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PRODUCTS OF SEVERAL COMMUTATORS IN A LIE NILPOTENT ASSOCIATIVE
ALGEBRA

GALINA DERYABINA AND ALEXEI KRASILNIKOV

ABSTRACT. Let F' be a field of characteristic # 2,3 and let A be a unital associative F-algebra. Define a
left-normed commutator [a1,a2,...,an] (a; € A) recursively by [a1,a2] = aia2 — az2a1, [a1,...,an—1,an] =
[[a1,---,an—1],an] (n > 3). For n > 2, let T(")(A) be the two-sided ideal in A generated by all commutators
[a1,a2,...,an] (a; € A). Define T (A) = A.

Let k, ¢ be integers such that k£ > 0, 0 < ¢ < k. Let mq,...,my be positive integers such that ¢ of them are
odd and k — £ of them are even. Let Ny o = Zle m; — 2k + £+ 2. The aim of the present note is to show that,
for any positive integers mi,...,my, in general, T(™1)(A).. . T(mk)(A) ¢ TO+Nke) (A). It is known that if
£ < k (that is, if at least one of m; is even) then T(™1)(A)...T(mk)(A) C TNk.£)(A) for each A so our result
cannot be improved if £ < k.

Let N = Zle m; —k—+1. Recently Dangovski has proved that if mq,..., m; are any positive integers then,
in general, T("1)(A)... T(mk)(A) ¢ TO+NK)(A). Since Nj, o = Ny — (k — £ — 1), Dangovski’s result is stronger
than ours if £ = k and is weaker than ours if £ < k — 2; if £ = k — 1 then N = Nj 1 so both results coincide.
It is known that if £ = k (that is, if all m; are odd) then, for each A, T("1)(A)...T(mx)(A) C T(NK)(A) so in
this case Dangovski’s result cannot be improved.
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1. INTRODUCTION

Let R be an arbitrary unital associative and commutative ring and let A be a unital associative algebra
over R. Define a left-normed commutator [a1,as,...,a,] (a; € A) recursively by [a1,a2] = ajas — asaq,
[a1,. .. an_1,an] = [[a1,...,an_1],an] (n > 3). For n > 2, let T (A) be the two-sided ideal in A generated by
all commutators [a1,as, ..., a,] (a; € A). Define T()(A) = A. Clearly, we have

A=TW(A) 2TA(A) 2T (A) D - D TW(A) 2 ...
We are concerned with the following.

Problem 1. Letk > 2 and let mq, ..., my be positive integers. Find the maximal integer N = N(R, mq,...,my)
such that, for each R-algebra A,
T (A) ... T (A) € TV (A).
Let X = {x1,29,...} be an infinite countable set and let R(X) be the free unital associative algebra over R
freely generated by X. Define 7™ = T(W(R(X)).

Problem 2. Letk > 2 and let mq, ..., my be positive integers. Find the maximal integer N = N(R, mq, ..., my)
such that
Ty i) ¢ 7V,

It is easy to check that Problem 1 is equivalent to Problem 2, and the integer N in both problems is the
same.

Problem 2 and some other similar questions have been recently studied by Dangovski [6] (using different
terminology). The work of Dangovski was motivated by the results of Etingof, Kim and Ma [9] and Bapat and
Jordan [2], which in turn were motivated by the pioneering article by Feigin and Shoikhet [10].

The following assertion was proved by Latyshev [I7, Lemma 1] in 1965 (Latyshev’s paper was published in
Russian) and independently rediscovered by Gupta and Levin [I5, Theorem 3.2] in 1983.

Theorem 1.1 (see [I5, I7]). Let R be an arbitrary unital associative and commutative ring and let A be an
associative R-algebra. Let m,n € Z, m,n > 1. Then
T (A) T (A) € TmHn=2)(4).
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Latyshev [17] has actually proved that 7™ 7 C T(m+7=2) in R(X); this assertion is equivalent to Theorem
L1

Note that, for a unital associative ring R, we have & € R if and only if 2(= 141) and 3 are invertible in R. The
theorem below was proved by Sharma and Srivastava [I9, Theorem 2.8] in 1990 and independently rediscovered
(with different proofs) by Bapat and Jordan [2| Corollary 1.4] in 2013 and by Grishin and Pchelintsev [12]
Theorem 1] in 2015.

Theorem 1.2 (sce [2,[12,19]). Let R be an arbitrary unital associative and commutative ring such that ¢ € R
and let A be an associative R-algebra. Let m,n € Z, m,n > 1 and at least one of the numbers m, n is odd.
Then

T (A) T (A) € TmHn=1)(4).

Note that Grishin and Pchelintsev [I2] have actually proved that 70 T C T(m+n=1). this result is
equivalent to Theorem
Let Ni, = Zle m; — k + 1. The proposition below follows immediately from Theorem

Proposition 1.3. Let R be an arbitrary unital associative and commutative ring such that % € R and let A be
an associative R-algebra. Let k > 0 be an integer and let m; >0 (i =1,...,k) be odd integers. Then

TmI(A) ... T (A) € TWE(A).

Let Ny ¢ = Ele m; —2k+0+2= Ni—(k—¢—1). One can deduce from Theorems [T and [[.2 the following
proposition (see Dangovski [6, Section 6]).

Proposition 1.4 (see [6]). Let R be an arbitrary unital associative and commutative ring such that % € R and
let A be an associative R-algebra. Let k,{ be integers such that 0 < ¢ < k. Let m; > 2 (i =1,...,k) be integers
such that £ of them are odd and (k —¢) > 0 of them are even. Then

(1) TmI(A) ... T (A) € TR (A).

We prove Proposition [[4] in Section 2 in order to have the paper more self-contained.
Recently Dangovski [6l Proposition 2.2] has proved a result that can be reformulated as follows.

Theorem 1.5 (see [6]). Let F be a field and let k be a positive integer. Let my, ..., my be positive integers and
let Ny, be as above. Then there exists an associative F-algebra A such that

(2) T (A) ... T (A) ¢ TUHNGD (A).
One can deduce from Theorem the following.

Corollary 1.6. Let R be an arbitrary unital associative and commutative ring and let k,myq, ..., my, N be as
in Theorem[LA Then there exists an associative R-algebra A such that (2) holds.

Proof. Suppose that R is not a field. Let M be a maximal ideal of R (by Zorn’s lemma, such an ideal M exists).
Then F' = R/M is a field and the F-algebra A of Theorem [[Lh] can be viewed in a natural way as an R-algebra
(with r - a defined by 7-a = (r+ M) -a for r € R,a € A). Since A satisfies (), the result follows. O

Let N be the integer defined in Problems 1 and 2. If % € R and all the integers m1,...,my are odd then
N = N. Indeed, it follows from Proposition [[.3] and Corollary [[L8] that in this case we always have

T (A)... T (A) C TR (A)
and, in general,
T (A)... T (A) ¢ TAFND(A),
Suppose that ¢ of the integers myq,...,my, are odd (¢ < k) and (k — ¢) > 0 of them are even. Let & € R.
Then, by Proposition [} Ni, < N and, by Corollary[[L6] N < Nj. If £ =k — 1 (that is, kK — 1 of the integers
mi,...,my are odd and one of them is even) then Ny 1 = Nj so N = Nj. However, if 0 < ¢ < k — 1 then

Nie= Ny — (k—£—1) < Ny, so one can only deduce from the results above that Ny, < N < Ny.
Our main result is as follows.

Theorem 1.7. Let F' be a field. Let k,f be integers, 0 < £ < k. Let mq,...,my be positive integers such that
¢ of them are odd and k — £ of them are even and let Ny, be as above. Then there exists a unital associative
F-algebra A such that

(3) Tm)(A)... T (A) ¢ TA+HNeO(4),
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In a particular case when k& = 2 and my, meo are even Theorem [[L7 has been recently proved by Grishin and
Pchelintsev [12] and independently by the authors of the present article [§]. In another particular case when
mip =mo = - - = mg_1 = 2 and my is even this theorem has been proved by Grishin, Tsybulya and Shokola
[13, Theorem 3].

The proof of the following result is similar to that of Corollary [[LGl

Corollary 1.8. Let R be an arbitrary unital associative and commutative ring and let k, £, mq,...,my, N
be as in Theorem [I.7} Then there exists an associative R-algebra A such that (3) holds.

It follows that if % € R and at least one of the integers m; is even then N = N}, , because, by Proposition
[[4 and Corollary [[8, in this case we always have

T (A) ... T (A) € TWe) (A)

but, in general,
T(ml)(A) . T(mk)(A) ¢ T(1+Nk,l)(A)_

Thus, the solution of Problems 1 and 2 (for R that contains %) is as follows. Let R be a unital associative

and commutative ring such that % € R and let k,mq, ..., my be positive integers. Then

Ny = Zle m; —k+1 if all integers m; are odd (Dangovski [6]);
N =
if £ < k of the integers m; are odd and

Nug=5F m;—2k+0+2
Bt =2 im tet k — ¢ of them are even.

Recall that an associative algebra A is Lie nilpotent of class at most ¢ if [ug, ..., u., uer1] = 0 for all u; € A.
Theorem [ follows immediately from the following result.

Theorem 1.9. Under the hypotheses of Theorem [I.7, there exists a unital associative F-algebra A such that
the following two conditions are satisfied:

i) TO+Ne) (A) = 0, that is, the algebra A is Lie nilpotent of class at most Ny g;

ii) there are v;; € A such that

[V11, s Vimy ] - [VkL, -+ o s Uk, ] # 0.
To prove Theorem [[L9 we use the same algebra A that was used in [8 Theorem 1.4].
Remarks. 1. Both Theorem and Theorem [[7] are valid for arbitrary k-tuples mi,mo, ..., m of positive

integers. However, if ¢ = k (that is, if all m; are odd) then Theorem gives a stronger result than Theorem
LT because Ny = N + 1 > Ny and therefore T(FNew) (A) € TU+NK)(A). If £ = k — 1 (that is, if one of the

integers my, ma, ..., my is even and k — 1 of them are odd) then Ny 1 = Ny, so the results of Theorem [[5] and
Theorem [[7] coincide; and if ¢ < k — 1 (that is, if two or more of the integers m,ma, ..., my are even) then

Nie= Nj — (k=€ —1) < Ni so Theorem [[[H gives a weaker result than Theorem [ 71

2. The proofs of Theorem given in [2], [12] and [19] are valid for algebras over an associative and
commutative unital ring R such that % € R. However, the proof given in [2] can be slightly modified to become
also valid over any R such that 1 € R (see [I, Remark 3.9] for explanation). Moreover, for some specific m and
n Theorem holds over an arbitrary ring R: for instance, T®(A)T®)(A) c T®)(A) for any algebra A over
any associative and commutative unital ring R (see [5, Lemma 2.1]). However, in general Theorem [[2 fails over
Z and over a field of characteristic 3: it was shown in [7} [I6] that in this case TG)T(2) ¢ T™ and moreover,
TG (T@)" ¢ T for all £ > 1.

3. In 1978 Volichenko proved Theorem [[2] for m = 3 and arbitrary n in the preprint [20] written in Russian.
In 1985 Levin and Sehgal [I§] independently rediscovered Volichenko’s result. More recently Etingof, Kim and
Ma [9] and Gordienko [I1I] have independently proved this theorem for small m and n; these authors were
unaware of the results of [I8], [20].

2. PROOFS OF PROPOSITION [[L4] AND THEOREM

Proof of Proposition [I.} Induction on k. If k =1 then £ =0 so N1 o = my and () holds.
Suppose that & > 1 and for all products of less than k terms T(mi)(A) the proposition has already been
proved. We split the proof in 3 cases.



4 GALINA DERYABINA AND ALEXEI KRASILNIKOV

Case 1. Suppose that my is odd. Then for some i such that 1 < ¢ < k the number m; is even so we can
apply the induction hypothesis to the product 70" (A)...T(™s-1)(A). By this hypothesis,

TmD(A).. Tm=(A) € TN (A)
where N’ =" 'm, —2(k— 1)+ (0 = 1) +2 ="' m; — 2k + £ + 3. By Theorem [
TNV (A) T (A) € TN +me=1)(4) = TNk (4)
since N’ +mp — 1 = Zle m; — 2k + ¢+ 2 = Ny 4. Thus, in this case () holds, as required.

Case 2. Suppose that my is even and, for some 4 such that 1 <1 < k, m; is also even. Then we can apply
the induction hypothesis to the product 7™ (A) ... Tm-1)(A) so

T(ml)(A) N _T(mk—l)(A) C T(N”)(A)
where N” =" Vm; —2(k— 1) + €+ 2 = 1" m; — 2k + £ + 4. By Theorem [T}
TN (4) T (A4) € TV FmemD) (4) = TV (4)

since N +my, — 2 = Ele m; — 2k 4+ ¢+ 2 = Ny 4. Hence, in this case (I holds, as required.

Case 3. Suppose that my is even and all m; for 1 <14 < k are odd. Applying Theorem[[2 k — 1 times, we get

T (A) .. T (A) TR (A) € Tlmatdme—ktD) gy = 7(Nek-1)(4)

since Zle m; —k+1= Zle m; — 2k 4+ (k — 1) + 2 = Ny ,—1. Thus, in this case () also holds.

The proof of Proposition [[L4]is completed. O

The proof of Theorem below is a modification of the proof of [8, Theorem 1.4]. First we need some
auxiliary results.

Let G and H be unital associative algebras over a field F' such that [g1, g2, 93] = 0, [h1, ha, hs] = 0 for all
g; € G, h; € H. Note that each commutator [g1, g2] (9; € G) is central in G, that is, [g1, g2]g = g[g1, g2] for each
g € G. Similarly, each commutator [hq, ha] (h; € H) is central in H. The following lemma has been proved in
[8, Lemma 2.1] by induction on n.

Lemma 2.1 (see [8]). Let
ce =[g1 @ h1,92 @ ha, ..., g0 @ hy]
where £ > 2,g; € G,hj € H. Then
c2 = [91,92] ® hiha 4 g2g1 @ [h1, hal,
Con = (91, 92193, 94] - - - [92n—1, gon] @ [h1ha, h3][ha, hs] . .. [han—2, han—1]han
+ 9291, 93][94, g5] - - - [92n—2, G2n—1]g2n @ [h1, hal[ha, hal . . . [h2n—1, hon]
(n>1),
Cont1 = [91,92][93, 94] - - - [92n—1, 92n]g2n41 @ [h1h2, hsl[ha, hs] ... [han, hony1]
+ (9291, 93][94, g5] - - - [92n, g2n41] @ [h1, hal[hs, ha] . . . [h2n—1, han]honia
(n>1).
Corollary 2.2 (see [8]). Suppose that
(4) [f1, f2] - [fon—1, fon] =0 for all f; € H.
Then for all u; € G ® H we have
[ur,ug,. .., uz,11] = 0.

Proof. It follows from (@) and Lemma 2.1l that [g1 ® h1,92 @ ha, ..., gant1 @ hops1] =0 for all g; € G, h; € H.
Since each u; € G ® H is a sum of products of the form g ® h (g € G, h € H), we have [u1,ua, ..., uz,+1] =0
for all u; € G ® H, as required. O

The following assertion follows immediately from Lemma 211

Corollary 2.3. Let vy = g1 ®1, v; = g @ h; (i = 2,...,2m' — 1), Vo = gomr @ 1 and let w1 = g} ® 1,
wj = g;@h; (j=2,...,2n" + 1) where g;,g; € G, h;, b, € H. Then
V1, v2m] = [91,92] - - - [92m'—1, 92m/] @ [h2, ha] ... [hom/—2, hom—1],

[y, wan 1] = (g1, 93]+ [9onr— 15 Gonr|92nr 1 @ [hy, B . [Py, Hypr 1]
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Proof of Theorem[I.9. Two cases are to be considered: the case when char F # 2 and the case when char F' = 2.

Case 1. Suppose that F' is a field of characteristic # 2. Let F be the unital infinite-dimensional Grassmann
(or exterior) algebra over F. Then E is generated by the elements e; (i = 1,2,...) such that e;e; = —eje;,
e? =0 for all i, j and the set

B:{6i16i2...€ik|k20,i1<i2<"'<ik}

forms a basis of E over F. It is well known and easy to check that [g1,g2,93] =0 for all ¢g; € E.

Recall that the r-generated unital Grassmann algebra E,. is the unital subalgebra of E generated by eq, e, ..., e,.
Note that [h1, ha, hs] = 0 for all h; € E,.

Take A = F ® E, where r = Zle m; — 2k + £ = Nj, — 2. It is easy to check that r is an even integer. We
can apply Lemma 2] and Corollaries and 23 for G = E, H = E,.

Note that [f1, fo] ... [fr+1, fr+2] = 0 for all f; € E,.. Indeed, for all f, f’ € E, the commutator [f, f'] belongs
to the linear span of the set {e;, ...ei,, | £ > 1,1 < i, < r}. Hence, [f1, fo]...[fr+1, fr+2] belongs to the
linear span of the set {e;, ...ei,, | £ > (r+2)/2,1 < iy < r}. Since 20 > r+ 2 > r, each product e;, ...e;,,
above contains equal terms e;, = e; , (s < s’) and, therefore, is equal to 0. Thus, [f1, fo] ... [fr41, fri2] =0, as
claimed.

Since Ny ¢ =r + 2, we have [f1, fo] ... [f(w, ,~1), [N, ] = 0 for all f; € E,.. Hence, by Corollary 2.2, we have
[u1,.. ., uayn, )] =0 for all u; € A = E® E,, that is, TO+NEO(A) = 0, as required.

Now it suffices to find elements v;; € A such that

(5) [’Ull,...,’l)lml]...[’l}kl,...,’l)kmk]750.
Let
P={(j)|1<i<k 1<j<m}.

Note that v;; appears in (B) if and only if (¢,j) € P. Let N' = Zlemi and let p: P — {1,2,...,N} be a
bijection. Define
eij = euiy)  ((1,7) €P).

Note that
(6) H Cij = (—1)66162 oL eN
(i,9)€P
for some ¢ € {0, 1}.
Let P’ C P,
P ={{) 1< <k; 2<j <m;—1if m;iseven; 2 <3 <m;if m; is odd}.

Let ' : P = {1,2,..., Ele m; — 2k + ¢} ={1,2,...,7r} be a bijection. Define

6;/j/ = eul(i/)j/) ((i/,j/) S P/)
Note that
(7) H €1 = (—1)6/6162 Lo Cp
(i",4")€P’

for some ¢’ € {0,1}.
Define

U1 = ;1 ®1;
vij = e ®el;  (1<i<k; 2<j<m;—1)

I €im; @1 if m; is even;
im; €im,; & e;mi if m; is odd.

If m; is even then, by Corollary 23]

[Ui17Ui27 S ’Uimi]
= [ein, einlleis, €] - - [€im;—1)s €im] @ [€f2, €l3][€1a €l5] - - [€mi—2)» Eigm 1))
Note that estesy = —egpes for all s,8' ¢t S0 [est, esrpr] = 2estege. It follows that if m; is even then

my—1 ro /
[Uila Vi2y e - ;Uimi] =2""""e€50 . Cim,; @ €;9€;3 ... €i(mi—1)*
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If m; is odd then, by Corollary 2.3]

[v’ilv Vi2y -+ vimi]
= [ei1, ein][eis, €ia] - - - [€i(m,—2)» €i(m;—1))€im; @ €2, €55][€5as €55) - - - [€i(ms—1)5 Eims)
= 2mi*161‘1€i2 < €i(m;—1)Cim; ® egzeég - e;(mi—l)eémi'

It follows that

E oms koomy
Njp—1 /
[U117"-7U1m1]"-[Uklu'-'7vkmk] = 2k HH61J® H H ei’j’
i=1j=1 i'=1j'=2
where
, my — 1  if my is even;
mi, = . .
¥ mi if m; is odd,
that is,
Ni—1 /
[vu,...,vlml]...[vkl,...,vkmk]:2 k H eij® H ei’j/'
(i,J)EP (i7.3)EP’
By (@) and (), we have
_ 548" 9N —1
(U115« oy Uiy )+ e [V, « o s Uk, ] = (—1) 2V ereg...eny ®eres. .. e #£ 0,

as required.
Case 2. Suppose that F'is a field of characteristic 2. Let G be the group given by the presentation
Gg= <y15y25"' | y12 = 17 ((yi,yj)ayk) =1 (Zajvk = 172a)>

where (a,b) = a~'b~'ab. Then it is easy to check that G is a nilpotent group of class 2 so (a,b)c = c(a,b) for
all a,b, c € G and, therefore, (a,bc) = (a,c)c™(a,b)c = (a,b)(a,c) (see [8] for more details). It is clear that the
quotient group G/G’ is an elementary abelian 2-group so b? € G’ C Z(G) for all b € G. It follows that (a,b?) = 1
so (a,b)? = (a,b®) = 1, that is, (a,b) = (a,b)~!. Since (b,a) = (a,b)"!, we have (a,b) = (b,a) for all a,b € G.

Let (<) be an arbitrary linear order on the set {(i,7) | 4,7 € Z, 0 < i < j}. The following lemma is well
known and easy to check.

Lemma 2.4. Let a € G. Then a can be written in a unique way in the form
(8) a="Yir - Yig Wi s Yis) -« Yoy 1> Yings)
where q,q' > 0; iy < -+ <ig, Jas—1 < jas for all s,
(J2s—1,J2s) < (Jasr—1,J2s) if 5 <5

Let FG be the group algebra of G over F. Let d;; = (yi,y;) +1 € FG. Note that d;; = d;; and d;; = 0 for
all 7, 7.
Let I be the two-sided ideal of F'G generated by the set

S = {diligdi3i4 + diligdi2i4 | il,ig,i37i4 = 1, 2... }

The following two lemmas are well known (see, for instance, [I4, Lemma 2.1], [I5] Example 3.8]); their proofs
can also be found in [§].

Lemma 2.5. For all uy,us,us € FG, we have [uy,us,us] € I.
Lemma 2.6. For all £ > 0, we have

(i, 92) + 1) ((ws,9a) +1) .. ((yae—1,y20) +1) ¢ 1.

Since the ideal I is invariant under all permutations of the set {y1,y2,...} of generators of the group G, we
have the following.

Corollary 2.7. Let £ > 0. Then ((yil,y@)—l—l) . ((yi2[71,yi2l)+1) ¢ I if all integers 11,1z, . .. ,io¢ are distinct.

Now we are in a position to complete the proof of Theorem [[L9 Recall that r = Zle m; —2k+£€=Np,—2
is an even integer. Let G, be the subgroup of G generated by y1,...,y,; let I, = INFG,. Take G = FG/I,
H =FgG,/I,.. Take A=G ® H. By Lemma [2.5] we can apply Lemma 2] and Corollaries 2.2 and to A.
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We claim that [f1, fa] ... [fri+1, fri2] € I for all f; € FG,. Indeed, we may assume without loss of generality
that f; € G, for all i. Since

[fos—1, fos] = fas—1f2s + fosfas—1
= fas—1f2s((f2s, fos—1) + 1) = fas—1f2s((fos—1, fas) + 1)

(recall that F is a field of characteristic 2), we have

[fus fo) oo Ufrins fraod = fife oo fraa((Fr f2) 1) o ((Frgns fra) + 1),

It is clear that, for each s, (fas—1, f2s) = [I; ¢i..j., for some commutators ¢;_, ., = (¥i...yj..). Let d
Cisjer + 15 then ¢ ., = d + 1. We have

istIst

Tstst

(f25—17 f25) + 1 = Hcistjst + 1 = (H(distjst + 1)) + 1
t t
= [ diciee ++ D disjudinyio + D dissji-
t

t<t’ t

It follows that the product ((fl, f2) + 1) . ((fr+1, fraa) + 1) can be written as a sum of products of the form

9) dgigs - Agns_1g00 = ((yqlvyth) + 1) cee ((y(hl—l ) yqze) + 1)

where 2¢ > r + 2 > r. Hence, in the product (@) we have ¢, = ¢ for some ¢t < t'.

Note that dj1j3 dj2j3 e [ for all 71,7253 because djljs dj2j3 = dj1j3 dj2j3 + dj1j2 dj3j3 € S. Since dij = dji for all
i,j, we have d;,;,d;,i, € I if any two of the indices iy, i, 13, i4 coincide. It follows that each product (@) belongs
to I, = IN FG, and so does the product ((fl, fa)+ 1) . ((fr+1, fra2)+ 1). Hence, [f1, fo] ... [fr+1, fri+2] € Ip,
as claimed. Since Ny ¢ = r + 2, we have [f1, fa] ... [f(n, ,—1), N, ] € I for al f; € FG,.

For any uw € FG,let u =u+ I € G = FG/I. Since one can view the algebra H = FG, /I, as a subalgebra of
G =FG/I, we also write u =u+ I, € H = FG, /I, for u € FG,.

By the observation above, [f1, f] ... [f_(Nk,z—l)v fne.] =0for all f; € H. Hence, by Corollary 22, we have
[u1,.. ., uyn, ] =0 forallu; € A =G @ H, that is, TO+Ne(A) = 0, as required.

Let P, P’, i and ' be as in Case 1. Recall that N' = Zle m;. Define
Yii = Yuig) ((i.5) € P), Yirge =Yg ((A57) € P').
Define
vt = Y @ 1
vij = Ui @y  (1<i<k 2<j<m—1);

Vim;

Yim,; @1 if m; is even;
Yim: @ Y, if m; is odd.

If m; is even then, by Corollary 23]
[Vi1, Vi2y -+« Vim, ]
= [in, Yi2[Wiz, Gial - - [Gigmi—1)> Gim) © [z, Yis) [Tias Uis) - - - [Fimi—2)» Tima—1)]
= Y ¥iois - - - Yim, ((Firs Giz) + 1) (Tas, Gia) + 1) - (Tigmi—1)» Jim,) + 1)
® GioTiz - - Uigmi—1) ((Tias Ui) + 1) (Fiar Tis) + 1)... ((Figms—2)> Figmi—1)) + 1)
If m; is odd then, by the same corollary,
[Vi1, Vi - - s Vim,]
= [9i1, Yi2l[¥i3, ial - - - [Gimi—2)» Yigmi—1) [Yims @ iz Gia)[Tias Uis] - - - [Figms —1)s Yirm, ]
= Gin¥i2¥is3 - - - Yi(m,—1) Vi (Tir, Uiz) + 1) (@3, Gia) + 1) -« (Gima—2) Fimi—1)) + 1)
@ YioWis - Yigm,—1) Vi, (Gizs Tiz) + 1) (Gias Tis) +1) - (Wiam, -1y Bim,) +1)
It follows that
(V11,5 s Vmg | e [VkLs o s Uk, | = T Q@Y Q'
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where
k my; k 7nl/
p=U1ws o= 17
1=17=1 i'=17j'=2
;| my =1 if my is even;
M= my if my is odd,
m m;/fl
] P 7]
Q= H H i25-1)> Yi2g)) + 1), Q = H H (Tir(2jys Uir(2jr+1)) + 1).
=1 j=1 =1
Since p is injective, all elements y;(2; 1y, Yic25) (1 = 1,2,...,k; j=1,2,..., [";]) that appear in @) are distinct

elements of the set {y, yg,. . }. Hence, by Corollary 27 we have @ # 0 in G = FG/I. Similarly, Q' #0in
H = FG,/I,. Since j and ¢ are invertible elements of G and H, respectively, we have § Q ® ¥’ Q' # 0, that is,

[’0117"';1)17711] ...[vkl,...,vkmk] 75 0,

as required.
This completes the proof of Theorem O

Remark. Recall that in the proof of Theorem we use the same algebra A that was used in the proof of
[8, Theorem 1.4]. Note that in both proofs one can choose the algebra A different from one used in our proofs.
For example, let F' be any field and let »r = m +n —4 = 2(m’ +n’ —2). Let A = F(X)/T® ® F<XT>/TT(3)
where X, = {x1,...,2,} and S O (F(X,)) = T® N F(X,). Then A satisfies the conditions i) and ii) of
Theorem [L3 one can check this using a description of a basis of F(X)/T®) over F. Such a description can be
deduced, for instance, from [3, Proposition 3.2] or found (if char F # 2) in [4 Proposition 9].

Our choice of the algebra A in the proof of Theorem was made with a purpose to have the paper
self-contained.
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