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A NOTE ON THE ORDER OF THE SCHUR MULTIPLIER OF

p-GROUPS

PRADEEP K. RAI

Abstract. Let G be a finite p-group of order pn with |G′|= pk. Let M(G) de-
notes the Schur multiplier of G. A classical result of Green states that |M(G)|≤

p
1
2

n(n−1) . In 2009, Niroomand, improving Green’s and other bounds on

|M(G)| for a non-abelain p-group G, proved that |M(G)|≤ p
1
2

(n−k−1)(n+k−2)+1.
In this article we note that a bound, obtained earlier, by Ellis and Weigold is
more general than the bound of Niroomand. We derive from the bound of Ellis

and Weigold that |M(G)|≤ p
1
2

(d(G)−1)(n+k−2)+1 for a non-abelain p-group G.
Moreover, we sharpen the bound of Ellis and Weigold and as a consequence

derive that if Gab is not homocyclic then |M(G)|≤ p
1
2

(d(G)−1)(n+k−3)+1. We
further note an improvement in an old bound given by Vermani. Finally we

note, for a p-group of coclass r, that |M(G)|≤ p
1
2

(r
2

−r)+kr+1. This improves
a bound by Moravec.

1. Introduction

Let G be a group. The center and the commutator subgroup of G are denoted

by Z(G), and γ2(G) respectively. By d(G) we denote the minimal no of generators

of G. We write γi(G) and Zi(G) for the i-th term in the lower and upper central

series of G respectively. Finally, the abelianization of the group G, i.e. G/γ2(G), is

denoted by Gab.

Let G be finite p-group of order pn and let M(G) denotes the Schur multiplier of

G. In 1956 Green proved that |M(G)|≤ p
1
2 n(n−1) [3]. Since then Green’s bound has

been reproved and generalized by many mathematicians. Weigold, in 1965, gave a

bound on |γ2(G)| in terms of |G/Z(G)| and rederived the Green’s bound using the

existence of representation groups [12]. In 1967 Gaschütz et al., sharpening Green’s

bound, proved in [2] that

|M(G)|≤ |M(Gab)||γ2(G)|d(G/Z(G))−1.

The bound of Gaschütz et al. was further generalized by Vermani in 1969 [10]. He

obtained their result as a corollary of the bound

|M(G)|≤

∣

∣

∣

∣

M

(

G

γc(G)

)
∣

∣

∣

∣

∣

∣

∣

∣

Hom

(

G

Zc−1(G)
, γc(G)

)
∣

∣

∣

∣

/

|γc(G)|,

where c is the nilpotency class of G. This bound was reproved by Jones using a

different method in [5]. In 1969 Green’s bound was generalized by Weigold [13]

when he proved that

(1.1) |M(G)|≤ p
1
2 (d(G)−1)(2n−d(G)).
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In 1972 Jones, generalizing Green’s bound, proved in [4] that, if the exponent of

the center is peZ(G) , then

(1.2) |γ2(G)||M(G)|≤ p
1
2 (n−eZ(G))(n+eZ(G)−1).

This bound of Jones was further generalised by Vermani in 1974 [11]. He proved

that if the restriction homomorphism from M(G) to M(K), for a central subgroup

K, is zero (Note that for a cyclic central subgroup K, it is zero), then

(1.3) |γ2(G)||M(G)|≤ |(G/K)ab ⊗ K|p
1
2 (m−r)(m+r−1),

where m and r are given by |G/K|= pm and |γ2(G)K/K|= pr.

In 1999 Ellis and Weigold, sharpening Weigold’s earlier bound 1.1, proved that

(1.4) |M(G)|≤ p
1
2 (d(G)−1)(2n−m)(= p

1
2 (d(G)−1)(n+k)),

where m and k are given by |Gab|= pm, |γ2(G)|= pk [1].

Using the bound 1.2 Jones derived the corollary that |M(G)|≤ p
1
2 n(n−1)−k. Ver-

mani, using the bound of Gaschütz et al., noticed in [11, Proposition 2.2] that

|M(G)|≤ p
1
2 (n−k−1)(n+k) = p

1
2 n(n−1)−

1
2 k(k−1) .

For non-abelian p-groups G, Niroomand proved that

(1.5) |M(G)|≤ p
1
2 (n−k−1)(n+k−2)+1,

where k is given by |γ2(G)|= pk [9]. Further, in another paper Niroomand and

Russo proved that the bound 1.5 is better than the bound 1.4 of Ellis and Weigold

provided Gab is elemementary abelian [8, Theorem 1.2].

We mention here that the bound 1.4 of Ellis and Weigold was derived from the

following more general bound of theirs.

(1.6) |M(G)|≤ p
1
2 d(m−e)+(δ−1)(n−m)−max(0,δ−2)

where m and pe are the order and the exponent of Gab respectively and d and δ are

the minimal no. of generators of G and G/Z(G) respectively.

We then note that the bound 1.6 of Ellis and Weigold is more general than

the bound 1.5 of Niroomand. In the following theorem we see that a visibly more

general bound than the bound 1.5 can be derived from the bound. 1.6.

Theorem 1.1. Let G be a non-abelian finite p-group of order pn with |γ2(G)|= pk

and d(G) = d. Then

|M(G)|≤ p
1
2 (d−1)(n+k−2)+1.

Ellis and Weigold also noticed that their bound 1.4 is attained if G = Cpe ×

Cpe × . . . × Cpe . The bound 1.4 of Ellis and Weigold was rederived by Niroomand

and Russo. They further improved the bound when Gab 6= Cpe × Cpe × . . . × Cpe

proving that

(1.7) |M(G)|≤ p
1
2 (d(G)−1)(n+k−1)

in this case.
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Now of course Theorem 1.1 provides a visibly stronger bound than the bound

1.7. But the bound 1.7 motivates us to investigate further the case Gab 6= Cpe ×

Cpe × . . . × Cpe . The following theorem sharpens the bound 1.6.

Theorem 1.2. Let G be a finite p-group of order pn with d(G) = d, d(G/Z(G) = δ

and Gab = Cpα1 × Cpα2 × · · · × Cpαd (α1 ≥ α2 ≥ · · · ≥ αd). Then

|M(G)|≤ p
1
2 (d−1)(n−k−(α1−αd))+(δ−1)k−max(0,δ−2).

To see that the bound in the above corollary is better than the bound 1.6, we

divide the right hand side of the bound 1.6 by the right hand side of the above bound

and get the value p
1
2 [(d−1)(α1−αd)−dα1+n−k] which equals p

1
2 [−(d−1)αd−α1+n−k]. Which

on putting n − k = α1 + α2 + · · · + αd becomes p
1
2 [α2+···+αd−(d−1)αd)]. But this

value is clearly greater than or equal to 1 because α1 ≥ α2 ≥ · · · ≥ αd.

As a consequence we derive the following corollary.

Corollary 1.3. Let G be a non-abelian finite p-group of order pn with d(G) = d,

|γ2(G)|= pk and Gab = Cpα1 × Cpα2 × · · · × Cpαd (α1 ≥ α2 ≥ · · · ≥ αd). Then

|M(G)|≤ p
1
2 (d−1)(n+k−2−(α1−αd))+1.

In particular if Gab is not homocyclic, then

|M(G)|≤ p
1
2 (d−1)(n+k−3)+1.

The bound 1.3 of Vermani comes with a hypothesis, so it can not be compared

in general with the bound obtained in Theorem 1.1. Though using Theorem 1.1

we can improve the bound of Vermani for non-abelian finite p-groups of nilpotency

class at least 3.

Theorem 1.4. Let G be a finite p-group of nilpotency class at least 3 and K a

central subgroup of G such that the restriction homomorphism from M(G) to M(K)

is zero. Also assume that |G/K|= pm and |γ2(G)K/K|= pr. Then

|γ2(G)||M(G)|≤ |(G/K)ab ⊗ K|p
1
2 d(G/K)(m+r−2)+1.

In particular,

|γ2(G)||M(G)|≤ |(G/K)ab ⊗ K|p
1
2 (m−r)(m+r−2)+1.

By the coclass of a p-group G of order pn we mean the number n − c where c is

the nilpotency class of G. In 2009, Moravec proved, for finite p-group G of coclass

r, that |M(G)|≤ pr2+(k+2)r where k is given by |γ2(G)|= pk [7, Theorem 1.1]. The

following Theorem improves this bound.

Theorem 1.5. Let G be a finite p-group of order pn and coclass r with |γ2(G)|= pk.

Then |M(G)|≤ p
1
2 (r2

−r)+kr+1.

2. Proofs of Theorems

Proof of Theorem 1.1 Since G is non-abelian we have d(G/Z(G)) = δ ≥ 2,

otherwise G/Z(G) is cyclic and G is abelian. Therefore max(0, δ − 2) = δ − 2. Let

e be the exponent of Gab. Then from the bound 1.6 we get
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|M(G)| ≤ p
1
2 d(n−k−e)+(δ−1)k−max(0,δ−2)

= p
1
2 (d−1)(n−k−e)+ 1

2 (n−k−e)+(δ−1)k−(δ−2)

= p
1
2 (d−1)(n−k−e)+ 1

2 (n−k−e)+(δ−1)(k−1)+1

= p
1
2 (d−1)(n−k)−

1
2 (d−1)e+ 1

2 (n−k−e)+(d−1)(k−1)−(d−δ)(k−1)+1

= p
1
2 (d−1)(n−k+2k−2)−

1
2 (d−1)e+ 1

2 (n−k−e)−(d−δ)(k−1)+1

= p
1
2 (d−1)(n+k−2)+1−[ 1

2 (d−1)e−
1
2 (n−k−e)+(d−δ)(k−1)]

Now notice that 1
2 (d − 1)e − 1

2 (n − k − e) is a non-negative value. To see this, let

Gab = Cpα1 ×Cpα2 ×· · ·×Cpαd (α1 ≥ α2 ≥ · · · ≥ αd). Then n−k = α1+α2+· · ·+αd

and e = α1. Therefore

1

2
(d − 1)e −

1

2
(n − k − e) =

1

2
(d − 1)α1 −

1

2
(α1 + α2 + · · · + αd − α1)

=
1

2

(

α1 + α1 + · · · α1 (d − 1 times)

)

−
1

2
(α2 + · · · + αd)

=
1

2
(α1 − α2) + (α1 − α3) + · · · (α1 − αd),

which is clearly a non-negative value because α1 ≥ α2 ≥ · · · ≥ αd. Obviously

(d − δ)(k − 1) is a non-negative value. Hence we have

|M(G)|≤p
1

2
(d−1)(n+k−2)+1.

The following Lemma sharpens the bound 1.7 for abelian p-groups.

Lemma 2.1. Let G be an abelian p-group of order pn such that G = Cpα1 ×Cpα2 ×

· · · × Cpαd (α1 ≥ α2 ≥ · · · ≥ αd) and |G|= pn, then |M(G)|≤ p
1
2 (d(G)−1)(n−(α1−αd)).

Proof. For d = 2, it is obvious from [6, Corollary 2.2.12]. So let us assume that

d ≥ 3. Let αi = n−α1−αd

(d−2) + ki for i = 2, 3, · · · , d − 1. Then by [6, Corollary 2.2.12]

|M(G)| = pα2+2α3+···+(d−1)αd

= p(d−1)(α2+α3+···+αd)−(d−2)α2−(d−3)α3−···−αd−1

= p(d−1)(n−α1)−(d−2)α2−(d−3)α3−···−αd−1

= p
(d−1)(n−α1)−

(n−α1−αd)

d−2

(

1+2+···d−2

)

−

[

(d−2)k2+(d−3)k3+···+kd−1

]

= p
(d−1)(n−α1)−

1
2 (n−α1−αd)(d−1)−

[

(d−2)k2+(d−3)k3+···+kd−1

]

.

Now observe that k2 + k3 + · · · + kd−1 = 0. Also notice that there exist a j such

that k2, k3, · · · , kj are non-negative values and kj+1, kj+2, · · · , kd−1 are non-positive

values. It follows that the value (d − 2)k2 + (d − 3)k3 + · · · + kd−1 is non-negative.

Therefore, |M(G)|≤ p
1
2 (d(G)−1)(n−(α1−αd)). �

Proof of Theorem 1.2 Let Ψ be as defined in [1, Proposition 1]. Following [1,

Proposition 1] we have that

|M(G)||γ2(G)||ImΨ|≤ |M(Gab)|pkδ.
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But note from [1, Proposition 1] that |ImΨ|≥ pmax(0,δ−2). Now the theorem follows

from the Lemma 2.1.

Proof of Corollary 1.3 Having Theorem 1.2 in hand the proof of the corollary

runs on the same lines as the proof of Theorem 1.1.

Proof of Theorem 1.4: By [11, Theorem 1.2] we have that

|γ2(G)||M(G)|≤ |M(G/K)||G/γ2(G)K ⊗ K|

∣

∣

∣

∣

γ2(G)

γ2(G) ∩ K

∣

∣

∣

∣

.

Since G is of nilpotency class at least 3, G/K is non-abelian. Hence m ≥ r + 2.

Applying Theorem 1.1 we get that

|γ2(G)||M(G)| ≤ |G/γ2(G)K ⊗ K|p
1
2 (d(G/K)−1)(m+r−2)+1+r

= |G/γ2(G)K ⊗ K|p
1
2 d(G/K)(m+r−2)−

1
2 (m+r−2)+1+r

≤ |G/γ2(G)K ⊗ K|p
1
2 d(G/K)(m+r−2)−

1
2 (r+2+r−2)+1+r

≤ |G/γ2(G)K ⊗ K|p
1
2 d(G/K)(m+r−2)+1.

This proves the theorem.

Proof of Theorem 1.5: Let c be the nilpotency class of G. It is obvious that

c ≤ k+1 and d(G) ≤ n−k. Therefore d(G) ≤ n−c+1 = r+1, so that d(G)−1 ≤ r.

The inequality c ≤ k + 1 can be written as n − (n − c) ≤ k + 1, i.e., n − r ≤ k + 1 so

that n + k − 2 ≤ r + 2k − 1. Using Theorem 1.1 with the inequalities d(G) − 1 ≤ r

and n + k − 2 ≤ r + 2k − 1 we get the required result.
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