PRODUCTS OF SEVERAL COMMUTATORS IN A LIE NILPOTENT ASSOCIATIVE ALGEBRA

GALINA DERYABINA AND ALEXEI KRASILNIKOV

Abstract

Let F be a field of characteristic $\neq 2,3$ and let A be a unital associative F-algebra. Define a left-normed commutator $\left[a_{1}, a_{2}, \ldots, a_{n}\right]\left(a_{i} \in A\right)$ recursively by $\left[a_{1}, a_{2}\right]=a_{1} a_{2}-a_{2} a_{1},\left[a_{1}, \ldots, a_{n-1}, a_{n}\right]=$ $\left[\left[a_{1}, \ldots, a_{n-1}\right], a_{n}\right](n \geq 3)$. For $n \geq 2$, let $T^{(n)}(A)$ be the two-sided ideal in A generated by all commutators $\left[a_{1}, a_{2}, \ldots, a_{n}\right]\left(a_{i} \in A\right)$. Define $T^{(1)}(A)=A$.

Let k, ℓ be integers such that $k>0,0 \leq \ell \leq k$. Let m_{1}, \ldots, m_{k} be positive integers such that ℓ of them are odd and $k-\ell$ of them are even. Let $N_{k, \ell}=\sum_{i=1}^{k} m_{i}-2 k+\ell+2$. The aim of the present note is to show that, for any positive integers m_{1}, \ldots, m_{k}, in general, $T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \nsubseteq T^{\left(1+N_{k, \ell}\right)}(A)$. It is known that if $\ell<k$ (that is, if at least one of m_{i} is even) then $T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \subseteq T^{\left(N_{k, \ell}\right)}(A)$ for each A so our result cannot be improved if $\ell<k$.

Let $N_{k}=\sum_{i=1}^{k} m_{i}-k+1$. Recently Dangovski has proved that if m_{1}, \ldots, m_{k} are any positive integers then, in general, $T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \nsubseteq T^{\left(1+N_{k}\right)}(A)$. Since $N_{k, \ell}=N_{k}-(k-\ell-1)$, Dangovski's result is stronger than ours if $\ell=k$ and is weaker than ours if $\ell \leq k-2$; if $\ell=k-1$ then $N_{k}=N_{k, k-1}$ so both results coincide. It is known that if $\ell=k$ (that is, if all m_{i} are odd) then, for each $A, T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \subseteq T^{\left(N_{k}\right)}(A)$ so in this case Dangovski's result cannot be improved.

2010 AMS MSC Classification: 16R10, 16R40
Keywords: polynomial identity, product of ideals, commutators

1. Introduction

Let R be an arbitrary unital associative and commutative ring and let A be a unital associative algebra over R. Define a left-normed commutator $\left[a_{1}, a_{2}, \ldots, a_{n}\right]\left(a_{i} \in A\right)$ recursively by $\left[a_{1}, a_{2}\right]=a_{1} a_{2}-a_{2} a_{1}$, $\left[a_{1}, \ldots, a_{n-1}, a_{n}\right]=\left[\left[a_{1}, \ldots, a_{n-1}\right], a_{n}\right](n \geq 3)$. For $n \geq 2$, let $T^{(n)}(A)$ be the two-sided ideal in A generated by all commutators $\left[a_{1}, a_{2}, \ldots, a_{n}\right]\left(a_{i} \in A\right)$. Define $T^{(1)}(A)=A$. Clearly, we have

$$
A=T^{(1)}(A) \supseteq T^{(2)}(A) \supseteq T^{(3)}(A) \supseteq \cdots \supseteq T^{(n)}(A) \supseteq \ldots
$$

We are concerned with the following.
Problem 1. Let $k \geq 2$ and let m_{1}, \ldots, m_{k} be positive integers. Find the maximal integer $N=N\left(R, m_{1}, \ldots, m_{k}\right)$ such that, for each R-algebra A,

$$
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \subseteq T^{(N)}(A)
$$

Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be an infinite countable set and let $R\langle X\rangle$ be the free unital associative algebra over R freely generated by X. Define $T^{(n)}=T^{(n)}(R\langle X\rangle)$.

Problem 2. Let $k \geq 2$ and let m_{1}, \ldots, m_{k} be positive integers. Find the maximal integer $N=N\left(R, m_{1}, \ldots, m_{k}\right)$ such that

$$
T^{\left(m_{1}\right)} \ldots T^{\left(m_{k}\right)} \subseteq T^{(N)}
$$

It is easy to check that Problem 1 is equivalent to Problem 2, and the integer N in both problems is the same.

Problem 2 and some other similar questions have been recently studied by Dangovski 6 (using different terminology). The work of Dangovski was motivated by the results of Etingof, Kim and Ma 9 and Bapat and Jordan [2], which in turn were motivated by the pioneering article by Feigin and Shoikhet [10].

The following assertion was proved by Latyshev [17, Lemma 1] in 1965 (Latyshev's paper was published in Russian) and independently rediscovered by Gupta and Levin [15, Theorem 3.2] in 1983.

Theorem 1.1 (see [15, 17). Let R be an arbitrary unital associative and commutative ring and let A be an associative R-algebra. Let $m, n \in \mathbb{Z}, m, n \geq 1$. Then

$$
T^{(m)}(A) T_{1}^{(n)}(A) \subseteq T^{(m+n-2)}(A)
$$

Latyshev [17] has actually proved that $T^{(m)} T^{(n)} \subseteq T^{(m+n-2)}$ in $R\langle X\rangle$; this assertion is equivalent to Theorem 1.1

Note that, for a unital associative ring R, we have $\frac{1}{6} \in R$ if and only if $2(=1+1)$ and 3 are invertible in R. The theorem below was proved by Sharma and Srivastava [19. Theorem 2.8] in 1990 and independently rediscovered (with different proofs) by Bapat and Jordan [2, Corollary 1.4] in 2013 and by Grishin and Pchelintsev [12, Theorem 1] in 2015.
Theorem 1.2 (see [2, 12, 19]). Let R be an arbitrary unital associative and commutative ring such that $\frac{1}{6} \in R$ and let A be an associative R-algebra. Let $m, n \in \mathbb{Z}, m, n>1$ and at least one of the numbers m, n is odd. Then

$$
T^{(m)}(A) T^{(n)}(A) \subseteq T^{(m+n-1)}(A)
$$

Note that Grishin and Pchelintsev [12] have actually proved that $T^{(m)} T^{(n)} \subseteq T^{(m+n-1)}$; this result is equivalent to Theorem 1.2 ,

Let $N_{k}=\sum_{i=1}^{k} m_{i}-k+1$. The proposition below follows immediately from Theorem 1.2,
Proposition 1.3. Let R be an arbitrary unital associative and commutative ring such that $\frac{1}{6} \in R$ and let A be an associative R-algebra. Let $k>0$ be an integer and let $m_{i}>0(i=1, \ldots, k)$ be odd integers. Then

$$
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \subseteq T^{\left(N_{k}\right)}(A)
$$

Let $N_{k, \ell}=\sum_{i=1}^{k} m_{i}-2 k+\ell+2=N_{k}-(k-\ell-1)$. One can deduce from Theorems 1.1 and 1.2 the following proposition (see Dangovski [6, Section 6]).
Proposition 1.4 (see [6]). Let R be an arbitrary unital associative and commutative ring such that $\frac{1}{6} \in R$ and let A be an associative R-algebra. Let k, ℓ be integers such that $0 \leq \ell<k$. Let $m_{i} \geq 2(i=1, \ldots, k)$ be integers such that ℓ of them are odd and $(k-\ell)>0$ of them are even. Then

$$
\begin{equation*}
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \subseteq T^{\left(N_{k, \ell}\right)}(A) \tag{1}
\end{equation*}
$$

We prove Proposition 1.4 in Section 2 in order to have the paper more self-contained.
Recently Dangovski [6, Proposition 2.2] has proved a result that can be reformulated as follows.
Theorem 1.5 (see [6). Let F be a field and let k be a positive integer. Let m_{1}, \ldots, m_{k} be positive integers and let N_{k} be as above. Then there exists an associative F-algebra A such that

$$
\begin{equation*}
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \nsubseteq T^{\left(1+N_{k}\right)}(A) \tag{2}
\end{equation*}
$$

One can deduce from Theorem 1.5 the following.
Corollary 1.6. Let R be an arbitrary unital associative and commutative ring and let $k, m_{1}, \ldots, m_{k}, N_{k}$ be as in Theorem 1.5. Then there exists an associative R-algebra A such that (2) holds.

Proof. Suppose that R is not a field. Let M be a maximal ideal of R (by Zorn's lemma, such an ideal M exists). Then $F=R / M$ is a field and the F-algebra A of Theorem 1.5 can be viewed in a natural way as an R-algebra (with $r \cdot a$ defined by $r \cdot a=(r+M) \cdot a$ for $r \in R, a \in A$). Since A satisfies (22), the result follows.

Let N be the integer defined in Problems 1 and 2. If $\frac{1}{6} \in R$ and all the integers m_{1}, \ldots, m_{k} are odd then $N=N_{k}$. Indeed, it follows from Proposition 1.3 and Corollary 1.6 that in this case we always have

$$
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \subseteq T^{\left(N_{k}\right)}(A)
$$

and, in general,

$$
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \nsubseteq T^{\left(1+N_{k}\right)}(A)
$$

Suppose that ℓ of the integers m_{1}, \ldots, m_{k} are odd $(\ell<k)$ and $(k-\ell)>0$ of them are even. Let $\frac{1}{6} \in R$. Then, by Proposition 1.4, $N_{k, \ell} \leq N$ and, by Corollary 1.6 $N \leq N_{k}$. If $\ell=k-1$ (that is, $k-1$ of the integers m_{1}, \ldots, m_{k} are odd and one of them is even) then $N_{k, k-1}=N_{k}$ so $N=N_{k}$. However, if $0 \leq \ell<k-1$ then $N_{k, \ell}=N_{k}-(k-\ell-1)<N_{k}$ so one can only deduce from the results above that $N_{k, \ell} \leq N \leq N_{k}$.

Our main result is as follows.
Theorem 1.7. Let F be a field. Let k, ℓ be integers, $0 \leq \ell \leq k$. Let m_{1}, \ldots, m_{k} be positive integers such that ℓ of them are odd and $k-\ell$ of them are even and let $N_{k, \ell}$ be as above. Then there exists a unital associative F-algebra A such that

$$
\begin{equation*}
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \nsubseteq T^{\left(1+N_{k, \ell}\right)}(A) \tag{3}
\end{equation*}
$$

In a particular case when $k=2$ and m_{1}, m_{2} are even Theorem 1.7 has been recently proved by Grishin and Pchelintsev [12] and independently by the authors of the present article [8]. In another particular case when $m_{1}=m_{2}=\cdots=m_{k-1}=2$ and m_{k} is even this theorem has been proved by Grishin, Tsybulya and Shokola [13, Theorem 3].

The proof of the following result is similar to that of Corollary 1.6
Corollary 1.8. Let R be an arbitrary unital associative and commutative ring and let $k, \ell, m_{1}, \ldots, m_{k}, N_{k, \ell}$ be as in Theorem 1.7. Then there exists an associative R-algebra A such that (3) holds.

It follows that if $\frac{1}{6} \in R$ and at least one of the integers m_{i} is even then $N=N_{k, \ell}$ because, by Proposition 1.4 and Corollary 1.8 , in this case we always have

$$
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \subseteq T^{\left(N_{k, \ell}\right)}(A)
$$

but, in general,

$$
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k}\right)}(A) \nsubseteq T^{\left(1+N_{k, \ell}\right)}(A)
$$

Thus, the solution of Problems 1 and 2 (for R that contains $\frac{1}{6}$) is as follows. Let R be a unital associative and commutative ring such that $\frac{1}{6} \in R$ and let k, m_{1}, \ldots, m_{k} be positive integers. Then

$$
N= \begin{cases}N_{k}=\sum_{i=1}^{k} m_{i}-k+1 & \text { if all integers } m_{i} \text { are odd (Dangovski [6]); } \\
N_{k, \ell}=\sum_{i=1}^{k} m_{i}-2 k+\ell+2 & \begin{array}{l}
\text { if } \ell<k \text { of the integers } m_{i} \text { are odd and } \\
k-\ell \text { of them are even. }
\end{array}\end{cases}
$$

Recall that an associative algebra A is Lie nilpotent of class at most c if $\left[u_{1}, \ldots, u_{c}, u_{c+1}\right]=0$ for all $u_{i} \in A$. Theorem 1.7 follows immediately from the following result.

Theorem 1.9. Under the hypotheses of Theorem 1.7, there exists a unital associative F-algebra A such that the following two conditions are satisfied:
i) $T^{\left(1+N_{k, \ell}\right)}(A)=0$, that is, the algebra A is Lie nilpotent of class at most $N_{k, \ell}$;
ii) there are $v_{i j} \in A$ such that

$$
\left[v_{11}, \ldots, v_{1 m_{1}}\right] \ldots\left[v_{k 1}, \ldots, v_{k m_{k}}\right] \neq 0
$$

To prove Theorem 1.9 we use the same algebra A that was used in [8, Theorem 1.4].
Remarks. 1. Both Theorem 1.5 and Theorem 1.7 are valid for arbitrary k-tuples $m_{1}, m_{2}, \ldots, m_{k}$ of positive integers. However, if $\ell=k$ (that is, if all m_{i} are odd) then Theorem 1.5 gives a stronger result than Theorem 1.7 because $N_{k, k}=N_{k}+1>N_{k}$ and therefore $T^{\left(1+N_{k, k}\right)}(A) \subset T^{\left(1+N_{k}\right)}(A)$. If $\ell=k-1$ (that is, if one of the integers $m_{1}, m_{2}, \ldots, m_{k}$ is even and $k-1$ of them are odd) then $N_{k, k-1}=N_{k}$ so the results of Theorem 1.5 and Theorem 1.7 coincide; and if $\ell<k-1$ (that is, if two or more of the integers $m_{1}, m_{2}, \ldots, m_{k}$ are even) then $N_{k, \ell}=N_{k}-(k-\ell-1)<N_{k}$ so Theorem 1.5 gives a weaker result than Theorem 1.7
2. The proofs of Theorem 1.2 given in [2], [12] and [19] are valid for algebras over an associative and commutative unital ring R such that $\frac{1}{6} \in R$. However, the proof given in [2] can be slightly modified to become also valid over any R such that $\frac{1}{3} \in R$ (see [1, Remark 3.9] for explanation). Moreover, for some specific m and n Theorem 1.2 holds over an arbitrary ring R : for instance, $T^{(3)}(A) T^{(3)}(A) \subset T^{(5)}(A)$ for any algebra A over any associative and commutative unital ring R (see [5, Lemma 2.1]). However, in general Theorem 1.2 fails over \mathbb{Z} and over a field of characteristic 3 : it was shown in [7] [16] that in this case $T^{(3)} T^{(2)} \nsubseteq T^{(4)}$ and moreover, $T^{(3)}\left(T^{(2)}\right)^{\ell} \nsubseteq T^{(4)}$ for all $\ell \geq 1$.
3. In 1978 Volichenko proved Theorem 1.2 for $m=3$ and arbitrary n in the preprint [20] written in Russian. In 1985 Levin and Sehgal [18] independently rediscovered Volichenko's result. More recently Etingof, Kim and Ma 9] and Gordienko [11] have independently proved this theorem for small m and n; these authors were unaware of the results of [18, 20].

2. Proofs of Proposition 1.4 and Theorem 1.9

Proof of Proposition 1.4. Induction on k. If $k=1$ then $\ell=0$ so $N_{1,0}=m_{1}$ and (11) holds.
Suppose that $k>1$ and for all products of less than k terms $T^{\left(m_{i}\right)}(A)$ the proposition has already been proved. We split the proof in 3 cases.

Case 1. Suppose that m_{k} is odd. Then for some i such that $1 \leq i<k$ the number m_{i} is even so we can apply the induction hypothesis to the product $T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k-1}\right)}(A)$. By this hypothesis,

$$
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k-1}\right)}(A) \subseteq T^{\left(N^{\prime}\right)}(A)
$$

where $N^{\prime}=\sum_{i=1}^{k-1} m_{i}-2(k-1)+(\ell-1)+2=\sum_{i=1}^{k-1} m_{i}-2 k+\ell+3$. By Theorem 1.2,

$$
T^{\left(N^{\prime}\right)}(A) T^{\left(m_{k}\right)}(A) \subseteq T^{\left(N^{\prime}+m_{k}-1\right)}(A)=T^{\left(N_{k, \ell}\right)}(A)
$$

since $N^{\prime}+m_{k}-1=\sum_{i=1}^{k} m_{i}-2 k+\ell+2=N_{k, \ell}$. Thus, in this case (11) holds, as required.
Case 2. Suppose that m_{k} is even and, for some i such that $1 \leq i<k, m_{i}$ is also even. Then we can apply the induction hypothesis to the product $T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k-1}\right)}(A)$ so

$$
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k-1}\right)}(A) \subseteq T^{\left(N^{\prime \prime}\right)}(A)
$$

where $N^{\prime \prime}=\sum_{i=1}^{k-1} m_{i}-2(k-1)+\ell+2=\sum_{i=1}^{k-1} m_{i}-2 k+\ell+4$. By Theorem 1.1 ,

$$
T^{\left(N^{\prime \prime}\right)}(A) T^{\left(m_{k}\right)}(A) \subseteq T^{\left(N^{\prime \prime}+m_{k}-2\right)}(A)=T^{\left(N_{k, \ell}\right)}(A)
$$

since $N^{\prime \prime}+m_{k}-2=\sum_{i=1}^{k} m_{i}-2 k+\ell+2=N_{k, \ell}$. Hence, in this case (1) holds, as required.
Case 3. Suppose that m_{k} is even and all m_{i} for $1 \leq i<k$ are odd. Applying Theorem $1.2 k-1$ times, we get

$$
T^{\left(m_{1}\right)}(A) \ldots T^{\left(m_{k-1}\right)}(A) T^{\left(m_{k}\right)}(A) \subseteq T^{\left(m_{1}+\cdots+m_{k}-k+1\right)}(A)=T^{\left(N_{k, k-1}\right)}(A)
$$

since $\sum_{i=1}^{k} m_{i}-k+1=\sum_{i=1}^{k} m_{i}-2 k+(k-1)+2=N_{k, k-1}$. Thus, in this case (1) also holds.
The proof of Proposition 1.4 is completed.
The proof of Theorem 1.9 below is a modification of the proof of [8, Theorem 1.4]. First we need some auxiliary results.

Let G and H be unital associative algebras over a field F such that $\left[g_{1}, g_{2}, g_{3}\right]=0,\left[h_{1}, h_{2}, h_{3}\right]=0$ for all $g_{i} \in G, h_{j} \in H$. Note that each commutator $\left[g_{1}, g_{2}\right]\left(g_{i} \in G\right)$ is central in G, that is, $\left[g_{1}, g_{2}\right] g=g\left[g_{1}, g_{2}\right]$ for each $g \in G$. Similarly, each commutator $\left[h_{1}, h_{2}\right]\left(h_{j} \in H\right)$ is central in H. The following lemma has been proved in [8, Lemma 2.1] by induction on n.

Lemma 2.1 (see [8). Let

$$
c_{\ell}=\left[g_{1} \otimes h_{1}, g_{2} \otimes h_{2}, \ldots, g_{\ell} \otimes h_{\ell}\right]
$$

where $\ell \geq 2, g_{i} \in G, h_{j} \in H$. Then

$$
\begin{aligned}
c_{2}= & {\left[g_{1}, g_{2}\right] \otimes h_{1} h_{2}+g_{2} g_{1} \otimes\left[h_{1}, h_{2}\right], } \\
c_{2 n}= & {\left[g_{1}, g_{2}\right]\left[g_{3}, g_{4}\right] \ldots\left[g_{2 n-1}, g_{2 n}\right] \otimes\left[h_{1} h_{2}, h_{3}\right]\left[h_{4}, h_{5}\right] \ldots\left[h_{2 n-2}, h_{2 n-1}\right] h_{2 n} } \\
+ & {\left[g_{2} g_{1}, g_{3}\right]\left[g_{4}, g_{5}\right] \ldots\left[g_{2 n-2}, g_{2 n-1}\right] g_{2 n} \otimes\left[h_{1}, h_{2}\right]\left[h_{3}, h_{4}\right] \ldots\left[h_{2 n-1}, h_{2 n}\right] } \\
& (n>1), \\
c_{2 n+1}= & {\left[g_{1}, g_{2}\right]\left[g_{3}, g_{4}\right] \ldots\left[g_{2 n-1}, g_{2 n}\right] g_{2 n+1} \otimes\left[h_{1} h_{2}, h_{3}\right]\left[h_{4}, h_{5}\right] \ldots\left[h_{2 n}, h_{2 n+1}\right] } \\
+ & {\left[g_{2} g_{1}, g_{3}\right]\left[g_{4}, g_{5}\right] \ldots\left[g_{2 n}, g_{2 n+1}\right] \otimes\left[h_{1}, h_{2}\right]\left[h_{3}, h_{4}\right] \ldots\left[h_{2 n-1}, h_{2 n}\right] h_{2 n+1} } \\
& (n \geq 1) .
\end{aligned}
$$

Corollary 2.2 (see 8). Suppose that

$$
\begin{equation*}
\left[f_{1}, f_{2}\right] \ldots\left[f_{2 n-1}, f_{2 n}\right]=0 \quad \text { for all } f_{j} \in H \tag{4}
\end{equation*}
$$

Then for all $u_{i} \in G \otimes H$ we have

$$
\left[u_{1}, u_{2}, \ldots, u_{2 n+1}\right]=0
$$

Proof. It follows from (4) and Lemma 2.1] that $\left[g_{1} \otimes h_{1}, g_{2} \otimes h_{2}, \ldots, g_{2 n+1} \otimes h_{2 n+1}\right]=0$ for all $g_{i} \in G, h_{j} \in H$. Since each $u_{i} \in G \otimes H$ is a sum of products of the form $g \otimes h(g \in G, h \in H)$, we have $\left[u_{1}, u_{2}, \ldots, u_{2 n+1}\right]=0$ for all $u_{i} \in G \otimes H$, as required.

The following assertion follows immediately from Lemma 2.1
Corollary 2.3. Let $v_{1}=g_{1} \otimes 1, v_{i}=g_{i} \otimes h_{i}\left(i=2, \ldots, 2 m^{\prime}-1\right), v_{2 m^{\prime}}=g_{2 m^{\prime}} \otimes 1$ and let $w_{1}=g_{1}^{\prime} \otimes 1$, $w_{j}=g_{j}^{\prime} \otimes h_{j}^{\prime}\left(j=2, \ldots, 2 n^{\prime}+1\right)$ where $g_{i}, g_{i}^{\prime} \in G, h_{j}, h_{j}^{\prime} \in H$. Then

$$
\begin{aligned}
{\left[v_{1}, \ldots, v_{2 m^{\prime}}\right] } & =\left[g_{1}, g_{2}\right] \ldots\left[g_{2 m^{\prime}-1}, g_{2 m^{\prime}}\right] \otimes\left[h_{2}, h_{3}\right] \ldots\left[h_{2 m^{\prime}-2}, h_{2 m^{\prime}-1}\right] \\
{\left[w_{1}, \ldots, w_{2 n^{\prime}+1}\right] } & =\left[g_{1}^{\prime}, g_{2}^{\prime}\right] \ldots\left[g_{2 n^{\prime}-1}^{\prime}, g_{2 n^{\prime}}^{\prime}\right] g_{2 n^{\prime}+1} \otimes\left[h_{2}^{\prime}, h_{3}^{\prime}\right] \ldots\left[h_{2 n^{\prime}}^{\prime}, h_{2 n^{\prime}+1}^{\prime}\right]
\end{aligned}
$$

Proof of Theorem 1.9. Two cases are to be considered: the case when char $F \neq 2$ and the case when char $F=2$.
Case 1. Suppose that F is a field of characteristic $\neq 2$. Let E be the unital infinite-dimensional Grassmann (or exterior) algebra over F. Then E is generated by the elements $e_{i}(i=1,2, \ldots)$ such that $e_{i} e_{j}=-e_{j} e_{i}$, $e_{i}^{2}=0$ for all i, j and the set

$$
\mathcal{B}=\left\{e_{i_{1}} e_{i_{2}} \ldots e_{i_{k}} \mid k \geq 0, i_{1}<i_{2}<\cdots<i_{k}\right\}
$$

forms a basis of E over F. It is well known and easy to check that $\left[g_{1}, g_{2}, g_{3}\right]=0$ for all $g_{i} \in E$.
Recall that the r-generated unital Grassmann algebra E_{r} is the unital subalgebra of E generated by $e_{1}, e_{2}, \ldots, e_{r}$. Note that $\left[h_{1}, h_{2}, h_{3}\right]=0$ for all $h_{j} \in E_{r}$.

Take $A=E \otimes E_{r}$ where $r=\sum_{i=1}^{k} m_{i}-2 k+\ell=N_{k, \ell}-2$. It is easy to check that r is an even integer. We can apply Lemma 2.1 and Corollaries 2.2 and 2.3 for $G=E, H=E_{r}$.

Note that $\left[f_{1}, f_{2}\right] \ldots\left[f_{r+1}, f_{r+2}\right]=0$ for all $f_{i} \in E_{r}$. Indeed, for all $f, f^{\prime} \in E_{r}$ the commutator $\left[f, f^{\prime}\right]$ belongs to the linear span of the set $\left\{e_{i_{1}} \ldots e_{i_{2 \ell}} \mid \ell \geq 1,1 \leq i_{s} \leq r\right\}$. Hence, $\left[f_{1}, f_{2}\right] \ldots\left[f_{r+1}, f_{r+2}\right]$ belongs to the linear span of the set $\left\{e_{i_{1}} \ldots e_{i_{2 \ell}} \mid \ell \geq(r+2) / 2,1 \leq i_{s} \leq r\right\}$. Since $2 \ell \geq r+2>r$, each product $e_{i_{1}} \ldots e_{i_{2 \ell}}$ above contains equal terms $e_{i_{s}}=e_{i_{s^{\prime}}}\left(s<s^{\prime}\right)$ and, therefore, is equal to 0 . Thus, $\left[f_{1}, f_{2}\right] \ldots\left[f_{r+1}, f_{r+2}\right]=0$, as claimed.

Since $N_{k, \ell}=r+2$, we have $\left[f_{1}, f_{2}\right] \ldots\left[f_{\left(N_{k, \ell}-1\right)}, f_{N_{k, \ell}}\right]=0$ for all $f_{i} \in E_{r}$. Hence, by Corollary 2.2, we have $\left[u_{1}, \ldots, u_{\left(1+N_{k, \ell}\right)}\right]=0$ for all $u_{i} \in A=E \otimes E_{r}$, that is, $T^{\left(1+N_{k, \ell}\right)}(A)=0$, as required.

Now it suffices to find elements $v_{i j} \in A$ such that

$$
\begin{equation*}
\left[v_{11}, \ldots, v_{1 m_{1}}\right] \ldots\left[v_{k 1}, \ldots, v_{k m_{k}}\right] \neq 0 \tag{5}
\end{equation*}
$$

Let

$$
\mathcal{P}=\left\{(i, j) \mid 1 \leq i \leq k ; 1 \leq j \leq m_{i}\right\} .
$$

Note that $v_{i j}$ appears in (5) if and only if $(i, j) \in \mathcal{P}$. Let $\mathcal{N}=\sum_{i=1}^{k} m_{i}$ and let $\mu: \mathcal{P} \rightarrow\{1,2, \ldots, \mathcal{N}\}$ be a bijection. Define

$$
e_{i j}=e_{\mu(i, j)} \quad((i, j) \in \mathcal{P})
$$

Note that

$$
\begin{equation*}
\prod_{(i, j) \in \mathcal{P}} e_{i j}=(-1)^{\delta} e_{1} e_{2} \ldots e_{\mathcal{N}} \tag{6}
\end{equation*}
$$

for some $\delta \in\{0,1\}$.
Let $\mathcal{P}^{\prime} \subset \mathcal{P}$,

$$
\mathcal{P}^{\prime}=\left\{\left(i^{\prime}, j^{\prime}\right) \mid 1 \leq i^{\prime} \leq k ; 2 \leq j^{\prime} \leq m_{i}-1 \text { if } m_{i} \text { is even; } 2 \leq j^{\prime} \leq m_{i} \text { if } m_{i} \text { is odd }\right\}
$$

Let $\mu^{\prime}: \mathcal{P}^{\prime} \rightarrow\left\{1,2, \ldots, \sum_{i=1}^{k} m_{i}-2 k+\ell\right\}=\{1,2, \ldots, r\}$ be a bijection. Define

$$
e_{i^{\prime} j^{\prime}}^{\prime}=e_{\mu^{\prime}\left(i^{\prime}, j^{\prime}\right)} \quad\left(\left(i^{\prime}, j^{\prime}\right) \in \mathcal{P}^{\prime}\right)
$$

Note that

$$
\begin{equation*}
\prod_{\left(i^{\prime}, j^{\prime}\right) \in \mathcal{P}^{\prime}} e_{i^{\prime} j^{\prime}}=(-1)^{\delta^{\prime}} e_{1} e_{2} \ldots e_{r} \tag{7}
\end{equation*}
$$

for some $\delta^{\prime} \in\{0,1\}$.
Define

$$
\begin{aligned}
v_{i 1} & =e_{i 1} \otimes 1 ; \\
v_{i j} & =e_{i j} \otimes e_{i j}^{\prime} \quad\left(1 \leq i \leq k ; 2 \leq j \leq m_{i}-1\right) \\
v_{i m_{i}} & = \begin{cases}e_{i m_{i}} \otimes 1 & \text { if } m_{i} \text { is even; } \\
e_{i m_{i}} \otimes e_{i m_{i}}^{\prime} & \text { if } m_{i} \text { is odd. }\end{cases}
\end{aligned}
$$

If m_{i} is even then, by Corollary 2.3,

$$
\begin{aligned}
& {\left[v_{i 1}, v_{i 2}, \ldots, v_{i m_{i}}\right] } \\
= & {\left[e_{i 1}, e_{i 2}\right]\left[e_{i 3}, e_{i 4}\right] \ldots\left[e_{i\left(m_{i}-1\right)}, e_{i m_{i}}\right] \otimes\left[e_{i 2}^{\prime}, e_{i 3}^{\prime}\right]\left[e_{i 4}^{\prime}, e_{i 5}^{\prime}\right] \ldots\left[e_{i\left(m_{i}-2\right)}^{\prime}, e_{i\left(m_{i}-1\right)}^{\prime}\right] . }
\end{aligned}
$$

Note that $e_{s t} e_{s^{\prime} t^{\prime}}=-e_{s^{\prime} t^{\prime}} e_{s t}$ for all $s, s^{\prime}, t, t^{\prime}$ so $\left[e_{s t}, e_{s^{\prime} t^{\prime}}\right]=2 e_{s t} e_{s^{\prime} t^{\prime}}$. It follows that if m_{i} is even then

$$
\left[v_{i 1}, v_{i 2}, \ldots, v_{i m_{i}}\right]=2^{m_{i}-1} e_{i 1} e_{i 2} \ldots e_{i m_{i}} \otimes e_{i 2}^{\prime} e_{i 3}^{\prime} \ldots e_{i\left(m_{i}-1\right)}^{\prime}
$$

If m_{i} is odd then, by Corollary 2.3,

$$
\begin{aligned}
& {\left[v_{i 1}, v_{i 2}, \ldots, v_{i m_{i}}\right] } \\
= & {\left[e_{i 1}, e_{i 2}\right]\left[e_{i 3}, e_{i 4}\right] \ldots\left[e_{i\left(m_{i}-2\right)}, e_{i\left(m_{i}-1\right)}\right] e_{i m_{i}} \otimes\left[e_{i 2}^{\prime}, e_{i 3}^{\prime}\right]\left[e_{i 4}^{\prime}, e_{i 5}^{\prime}\right] \ldots\left[e_{i\left(m_{i}-1\right)}^{\prime}, e_{i m_{i}}^{\prime}\right] } \\
= & 2^{m_{i}-1} e_{i 1} e_{i 2} \ldots e_{i\left(m_{i}-1\right)} e_{i m_{i}} \otimes e_{i 2}^{\prime} e_{i 3}^{\prime} \ldots e_{i\left(m_{i}-1\right)}^{\prime} e_{i m_{i}}^{\prime} .
\end{aligned}
$$

It follows that

$$
\left[v_{11}, \ldots, v_{1 m_{1}}\right] \ldots\left[v_{k 1}, \ldots, v_{k m_{k}}\right]=2^{N_{k}-1} \prod_{i=1}^{k} \prod_{j=1}^{m_{i}} e_{i j} \otimes \prod_{i^{\prime}=1}^{k} \prod_{j^{\prime}=2}^{m_{i^{\prime}}^{\prime}} e_{i^{\prime} j^{\prime}}^{\prime}
$$

where

$$
m_{i^{\prime}}^{\prime}= \begin{cases}m_{i^{\prime}}-1 & \text { if } m_{i^{\prime}} \text { is even } \\ m_{i^{\prime}} & \text { if } m_{i^{\prime}} \text { is odd }\end{cases}
$$

that is,

$$
\left[v_{11}, \ldots, v_{1 m_{1}}\right] \ldots\left[v_{k 1}, \ldots, v_{k m_{k}}\right]=2^{N_{k}-1} \prod_{(i, j) \in \mathcal{P}} e_{i j} \otimes \prod_{\left(i^{\prime}, j^{\prime}\right) \in \mathcal{P}^{\prime}} e_{i^{\prime} j^{\prime}}^{\prime}
$$

By (6) and (7), we have

$$
\left[v_{11}, \ldots, v_{1 m_{1}}\right] \ldots\left[v_{k 1}, \ldots, v_{k m_{k}}\right]=(-1)^{\delta+\delta^{\prime}} 2^{N_{k}-1} e_{1} e_{2} \ldots e_{\mathcal{N}} \otimes e_{1} e_{2} \ldots e_{r} \neq 0
$$

as required.
Case 2. Suppose that F is a field of characteristic 2 . Let \mathcal{G} be the group given by the presentation

$$
\mathcal{G}=\left\langle y_{1}, y_{2}, \cdots \mid y_{i}^{2}=1, \quad\left(\left(y_{i}, y_{j}\right), y_{k}\right)=1(i, j, k=1,2, \ldots)\right\rangle
$$

where $(a, b)=a^{-1} b^{-1} a b$. Then it is easy to check that \mathcal{G} is a nilpotent group of class 2 so $(a, b) c=c(a, b)$ for all $a, b, c \in \mathcal{G}$ and, therefore, $(a, b c)=(a, c) c^{-1}(a, b) c=(a, b)(a, c)$ (see 8 for more details). It is clear that the quotient group $\mathcal{G} / \mathcal{G}^{\prime}$ is an elementary abelian 2-group so $b^{2} \in \mathcal{G}^{\prime} \subseteq Z(\mathcal{G})$ for all $b \in \mathcal{G}$. It follows that $\left(a, b^{2}\right)=1$ so $(a, b)^{2}=\left(a, b^{2}\right)=1$, that is, $(a, b)=(a, b)^{-1}$. Since $(b, a)=(a, b)^{-1}$, we have $(a, b)=(b, a)$ for all $a, b \in \mathcal{G}$.

Let $(<)$ be an arbitrary linear order on the set $\{(i, j) \mid i, j \in \mathbb{Z}, 0<i<j\}$. The following lemma is well known and easy to check.

Lemma 2.4. Let $a \in \mathcal{G}$. Then a can be written in a unique way in the form

$$
\begin{gather*}
a=y_{i_{1}} \ldots y_{i_{q}}\left(y_{j_{1}}, y_{j_{2}}\right) \ldots\left(y_{j_{2 q^{\prime}-1}}, y_{j_{2 q^{\prime}}}\right) \tag{8}\\
\text { where } \quad q, q^{\prime} \geq 0 ; i_{1}<\cdots<i_{q}, j_{2 s-1}<j_{2 s} \text { for all } s \\
\left(j_{2 s-1}, j_{2 s}\right)<\left(j_{2 s^{\prime}-1}, j_{2 s^{\prime}}\right) \text { if } s<s^{\prime} .
\end{gather*}
$$

Let $F \mathcal{G}$ be the group algebra of \mathcal{G} over F. Let $d_{i j}=\left(y_{i}, y_{j}\right)+1 \in F \mathcal{G}$. Note that $d_{i j}=d_{j i}$ and $d_{i i}=0$ for all i, j.

Let I be the two-sided ideal of $F \mathcal{G}$ generated by the set

$$
S=\left\{d_{i_{1} i_{2}} d_{i_{3} i_{4}}+d_{i_{1} i_{3}} d_{i_{2} i_{4}} \mid i_{1}, i_{2}, i_{3}, i_{4}=1,2 \ldots\right\}
$$

The following two lemmas are well known (see, for instance, [14, Lemma 2.1], [15, Example 3.8]); their proofs can also be found in [8].

Lemma 2.5. For all $u_{1}, u_{2}, u_{3} \in F \mathcal{G}$, we have $\left[u_{1}, u_{2}, u_{3}\right] \in I$.
Lemma 2.6. For all $\ell>0$, we have

$$
\left(\left(y_{1}, y_{2}\right)+1\right)\left(\left(y_{3}, y_{4}\right)+1\right) \ldots\left(\left(y_{2 \ell-1}, y_{2 \ell}\right)+1\right) \notin I
$$

Since the ideal I is invariant under all permutations of the set $\left\{y_{1}, y_{2}, \ldots\right\}$ of generators of the group \mathcal{G}, we have the following.
Corollary 2.7. Let $\ell>0$. Then $\left(\left(y_{i_{1}}, y_{i_{2}}\right)+1\right) \ldots\left(\left(y_{i_{2 \ell-1}}, y_{i_{2 \ell}}\right)+1\right) \notin I$ if all integers $i_{1}, i_{2}, \ldots, i_{2 \ell}$ are distinct.
Now we are in a position to complete the proof of Theorem 1.9. Recall that $r=\sum_{i=1}^{k} m_{i}-2 k+\ell=N_{k, \ell}-2$ is an even integer. Let \mathcal{G}_{r} be the subgroup of \mathcal{G} generated by y_{1}, \ldots, y_{r}; let $I_{r}=I \cap F \mathcal{G}_{r}$. Take $G=F \mathcal{G} / I$, $H=F \mathcal{G}_{r} / I_{r}$. Take $A=G \otimes H$. By Lemma 2.5 we can apply Lemma 2.1 and Corollaries 2.2 and 2.3 to A.

We claim that $\left[f_{1}, f_{2}\right] \ldots\left[f_{r+1}, f_{r+2}\right] \in I_{r}$ for all $f_{i} \in F \mathcal{G}_{r}$. Indeed, we may assume without loss of generality that $f_{i} \in \mathcal{G}_{r}$ for all i. Since

$$
\begin{aligned}
& {\left[f_{2 s-1}, f_{2 s}\right]=f_{2 s-1} f_{2 s}+f_{2 s} f_{2 s-1} } \\
= & f_{2 s-1} f_{2 s}\left(\left(f_{2 s}, f_{2 s-1}\right)+1\right)=f_{2 s-1} f_{2 s}\left(\left(f_{2 s-1}, f_{2 s}\right)+1\right)
\end{aligned}
$$

(recall that F is a field of characteristic 2), we have

$$
\left[f_{1}, f_{2}\right] \ldots\left[f_{r+1}, f_{r+2}\right]=f_{1} f_{2} \ldots f_{r+2}\left(\left(f_{1}, f_{2}\right)+1\right) \ldots\left(\left(f_{r+1}, f_{r+2}\right)+1\right)
$$

It is clear that, for each $s,\left(f_{2 s-1}, f_{2 s}\right)=\prod_{t} c_{i_{s t} j_{s t}}$ for some commutators $c_{i_{s t} j_{s t}}=\left(y_{i_{s t}}, y_{j_{s t}}\right)$. Let $d_{i_{s t} j_{s t}}=$ $c_{i_{s t} j_{s t}}+1$; then $c_{i_{s t} j_{s t}}=d_{i_{s t} j_{s t}}+1$. We have

$$
\begin{aligned}
& \left(f_{2 s-1}, f_{2 s}\right)+1=\prod_{t} c_{i_{s t} j_{s t}}+1=\left(\prod_{t}\left(d_{i_{s t} j_{s t}}+1\right)\right)+1 \\
= & \prod_{t} d_{i_{s t} j_{s t}}+\cdots+\sum_{t<t^{\prime}} d_{i_{s t} j_{s t}} d_{i_{s t^{\prime}} j_{s t^{\prime}}}+\sum_{t} d_{i_{s t} j_{s t}} .
\end{aligned}
$$

It follows that the product $\left(\left(f_{1}, f_{2}\right)+1\right) \ldots\left(\left(f_{r+1}, f_{r+2}\right)+1\right)$ can be written as a sum of products of the form

$$
\begin{equation*}
d_{q_{1} q_{2}} \ldots d_{q_{2 \ell-1} q_{2 \ell}}=\left(\left(y_{q_{1}}, y_{q_{2}}\right)+1\right) \ldots\left(\left(y_{q_{2 \ell-1}}, y_{q_{2 \ell}}\right)+1\right) \tag{9}
\end{equation*}
$$

where $2 \ell \geq r+2>r$. Hence, in the product (9) we have $q_{t}=q_{t^{\prime}}$ for some $t<t^{\prime}$.
Note that $d_{j_{1} j_{3}} d_{j_{2} j_{3}} \in I$ for all j_{1}, j_{2}, j_{3} because $d_{j_{1} j_{3}} d_{j_{2} j_{3}}=d_{j_{1} j_{3}} d_{j_{2} j_{3}}+d_{j_{1} j_{2}} d_{j_{3} j_{3}} \in S$. Since $d_{i j}=d_{j i}$ for all i, j, we have $d_{i_{1} i_{2}} d_{i_{3} i_{4}} \in I$ if any two of the indices $i_{1}, i_{2}, i_{3}, i_{4}$ coincide. It follows that each product (9) belongs to $I_{r}=I \cap F \mathcal{G}_{r}$ and so does the product $\left(\left(f_{1}, f_{2}\right)+1\right) \ldots\left(\left(f_{r+1}, f_{r+2}\right)+1\right)$. Hence, $\left[f_{1}, f_{2}\right] \ldots\left[f_{r+1}, f_{r+2}\right] \in I_{r}$, as claimed. Since $N_{k, \ell}=r+2$, we have $\left[f_{1}, f_{2}\right] \ldots\left[f_{\left(N_{k, \ell}-1\right)}, f_{N_{k, \ell}}\right] \in I_{r}$ for al $f_{i} \in F \mathcal{G}_{r}$.

For any $u \in F \mathcal{G}$, let $\bar{u}=u+I \in G=F \mathcal{G} / I$. Since one can view the algebra $H=F \mathcal{G}_{r} / I_{r}$ as a subalgebra of $G=F \mathcal{G} / I$, we also write $\bar{u}=u+I_{r} \in H=F \mathcal{G}_{r} / I_{r_{-}}$for $u \in F \mathcal{G}_{r}$.

By the observation above, $\left[\bar{f}_{1}, \bar{f}_{2}\right] \ldots\left[\bar{f}_{\left(N_{k, \ell}-1\right)}, \bar{f}_{N_{k, \ell}}\right]=0$ for all $\bar{f}_{i} \in H$. Hence, by Corollary [2.2. we have $\left[u_{1}, \ldots, u_{\left(1+N_{k, \ell}\right)}\right]=0$ for all $u_{i} \in A=G \otimes H$, that is, $T^{\left(1+N_{k, \ell}\right)}(A)=0$, as required.

Let $\mathcal{P}, \mathcal{P}^{\prime}, \mu$ and μ^{\prime} be as in Case 1. Recall that $\mathcal{N}=\sum_{i=1}^{k} m_{i}$. Define

$$
y_{i j}=y_{\mu(i, j)} \quad((i, j) \in \mathcal{P}), \quad \quad y_{i^{\prime} j^{\prime}}^{\prime}=y_{\mu^{\prime}\left(i^{\prime}, j^{\prime}\right)}^{\prime} \quad\left(\left(i^{\prime}, j^{\prime}\right) \in \mathcal{P}^{\prime}\right)
$$

Define

$$
\begin{aligned}
v_{i 1} & =\bar{y}_{i 1} \otimes 1 ; \\
v_{i j} & =\bar{y}_{i j} \otimes \bar{y}_{i j}^{\prime} \quad\left(1 \leq i \leq k ; 2 \leq j \leq m_{i}-1\right) \\
v_{i m_{i}} & = \begin{cases}\bar{y}_{i m_{i}} \otimes 1 & \text { if } m_{i} \text { is even; } \\
\bar{y}_{i m_{i}} \otimes \bar{y}_{i m_{i}}^{\prime} & \text { if } m_{i} \text { is odd. }\end{cases}
\end{aligned}
$$

If m_{i} is even then, by Corollary 2.3,

$$
\begin{aligned}
& {\left[v_{i 1}, v_{i 2}, \ldots, v_{i m_{i}}\right] } \\
= & {\left[\bar{y}_{i 1}, \bar{y}_{i 2}\right]\left[\bar{y}_{i 3}, \bar{y}_{i 4}\right] \ldots\left[\bar{y}_{i\left(m_{i}-1\right)}, \bar{y}_{i m_{i}}\right] \otimes\left[\bar{y}_{i 2}^{\prime}, \bar{y}_{i 3}^{\prime}\right]\left[\bar{y}_{i 4}^{\prime}, \bar{y}_{i 5}^{\prime}\right] \ldots\left[\bar{y}_{i\left(m_{i}-2\right)}^{\prime}, \bar{y}_{i\left(m_{i}-1\right)}^{\prime}\right] } \\
= & \bar{y}_{i 1} \bar{y}_{i 2} \bar{y}_{i 3} \ldots \bar{y}_{i m_{i}}\left(\left(\bar{y}_{i 1}, \bar{y}_{i 2}\right)+1\right)\left(\left(\bar{y}_{i 3}, \bar{y}_{i 4}\right)+1\right) \ldots\left(\left(\bar{y}_{i\left(m_{i}-1\right)}, \bar{y}_{i m_{i}}\right)+1\right) \\
\otimes & \bar{y}_{i 2}^{\prime} \bar{y}_{i 3}^{\prime} \ldots \bar{y}_{i\left(m_{i}-1\right)}^{\prime}\left(\left(\bar{y}_{i 2}^{\prime}, \bar{y}_{i 3}^{\prime}\right)+1\right)\left(\left(\bar{y}_{i 4}^{\prime}, \bar{y}_{i 5}^{\prime}\right)+1\right) \ldots\left(\left(\bar{y}_{i\left(m_{i}-2\right)}^{\prime}, \bar{y}_{i\left(m_{i}-1\right)}^{\prime}\right)+1\right)
\end{aligned}
$$

If m_{i} is odd then, by the same corollary,

$$
\begin{aligned}
& {\left[v_{i 1}, v_{i 2}, \ldots, v_{i m_{i}}\right] } \\
= & {\left[\bar{y}_{i 1}, \bar{y}_{i 2}\right]\left[\bar{y}_{i 3}, \bar{y}_{i 4}\right] \ldots\left[\bar{y}_{i\left(m_{i}-2\right)}, \bar{y}_{i\left(m_{i}-1\right)}\right] \bar{y}_{i m_{i}} \otimes\left[\bar{y}_{i 2}^{\prime}, \bar{y}_{i 3}^{\prime}\right]\left[\bar{y}_{i 4}^{\prime}, \bar{y}_{i 5}^{\prime}\right] \ldots\left[\bar{y}_{i\left(m_{i}-1\right)}^{\prime}, \bar{y}_{i m_{i}}^{\prime}\right] } \\
= & \bar{y}_{i 1} \bar{y}_{i 2} \bar{y}_{i 3} \ldots \bar{y}_{i\left(m_{i}-1\right)} \bar{y}_{i m_{i}}\left(\left(\bar{y}_{i 1}, \bar{y}_{i 2}\right)+1\right)\left(\left(\bar{y}_{i 3}, \bar{y}_{i 4}\right)+1\right) \ldots\left(\left(\bar{y}_{i\left(m_{i}-2\right)}, \bar{y}_{i\left(m_{i}-1\right)}\right)+1\right) \\
\otimes & \bar{y}_{i 2}^{\prime} \bar{y}_{i 3}^{\prime} \ldots \bar{y}_{i\left(m_{i}-1\right)}^{\prime} \bar{y}_{i m_{i}}^{\prime}\left(\left(\bar{y}_{i 2}^{\prime}, \bar{y}_{i 3}^{\prime}\right)+1\right)\left(\left(\bar{y}_{i 4}^{\prime}, \bar{y}_{i 5}^{\prime}\right)+1\right) \ldots\left(\left(\bar{y}_{i\left(m_{i}-1\right)}^{\prime}, \bar{y}_{i m_{i}}^{\prime}\right)+1\right)
\end{aligned}
$$

It follows that

$$
\left[v_{11}, \ldots, v_{1 m_{1}}\right] \ldots\left[v_{k 1}, \ldots, v_{k m_{k}}\right]=\bar{y} Q \otimes \bar{y}^{\prime} Q^{\prime}
$$

where

$$
\begin{gathered}
\bar{y}=\prod_{i=1}^{k} \prod_{j=1}^{m_{i}} \bar{y}_{i j}, \quad \bar{y}^{\prime}=\prod_{i^{\prime}=1}^{k} \prod_{j^{\prime}=2}^{m_{i^{\prime}}^{\prime}} \bar{y}_{i^{\prime} j^{\prime}}^{\prime} \\
m_{i^{\prime}}^{\prime}= \begin{cases}m_{i^{\prime}}-1 & \text { if } m_{i^{\prime}} \text { is even } \\
m_{i^{\prime}} & \text { if } m_{i^{\prime}} \text { is odd } \\
Q=\prod_{i=1}^{k} \prod_{j=1}^{\left[\frac{m_{i}}{2}\right]}\left(\left(\bar{y}_{i(2 j-1)}, \bar{y}_{i(2 j)}\right)+1\right), \quad Q^{\prime}=\prod_{i^{\prime}=1}^{k} \prod_{j^{\prime}=1}^{\left[\frac{m_{i^{\prime}}^{\prime}-1}{2}\right]}\left(\left(\bar{y}_{i^{\prime}\left(2 j^{\prime}\right)}^{\prime}, \bar{y}_{i^{\prime}\left(2 j^{\prime}+1\right)}^{\prime}\right)+1\right)\end{cases}
\end{gathered}
$$

Since μ is injective, all elements $y_{i(2 j-1)}, y_{i(2 j)}\left(i=1,2, \ldots, k ; j=1,2, \ldots,\left[\frac{m_{i}}{2}\right]\right)$ that appear in Q are distinct elements of the set $\left\{y_{1}, y_{2}, \ldots\right\}$. Hence, by Corollary 2.7 we have $Q \neq 0$ in $G=F \mathcal{G} / I$. Similarly, $Q^{\prime} \neq 0$ in $H=F \mathcal{G}_{r} / I_{r}$. Since \bar{y} and \bar{y}^{\prime} are invertible elements of G and H, respectively, we have $\bar{y} Q \otimes \bar{y}^{\prime} Q^{\prime} \neq 0$, that is,

$$
\left[v_{11}, \ldots, v_{1 m_{1}}\right] \ldots\left[v_{k 1}, \ldots, v_{k m_{k}}\right] \neq 0
$$

as required.
This completes the proof of Theorem 1.9 ,
Remark. Recall that in the proof of Theorem 1.9 we use the same algebra A that was used in the proof of [8, Theorem 1.4]. Note that in both proofs one can choose the algebra A different from one used in our proofs. For example, let F be any field and let $r=m+n-4=2\left(m^{\prime}+n^{\prime}-2\right)$. Let $A=F\langle X\rangle / T^{(3)} \otimes F\left\langle X_{r}\right\rangle / T_{r}^{(3)}$ where $X_{r}=\left\{x_{1}, \ldots, x_{r}\right\}$ and $T_{r}^{(3)}=T^{(3)}\left(F\left\langle X_{r}\right\rangle\right)=T^{(3)} \cap F\left\langle X_{r}\right\rangle$. Then A satisfies the conditions i) and ii) of Theorem 1.9, one can check this using a description of a basis of $F\langle X\rangle / T^{(3)}$ over F. Such a description can be deduced, for instance, from [3, Proposition 3.2] or found (if char $F \neq 2$) in [4, Proposition 9].

Our choice of the algebra A in the proof of Theorem 1.9 was made with a purpose to have the paper self-contained.

Acknowledgments

This work was partially supported by CNPq grant $310331 / 2015-3$ and by RFBR grant 15-01-05823. We thank Victor Petrogradsky for pointing out the references [18, 19].

References

[1] N. Abughazalah, P. Etingof, On properties of the lower central series of associative algebras, J. Algebra Appl. 15 (2016) 1650187 (24 pages). arXiv:1508.00943 [math.RA].
[2] A. Bapat, D. Jordan, Lower central series of free algebras in symmetric tensor categories, J. Algebra 373 (2013) $299-311$. arXiv:1001.1375 [math.RA].
[3] S. Bhupatiraju, P. Etingof, D. Jordan, W. Kuszmaul and J. Li, Lower central series of a free associative algebra over the integers and finite fields, J. Algebra 372 (2012) 251-274. arXiv:1203.1893 [math.RA].
[4] A. Brandão Jr., P. Koshlukov, A. Krasilnikov, E.A. Silva, The central polynomials for the Grassmann algebra, Israel J. Math. 179 (2010) 127-144.
[5] E.A. da Costa, A. Krasilnikov, Relations in universal Lie nilpotent associative algebras of class 4, to appear in Comm. Algebra. DOI: 10.1080/00927872.2017.1347661. arXiv:1306.4294 [math.RA].
[6] R.R. Dangovski, On the maximal containments of lower central series ideals, arXiv:1509.08030 [math.RA].
[7] G. Deryabina, A. Krasilnikov, The torsion subgroup of the additive group of a Lie nilpotent associative ring of class 3 , J. Algebra 428 (2015) 230-255. arXiv:1308.4172 [math.RA].
[8] G. Deryabina, A. Krasilnikov, Products of commutators in a Lie nilpotent associative algebra, J. Algebra 469 (2017) 84-95. arXiv:1509.08890 [math.RA].
[9] P. Etingof, J. Kim, X. Ma, On universal Lie nilpotent associative algebras, J. Algebra 321 (2009) 697-703. arXiv:0805.1909 [math.RA].
[10] B. Feigin, B. Shoikhet, On $[A, A] /[A, A, A]$ and on a W_{n}-action on the consecutive commutators of free associative algebras, Math. Res. Lett. 14 (2007) 781-795. arXiv:math/0610410
[11] A.S. Gordienko, Codimensions of commutators of length 4, Russian Math. Surveys 62 (2007) 187-188.
[12] A.V. Grishin, S.V. Pchelintsev, On the centers of relatively free algebras with an identity of Lie nilpotency, $S b . M a t h .206$ (2015) 1610-1627.
[13] A.V. Grishin, L.M. Tsybulya, A.A. Shokola, On T-spaces and relations in relatively free, Lie nilpotent, associative algebras, J. Math. Sci. (N.Y.) $\mathbf{1 7 7}$ (2011) 868-877.
[14] C.K. Gupta, A.N. Krasilnikov, Some non-finitely based varieties of groups and group representations, Internat. J. Algebra Comput. 5 (1995) 343-365.
[15] N. Gupta, F. Levin, On the Lie ideals of a ring, J. Algebra 81 (1983) 225-231.
[16] A. Krasilnikov, The additive group of a Lie nilpotent associative ring, J. Algebra 392 (2013) 10-22. arXiv:1204.2674][math.RA].
[17] V.N. Latyshev, On the finiteness of the number of generators of a T-ideal with an element $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, Sibirsk. Mat. Zh. 6 (1965) 1432-1434 (in Russian).
[18] F. Levin, S. Sehgal, On Lie nilpotent group rings, J. Pure Appl. Algebra 37 (1985) 33-39.
[19] R.K. Sharma, J.B. Srivastava, Lie ideals in group rings, J. Pure Appl. Algebra 63 (1990) 67-80.
[20] I.B. Volichenko, The T-ideal generated by the element $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, Preprint no. 22, Inst. Math. Acad. Sci. Beloruss. SSR (1978) (in Russian).

Department of Computational Mathematics and Mathematical Physics (FS-11), Bauman Moscow State Technical University, 2-nd Baumanskaya Street, 5, 105005 Moscow, Russia

E-mail address: galina_deryabina@mail.ru
Departamento de Matemática, Universidade de Brasília, 70910-900 Brasília, DF, Brasil
E-mail address: alexei@unb.br

