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HYPERGRAPHS WITH HIGH PROJECTIVE DIMENSION AND
1-DIMENSIONAL HYPERGRAPHS

K.-N. LIN AND P. MANTERO

ABSTRACT. We prove a sufficient and a necessary condition for a sdueeemonomial ideal/
associated to a (dual) hypergraph to have projective dimergjual to the minimal number of gen-
erators ofJ minus 2. We also provide an effective explicit procedure ampute the projective
dimension of 1-dimensional hypergrapHswhen each connected component contains at most one
cycle. An algorithm to compute the projective dimensionl&ancluded. Applications of these
results are given; they include, for instance, computirgpttojective dimension of monomial ideals
whose associated hypergraph has a spanning Ferrers graph.

1. INTRODUCTION

Let k be a field,R = k[z1,--- ,z,] @ polynomial ring with indeterminates, ..., x,, and let/
be a homogeneous ideal Bf Over the last decades there has been great interest imilgtey (or
bounding) two fundamental invariants hfthe projective dimensiopd(R/I) and the Castelnuovo-
Mumford regularityreg(.J). These two invariants play an important role in algebraiongetry,
commutative algebra and combinatorial algebra. To comfhése two invariants, it is natural to
determine the minimal graded free resolution/afhich, however, is often difficult and computa-
tionally expensive to find. A slightly different approachnsists in finding upper bounds for these
two invariants forl, by computing the projective dimension and the regularftgre of its initial
idealsJ = in,(I). The projective dimension and the regularity of a monondehl are preserved
by polarization, thus it is sufficient to consider squaeefmonomial ideals. In general, computing
the regularityreg(.J) can be hard and computationally very expensive; for sgfraeemonomo-
mial ideals, however, one can take advantage of the equaity’) = pd(R/J"), whereJ" is the
Alexander dual of/, and reduce the problem to computing the projective dinoensi a square-free
monomial ideal, which is then an active area of research.

In general, given a square-free monomial idéalseveral combinatorial structures can be as-
sociated to it (e.g. simplicial complexes, graphs, hymglhs or dual hypergraphs). They have
been consistently used to establish combinatorial cheniaations for the projective dimension
or regularity of.J under additional assumptions, see — among the many papédre ®ubject —
[2].[3],[41.[5].[6).[7].[9],[14],[16],[18]. In the present paper, we employ the combinatorial struc-
tures of “dual hypergraphs” in the sense lof [1] (which we &ail simplicity hypergraphs) to de-
terminepd(R/J) for classes of monomial ideals whose associated (dual) hypergraphs satisfy
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certain combinatorial assumptions. We recall that theaason of a dual hypergraph to a mono-
mial ideal J was first introduced by Kimura, Terai and Yoshida, who emgtbit to compute the
arithmetical rank of certain square-free monomial ide&l.[ In the last few years, various work
has been done to determine invariants or detect propeftiésising this combinatorial association,
see for example [8],[13].[10]. 21.2[,[15].[16].

One of the main results of this paper is motivated and, in seense, is the continuation of work
of Kimura, Rinaldo and Terai, who found necessary and safitccombinatorial conditions on the
hypergraph off to havepd(R/J) = u(J)—1, i.e. projective dimension equal to its minimal number
of generators of minus 1. In this paper we provide a sufficient conditiongd(R/.J) = u(J)—2;
if, in addition, the hypergraph associated/tss a bipartite graph, then a necessary condition is also
given (Theoreni_3]4). As an application, we compute the ptioje dimension of any/ whose
1-dimensional subhypergraph has a spanning Ferrers gtapbliary[3.10).

The second main result of this paper is the continuation tfasg’ previous work[[15], where
a combinatorial formula fopd(R/.J) was found when the hypergraph associated is a string
or a cycle. In the present paper, we find the projective dimensf pd(R/J) when its (dual)
hypergraph is a disjoint union of trees or graphs contaigingost one cycle (Theorem 4.7). In
the special case of a disjoint union of trees, also resulidaky and Villarreal, and Faridi apply
[18] [6] (because our tree hypergraphs are simplicial tegekthen/ is, in these cases, sequentially
Cohen-Macaulay); their results state tha{ k/.J) equals thévig heightof 7, i.e. the largest height
of an associated prime of. In this scenario our combinatorial result provides anralitve way
to the above-mentioned algebraic formula fat(R/J). When an explicit irredundant primary
decomposition of/ is given, the big height off is easily computed; on the other hand, when the
combinatorial structure is given, our formula usually pdes a faster way to computel(R/.J),
especially useful whed involves a large number of variables (because the big he&gtumputed
as the maximum of all possible vertex covers of the corredipgnsimplicial structure).

The key idea for this result is to develop a process for brepki “large” ideal into “smaller”
ideals having disjoint combinatorial structures, thusumidg the computational cost of finding
pd(R/J) (Proposition$ 44 arid 4.6). Another consequence of Thedr@ris a combinatorial for-
mula forpd(R/.J) when the associated combinatorial structure can be desriiderms of “small”
stars; in these cases the formula has a flavor similar to the mresult of [15] (Propositionis 4.15 and
4.17).

The paper is organized as follows: in Section 2 we set thergravork for the paper, establish
notations, review properties and prove a few additiondktemployed in the later sections. Section
3 is developed around the first main theorem, featuring tleessary and the sufficient condition
to havepd(R/J) = u(J) — 2; it also contains an application to hypergraphs with a sjpann
Ferrers graph. In Section 4 we introduce an argument whisbngially allows us to replace a
large 1-dimensional hypergraph with the disjoint union wialer hypergraphs; we employ it to
prove Theorernh 417 and provide a few applications. In Sed&iare have included an algorithm to
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compute the projective dimension of the connected hypphgréo which one can apply Theorem

[4.3.
2. BACKGROUND AND A FEW LEMMAS

We recall that the definition of (dual) hypergraph on theeaegetV = [u] = {1,2,...,u}, see
[1].

Definition 2.1. A (dual) hypergrapton V' = [u] is a subset{ of the power seP (V') such that
U F = V. H isseparatedf, moreover, for every < j; < jo < u, there exist face$y, F, € H
FeN
with j; € Fi N (V \ Fg) andj; € Fo N (V \ Fl).
Let R = k[x1, ..., z,,] be a polynomial ring over a field. If I is a square-free monomial ideal
in R, then one can associate a separated hypergkgh to it: let mq,...,m, be the minimal
monomial generating set fdr, the hypergraph (1) is defined as

HI)={{jeV: z;|mj}:i=1,2,--- ,n}
The hypergrapl(I) defined above is sometimes called the dual hypergraphasfd should
not be confused with the hypergraph constructed fiohy setting as vertices the variables of the

polynomial ring, and having the faces correspond to the mg¢ois of the ideal. Also, following
[8],[10],[11],[15],[16] we assume all the hypergraphs separated, unless otherwise stated.

Definition 2.2. Let I be a square-free monomial ideal with minimal monomial gatieg set
{mq,---,m,}. We setpd(H) for pd(R/I), whereH = H(I) is the hypergraph associated to
the square-free monomial ided) and call it theprojective dimensiomf .

Conversely, given a separated hypergréphvith vertex setV’ = [u], one can associate to it
multiple monomial ideals, see for instance,|[10] [or|[16]. our proofs we will always associate
to H a (standard) square-free monomigl) minimally generated by monomiais, ...m,, with
the additional property that for every faéein 7, there is a unique variabler such thatc p|m; if
and only if/ is in . This can be done without loss of generality, since in [1®pBsition 2.2 and
Corollary 2.4], the authors showed that any two square+fieromial ideals associated to the same
separated hypergra have the same Betti numbers and projective dimension.

We now summarize a few combinatorial operations and thgétahic counterparts.

Definition 2.3. Let H be a hypergraph/ = I(#) C R be the (standard) square-free monomial
ideal associated to it, lef’ be a face inf{ andxr € R be the variable associated 16; also, letv

be a vertex irt{ andm, € I be the monomial generator associated to it. We define thewimib
operations orH.

(i) The hypergraph#, obtained byremotionof v from H is defined as follows: lel be
the set obtained by removing, from the set of minimal monomial generatorsofset
I, = (m|m € A) , thenH, = H(I,); iterating this operation, one write.,, . ,, for the
hypergraph obtained by removing multiple vertiegs. . ., v,;
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(i) the hypergrapht,, : v = Q, is the hyergrapt# (I, : m,) wherel, andH,, are as in (i).

(i) the hypergraph# : F' obtained bycancellationof F' in H is the hypergraph associated to
I:xp;

(iv) the hypergraptH!” obtained fron by cutting ' = {v;,,...,v; } is defined as follows:
assumen;; is the monomial il = I(#) € R = k[y,zr] corresponding to the vertex
vi;; NOW setR’ = kly, zp,...,xzF,] wherezp,, ..., xx, are new variables, and consider
the monomial ideal” C R’ obtained fromlI = I(#) by changing only the monomial
generatorsmn;; as follows: replacen;, bym;j = %m% The hypergrapt* is H(IF).

Example 2.4.1n Figure[d we fix the hypergrapH, a vertexv, and faced” and E. The hypergraphs
Ho, Hoy v = Q,, H: F,andH” are represented in Figuid 2.

FIGURE 1.

H:F HE

Discussion 2.5.We now discuss and explain briefly the operations defined fimifien [Z.3.

(i) the “remotion” of v corresponds, in the realm of simplicial complexes, to tgkime sub-
simplicial complex obtained by removing the face assoditie. Here we call it remotion

because from the point of view of (dual) hypergraphs it cgpmnds to removing from #H
and contracting the faces containing
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(i) the operation of “cancelling” F' corresponds, in the realm of simplicial complexes, to the
operation of contraction of the vertex associated:fo Here we call it cancelling because
from the point of view of (dual) hypergraphs it corresponalsdncellingF' from #.

(i) The operation of “cutting” derives its name from its stinatorial meaning, becausg’”
can be interpreted as the hypergraph obtained by cuttingfdlbe F' into » parts (one for
each vertex of”) and retracting each of them back to the corresponding werie This is
different from the cancellation df as long as one the vertices; is open inH, because
after this operatiory;; will become closed.

We now relatepd(H ) with the projective dimension of the hypergraphs definedefimition[2.3.
Lemma 2.6. [15, Lemma 2.6 et H be a hypergraph. I{v} € H, then
pd(H) = max{pd(H,),pd(Q,) + 1}.

Lemma 2.7.[15, Lemma 2.11]) et’H be a hypergraph. Ifv} € H and all its neighbors are closed
vertices, thempd(H) = pd(H,) + 1.

Lemma 2.8. [15, Lemma 2.8]f H' C H are hypergraphs withu(H') = u(H), thenpd(H') <
pd(H).

Proposition 2.9. [15, Proposition 2.10Let #', H be hypergraphs witt{ = H' U F whereF' =
{ir,...,ip}. 1f{i;} € H forall j, thenpd(H') = pd(H : F) = pd(H).

We recall the following folklore fact that can be proved, fostance, by means of Taylor's
resolution [19].

Remark 2.10. LetH be a hypergraph thepd(H,,) < pd(H) < pd(H,) + 1.

In the following, we will need to know how can the projectiviengnsion of a hypergraph vary if
we make an open vertex become closed. This is studied in tog/fiog results.

Lemma 2.11. Let# be a hypergraph and |€t° be the hypergraph obtained by making one closed
vertexv in H become open. Thenl(H) < pd(H) < pd(H°) + 1.

Proof. The inequality on the left follows by Lemnha2.8. Notice that= " U {v} andH,, = H).
Then, by Remark2.10, we hayel(H) < pd(H,) + 1 = pd(H)) + 1. The desired inequality now
follows becaused(H?) < pd(H°), by Remark2.10. O

We note that the hypergrag : F' obtained by cancelling’ can also be obtained by localization.

Lemma 2.12. Let F' be a face of a hypergrapti, let I = I(H) C R, letp be the ideal of all
variables inR exceptzp, let R = R,,, I = IR, S = grpﬁ(ﬁ), and let/; be the ideal of initial
forms ofl in S.

If 1 = H(I1), thenH : F = H,. In particular pd(#H : F') < pd(H).
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Proof. Let R = k[y1,...,yn, zr|. Sincel is square-free, we can writt= zpJ + K for some
square-free monomial ideals K of the form.J = J'T andK = K'T with T' = k[y1,...,yn]. In
particular,z r is regular onR/K. Then, it is easily checked that the ideal associated taF is

I:zp=(xpJ+K):zp=J+K.
With the same notation as above, we hdve (J + K)R thereforel; = (J + K)S, hence the

hypergraph associated g is the same as the hypergraph associatefl+okK .
In particular, we obtaipd(R/I) > pd(Ry/1,) = pd(S/11) = pd(R/I : zF). O

Lemma 2.13. Let? be a hypergraph and” be a face of{ thenpd(#) < pd(HT).

Proof. LetH' = H¥ U F thenpd(#H') = pd(H) by the definition of##! and Proposition 2]9.
The conclusion now follows by Lemna 2.8 sineeH) = u(H'), andH C H'. O

Also, we obtain a possibly useful criterion to comput§ H) when one more piece of informa-
tion is known.

Corollary 2.14. Let H be a hypergraph and le#° be the hypergraph obtained by making one
closed vertex become open. {§d(H°) # pd(H,), then

pd(H) = max{pd(H°), pd(H,)} = min{pd(#°), pd(H,)} + 1.
Proof. If pd(#°) < pd(#.,), then by Remark2.10 and Lemima2.11 we have
pd(H") +1 < pd(H,) < pd(H) < pd(H°) +1

which yieldspd(#) = pd(H,) = pd(H°) + 1. The case whered(Hy) > pd(H,) is proved
symmetrically. O

3. LARGE PROJECTIVE DIMENSION ANDGENERALIZED FERRERGRAPHS

Let us recall that two vertices # w in H are neighborsif there is a face of{ containing
both of them. Let nfw) denote the set of all neighbors of the vertexts cardinalitydeg(v) is
called thedegreeof v. If deg(v) = 0, i.e. v has no neighbors, themis calledisolated in this
case one hasd(#) = pd(H') + 1, whereH’ = H \ {v}. Thus, each isolated vertex contributes
to the projective dimension with one unit. Since our focusristhe projective dimension of the
hypergraphs, and the projective dimension of a hypergraghtwo disconnected subhypergraphs
is the sum of the projective dimensions of the subhypergrapk may assume all hypergraphs have
no isolated vertices.

Notation 3.1. Let be a hypergraph with vertex s&t(# ), following [10] we write
o W(H) = {i e V|{i} ¢ H} for the open vertex set 61,
o Hy ={F € H : F C U} for the restriction to a subséf C V(H) of the vertex set;
o H'={F € H :dim F < i} for thei-th dimensional subhypergraph &f.
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Moreover, for a subsdl’ C V(H) we defineH;; = HU{{i} : i ¢ U} for the hypergraph obtained
by making all vertices o not in U become closed.

It is well-known that if W (%) = 0, thenpd(*) = |V (H)|. The following theorem by Kimura,
Rinaldo and Terai characterizes wheit(H) = |V (H)| — 1.

Theorem 3.2.[10, Theorem 4.3LetH be a hypergraph, thepd(#) = |V(H)| — 1 if and only if
‘H satisfies the following condition

(x) W(H) # 0 and either the 1-dimensional paH%V(H) of Hyy ) contains a spanning complete
bipartite graph, or there is a vertex such that{{v,w} € H | for everyw € W (H)}.

One then has the following corollary.

Corollary 3.3. Let# be a hypergraph. Thepd(R/H) < |V (H)| — 2 if and only if# satisfies the
following condition
(x%x) W(H) #0, H%,V(H) does not contain a spanning complete bipartite graph, and
there is no vertex such that{{v, w} € #H | for everyw € W (H)}.

Then, the next step is trying to determine the hypergraptispid(H) = |V (H)| — 2. We define
the following assumption:

(#) M satisfies(x) and there is a partitiofiV;, V»} of the vertex seV’(#) such that both
Hyr andHy; satisfy ().

We now prove thatf) gives, in general, a sufficient condition fprd(H) = |V(#H)| — 2. For
1-dimensional bipartite hypergraplswe prove a necessary condition fed(#) = |V (H)| — 2,
which is very similar ta(f).

Theorem 3.4. LetH be a hypergraph.

(i) If H satisfies(t), thenpd(H) = |[V(H)| — 2.

(i) If, furthermore,H is a 1-dimensional bipartite graph. Thenl(#) = V(H) — 2 implies there is
a partition {1, V2 } of the vertex seV'(#) such that ifG; and G, are obtained by cutting all edges
of H betweerl; and V5, then bothG; and G, satisfy(x).

Proof. (i) The inequalitypd(#) < |V(#)| — 2 follows by assumptior(t). To prove the other
inequality, we observe that, after cancelling all the fao@staining vertices both frorix; and V5,
we are left with two disconnected subgraghs= Hy, andG, = Hy,. Then, by Lemma2.12 we
have

pd(H) > pd(G1) + pd(G)
We now show that, regardless of whetlégrand G, are separated, one hpd(G;) = |Vi| — 1 for
i = 1,2. By symmetry, we only prove thatd(G,) = |Vi| — 1. SinceHy; satisfies propertyx)
and all open vertices Gﬂﬁ are inVy, if G; C Hyr is separated, then al$h satisfies(x) and by
Theoreni 3.2 one hasl(G;) = V1| — 1.
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We may then assume th@t = #y, is not separated. IH%,V(HVI) contains a spanning complete
bipartite graph where each bipartite set has more than atexyéheng, = Hy, is separated, which
contradicts our assumption. We may then asstpehas one vertex connected to all of its open
vertices. Also, sinc€; = Hy, is not separated, there are open verticgs.., v; in V; which are
vertices of faces containing vertices of béthandg,, and have the property that # eachv; has
only one neighbor in the vertex sit. By the above, this neighbor is for everyi = 1,... ¢, i.e.
they all havew as a common neighbor.

Then, when we cancel the faces connecting verticels, afiith vertices ofV%, the hypergraph
G1 just consists ofV;| — 1 closed vertices, becausedegenerates after the cancellation and all its
neighbors, which include all open vertices#f,, become closed. Theg is saturated and thus
pd(G1) = |V4] — 1, whence the conclusion follows.

(i) Let W, and W, be the two vertex sets of the bipartite grafih Since? satisfies(xx), then
by Corollary[3.3, there are two open verticesc W; andw € Ws, which are not neighbors.
Let Vi = {v,Wo\w} andV, = {w, W;\v}, then we havd’ U Vo = V(H), andV; N Vs = 0.
Since nfw) N V4 = () and nkfv) N Vo2 = 0, thenv andw are open after cutting all edges of
H betweenV; andVa. Therefore pdG,) < |Vi] — 1 and pdGz) < |Va] — 1. By Lemmal2.1B,
pd(G1) + pd(G2) > pd(H) = |[V(H)| — 2 = |[Vi| + |V2| — 2. We conclude that g@;) = |Vi| — 1
and pdG,) = |Vz| — 1, and bothG; andg, satisfiesx) by Theoreni 3.2. O

Remark 3.5. It is easily seen that Theordm B.4.(i) is also true (and hasuahvshorter proof) if
one replacesf) by the assumption that the restrictiohdy, and |y, both satisfy(x) andare both
separated. However, the requirement théi, and# |y, are separated is somewhat restrictive and,
as we have proved above, unnecessary.

Also, the assumption tha{y;- and Hyz have property(x) is much weaker than requiring that
H|v, andH|y, are separated sub-hypergraphs #fsatisfying(x) as can be seen in a number of
(even simple) examples. Consider, for instance, the @&ayaph

H = {{1},{1,2},{2,3},{3,4},{4},{4,5},{5,6},{6, 1} }.

Then the vertex subseld = {1,2,3} and V> = {4,5,6} satisfy the assumptions ¢f), thus
pd(H) = |[V(H)| — 2 = 4 by Theoreni_314.(i); however, for every partitigt/;, Us} of V(H)
neither |, nor H|y, is separated.

We suspect that the converse of Theofem 3.4 (i) holds truéd®d A is 1-dimensional bipar-
tite, although it does not follow by part (ii), because itédatively easy to construct 1-dimensional
hypergraphg{ where a partition of/(#) constructed as in (ii) does not satisfy the assumption
However, in all the examples considered by the authors, wilaways find another partition of
V(H) satisfying(f). We then ask whether the following potential combinatactaracterization of
1-dimensional bipartite hypergraphs of projective dimems$V/ (#)| — 2 actually holds true:
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Conjecture 3.6. LetH be a 1-dimensional bipartite hypergraph witkl(#) < |V (#H)| — 2; then
pd(H) = |V (H)| = 2 if and only if H satisfies(t).

We have posed Conjecture 8.6 under the additional assumibid?{ is a bipartite graph for two
reasons: first, for the converse of Theoleni 3.4.(i) m@edsadditional assumptions, as we show in
Example 3.V; and, secondly, because Thedrem 3.4.(ii) skwat<or bipartite graphs a condition
very similar to(#) is indeed necessary.

Example 3.7. The converse of Theordm B.4.(i) does not hold in generalewen for graphs (i.e.
1-dimensional hypergraphs). For instance, ¥étbe a 7-cycle graph whose vertices are all open.
Then by the main result ¢15], the projective dimension 6{ is5 = |V ()| — 2. However, one
cannot find a partition{ V1, V2 } of V(#) such that boti#- and Hy- satisfy(x).

As an application of Theorein_3.4, we show that(#) = |V(H)| — 2 for a hypergraph
(not necessarily 1-dimensional) providé@v(m has a spanning generalized Ferrers graph. First,
however, we recall the definition of generalized Ferrerplgra

Definition 3.8. A 1-dimensional bipartite grapfw., ..., vs, w1, ..., wy, }, is ageneralized Ferrers
graphif, after a permutation of vertices, there are two sequeraf@stegersi = (A1, ..., \s) and
T = (71,...,7¢) such that

e N> N> > A >0,

¢ 0=T <1< <7< A,

e )\; < 7; for everyi,

e and for everyi, the vertex; is connected ta.,, 1, w42, ..., wy, (in particular, \; — 7; is

the degree of;).

We give an example illustrating this definition.
Example 3.9. LetH be a hypergraph with all open vertices whose 1-skeletongerdeed in Figure

B. Then\ = (7,7,6,5,4), 7 = (0,0,1,1,2).

FIGURE 3.
g1 82 83 84 85 86 87
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Corollary 3.10. Let H be a hypergraph satisfyingex). If 1},
Ferrers subgraph thepd(#H) = |V (H)| — 2.

) has a spanning generalized

Proof. After possibly a vertex permutation we may assume= 7 = --- = 75 = 0. Write
VH) ={f1, - fs, 915, 9r» 215 - - -, 2t} Where{ f1, .., fs} and{g1, ..., g, } are the vertices cor-
responding to the two sets of generators of the bipartitpkgsaannind—[‘l,v(m, andlet{zy,..., 2z}

are all the closed vertices 6. TakeV; = {{¢:1} U{fi,|2 < i < s}}U{z|1 < k < ¢}, and
Vo= {{fi} U{g;|2 <j < A\i}}. ThenHy andHy; satisfy (x), thus the conclusion follows by
Theoren 3.1.(i). O

Example 3.11. G; is the green subgraph ang, is the red subgraph in Figurdd 4. Notice that
7—[%,(%) only needs to have a spanning generalized Ferrers subgsgi,could also contain higher
dimensional faces and closed vertices; however, they donpztct the differencd/ (H)| — pd(H).

In fact, by Corollary(3.IDpd(H) = |V (H)| — 2.

FIGURE 4.

4., PROJECTIVEDIMENSION OF 1-DIMENSIONAL HYPERGRAPHS

A vertexwv in a 1-dimensional hypergragt is called goint if deg(v) > 3. Letv be a vertexin a
hypergraph#, and letH, ..., H, be the connected components?¢f; if one of them, sayH,, is
a string hypergraph, we call; abranchof H (from v). This suggests the setting for the next result
where we prove that if a hypergraph has a branch, then we oamveea few extremal vertices and
keep track of the projective dimension.

Lemma 4.1. Let H be a hyerpgraph and be a branch ofH it with at least2 vertices. Let, be
the endpoint oB, vy its neighbor,ys the neighbor o ( if there is one). Then

(@) pd(H) = pd(H.,) + 1if vo is closed,;

(b) pd(H) = pd(Hu, we,v05) + 2 if va is Open.
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Assertion (b) generalizes [115, Proposition 2.15] to aaitthypergraphs.
Proof. Part (a) follows by Lemma_2.7. To prove (b) we apply Lemimd 2.6t Sincew; is
open, we hav&d,,, = H,, 0, U {w} Wherew is an isolated closed vertex (corresponding to the
edge connecting, andvs), hencepd(Q,,) + 1 = pd(Hu, vy.05) + 2. Now, RemarK 2.0 yields
pd(Huy,) < pd(Hoywe0s) + 2, therefore, by LemmB 2.6, we hayel(#) = pd(Q,,) +1 =
pd(Hvl,W,Us) +2. [l

To study branches of hypergraphs, we need to recall thapan strings a string hypergrapf(
where every vertex is open except the two endpointd ¢ivhich must be closed by separatedness).
Every string consists of open strings which are (possil@ypesated by closed vertices; more details
on string hypergraphs and open strings can be fourid in [15].

Next, we define a more refined invariants of a string, which kéep track of the orientation. In
fact, orientation appears to be crucial for branches ingafeeral hypergraphs.

Definition 4.2. LetS be a string and letv = v; andv = v,, be its endpoints. Lety,...,ns be the
number of opens in each open stringS§nstarting fromw, thusn is the number of opens in the
open string inS attached tow = v,,.

(a) We says is a 1-1 special configuratioif S does not contain two adjacent closed vertices and
n1 = ng = 1 mod3 andn; = 2 mod3 for 1 < ¢ < s. Themodularity fromv of a stringS is the
number)M (S; v) of pairwise disjoint 1-1 special configurations, counteattihg fromv.

(b) We saysS is a 1-0 special configuration from if S does not contain two adjacent closed
vertices anth, = 1 mod3, n; = 0 mod 3 andr; = 2 mod3 forl < i < s.

(c) WithO(S; v) we denote the number of 1-0 special configurations with &@spe which are
disjoint both 1-1 special configurations and other 1-0 spkeconfigurations fromy.

(d) We letW (S;v) = |{i|n; = 0 mod3}| — O(S;v) be the number of open strings which have
3t open vertices for somec 7, and are not part of a 1-0 special configuration with respect.to

(e) The quotient of the division of — M (S;v) — W(S;v) by 3 is denoted by(S;v); the
remainder of this division is denoted(S; v).

In the next results we show that the numbefS; v) essentially detects the point on a string (or
branch) where we can cut the hypergraph without changingrjective dimension. In turn, this is
the key point to find a simple way to compute the projectiveatision of a number of 1-dimensional
hypergraphs (see Theoréml4.7).

Remark 4.3. The notions defined in Definition 4.2.(b)-(e) are clearlysstive to the choice of the
orientation. For instance, i andw are the two endpoints &, one may havél/’ (S;v) # W (S;w).
For example, ifS is a string of length 7 with vertices, ..., v; andwvy, vs, v7 are the only closed
vertices ofS, thenW (S;v1) = 1 whereasV (S; v7) = 0.

If a 1-dimensional hypergrapK contains two adjacent closed vertices, theliH) = pd(H’)
where?H’ is obtained by cancelling the edge connecting the two \est{€ropositio 2]9). Thus,
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after replacingH by #’,without loss of generality, we may assume in all the follagvstatements
that the 1-dimensional hypergraphs do not contain adjateséd vertices.

We can now prove the main technical result of this sectiomivits a precise formula allowing
us to detach all the strings from an arbitrary hypergraph.

Proposition 4.4. LetH be a hypergraphy a joint, and letS be a branch of{ fromw = vy having
verticesvy, ..., v, and containing no adjacent closed vertices. ket nr(S;v,,) and¢(S;v,) be
the numbers defined in Definitibn #.2.(e). [Eebe the edge of

(i) between the vertices; | anduv; o, if v1 is open, the string of opens & ending inw has
m = 0 (mod 3) open vertices, and is not part of 1-0 special configuration with respect to
Un,
(i) between the vertices; andv; .1, in all other cases.
Then
pd(H) = pd(H”) = pd(H) + pd(S")
whereH? = # U S’ is obtained by cutting the edde of 7. Moreover,
pd(8') = M(S;v,) + W(S;v,) + 2q(S;vy,).

Remark 4.5. The proof of Proposition 414 has a subtle point, highlightydhe need to distinguish
case (i) from all other cases. The following example illatgs it. Set

H = {{6},{6,0},{0,5},{5},{0,1},{1,2},{2,3},{3,4},{4}}
The hypergrapt#{ contains the brancls = {{0, 1}, {1,2},{2,3}, {3,4},{4}}. One may us{L7]
to verify thatpd(H) = 5.

We haveV (S;v4) = 1andn = 4—1—3 = 0. If we cut the edge between the verticggnd vy,
we obtain two disjoint hypergraphs: a string with three @dssertices and an open string with four
vertices. Themd(HF) = 3+3 = 6. On the other hand, we hayel(#) = 5 = pd(H)+pd(S’) =
3+ 2 whereH andS’ are obtained by cutting the edge between vertigesnd v, as in assumption
(i) of Proposition 4. 4.

Proof of Proposition[4.4. Let n = nr(S;v,) andg = ¢(S;v,). We prove it by induction on the
number of open strings &. We may assume > 2. The inductive step is the same for both (i) and
(i), thus we first prove the inductive step and the base case |

In the induction step, we may assuiiéhas at least two open strings. L&t be the open string
in S, havingv,, as an endpoint; let us denote by the other endpoint af, and byg, the quotient
obtained when we divide the numbeg of opens inS; by 3. If ny = 3¢5 theng, iterations of
Lemma4.1.(b) and one iteration of Lemmal4.1.(a) yietd*) = pd(H') + 1 + 2¢s, whereH’
is the hypergraph obtained by removing fréthe last3q, + 1 vertices ofS. We denote bys”
the string inH’ obtained after this procedure has remowkdrom S; also, letvy, ..., v, be the
vertices inS” let ¢" = ¢(S8";v,~) (note thatn” = n — 3¢s — 1 andq” = q — ¢s) andn” =
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nr(S”; v,). ClearlyS” has one less open string th&hmoreover,W (S”;vs1) = W(S;v,) — 1
and M (S8”;vs1) = M(S;vy,). Then, applying the induction hypothesis#d (and the stringS” in
it), we obtain

pd(H) = pd(H) + pd(8”) and pd(S”) = M(S";vs) + W(S";v51) + 24",

where?{ and 8" are the disjoint components ¢#')"". Notice thati = n — M(S;v,) —
W(S;v,) — 3¢ = n" — M(8";v51) — W(S";v51) — 3¢ = n”. Sincen = n”, thenE = F’
andH = #'. Sincepd(H) = 2¢, + 1 + pd(#’), we obtain

pd(H) =2¢s + 1+ pd(ﬁ) + M(8";v51) + W(S"5051) + 2¢”

Thereforepd(H) = pd(H) + M(S;v,) + W(S;v,) + 2g. The case wher§; hasng = 3¢ + 2
open vertices follows similarly, after, + 1 applications of Lemmia4l.1.

If n, = 3¢s+1 we have three scenarios to consider: wlers part of a 1-1 special configuration;
whensS; is part of a 1-0 special configuration; wh&nis neither part of a 1-1 special configuration
nor of a 1-0 special configuration. In this latter caSeis a string withn; = 2 mod 3 for i =
1,...,s —1,andns = 1, and0 = W (S;v,) = M (S;v,). Whenv, is closed, we have = 0, and
whenw; is part of the open vertex of the;, we haven = 2. Repeated applications of Leminal4.1
yield pd(§8’') =2 L%J = 2q.

WhensS; is part of a 1-1 special configuratiom C S, we remark that, by definitionM has
3142 vertices (for some integéy and endpoints,, and, sayy’. Applying Lemma4.1L.(b) fot times,
and Lemma4]1.(a) once, one obtajrfH) = pd(H’) + 21 + 1. Then we can apply induction on
', and a proof similar to the above (With'(S';v") = W (S; v,) andM (S';v") = M (S;vy,) — 1)
gives the conclusion.

WhenS; is part of 1-0 special configuratiof?, we observe that by definition the stritd@ has
3l + 1 vertices (for somd), and endpoints),, and, say’. We can then apply Lemnia4.1.(b)
for [ times to obtainpd(#H) = pd(H’) + 2I. Then, the induction hypothesis applied## and a
proof similar to the above (withi’ (S’;v") = W (S;v,,) andM (S';v") = M(S; vy,)) yield the final
statement.

Observe that the inductive step does not change the steusttine first open string &f. We may
now prove the base case, whetes a string of opens. There are three cases to consider:3gq,

n = 3q + 1, andn = 3¢ + 2 for some integey. In the first case we apply Lemrha 4.1.¢pb)imes
to obtain the conclusion. Notice that in this ca¥€(S;v,) = 0, M(S;v,) = 0, n = 0, and
q=q(S;vn) = q.

Assumen = 3¢ + 1. If v is open then we are under assumption (i), &idS;v,) = 1 and

n = 0. We apply Lemm&4]1.(h) times and obtain

pd(H) = pdH + 2q,

where¥ is as in the assumptions, because we cut the edge betweemndv; ., when we apply
Lemmé&4.1l.(b); times. On the other hand, 4f is closed, theiV (S;v,) = 0 andn = 1, because
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S has3q — 1 open vertices and; andv,, are closed. This time applications of Lemma_4.1.(b)
give the conclusion.
We may then assume = 3¢ + 2. If vy is open, therdV (S;v,,) = 0 andn = 2. By applying
Lemmd4.1.(b); times, we obtain
pd(H) = pd# +2q,
as before. Instead, when is closed, thers has3q open vertices anil/ (S;v,) = 1 andn = 1.
After applying Lemma 4]1.(b) times, we apply Lemmia4.1.(a) once. We obtain

pd(H) = pdH + 2¢ + 1,

and we cut the edge betweenandv, when we apply Lemmia4.1.(a). This finishes the proaf]

Notice that the brancls of S in 7 has at most two vertices. Moreover, if it has two vertices,
the vertex connected to the joint must be open. The next step consists in finding the projective
dimension of{ when each branch of the hypergraph has length at 2nddte following proposition
gives a reduction that detach the branches of the hypergnagphontrolled way.

Proposition 4.6. LetH be a 1-dimensional hypergrapty, a joint in H, S a branch departing from
w With n vertices and containing no adjacent closed vertices, ah@&|be the edge connecting
toS. Then
pd(H) = pd(H')
whereH’ is the following hypergraph:
(@) if n=1,thenH’ = H : E, i.e. H is obtained by cancellingy;
(b) if n =2, thenH’ = H,, i.e. H' is obtained by removing.

Proof. For assertion (a), let; be the vertex ir§, we apply Lemma 216 to obtain
pd(H) = max{pd(H., ), pd(Qy,) + 1}

Observe tha,, = (H : E)\{v1} = H'\{v1} andH,, = H'\{v1} U {w} (if {w} € H, i.e. if
w is already closed ift, then?,, = H'\{v1}). Then, by LemmaZ1hd(H,,) < pd(Q,,) + 1,
thuspd(H) = pd(Q., ) + 1 = pd(#').

For part (b), lety; andvy be the two vertices af and assume; is the neighbor ofv. By Lemma
[2.8 we have

pd(H) = max{pd(Hu,), pd(Qu,) + 1}

Notice thatS becomes a branch of length 1 #4,, and then, by (@)pd(H.,,) = pd(H,., : E).
Sincew; is open (as remarked before Proposifion 4.6), then : £ = H : E; on the other hand,
one hasQ,, = Hy, : v2 = Hy\{v2}. Thuspd(Q,,) + 1 = pd(H.) = pd(H') and it suffices
to show thatpd(# : E) < pd(#H'). Finally, since the branc in H’ is a string of lengt2, then
pd((H : E)y) +1 = pd(H'). Now, Remark2.10 givesd(H : E) < pd((H : E)y) + 1, from
which the conclusion follows. O
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We can now prove the main result of this section, stating Weathave a simple procedure to
compute the projective dimension of many 1-dimensionakhy@phs.

Theorem 4.7. Let’H be a 1-dimensional hypergraph. If each of its connected corepts contains
at most one cycle, then by using the reduction process ofdBitipn[4.4 and 4J6, one can obtain
pd(H).

Proof. It is enough to prove the statement whkns a connected hypergraph having at most one
cycle. We may further assume that no closed vertice] afe adjacent, because otherwise we can
cancel the edge connecting them without changing the giegedimension — by Propositidn 2.9.
Now, if # is a cycle, then the statement follows by|[[15, Theorem 3f4}{ tontains no cycles, then
iterated applications of Propositions 4.4 4.6 allonougplaceH by a disjoint union of strings.

If H strictly contains a cycle, then by assumptitris a cycle with one or more trees attached to its
vertices, and by repeated applications of Proposifionaddi4.6 we may replacH by a disjoint
union of strings and, possibly, one cycle. In each of thesmatos, the main theorems in [15]
now allow us to compute the projective dimension of each amrapt, and, therefore, the projective
dimension of the original hypergra. O

In the Appendix we implemented explicitly two algorithmimopedures that can be employed to
computepd(#) (in particular, see Algorithri 512).

Remark 4.8. (a) Theoreni4]7 may also be applied in certain cases where theected compo-
nents ofH{ contain more than one cycle, provided that all cycles exqagsibly, one per connected
component, at the end of the reduction process of Propaéftié become either strings, or are pair-
wise disjoint, or a combination of these two possibilitidhis situation appears fairly frequently,
because if a joint has a brana&with n = 2 (in the statement of Proposition 4.4), then by Proposi-
tions[4.4 and 4]6.(b) we can remove the joint; the removabldsfthe cycle and makes it become a
string whenever the joint is one of the vertices of the cycle.

(b) Any 1-dimensional hypergraph is obtained by attaching ttogeany number of trees and cy-
cles. Since Theorem 4.7 applies to all 1-dimensional hypptts H having an arbitrary number
of trees and at most one cycle and to some cases Widras multiple cycles cases (see (a)), then
Theoreni 4]7 provides an effective method to determine theqgpive dimension of a wide class of
1-dimensional hypergraphs.

The next example illustrates Remark]4.8 in a concrete sitwathere?{ contains 3 different
cycles.

Example 4.9. The hypergrapt#’ in Figure[8 is obtained by applying Propositiohs 4.4 dndl 4.6
repeatedly from the hypergraph in Figure[3: we cut the blue faces, cancel the green faces and
remove the red vertices. Our procedure gipe§#) = pd(H’) = 28.



16 K.-N. LIN, AND P. MANTERO
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We now define stars and use them to introduce a more complicktss of hypergraph, obtained
by connecting together stars via their centers. We will jgleexplicit combinatorial formulas for
their projective dimensions.

Definition 4.10. A connected hypergrapH is called astarif either |V (#)| = 1 (and we call the
only vertex ofH its cente} or H does not contain any cycle, no adjacent closed vertices,itand
contains precisely one joint (called tloenterof the star). H is called ad-star if # is a star and
every branch irf{ has length at most.

Anopen stafclosed starresp.) is a star whose center is an open (closed, resp.gxert

Note thatX is a0-star if and only if|V (#)| = 1. Also, any(d — 1)-star is also al-star when
d > 1; thus we say thal{ is aproper d-starif H is ad-star andH is not a(d — 1)-star (i.e. if
‘H contains at least one branch of length We now give a few more definitions, which can be
interpreted as natural generalizations of strings andedygpergraphs to stars. The only exception
is that for string hypergraphs the assumption of separatsdforces the endpoints of the string to
be closed vertices, whereas for strings of stars this needenthe case:
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Definition 4.11. A string (cycle, tree, resp.) of stais a hypergraph# consisting of a (finite)
collection of stars where each star is only connected toradkee's via its center and the centers of
the stars form a string (cycle, tree, resp.).

Strings, cycles or trees dfstars can also be thought as being obtained by taking @ gtyle,
tree, resp.) hypergraph and attaching to some (or all) ekitsces strings of length at mogt

Example 4.12. The hypergraph depicted in Figuré 7 illustrates an example oycle of2-stars.

First, we prove a simple formula for the projective dimensib open strings of “small” stars (i.e.
d-stars withd < 2).

Proposition 4.13. If  is a disjoint union of trees and cycles of propgestars, thenpd(H) =
|V(H)| — T(H) whereT'(H) is the number of prope2-stars in.

Proof. By Propositior 2.0 we may assume there are no adjacent clesgdes. Also, by assump-
tion, every star has at least a branch of length two, thus wepply Proposition 416.(b) to each star
and obtain

pd(H) = pd(H')
where?H’ is obtained fron by removing the center of each star. Since every stéd{ is a two
star, then any open vertex i is adjacent to the center of a 2-star, thus it becomes clo$ed a
removing the center. Therefore, all verticestihare now closed, i.6H’ is a saturated hypergraph
with |V (H)| — T'(H) vertices. Thereforqad(H) = |V(H)| — T(H). a

In the study of string and cycle hypergraphsit was introduced a purely combinatorial invariant,
called modularity [15, Definition 3.1], employed in the formulas ferd(7). Here we naturally
generalize this concept to strings and cycles of stars.

Definition 4.14. We say that a string of starH is a 1-1 special star configuratiaf 7£ does not
contain two adjacent closed stars ang = n; = 1 mod3 andn; = 2 mod3 for 1 < i < s, where
n; is the number of open stars in thigh open string of star if{. Thestar modularityM*(#)

of a string or cycle of stars of is the maximal number of pairwise of disjoint 1-1 speciak sta
configurations contained . Similarly, the star modularity of a disjoint union of stgs or cycles
of stars is the sum of the star modularity of each connectegpoment.

The following proposition has a similar flavour as[15, Theros 3.4, 4.3] and it provides an
effective combinatorial formula to compute the projectdienension of strings and cycles of 2-
stars.

Proposition 4.15. LetH be a string or cycle o2-stars. LetI’(#) be the number of prope-stars,
let #* be obtained from# by removing the centers of the proper 2-stars, andst¢#{*) be the
number of open strings of stars #*.

(1) If H is an open cycle with,; 1-stars, therpd(H) = [V(H)| — 1 — |22 ];
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(2) inall other casepd(H) = |V(H)| — T(H) — s*(H*) — S5, | 252 | + M*(#*), where
n; is the number of open stars in each open string of stafgin

Proof. Applying Propositiori 4)6.(b) to all proper 2-stars we obtad(#) = pd(#*), and observe
that H* is the disjoint union of strings or cycles of 1-stars. I¢t* be the hypergraph obtained
after applying Proposition _4.6.(a) to each proper 1-stay.dBfinition of cancellation (Definition
[2.3.(iii)), H** has the same modularity and number of open string&gsand each open string
has the same number of vertices7$, becauseH** is obtained by cancelling the edges of the
branches of 1-stars. Thé#** is a disjoint union of closed vertices and string or cycledrgpaphs,
with s*(H*) open strings and/*(H**) = M*(H*). Now the conclusion follows by applying [15,
Theorems 3.4, 4.3] to each connected component. O

Example 4.16. Figure[1 below depicts a cycle of 2-staks, Figure[d shows the hypergrapk*
as defined in Proposition_4.115 (obtained by removing thelabeiled vertices). Thepd(H) =
37—4-3+1=31.

FIGURE 7.
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We now prove an analogous formula for the projective dinmmsif H when the 1-dimensional
part,4!, of H is a string or cycle of-stars. Notice that the hypergraph needs not be 1-dimesision
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itself, it suffices that its 1-skeleton satisfies certainpgnties and the higher dimensional faces are
“well behaved”.

Proposition 4.17. Let H be a hypergraph with/(H) = V(#!); assume its 1-skeletoH! is a
separated string or cycle dfstars, and distinct stars do not share any higher dimeraitace.
(1) If the 1-skeleton off is an open cycle af 1-stars, therpd(H) = |V (H)| — 1 — | 252 ];
(2) inall other casepd(H) = |V (H)| - s* — 35, | 2L | + M*(H), wheres* is the number
of strings of open stars !, n; is the number of open stars in each string of open stars.

Proof. By Propositiorl 2.B, we may assume that there are no adjalossiccvertices. Moreover, by
definition, all 1-stars are open stars. We induct on the nurobg-stars and number of vertices. If
there is no 1-stars, theH! is either a string or a cycle hypergraph; the assumption erhigher
dimensional faces implies that = H! (the distinct vertices o are0-stars); also, since(' is
separated, the formula follows by |15, Theorem 3.4, 4.3].

We may then assume there is at least one proystar; letw be its open center andan endpoint
of one of its branches. Lek},..., F; be all higher dimensional faces containingwe apply
Lemmd 2.6 taw and observe thatl, = Q, U {w} U (U,{Fi|n, }), becausev is a joint and by the
assumption on the higher dimensional faces. Then all ther ettrtices of eaclh;|,,, are closed in
., hence by Propositidn 2.9, we hayé(#,) = pd(Q, U {w}). Sincew is open inQ,, then by
Lemma 2.1, we havpd(H,) < pd(Q,) + 1. This inequality combined with Lemnia 2.6 yields
pd(#) = pd(Q,) + 1. Then by induction (and sina@, has|V (H)| — 1 vertices)

pA(H) = pA(Q,) + 1= (VO = 1) =" = Y- | P a0 41,
i=1

yielding the desired formula. O

5. APPENDIX: ALGORITHMIC PROCEDURES AND MORE EXAMPLES

In order to apply Propositioris 4.4 and14.6 to compute theeptive dimension of a hypergraph,
we first need to algorithmically recognize if a vertar # is a joint or an endpoint, thus we need to
determine its degreé(i). Actually, for Algorithm[5.2 it suffices to know ifi(¢) = 0, 1, 2 or if it is
greater thar2; so, for reasons of efficiency (e.g.iihas a large number of neighbors), in Algorithm
5.7 we only consider these possible outputs; of coursenibeaeasily modified to actually compute
d(7). The auxiliary variablg runs through the elements of the vertex set to identify rmigh ofi.

Algorithm 5.1. Let’H be a hypergraphy (H) = {1,2,--- ,u}. The inputis:i € V(H), i.e. a
vertex in a hypergrapl. The output isn = d(i), if this number i9, 1, 2, or “n > 2" otherwise.
Step0: Set =0,V =V (H)andj = 1.
Step 1: Ifn = 3, then stop and giveri > 2" as output.

If |V| = 1 then stop and give as output;
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If j = u, then stop and give as output.
Otherwise, go to Step 2.
Step 2: Ifj =4, setj = j + 1 and go to Step 1.
If j # i then sef” = V\{;j} and do the following: ifi, j} € H, then set = n + 1 and
goto Step 1. Ifi, j} ¢ H go to Step 1.

The following result provides an effective algorithmic waycompute the projective dimension
of each connected component in Theoten 4.7. In the followiggrithm we use the variableto
detect the vertices with degree one (if any); the varighbtens through the other vertices looking
for neighbors ofi, andk looks for the other neighbor gf (if any). The variabley is used to count
|V (#)| (as the algorithm run®/ changes and so do€8(7)|), andc is used to isolate the scenario
whereH is av-cycle.

Algorithm 5.2. Input: A connected 1-dimensional hypergrafghwith at most one cycle. Let the
vertex set b& (#) = {1,2,--- , u}. The output is:P = pd(H).

Step 0: SeP =0,v=pandi = 1.

Step 1: IfH = (), stop the process and givéas output.
If # # () setj = k = 1, ¢ = 0 and do the following: if < u, and goto Step 2, if= . +1,
then set = 1 and go to Step 2.

Step 2: Ifi ¢ V(H), then set = i + 1 and start Step 2 again.
If i € V(H), computei(:) using Algorithni 5.11.

if d(i) =0, setH =H;, P =P+ 1,v=v—1landi =i+ 1, then goto Step 1,

if d(i) = 1 then go to Step 3;

if d(i) > 1 setc = ¢ + 1 and do the following:

if c = v, thenH is av-cycle and we go to Step 7;
if ¢ < v then do the following:
if i # p, seti =4 + 1 and start Step 2 again;
if d(i) > 1 andi = u, seti = 1 and start Step 2 again.

Step 3: Ifj =i orif {i,j} ¢ H then setj = j + 1 and start again Step 3. i, j} € H then go to
Step 4.

Step 4: Checkifj} € H. Ifso,setH =H;andP =P+ 1,v=v —1,i =i+ 1 then go to Step
1.ifIf {j} ¢ H goto Step 5. (notice that sindg} ¢ H, thend(j) > 2.)

Step 5: Use Algorithrh 5.1 to compui€j). If d(j) = 2, then go to Step 6; otherwise skt =
H\{{i,i},{i}}, P=P+1,v=v—1,i=i+1andgoto Step 1.

Step 6: Ifk = i, orif k = j, orif {j,k} ¢ H, then sett = k£ + 1 and start again Step 6. If
{j,k} € HthensetH = H; ,, P =P+ 2,v=v—3,i=i+1andgoto Step 1. (this
procedure stops becauggj) = 2)

Step 7: Use Algorithm 5.6 if15] to computepd(#) = P.. OutputP = P + P,.



HYPERGRAPHS WITH HIGH PROJECTIVE DIMENSION AND 1-DIMENSIRAL HYPERGRAPHS 21

Remark 5.3. (1) The variablec counts the number of times that Step 2 runs consecutivehputit
finding a vertex with degreg 1. If ¢ = |V (H)|, then every vertex & has degree> 2, soH is a
cycle.

(2) Step 3 always starts with= 1, and sincel(i) = 1 then there is precisely onewith {i, j} € H;
therefore Step 3 does not need a line for the case whbexomes larger thap, because it stops
before then. A similar comment holds for the variabli Step 6.

(3) In Step 4 of Algorithri 5]2, we sét = H; because has only one neighbor (sois closed in
‘H), which is also closed. Thus, by Lemimd 2.7, we can removeettexy and add one td.

The following example illustrates the use of Algorithm]5.2.

Example 5.4.: In Figure [@ we provide a hypergrapf{ and all the steps of Algorithin 5.2 to
computepd(H).

FIGURE 9.
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