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16 A FAMILY OF TWO GENERATOR NON-HOPFIAN GROUPS

DONGHI LEE AND MAKOTO SAKUMA

Abstract. We construct 2-generator non-Hopfian groups Gm, m = 3, 4, 5, . . . ,
where each Gm has a specific presentation Gm = 〈a, b |urm,0

= urm,1
= urm,2

=
· · · = 1〉 which satisfies small cancellation conditions C(4) and T (4). Here, urm,i

is the single relator of the upper presentation of the 2-bridge link group of slope
rm,i, where rm,0 = [m+ 1, m,m] and rm,i = [m+ 1, m− 1, (i− 1)〈m〉,m+ 1, m]
in continued fraction expansion for every integer i ≥ 1.

1. Introduction

Recall that a group G is called Hopfian if every epimorphism G → G is an au-
tomorphism. The non-Hopfian property of finitely generated groups has a close
connection with the non-residual finiteness. In fact, the classical work due to
Mal’cev [12] shows that every finitely generated non-Hopfian group is non-residually
finite. One of the hardest open problems about hyperbolic groups is whether or not
every hyperbolic group is residually finite. An important progress on this problem
was given by Sela [19] asserting that every torsion-free hyperbolic group is Hopfian.
In 2007, Osin [14] proved that this problem is equivalent to the question on whether
or not a group G is residually finite if G is hyperbolic relative to a finite collec-
tion of residually finite subgroups. The notion of relatively hyperbolic groups is an
important generalization of hyperbolic groups in geometric group theory originally
introduced by Gromov [5] (cf. [3], [4], [15]). Motivating examples for this gener-
alization include the fundamental groups of non-compact hyperbolic manifolds of
finite volume. In particular, every 2-bridge link complement except for a torus link
is a hyperbolic manifold with cusps, so its fundamental group, that is, the 2-bridge
link group, is hyperbolic relative to its peripheral subgroups although it is not a
hyperbolic group. It is known by Groves [6] that a finitely generated torsion-free
group is Hopfian, if it is hyperbolic relative to free abelian subgroups. It is also
proved by Reinfeldt and Weidmann [16, 17] that every hyperbolic group, possibly
with torsion, is Hopfian. In addition, based on this result, Coulon and Guirardel [2]
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proved that every lacunary hyperbolic group, which is characterized as a direct limit
of hyperbolic groups with a certain radii condition, is also Hopfian.

As for small cancellation groups, it is known that if a group has a finite presen-
tation which satisfies small cancellation conditions either C ′(1/6) or both C ′(1/4)
and T (4), then it is hyperbolic (see [20]). Wise [22] also proved that every finite
C ′(1/6)-small cancellation presentation defines a residually finite group.

Historically, not many have been known examples of finitely generated non-
Hopfian groups with specific presentations. The earliest such example was found
by Neumann [13] in 1950 as follows: 〈a, b | e2 = e3 = · · · = 1〉, where ei =
a−1b−1ab−iab−1a−1bia−1bab−iaba−1bi for every integer i ≥ 2. Soon after, the first
non-Hopfian group with finite presentation was discovered by Higman [7] as follows:
〈a, s, t | as = a2, at = a2〉. Also a non-Hopfian group with the simplest presentation
up to now was produced by Baumslag and Solitar [1] as follows: 〈a, t | (a2)t = a3〉.
Many other non-Hopfian groups with specific finite presentations have been obtained
by generalizing Higman’s group or Baumslag-Solitar’s group (see, for instance, [18],
[21]). Another notable non-Hopfian group was obtained by Ivanov and Storozhev [8]
in 2005. They constructed a family of finitely generated, but not finitely presented,
non-Hopfian relatively free groups with direct limits of hyperbolic groups, although
the defining relations of their group presentations are not explicitly described in
terms of generators.

Motivated by this background, we construct non-Hopfian groups by using hy-
perbolic 2-bridge link groups. In more detail, we construct a family of 2-generator
non-Hopfian groups each of which has the form G = 〈a, b |ur0 = ur1 = ur2 = · · · = 1〉
satisfying small cancellation conditions C(4) and T (4), where uri is the single relator
of the upper presentation of the link group of the 2-bridge link of slope ri for every
i = 0, 1, 2, . . . . Here, the rational numbers ri may be parametrized by i ≥ 0, and
there is an explicit formula to express uri in terms of a and b. To parametrize the
rational numbers ri, we express ri in continued fraction expansion. Note that every
rational number 0 < s ≤ 1 has a unique continued fraction expansion such that

s =
1

m1 +
1

m2+ .. . +
1

mk

=: [m1,m2, . . . ,mk],

where k ≥ 1, (m1, . . . ,mk) ∈ (Z+)
k and mk ≥ 2 unless k = 1.

The main result of the present paper is the following, whose proof is contained in
in Section 3.

Theorem 1.1. Let r0 = [4, 3, 3], and let ri = [4, 2, (i − 1)〈3〉, 4, 3] for every integer

i ≥ 1. Then the group presentation G = 〈a, b |ur0 = ur1 = ur2 = · · · = 1〉 satisfies

small cancellation conditions C(4) and T (4), and G is non-Hopfian.
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Here, the symbol “(i− 1)〈3〉” represents i− 1 successive 3’s if i− 1 ≥ 1, whereas
“0〈3〉” means that 3 does not occur in that place, so that r1 = [4, 2, 0〈3〉, 4, 3] =
[4, 2, 4, 3].

Remark 1.2. (1) Once we allow the components of a continued fraction expansion
to be “−”, meaning that the two integers immediately before and after − are added
to form one component, ri’s in Theorem 1.1 can be parametrized including i = 0 as
ri = [4, i〈2, 1,−〉, 3, 3] for every i = 0, 1, 2, . . . .

(2) If we express the rational number ri in Theorem 1.1 as qi/pi, where pi and qi
are relatively prime positive integers, then |uri | = 2pi (see Section 2.1). A simple
computation shows that the inequality 3 < pi+1/pi < 4 holds for every i = 0, 1, 2, . . . ,
so that the length |uri | of the word uri satisfies the inequality c · 3i < |uri | < c · 4i

for every integer i ≥ 1, where c = |ur0 |.

By looking at the proof of Theorem 1.1 in Section 3, it is not hard to see that a
similar result holds not only for r0 = [4, 3, 3] but also for r0 = [m + 1,m,m] with
m being any integer greater than 3. Thus we only state its general form without a
detailed proof.

Theorem 1.3. Suppose that m is an integer with m ≥ 3. Let r0 = [m + 1,m,m],
and let ri = [m + 1,m − 1, (i − 1)〈m〉,m + 1,m] for every integer i ≥ 1. Then the

group presentation G = 〈a, b |ur0 = ur1 = ur2 = · · · = 1〉 satisfies small cancellation

conditions C(4) and T (4), and G is non-Hopfian.

The present paper is organized as follows. In Section 2, we recall the upper
presentation of a 2-bridge link group, and basic facts established in [9] concerning
the upper presentations. We also recall key facts from [9] obtained by applying small
cancellation theory to the upper presentations. Section 3 is devoted to the proof of
the main result (Theorem 1.1).

2. Preliminaries

2.1. Upper presentations of 2-bridge link groups

We recall some notation in [9]. The Conway sphere S is the 4-times punctured
sphere which is obtained as the quotient of R2 − Z2 by the group generated by the
π-rotations around the points in Z2. For each s ∈ Q̂ := Q ∪ {∞}, let αs be the
simple loop in S obtained as the projection of a line in R2 − Z2 of slope s. We call
s the slope of the simple loop αs.

For each r ∈ Q̂, the 2-bridge link K(r) of slope r is the sum of the rational tangle
(B3, t(∞)) of slope ∞ and the rational tangle (B3, t(r)) of slope r. Recall that
∂(B3− t(∞)) and ∂(B3− t(r)) are identified with S so that α∞ and αr bound disks
in B3− t(∞) and B3− t(r), respectively. By van-Kampen’s theorem, the link group
G(K(r)) = π1(S

3 −K(r)) is obtained as follows:

G(K(r)) = π1(S
3 −K(r)) ∼= π1(S)/〈〈α∞, αr〉〉 ∼= π1(B

3 − t(∞))/〈〈αr〉〉.
3



Let {a, b} be the standard meridian generator pair of π1(B
3− t(∞), x0) as described

in [9, Section 3]. Then π1(B
3 − t(∞)) is identified with the free group F (a, b) with

basis {a, b}. For the rational number r = q/p, where p and q are relatively prime

positive integers, let ur be the word in {a, b} obtained as follows. Set ǫi = (−1)⌊iq/p⌋,
where ⌊x⌋ is the greatest integer not exceeding x.

(1) If p is odd, then

uq/p = aûq/pb
(−1)q û−1

q/p,

where ûq/p = bǫ1aǫ2 · · · bǫp−2aǫp−1 .
(2) If p is even, then

uq/p = aûq/pa
−1û−1

q/p,

where ûq/p = bǫ1aǫ2 · · · aǫp−2bǫp−1 .

Then ur ∈ F (a, b) ∼= π1(B
3 − t(∞)) is represented by the simple loop αr, and we

obtain the following two-generator and one-relator presentation of a 2-bridge link
groups:

G(K(r)) ∼= π1(B
3 − t(∞))/〈〈αr〉〉 ∼= 〈a, b |ur〉.

This presentation is called the upper presentation of a 2-bridge link group.

2.2. Basic facts concerning the upper presentations

Throughout this paper, a cyclic word is defined to be the set of all cyclic permu-
tations of a cyclically reduced word. By (v) we denote the cyclic word associated
with a cyclically reduced word v. Also the symbol “≡” denotes the letter-by-letter

equality between two words or between two cyclic words. Now we recall definitions
and basic facts from [9] which are needed in the proof of Theorem 1.1 in Section 3.

Definition 2.1. (1) Let v be a reduced word in {a, b}. Decompose v into

v ≡ v1v2 · · · vt,

where, for each i = 1, . . . , t−1, vi is a positive (resp., negative) subword (that is, all
letters in vi have positive (resp., negative) exponents), and vi+1 is a negative (resp.,
positive) subword. Then the sequence of positive integers S(v) := (|v1|, |v2|, . . . , |vt|)
is called the S-sequence of v.

(2) Let v be a cyclically reduced word in {a, b}. Decompose the cyclic word (v)
into

(v) ≡ (v1v2 · · · vt),

where vi is a positive (resp., negative) subword, and vi+1 is a negative (resp., pos-
itive) subword (taking subindices modulo t). Then the cyclic sequence of positive
integers CS(v) := ((|v1|, |v2|, . . . , |vt|)) is called the CS-sequence of (v). Here the
double parentheses denote that the sequence is considered modulo cyclic permuta-
tions.

4



Definition 2.2. For a rational number r with 0 < r ≤ 1, let ur be the word defined
in the beginning of this section. Then the symbol CS(r) denotes the CS-sequence
CS(ur) of (ur), which is called the CS-sequence of slope r.

A reduced word w in {a, b} is said to be alternating if a±1 and b±1 appear in w
alternately, to be precise, neither a±2 nor b±2 appears in w. Also a cyclically reduced
word w in {a, b} is said to be cyclically alternating, i.e., all the cyclic permutations
of w are alternating. In particular, ur is a cyclically alternating word in {a, b}. Note
that every alternating word w in {a, b} is determined by the sequence S(w) and the
initial letter (with exponent) of w. Note also that if w is a cyclically alternating
word in {a, b} such that CS(w) = CS(r), then either (w) ≡ (ur) or (w) ≡ (u−1

r ) as
cyclic words.

In the remainder of this section, we suppose that r is a rational number with
0 < r ≤ 1, and write r as a continued fraction expansion r = [m1,m2, . . . ,mk],
where k ≥ 1, (m1, . . . ,mk) ∈ (Z+)

k and mk ≥ 2 unless k = 1. Note from [9] that
if k ≥ 2, then some properties of CS(r) differ according to m2 = 1 or m2 ≥ 2. For
brevity, we write m for m1.

Lemma 2.3 ([9, Proposition 4.3]). For the rational number r = [m1,m2, . . . ,mk]
satisfying that m2 ≥ 2 if k ≥ 2, the following hold.

(1) Suppose k = 1, i.e., r = 1/m. Then CS(r) = ((m,m)).
(2) Suppose k ≥ 2. Then each term of CS(r) is either m or m + 1. Moreover,

no two consecutive terms of CS(r) can be (m+1,m+1), so there is a cyclic

sequence of positive integers ((t1, t2, . . . , ts)) such that

CS(r) = ((m + 1, t1〈m〉,m+ 1, t2〈m〉, . . . ,m+ 1, ts〈m〉)).

Here, the symbol “ti〈m〉” represents ti successive m’s.

Definition 2.4. If k ≥ 2, the symbol CT (r) denotes the cyclic sequence ((t1, t2, . . . , ts))
in Lemma 2.3, which is called the CT -sequence of slope r.

Lemma 2.5 ([9, Proposition 4.4 and Corollary 4.6]). For the rational number r =
[m1,m2, . . . ,mk] with k ≥ 2 and m2 ≥ 2, let r′ be the rational number defined as

r′ = [m2 − 1,m3, . . . ,mk].

Then we have CT (r) = CS(r′).

Lemma 2.6 ([9, Proposition 4.5]). For the rational number r = [m1,m2, . . . ,mk],
the cyclic sequence CS(r) has a decomposition ((S1, S2, S1, S2)) which satisfies the

following.

(1) Each Si is symmetric, i.e., the sequence obtained from Si by reversing the

order is equal to Si. (Here, S1 is empty if k = 1.)
(2) Each Si occurs only twice in the cyclic sequence CS(r).
(3) The subsequence S1 begins and ends with m+ 1.

5



(4) The subsequence S2 begins and ends with m.

Lemma 2.7 ([9, Proof of Proposition 4.5]). For the rational number r = [m1,m2, . . . ,mk]
with k ≥ 2 and m2 ≥ 2, let r′ be the rational number defined as in Lemma 2.5. Also

let CS(r′) = ((T1, T2, T1, T2)) and CS(r) = ((S1, S2, S1, S2)) be the decompositions

described in Lemma 2.6. Then the following hold.

(1) If k = 2, then T1 = ∅, T2 = (m2− 1), and S1 = (m+1), S2 = ((m2 − 1)〈m〉).
(2) If k ≥ 3, then T1 = (t1, . . . , ts1), T2 = (ts1+1, . . . , ts2), and

S1 = (m+ 1, ts1+1〈m〉,m+ 1, . . . ,m+ 1, ts2〈m〉,m+ 1),

S2 = (t1〈m〉,m+ 1, t2〈m〉, . . . , ts1−1〈m〉,m+ 1, ts1〈m〉).

The following lemma is useful in the proof of Lemma 3.6.

Lemma 2.8. For two distinct rational numbers r = [m1,m2, . . . ,mk] and s =
[m1, l2, . . . , lt], assume that

(i) m is a positive integer;

(ii) mi and lj are integers greater than 1 for every i ≥ 2 and j ≥ 2;
(iii) k, t ≥ 3 and k 6= t; and
(iv) if k < t, then m2 ≥ l2, while if k > t, then m2 ≤ l2.

Let r′ and s′ be the rational numbers defined as in Lemma 2.5. Also let CS(r) =
((S1, S2, S1, S2)) and CS(r′) = ((T1, T2, T1, T2)) be the decompositions described in

Lemma 2.6. Suppose that CS(s) contains S1 or S2 as a subsequence. Then CS(s′)
contains T1 or T2 as a subsequence.

In the above lemma (and throughout this paper), we mean by a subsequence a
subsequence without leap. Namely a sequence (a1, a2, . . . , al) is called a subsequence

of a cyclic sequence, if there is a sequence (b1, b2, . . . , bn) representing the cyclic
sequence such that l ≤ n and ai = bi for 1 ≤ i ≤ l.

Proof. First suppose that CS(s) contains S1 as a subsequence. By Lemma 2.7(2),
CS(s) contains (m+1, ts1+1〈m〉,m+1, . . . ,m+1, ts2〈m〉,m+1) as a subsequence,
where T2 = (ts1+1, . . . , ts2). Then clearly CS(s′) = CT (s) contains (ts1+1, . . . , ts2),
that is, T2, as a subsequence. So we are done.

Next suppose that CS(s) contains S2 as a subsequence. Again by Lemma 2.7(2),
CS(s) contains (t1〈m〉,m+ 1, t2〈m〉, . . . , ts1−1〈m〉,m+ 1, ts1〈m〉) as a subsequence,
where T1 = (t1, . . . , ts1). Then CS(s′) = CT (s) contains (d1 + t1, t2, . . . , ts1−1, ts1 +
d2) as a subsequence, where d1, d2 ≥ 0. In the reminder of the proof, we show
that d1 = d2 = 0, so that CS(s′) = CT (s) contains T1 = (t1, t2, . . . , ts1) as a
subsequence. To this end, note that since r′ = [m2 − 1,m3, . . . ,mk], t1 = ts1 = m2

by Lemma 2.6(3). Also since s′ = [l2−1, l3, . . . , lt], CS(s′) = CT (s) consists of l2−1
and l2 by Lemma 2.3(2). Hence each of d1 + t1 = d1 +m2 and ts1 + d2 = m2 + d2
is either l2 − 1 or l2. Suppose first that k < t. Then m2 ≥ l2 by the assumption
(iv), and thus the only possibility is m2 = l2. Thus we have d1 = d2 = 0. Suppose
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next that k > t. Then m2 ≤ l2 again by the assumption (iv). Note that k ≥ 4,
because t ≥ 3 by the assumption (iii). Thus we can see, by using Lemma 2.7 and
the assumption mi ≥ 2 for every i ≥ 2, that S2 contains (m+1, (m2−1)〈m〉,m+1)
as a subsequence. This implies that CS(s′) = CT (s) contains a term m2 − 1. Since
m2 − 1 ≤ l2 − 1, the only possibility m2 = l2. Thus we again have d1 = d2 = 0,
completing the proof of Lemma 2.8. �

2.3. Small cancellation theory applied to the upper presentations

A subset R of the free group F (a, b) is called symmetrized, if all elements of R are
cyclically reduced and, for each w ∈ R, all cyclic permutations of w and w−1 also
belong to R.

Definition 2.9. Suppose that R is a symmetrized subset of F (a, b). A nonempty
word v is called a piece (with respect to R) if there exist distinct w1, w2 ∈ R such
that w1 ≡ vc1 and w2 ≡ vc2. The small cancellation conditions C(p) and T (q),
where p and q are integers such that p ≥ 2 and q ≥ 3, are defined as follows (see
[11]).

(1) Condition C(p): If w ∈ R is a product of n pieces, then n ≥ p.
(2) Condition T (q): For w1, . . . , wn ∈ R with no successive elements wi, wi+1 an

inverse pair (i mod n), if n < q, then at least one of the products w1w2, . . . ,
wn−1wn, wnw1 is freely reduced without cancellation.

The following proposition enables us to apply small cancellation theory to the
upper presentation 〈a, b |ur〉 of G(K(r)).

Proposition 2.10 ([9, Theorem 5.1]). Let r be a rational number such that 0 <
r < 1, and let R be the symmetrized subset of F (a, b) generated by the single relator

ur of the group presentation G(K(r)) = 〈a, b |ur〉. Then R satisfies C(4) and T (4).

This proposition follows from the following characterization of pieces, which in
turn is proved by using Lemma 2.6.

Lemma 2.11 ([10, Corollary 3.25]). Let r and R be as in Proposition 2.10. Then a

subword w of the cyclic word (u±1
r ) is a piece with respect to R if and only if S(w)

contains neither S1 nor (ℓ1, S2, ℓ2) with ℓ1, ℓ2 ∈ Z+ as a subsequence.

3. Proof of Theorem 1.1

In this section, for brevity of notation, we sometimes write x̄ for x−1 for a letter
or a word x. For a quotient group H of the free group F (a, b) and two elements w1

and w2 of F (a, b), the symbol w1 =H w2 means the equality in the group H.
For r0 = [4, 3, 3], we have by using Lemma 2.7

CS(ur0) = CS(r0) = ((5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4)).
7



Let G0 = 〈a, b |ur0 = 1〉. Also let X ≡ a · · · ā be the alternating word in {a, b} such
that S(X) = (4, 4, 4, 5, 4, 4), and let f : F (a, b) → F (a, b) be the homomorphism
defined by f(a) = X̄ and f(b) = b̄.

Lemma 3.1. Under the foregoing notation, let f̃ : F (a, b) → G0 be the composition

of f and the canonical surjection F (a, b) → G0. Then f̃ is onto.

Proof. Since f̃(b) = b̄, it suffices to show that a ∈ G0 is contained in the image of f̃ .
Let w ≡ a · · · ā be the alternating word in {a, b} such that S(w) = (3, 3, 3, 4, 3, 3).
Then

f(w) = X̄b̄X̄bXbX̄b̄X̄bXbXb̄X̄b̄XbX.

Here, since X ≡ a · · · ā and X̄ ≡ a · · · ā are alternating words in {a, b}, we see that
f(w) ≡ a · · · ā is also an alternating word in {a, b} with

S(f(w)) = (S(X̄b̄), S(X̄), S(bX), S(bX̄ b̄), S(X̄), S(bX), S(bXb̄), S(X̄ b̄), S(X), S(bX)).

Since S(X) = (4, 4, 4, 5, 4, 4) and S(X̄) = (4, 4, 5, 4, 4, 4), we have S(X̄b̄) = (4, 4, 5, 4, 4, 5),
S(bX) = (5, 4, 4, 5, 4, 4), S(bX̄b̄) = (5, 4, 5, 4, 4, 5) and S(bXb̄) = (5, 4, 4, 5, 4, 5), so
that

S(f(w)) = (4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4,

5, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4).

Letting v1 ≡ a · · · b̄, v2 ≡ a · · · b̄, and v3 ≡ b · · · ā be the cyclically alternating words
in {a, b} such that

S(v1) = (4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4),

S(v2) = (5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4),

S(v3) = (4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4),

we see that f(w) ≡ v1v2āv3. Moreover, for each i = 1, 2, 3, since CS(vi) = CS(r0),
(vi) ≡ (u±1

r0 ) as cyclic words by [9, Lemma 3.2], which implies that vi =G0
1. Hence

f(w) =G0
ā, and thus a ∈ G0 is contained in the image of f̃ , as required. �

At this point, we set up the following notation which will be used at the end of
the proofs of Lemmas 3.3 and 3.4.

Notation 3.2. (1) Suppose that v is an alternating word in {a, b} such that there
is a sequence (t1, t2, . . . , ts) of positive integers satisfying

S(v) = (ǫ1〈5〉, t1〈4〉, 5, t2〈4〉, . . . , 5, ts〈4〉, ǫ2〈5〉),

where ǫi is 0 or 1 for i = 1, 2. Then the symbol T (v) denotes the sequence
(t1, t2, . . . , ts).

(2) Suppose that v is a cyclically alternating word in {a, b} such that there is a
cyclic sequence ((t1, t2, . . . , ts)) of positive integers satisfying

CS(v) = ((5, t1〈4〉, 5, t2〈4〉, . . . , 5, ts〈4〉)).
8



Then the symbol CT (v) denotes the cyclic sequence ((t1, t2, . . . , ts)). In particular,
by Lemma 2.7, if v ≡ ur for some r = [4,m2, . . . ,mk] with m2 ≥ 2, then CT (ur) =
CT (r) = CS(r′), where r′ = [m2 − 1, . . . ,mk].

(3) Suppose that v is an alternating word in {a, b} such that there is a sequence
(h1, h2, . . . , hp) of positive integers satisfying

T (v) = (ǫ1〈2〉, h1〈1〉, 2, h2〈1〉, . . . , 2, hp〈1〉, ǫ2〈2〉),

where T (v) is defined as in (1) and ǫi is 0 or 1 for i = 1, 2. Then the symbol V (v)
denotes the sequence (h1, h2, . . . , hp).

(4) Suppose that v is a cyclically alternating word in {a, b} such that there is a
cyclic sequence ((h1, h2, . . . , hp)) of positive integers satisfying

CT (v) = ((2, h1〈1〉, 2, h2〈1〉, . . . , 2, hp〈1〉)),

where CT (v) is defined as in (2). Then the symbol CV (v) denotes the cyclic se-
quence ((h1, h2, . . . , hp)). In particular, by Lemma 2.7, if v ≡ ur for some r =
[4, 2,m3, . . . ,mk] with m3 ≥ 2, then CV (ur) = CT (r′) = CS(r′′), where r′ =
[1,m3, . . . ,mk] and r′′ = [m3 − 1, . . . ,mk].

Lemma 3.3. Under the foregoing notation, (f(ur0)) =G0
(u±1

r1 ).

Proof. Recall that

CS(ur0) = CS(r0) = ((5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4)).

Clearly the cyclic word (ur0) has six positive or negative subwords of length 5.
Cutting in the middle of such subwords, we may write the cyclic word (ur0) as a
product (v1 · · · v6), where

v1 ≡ abab̄āb̄ābabab̄āb̄āb,

v2 ≡ ababāb̄āb̄ababāb̄ā,

v3 ≡ b̄ābabab̄āb̄āb,

v4 ≡ ababāb̄āb̄ababāb̄āb̄ab,

v5 ≡ v−1
2 ≡ abab̄āb̄ābabab̄āb̄ā,

v6 ≡ v−1
3 ≡ b̄ababāb̄āb̄ab.

Put wn :≡ f(vn) for every n = 1, . . . , 6, namely

w1 :≡ X̄b̄X̄bXbXb̄X̄b̄X̄bXbXb̄,

w2 :≡ X̄b̄X̄b̄XbXbX̄b̄X̄b̄XbX,

w3 :≡ bXb̄X̄b̄X̄bXbXb̄,

w4 :≡ X̄b̄X̄b̄XbXbX̄b̄X̄b̄XbXbX̄b̄,

w5 :≡ w−1
2 and w6 :≡ w−1

3 .
9



It then follows that

(f(ur0)) = (f(v1 · · · v6)) = (w1 · · ·w6).

Claim 1. X̄b̄X̄bXbXb̄ =G0
z1, where z1 ≡ a · · · b̄ is an alternating word in {a, b}

with S(z1) = (4, 5, 4, 5).

Proof of Claim 1. Recall that X ≡ a · · · ā and X̄ ≡ a · · · ā are alternating words in
{a, b} such that S(X) = (4, 4, 4, 5, 4, 4) and S(X̄) = (4, 4, 5, 4, 4, 4). It is not hard to
see that

S(X̄b̄X̄bXbXb̄) = (S(X̄b̄), S(X̄), S(bX), S(bXb̄))

= ((4, 4, 5, 4, 4, 5), (4, 4, 5, 4, 4, 4), (5, 4, 4, 5, 4, 4), (5, 4, 4, 5, 4, 5))

= (4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 5).

Letting y1 ≡ a · · · b̄ and z1 ≡ a · · · b̄ be alternating words in {a, b} such that
S(y1) = (4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4) and S(z1) = (4, 5, 4, 5), clearly
X̄b̄X̄bXbXb̄ ≡ y1z1. Here, since CS(y1) = CS(r0) and so y1 =G0

1, we finally have
X̄b̄X̄bXbXb̄ ≡ y1z1 =G0

z1, as required. �

Claim 2. X̄b̄X̄b̄XbX =G0
z2, where z2 ≡ a · · · ā is the alternating word in {a, b}

with S(z2) = (4, 4, 5, 4).

Proof of Claim 2. As in the proof of Claim 1, we have

S(X̄b̄X̄b̄XbX) = (S(X̄b̄), S(X̄ b̄), S(X), S(bX))

= ((4, 4, 5, 4, 4, 5), (4, 4, 5, 4, 4, 5), (4, 4, 4, 5, 4, 4), (5, 4, 4, 5, 4, 4))

= (4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4).

Letting z2 ≡ a · · · ā and y2 ≡ b · · · ā be alternating words in {a, b} such that
S(z2) = (4, 4, 5, 4) and S(y2) = (4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4), clearly
X̄b̄X̄b̄XbX ≡ z2y2. Here, since CS(y2) = CS(r0) and so y2 =G0

1, we finally have
X̄b̄X̄b̄XbX ≡ z2y2 =G0

z2, as required. �

By Claims 1 and 2, it follows that

w1 =G0
z21 ≡: w′

1,

w2 =G0
z2z

−1
1 ≡: w′

2,

w3 =G0
bXb̄z1 ≡: w′

3,

w4 =G0
z2z

−1
1 bX̄b̄ ≡: w′

4,

w5 = w−1
2 =G0

(w′
2)

−1 ≡: w′
5,

w6 = w−1
3 =G0

(w′
3)

−1 ≡: w′
6,

so that
(f(ur0)) = (w1 · · ·w6) =G0

(w′
1 · · ·w

′
6).

10



Moreover, we see that w′
1 ≡ a · · · b̄, w′

2 ≡ a · · · ā, w′
3 ≡ b · · · b̄, w′

4 ≡ a · · · b̄, w′
5 ≡

a · · · ā and w′
6 ≡ b · · · b̄ are alternating words in {a, b} such that

S(w′
1) = (S(z1), S(z1)) = (4, 5, 4, 5, 4, 5, 4, 5),

S(w′
2) = (S(z2), S(z

−1
1 )) = (4, 4, 5, 4, 5, 4, 5, 4),

S(w′
3) = (S(bXb̄), S(z1)) = (5, 4, 4, 5, 4, 5, 4, 5, 4, 5),

S(w′
4) = (S(z2), S(z

−1
1 ), S(bX̄b̄)) = (4, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 4, 5),

S(w′
5) = S((w′

2)
−1) = (4, 5, 4, 5, 4, 5, 4, 4),

S(w′
6) = S((w′

3)
−1) = (5, 4, 5, 4, 5, 4, 5, 4, 4, 5).

This implies that

CS(w′
1 · · ·w

′
6) = ((S(w′

1), . . . , S(w
′
6))).

Following Notation 3.2, we also have

T (w′
1) = (1, 1, 1, 1), T (w′

2) = (2, 1, 1, 1),

T (w′
3) = (2, 1, 1, 1), T (w′

4) = (2, 1, 1, 1, 1, 2),

T (w′
5) = (1, 1, 1, 2), T (w′

6) = (1, 1, 1, 2),

and that

CT (w′
1 · · ·w

′
6) = ((T (w′

1), . . . , T (w
′
6))).

We furthermore have

V (w′
1) = (4), V (w′

2) = (3), V (w′
3) = (3),

V (w′
4) = (4), V (w′

5) = (3), V (w′
6) = (3),

and

CV (w′
1 · · ·w

′
6) = ((V (w′

1), . . . , V (w′
6))) = ((4, 3, 3, 4, 3, 3)).

Since ((4, 3, 3, 4, 3, 3)) is the CS-sequence corresponding to the rational number
[3, 3], we see that

(w′
1 · · ·w

′
6) ≡ (u±1

r )

for some rational number r with r′′ = [3, 3]. For this rational number r, since
CS(r′) = CT (r) = CT (w′

1 · · ·w
′
6) consists of 1 and 2, we have r′ = [1, 4, 3]. Further-

more since CS(r) = CS(w′
1 · · ·w

′
6) consists of 4 and 5, we finally have r = [4, 2, 4, 3]

which equals r1 in the statement of the theorem. This completes the proof of
Lemma 3.3. �

Lemma 3.4. Under the foregoing notation, (f(uri)) =G0
(u±1

ri+1
) for every i ≥ 1.

Proof. Fix i ≥ 1. Then ri = [4, 2,m3, . . . ,mk] with m3 ≥ 3. By Lemma 2.3(2),
CS(ri) consists of 4 and 5 without (5, 5). Moreover, since r′i = [1,m3, . . . ,mk], by
Lemmas 2.3(2) and 2.5, CT (ri) = CS(r′i) consists of 1 and 2, which implies that
the number of occurrences of 4’s between any two 5’s is one or two.
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Claim. By cutting the cyclic word (uri) in the middle of each positive or negative

subwords of length 5, we may write (uri) as a product (vi,1 · · · vi,ki), where each vi,j
is one of the following:

v1 ≡ b̄ababāb̄āb̄ab,

v2 ≡ v−1
1 ≡ b̄ābabab̄āb̄āb,

v3 ≡ ababāb̄āb̄ababāb̄ā,

v4 ≡ v−1
3 ≡ abab̄āb̄ābabab̄āb̄ā,

v5 ≡ b̄ababāb̄ā,

v6 ≡ b̄ābabab̄āb̄ā,

v7 ≡ v−1
6 ≡ ababāb̄āb̄ab,

v8 ≡ v−1
5 ≡ abab̄āb̄āb.

Proof of Claim. Note that for every n = 1, . . . , 8, vn is an alternating word in {a, b}
such that S(vn) = (kn, tn〈4〉, ℓn), where tn ∈ {1, 2} and kn, ℓn ∈ {1, 2, 3, 4}. Consider
the graph as in Figure 1, where the vertex set is equal to {v1, . . . , v8} and each
edge is endowed with one or two orientations. Observe that if vn and vm are the
initial and terminal vertices, respectively, of an oriented edge of the graph, then
the word vnvm is an alternating word such that S(vnvm) = (kn, tn〈4〉, 5, tm〈4〉, ℓm),
namely, the terminal subword of vn, corresponding to the last component ℓn of
S(vn), and the initial subword of vm, corresponding to the first component km of
S(vm), are amalgamated into a maximal positive or negative alternating subword
of vnvm, of length 5. Moreover, the weight tn (resp. tm) is 1 or 2 according to
whether the vertex vn (resp. vm) has valence 3 or 2. Thus, if vn1

, vn2
, . . . , vnp

, where
vnj

∈ {v1, . . . , v8}, is a closed edge path in the graph which is compatible with
the specified edge orientations (a compatible closed edge path, in brief), namely,
if vnj

and vnj+1
are the initial and terminal vertices of an oriented edge of the

graph for each j = 1, 2, . . . , p, where the indices are considered modulo p, then
the cyclically reduced word vn1

vn2
· · · vnp

is a cyclically alternating word with CS-
sequence ((5, tn1

〈4〉, 5, tn2
〈4〉, 5, . . . , tnp

〈4〉)).
Since the weight tnj

is 1 or 2 according to whether the vertex vnj
has valence 3 or 2,

we see that for any compatible closed edge path, the CT -sequence ((tn1
, tn1

, . . . , tnp
))

of the corresponding cyclically alternating word consists of only 1 and 2 and that it
has isolated 2’s. Moreover, for any such cyclic sequence, we can construct a compati-
ble closed edge path such that the CT -sequence of the corresponding cyclically alter-
nating word is equal to the given cyclic sequence. In particular, we can find a com-
patible closed edge path such that the CT -sequence of the corresponding cyclically
alternating word, (w), is equal to CT (uri). This implies that CS(w) = CS(uri).

12
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Figure 1. Proof of Claim in the proof of Lemma 3.4

Hence (w) ≡ (u±1
ri ) as cyclic words by [9, Lemma 3.2]. This completes the proof of

Claim. �

Putting

w1 :≡ bX̄b̄X̄b̄XbXbX̄b̄,

w3 :≡ X̄b̄X̄b̄XbXbX̄b̄X̄b̄XbX,

w5 :≡ bX̄b̄X̄b̄XbX,

w6 :≡ bXb̄X̄b̄X̄bXbX,

w2 :≡ w−1
1 , w4 :≡ w−1

2 , w7 :≡ w−1
6 and w8 :≡ w−1

5 ,

we obviously have f(vn) = wn for every n = 1, 2, . . . , 8, so that

(f(uri)) = (f(vi,1 · · · vi,ki)) = (wi,1 · · ·wi,ki),

where each wi,j ∈ {w1, . . . , w8}.
Recall from Claims 1 and 2 in the proof of Lemma 3.3 that X̄b̄X̄bXbXb̄ =G0

z1,
where z1 ≡ a · · · b̄ is the alternating word in {a, b} with S(z1) = (4, 5, 4, 5), and
that X̄b̄X̄b̄XbX =G0

z2, where z2 ≡ a · · · ā is the alternating word in {a, b} with
S(z2) = (4, 4, 5, 4). It follows that

w1 =G0
z−1
1 bX̄b̄ ≡: w′

1,

w3 =G0
z2z

−1
1 ≡: w′

3,

w5 =G0
z−1
1 ≡: w′

5,

w6 =G0
bXb̄z−1

2 ≡: w′
6,

w2 = w−1
1 =G0

(w′
1)

−1 ≡: w′
2,

w4 = w−1
3 =G0

(w′
3)

−1 ≡: w′
4

w7 = w−1
6 =G0

(w′
6)

−1 ≡: w′
7

w8 = w−1
5 =G0

(w′
5)

−1 ≡: w′
8.
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Then we have

(f(uri)) =G0
(w′

i,1 · · ·w
′
i,ki),

where each w′
i,j ∈ {w′

1, . . . , w
′
8}. Moreover

w′
1 ≡ b · · · b̄, w′

2 ≡ b · · · b̄, w′
3 ≡ a · · · ā, w′

4 ≡ a · · · ā,

w′
5 ≡ b · · · ā, w′

6 ≡ b · · · ā, w′
7 ≡ a · · · b̄, w′

8 ≡ a · · · b̄

are alternating words in {a, b} such that

S(w′
1) = (S(z−1

1 ), S(bX̄b̄)) = (5, 4, 5, 4, 5, 4, 5, 4, 4, 5)

S(w′
3) = (S(z2), S(z

−1
1 )) = (4, 4, 5, 4, 5, 4, 5, 4),

S(w′
5) = S(z−1

1 ) = (5, 4, 5, 4),

S(w′
6) = (S(bXb̄), S(z−1

2 )) = (5, 4, 4, 5, 4, 5, 4, 5, 4, 4),

and S(w′
2) = S((w′

1)
−1) = (5, 4, 4, 5, 4, 5, 4, 5, 4, 5), S(w′

4) = S((w′
3)

−1) = (4, 5, 4, 5, 4, 5, 4, 4),
S(w′

7) = S((w′
6)

−1) = (4, 4, 5, 4, 5, 4, 5, 4, 4, 5), and S(w′
8) = S((w′

5)
−1) = (4, 5, 4, 5).

Observe in the graph in Figure 1 that if vn and vm are the initial and terminal
vertices, respectively, of an oriented edge, then w′

nw
′
m is an alternating word such

that S(w′
nw

′
m) = (S(w′

n), S(w
′
m)), which consists of 4 and 5, and moreover the

components 5 are isolated. This observation yields that

CS(w′
i,1 · · ·w

′
i,ki) = ((S(w′

i,1), . . . , S(w
′
i,ki))),

CT (w′
i,1 · · ·w

′
i,ki) = ((T (w′

i,1), . . . , T (w
′
i,ki))).

Here
T (w′

1) = (1, 1, 1, 2), T (w′
2) = (2, 1, 1, 1),

T (w′
3) = (2, 1, 1, 1), T (w′

4) = (1, 1, 1, 2),

T (w′
5) = (1, 1), T (w′

6) = (2, 1, 1, 2),

T (w′
7) = (2, 1, 1, 2), T (w′

8) = (1, 1).

This also yields that

CV (w′
i,1 · · ·w

′
i,ki) = ((V (w′

i,1), . . . , V (w′
i,ki))),

where V (w′
n) = (3) if n = 1, 2, 3, 4, and V (w′

n) = (2) otherwise.
Define N(vn) to be the number of positive or negative proper subwords of vn of

length 4 for each n = 1, . . . , 8. Here, by a proper subword of vn, we mean a subword
which lies in the interior of vn. Then we see that V (w′

n) = (N(vn) + 1) for each
n = 1, . . . , 8. Since (vi,1 · · · vi,ki) is a product being cut in the middle of each positive
or negative subwords of length 5, we also see that

((N(vi,1), . . . , N(vi,ki))) = CT (ri) = CS(r′i)
14



with r′i = [1,m3, . . . ,mk]. Since V (w′
i,j) = (N(vi,j) + 1) for each j = 1, . . . , ki,

CV (w′
i,1 · · ·w

′
i,ki

) = ((N(vi,1)+1, . . . , N(vi,ki)+1)) is the CS-sequence corresponding

to the rational number [2,m3, . . . ,mk]. Hence

(f(uri)) =G0
(w′

i,1 · · ·w
′
i,ki) ≡ (u±1

r )

for some rational number r with r′′ = [2,m3, . . . ,mk]. For this rational number
r, since CS(r′) = CT (r) = CT (w′

i,1 · · ·w
′
i,ki

) consists of 1 and 2, we have r′ =

[1, 3,m3, . . . ,mk]. Furthermore, since CS(r) = CS(w′
i,1 · · ·w

′
i,ki

) consists of 4 and

5, we finally have r = [4, 2, 3,m3, . . . ,mk] which equals ri+1 in the statement of the
theorem. This completes the proof of Lemma 3.4. �

Since G = 〈a, b |ur0 = ur1 = ur2 = · · · = 1〉, Lemmas 3.1–3.4 imply that f

descends to an epimorphism f̂ : G → G. Now we show that f̂ is not an isomorphism.
Let s = [3, 3, 4]. Then

CS(us) = CS(s) = ((3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4)),

so that
(us) ≡ (abab̄āb̄abab̄āb̄ābabāb̄ābabab̄āb̄abab̄āb̄ābabāb̄ābaba

b̄āb̄abab̄āb̄ababāb̄ābabāb̄āb̄abab̄āb̄ababāb̄ābabāb̄āb̄).

As in the proof of Lemma 3.1, letting w ≡ a · · · ā be an alternating word in {a, b}
such that S(w) = (3, 3, 3, 4, 3, 3), we have

(us) ≡ (wbwbabab̄āb̄w−1b̄w−1b̄).

Lemma 3.5. We have f̂(us) = 1.

Proof. Clearly

(f(us)) = (f(w)b̄f(w)b̄X̄ b̄X̄bXbf(w−1)bf(w−1)b).

Here, since f̂(w) = ā from the proof of Lemma 3.1, we have

(f(us)) =G (āb̄āb̄X̄ b̄X̄bXbabab),

where (āb̄āb̄X̄b̄X̄bXbabab) is a cyclically alternating word in {a, b} such that

CS(āb̄āb̄X̄b̄X̄bXbabab) = ((S(āb̄āb̄), S(X̄b̄), S(X̄), S(bX), S(babab))),

= ((4, (4, 4, 5, 4, 4, 5), (4, 4, 5, 4, 4, 4), (5, 4, 4, 5, 4, 4), 5))

which equals CS(r0). This implies that (f(us)) =G (āb̄āb̄X̄b̄X̄bXbabab) =G 1,

namely f̂(us) = 1, as required. �

Lemma 3.6. Under the foregoing notation, let R be the symmetrized subset of

F (a, b) generated by the set of relators {uri | i ≥ 0} of the upper presentation G =
〈a, b |ur0 = ur1 = ur2 = · · · = 1〉. Then R satisfies C(4) and T (4).
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Proof. Since every element in R is cyclically alternating, R clearly satisfies T (4).
To show that R satisfies C(4), we begin by setting some notation. Recall from
Lemma 2.6 that for every rational number r with 0 < r ≤ 1, CS(r) has a decomposi-
tion ((S1, S2, S1, S2)) depending on r. For clarity, we write ((S1(r), S2(r), S1(r), S2(r)))
for this decomposition. On the other hand, if r is a rational number with r =
[m1, . . . ,mk] with k ≥ 2 and (m2, . . . ,mk) ∈ (Z≥2)

k−1, then the symbol r(n) denotes
the rational number with continued fraction expansion [mn+1−1,mn+2, . . . ,mk] for
each n = 1, . . . , k − 1.

Claim 1. For any two integers i, j ≥ 0 with i 6= j, the cyclic word (urj) does not

contain a subword corresponding to (S1(ri)) or (ℓ1, S2(ri), ℓ2) with ℓ1, ℓ2 ∈ Z+.

Proof of Claim 1. Suppose on the contrary that there are some i 6= j such that the
cyclic word (urj ) contains a subword corresponding to S1(ri) or (ℓ1, S2(ri), ℓ2). We
first show that this assumption implies that CS(rj) contains S1(ri) or S2(ri) as
a subsequence. If (urj ) contains a subword corresponding to (ℓ1, S2(ri), ℓ2), then
clearly CS(rj) contains S2(ri) as a subsequence. So assume that (urj ) contains a
subword corresponding to S1(ri). Then CS(rj) contains (d1 + s1, s2, . . . , st−1, st +
d2) as a subsequence, where S1(ri) = (s1, s2, . . . , st). Since the continued fraction
expansions of both ri and rj begin with 4, we see that S1(ri) begins and ends with 5
by Lemma 2.6(3) and that CS(rj) also consists of 4 and 5 by Lemma 2.3(2). Hence,
we must have d1 = d2 = 0 and therefore CS(rj) contains S1(ri) as a subsequence.
Thus we have proved that CS(rj) contains S1(ri) or S2(ri) as a subsequence.

Note that the lengths of the continued fraction expansions of ri and rj are i+3 and

j+3, respectively. Hence we can apply Lemma 2.8 successively to see that CS(r
(n)
j )

contains S1(r
(n)
i ) or S2(r

(n)
i ) as a subsequence for every n = 1, . . . ,min{i+1, j +1}.

Since i 6= j, there are two cases.

Case 1. j > i ≥ 0. Recall that ri is equal to [4, 3, 3] or ri = [4, 2, (i − 1)〈3〉, 4, 3]

according to whether i = 0 or i ≥ 1. So we have r
(i+1)
i = [m, 3]. Here, m = 2 if

i = 0, and m = 3 otherwise. Since j > i, we can observe that r
(i+1)
j has a continued

fraction expansion of the form [m−1, n1, . . . , nk], where k ≥ 2 and each nt is 3 or 4.

Since S1(r
(i+1)
i ) = (m+1) and CS(r

(i+1)
j ) consists ofm−1 andm, the cyclic sequence

CS(r
(i+1)
j ) cannot contain S1(r

(i+1)
i ) = (m+1) as a subsequence. Hence CS(r

(i+1)
j )

must contain S2(r
(i+1)
i ) as a subsequence. But since r

(i+1)
j = [m−1, n1, . . . , nk] with

n1 ≥ 3, (m,m) does not occur in CS(r
(i+1)
j ) by Lemma 2.3(2). Since S2(r

(i+1)
i ) =

(m,m) by Lemma 2.7(1), this implies that S2(r
(i+1)
i ) cannot occur in CS(r

(i+1)
j ), a

contradiction.

Case 2. i > j ≥ 0. As in Case 1, we can observe that r
(j+1)
j = [m, 3], where m = 2

if j = 0, and m = 3 otherwise, and that r
(j+1)
i has a continued fraction expansion of
16



the form [m−1, n1, . . . , nk], where k ≥ 2 and each nt is 3 or 4. Then both S1(r
(j+1)
i )

and S2(r
(j+1)
i ) contain a term m−1 by Lemma 2.7(2). But since CS(r

(j+1)
j ) consists

of only m and m+ 1, this is impossible. �

By Claim 1, we see that the assertion in Lemma 2.11 holds even if (u±1
r ) is

replaced by (u±1
ri ) for any i ≥ 0 and the symmetrized subset R in the lemma is

enlarged to be the set in the current setting, namely, R is the symmetrized subset
of F (a, b) generated by the set of relators {uri | i ≥ 0} of the group presentation
G = 〈a, b |ur0 = ur1 = ur2 = · · · = 1〉. To be precise, the following hold.

Claim 2. For each i ≥ 0, a subword w of the cyclic word (u±1
ri ) is a piece with

respect to the symmetrized subset R in Lemma 3.6 if and only if S(w) contains

neither S1(ri) nor (ℓ1, S2(ri), ℓ2) with ℓ1, ℓ2 ∈ Z+ as a subsequence.

By using Claim 2, we can see, as in [9, Proof of Corollary 5.4], that each cyclic
word (u±1

ri ) is not a product of less than 4 pieces with respect to R. Hence R satisfies
C(4). �

Lemma 3.7. Under the foregoing notation, us 6=G 1.

Proof. Suppose on the contrary that us =G 1. Then there is a reduced van Kampen
diagram ∆ over G = 〈a, b |ur0 = ur1 = ur2 = · · · = 1〉 such that (φ(∂∆)) ≡ (us) (see
[11]). Since ∆ is a [4, 4]-map by Lemma 3.6, (φ(∂∆)) contains a subword of some
(u±1

ri ) which is a product of 3 pieces with respect to the symmetrized subset R in
Lemma 3.6 (see [9, Section 6]). This implies that CS(φ(∂∆)) must contain a term
5, which is a contradiction to the fact CS(φ(∂∆)) = CS(us) = CS(s) consists of
only 3 and 4. �

Lemma 3.7 together with Lemma 3.5 shows that f̂ is an epimorphism of G,
but not an isomorphism of G. Consequently, G is non-Hopfian, and the proof of
Theorem 1.1 is now completed. �
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