' is such that ng = u with u € A*. Since n and 7’ are supposed to be
V x D-solutions of the system Y with respect to (¢, d), we must have dn = ¢ = én’ and so, in
particular, 6n'g = du. As the homomorphism § : Q4S — S is arbitrarily fixed, it may happen
that the equality 6n’g = du holds only when 7'g = u. In that case we would be obliged to
define n’g = u. Since we want to describe an algorithm to define 7’ that should work for any

given graph and solution, we will then construct a solution 7’ verifying the following condition:
Vgel, (nge A" = n'g=ng). (T, n,7)

Suppose next that a vertex v € V(TI') is such that D = npv = u® with u € AT, that is,
suppose that ppnv = © . Because I' is an arbitrary graph, it could include, for instance,
an edge e such that e = we = v and the labeling n could be such that ne = u. Since D
is a subpseudovariety of V x D, 7 is a D-solution of ¥ with respect to (¢,d). Hence, as
by condition €1 (I',n,n") we want to preserve finite labels, it would follow in that case that
D = (9'v)u = n'v and, thus, that D = n'v = ¥ = nv. This observation suggests that we
should preserve the projection into Q4D of labelings of vertices v such that ppnv = v with
u € AT. More generally, we will construct the (V * D, k)-solution 1’ in such a way that the

following condition holds:
W e V(T), (ppnv=uzwithu € A" and 2z € A* = ppn'v = ppnv). € (T, n,n)

Let ¢, = max{|u| : u € A* and g = u for some g € I'} be the maximum length of finite
labels under 7 of elements of I'. To be able to make some reductions on the graph I' and
solution 7, described in Section 3.2, we want 1’ to verify the extra condition below, where

L >/, is a non-negative integer to be specified later, on Section 3.3:

WweV(I), (nv=urwithue Ay = n'v=ur" with o7 = ir’). ¢s(T,n,n')

3.2 Simplifications on the solution 7

We begin this section by reducing to the case in which all vertices of I" are labeled by infinite
pseudowords under 7. Suppose first that there is an edge v — w such that nv = u, and ne = u.
with uy € A* and ue € A", so that nw = uyue. Drop the edge e and consider the restrictions
n and ¢1, of n and ¢ respectively, to the graph Iy = I'\ {e}. Then 7; is a V *D-solution of the
system X, with respect to the pair (¢1,d). Assume that there is a (V * D, k)-solution 7} of
Y, with respect to (p1,0) verifying condition €1 (I, m1,7}). Then njv = u, and Njw = uye.
Let 7’ be the extension of 1] to I' obtained by letting e = ue. Then 1’ is a (V D, k)-solution
of ¥ with respect to (¢,d). By induction on the number of edges labeled by finite words
under 7 beginning in vertices also labeled by finite words under 7, we may therefore assume
that there are no such edges in I.

Now, we remove all vertices v of I' labeled by finite words under n such that v is not the

beginning of an edge, thus obtaining a graph I';. As above, if 1} is a (V x D, k)-solution of



6 J. C. Costa, C. Nogueira, M. L. Teixeira

Y, then we build a (V % D, k)-solution 1’ of ¥ by letting 1’ coincide with ] on I'; and
letting n’'v = nv for each vertex v € I'\ T';. So, we may assume that all vertices of T labeled
by finite words under 7 are the beginning of some edge.

Suppose next that v — w is an edge such that nv = u and ne = 7 with u € A* and
7w € Q4S\ AT, Notice that, since it is an infinite pseudoword, m can be written as 7 = w7
with both 7; and 79 being infinite pseudowords. Drop the edge e (and the vertex v in case e
is the only edge beginning in v) and let v; be a new vertex and v; 21 w be a new edge thus

obtaining a new graph I'1. Let 1 and ¢1 be the labelings of I} defined as follows:
e 71 and (; coincide, respectively, with  and ¢ on I" =Ty N T

® 7)1Vl = umy, N1€1 = mo, Y1V1 = (5771V1 and Y1€e1 = 577161.

Then 7; is a V % D-solution of the system X, with respect to the pair (¢1,0). Assume that
there is a (V*D, k)-solution 7] of ¥, with respect to (¢1,0) verifying conditions &1 (I, 1, n})
and €3(I,m,n). In particular, since L is chosen to be greater than ¢, njvi = wur} with
om = om}. Let 1 be the extension of 77’1\1“/ to I' obtained by letting n'e = 7}(nje1) (and
n'v=w in case v & I'"). As one can easily verify, 7’ is a (V x D, k)-solution of ¥ with respect
to (¢,0). By induction on the number of edges beginning in vertices labeled by finite words
under 7, we may therefore assume that all vertices of I' are labeled by infinite pseudowords
under 7.

Suppose at last that an edge e € I is labeled under 7 by a finite word u = ay - - - ay,, where
n > 1 and a; € A. Denote vo = ae and v, = we. In this case, we drop the edge e and, for each
i€{l,...,n—1}, we add a new vertex v; and a new edge v;_1 £y v; to the graph T'. Let T}
be the graph thus obtained and let n; and ¢; be the labelings of I'} defined as follows:

e 71 and ¢ coincide, respectively, with n and ¢ on IV =T\ {e};
e foreachi € {1,...,n—1}, mv; = (nvo)ay - - - a;, me; = a;, p1v; = dnv; and pre; = Inye;.

Hence, 71 is a V x D-solution of the system Y, with respect to the pair (¢1,d). Suppose there
exists a (V x D, k)-solution 7} of ¥, with respect to (y1,0) verifying condition €1 (', n1,7).
Let 17" be the extension of 77I1|F’ to I' obtained by letting n’e = u. Then 7’ is a (V * D, k)-
solution of X with respect to (¢, d). By induction on the number of edges labeled by finite
words under 7, we may further assume that each edge of I' labeled by a finite word under 7
is, in fact, labeled by a letter of the alphabet.

3.3 Borders of the solution n

The main objective of this section is to define a certain class of finite words, called borders of
the solution n. Since the equations (of ¥Xr) we have to deal with are of the form (ae)e = we,
these borders will serve to signalize the transition from a vertex ae to the edge e.

For each vertex v of T, denote by d, € A= the projection ppnv of nv into Q4D and let
D, ={d, | v € V(I)}. We say that two left-infinite words v1,v2 € A~ are confinal if they
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have a common prefix y € A™N, that is, if v = y2; and vy = Yz for some words 21, 2o € A*.

As one easily verifies, the relation oc defined, for each d,,,d,, € D,,, by
d,, «d,, ifandonlyif d,, and d,, are confinal

is an equivalence on D,. For each o-class A, we fix a word ya € AN and words z, € A*, for
each vertex v with d, € A, such that

dy = yaz.

Moreover, when d, is ultimately periodic, we choose ya of the form v, with u a Lyndon
word, and fix z, not having u as a prefix. The word u and its length |u| will be said to be,
respectively, a root and a period of the solution n. Without loss of generality, we assume that
7 has at least one root. Indeed, otherwise we could easily modify the graph and the solution
in order to include one and then recover a (V %D, k)-solution of X from a (V %D, k)-solution
of the new system, as done in Section 3.2. For instance, we could add a new edge v = w to
the graph I', where v is any fixed vertex of I' and w is a new vertex. Next, it would suffice to
extend 7 to a new labeling 7; by letting n;(e) = a* and n;(w) = n(v)a®.

We fix a few of the integers that will be used in the construction of the (V D, k)-solution

n’. They depend only on the mapping 7 and on the semigroup S.
Definition 3.1 (constants ng, p,, L, £ and Q) We let:

e ng be the exponent of S which, as one recalls, is the least integer such that s™S is idem-

potent for every element s of the finite A-generated semigroup S;

pp = lem{|u| : ue A" is a root of n};
L = max{/y, |z|:ve V(I)},

e E be an integer such that £ > ngp, and, for each word w € AE  there is a factor e € AT
of w for which de is an idempotent of S. Notice that, for each root u of n, |[u™| < E and
d(u™s) is an idempotent of S;

Q=L+E.

For each positive integer m, we denote by B,, the set
B, = {tmya € A™ | A is a x-class}.

If yn = w is a periodic left-infinite word, then the element y = t,,ya of By, will be said to
be periodic (with root u and period |u|). For words yi,y2 € B,,, we define the gap between 1y,

and y2 as the positive integer
9(y1,y2) = min{|u| € N:u € AT and, for some v € AT, yju = vys or you = vy },

and notice that g(y1,y2) = g(y2,11) < m.
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Proposition 3.2 Consider the constant () introduced in Definition 3.1. There exists qg € N
such that for all integers m > qg the following conditions hold:

(a) If y1 and yo are distinct elements of By, then g(yi,y2) > Q;
(b) If y is a non-periodic element of By, then g(y,y) > Q.

Proof. Suppose that, for every go € N there is an integer m > gg and elements y,, 1 and
Ym,2 of By, such that g(ym.1,ym,2) < Q. Hence, there exist a strictly increasing sequence (m;);
of positive integers and an integer r € {1,...,@Q} such that (g(ymi’l,ymhg))i is constant and
equal to r. Moreover, since the graph I' is finite, we may assume that y;,,1 = tm,ya, and
Ymi2 = tm;Ya, for every ¢ and some oc-classes Ay and Ag. It then follows that ya,u = ya,
or ya,u = ya, for some word u € A". Hence, ya, and ya, are confinal left-infinite words,
whence Ay and Ay are the same oc-class A. Therefore, for every m, ym,m1 and yp, 2 have the
same length and are suffixes of the word ya and, so, ¥,,1 and y,, 2 are the same word. This
proves already (a). Now, notice that yau = ya, meaning that y is the periodic left-infinite

word u~>°. This shows (b) and completes the proof of the proposition. [

We now fix two more integers.
Definition 3.3 (constants M and k) We let:

o M be an integer such that M is a multiple of p, and M is greater than or equal to the
integer qq of Proposition 3.2, and notice that M > Q);

o k=M+Q.

The elements of the set Bys will be called the borders of the solution . We remark that the
borders of 7 are finite words of length M such that, by Proposition 3.2, for any two distinct
occurrences of borders y; and y9 in a finite word, either these occurrences have a gap of size
at least () between them, or y; and yo are the same periodic border y. In this case, y is a

power of its root u, since M is a multiple of the period |u|, and g(y,y) is |ul.

3.4 Getting a (V % Dy, k)-solution

Let k be the constant defined by Definition 3.3. As V % Dy is a subpseudovariety of V x D,
n is a V x Dyg-solution of X with respect to (¢, d). The given pseudovariety V was assumed
to be k-reducible. So, by [5, Corollary 6.5], V % Dy, is k-reducible too. Therefore, there is a
(V % Dy, k)-solution 7}, : I' = (Q25S)! of X with respect to the same pair (i, d). Moreover,
as observed in [6, Remark 3.4], one can constrain the values 7, g of each g € I with respect
to properties which can be tested in a finite semigroup. Since the prefixes and the suffixes of
length at most k& can be tested in the finite semigroup Q4K x Q 4Dy, we may assume further
that 7,g and ng have the same prefixes and the same suffixes of length at most k. We then

denote

ig =ipmpg =irng and tg = ty7g = ting,
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for each g € I'. Notice that, by the simplifications introduced in Section 3.2, if ng is a finite
word, then g is an edge and 7g is a letter ag and so iz = tg = ag. Otherwise, ig and tg are
length k£ words. In particular, condition %3 (I",n,n,) holds. That is, n,e = ne for every edge
e such that ne is a finite word. On the other hand, Lemma 2.3 (ii) of [12], which is stated
only for edges, can be extended easily to vertices, so that 1, g can be assumed to be an infinite
pseudoword for every g € T' such that ng is infinite. Thus, in particular, v is an infinite
pseudoword for all vertices v.
Notice that, for each vertex v, there exists a border y, of n such that the finite word y, 2y,
is a suffix of nv. On the other hand, by Definitions 3.1 and 3.3, |2y| < L < @ and k = M + Q.
So, as |y = M,
ty = 22y and MV = Mty (3.1)

for some infinite x-word m, and some word z, € A" with |z,| = Q — |2/

3.5 Basic transformations

The objective of this section is to introduce the basic steps that will allow to transform the
(V x Dy, k)-solution 7). into a (V x D, k)-solution n’. The process of construction of 7’ from n,
is close to the one used in [15] to handle with systems of pointlike equations. Both procedures

are supported by (basic) transformations of the form
a/l-..a/k Ha/l."aj(ai".aj)waj—’—l.'.akj

which replace words of length k by x-words. Those procedures differ in the way the indices
1 < j are determined. In the pointlike case, the only condition that a basic transformation
had to comply with was that j had to be minimum such that the value of the word a; - - - ay
under ¢ is preserved. In the present case, the basic transformations have to preserve the value
under 0 as well, but the equations («e)e = we impose an extra restriction that is not required
by pointlike equations. Indeed, we need 7' to verify, in particular, 6n'ae = dnj,ae(= dnoe)
and 0n'e = dn.e(= dne). So, somewhat informally, for a word a; - - - a5 that has an occurrence
overlapping both the factors 7,.ce and 7;e of the pseudoword (n,.ce)(n,e), the introduction
of the factor (a;---a;)* by the basic transformation should be done either in 7. ce or in e,
and not in both simultaneously. The borders of the solution n were introduced to help us to
deal with this extra restriction. Informally speaking, the borders will be used to detect the
“passage” from the labeling under 7;, of a vertex e to the labeling of the edge e and to avoid
that the introduction of (a;---a;)* affect the labelings under 6 of 7. ae or ne.

Consider an arbitrary word w = a; - --a, € AT. An integer m € {M,...,n} will be called
a bound of w if the factor wy,) = @y - ap of w is a border, where m' =m — M + 1. The
bound m will be said to be periodic or non-periodic according to the border wy,, is periodic
or not. If w admits bounds, then there is a maximum one that we name the last bound of w.
In this case, if £ is the last bound of w, then the border wy, will be called the last border of
w. Notice that, by Proposition 3.2 and the choice of M, if m; and mo are two bounds of w

with mq < mg, then either mo — mq > @ or Wiiny] and Wip,] are the same periodic border.
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Let w = ay---a, € AT be a word of length k. Notice that, since k = M + Q, if w has a
non-periodic last bound ¢, then ¢ is the unique bound of w. We split the word w in two parts,
1, (the left-hand of w) and x,, (the right-hand of w), by setting

ly=a1---as and 1Ty, =asi1---ak

where s (the splitting point of w) is defined as follows: if w has a last bound ¢ then s = ¢;
otherwise s = k. In case w has a periodic last bound £, the splitting point s will be said to be
periodic. Then, s is not periodic in two situations: either w has a non-periodic last border or

w has not a last border. The factorization
W = LlyTy

will be called the splitting factorization of w. We have s > M > () > E. So, by definition of
E, there exist integers ¢ and j such that s — F' < i < j < s and the factor e = a;---a; of 1,
verifies de = (de)?. We begin by fixing the maximum such j and, for that j, we fix next an
integer i and a word e,, = a;---aj, called the essential factor of w, as follows. Notice that,
if the splitting point s is periodic and u is the root of the last border of w, then &(u"s) is

idempotent and the left-hand of w is of the form 1,, = 1/ u"s

. Hence, in this case, j = s and
we let e,, = u™, thus defining i as j — nglu| + 1. Suppose now that the splitting point is not
periodic. In this case we let ¢ be the maximum integer such that 6(a;---a;) is idempotent.
The word w can be factorized as w = 1/ e,1! ry,, where 1/, = aj ---a;—1. We then denote by

w the fOHOWil’lg Kk-word
1 w
e’wewlwr’w alaj(alaj> a’]—‘rlak

and notice that dw = dw. Moreover |e, 1| < E andso |1),| > M —FE > Q— FE = L. It is also

convenient to introduce two x-words derived from @
Mw = aq---aj(a;---a;)”,  opw = (a;---aj)’ajp1 - ag. (3.2)

This defines two mappings Ay, or, : A¥ — Q%S that can be extended to Q4S as done in [15].
Although they are not formally the same mappings used in that paper, because of the different
choice of the integers ¢ and j, we keep the same notation since the selection process of those
integers is absolutely irrelevant for the purpose of the mappings. That is, with the above
adjustment the mappings maintain the properties stated in [15].

The next lemma presents a property of the ~-operation that is fundamental to our pur-

poses.

Lemma 3.4 For a word w = ay---agy1 € AT of length k + 1, let wy = a1 ---a; and wy =
as - - agg1 be the two factors of w of length k. If Wy = a1 ---aj, (@i, -+~ aj,)*aj,4+1- - ap and
Wy = a2 Qjy(Qiy + - Ajy)* Ajo1 * - - Aky1, then a1ly, = Ly, x for some word x € A*. In

particular j1 < jo.
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Proof. Write wo = by --- by with b; = a;41. Let s1 and so be the splitting points of w;
and wy respectively, whence 1,,, = aj---as, and 1y, =by---bs, = a2+ --as,+1. To prove that
there exists a word x such that a;l,, = 1,2, we have to show that s; < sy + 1. Under this
hypothesis, we then deduce that a;, ---a;, is an occurrence of the essential factor ey, in 1,
which proves that j; < jo.

Assume first that wq has a last bound ¢1, in which case s; = ¢;. By definition, ¢; > M.
If /1 > M, then the last border of w; occurs in ws, one position to the left relatively to w;.
Hence ¢; — 1 is a bound of wy and, so, ws has a last bound #5 such that £o > ¢; — 1. It follows
in this case that so = f2 and s; < so + 1. Suppose now that £; = M. Since so > M by
definition, the condition s; < so + 1 holds trivially in this case. Suppose now that w; has not
a last bound. Then s; = k. Moreover, either wy does not have a last bound or k is its last
bound. In both circumstances sy = k, whence s;1 = s9 < so + 1. This concludes the proof of

the lemma. [

In the conditions of the above lemma and as in [15], we define ¥y : (Q46+1S)t — (24S)!

as the only continuous monoid homomorphism which extends the mapping

AR 5 0nS

ap - Qp41 (ail T aj1)waj1+1 T Qg (ai2 o 'aj2)w

and let 0 = 1, ®,. The function 65, : Q4S — (24S)! is a continuous k-superposition ho-
momorphism since it is the composition of the continuous k-superposition homomorphism &y,
with the continuous homomorphism . We remark that a word w = a; - - - a,, of length n > k

has precisely 7 = n — k + 1 factors of length £ and

Hk(w) :¢k(a1---ak+1,a2-~~ak+2,...,ar_1---an)
= ka(al ... akJrl)q/}k(aQ R ak+2) .. 'wk(ar—l ... an)
= (7 fr1e5)(e5 fae5) - - - (71 fr—1€7)

=eifies fo e fro1€y

where, for each p € {1,...,r}, e, is the essential factor ey, = a;,---a;, of the word w, =
ap---apyp-1 and fp = aj,41---aj,,, (p # r). Above, for each p € {2,...,7 — 1}, we have
replaced each expression eye; with e} since, indeed, these expressions represent the same r-

word. More generally, one can certainly replace an expression of the form z“z"z* with z“z".

Using this reduction rule as long as possible, 6 (w) can be written as
Ok(w) = e, fres, fo - ety fo,

called the reduced form of 6y(w), where ¢ € {1,...,r}, 1 = ng < ng < --- < ng <7,

fo = Fny - frpi—1 (forp € {1,...,q—1}) and fq is fp, -+ fr—1 if ng # r and it is the empty
word otherwise.



12 J. C. Costa, C. Nogueira, M. L. Teixeira

3.6 Definition of the (V % D, k)-solution 7’

We are now in conditions to describe the procedure to transform the (V * Dy, k)-solution 7,
into the (V * D, k)-solution 1’. The mapping 7 : I' — (2%5S)" is defined, for each g € T, as

n'g = (118)(128)(138),

where, for each i € {1,2,3}, 7, : T' — (Q2%S)! is a function defined as follows.
First of all, we let
Ty = Oy,
That 7o is well-defined, that is, that g is indeed a k-word for every g € I, follows from the
fact that n,g is a k-word and 6}, transforms rk-words into x-words (see [15]). Next, for each

vertex v, consider the length k& words i, = ign,v = ixnv and t, = tgn,v = trnv. We let
TIV= Apiy and T3v = opty,

where the mappings Ay and g were defined in (3.2). Note that, by (3.1), ty = zyyv2y.
Moreover, the occurrence of g, shown in this factorization is the last occurrence of a border

in t,. Hence, the right-hand r¢, of t, is precisely z,. Therefore, one has

— s 1/ w _ o wql
TV = A\piy =15 es el and  T3v = gty = eg 13 2y

Consider now an arbitrary edge e. Suppose that ne is a finite word. Then, ne is a letter
ae and 77,’{e is also ae in this case. Then me = 6Orae = 1 because 6 is a k-superposition

homomorphism. Since we want 7’e to be ae, we then define, for instance,
Tie = a. and T73e = 1.
Suppose at last that ne (and so also 7€) is an infinite pseudoword. We let
T3€ = QOkTe

and notice that 73e = T3we. Indeed, as 7, is a V x Dj-solution of Xr, it follows from (2.1) that
te = tknfge = tkn;we = tye. The definition of e is more elaborate. Let v be the vertex ae
and consider the word tyie = a1 - - - agr. This word has r = k 4 1 factors of length k. Suppose

that O, (tyie) is €Y fie5 fa--- e fr—1€¥ and consider its reduced form
Hk(tvie) = elffle(;izfQ te ezqfq-

Notice that tyie = fofi--- fyfq+1 for some words fo, f;+1 € A*. Hence, there is a (unique)
index m € {1,...,q} such that t, = fof1--- fm_1f", and f,, = f. f” with f/. € A* and f/ €
AT, Then 0k (tyie) = 182, where 8; = e“ffle‘;{Qfg e e%mﬁ’n and 35 = _,’,'le%mﬂfmﬂ e e%qfq

and we let

rie =Py = fren,  fmi1-eg fo.

Note that the word 85 = f fm+1 - fq 1S ags1 -+ - aj,, whence Bhe® = Agie.

The next lemma is a key result that justifies the definition of the ~-operation.
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Lemma 3.5 Let e be an edge such that ne is infinite. Then, with the above notation, 1 = T3v
and so O(tyie) = (13v)(11€). Moreover, dTie = 0 Agie.

Proof. We begin by recalling that tyie = aq - - - agi and

Ok(tvie) = i fies fo- - ey frrey = ef fiem, fa- -~ €5 fo,

where e, is the essential factor ey, = a;,---a;, of the word w, = a,---ag4p—1 and f, =
aj,4+1---aj,,, for each p. Note also that A\yie = f5€¥, e, is a suffix of 55 and de, is idempotent.
So, to prove the equality d7ie = d\gie it suffices to show that d71e = 655. We know from (3.1)
that t, = zyyvzy with 1 < |zy| < Q. So, &y = a1 ap—1, Yy = ap---ap+p—1 and z, =
apfip - - ag for some h € {2,...,Q + 1}. There are two cases to verify.

Case 1. y, is a non-periodic border. Consider the factor wy, = ay, - - - agyp—1 of tyie. By the
choice of M and k, the prefix y, is the only occurrence of a border in wy. Hence, M is the
last bound of wy, and, so, its splitting point. It follows that wy = yy-2vagy1 - - - agrn—1 is the
splitting factorization of wy. Therefore, as one can verify for an arbitrary p € {1,...,h},
there is only one occurrence of a border in w,, precisely y,, and the splitting factorization
of wy, is

Wp = Ap * " AGp—1Yv * 2vAf41 ** * Akp—1,

whence e, = e; with j, = j1 < M +h —1 and, so, f, = 1 for p < h. So, the prefix
el fres - fn_1€} of O (tyie) reduces to ef. Consider now the factor wyi1 = apq1 -+ Q-
Hence, either wy41 does not have a last bound or £ is its last bound. In both situations,
the splitting point of wy 1 is k and its splitting factorization is w41 = wp1 - 1. Therefore,
one deduces from Lemma 3.4 that, for every p € {h+1,...,7}, the occurrence a;, - - - aj, of
the essential factor ey, in wy is, in fact, an occurrence in the suffix w = agyip g aop =
apfL4h - a9 of tyie. Since |zyyy| = M +h—1 and |z, | < L, it follows that k = |xyyy2y| <
M + L + h, whence w’ is a suffix of i and so k < i, < j, for all p € {h+1,...,r}. This
means, in particular, that the w-power ey, is introduced at the suffix ie of tyie. Hence
p1 = €7 f1€5 -+ fn_1€faj, 11 - - aj and its reduced form is e{a;, 1 - - - ax = 73v, which proves
that 81 and 73v are the same x-word. Moreover, from k£ < i), one deduces that the word

ep is a suffix of ag11 - a;,, which proves that dmie = 035.

Case 2. y, is a periodic border. Let u be the root of y,. Then, since M was fixed as a
multiple of |u], 3, = u™* where M, = % If the prefix y, is the only occurrence of a
border in wy, then one deduces the lemma as in Case 1 above. So, we assume that there
is another occurrence of a border y in wy. Hence, by Proposition 3.2 and the choice of
M and k, y is precisely y,. Furthermore, since u is a Lyndon word and &k = M + ) with
Q< M, wy, = y\,udw;l for some positive integer d and some word wj € A* such that u is
not a prefix of wj. Notice that, since u is not a prefix of z, by definition of this word, z,

is a proper prefix of u. On the other hand wy, = udy\,w% and the occurrence of y, shown in
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this factorization is the last occurrence of ¥, in wy. Thus,
d /
wp, = uYy - Wy,

is the splitting factorization of wy. Therefore w, = udy\,(uns)“’wﬁl and e, = u". More
generally, for any p € {1,...,h}, yy is a factor of w, and it is the only border that occurs
in w,. Hence, the splitting point of w, is periodic and e, = u"$. Moreover, as one can
verify, j1 = M + h — 1 and the prefix e¥fie§ --- fo_1e¥ of Op(tyie) is ¥ (u(ef))? and
so, analogously to Case 1, it reduces to e¥u?. Since z, is a proper prefix of v and d > 1,
k < jp. This allows already deduce that the reduced form of i is (u")¥z, = 7T3v, thus
concluding the proof of the first part of the lemma. Now, there are two possible events.
Either m = q and 32 = f/, = 3}, in which case érie = 63} is trivially verified. Or m # ¢
and the w-power e, L, Was not eliminated in the reduction process of 0 (tyie). This means
that the splitting point of the word w,,, ., is not determined by one of the occurrences of
the border y, in the prefix a; - - agyp—1 of tyie. Then, as in Case 1 above, one deduces
that k < i, for each p € {nm41,...,7} and, so, that dme = §/35.

In both cases 81 = m3v and d71e = d\rie. Hence, the proof of the lemma is complete. ]

Notice that, as shown in the proof of Lemma 3.5 above, if a vertex v is such that g, is
a periodic border with root u, then m3v = (u™)“z,. So, the definition of the mapping 73 on

vertices assures condition %a2(T",n, 7).

3.7 Proof that ' is a (V x D, k)-solution

This section will be dedicated to showing that 7' is a (V * D, k)-solution of X with respect
to the pair (¢, d) verifying conditions (T, n,n’) and €5(I",n,n').

We begin by noticing that g is a k-word for every g € I'. Indeed, as observed above, each
Tog is a k-word. That both 7 g and 73g are k-words too, is easily seen by their definitions.

Let us now show the following properties.

Proposition 3.6 Conditions én' = ¢, €1(T',n,1') and €5(T,n,n') hold.

Proof.  Asj is a Vs Dy-solution of X with respect to (¢, d) and, so, the equality 0m) = ¢
holds, to deduce that dn" = ¢ holds it suffices to establish the equality dn' = d7;. Consider
first a vertex v € I'. Then mv = A\pi, = 1} e; ef, and 13v = gty = ef 1{ 2,. In this case, the
equality dm,v = 6n'v is a direct application of [15, Proposition 5.3], where the authors proved
that

om = 5(()\kikﬂ)(0kﬂ')(gktkﬂ')) (3.3)

for every pseudoword m. Moreover, by definition of the ~-operation, |1} | > L. Therefore, nv
and n'v are of the form nv = um and n'v = un’ with u € A" and 7 = é7’. So, condition
%5(T',n,n’) holds.
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Consider next an edge e € T'. If nj} e is a finite word ae, then 'e = (11€)(12e)(T3€) = Ge-1-1 =
ae = 1.e, whence dn'e = o€ holds trivially. Moreover, since 7).e = ne in this case and every
vertex is labeled under n by an infinite pseudoword, it follows that condition ¢ (T",n,n)
holds. Suppose at last that e is infinite and let v = ce. Then 73e = gpte. On the other
hand, by Lemma 3.5, d71e = d\rie. Hence, by (3.3) and since ¢ is a homomorphism, én'e =
§((r1e)(12e)(13e)) = 6((Akie)(Bimye)(orte)) = dmje. This ends the proof of the proposition. m

Consider an arbitrary edge v = w of I'. To achieve the objectives of this section it
remains to prove that V * D satisfies (n'v)(n'e) = n'w. Since 7 is a V % Dy-solution of Xr,
V « Dy, satisfies (n}v)(n,e) = nw. Hence, by (2.1), i, = i ((n},v)(n,e)) = ik(n,w) = iw and

tk:((ﬂ;;V)(U;ge)) = ti(nmw) = tw. Thus, v = A\piy = 1) e;,6¢ =1} e;,6f = Mpiw = W
and 13w = gpty = e{,1{ z,. As shown in the proof of [15, Proposition 5.4], it then follows

that V * D satisfies e 0y ((n},v)(n,e))es = &% Op(n,w)ey. and, so,

Vi D = (11v) 0 ((7v) (nke)) (m3w) = (Taw)0p (mjw) (Tsw) = 17'w. (3.4)

On the other hand, from the fact that 6, is a k-superposition homomorphism one deduces

O (V) (11.8)) = O (V) 0k (v (mie)) = Ok (nj.v) 0k (tvie) Ok (nie). (3.5)

Suppose that 7.e is an infinite pseudoword. In this case te = tw, whence T3¢ = T3w.
Moreover, by Lemma 3.5, 0;(tyie) = (73v)(71€). Therefore, by conditions (3.4) and (3.5),
V « D satisfies (1'v)(n'e) = n’w. Assume now that 7;e is a finite word, whence ne = a. € A
and e = ae. Since 7 is a D-solution of Xp, D | (nv)ae = nw and, thus, dyae = dy.
Hence the left-infinite words d, and d,, are confinal and, so, «x-equivalent. Hence d, = yazy,
dw = yazw and y, = yw = trya, where A is the x-class of d, and d,,. It follows that
YAZvde = YAZw and tk(tvae) = t,. In this case, Qk((n,;v)(nfce)) = O(n.v)0r(tvae). On the
other hand, tyae = aj - - - axar4+1 = arty is a word of length £+ 1 and, so, Ok (tyae) = ¥ (tyae)
is of the form

Or(tvae) = €y fes.

The splitting factorizations of t, and t,, are, respectively, ty = zyyy - 2v and tw = TwlYw * 2w-
Since yy = yw, it follows that e; = ey, = e, = ea.

Suppose that zyae = zw. In this case it is clear that f = 1, so that O(tyae) = el .
Since 6y (n},v) ends with ef , it then follows that 6y ((n,v)(n}e)) = Okn,v = T2v. Therefore,
(T1v) 0k ((m,v) (m},€)) (Tsw) = (71v)(72v)(T3w). On the other hand,

— _ qw q _ o wq? _
T3W = oty = ef 1%, 2w = et 1%, 2vae = (T3V)ae.

So, by (3.4), one has that V x D satisfies ('v)ae = (11v)(72v)(73V)ae = (11v)(72v)(T3W) = n'w.
Suppose now that zyae # zw. In this case, one deduces from the equality yazyae = YA 2w,
that ya is a periodic left-infinite word. Let u be its root, so that ya = v, ey, = u™ and lfc’v =

17 = 1. Since, by definition, v is a primitive word which is not a prefix of 2, nor a prefix of
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2w, we conclude that z,ae = u and 2, = 1. In this case f = u, whence 6 (tyae) = ef u. Then,

Gk((nzv)(n,’ve)) = (0xm).v)u = (m2v)u. Therefore, (Tlv)ek((nl’gv)(n;ge))(Tgw) = (11v)(12v)u(T3w).
Moreover,

u(raw) = uel 17 2w = u(u™)” = (u™)“u = ¢ 17 zyae = (T3V)ae.

Therefore, using (3.4), one deduces as above that V * D satisfies (1'v)ae = n'w.

We have proved the main theorem of the paper.
Theorem 3.7 If V is k-reducible, then V x D is k-reducible.

This result applies, for instance, to the pseudovarieties Sl, G, J and R. Since the xk-word
problem for the pseudovariety LG of local groups is already solved [14], we obtain the following

corollary.

Corollary 3.8 The pseudovariety LG is k-tame.

Final remarks. In this paper we fixed our attention on the canonical signature x, while
in [15] we dealt with a more generic class of signatures o verifying certain undemanding
conditions. Theorem 3.7 is still valid for such generic signatures o but we preferred to treat

only the instance of the signature x to keep the proofs clearer and a little less technical.
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