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PRODUCTS OF SEVERAL COMMUTATORS IN A LIE NILPOTENT ASSOCIATIVE

ALGEBRA

GALINA DERYABINA AND ALEXEI KRASILNIKOV

Abstract. Let F be a field of characteristic 6= 2, 3 and let A be a unital associative F -algebra. Define a
left-normed commutator [a1, a2, . . . , an] (ai ∈ A) recursively by [a1, a2] = a1a2 − a2a1, [a1, . . . , an−1, an] =

[[a1, . . . , an−1], an] (n ≥ 3). For n ≥ 2, let T (n)(A) be the two-sided ideal in A generated by all commutators

[a1, a2, . . . , an] (ai ∈ A). Define T (1)(A) = A.
Let k, ℓ be integers such that k > 0, 0 ≤ ℓ ≤ k. Let m1, . . . ,mk be positive integers such that ℓ of them are

odd and k− ℓ of them are even. Let Nk,ℓ =
∑k

i=1 mi − 2k+ ℓ+2. The aim of the present note is to show that,

for any positive integers m1, . . . , mk, in general, T (m1)(A) . . . T (mk)(A) * T (1+Nk,ℓ)(A). It is known that if

ℓ < k (that is, if at least one of mi is even) then T (m1)(A) . . . T (mk)(A) ⊆ T (Nk,ℓ)(A) for each A so our result
cannot be improved if ℓ < k.

Let Nk =
∑k

i=1 mi−k+1. Recently Dangovski has proved that if m1, . . . , mk are any positive integers then,

in general, T (m1)(A) . . . T (mk)(A) * T (1+Nk)(A). Since Nk,ℓ = Nk − (k− ℓ− 1), Dangovski’s result is stronger
than ours if ℓ = k and is weaker than ours if ℓ ≤ k− 2; if ℓ = k− 1 then Nk = Nk,k−1 so both results coincide.

It is known that if ℓ = k (that is, if all mi are odd) then, for each A, T (m1)(A) . . . T (mk)(A) ⊆ T (Nk)(A) so in
this case Dangovski’s result cannot be improved.

2010 AMS MSC Classification: 16R10, 16R40
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1. Introduction

Let R be an arbitrary unital associative and commutative ring and let A be a unital associative algebra
over R. Define a left-normed commutator [a1, a2, . . . , an] (ai ∈ A) recursively by [a1, a2] = a1a2 − a2a1,
[a1, . . . , an−1, an] = [[a1, . . . , an−1], an] (n ≥ 3). For n ≥ 2, let T (n)(A) be the two-sided ideal in A generated by
all commutators [a1, a2, . . . , an] (ai ∈ A). Define T (1)(A) = A. Clearly, we have

A = T (1)(A) ⊇ T (2)(A) ⊇ T (3)(A) ⊇ · · · ⊇ T (n)(A) ⊇ . . . .

We are concerned with the following.

Problem 1. Let k ≥ 2 and let m1, . . . ,mk be positive integers. Find the maximal integer N = N(R,m1, . . . ,mk)
such that, for each R-algebra A,

T (m1)(A) . . . T (mk)(A) ⊆ T (N)(A).

Let X = {x1, x2, . . . } be an infinite countable set and let R〈X〉 be the free unital associative algebra over R
freely generated by X . Define T (n) = T (n)(R〈X〉).

Problem 2. Let k ≥ 2 and let m1, . . . ,mk be positive integers. Find the maximal integer N = N(R,m1, . . . ,mk)
such that

T (m1) . . . T (mk) ⊆ T (N).

It is easy to check that Problem 1 is equivalent to Problem 2, and the integer N in both problems is the
same.

Problem 2 and some other similar questions have been recently studied by Dangovski [6] (using different
terminology). The work of Dangovski was motivated by the results of Etingof, Kim and Ma [9] and Bapat and
Jordan [2], which in turn were motivated by the pioneering article by Feigin and Shoikhet [10].

The following assertion was proved by Latyshev [17, Lemma 1] in 1965 (Latyshev’s paper was published in
Russian) and independently rediscovered by Gupta and Levin [15, Theorem 3.2] in 1983.

Theorem 1.1 (see [15, 17]). Let R be an arbitrary unital associative and commutative ring and let A be an
associative R-algebra. Let m,n ∈ Z, m, n ≥ 1. Then

T (m)(A) T (n)(A) ⊆ T (m+n−2)(A).
1
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Latyshev [17] has actually proved that T (m) T (n) ⊆ T (m+n−2) in R〈X〉; this assertion is equivalent to Theorem
1.1.

Note that, for a unital associative ring R, we have 1
6 ∈ R if and only if 2(= 1+1) and 3 are invertible in R. The

theorem below was proved by Sharma and Srivastava [19, Theorem 2.8] in 1990 and independently rediscovered
(with different proofs) by Bapat and Jordan [2, Corollary 1.4] in 2013 and by Grishin and Pchelintsev [12,
Theorem 1] in 2015.

Theorem 1.2 (see [2, 12, 19]). Let R be an arbitrary unital associative and commutative ring such that 1
6 ∈ R

and let A be an associative R-algebra. Let m,n ∈ Z, m, n > 1 and at least one of the numbers m, n is odd.
Then

T (m)(A) T (n)(A) ⊆ T (m+n−1)(A).

Note that Grishin and Pchelintsev [12] have actually proved that T (m) T (n) ⊆ T (m+n−1); this result is
equivalent to Theorem 1.2.

Let Nk =
∑k

i=1 mi − k + 1. The proposition below follows immediately from Theorem 1.2.

Proposition 1.3. Let R be an arbitrary unital associative and commutative ring such that 1
6 ∈ R and let A be

an associative R-algebra. Let k > 0 be an integer and let mi > 0 (i = 1, . . . , k) be odd integers. Then

T (m1)(A) . . . T (mk)(A) ⊆ T (Nk)(A).

Let Nk,ℓ =
∑k

i=1 mi−2k+ ℓ+2 = Nk− (k− ℓ−1). One can deduce from Theorems 1.1 and 1.2 the following
proposition (see Dangovski [6, Section 6]).

Proposition 1.4 (see [6]). Let R be an arbitrary unital associative and commutative ring such that 1
6 ∈ R and

let A be an associative R-algebra. Let k, ℓ be integers such that 0 ≤ ℓ < k. Let mi ≥ 2 (i = 1, . . . , k) be integers
such that ℓ of them are odd and (k − ℓ) > 0 of them are even. Then

(1) T (m1)(A) . . . T (mk)(A) ⊆ T (Nk,ℓ)(A).

We prove Proposition 1.4 in Section 2 in order to have the paper more self-contained.
Recently Dangovski [6, Proposition 2.2] has proved a result that can be reformulated as follows.

Theorem 1.5 (see [6]). Let F be a field and let k be a positive integer. Let m1, . . . ,mk be positive integers and
let Nk be as above. Then there exists an associative F -algebra A such that

(2) T (m1)(A) . . . T (mk)(A) * T (1+Nk)(A).

One can deduce from Theorem 1.5 the following.

Corollary 1.6. Let R be an arbitrary unital associative and commutative ring and let k,m1, . . . ,mk, Nk be as
in Theorem 1.5. Then there exists an associative R-algebra A such that (2) holds.

Proof. Suppose that R is not a field. Let M be a maximal ideal of R (by Zorn’s lemma, such an ideal M exists).
Then F = R/M is a field and the F -algebra A of Theorem 1.5 can be viewed in a natural way as an R-algebra
(with r · a defined by r · a = (r +M) · a for r ∈ R, a ∈ A). Since A satisfies (2), the result follows. �

Let N be the integer defined in Problems 1 and 2. If 1
6 ∈ R and all the integers m1, . . . ,mk are odd then

N = Nk. Indeed, it follows from Proposition 1.3 and Corollary 1.6 that in this case we always have

T (m1)(A) . . . T (mk)(A) ⊆ T (Nk)(A)

and, in general,
T (m1)(A) . . . T (mk)(A) * T (1+Nk)(A).

Suppose that ℓ of the integers m1, . . . ,mk are odd (ℓ < k) and (k − ℓ) > 0 of them are even. Let 1
6 ∈ R.

Then, by Proposition 1.4, Nk,ℓ ≤ N and, by Corollary 1.6, N ≤ Nk. If ℓ = k − 1 (that is, k − 1 of the integers
m1, . . . ,mk are odd and one of them is even) then Nk,k−1 = Nk so N = Nk. However, if 0 ≤ ℓ < k − 1 then
Nk,ℓ = Nk − (k − ℓ− 1) < Nk so one can only deduce from the results above that Nk,ℓ ≤ N ≤ Nk.

Our main result is as follows.

Theorem 1.7. Let F be a field. Let k, ℓ be integers, 0 ≤ ℓ ≤ k. Let m1, . . . ,mk be positive integers such that
ℓ of them are odd and k − ℓ of them are even and let Nk,ℓ be as above. Then there exists a unital associative
F -algebra A such that

(3) T (m1)(A) . . . T (mk)(A) * T (1+Nk,ℓ)(A).
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In a particular case when k = 2 and m1, m2 are even Theorem 1.7 has been recently proved by Grishin and
Pchelintsev [12] and independently by the authors of the present article [8]. In another particular case when
m1 = m2 = · · · = mk−1 = 2 and mk is even this theorem has been proved by Grishin, Tsybulya and Shokola
[13, Theorem 3].

The proof of the following result is similar to that of Corollary 1.6.

Corollary 1.8. Let R be an arbitrary unital associative and commutative ring and let k, ℓ, m1, . . . ,mk, Nk,ℓ

be as in Theorem 1.7. Then there exists an associative R-algebra A such that (3) holds.

It follows that if 1
6 ∈ R and at least one of the integers mi is even then N = Nk,ℓ because, by Proposition

1.4 and Corollary 1.8, in this case we always have

T (m1)(A) . . . T (mk)(A) ⊆ T (Nk,ℓ)(A)

but, in general,

T (m1)(A) . . . T (mk)(A) * T (1+Nk,ℓ)(A).

Thus, the solution of Problems 1 and 2 (for R that contains 1
6 ) is as follows. Let R be a unital associative

and commutative ring such that 1
6 ∈ R and let k,m1, . . . ,mk be positive integers. Then

N =











Nk =
∑k

i=1 mi − k + 1 if all integers mi are odd (Dangovski [6]);

Nk,ℓ =
∑k

i=1 mi − 2k + ℓ+ 2
if ℓ < k of the integers mi are odd and
k − ℓ of them are even.

Recall that an associative algebra A is Lie nilpotent of class at most c if [u1, . . . , uc, uc+1] = 0 for all ui ∈ A.
Theorem 1.7 follows immediately from the following result.

Theorem 1.9. Under the hypotheses of Theorem 1.7, there exists a unital associative F -algebra A such that
the following two conditions are satisfied:

i) T (1+Nk,ℓ)(A) = 0, that is, the algebra A is Lie nilpotent of class at most Nk,ℓ;
ii) there are vij ∈ A such that

[v11, . . . , v1m1
] . . . [vk1, . . . , vkmk

] 6= 0.

To prove Theorem 1.9 we use the same algebra A that was used in [8, Theorem 1.4].

Remarks. 1. Both Theorem 1.5 and Theorem 1.7 are valid for arbitrary k-tuples m1,m2, . . . ,mk of positive
integers. However, if ℓ = k (that is, if all mi are odd) then Theorem 1.5 gives a stronger result than Theorem
1.7 because Nk,k = Nk + 1 > Nk and therefore T (1+Nk,k)(A) ⊂ T (1+Nk)(A). If ℓ = k − 1 (that is, if one of the
integers m1,m2, . . . ,mk is even and k− 1 of them are odd) then Nk,k−1 = Nk so the results of Theorem 1.5 and
Theorem 1.7 coincide; and if ℓ < k − 1 (that is, if two or more of the integers m1,m2, . . . ,mk are even) then
Nk,ℓ = Nk − (k − ℓ− 1) < Nk so Theorem 1.5 gives a weaker result than Theorem 1.7.

2. The proofs of Theorem 1.2 given in [2], [12] and [19] are valid for algebras over an associative and
commutative unital ring R such that 1

6 ∈ R. However, the proof given in [2] can be slightly modified to become

also valid over any R such that 1
3 ∈ R (see [1, Remark 3.9] for explanation). Moreover, for some specific m and

n Theorem 1.2 holds over an arbitrary ring R: for instance, T (3)(A)T (3)(A) ⊂ T (5)(A) for any algebra A over
any associative and commutative unital ring R (see [5, Lemma 2.1]). However, in general Theorem 1.2 fails over
Z and over a field of characteristic 3: it was shown in [7, 16] that in this case T (3)T (2) * T (4) and moreover,

T (3)
(

T (2)
)ℓ

* T (4) for all ℓ ≥ 1.
3. In 1978 Volichenko proved Theorem 1.2 for m = 3 and arbitrary n in the preprint [20] written in Russian.

In 1985 Levin and Sehgal [18] independently rediscovered Volichenko’s result. More recently Etingof, Kim and
Ma [9] and Gordienko [11] have independently proved this theorem for small m and n; these authors were
unaware of the results of [18, 20].

2. Proofs of Proposition 1.4 and Theorem 1.9

Proof of Proposition 1.4. Induction on k. If k = 1 then ℓ = 0 so N1,0 = m1 and (1) holds.

Suppose that k > 1 and for all products of less than k terms T (mi)(A) the proposition has already been
proved. We split the proof in 3 cases.
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Case 1. Suppose that mk is odd. Then for some i such that 1 ≤ i < k the number mi is even so we can
apply the induction hypothesis to the product T (m1)(A) . . . T (mk−1)(A). By this hypothesis,

T (m1)(A) . . . T (mk−1)(A) ⊆ T (N ′)(A)

where N ′ =
∑k−1

i=1 mi − 2(k − 1) + (ℓ− 1) + 2 =
∑k−1

i=1 mi − 2k + ℓ+ 3. By Theorem 1.2,

T (N ′)(A) T (mk)(A) ⊆ T (N ′+mk−1)(A) = T (Nk,ℓ)(A)

since N ′ +mk − 1 =
∑k

i=1 mi − 2k + ℓ+ 2 = Nk,ℓ. Thus, in this case (1) holds, as required.
Case 2. Suppose that mk is even and, for some i such that 1 ≤ i < k, mi is also even. Then we can apply

the induction hypothesis to the product T (m1)(A) . . . T (mk−1)(A) so

T (m1)(A) . . . T (mk−1)(A) ⊆ T (N ′′)(A)

where N ′′ =
∑k−1

i=1 mi − 2(k − 1) + ℓ+ 2 =
∑k−1

i=1 mi − 2k + ℓ+ 4. By Theorem 1.1,

T (N ′′)(A) T (mk)(A) ⊆ T (N ′′+mk−2)(A) = T (Nk,ℓ)(A)

since N ′′ +mk − 2 =
∑k

i=1 mi − 2k + ℓ+ 2 = Nk,ℓ. Hence, in this case (1) holds, as required.
Case 3. Suppose that mk is even and all mi for 1 ≤ i < k are odd. Applying Theorem 1.2 k− 1 times, we get

T (m1)(A) . . . T (mk−1)(A) T (mk)(A) ⊆ T (m1+···+mk−k+1)(A) = T (Nk,k−1)(A)

since
∑k

i=1 mi − k + 1 =
∑k

i=1 mi − 2k + (k − 1) + 2 = Nk,k−1. Thus, in this case (1) also holds.
The proof of Proposition 1.4 is completed. �

The proof of Theorem 1.9 below is a modification of the proof of [8, Theorem 1.4]. First we need some
auxiliary results.

Let G and H be unital associative algebras over a field F such that [g1, g2, g3] = 0, [h1, h2, h3] = 0 for all
gi ∈ G, hj ∈ H . Note that each commutator [g1, g2] (gi ∈ G) is central in G, that is, [g1, g2]g = g[g1, g2] for each
g ∈ G. Similarly, each commutator [h1, h2] (hj ∈ H) is central in H . The following lemma has been proved in
[8, Lemma 2.1] by induction on n.

Lemma 2.1 (see [8]). Let
cℓ = [g1 ⊗ h1, g2 ⊗ h2, . . . , gℓ ⊗ hℓ]

where ℓ ≥ 2, gi ∈ G, hj ∈ H. Then

c2 = [g1, g2]⊗ h1h2 + g2g1 ⊗ [h1, h2],

c2n = [g1, g2][g3, g4] . . . [g2n−1, g2n]⊗ [h1h2, h3][h4, h5] . . . [h2n−2, h2n−1]h2n

+ [g2g1, g3][g4, g5] . . . [g2n−2, g2n−1]g2n ⊗ [h1, h2][h3, h4] . . . [h2n−1, h2n]

(n > 1),

c2n+1 = [g1, g2][g3, g4] . . . [g2n−1, g2n]g2n+1 ⊗ [h1h2, h3][h4, h5] . . . [h2n, h2n+1]

+ [g2g1, g3][g4, g5] . . . [g2n, g2n+1]⊗ [h1, h2][h3, h4] . . . [h2n−1, h2n]h2n+1

(n ≥ 1).

Corollary 2.2 (see [8]). Suppose that

(4) [f1, f2] . . . [f2n−1, f2n] = 0 for all fj ∈ H.

Then for all ui ∈ G⊗H we have
[u1, u2, . . . , u2n+1] = 0.

Proof. It follows from (4) and Lemma 2.1 that [g1 ⊗ h1, g2 ⊗ h2, . . . , g2n+1 ⊗ h2n+1] = 0 for all gi ∈ G, hj ∈ H .
Since each ui ∈ G⊗H is a sum of products of the form g ⊗ h (g ∈ G, h ∈ H), we have [u1, u2, . . . , u2n+1] = 0
for all ui ∈ G⊗H , as required. �

The following assertion follows immediately from Lemma 2.1.

Corollary 2.3. Let v1 = g1 ⊗ 1, vi = gi ⊗ hi (i = 2, . . . , 2m′ − 1), v2m′ = g2m′ ⊗ 1 and let w1 = g′1 ⊗ 1,
wj = g′j ⊗ h′

j (j = 2, . . . , 2n′ + 1) where gi, g
′
i ∈ G, hj, h

′
j ∈ H. Then

[v1, . . . , v2m′ ] = [g1, g2] . . . [g2m′−1, g2m′ ]⊗ [h2, h3] . . . [h2m′−2, h2m′−1],

[w1, . . . , w2n′+1] = [g′1, g
′
2] . . . [g

′
2n′−1, g

′
2n′ ]g2n′+1 ⊗ [h′

2, h
′
3] . . . [h

′
2n′ , h′

2n′+1].
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Proof of Theorem 1.9. Two cases are to be considered: the case when char F 6= 2 and the case when char F = 2.
Case 1. Suppose that F is a field of characteristic 6= 2. Let E be the unital infinite-dimensional Grassmann

(or exterior) algebra over F . Then E is generated by the elements ei (i = 1, 2, . . . ) such that eiej = −ejei,
e2i = 0 for all i, j and the set

B = {ei1ei2 . . . eik | k ≥ 0, i1 < i2 < · · · < ik}

forms a basis of E over F . It is well known and easy to check that [g1, g2, g3] = 0 for all gi ∈ E.
Recall that the r-generated unital Grassmann algebraEr is the unital subalgebra of E generated by e1, e2, . . . , er.

Note that [h1, h2, h3] = 0 for all hj ∈ Er.

Take A = E ⊗ Er where r =
∑k

i=1 mi − 2k + ℓ = Nk,ℓ − 2. It is easy to check that r is an even integer. We
can apply Lemma 2.1 and Corollaries 2.2 and 2.3 for G = E, H = Er.

Note that [f1, f2] . . . [fr+1, fr+2] = 0 for all fi ∈ Er. Indeed, for all f, f
′ ∈ Er the commutator [f, f ′] belongs

to the linear span of the set {ei1 . . . ei2ℓ | ℓ ≥ 1, 1 ≤ is ≤ r}. Hence, [f1, f2] . . . [fr+1, fr+2] belongs to the
linear span of the set {ei1 . . . ei2ℓ | ℓ ≥ (r + 2)/2, 1 ≤ is ≤ r}. Since 2ℓ ≥ r + 2 > r, each product ei1 . . . ei2ℓ
above contains equal terms eis = eis′ (s < s′) and, therefore, is equal to 0. Thus, [f1, f2] . . . [fr+1, fr+2] = 0, as
claimed.

Since Nk,ℓ = r + 2, we have [f1, f2] . . . [f(Nk,ℓ−1), fNk,ℓ
] = 0 for all fi ∈ Er. Hence, by Corollary 2.2, we have

[u1, . . . , u(1+Nk,ℓ)] = 0 for all ui ∈ A = E ⊗ Er, that is, T
(1+Nk,ℓ)(A) = 0, as required.

Now it suffices to find elements vij ∈ A such that

(5) [v11, . . . , v1m1
] . . . [vk1, . . . , vkmk

] 6= 0.

Let

P = {(i, j) | 1 ≤ i ≤ k; 1 ≤ j ≤ mi}.

Note that vij appears in (5) if and only if (i, j) ∈ P . Let N =
∑k

i=1 mi and let µ : P → {1, 2, . . . ,N} be a
bijection. Define

eij = eµ(i,j)
(

(i, j) ∈ P
)

.

Note that

(6)
∏

(i,j)∈P

eij = (−1)δe1e2 . . . eN

for some δ ∈ {0, 1}.
Let P ′ ⊂ P ,

P ′ = {(i′, j′) | 1 ≤ i′ ≤ k; 2 ≤ j′ ≤ mi − 1 if mi is even; 2 ≤ j′ ≤ mi if mi is odd}.

Let µ′ : P ′ → {1, 2, . . . ,
∑k

i=1 mi − 2k + ℓ} = {1, 2, . . . , r} be a bijection. Define

e′i′j′ = eµ′(i′,j′)

(

(i′, j′) ∈ P ′
)

.

Note that

(7)
∏

(i′,j′)∈P′

ei′j′ = (−1)δ
′

e1e2 . . . er

for some δ′ ∈ {0, 1}.
Define

vi1 = ei1 ⊗ 1;

vij = eij ⊗ e′ij (1 ≤ i ≤ k; 2 ≤ j ≤ mi − 1);

vimi
=

{

eimi
⊗ 1 if mi is even;

eimi
⊗ e′imi

if mi is odd.

If mi is even then, by Corollary 2.3,

[vi1, vi2, . . . , vimi
]

= [ei1, ei2][ei3, ei4] . . . [ei(mi−1), eimi
]⊗ [e′i2, e

′
i3][e

′
i4, e

′
i5] . . . [e

′
i(mi−2), e

′
i(mi−1)].

Note that estes′t′ = −es′t′est for all s, s
′, t, t′ so [est, es′t′ ] = 2estes′t′ . It follows that if mi is even then

[vi1, vi2, . . . , vimi
] = 2mi−1ei1ei2 . . . eimi

⊗ e′i2e
′
i3 . . . e

′
i(mi−1).



6 GALINA DERYABINA AND ALEXEI KRASILNIKOV

If mi is odd then, by Corollary 2.3,

[vi1, vi2, . . . , vimi
]

= [ei1, ei2][ei3, ei4] . . . [ei(mi−2), ei(mi−1)]eimi
⊗ [e′i2, e

′
i3][e

′
i4, e

′
i5] . . . [e

′
i(mi−1), e

′
imi

]

= 2mi−1ei1ei2 . . . ei(mi−1)eimi
⊗ e′i2e

′
i3 . . . e

′
i(mi−1)e

′
imi

.

It follows that

[v11, . . . , v1m1
] . . . [vk1, . . . , vkmk

] = 2Nk−1
k
∏

i=1

mi
∏

j=1

eij ⊗
k
∏

i′=1

m′

i′
∏

j′=2

e′i′j′

where

m′
i′ =

{

mi′ − 1 if mi′ is even;
mi′ if mi′ is odd,

that is,

[v11, . . . , v1m1
] . . . [vk1, . . . , vkmk

] = 2Nk−1
∏

(i,j)∈P

eij ⊗
∏

(i′,j′)∈P′

e′i′j′ .

By (6) and (7), we have

[v11, . . . , v1m1
] . . . [vk1, . . . , vkmk

] = (−1)δ+δ′2Nk−1 e1e2 . . . eN ⊗ e1e2 . . . er 6= 0,

as required.

Case 2. Suppose that F is a field of characteristic 2. Let G be the group given by the presentation

G = 〈y1, y2, · · · | y
2
i = 1,

(

(yi, yj), yk
)

= 1 (i, j, k = 1, 2, . . . )〉

where (a, b) = a−1b−1ab. Then it is easy to check that G is a nilpotent group of class 2 so (a, b)c = c(a, b) for
all a, b, c ∈ G and, therefore, (a, bc) = (a, c)c−1(a, b)c = (a, b)(a, c) (see [8] for more details). It is clear that the
quotient group G/G′ is an elementary abelian 2-group so b2 ∈ G′ ⊆ Z(G) for all b ∈ G. It follows that (a, b2) = 1
so (a, b)2 = (a, b2) = 1, that is, (a, b) = (a, b)−1. Since (b, a) = (a, b)−1, we have (a, b) = (b, a) for all a, b ∈ G.

Let (<) be an arbitrary linear order on the set {(i, j) | i, j ∈ Z, 0 < i < j}. The following lemma is well
known and easy to check.

Lemma 2.4. Let a ∈ G. Then a can be written in a unique way in the form

a = yi1 . . . yiq (yj1 , yj2) . . . (yj2q′−1
, yj

2q′
)(8)

where q, q′ ≥ 0; i1 < · · · < iq, j2s−1 < j2s for all s,

(j2s−1, j2s) < (j2s′−1, j2s′ ) if s < s′.

Let FG be the group algebra of G over F . Let dij = (yi, yj) + 1 ∈ FG. Note that dij = dji and dii = 0 for
all i, j.

Let I be the two-sided ideal of FG generated by the set

S = {di1i2di3i4 + di1i3di2i4 | i1, i2, i3, i4 = 1, 2 . . .}.

The following two lemmas are well known (see, for instance, [14, Lemma 2.1], [15, Example 3.8]); their proofs
can also be found in [8].

Lemma 2.5. For all u1, u2, u3 ∈ FG, we have [u1, u2, u3] ∈ I.

Lemma 2.6. For all ℓ > 0, we have
(

(y1, y2) + 1
)(

(y3, y4) + 1
)

. . .
(

(y2ℓ−1, y2ℓ) + 1
)

/∈ I.

Since the ideal I is invariant under all permutations of the set {y1, y2, . . . } of generators of the group G, we
have the following.

Corollary 2.7. Let ℓ > 0. Then
(

(yi1 , yi2)+1
)

. . .
(

(yi2ℓ−1
, yi2ℓ)+1

)

/∈ I if all integers i1, i2, . . . , i2ℓ are distinct.

Now we are in a position to complete the proof of Theorem 1.9. Recall that r =
∑k

i=1 mi− 2k+ ℓ = Nk,ℓ− 2
is an even integer. Let Gr be the subgroup of G generated by y1, . . . , yr; let Ir = I ∩ FGr. Take G = FG/I,
H = FGr/Ir. Take A = G⊗H . By Lemma 2.5, we can apply Lemma 2.1 and Corollaries 2.2 and 2.3 to A.
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We claim that [f1, f2] . . . [fr+1, fr+2] ∈ Ir for all fi ∈ FGr. Indeed, we may assume without loss of generality
that fi ∈ Gr for all i. Since

[f2s−1, f2s] = f2s−1f2s + f2sf2s−1

= f2s−1f2s
(

(f2s, f2s−1) + 1
)

= f2s−1f2s
(

(f2s−1, f2s) + 1
)

(recall that F is a field of characteristic 2), we have

[f1, f2] . . . [fr+1, fr+2] = f1f2 . . . fr+2

(

(f1, f2) + 1
)

. . .
(

(fr+1, fr+2) + 1
)

.

It is clear that, for each s, (f2s−1, f2s) =
∏

t cistjst for some commutators cistjst = (yist , yjst). Let distjst =
cistjst + 1; then cistjst = distjst + 1. We have

(f2s−1, f2s) + 1 =
∏

t

cistjst + 1 =
(

∏

t

(distjst + 1)
)

+ 1

=
∏

t

distjst + · · ·+
∑

t<t′

distjstdist′ jst′ +
∑

t

distjst .

It follows that the product
(

(f1, f2) + 1
)

. . .
(

(fr+1, fr+2) + 1
)

can be written as a sum of products of the form

(9) dq1q2 . . . dq2ℓ−1q2ℓ =
(

(yq1 , yq2) + 1
)

. . .
(

(yq2ℓ−1
, yq2ℓ) + 1

)

where 2ℓ ≥ r + 2 > r. Hence, in the product (9) we have qt = qt′ for some t < t′.
Note that dj1j3dj2j3 ∈ I for all j1, j2, j3 because dj1j3dj2j3 = dj1j3dj2j3 + dj1j2dj3j3 ∈ S. Since dij = dji for all

i, j, we have di1i2di3i4 ∈ I if any two of the indices i1, i2, i3, i4 coincide. It follows that each product (9) belongs
to Ir = I ∩FGr and so does the product

(

(f1, f2) + 1
)

. . .
(

(fr+1, fr+2) + 1
)

. Hence, [f1, f2] . . . [fr+1, fr+2] ∈ Ir,
as claimed. Since Nk,ℓ = r + 2, we have [f1, f2] . . . [f(Nk,ℓ−1), fNk,ℓ

] ∈ Ir for al fi ∈ FGr.
For any u ∈ FG, let ū = u+ I ∈ G = FG/I. Since one can view the algebra H = FGr/Ir as a subalgebra of

G = FG/I, we also write ū = u+ Ir ∈ H = FGr/Ir for u ∈ FGr.
By the observation above, [f̄1, f̄2] . . . [f̄(Nk,ℓ−1), f̄Nk,ℓ

] = 0 for all f̄i ∈ H . Hence, by Corollary 2.2, we have

[u1, . . . , u(1+Nk,ℓ)] = 0 for all ui ∈ A = G⊗H , that is, T (1+Nk,ℓ)(A) = 0, as required.

Let P , P ′, µ and µ′ be as in Case 1. Recall that N =
∑k

i=1 mi. Define

yij = yµ(i,j)
(

(i, j) ∈ P
)

, y′i′j′ = yµ′(i′,j′)

(

(i′, j′) ∈ P ′
)

.

Define

vi1 = ȳi1 ⊗ 1;

vij = ȳij ⊗ ȳ′ij (1 ≤ i ≤ k; 2 ≤ j ≤ mi − 1);

vimi
=

{

ȳimi
⊗ 1 if mi is even;

ȳimi
⊗ ȳ′imi

if mi is odd.

If mi is even then, by Corollary 2.3,

[vi1, vi2, . . . , vimi
]

= [ȳi1, ȳi2][ȳi3, ȳi4] . . . [ȳi(mi−1), ȳimi
]⊗ [ȳ′i2, ȳ

′
i3][ȳ

′
i4, ȳ

′
i5] . . . [ȳ

′
i(mi−2), ȳ

′
i(mi−1)]

= ȳi1ȳi2ȳi3 . . . ȳimi

(

(ȳi1, ȳi2) + 1
)(

(ȳi3, ȳi4) + 1
)

. . .
(

(ȳi(mi−1), ȳimi
) + 1

)

⊗ ȳ′i2ȳ
′
i3 . . . ȳ

′
i(mi−1)

(

(ȳ′i2, ȳ
′
i3) + 1

)(

(ȳ′i4, ȳ
′
i5) + 1

)

. . .
(

(ȳ′i(mi−2), ȳ
′
i(mi−1)) + 1

)

If mi is odd then, by the same corollary,

[vi1, vi2, . . . , vimi
]

= [ȳi1, ȳi2][ȳi3, ȳi4] . . . [ȳi(mi−2), ȳi(mi−1)]ȳimi
⊗ [ȳ′i2, ȳ

′
i3][ȳ

′
i4, ȳ

′
i5] . . . [ȳ

′
i(mi−1), ȳ

′
imi

]

= ȳi1ȳi2ȳi3 . . . ȳi(mi−1)ȳimi

(

(ȳi1, ȳi2) + 1
)(

(ȳi3, ȳi4) + 1
)

. . .
(

(ȳi(mi−2), ȳi(mi−1)) + 1
)

⊗ ȳ′i2ȳ
′
i3 . . . ȳ

′
i(mi−1)ȳ

′
imi

(

(ȳ′i2, ȳ
′
i3) + 1

)(

(ȳ′i4, ȳ
′
i5) + 1

)

. . .
(

(ȳ′i(mi−1), ȳ
′
imi

) + 1
)

It follows that

[v11, . . . , v1m1
] . . . [vk1, . . . , vkmk

] = ȳ Q⊗ ȳ′ Q′
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where

ȳ =

k
∏

i=1

mi
∏

j=1

ȳij , ȳ′ =

k
∏

i′=1

m′

i′
∏

j′=2

ȳ′i′j′ ,

m′
i′ =

{

mi′ − 1 if mi′ is even;
mi′ if mi′ is odd,

Q =

k
∏

i=1

[

mi
2

]

∏

j=1

(

(ȳi(2j−1), ȳi(2j)) + 1
)

, Q′ =

k
∏

i′=1

[

m′

i′
−1

2

]

∏

j′=1

(

(ȳ′i′(2j′), ȳ
′
i′(2j′+1)) + 1

)

.

Since µ is injective, all elements yi(2j−1), yi(2j) (i = 1, 2, . . . , k; j = 1, 2, . . . ,
[

mi

2

]

) that appear in Q are distinct
elements of the set {y1, y2, . . . }. Hence, by Corollary 2.7, we have Q 6= 0 in G = FG/I. Similarly, Q′ 6= 0 in
H = FGr/Ir. Since ȳ and ȳ′ are invertible elements of G and H , respectively, we have ȳ Q⊗ ȳ′ Q′ 6= 0, that is,

[v11, . . . , v1m1
] . . . [vk1, . . . , vkmk

] 6= 0,

as required.
This completes the proof of Theorem 1.9. �

Remark. Recall that in the proof of Theorem 1.9 we use the same algebra A that was used in the proof of
[8, Theorem 1.4]. Note that in both proofs one can choose the algebra A different from one used in our proofs.

For example, let F be any field and let r = m + n − 4 = 2(m′ + n′ − 2). Let A = F 〈X〉/T (3) ⊗ F 〈Xr〉/T
(3)
r

where Xr = {x1, . . . , xr} and T
(3)
r = T (3)

(

F 〈Xr〉
)

= T (3) ∩ F 〈Xr〉. Then A satisfies the conditions i) and ii) of

Theorem 1.9; one can check this using a description of a basis of F 〈X〉/T (3) over F . Such a description can be
deduced, for instance, from [3, Proposition 3.2] or found (if char F 6= 2) in [4, Proposition 9].

Our choice of the algebra A in the proof of Theorem 1.9 was made with a purpose to have the paper
self-contained.
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