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ON THE ATOMS OF ALGEBRAIC LATTICES ARISING IN

q-THEORY

ATTILA EGRI-NAGY, MARCEL JACKSONa, JOHN RHODESb,
AND BENJAMIN STEINBERGc

Abstract. We determine many of the atoms of the algebraic lattices arising
in q-theory of finite semigroups.

1. Introduction

All undefined terminology is given in [9, Chapter 2] with which we assume the
reader is familiar.

One way to view the q-theory of finite semigroups is by analogy with the real
analysis theory of continuous and differentiable functions from r0, 1s to itself. The
analogy is given by replacing r0, 1s with the complete algebraic lattice PV of all
pseudovarieties of finite semigroups, replacing continuous functions with CntpPVq,
and replacing differentiable functions with GMCpPVq; see [9, Chapter 2].

The collections of relational morphisms P CC (PVRM) give “coordinates”
(closely related to the graph of the continuous function given by applying the q op-
erator) which, on application of q, yields, CCq “ CntpPVq and PVRMq “
GMCpPVq.

For any X Ď CntpPVq, let X` denote the members α of X such that αpVq Ě V

for all V P PV. Similarly, let X´ denote the members β of X such that βpVq Ď V

for all V P PV.
Next, CC, CC`, CC´, PVRM, PVRM`, and PVRM´ are defined so that

CCq “ CntpPVq, CC`
q “ CntpPVq`, and so on.

Now since CntpPVq, CntpPVq`, CntpPVq´, GMCpPVq, GMCpPVq`, and
GMCpPVq´ are all complete algebraic lattices, a natural question to ask is what
are their atoms? Also we ask the same question for the complete algebraic lat-
tices CC, CC`, CC´, PVRM, PVRM`, PVRM´, etc. including some minor
variations of these.

We make significant progress on answering these questions; see Figures 1 and 2.
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So what are the methods of proofs? For those having no atoms we use the obvious
Principle 3.7. For others we use the many Galois connections stemming from q-
theory [9, Chapter 2] and then apply Proposition 3.18. In determining the atoms of
GMC and GMC´ we need to know which of the well-known atoms of PV (see [9,
Table 7.1]) lift, are projective, or are very small; see Definition 4.1. We determine,
for each atom of PV, when each of these properties hold; see Theorems 4.3 and 4.8.

A big surprise arose when the AtomspCntpPVq`q turned out to be in one-to-
one correspondence with the compact smi elements of PV, where the compact
elements of PV are the pseudovarieties generated by a single finite semigroup S;
see Section 2.4 and Theorem 3.14, Fact 3.15, and Remark 3.16 for definitions and
elementary properties. Then the question arises: are there any compact smi pseu-
dovarieties? We prove that an infinite number exist. To do this we first identify
some basic syntactic conditions on an equation that guarantee it defines a smi pseu-
dovariety (Proposition 4.9). While these are not in general compact (Propositions
4.12 and 4.13) we find two infinite families that are; see Section 5. The method
in each case is to show that there is a semigroup S in the pseudovariety with the
property that any equation not following from the defining ones can be found to
fail on S. This semigroup S generates the pseudovariety.

We conclude the article with two main problems and some other associated
unresolved questions relating to compact smi pseudovarieties.

2. Preliminaries

Here we give few essential definitions, but making the paper self-contained would
render the paper unreasonably long. Any undefined terminology can be found
in [9, Chapter 2], which we suggest that the reader keeps handy. We follow the
convention there that homomorphisms are written on the right of their arguments,
but continuous operators on a lattice are written on the left. A mapping of complete
lattices is said to be sup if it preserves all suprema and inf if it preserves all
infinima.

2.1. Algebraic lattices. An element of a lattice is compact if whenever it is less
than or equal to the join of a collection of elements, then it is actually below the
join of a finite subcollection. A complete lattice is algebraic if each element is a
join of compact elements. The set of compact elements of an algebraic lattice L is
denoted by KpLq. The principal ideal generated by ℓ P L is denoted by ℓÓ. The
bottom and top of a lattice will be denoted by B and T, respectively.

2.2. Relational morphisms. Let S and T be semigroups then a relational mor-

phism ϕ : S Ñ T is a function ϕ : S Ñ 2T such that sϕ ‰ H and s1ϕs2ϕ Ď ps1s2qϕ
for all s, s1, s2 P S. Thus relational morphisms of semigroups are generalizations of
semigroup homomorphisms: they are relations with morphic properties.

We denote by PV the algebraic lattice of pseudovarieties of finite semigroups and
by CntpPVq the monoid of all continuous self-maps of PV. A mapping α : L Ñ L

on a lattice is continuous if it is order preserving and commutes with directed joins.
Note that CntpPVq is an algebraic lattice with respect to the pointwise ordering
where joins and finite meets are computed pointwise, but infinite meets are not
pointwise! The submonoid CntpPVq` consists of those continuous operators α
satisfying V ď αpVq for all pseudovarieties V. See [9, Chapter 2.2].
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Denote by CC the algebraic lattice of all continuously closed classes of relational
morphisms. See [9, Definition 2.1.2] for the axiomatic definition of a continuously
closed class. The algebraic lattice of pseudovarieties of relational morphisms is
denoted by PVRM. See [9, Definition 2.1.5] for the definition. The algebraic
latticesCC` andPVRM` consist of those continuously closed classes, respectively
pseudovarieties of relational morphisms, that contain all identity mappings. See [9,
Definitions 2.1.3 and 2.1.6].

If T is a finite semigroup, we denote by pT q the pseudovariety generated by
T . Similarly, if f is a relational morphism, then pfq denotes the pseudovariety of
relational morphisms generated by f .

2.3. The q-operator. If R is a continuously closed class, then Rq is the continuous
operator on PV given by RqpVq is the pseudovariety of all semigroups S such that
there is a relational morphism f : S Ñ T with f P R and T P V. The operator
q : CC Ñ CntpPVq in surjective, order preserving and continuous. It preserves
finite infima and all joins. Moreover, it has a section M : CntpPVq Ñ CC given
by

Mpαq “ tf : S Ñ T | S P αppT qqu.

One has that Mpαq is the unique maximum element of CC mapping to α under
q. See [9, Chapter 2.3] for details. The mapping q takes PVRM to the collection
GMCpPVq of all continuous operators satisfying the generalized Malcev condi-
tion [9, Definition 2.3.21]. The mapping q : PVRM Ñ GMCpPVq preserves all
sups and infs and has sections max and min taking each operator in GMC to the
unique maximum, respectively minimum, pseudovariety of relational morphisms
giving rise to it. See [9, Chapter 2.3.2] for details.

2.4. Irreducibility. The following notions are defined in [9, Chapter 6.1.2]. An
element ℓ in a lattice L is meet irreducible mi if ℓ ě

Ź
X implies ℓ ě x for some

x P X . It is strictly meet irreducible if ℓ “
Ź
X implies ℓ “ x for some x P X . We

write fmi, respectively, sfmi for the analogous properties when X is constrained to
be finite. The dual notions for joins are denoted ji, sji, fji and sfji. So, for example,
ℓ is ji if ℓ ď

Ž
X implies that ℓ ď x for some x P X . Note that in an algebraic

lattice, a ji element must be compact and, in fact, the ji elements are precisely the
fji compact elements.

3. Atoms

An atom of a lattice L is a cover of the bottom B, that is, a minimal element of
LztBu.

The following fact is well known and can be found as [7, Lemma 4.49].

Fact 3.1. If L is an algebraic lattice and ℓ1, ℓ2 P L, ℓ1 ď ℓ2, then rℓ1, ℓ2s is an

algebraic lattice with compact elements pKpLq X ℓ
Ó
2q _ ℓ1.

Corollary 3.2. The compact elements of rB, ℓ2s equal KpLq X ℓ
Ó
2.

Fact 3.3. Atoms
`
rB, ℓ2s

˘
“ AtomspLq X ℓ

Ó
2. Atoms are compact and sji in algebraic

lattices.

Proof. The first statement is clear. In an algebraic lattice L, any sji element is
compact as it is a join of compact elements. Atoms are clearly sji because only the
bottom is strictly below them. �
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Caution 3.4. In an algebraic lattice L, AtomspLq can be empty.

Corollary 3.5. If L has no atoms, then rB, ℓ2s has no atoms.

Remark 3.6. In an algebraic lattice L, the atoms of rℓ1,Ts are the covers of ℓ1 in
L, so in general, they are unrelated to AtomspLq.

Principle 3.7 (No atoms for L, an algebraic lattice). If each compact element
c ‰ B has a compact element other than B strictly below, then AtomspLq “ ∅, and
conversely, since the atoms are the compact covers.

Principle 3.7 was used in [9, Proposition 7.1.24] to prove the following proposi-
tion.

Proposition 3.8. The algebraic lattice CntpPVq has no atoms.

As a consequence, we can prove that CC has no atoms.

Proposition 3.9. The algebraic lattice CC has no atoms.

Proof. By [9, Theorem 2.3.9], there is a surjective map q : CC Ñ CntpPVq pre-
serving all sups and finite meets. The bottom of CntpPVq is the constant map to
the trivial pseudovariety. In [9, Page 121] it is shown that each constant map has
a unique preimage under q, hence if R is not the bottom of CC, then is does not
map to the bottom of CntpPVq under q. Since CntpPVq has no atoms, we can
find B ‰ α ă Rq. By surjectivity, there exists S with Sq “ α. Since q preserves
finite infs, we obtain pR X Sqq “ α and so R X S ă R and R X S is not the bottom.
Thus CC has no atoms. �

The reader is referred to [9, Proposition 2.1.11] for the definition of CC and [9,
Page 75] for the definition of PVRM.

Fact 3.10. If D denotes the class of all divisions, then

(1) CCp1V | V P PVq “ D

(2) PVRMp1V | V P PVq “ D

Proof. One way of calculating CC is

CCpXq “ tf | f Ďs d1pf1 ˆ ¨ ¨ ¨ ˆ fnqd2, d1, d2 P D, fi P Xu

(see Proposition 2.1.14 in [9]) from which (1) follows. Also CCp1V | V P PVq is
closed under Axiom (co-re), as D is, so is a pseudovariety of relational morphisms
in PVRM (see Proposition 2.1.8(c) in [9]) proving (2). �

Definition 3.11.

CntpPVq´ “ tα P CntpPVq | α ď 1PVu

CC´ “ tβ P CC | β ď Du

Fact 3.12. pCC´qq “ CntpPVq´

Proof. Since Dq “ 1PV and q is order preserving pCC´qq Ď CntpPVq´. If α P
CntpPVq´, then since α P CntpPVq, there exists R P CC, so Rq “ α. Thus
since q preserves finite intersections (intersection equals meet) pR X Dqq “ α and
R X D P CC´. �

Corollary 3.13. The lattices CC,CC´,CntpPVq,CntpPVq´ have no atoms.
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Proof. Use Proposition 3.8, Proposition 3.9, Corollary 3.5 together with Defini-
tion 3.11. �

In Section 5 we describe two infinite families of compact smi elements ofPV. The
following theorem then shows that there are infinitely many atoms in CntpPVq`.

Theorem 3.14. There is a bijection between AtomspCntpPVq`q and the compact

smi elements in PV.

Before the proof of Theorem 3.14 we require the following fact.

Fact 3.15. Let T be a finite semigroup.

(1) pT q is a compact smi of PV, if and only if there exists a finite semigroup

S such that pSq is the unique cover of pT q in PV in the sense of
Ź

tW P
PV | W ą pT qu “ pSq.

(2) pT q is a compact smi with unique cover compact pSq in PV if and only if,

for all W P PV, W ą pT q implies S P W .

Proof. See [9, Proposition 7.1.13]. �

Remark 3.16 (Paraphrasing Fact 3.15). Compact smi pseudovarieties exist if and
only if there exist finite semigroups T, S such that pT q ă pSq and W P PV,
W ą pT q if and only if S P W.

We now prove Theorem 3.14. In the following we denote
`
δpS, T q _ 1PV

˘
P

CntpPVq` by P pS, T q where we recall that if S, T are finite semigroups, then

δpS, T qpVq “

#
pSq, if T P V

B, else.

Every compact element of CntpPVq is a finite join of elements of the form δpS, T q
and hence any compact element of CntpPVq` must be a finite join of elements of
the form P pS, T q by Fact 3.1. See [9, Proposition 2.2.2] for details. Consequently,
an atom of CntpPVq` must be of the form P pS, T q for some semigroups S, T .

Proof of Theorem 3.14. Let pT q be a compact smi with a unique cover pSq. We
prove that P pS, T q is an atom of CntpPVq`. Then, by Fact 3.15 restricted to
compact pS1q, we have

P pS, T qppS1qq “

#
pSq, if pS1q “ pT q

pS1q, else

because if T R pS1q, then pS1q ÞÑ pS1q. If T P pS1q, pT q ă pS1q, then pS1q ÞÑ
pS1q _ pSq “ pS1q by (3.15). Clearly, this is an atom of CntpPVq`, (since 1PV ď
α ă P pS, T q implies α “ 1PV).

Next suppose that α is an atom of CntpPVq`. We already observed that α “
P pS, T q for some finite semigroups S, T . Clearly P pS, T q ‰ 1PV if and only if
pSq ę pT q and so we must have

pT q ÞÑ pT q _ pSq ą pT q

pT q P W ÞÑ W _ pSq

pT q R W ÞÑ W

We claim that pT q is a compact smi with unique cover pSq. Assume otherwise.
Choose a finite semigroup T1 so pT q ă pT1q and S R pT1q (cf. Fact 3.15). Then
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P pS, T1q ă P pS, T q (ď is clear and pT q ÞÑ pT q in the first case, pT q ÞÑ pSq _ pT q ‰
pT q in the second case). Thus a is an atom of CntpPVq` if and only if a “ P pS, T q
with pT q a compact smi in PV with unique cover pSq. This establishes the bijection
between atoms of CntpPVq` and compact smis. �

Definition 3.17. Let CntpPVq´ consist of those operators α with αpVq ď V and
put GMC´pPVq “ GMCpPVqXCntpPVq´. Notice that by [9, Corollary 3.5.22]
D “ minp1PVq but D ‰ maxp1PVq by [9, Example 2.4.1], so this motivates the fol-

lowing new extended definition: PVRMp`q “ rmaxp1PVq,Ts ă PVRM` (where
PVRM` “ rD,PVRMs).

Recall that

maxp1PVq “ tf : S Ñ T, a relational morphism | W ď T,Wf´1 P pW qu.

See [9, Proposition 2.3.32]. See, for example (3.1)(4) for why we define PVRMp`q.
Define PVRM´ “ r1,Ds.

Similarly, we define CC` “ rD,Ts, CCp`q “ rMp1PVq,Ts, CC´ “ rB,Ds
where these intervals are in the lattice CC. Similar definitions are used for BCCǫ,
ǫ P t`, p`q,´u, such as BCC X CCǫ. The reader is referred to [9, Section 2.3.3]
for BCC (the lattice of Birkhoff continuously closed classes) and the following
facts. It turns out that M : CntpPVq Ñ CC takes values in BCC and that each
continuous operator α P CntpPVq is the image of a unique minimum Birkhoff
continuous closed class mpαq. We recall that

Mp1PVq “ tf : S Ñ T | S P pT qu

by [9, Equation (2.15), page 63].

The following proposition will be useful in computing atoms.

Proposition 3.18. Let L1, L2 be complete lattices. The following hypothesis is

denoted Hypothesis (3.18):

(1) there is an adjunction

L1 L2

q

m

that is, m is injective and sup, q is inf and onto;

(2) B2q
´1 “ B1 where Bi is the bottom of Li.

Under Hypothesis (3.18), one has the conclusion:

(a) AtomspL1qm “ AtomspL2q;
(b) AtomspL1q “ AtomspL2qq

Before giving the proof of Proposition 3.18 we give an example and a counterex-
ample.

Example 3.19. (1) An example is [9, (2.34), Page 76]

GMC PVRM

q

min .
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This satisfies Hypothesis (3.18) because the bottom of of GMC is Ct1u,
the constant map on PV always t1u and the bottom of PVRM is

tr1u “ tf : t1u Ñ T | f is a relational morphismu.

Then Hypothesis (3.18) is satisfied as it is proved on [9, Page 121].
(2) Counterexample.

L1

2

1

0 ”Bottom

L2

2

1

x

0 ”Bottom

Let m : L1 Ñ L2 with pjqm “ j for j “ 2, 1, 0. Let q : L2 Ñ L1 with
pjqq “ j for j “ 2, 1, 0 and pxqq “ 0. AtomspL1q “ t1u, AtomspL2q “ txu,
Proposition 3.18(a),(b) are false, and (2) of Hypothesis (3.18) fails. Thus
Hypothesis (3.18) is necessary to imply Proposition 3.18(a) or Proposi-
tion 3.18(b).

We now prove Proposition 3.18.

Proof of Proposition 3.18. Let us begin with the proof of (a). If a P L1 is an atom
and am is not an atom of L2, then there exists ℓ2 P L2 such that am ą ℓ2 ą B2.
Applying q yields amq “ a ą ℓ2q ą B1 with amq “ a ą ℓ2q following from the
definition ofm and (1) of Hypothesis (3.18) (cf. [9, Proposition 1.1.7]) and ℓ2q ą B1

by (2) of Hypothesis (3.18). But this contradicts that a is an atom of L1.
Conversely, let A be an atom of L2. Then Aqm “ A ‰ B2 since otherwise

A ą Aqm by (2) of Hypothesis (3.18), so A ą Aqm ą B2 by Proposition 3.18(2),
contradicting that A is an atom of L2. Thus Aqm “ A ‰ B2. But Aq is an atom
of L1, for if not there exists C P L1 with Aq ą C ą B1. Applying m, which is
injective and order preserving, yields B2 “ B1m ă Cm ă Aqm “ A. contradicting
that A is an atom of L2. This proves Proposition 3.18(a).

To prove Proposition 3.18(b), just apply q to both sides of Proposition 3.18(a).
This completes the proof of Proposition 3.18. �

3.1. Applications of Proposition 3.18. We use the q operator and the min map.
Consider

(3.1)(1)

GMC PVRM

q

min .

Hypothesis (3.18) holds. See Example 3.19. Consider

(3.1)(2)

GMC´ PVRM´

q

min .
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Hypothesis (3.18) holds. See Fact 3.12 adapted to PVRM´ and min is restriction
of min from (3.1)(1). Consider

(3.1)(3)

GMC` PVRM`

q

min .

Then (2) of Hypothesis (3.18) fails because minp1PVq “ D ‰ maxp1PVq. So instead,
consider

(3.1)(4)

GMC` PVRMp`q

q

rm

where rm is the right adjoint of the restriction of q. Hypothesis (3.18) holds be-

cause of the way PVRMp`q was defined (see Definition 3.17). Since the bottom

of PVRMp`q is the maximal preimage of the identity map in PVRM, (2) of
Hypothesis (3.18) holds. Consider

(3.1)(5)
CntpPVq BCC

q

m .

Hypothesis (3.18) holds.

(3.1)(6)
CntpPVq´ BCC´

q

m .

Hypothesis (3.18) holds. Use (3.1)(5).

(3.1)(7)

CntpPVq` BCC`

q

min “ m

Hypothesis (3.18) fails, similar to (3.1)(3). Consider

(3.1)(8)

CntpPVq` BCCp`q

q

min “ m

Hypothesis (3.18) holds, similar to (3.1)(4). Note that

(3.1)(9)
CntpPVq CC

q

m

is not defined since q is not inf on CC. See [9, Example 2.3.12]. Also

(3.1)(10)
CntpPVq CC`

q

m

is not defined since q is not inf on CC`. See [9, Example 2.3.14]. Also

(3.1)(11)
CntpPVq CCp`q

q

m



ON THE ATOMS OF ALGEBRAIC LATTICES ARISING IN q-THEORY 9

Subset ofCC Its atoms Subset CntpPVq Its atoms

1 CC ∅ Prop 3.9 CntpPVq ∅ Prop 3.8

2 CC´
∅ Cor 3.13 CntpPVq´ ∅ Cor 3.13

3 BCCp`q Xm, X is an atom
of CntpPVq`

CntpPVq` atoms are in
one-to-one corre-
spondence with
compact smi’s of
PV

4 CC` ? wild guess “ ∅

5 CCp`q ? wild guess “ ∅

6 PVRM AtomspGMCqmin GMC AtomspPVRMqq

7 PVRM´ AtomspGMC´qmin GMC´ AtomspPVRM´qq

8 PVRMp`q AtomspGMC`qmin GMC` AtomspPVRMp`qqq

9 PVRM` ?

10 BCC` ?
11 BCC ∅ CntpPVq ∅

12 BCC´
∅ CntpPVq´ ∅

Figure 1. Tabulation of results so far. See also later table Figure 2.

is not defined since q is not inf on CCp`q. This is similar proof as for (3.1)(10).

The details go as follows. CCp`q is by Definition 3.17 the interval rMp1PVq,Ts in
CC where

Mp1PVq “ tf : S Ñ T | f is a relational morphism and pSq ď pT qu.

Now [9, Lemma 2.3.13] holds with the same proof if “positive continuous closed
class” is changed to “continuously closed class containing Mp1PVq” and “division”
is changed to “member ofMp1PVq”. Now the proof of Example 2.3.14 goes through
with the above changes.

Also,

(3.1)(12)

CntpPVq´ CC´

q

min “ m

is not defined since q is not inf . Indeed, use [9, Lemma 2.3.11] and follow the proof
scheme of Example 2.3.12, but change the definition of #un as follows: choose

1 ‰ S
j

ãÝÝÑ T , pSq ď pT q, un : S ãÑ T n n ě 1 k ÞÑ pk, . . . , kq ” ppkqj, . . . , pkqjq.
Then un is a division and Rn “ CCpunq. Now the proof follows as in Example
2.3.12.

The results so far are in Figure 1.

4. Atoms of PVRM and smi pseudovarieties

The atoms of PV are the pseudovarieties generated by the two-element semi-
groups and by the cyclic groups of prime order. The notations are 2r (the two-
element right zero semigroup), 2l (the two-element left zero semigroup), t0, 1u
under multiplication (the two-element semilattice) and N2 the two-element null
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semigroup. Sometimes we abuse the distinction between these semigroups and the
pseudovariety they generate.

Definition 4.1. (a) A finite semigroup T lifts if the existence of a surjective
morphism from a finite semigroup S, ϕ : S ։ T implies there exists a
subsemigroup T 1 of S so T is isomorphic to T 1, T – T 1 ď S. So for any
such surjective homomorphism onto T there are isomorphic copies of T in
the preimage.

(b) A finite semigroup T is projective if it lifts and ϕ restricted to T 1, as above,
is an isomorphism, so ϕpT 1q “ T . In other words given a surjective homo-
morphism ϕ : S Ñ T , there is a splitting homomorphism ψ : T Ñ S such
that ψϕ “ 1T .

(c) A finite nontrivial semigroup T or pseudovariety pT q is said to be very small

if, for all finite semigroups S, the join pSq _ pT q “ pS ˆ T q either covers or
equals pSq. In the lattice theory literature, one would say that pT q has the
covering property.

Intuitively, T lifts if we can find it by going backwards on surjective morphisms
but the isomorphic copies have nothing to do with the map. If it turns out that one
surjective morphism respects the isomorphic copies then T is projective. Clearly
projective implies lifts. For instance, Zpn lifts for any prime p, but is not projective.

The semigroup N2 is very small but does not lift. Any nontrivial semilattice is
very small by [4, Theorem 2.4].

We next work on the atoms of pseudovarieties of relational morphisms of PVRM

and PVRM´. This will be some work. We first consider PVRM so pXq denotes
the member of PVRM generated by a set X of relational morphisms. First recall
that if V is a pseudovariety of semigroups, then

rV “ tf : S Ñ T | S P Vu

is a pseudovariety of relational morphisms and it is the unique pseudovariety of
relational morphism sent by q to the constant mapping with image V. See [9,
Page 121].

Lemma 4.2. If pfq is an atom of PVRM where f : S Ñ T with S ‰ 1, then pSq
must be an atom of PV.

Proof. If pSq is not an atom of PV (and so S ‰ t1u), then there exists an atom paq
of PV, such that paq ă pSq. Indeed, if S is a finite semigroup not containing pN2q,
then S is completely regular; it must have a single J -class if it doesn’t have t0, 1u
as a divisor; it must be a group if it also doesn’t have 2r and 2l as a divisor and it
must be a trivial group if it has no cyclic group of primer order as a divisor.

So for some n ě 1, there is a division d : a Ñ Sn. Consider dfn. Then dfn P

pfq X Ăpaq, but f R Ăpaq. Therefore, B ă pfq X Ăpaq ă pfq and so f is not an atom. �

Theorem 4.3. If a “ 2r, 2l or t0, 1u, i.e., is a projective atom of PV, then p1aq
is an atom of PVRM.

Proof. Since the divisions form a pseudovariety of relational morphisms, it follows
that if paq P PV is one of the above projective atoms and f : S Ñ T belongs p1aq,
then f is a division. By closure of pseudovarieties of relational morphisms under
range extension and corestriction, we may assume it is the inverse of a surjective

homomorphism. Also, p1aq Ď Ăpaq and so f P Ăpaq, whence S P paq. If S is trivial,
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then f belongs to the bottom of PVRM. Otherwise, a is a subsemigroup of S by
elementary properties of p2rq, p2lq and pt0, 1uq. Since f is the inverse of a surjective
homomorphism and a is projective we obtain that 1a divides f via the diagram

a S

a T

1a f

where the top arrow is the inclusion and the bottom arrow is a homomorphism
splitting of f´1|af´1 : af´1 Ñ a. �

Lemma 4.4. A relational morphism f : xxy Ñ T does not generate an atom for

any non-trivial cyclic semigroup xxy.

Proof. The relational morphism f contains a relational morphism of the form

xyy xzy

xxy

b

a

where y maps to x under a and to z under b and no proper subsemigroup of xyy
maps onto xxy by a. It suffices to show that a´1b does not generate an atom and
so we may assume that f “ a´1b. Note that a´1 is in pa´1bb´1q “ pfb´1q which
is contained in pfq by closure of pseudovarieties of relational morphisms under
codomain division. Thus we may assume f “ a´1.

Non-trivial cyclic semigroups are not projective (one can verify this directly or
use the results of either [8] or [14] which imply that any projective finite semigroup
is a band). So there exists a surjective homomorphism c : xuy ։ xyy that does
not split (using non-trivial cyclic semigroups are not projective) and, moreover,
we may assume that no proper subsemigroup of xuy maps onto xyy via c. Note
that xuy R pxyyq because xyy is free on one generated in the pseudovariety it gen-
erates and c does not split. Then g “ a´1c´1 is contained in pfq by closure under
codomain division. We claim that xxy is not in pgqqpxyyq. This follows from [9,
Proposition 2.4.22]. Indeed, any subsemigroup T of xuy in the pseudovariety gen-
erated by xyy must be proper and hence map by c into a proper subsemigroup U of
xyy. Then the image under a of U is proper and so we get something in a proper
subpseudovariety of pxxyq. �

Theorem 4.5. The atoms of PVRM are p1aq with a “ 2r,2l, tp0, 1q, ¨u, i.e., with
a is a projective atom.

Proof. Theorem 4.3 proves that these are atoms. Lemma 4.2 proves that all atoms
are of the form pfq where f : S Ñ T with pSq an atom of PV. If pSq is not one of
the pseudovarieties of right zero semigroups, left zero semigroups or semilattices,
then S either is a null semigroup or an elementary abelian p-group. But then there
is a division d : C Ñ S with C a non-trivial cyclic semigroup and replacing f its
divisor df , one may assume that S is cyclic and so Lemma 4.4 implies that pfq is
not an atom.
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Subset of CC Its atoms Subset CntpPVq Its atoms

1 PVRM 1a, a “
2l, 2r, pt0, 1u, ¨q

GMC p1aqq

2 PVRM´ same as above GMC´ same as above

Figure 2. Tabulation of results continued.

It remains to show that if pSq generates one of the pseudovarieties of right zero
semigroups, left zero semigroups or semilattices, then pfq “ p1aq with a as in the
theorem statement. In this case, a is a subsemigroup of S, so replacing f by a
restriction, we may assume that S “ a, that is, f : a Ñ T with a one of the
projective semigroups 2r, 2l or t0, 1u.

Diagram f as:

#f T 1 T

a

β

α
f

and as usual, without loss of generality, we can assume

#f T 1

a

β

α
f

by closure of pseudovarieties of relational morphisms under corestriction. Then
since a is projective, a is a subsemigroup of #f in such a way that α|a is an

isomorphism and so pfq contains a homomorphism a
β

ÝÑ T 1. Since |a| “ 2, either
a – aβ or |aβ| “ 1. In the first case p1aq Ď pfq, so p1aq “ pfq if pfq is an atom. In
the second case the collapsing map ca : a Ñ t1u belongs to pfq so again 1a Ď f by
[9, Pages 120–122]) and we are done. �

Corollary 4.6. (a) The atoms of PVRM´ are the atoms of PVRM, that is,

tp1aq | a “ 2l, 2r, pt0, 1u, ¨qu (so a is a projective atom).
(b) The atoms of GMC (GMC´) are p1aqq, where a is a projective atom.

Proof. (a) Use Fact 3.3.
(b) Use Theorem 3.18.

�

Knowing about which atoms lift or are very small is related to the atoms of
GMC` in the following way.

Proposition 4.7. If a one of the atoms 2r, 2l, N2, t0, 1u or Zp with p prime that

lifts and paq is very small then V ÞÑ V _ paq is an atom of GMC`.
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Proof. We must show that if α P GMC` satisfies 1PV ă α ď 1PV _ paq then
α “ 1PV _ paq.

Choose a finite semigroup S so a R pSq and pSq ă pSqα ď pSq _ paq. Then since
paq is very small pSqα “ pSq _ paq.

Choose R P PVRM` so Rq “ α. Then there exists a relational morphism f P R

diagrammed as

#f Sn

S ˆ a

β1

α1
f

Let ϕ2 : S ˆ a ։ a be the projection. Then α1φ2 : #f ։ a is surjective and
thus, since a lifts, a ď #f . Now a is congruence-free, i.e., has no non-trivial proper
quotients. Thus β1 restricted to a has trivial image teu since a R pSq. Now by
Tilson’s Lemma [9, Lemma 2.1.9], valid for elements of PVRM`, and closure of
pseudovarieties of relational morphism under range restriction, β1 belongs to R

and hence so does its divisor the collapsing morphism a Ñ teu. Thus Ăpaq ď R

(see [9, Pages 120–121]), which implies paq ď pWqα for all W P PV. Therefore,
α “ 1PV _ paq. �

Theorem 4.8. a) The atoms 2l, 2r, t0, 1u,Zp lift, but N2 does not lift.

b) N2 and t0, 1u are very small, but 2l, 2r,Zp are not very small. Hence V Ñ
V _ pt0, 1uq is an atom of GMC`.

Proof. We first prove (a). It is easy to show that 2l, 2r, t0, 1u are projective and
hence lift [9, Lemma 4.1.39]. The group Zp lifts because if ϕ : S Ñ Zp is a surjective
homomorphism, then there exists a subgroup G ď S mapping onto Zp. But then
p divides |G| and so, by Cauchy’s Theorem, Zp ď G. Thus Zp lifts (but it is not
projective as the canonical map Zp2 Ñ Zp does not split).

The homomorphism ϕ : xy | y2 “ y4y Ñ N2, y ÞÑ n, y2, y3 ÞÑ 0, shows N2 does
not lift.

Now we turn to (b). It is proved in [4, Theorem 2.4] that the pseudovariety of
semilattices is very small. We now prove that pN2q is very small. It suffices to
show if S is completely regular (since CR “ ExclpN2q; see [9, Table 7.2, Page 469])
and pSq ď W ă pSq _ pN2q “ pS ˆ N2q then W Ď pSq. If N2 P W, then
W “ pSq _ pN2q, hence aN2 R W. Thus W Ď CR. Well, T , a member of W
contained in CR, implies T divides S1 ˆNm

2 with S1 P pSq (and hence S1 P CR).
Let Uω be the idempotent power of a semigroup U (viewed as an of the power
semigroup P pUq). Since S and T are completely regular, we have T “ Tω divides
pS1 ˆNm

2 qω “ S1 ˆ p0q – S1. Thus T P pSq and we are done.
Next we show that 2l, 2r,Zp are not very small. The idea of this and the following

proofs is that if N is nilpotent (i.e., there exists k such that Nk “ 0) then, for any
finite semigroup S, pNˆSq{p0ˆSq is also nilpotent, and has a surjective morphism
onto N induced by pn, sq ÞÑ n. Thus pN ˆ Sq “ pNq _ pSq “can grow” larger
nilpotents (even if S P CR [1]).
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First we show 2r is not very small. It is easy to see that if S “ xx | x3 “ 0y then

pSq ă

ˆ
S ˆ 2r

0 ˆ 2r

˙
ă pS ˆ 2rq “ pSq _ p2rq,

where the first inequality is strict because pS ˆ 2rq{p0 ˆ 2rq is not commutative as
px, aq, px, bq do not commute. The second inequality is strict because pSˆ2rq{p0ˆ2rq
is nilpotent. The dual argument shows that 2l is not very small.

Now we prove that Zp is not very small. This should be considered joint work
with M. Sapir. Let S be the free semigroup on a, b in the variety defined by the
identities x1x2x3x4 “ 0, x2y “ xy2. Routine computations shows that |S| “ 13
and S “ ta, b, a2, ab, ba, b2, a2b “ ab2, ba “ ba2, a3, aba, bab, b3, 0u. Now consider
G “ Zp “ xgy.

pSq ă

ˆ
S ˆG

0 ˆG

˙
ă pS ˆGq “ pSq _ pGq

The center term is nilpotent so the second inequality follows. The center term
satisfies x1x2x3x4 “ 0, but not x2y “ xy2 since it does not hold in G. In detail, let
us substitute pa, gq for x and pb, g2q for y, then

pa, gqpa, gqpb, g2q “ pa2b “ ab2, g4q

pa, gqpb, g2qpb, g2q “ pab2 “ a2b, g5q

and g4 ‰ g5 in Zp any p. In fact the elements ā “ pa, gq, b̄ “ pb, g2q in pSˆGq{p0ˆGq
freely generate a relatively free semigroup in the variety x1x2x3x4 “ 0. This variety
is clearly generated by its free object on two generators and so

ˆ
S ˆG

0 ˆG

˙
“ vx1x2x3x4 “ 0w

Thus Zp is not very small. This finishes the proof of b) and hence of Theorem 4.8.
�

We note some further open questions regarding the atoms of GMC`.

(a) One should check that none of the V Ñ V_ paq are atoms of GMC` with
paq an atom of PV except a “ t0, 1u.

(b) Conjecture: AtomspGMC`q “ V to V _ pt0, 1u, ¨q.

Using the same idea we construct some smi members of PV which are not mi,
a question posed in [9, page 471]. The following is an extension of joint work with
M. Sapir which considered the two variable case. Throughout, we use boldface
letters (typically, w,u,v, sometimes with subscripts) to denote words, and standard
lower case letters (typically, x, y, z, sometimes with subscripts) to denote letters
appearing in words. The symbol ” is used to denote equality between words. So,
w ” xyx denotes the fact that the word w is xyx, while w “ xyx denotes a formal
equality that may not hold in the variety of all semigroups (such as if w ” xy

for example). We use conpwq to denote the content of w: the alphabet of letters
appearing in w.

Proposition 4.9. Consider words w1 ‰ w2, with conpw1q “ conpw2q “ tx1, . . . , xku
and |w1| “ |w2| “ n ě k ą 1. Then the pseudovariety vw1 “ w2w is smi but not

mi and has as unique cover

vw1 “ w2w _ vTw1,w2
, x1 ¨ ¨ ¨xn`1 “ 0w
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where Tw1,w2
consists of all equations θpw1q “ θpw2q for which θ : tx1, . . . , xku Ñ

tx1, . . . , xku has |θptx1, . . . , xkuq| ă k.

An immediate corollary is the following result, which appears in [9].

Corollary 4.10. The pseudovariety Com “ vxy “ yxw is smi but not mi, with

unique cover Com _ vx1x2x3 “ 0w.

Proof of Proposition 4.9. Let Nn`1 denote the free semigroup on k generators in
the variety defined by x1 ¨ ¨ ¨xn`1 “ 0. The elements of Nn`1 are 0, along with
each word in the alphabet tx1, . . . , xku of length at most n. Let N 5

n`1 denote
the quotient of Nn`1 by the fully invariant congruence ρ corresponding to the
equations in Tw1,w2

. Note that if u “ v is an equation in Tw1,w2
, and θ is any

substitution, then conpθpuqq “ conpθpvqq and either | conpθpuqq| ă k or |θpuq| ą n.
Hence (as x1 ¨ ¨ ¨xn`1 “ 0 already holds) the only nontrivial relations in ρ are those
corresponding to the transitive closure of the equalities in Tw1,w2

. We now observe

that N 5
n`1 generates the pseudovariety vTw1,w2

, x1 ¨ ¨ ¨xn`1 “ 0w, which therefore is
compact.

To see this, consider an identity u “ v failing in the variety defined by Tw1,w2
Y

tx1 ¨ ¨ ¨xn`1 “ 0u. If u,v are two words of different length, they can be distinguished
in the free object on tx1u by sending all letters to x1. If u,v have the same length
strictly less than n then find a position in which the letter appearing in u is distinct
from that appearing in v; say, x appears at the ith position of u and y appears at
the ith position of v. Take any substitution from conpuvq into tx1, . . . , xku that

separates x from y. Then this witnesses failure of u “ v on N 5
n`1 because distinct

products in tx1, . . . , xku of length less than n are distinct in N 5
n`1. The remaining

case is where u,v both have length n. If one of u or v has at least k variables (say,
u), then again select a position where u and v differ, and select an assignment θ
mapping conpuq onto tx1, . . . , xku and which separates the letters in this position.
Then θpuq involves all k letters and has length n, and hence is distinct in N 5

n`1 from
every other word in tx1, . . . , xku˚, and in particular, to θpvq. So finally, assume
that u and v have length n and both involve fewer than k letters. But then N 5

n`1

fails u “ v because it is free, on k free generators.
Now let S denote the quotient of Nn`1 by the fully invariant congruence gen-

erated by w1 “ w2. Because Tw1,w2
already accounted for all consequences of

w1 “ w2 in fewer than k variables (and there were none of length less than n),
the semigroup S differs from Nn`1 only amongst those words of length n and in
exactly k variables. Of course, S P vw1 “ w2w. Now assume V P PV, with
V ą vw1 “ w2w. We show that N 5

n`1 P V.
Now, there must be T P V not satisfying w1 “ w2. So there exists t1, . . . , tk P T

with w1pt1, . . . , tkq ‰ w2pt1, . . . , tkq. Consider rS “ pS ˆ T k!q{p0 ˆ T k!q which
is a member of V because S and T are. Fix an enumeration π1, . . . , πk! of the

permutations of t1, . . . , ku and consider the subsemigroup F of rS generated by the
elements ā1, . . . , āk defined as follows. The value of āi in the S coordinate is xi. At
the jth T coordinate, āi is tiπj

.

We show that N 5
n`1 is a quotient of F . Now, F is k-generated and n ` 1-

nilpotent, so it is a homomorphic image of Nn`1 under some homomorphism η

mapping the free generators by xi ÞÑ āi. We need to show that kerpηq Ď ρ (the
fully invariant congruence on Nn`1 yielding N 5

n`1). The projection from S ˆ T k!

induces a surjective homomorphism rS Ñ S whose restriction to F is surjective,
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and moreover maps āi ÞÑ xi for each i. Thus if u and v are words in x1, . . . , xk
that represent distinct elements of S, then upā1, . . . , ākq ‰ vpā1, . . . , ākq in F also.
Because S differs from N 5

n`1 only on words of length n involving all k letters, to
show kerpηq Ď ρ it suffices to show that distinct words u and v of length n and
with conpuq “ conpvq “ tx1, . . . , xku have upā1, . . . , ākq ‰ vpā1, . . . , ākq. This is
true already if u “ v fails on S. So assume that u “ v holds in vw1 “ w2w. In this
case there is a permutation π of t1, . . . , ku with upx1, . . . , xkq “ w1px1π, . . . , xkπq
and vpx1, . . . , xkq “ w2px1π , . . . , xkπq or vice versa. Then upā1, . . . , ākq differs from
vpā1, . . . , ākq on the coordinate corresponding to π´1. Thus kerpηq Ď ρ, and N 5

n`1

is a homomorphic image of F . Hence N 5
n`1 P V as claimed.

This proves vw1 “ w2w is smi. It cannot be mi, since no mi satisfies an identity
since each mi pseudovariety must contain G or Ap and these satisfy no identities.
This proves Proposition 4.9. �

The following proposition is well known.

Proposition 4.11. Let E be a set of identities over an alphabet A. Then the

pseudovariety vEw is locally finite if and only if there are no infinite, finitely

generated, residually finite semigroups in the (Birkhoff ) variety vEw.

Proof. Suppose first that vEw contains an infinite, finitely generated, residually
finite semigroup S. Let A be a finite generating set for S. Then S has finite
quotients of arbitrarily large size, all of which belong to the pseudovariety vEw.
Thus vEw cannot be locally finite. Conversely if vEw is not locally finite, then there

is a finite alphabet A such that the free pro-vEw semigroup pF on A is infinite.

The abstract subsemigroup S of pF generated by A is then an infinite A-generated
residually finite semigroup in the variety vEw. �

Recall that an identity w1 “ w2 over an alphabet A is balanced if the number
of occurrences in each letter in A is the same in both w1 and w2. In this case,
pN,`q satisfies the identity w1 “ w2 and since N is residually finite, it follows from
the above proposition that vw1 “ w2w is not locally finite and hence not compact.
Thus we have the following proposition.

Proposition 4.12. If w1 “ w2 is a balanced identity satisfying the properties of

Proposition 4.9, then vw1 “ w2w is a non-locally finite smi, and hence, in particular,

is not compact.

Recall that a word w is avoidable if there is a finite alphabet A and an infinite
factorial subset of A˚ avoiding wθ for every θ : conpwq˚ Ñ A˚; equivalently there
is a right infinite word x P AN avoiding wθ for every θ : conpwq˚ Ñ A˚. The
word w is unavoidable if it is not avoidable. Recall the Zimin words, which are
defined inductively by z1 “ x1, zn`1 “ znxn`1zn. It is known that a word w is
unavoidable if and only if there is a substitution θ with θpwq ď zn for some n; see
Bean, Ehrenfeucht, McNulty [2], Zimin [15] or Lothaire [6].

Proposition 4.13. Suppose that w1,w2 P tx1, . . . , xku` are both avoidable words.

Then the pseudovariety vw1 “ w2w is not locally finite and hence not compact.

Proof. There is a a finite alphabet A, and an infinite sequence u on A which avoids
images of both w1 and w2 (see [6, Corollary 3.2.9] for example). Let Ipuq be the
ideal of A` consisting of the non-factors of u. Then S “ A`{Ipuq is an infinite
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semigroup satisfying w1 “ w2 “ 0 since any evaluation of w1 and w2 in S will
result in 0 because w1,w2 are avoided by u. It is residually finite because if In is
the ideal of words in A` of length greater than or equal to m, then the projections
S Ñ A`{pIpuq Y Inq separate points. Thus vw1 “ w2w is not locally finite by
Proposition 4.11. �

To achieve a compact smi it follows from Proposition 4.12 that we need n ą k in
Proposition 4.9. The smallest choice is then n “ 3 and k “ 2, for which there are
four possible cases: x2y “ yx2, x2y “ yxy, xy2 “ xyx and xyx “ yxy. The first
of these involves avoidable words only, hence by Proposition 4.13 does not define a
compact pseudovariety. In the next section we will show that the remaining three
pseudovarieties vx2y “ yxyw, vxy2 “ xyxw and vxyx “ yxyw are indeed compact.
We then use these to generate an infinite family of compact smi examples.

5. Compact smi pseudovarieties

Following Proposition 4.9, the pseudovarieties vxyx “ xyyw, vxyx “ yyxw and
vxyx “ yxyw are smi. We now show that each is compact, thus answering a central
part of Problem 36 in [9]. The main difficulties are in finding equational deductions
for various consequences of the given axiom. While this was done by hand, the
authors also used Prover9 for a separate verification. Recall that we use ” between
words to denote the fact that the words are identical. So xy ı yx as the two sides
are distinct, while w ” xy would denote the fact that the word w is the actual
string xy (where x, y are letters). In the context of an equational deduction, we
place an equation number over the top of an equality sign to indicate which law is
being applied. We use bracketing mostly to specify the precise subword to which
the application is being applied, while an underline indicates the subword obtained
during the previous deduction.

5.1. vxyx “ xyyw and vxyx “ yyxw. We consider the variety generated by

(2) xyx “ xyy.

with the case xyx “ yyx following by symmetry.

Lemma 5.1. The following are consequences of equation (2):

x4 “ x5(3)

xyz2 “ xyz3 “ xyz4(4)

xy3 “ xy4(5)

x2y2 “ x2y4 “ x2y3.(6)

Proof. Proof of (3). By assigning x ÞÑ x and y ÞÑ x2 we obtain x4 ” xpx2qx
2
“

xpx2q2 ” x5.

Proof of (4). We first show that xyz2 “ xyz4. We have rxyz2s
2
“ rxyzxsy

2
“

xyzryzys
2
“ xryzysz2

2
“ xyz2z2 ” xyz4. This then gives xyz3 ” xyz2z “ xyz4z

3
“

xyz4.

Proof of (5,6). These are consequences of (4): xy3 ” xyy2
4
“ xyy3 ” xy4, while

x2y2
4
“ x2y4. And x2y2 ” xxy2

4
“ xxy4 ” x2y4

3
“ x2y4y. Now applying x2y2 “

x2y4 from right to left we obtain x2y2 “ x2y3. �
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Lemma 5.2. If w is a word in letters x1, . . . , xn, with each letter appearing and

with leftmost appearances of the letters in the given order. Then w is equivalent

under (2) to the word

xi11 x
i2
2 ¨ ¨ ¨xinn

for some i1 P t1, 2, 3, 4u, i2 P t1, 2, 4u and ij P t1, 4u for j ą 2 and such that if

i1 ą 1 then i2 P t1, 4u.

Proof. We first reduce to an intermediate form where the ij may be any number
between 1 and 4. Let i be smallest such that w has a subword of the form xiuxi,
with no occurrences of xi in u: if there are no such i then w is already in the
intermediate form just described. Otherwise though, let wi denote the prefix of
w up to but not including the left-most occurrence of xi. Apply (2) to replace
xiuxi by xiuu. Note that the number of occurrences of xi goes down under this
application of (2), but the prefix wi is unchanged. Thus we may repeat this for

xi until eventually arriving at w “ wix
ji
i v, where v contains no occurrences of xi,

and ji ą 0. Now search for the next value i, as the smallest number for which this
new word there is a subword of the form xiuxi, with no occurrences of xi in u.
Repeat until there are no more such i. Denote the resulting intermediate word as
w1.

Now use equation (3) to reduce any powers of letters in w1 to at most 4. Now if
i ě 3 and xi is nonlinear in w1, then equation (4) can be used to replace this power
by 4. Similarly if the power of x2 is 3, then equation (5) shows that it can be raised
to 4. If the power of x2 is 2 and the power of x1 is not 1, then equation (6) shows
that x2 may be raised to the power 4. This completes the proof. �

We now give a finite generator for the variety defined by xyx “ xyy. This
generator was found using the aid of Mace4, and while a full justification for the
validity of the example is given in the proof of Theorem 5.3 below, we first briefly
describe the technique for discovery. As an initial step, we observed by syntactic
arguments that whenever u “ v is an equation between distinct normal forms, then
by identification of variables, there are distinct normal forms u1 and v1 in at most 3
variables and such that u “ v $ u1 “ v1. This is a consequence of Lemma 5.2: this
already shows that vxyx “ xyyw is compact, as it shows that the three-generated
relatively free algebra, which is finite, generates the pseudovariety. To find a smaller
generator, it is then only necessary to find small models of xyx “ xyy that fail such
identities. These can be found, one by one, using Mace4. To get the single small
generator B we fixed the assumptions xpyzq “ pxyqz, xpyxq “ xpyyq, and searched
for counterexamples for the various cases encountered in the proof of Theorem 5.3
below. The most fruitful approach was to first find a counterexample to the single
case x3y4 “ x4y4, which yields the subsemigroup on t0, 1, . . . , 7u. This is then
added to the assumptions and a search for a counterexample to x4yz4 “ x4y2z4 is
initiated. This produces semigroup B. The two searches take only a few seconds.

Theorem 5.3. The variety defined by xyx “ xyy is generated by the semigroup B

of Table 1.

Proof. It is routinely verified that B is a semigroup satisfying xyx “ xyy. Thus
it will suffice to show that if u “ v is an equation that does not follow from
xyx “ xyy then u “ v fails on B. So let u “ v be an identity that does not follow
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˚ 0 1 2 3 4 5 6 7 8 9 10
0 2 3 4 5 6 7 6 6 5 5 5
1 1 1 1 1 1 1 1 1 1 1 1
2 4 5 6 7 6 6 6 6 7 7 7
3 3 3 3 3 3 3 3 3 3 3 3
4 6 7 6 6 6 6 6 6 6 6 6
5 5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7
8 9 3 10 3 10 10 10 10 8 9 10
9 10 3 10 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10

Table 1. The semigroup B, a generator for vxyx “ xyyw.

from xyx “ xyy. By Lemma 5.2, there is no loss of generality to assume that u

and v are in normal form.
If u or v have distinct alphabets, or if the order of occurrence of the letters

is not identical, then u “ v will fail on the subsemigroup t8, 3, 10u of B, as this
semigroup is isomorphic to the monoid obtained from adjoining an identity element
to 2l (where 8 plays the role of the identity element).

Thus we may assume that there is a number n ą 0 such that u ” xα1

1 ¨ ¨ ¨xαn
n

and v ” x
β1

1 ¨ ¨ ¨xβn
n where α1, . . . , αn and β1, . . . , βn, with the αi and βi satisfying

the constraints on indices in normal forms outlined in Lemma 5.2. As u ‰ v there
is some i such that αi ‰ βi, and without loss of generality we may assume that
αi ă βi. If αi “ 1 for some i ď n then consider the evaluation θ1 into B defined by
xi ÞÑ 0 and

xj ÞÑ

#
8 if j ă i

1 if j ą i.

Then θ1puq “ 8 ˚ 0 ˚ 1 “ 3 (or 0 ˚ 1 “ 3 if i “ 1, or 8 ˚ 0 “ 9 if i “ n), while because
β1 ą 1 we have θ1pvq “ 8 ˚ 0β1 ˚ 1 “ 10 (or 0β1 ˚ 1 P t5, 6, 7u if i “ 1, or 8 ˚ 0β1 “ 10
if i “ n, respectively). In each case, θ1puq and θ1pvq take different values in B as
required.

Thus we may assume in remaining cases that if αj “ 1 if and only if βj “ 1
for each j “ 1, . . . , n. If i “ 1 and α1 P t2, 3u (so that β1 P t2, 3, 4uztα1u), then
use the evaluation θ2 into B defined x1 ÞÑ 0 and assigning all other letters to 1.
Then θ2puq “ 0α11, while θ2pvq “ 0β11. If α1 “ 3 then β1 “ 4 and we have
θ2puq “ 03 ˚ 1 “ 4 ˚ 1 “ 7 while θ2pvq “ 04 ˚ 1 “ 6 ˚ 1 “ 6. If α1 “ 2, then
θ2puq “ 02 ˚ 1 “ 2 ˚ 1 “ 5, while θ2pvq P t03, 04u ˚ 1 “ t4 ˚ 1, 6 ˚ 1u “ t6, 7u. Thus
θ2puq ‰ θpvq in B as required.

Thus we may assume that α1 “ β1. Looking at the constraints on indices for
normal forms, we see that there is only one further way that u and v can differ: if
α1 “ β1 “ 1 and α2 “ 2 and β2 “ 4. In this case, consider the evaluation θ3 into
B defined by x1, x2 ÞÑ 0 and xj ÞÑ 1 for all j ą 2. Then θ3puq “ 03 ˚ 1 “ 4 ˚ 1 “ 7
while θ3pvq “ 01`β2 ˚ 1 “ 04 ˚ 1 “ 6, because β2 ě 3.

Thus we have shown that every u,v with xyx “ xyy & u “ v we also have B

fails u “ v, which shows that B generates the variety defined by xyx “ xyy. �
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Remark 5.4. The pseudovariety vxyx “ xyyw has precisely two maximal sub-
pseudovarieties. These are defined taking the law xyx “ xyy in conjunction with
exactly one of the following laws: x3y4 “ x4y4, and x4yz4 “ x4y4z4.

Proof. First observe that, when combined with xyx “ xyy, each of the two equa-
tions listed defines a proper subvariety of that defined by xyx “ xyy, because in
each equation the two sides are distinct normal forms. Consider then an equation
u “ v between two distinct normal forms; we must show that one of the two listed
equations is a consequence of tu “ v, xyx “ xyyu. It is useful to note that the
equation x4y4z4 “ x4z4y4, in conjunction with xyx “ xyy implies x4yz4 “ x4y4z4.
Indeed, the expression x4pyz4q4y4 has normal form x4yz4 while x4y4pyz4q4 has
normal form x4y4z4. But a single application of x4y4z4 “ x4z4y4 yields the conse-
quence x4pyz4q4y4 “ x4y4pyz4q4.

If u involves a letter x not appearing in v, then u reduces to one of the normal
forms x4, x4y4 or y4x4, while v reduces to y4. It is not hard to verify that x4y4z4 “
x4z4y4 (hence x4yz4 “ x4y4z4) is a consequence of each of the possible resulting
laws. Now assume that u and v have the same alphabet x1, . . . , xn, with the given
numbering reflecting the order of first appearance of the letters in u.

Assume that the order of first appearance of letters in v is not the same as in
u. Let i be the smallest index such that xi does not make its first appearance
first after the first appearance of xi´1 (or i “ 1 if v starts with a letter other than
x1). Assign all letters x1, . . . , xi´1 the value x4, assign xi the value y4 and assign
all remaining letters the value z4. Then u reduces to x4y4z4 (or y4z4 if i “ 1)
while v reduces to x4z4y4 (or z4y4 if i “ 1). This yields x4y4z4 “ x4z4y4 (hence
x4yz4 “ x4y4z4).

Now we may assume that u ” xi11 x
i2
2 . . . xinn and v ” x

j1
1 x

j2
2 . . . xjnn , both normal

forms, but with pi1, . . . , inq ‰ pj1, . . . , jnq. If n “ 1 then we easily obtain law
x3y4 “ x4y4, so assume that n ą 1.

If i1 ă j1, then by fixing x1 and assigning all remaining letters the value y4 we
obtain xi11 y

4 “ x
j1
1 y

4. If i1 “ 1, then replace x1 by x2 to obtain x2y4 “ x4y4,
from which x3y4 “ x4y4 is a consequence. If i1 P t2, 3u, then we may also deduce

x3y4 “ x4y4 directly from xi11 y
4 “ x

j1
1 y

4. Assume now that i1 “ j1.

If i2 ă j2 and i1 “ j1 “ 1, then we may obtain x1x
i2
2 y

4 “ x1x
j2
2 y

4. Note that
i2 ă j2 implies i2 P t1, 2u. Replace x1 by x, x2 by x3´i2 to obtain x3y4 “ x4y4.
Now assume that i1 “ j1 ą 1, so that i2 ă j2 implies i2 “ 1 and j2 “ 4. Then we
obtain x4yz4 “ x4y4z4.

Now assume that i1 “ j1 and i2 “ j2 but ik “ 1 and jk “ 4, for some k P
t3, . . . , nu. Then the law x4yz4 “ x4y4z4 is an easy consequence.

Finally, we note that the subpseudovarieties are distinct: Mace4 finds a model
5-element model of txyx “ xyy, x3y4 “ x4y4u failing x4yz4 “ x4y4z4, and an
8-element model of txyx “ xyy, x4yz4 “ x4y4z4u failing x3y4 “ x4y4. �

5.2. vxyx “ yxyw. Now we show that following law defines a compact pseudovari-
ety:

(7) xyx “ yxy.

The ‘bracketed’ center and the ‘brackets’ can be exchanged. As consequences the
following equalities can be derived.
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Lemma 5.5 (Periodicity).

(8) x4 “ x5

Proof. By assigning x ÞÑ a and y ÞÑ a2 we obtain a4 ” apa2qa
7
“ pa2qapa2q ” a5. �

Lemma 5.6 (Inside out). For any n,m ě 0:

xyzx “ ynxyzxym(9)

xyzx “ znxyzxzm(10)

Proof. First

rabcas
7
“ brcabcs

7
“ babcab.

Apply this four times to achieve abca “ rb4sabcarb4s
8
“ bnrb4abcab4sbm “ bnabcabm.

Law (10) follows by symmetry. �

Lemma 5.7 (Outside in).

(11) xyzx “ xyxzx

Proof. We have

abca
9
“ rb4sabcab4

8
“ brb4abcab4s

9
“ rbabsca

7
“ abaca.

�

Lemma 5.8 (Bump up bracket powers). For any n,m ě 1:

(12) xyzx “ xnyzxm

Proof. rabcas
9
“ rbabcabs

9
“ arbabcabs

9
“ aabca. The law abca “ abcaa follows by

symmetry. �

Lemma 5.9 (Inside commuting).

(13) xyzx “ xzyx

Proof. First

rabcas
12
“ arabcas

11
“ raabaacas

7
“ abaac a abaac ” raba aca abasac

7
“ aca aba arcaacs

7
“ racaabaaaacasa

11
“ ¨ ¨ ¨

11
“ racbcaas

12
“ acbca.

Then by symmetry we have xyx “ yxy $ abca “ acba as required. �

Once the bracketed part is more than one symbol in length, we can independently
bump up the powers inside.

Lemma 5.10 (Bumping up inner powers). For n,m ą 1:

(14) xyzx “ xynzmx
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Proof. Inner part to the outer bracket, iterated insertion of the bracket, then re-
moving bracket.

rabcas
9
“ rbabcabs

11
“ . . .

11
“ rbabpbqn´1cabs

9
“ abpbqn´1ca ” abnca.

�

Lemma 5.11 (Inside commuting 2). For u, v, w either variables or possibly empty:

(15) xuyvzwx “ xuzvywx

Proof. It suffices to show that xuyzwx “ xuyzwx where u,w are possibly empty,
as this enables commutativity between any two occurrences of a variable (and
xuyvzwx “ xuzvywx follows).

We have aubcwa “ auabcawa by (11) if u,w are nonempty, or by (12) when one

of u,w is empty. Then aurabcaswa
13
“ rauacbawas

11
“ aubcwa, where again (12) is

used in place of (11) when u or w is empty. �

Lemma 5.12 (Leapfrog). Assume that u, v, w are either variables or empty, with

uvw not empty. Then

(16) xyxy “ xyyx and xuyvxwy “ xuvwyx

Proof. First observe that raubvaswb
15
“ arbuvawbs

15
“ abruvwasb

7
“ auvwa b uvwa,

regardless of whether or not uvw is empty. If uvw is empty, then raabas
14
“

raabbas
12
“ abba as required. If uvw is nonempty, then

rauvwabuvwas
15
“ arauuvvwwbas

14
“ raauvwbas

12
“ auvwba.

�

Lemma 5.13 (Evert). For u, v possibly empty:

(17) xuyvx “ yuxvy

Proof. For uv empty, this is (7). Without loss of generality, assume that u is

nonempty (with v either empty or nonempty). Then xuyvx
14
“ xuyyvx

15
“ xyuvyx

7
“

yuvyxyuvy. Then applying (15) and (14) reduces this word to yuxvy. �

A word w is said to be connected if there are letters x1, . . . , xn (for n ą 1) such
that

w ” x1 ¨ ¨ ¨x2 ¨ ¨ ¨x1 ¨ ¨ ¨x3 ¨ ¨ ¨x2 ¨ ¨ ¨x4 ¨ ¨ ¨ ¨ ¨ ¨xn ¨ ¨ ¨xn´1 ¨ ¨ ¨xn.

When n “ 1 it is convenient to require that w is of the form x1 ¨ ¨ ¨x1, and not
simply x1. A connected word w whose variables are x1, . . . , xn is said to be in
canonical form if it satisfies the following.

(i) If n “ 1, then w P tx21, x
3
1, x

4
1u.

(ii) If n “ 2, then w P tx1x2x1, x1x
2
2x1u.

(ii) If n ą 2 then w ” x1x2 ¨ ¨ ¨xnx1.

Lemma 5.14. If w is a connected word in alphabet x1, . . . , xn then there is a word

w1 in canonical form with w
7
“ w1.
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˚ 0 1 2 3 4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 6 5 7 5 6 7 0 10 10
2 0 0 4 8 5 0 0 0 9 5 0
3 0 0 0 3 0 0 0 0 0 0 0
4 0 0 5 9 0 0 0 0 5 0 0
5 0 0 0 5 0 0 0 0 0 0 0
6 0 0 7 0 5 0 0 0 10 5 0
7 0 0 5 10 0 0 0 0 5 0 0
8 0 0 0 8 0 0 0 0 0 0 0
9 0 0 0 9 0 0 0 0 0 0 0
10 0 0 0 10 0 0 0 0 0 0 0

Table 2. The semigroup C, a generator for vxyx “ yxyw

Proof. Let w be a connected word in the alphabet x1, . . . , xn (all letters appearing).
If n “ 1 the lemma follows immediately from (8). Now assume n ą 1. Let xi be the
first letter appearing in w. Repeated left-to-right applications of (16) will move the
final occurrence of xi further right, eventually resulting in a word w1 of the form
w1 ” xiuxi, where w1 has the same alphabet as w. If i ‰ 1, then we may write

u ” xiu1x1u2xi, where u1,u2 are possibly empty. Then, w “ w1 17“ x1u1xiu2x1.
Then use (15) to rearrange u1xiu2 into the form xi11 ¨ ¨ ¨xinn , where i1 ě 0 and ij ě 1
for each j ą 1. If n ą 2, then we may use (14) and (12) to obtainw “ x1x2 ¨ ¨ ¨xnx1.

If n “ 2, then we have w “ x1x2x1 or w “ x1x
i1
1 x

i2
2 x1. If i1 ą 0, then applying

(14) and (12) yields w “ x1x1x2x1, from which we can further rearrange to w “

x1rx1x2x1s
7
“ rx1x2x1x2s

16
“ x1x2x2x1, which is in canonical form. If i1 “ 0, then

we either have w ” x1x2x1 already in canonical form, or i2 ą 1 and then we have

w ” x1x
i2
2 x1

14
“ x1x2x2x1, also in canonical form. �

Now let w be a not necessarily connected word. Then there is a unique decom-
position into a product of connected subwords of maximal length and variables
that appear just once in w; that is there is an n such that w ” w1w2 ¨ ¨ ¨wn with
each wi is either a letter appearing just once in w, or a connected word, and such
that conpwiq X conpwjq “ ∅ whenever i ‰ j. We say that w is in canonical form

provided that each wi is in canonical form or is an individual letter. It will be a
consequence of the proof of Theorem 5.16 below that distinct canonical forms do
not form an identity following from xyx “ yxy.

We consider the semigroup C given in Table 2. The semigroup C is isomorphic
to the semigroup with presentation xa, b, c | aa “ a, b4 “ 0, cc “ c, ba “ cb “
ca “ abc “ 0, ab3 “ b3 “ b3c “ acy. To see this, first observe the relations in the
presentation ensure that a nonzero product is always in nondecreasing alphabetical
order, and then index laws bbbb “ 0 and aa “ a, cc “ c and extra collapses abc “
0, ab3 “ b3 “ b3c “ ac ensure that there are exactly 11 elements:

0 “ abc, a “ a2, b, c “ c2, bb, bbb “ ac “ abbb “ bbbc “ abbbc, ab, abb, bc, bbc, abbc

The map taking each element in this list to its numerical position in the list is an
isomorphism onto C (that is, 0 ÞÑ 0, a ÞÑ 1, b ÞÑ 2 and so on). The semigroup C

was found by hand: starting with the 3-generated free algebra, successive quotients
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and subsemigroups were taken. This led to a 16 element example. In private com-
munication, Edmond W.H. Lee observed that there were further quotients possible,
and this eventually led to the current example.

To see that C |ù xyx “ yxy, note that the only nonzero evaluations are θpxq “
θpyq P t1, 2, 3u (in which case θpxyxq “ θpyxyq P t1, 5, 3u). Note also that the
subsemigroup on t1, 3, 5, 0u is the well-studied semigroup A0, whose equational
properties have some similarity to the those following from xyx “ yxy.

Lemma 5.15 (Lee [5]). Let u ” u1 ¨ ¨ ¨um and v ” v1 ¨ ¨ ¨vn be a pair of words,

where u1, . . . ,um (and v1, . . . ,vn respectively) are pairwise disjoint words, each of

which is either connected or a singleton. Then A0 |ù u “ v if and only if m “ n

and A0 |ù ui “ vi. Moreover,

(1) if ui is a singleton, then A0 |ù ui “ vi implies ui ” vi;

(2) if ui is connected, then A0 |ù ui “ vi if and only if conpuiq “ conpviq.

Theorem 5.16. The variety defined by xyx “ yxy is generated by C.

Proof. As C satisfies xyx “ yxy, to show it generates the variety defined by xyx “
yxy it suffices to show that whenever u “ v is an identity that does not follow from
xyx “ yxy, then u “ v fails on C. By Lemma 5.14 we may assume without loss of
generality that u and v are in canonical form.

As u and v are in canonical form, we may write

u ” u1u2u3 ¨ ¨ ¨um

v ” v1v2v3 ¨ ¨ ¨vn

where each ui and each vi are connected words in canonical form and such that
conpuiqXconpujq “ ∅ for i ă j ď m and conpviqXconpvjq “ ∅ for i ă j ď n. Now
A0 ď C, so Lemma 5.15 shows that we may assume that n “ m and conpuiq “
conpviq for each i “ 1, . . . , n (otherwise we have A0 failing u “ v and we are done).

Now, as u ‰ v it follows that there is some i with ui ‰ vi. Because of the
definition of canonical form, and the fact that conpuiq “ conpviq, it follows that
either there is a single variable x such that ui ” xj and vi ” xk for some j ‰
k (with j, k ď 4), or there are variables x, y with ui P txyx, xyyxu and vi P
txyx, xyyxuztuiu. The second case may be mapped to the first of these cases by
considering the substitution that fixes all variables but with y ÞÑ x (as xyx ÞÑ x3,
while xyyx ÞÑ x4). Without loss of generality then, let us assume ui ” xj , while
vi ” xk for j ă k ď 4. Consider then the evaluation θ1 into C defined by

θ1 : z ÞÑ

$
’&
’%

1 if z P conpu1 ¨ ¨ ¨ui´1q

2 if z “ x

3 if z P conpui`1 ¨ ¨ ¨unq.

Now for j “ 1, 4, we have θ1puq “ 0, but θ1puq “ 10 if j “ 2 and θ1puq “ 5 if
j “ 3. Thus except in the case tj, ku “ t1, 4u, the substitution θ1 shows that u “ v

fails on C. So now assume without loss of generality that j “ 1 (so that k ą 1)
Consider then the evaluation θ2 into C defined by

θ1 : z ÞÑ

$
’&
’%

1 if z P conpu1 ¨ ¨ ¨ui´1q

5 if z “ x

3 if z P conpui`1 ¨ ¨ ¨unq.
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Then θ2puq “ 5, while θ2pvq “ 0. Hence we have shown that C fails u “ v, which
completes the proof that the variety generated by C is the same as that defined by
xyx “ yxy. �

Remark 5.17. The pseudovariety vxyx “ yxyw has precisely four maximal sub-
pseudovarieties. These are defined taking the law xyx “ yxy in conjunction with
exactly one of the following laws: x4y4 “ y4x4, x4y2z4 “ x4y3z4, x4y2z4 “ x4y4z4,
and x4y3z4 “ x4y4z4.

Proof. We may consider an equation u “ v between distinct normal forms for
xyx “ yxy:

u ” u1u2u3 ¨ ¨ ¨um

v ” v1v2v3 ¨ ¨ ¨vn

(each ui and vi either a single variable or a connected component, in pairwise
distinct alphabets). Our goal is to deduce one of the four listed equations.

Without loss of generality we may assume that m,n ě 3 and that u1 ” v1 and
um ” vn. Indeed, if a, b are letters not appearing in u and v, then a4ub4 and a4vb4

are also distinct normal forms and u “ v $ a4ub4 “ a4vb4.
If u and v have different alphabets (say, y P conpvqz conpuq), then by mapping

y ÞÑ y4 and all other letters to x4 (and then simplifying to normal form) we ob-
tain tu “ v, xyx “ yxyu $ x4 “ xy2x. From this we obtain x4y4 “ xy2xy4 “
x4y4x4y4 “ y4x4y4x4 “ yx2yx4 “ y4x4. So now we assume that u and v have the
same alphabet X .

Each connected component (or letter with single occurrence) has an alphabet
that is a subset of X , and these subsets partition X . If the partition of X arising
from u is distinct from that arising from v then we may deduce the law x4y4 “ xy2x,
from which x4y4 “ y4x4 again follows. The same applies if the arising partitions
coincide, but that the connected components appear in different order. Thus we
may assume now that n “ m ě 3 and conpuiq “ conpviq for each i “ 1, . . . , n.
Let i in t2, . . . , n ´ 1u be such that ui ı vi. If ui has just one letter, then up
to a change of latter names, u1 “ yj and v1 “ yk, for some distinct j, k ď 4 and
letter y. If j or k is 1 then we may deduce x4y3z4 “ x4y4z4. Otherwise, we have
tj, ku P tt2, 3u, t2, 4u, t3, 4uu, from which one of the equations x4y2z4 “ x4y3z4,
x4y2z4 “ x4y4z4, and x4y3z4 “ x4y4z4 are consequences of u “ v.

Now assume that | conpuiq| ě 2. Given that conpuiq “ conpviq but ui ı vi, it
follows that ui “ vj is the equation x1x2x1 “ x1x

2
2x1 (or reverse). Then we obtain

the consequence x41yzyx
4
2 “ x41yz

2yx42. But x41yzyx
4
2 “ x41yz

2yx42 $ x4y3z4 “
x4y4z4.

Finally we note that each of the four listed equations does not, in conjunction
with xyx “ yxy, imply any of the others. It is possible to argue this syntactically,
based on analysing the consequences of fully invariant congruences of the free alge-
bra for xyx “ yxy on 3 generators. Alternatively, one may employ Mace4 again: for
each of the four equations, there are three equations with which to compare. Mace4
provides examples, of size between 4 and 10-elements, witnessing independence in
each of the 12 cases. �

5.3. Infinitely many atoms for CntpPVq`.
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Lemma 5.18. Let w1 “ w2 satisfy the conditions of Proposition 4.9, and let

ty1, . . . , yℓu X conpw1q “ ∅. Then y1 . . . yiw1yi`1 . . . yℓ “ y1 . . . yiw2yi`1 . . . yℓ sat-

isfies the conditions of Proposition 4.9. Moreover, if vw1 “ w2w is compact, then

so is vy1 . . . yiw1yi`1 . . . yℓ “ y1 . . . yiw2yi`1 . . . yℓw.

Proof. The first statement is trivial. For the second, observe that if vw1 “ w2w is
compact, then for some m P N, it is generated by the m-generated relatively free
semigroup in the variety defined byw1 “ w2. We claim that vy1 ¨ ¨ ¨ yiw1yi`1 ¨ ¨ ¨ yℓ “
y1 ¨ ¨ ¨ yiw2yi`1 ¨ ¨ ¨ yℓw is locally finite and generated by them`2-generated relatively
free algebra. Let Fj denote the relatively free semigroup for vy1 ¨ ¨ ¨ yiw1yi`1 ¨ ¨ ¨ yℓ “
y1 ¨ ¨ ¨ yiw2yi`1 ¨ ¨ ¨ yℓw on j free generators.

Now observe that if u “ v is a consequence of

y1 ¨ ¨ ¨ yiw1yi`1 ¨ ¨ ¨ yℓ “ y1 ¨ ¨ ¨ yiw2yi`1 ¨ ¨ ¨ yℓ,

then either u ” v, or u ” pu1q and v ” pv1q, for some words p,q,u1,v1 with
|p| “ i and |q| “ ℓ´ i, and where u1 “ v1 follows from w1 “ w2. This easily yields
the fact that vy1 ¨ ¨ ¨ yiw1yi`1 ¨ ¨ ¨ yℓ “ y1 ¨ ¨ ¨ yiw2yi`1 ¨ ¨ ¨ yℓw is locally finite provided
vw1 “ w2w is.

Next we show that Fm`1 generates the variety. For this we need to show that
if u “ v does not follow from y1 ¨ ¨ ¨ yiw1yi`1 ¨ ¨ ¨ yℓ “ y1 ¨ ¨ ¨ yiw2yi`1 ¨ ¨ ¨ yℓ, then
u “ v fails on Fm`1.

If u differs from v within some prefix of length at most i, say u ” u1xu2

and v ” u1yu2 with |u1| ă i. Then the substitution identifying all letters in
conpuvqztxu with y yields a failure of u “ v in F2 ď Fm`1. The case where u

differs from v within some suffix of length at most ℓ´ i is dual.
Now assume that u and v agree on the prefix of length i and the suffix of length

ℓ´ i. It’s possible the prefix overlaps with the suffix. Because u ı v, this implies
that |u| ‰ |v|, with at least one of the |u|, |v| ă m`ℓ. Then identifying all variables
to x yields x|u| “ x|v|, which fails on F1. Thus we may assume that u ” pu1q,
v ” pv1q, for some words p,q,u1,v1 with |p| “ i and |q| “ ℓ ´ i, and where
u1 “ v1 does not follow from w1 “ w2. Let θ be an assignment from conpu1v1q
into tx1, . . . , xmu for which θpu1q “ θpv1q does not follow from w1 “ w2; this exists
because w1 “ w2 is generated by its m-generated free algebra. Now extend θ

to the other variables by identifying all variables outside of tx1, . . . , xmu to some
x R tx1, . . . , xmu. Then θpuq “ θpvq fails on Fm`1. �

It is easy to see that for fixed w1 “ w2, if the number ℓ in Lemma 5.18 is
increased, one obtains a different pseudovariety. Then by Theorems 5.3 and 5.16,
one obtains infinitely many compact smis by using xyx “ yxy or xyy “ xyx for
w1 “ w2.

We conclude with some open problems.

Problem 5.19. (1) Describe all compact smi semigroup pseudovarieties.
(2) If S is a finite semigroup whose pseudovariety can be defined by a single

equation, is it true that the variety of S can be defined by a single equation?

In the direction of Problem 5.19(1), a reasonable starting point would be to char-
acterise which equations satisfying the conditions in Proposition 4.9 are compact;
and are there any outside of those covered by Proposition 4.9? This falls within a
more general problem, asking which finite systems of semigroup equations deter-
mine finitely generated varieties, and whether or not this is algorithmically solvable
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(the so-called “reverse Tarski problem”; see O. Sapir [12]). A further interesting
intermediate problem would be to examine which varieties determined by a single
equation are finitely generated. This leads to the second part of Problem 5.19,
which is a bounded version of the Eilenberg-Schützenberger problem (asking if a
finite generator for a finitely based pseudovariety must generate a finitely based
variety; see [3]). The Eilenberg-Schützenberger problem was solved positively for
semigroup pseudovarieties by Mark Sapir [11] but remains open for general algebras.
In connection with the present setting, observe that a smi pseudovariety must be
definable (amongst finite semigroups) by a single equation. Our arguments involve
syntactic analysis of equational deductions, and would require adjustment if they
were to cover any examples negatively answering Problem 5.19(2). This problem
also seems interesting for general algebras.
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