
ar
X

iv
:1

60
5.

00
78

1v
2 

 [
m

at
h.

G
R

] 
 2

7 
M

ay
 2

01
7

CONFIGURATION EQUIVALENCE IS NOT

EQUIVALENT TO ISOMORPHISM

ALI REJALI AND MEISAM SOLEIMANI MALEKAN

Abstract. Giving a condition for the the amenability of groups,
Rosenblatt and Willis, first introduced the concept of configura-
tion. From the beginning of the theory, the question whether the
concept of configuration equivalence coincides with the concept of
group isomorphism was posed. We negatively answer this question
by introducing two non-isomorphic, solvable and hence amenable
groups which are configuration equivalent. Also, we will prove this
conjecture, due to Rosenblatt and Willis, that configuration equiv-
alent groups, both include the free non-Abelian group of same rank
or not. We show that two-sided equivalent groups have same class
numbers.

1. Introduction and Definitions

In this paper, all groups were assumed to be finitely generated and
discrete. Let G be a group, we denote the identity of the group G
by eG. Given any finite (ordered) subset g = (g1, . . . , gn) of G, there
is a Cayley graph denoted by Γ := Γ(G, g), with vertices being the
elements of G and the directed edges being from g to gig for g ∈ G and
i ∈ {1, . . . , n}.
let G be a group, g = (g1, . . . , gn) be an ordered generating set and

Γ = Γ(G, g) be its corresponded Cayley graph. Assume that E =
{E1, . . . , Em} is a finite partition of G, which can be considered as a
coloring of Γ by m colors.
A configuration C is an (n+1)-tuple of colors (c0, . . . , cn) with each

ck being one of the m colors, and there are x0, x1, . . . , xn ∈ G such
that xi is the color ci, i = 0, 1, . . . , n, and for each i, xi = gix0. In
this case, we may say that (x0, x1, . . . , xn) has the configuration C.
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Simultaneously considering the right multiplication, the concept of two-
sided configuration is reached; A two-sided configuration is a (2n+ 1)-
tuple C = (c0, c1, . . . , c2n) satisfying ci ∈ {1, . . . , m}, i = 0, 1, . . . , 2n,
and there exists x ∈ Ec0 such that gix ∈ Eci and xgi ∈ Eci+n

for each
i ∈ {1, . . . , n}.
First, the concept of configuration was introduced by Rosenblatt and

Willis to give a characterization for the amenability of groups and then,
to characterize normal sets, the concept of two-sided configuration was
suggested.
For g and E as above, we called (g, E) a configuration pair. The

set of configurations (two-sided configurations, resp.) corresponding to
the configuration pair (g, E) will be denoted by Con(g, E) (Cont(g, E),
resp.). The set of all configuration and two-sided configuration sets of
G, denoted by Con(G) and Cont(G), respectively.
The origin of the theory of configuration, is the conjecture raised in

[8], that the combinatorial properties of configurations can be used to
characterize various kinds of behavior of groups (like the group being
Abelian or the group containing a non-Abelian free subgroup). This
conjecture leads to the notion of (two-sided) configuration equivalence;
A group G is configuration contained in a group H , written G - H , if
Con(G) ⊆ Con(H), and two groups G and H are configuration equiv-

alent, written G ≈ H , if Con(G) = Con(H). The concepts of being
two-sided configuration contained, and two-sided configuration equiva-

lent are similarly defined, the notations used denoting these concepts
are “-t” and “≈t”.
In [1], the first steps of the theory were taken. It was shown there

that finiteness and periodicity are the properties which can be charac-
terized by configuration. In that paper, the authors proved that for two
configuration equivalent groups, the isomorphism classes of their finite
quotients were the same. The finite index property can be extended to
Abelian quotient property (see [2]). Also, it was shown in [1] that two
configuration equivalent groups, should satisfy in the same semi-group
laws, and in [4], this result was generalized by proving that same group
laws should be established in configuration equivalent groups. Hence,
in particular, being Abelian and the group property of being nilpotent
of class c are, in particular, another properties which can be charac-
terized by configuration (see [1] and [2]). In [2], it was shown that if
G ≈ H , and G is a torsion free nilpotent group of Hirsch length h, then
so is H . It was interesting to know the answer to the question whether
being FC-group is conserved by equivalence of configuration. In [2], this
question was answered under the assumption of being-nilpotent. In [4],
this question was affirmatively answered without any extra hypothesis.
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In addition, it was shown in that paper that the solubility of a group G
can be recovered from ConG. In our recent paper, [5], we showed that
the notion of normality can be obtained from two-sided configuration
equivalence. Also, in the presence of normality, we showed that if G
and H are two-sided equivalent, and if G has a normal subgroup N ,
which the quotient G/N is finitely presented and G has a “recogniz-
able” configuration pair w.r.t. N , then H contains a normal subgroup
N, such that G/N ∼= H/N. It was shown, that the class of “polynomial
type” groups – involving finite, Abelian, free and polycyclic groups –
satisfied the “recognizability” condition.
We also interested in investigating the question: For which subclasses

of the class G of all groups, does configuration equivalence coincide
with isomorphism? In [1], this question was answered positively for the
class of finite, free and Abelian groups. In [2], it was shown that those
groups with the form of Zn×F , where Z is the group of integers, n ∈ N

and F is an arbitrary finite group, are determined up to isomorphism
by their configurations. In [2], it was proved that if G ≈ D∞, where
D∞ is the infinite dihedral group, then G ∼= D∞.
In [4], we pointed out that it was the existence of “golden” config-

uration pairs which implied isomorphism. Indeed, we showed that, in
the class of finitely presented Hopfian groups with golden configuration
pair, configuration equivalence coincided with isomorphism.
In the light of two-sided configuration, it was proved in [5] that,

for “polynomial type” groups, and for groups with finite commutator
subgroup, the “≈t” and “∼=” are equivalent. Specially, for polycyclic
or FC–groups, these two notation are equivalent.
We will prove that if G and H are two configuration equivalent

groups, and if G contains Fn, the non-Abelian free group of rank n,
then H , also, contains Fn.
In the present paper, we define configuration sets for a finite sigma

algebras of a group, and with the help of them, we will show that two-
sided equivalence groups, have the same number of normal subgroups
of finite index n, n ∈ N. Also, if G ≈t H , then the cardinality of normal
subgroups which their quotient are polycyclic is the same in both G
and H . The class number- the number of different conjugacy classes-
will be shown to be equal for two-sided equivalent groups. In the class
of two-sided equivalent groups which have a finite class number, we will
study some type of subgroups, and will show that in this class the set
of finite, and polycyclic subgroups should be the same.
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The question whether (two-sided) configuration equivalence implies
isomorphism has been seen to be open since the beginning of the the-
ory of configuration. We negatively answer this open question by pre-
senting two non-isomorphic solvable and hence amenable groups, both
having the same (two-sided) configuration sets. Like our two recent
papers ([4] and [5]), we will use the following notation:

Notation. LetG be a group with g = (g1, . . . , gn) as its ordered subset.
Let p ∈ N, J ∈ {1, 2, . . . , n}p and ρ ∈ {±1}p. We denote the product
∏p

i=1 g
ρ(i)
J(i) by W (J, ρ; g). We call the pair (J, ρ) a representative pair in

g and W (J, ρ; g) a word corresponding to (J, ρ) in g.

When we speak of a representative pair, (J, ρ), we assume the same
number of components for J and ρ. The number of components of J ,
denotes by n(J).

2. Configuration and Finite Sigma Algebras

What is really important in configuration is the image of subsets of
a group G, under left translations by finite subsets of G. So, it seems
that for sets Con(g, E), or Cont(g, E) of a group G, we can replace E
by a sigma algebra A, and indeed we can. we involve sigma algebras
in the theory of configuration as follows:
Let G be a group. There is a correspondence between the finite sigma

algebras of G, and finite partitions of G. Indeed, for a finite sigma
algebra A, the set of atoms of A, E := {E1, . . . , Em} is a partition
of G. We denote the atomic sets of a sigma algebra A by atom(A).
Also, if C is a finite collection of subsets of G, we use σ(C) to denote
the sigma algebra generated by C. In the following, we always consider
sigma algebras to be finite.
Now, we try to rewrite our symbols in configuration for sigma alge-

bras; For a sigma algebraA, we define Con(g,A) to be Con(g, atom(A)).
Similarly, we can define Cont(g,A). Remember following efficient sym-
bol from [5]:

Notation. Let G andH be two groups with g and h as their generating
set, respectively. Coloring Cayley graph Γ1 := Γ(G, g) and Γ2 :=
Γ(H, h) with same colors, we get partitions E and F of G and H ,
respectively. For two sets E ∈ E and F ∈ F , we write EsF to show
that we have two sets of the same color. In particular, If we have
Con(g, E) = Con(h,F) or Cont(g, E) = Cont(h,F), for configuration pairs
(g, E) and (h,F) for groups G and H , respectively; This implies that,
their corresponded Cayley graphs Γ1 := Γ(G, g) and Γ2 := Γ(H, h),
colored with same colors.
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We can also use s for sigma algebras; Let E := {E1, . . . , Em} and
F := {F1, . . . , Fm} be partitions of G and H resp. such that EisFi,
i = 1, . . . , m. For A ∈ σ(E) and B ∈ σ(F), say AsB, when

{k : Ek ∩ A 6= ∅} = {k : Fk ∩ B 6= ∅}

In other words, if AsB, and A = Ei1∪· · ·∪Eij , then B = Fi1∪· · ·∪Fij .
The following technical lemma will be used in the following:

Lemma 2.1. Let G and H be two groups with sigma algebras A and B,
resp. and Con(g,A) = Con(h,B). Suppose A1, A2 ∈ A and B1, B2 ∈ B,
are such that AisBi, i = 1, 2, and g ∈ g corresponded to h ∈ h. we

have

(1) If gA1 ⊆ A2, then hB1 ⊆ B2,

(2) If gA1 = A2, then hB1 = B2

Proof. Set

g = (g1, . . . , gn), atom(A) = {E1, . . . , Em}

h = (h1, . . . , hn), atom(B) = {F1, . . . , Fm}

Without loss of generality, let g and h match g1 and h1. Also, set

Ik := {i : Ei ∩Ak 6= ∅}, k = 1, 2

So, by assumptions,

Ak =
⋃

i∈Ik

Ei, Bk =
⋃

i∈Ik

Fi (k = 1, 2)

Now, for C = (c0, c1, . . . , cn) in Con(g,A), c1 ∈ I2 if c0 ∈ I1, this proves
(1).
For proving (2), note that if C = (c0, c1, . . . , cn) in Con(g,A), then

c0 ∈ I1, if and only if c1 ∈ I2. �

If Cont(g, E) = Cont(h,F), one can easily get an analog of the above
lemma for left multiplication replaced with right multiplication.
Let G and H be two groups. Consider partitions R and S of G and

H respectively, and their refinements, R′ and S ′. Assume that

R = {R1, . . . , Rl}, R′ = {R′

1, . . . , R
′

k}

S = {S1, . . . , Sl}, S ′ = {S ′

1, . . . , S
′

k}

We may say that these two pairs (R′,R) and (S ′,S) are similar and
may write (R′,R) ∼ (S ′,S), if

{i : R′

j ∩Ri 6= ∅} = {i : S ′

j ∩ Si 6= ∅}
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for each j = 1, . . . , k. Also, for sigma algebras A and B, resp., and
their sigma subalgebras, A′ and B′, resp. we say (A,A′) and (B,B′)
are similar, written (A,A′) ∼ (B,B′), if

(atom(A), atom(A′)) ∼ (atom(B), atom(B)′)

Now, we can rewrite [4, Lemma 3.2] in sigma algebras:

Lemma 2.2. Let A and B be sigma algebras of groups G and H, resp.

Suppose g and h are generating sets of G and H such that Con(g,A) =
Con(h,B). If A′ and B′ are sigma sub-algebras of A and B, such that

(A,A′) ∼ (B,B′), then Con(g,A′) = Con(h,B′).

The sigma algebraic version of [5, Lemma 3.2] is similarly obtained.
By use of sigma algebras, equality of Tarski numbers of configuration

equivalent groups, is easily obtained. Recall the following definition of
paradoxical decomposition and Tarski number:

Definition 2.3. A group G admits a paradoxical decomposition if there
exist positive integers m and n, disjoint subsets P1, . . . , Pm, Q1, . .
. , Qn of G and elements x1, . . . , xm, y1, . . . , yn of G such that

G =

m
⋃

i=1

xiPi =

n
⋃

j=1

yjQi

The minimal possible value of m+n in a paradoxical decomposition of
G is the Tarski number of G and denoted by τ(G). If a group G doesn’t
have a paradoxical decomposition, it means that G is amenable; In this
case we will define τ(G) to be ∞.

Theorem 2.4. Let groups G and H be configuration equivalent. Then

τ(G) = τ(H).

Proof. If G is amenable, so is H , and we have done. Hence without
loss of generality, suppose that τ(G) is finite. Fix a generating set
of G, say g0. Let m and n, (P1, . . . , Pm), (Q1, . . . , Qn) and elements
x := (x1, . . . , xm), y := (y1, . . . , yn) be as in Definition 2.3. Consider
the sigma algebra A, generated by sets

Pi, xrPi, Qj , ysQj , i, r = 1, . . . , m, j, s = 1, . . . , n

Set g := g0 ⊕ x ⊕ y. Since G ≈ H , there exists a generating set
h = h0 ⊕ u⊕ v and sigma algebra B of G, such that

Con(g,A) = Con(h,B)

where h0, u := (u1, . . . , um), v := (v1, . . . , vn) are corresponded to g0,
x and y, resp. Suppose that Ci, Dj in B are such that CisPi and
DjsQj , i = 1, . . . , m, j = 1, . . . , m. Therefore, Lemma 2.1 leads
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to urCisxrPi and vsDjsysQj . So, u, v, Ci’s and Dj ’s satisfy the
conditions of Definition 2.3, and hence, τ(H) ≤ τ(G). By the symetry,
we have also τ(G) ≤ τ(H), which completes the proof. �

We say that a group G admits a G = nG decomposition, n ∈ N, if
there exists disjoint sets

{Pi,j : i = 1, . . . , n, j = 1, . . . , k(i)}

along with elements x(i) = (xi,1, . . . , xi,k(i)), i = 1, . . . , n, of G, such
that

G =

k(i)
⋃

j=1

xi,jPi,j (i = 1, . . . , n)

So, paradoxical decomposition of a group G, is a G = 2G decomposi-
tion. If a group G, admits a G = nG decomposition, we denote the
minimal amount of

∑n

i=1 k(i) by τn(G). Using the method of proof of
the above theorem, we can easily show that

Theorem 2.5. Let G and H be two configuration equivalent group.

If G admits a G = nG decomposition, n ∈ N, then H also admits a

H = nH decomposition, and τn(G) = τn(H).

Subgroups of (two-sided) configuration equivalent groups have not
been studied yet. However, By the use of Tarski number, some pieces
of information about non-Abelian free subgroups can be obtained. By
a theorem of Jónsson and Dekker (see, for example, [16, Theorem
5.8.38]), τ(G) = 4 if and only if G contains a non-Abelian free sub-
group. This and [7, Theorem 1], implies that if groups G and H are
configuration equivalent, then they both have non-Abelian free sub-
groups or not. In fact, we have more, and before stating the result,
some reminders are needed; The power function for a polynomial type
group G is a function ς on G with following properties:

(1) ς(G) is a finite set, and
(2) ς−1(ς(eG)) = {eG}.

We associate a (finite) partition with a power function, called ς–partition
of G consisting of disjoint subsets, E(ς(g)) := ς−1(ς(g)), g ∈ G.

(3) There is a generating set g of G which, for each g ∈ G, we can
find a representative pair (Jg, σg) in g such that if Con(g, E) =
Con(h,F), then

W (Jg, σg; h)F (ς(eG)) ⊆ F (ς(W (Jg, σg; g))

where F (ς(g)) considered to be the same as E(ς(g)) in color.
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By use of the power function, we can speak about some subgroups of
configuration equivalent groups;

Theorem 2.6. Let two groups G and H be configuration equivalent.

Suppose that G contains a non-Abelian free subgroup of rank n, n ∈ N.

Then H contains a non-Abelian free subgroup of rank n.

Proof. Fix a generating set of G, say g. Let g0 be a generating set of
a subgroup G0 of G, which is free of rank n. Assume that ς is the
power function, and E0 is a ς-partition of G0. Assume A is the sigma
algebra generated by set E(ς(g)), g ∈ G0. Now, if Con(g0 ⊕ g,A) =
Con(h0⊕h,B), and if we denote the set F in F , where FsE(ς(g)), by
F (ς(g)), then one can easily check that, for an arbitrary representative
pair in g0, say (J, ρ), we have

W (J, ρ; h0)F (ς(eG)) ⊆ F (ς(W (J, ρ; g0))

Hence, W (J, ρ; h0) = eH if and only ifW (J, ρ; g0) = eG, and this means
H0 := 〈h0〉, is a subgroup of H , which is free of rank n. �

In the following conjugacy classes are involved; For an element g in a
group G, we denote the conjugacy class of g by Cl(g). It is obvious that
a normal subset (see [5, Definition 2.1.]) of G is nothing but a disjoint
union of conjugacy classes of G. We will show in the following theorem
that, if two groups G and H are two-sided configuration equivalent,
then their class numbers will be the same:

Theorem 2.7. Let finitely generated groups G and H be two-sided

configuration equivalent. Then their class numbers are the same.

Proof. Let g = (g1, . . . , gn) be a generating set of G. Suppose the
class number of G is at least N , N ∈ N. So, there are elements xi,
i = 1, . . . , N in G, such that Cl(xi), i = 1, . . . , N , are pairwise disjoint.
Consider a finite sigma algebra A of G, containing the following sets,

Cl(xi),Cl(xi)g
−1
j , i = 1, . . . , N, j = 1, . . . , n

Assume B is a sigma algebra of G along with a generating set h, such
that Cont(g,A) = Cont(h,B). If elements Bi in B, i = 1, . . . , N are
such that BisCl(xi), then we get by Lemma 2.1 that Bi, i = 1, . . . , N ,
are normal sets, so the class number of H is at least N . This completes
the proof. �

It is obvious that Cl(x) = {x} if and only if x is a central element.
Suppose that the class number of G is finite, this implies that Z(G) is
a finite subgroup of G, where Z(G) stands for the center of G. In the
below lemma, by using of the finiteness of the class number, we present
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a certain type of configuration pair, which make it possible to study
subgroups more efficiently:

Lemma 2.8. Let G be a finitely generated group with finite class num-

ber. Fix a generating set g of G. Then there is a partition E of G,
containing {eG}, such that if Cont(g, E) = Cont(h,F) for a configu-

ration pair (h,F) of a group H, and if {eG}sF ∈ F , then F will be

singleton, and without loss of generality, we can assume that F = {eH}.

Proof. Suppose that g = (g1, . . . , gn), and Z(G) = {z0 = eG, z1, . . . , zr},
Let elements x1, . . . , xs ∈ G be such that

Cl(zi),Cl(xj), i = 0, 1, . . . , r, j = 1, . . . , s

are all of the conjugacy classes. Now, consider the sigma algebra A
generated by the following subsets of G,

{zi}, {zig
−1
k }, {xj},Cl(xj) \ {xj},Cl(xj)g

−1
k

for i = 0, 1, . . . , r, j = 1, . . . , s, and k = 1, . . . , n. If Cont(g,A) =
Cont(h,B) for a sigma algebra B and a generating set h of a group H ,
and if Ki and Lj in B are such that

Kis{zi}, LjsCl(xj) i = 0, 1, . . . , r, j = 1, . . . , s

These sets are all normal (see Lemma 2.1), so by Theorem 2.7, there
are elements wi, and yj, in H such that

Ki = Cl(wi), Lj = Cl(yj), i = 0, 1, . . . , r, j = 1, . . . , s

Since sets Cl(yj) can be written as a union of at least two atoms, so wi

are all central, and without loss of generality we can assume w0 = eH .
Therefore F = atom(B) works well. �

By the power function of polynomial type groups, we can say that
in two-sided configuration equivalent groups with finite class number,
the polynomial type subgroups are isomorphic:

Theorem 2.9. Let two groups G and H be two-sided configuration

equivalent. Assume that these groups have finite class number. Then

for each polynomial type subgroup, G0 of G, H contains a subgroup H0,

which is isomorphic to G0. Furthermore G and H have isomorphic

centers.

Proof. Fix a generating set g for G. Let ς, E0 and g0 be such that the
properties (1) to (3) on page in page 7, are established for G0. Applying
Lemma 2.8, we get a partition E of G. Now. if

Cont(g0 ⊕ g, σ(E1 ∪ E)) = Cont(h0 ⊕ h,B)
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by Lemma 2.8, property (3), one can easily see that G0
∼= H0, where

H0 := 〈h0〉.
Since Z(G) becomes a finite subgroup, for G has a finite class num-

ber, by adding it to g, repeating the proof of 2.8, one can easily obtain
that Z(G) ∼= Z(H). �

It is of interest to study finitely generated groups with finite class
numbers. For each large prime number p, there exists a 2-generated in-
finite group of exponent p which has exactly p conjugacy classes (that’s
[12, Theorem 41.2]). Osin [3] has recently constructed a finitely gener-
ated example (that was a major breakthrough since the problem was
open for more than 60 years). All of these groups are infinitely pre-
sented and it is still an open problem, i.e., the question whether there
is an infinite finitely presented group with a finite class number. If such
a group exists, the following theorem will make sense:

Theorem 2.10. Let finitely presented group G has finite class number.

Suppose that G ≈ H, which H is a finitely generated group. Then H
is a quotient of G.

Proof. Fix a generating set of G, say g. Apply Lemma 2.8 to get a
partition E of G. Consider a set of defining relators

{W (Ji, ρi; g) : i = 1, . . . , m}

Let A be a sigma algebra of G, generated by sets in E and

{W (J, ρ; g)} n(J) ≤ max{n(Ji) : i = 1, . . . , m}

But G ≈ H , so there is a sigma algebra B in H , such that Cont(g,A) =
Cont(h,B). Lemma 2.2, Lemma 2.8, imply that we can assume {eH} ∈
B, {eG}s{eH}, and

{W (J, ρ; g)}s{W (J, ρ; h)}, for (J, ρ) withn(J) ≤ max{n(Ji) : i = 1, . . . ,m}

so, in particular, W (Ji, ρi; h) = eH , i = 1, . . . , m, and hence the map

G→ H, W (I, δ; g) 7→ W (I, δ; h)

where (I, δ) ranges over arbitrary representative pairs, introduced an
epimorphism. �

3. Two-sided Configuration and Quotients

In [5], some results about quotients of two-sided configuration equiv-
alent groups were obtained. In this section, we study the number of
quotients.
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Let N be a normal subgroup of G; We denote the quotient map,
G → G/N by qN , and in the cases where there is no ambiguity, we
may drop N . Recall that if E is a partition of G/N , then

q−1(E) := {q−1(E) : E ∈ E}

becomes a partition of G. We refer to such a partition, when we say
an N–partition of G. One can easily check that the intersection of
two N–partitions is itself an N–partition. An N–refinement of an
N–partition Ê , is a refinement, Ê ′, which is itself an N–partition.
Let g = (g1, . . . , gk) be an ordered subset of G, such that q(g) :=
(q(g1), . . . , q(gk)) is a generating set of G/N , then by [1, Lemma 6.2.],
there is an ordered subset n of N , such that ĝ = g ⊕ n becomes a
generating set of G, called N-extension of g. By an N–configuration

pair we mean a configuration pair (ĝ, Ê) such that g is an N–extension

generating set, and Ê is an N–partition of G.
The notions of “preserving presentation” and “recognizability” of a
configuration pair are defined in [5]. Lets first consider the concept of
recognizable configuration pair:

Definition 3.1. Let G be a group with a normal subgroup N and
an N–configuration pair (ĝ, Ê). We may say that (ĝ, Ê) is recognizable

w.r.t. N , if whenever Cont(ĝ, E) = Cont(ĥ, F̂), for a configuration pair

(ĥ, F̂) of a groups H , then for every g ∈ G\N , there is a representative
pair, (Jg, ρg) such that

g = W (Jg, ρg; ĝ) and W (Jg, ρg; ĥ)F ∩ F = ∅

where F ∈ F is in the same color as an element of E which contains
N .

As a consequence of Lemma 2.2, one can easily show that (see [4,
Lemma 3.3.]):

Lemma 3.2. Let G be a group with a normal subgroup N . Assume

(ĝ, Ê) is a recognizable configuration pair w.r.t. N . Then for each N–

refinement Ê ′ of Ê , the configuration pair (ĝ, Ê ′) is recognizable w.r.t.

N .

What really makes working with recognizable configuration pair use-
ful, is accompaniment of this notion to the following one:

Definition 3.3. Let G, N , g, ĝ be regarded as above. We say that a
configuration pair (ĝ, E) preserves presentation w.r.t. N , if the follow-
ing are held:
(I) N ∈ E ,
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(II) if Cont(ĝ, Ê) = Cont(ĥ, F̂), for a configuration pair (ĥ, F̂) of a

groups H , and NsF ∈ F̂ , then F is normal and the function bellow,
defined on cosets of N ,

W (J, ρ; ĝ)N 7→ W (J, ρ; ĥ)F

is considered to be well-defined, where (J, ρ) is an arbitrary represen-
tative pair.

Remark 1. By [5, Theorem 2.5], we know that if G/N is finitely

presented, then for each N–configuration pair (ĝ, Ê), there exists an

N–refinement Ê ′ of Ê , such that (ĝ, Ê ′) preserves presentation w.r.t.
N .

Let R and S be two partitions of a group G. Define the partition
R∩ S as follows:

atom(σ(R∪ S))

regarding this notation and Lemma 2.2 as well, we can see that it does
not matter, if we work with one or more than one partition of G, more
precisely:

Lemma 3.4. Let G be a group with a generating set g. Assume that

{R1, . . . ,Rr}, be a collection of partitions of G and G ≈t H for a group

H. Then, there are, a generating set h, and a collection {S1, . . . ,Sr}
of partitions of H, such that

Cont(g,Ri) = Cont(h,Si) i = 1, . . . , r

Proof. Set R =
⋂r

i=1Ri. Let (h,S) be a configuration pair of H
such that Cont(g,R) = Cont(h,S). If Si is a partition of H , such
that (R,Ri) ∼ (S,Si), i = 1, . . . , r. Then, Lemma 2.2, implies that
Cont(g,Ri) = Cont(h,Si), i = 1, . . . , r. �

With the concept of two-sided configuration, we can study the num-
ber of finite index subgroups; To this end, we provide the following
definition:

Definition 3.5. Let G be a group, and C be a finite collection of
normal subgroups of G. We may say G is recognizable w.r.t C, if the
following are held:

(1) C is closed under intersection,
(2) G/N is finitely presented, for all N ∈ C, and
(3) There exists a generating set g of G, and a collection {E(N) :

N ∈ C} of partition of G such that (g, E(N)) is a recognizable
configuration pair w.r.t. N .
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In the case which there is a collection C, with properties in the above
definition, the next theorem is worthy of attention:

Theorem 3.6. Suppose a group G is recognizable w.r.t. a collection

C of its normal subgroups. Let a group H be two-sided configuration

equivalent with G. Then there is a collection {NN : N ∈ C} of normal

subgroups of H such that

(1) G
N

∼= H
NN

,

(2) NN∩M = NN ∩NM , for N and M in C.

Proof. Let g and {E(N) : N ∈ C} be regarded as in Definition 3.5. By
Lemma 3.4, there are a generating set h and partitions {F(N) : N ∈
C}, such that

Cont(g, E(N)) = Cont(h,F(N)) (N ∈ C)

Hence, by [5, Lemma 3.4.], we obtain normal subgroups {NN : N ∈ C},
along with following isomorphisms

G

N
→

H

NN

, W (J, ρ; g)N 7→W (J, ρ; h)NN

With the above isomorphisms, the equation in (2) are easily proved. �

We know by [10, Theorem 21.4] that, the number of subgroups of
finite index n in a finitely generated group G is finite. Since the inter-
section of finite index subgroups is again a finite index subgroup, by
the above theorem, we obtain:

Corollary 3.7. Let G and H be finitely generated groups with the same

two-sided configuration sets, and let n ∈ N. Then G and H contain

exactly the same number of normal subgroups of index n. Moreover,

we have
∏

{G/N : |G : N | <∞} ∼=
∏

{H/N : |H : N| <∞}

Proof. Suppose {N1, . . . , Nr} is the collection of all normal subgroups
of index n. Let C be a collection of normal subgroups of G obtained
from intersection ofNk’s. ForN ∈ C, assume that the power function of
G/N yields a configuration pair (qN(gN), qN (E(N))), for an ordered set

gN and partition E(N) of G. Let g = ⊕̂r
k=1gNk

be a
⋂r

k=1Nk–extension
generating set of G. Hence, one can see, by g and C as above, the
conditions of Definition 3.5 are satisfied, and therefore, Theorem 3.6,
shows the existence of at least r normal subgroups of index n in H .
The symmetry in the concept of configuration completes the proof. �
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We denote by P(G), the collection of normal subgroups of G, which
their quotient in G are polycyclic. Since every polycyclic group has
a recognizable configuration pair, and since P(G) is closed under in-
tersection, an argument like the one in proof of the previous corollary
leads to:

Corollary 3.8. Let G and H be finitely generated groups with G ≈t H.

Then P(G) and P(H) have the same cardinality. Furthermore if P(G)
is finite, then there is a bijection Ψ : P(G) → P(H) such that

(1) For every N and M in P(G), Ψ(N ∩M) = Ψ(N) ∩Ψ(M),
(2) For each N ∈ P(G), we have G/N ∼= H/Ψ(N).

4. The Concept of Configuration Equivalence is not

Equivalent to Isomorphism

The question whether the concepts of the configuration equivalence
and isomorphism of groups are the same has been open since the be-
ginning of configuration theory. Indeed, the answer is “No”, there
are non-isomorphic groups with the same two-sided configuration sets.
It is worth noting that, the groups in our example are solvable, thus
this natural conjecture that these two concepts may be equivalent for
amenable groups will be rejected. To provide our example, we may
need to provide the following two technical lemmas:

Lemma 4.1. Let φ : G → H be an epimorphism of groups. Suppose

that g is a generating set of G, and F is a partition of H, then

Cont(g, φ
−1(F)) = Cont(φ(g),F)

Proof. Assume that C ∈ Cont(g, φ
−1(F)). So, there exists (x0, x1, . . . , x2n)

having configuration C, that means, xk ∈ φ−1(Fck), k = 0, 1, . . . , 2n
and,

xk = gkx0, xk+n = x0gk (k = 1, . . . , n)

Therefore φ(xk) ∈ Fck , and

φ(xk) = φ(gk)φ(x0), φ(xk+n) = φ(x0)φ(gk)

Hence, (φ(x0), φ(x1), . . . , φ(x2n)) has configuration C in Cont(φ(g),F).
Conversely, let a tuple (y0, y1, . . . , y2n) have configuration C ∈ Cont(φ(g),F).

That means, yk ∈ Fck , k = 0, 1, . . . , 2n and

yk = φ(gk)y0, yk+n = y0φ(gk) (k = 1, . . . , n)

Choose x0 ∈ φ−1(y0). Then

(x0, g1x0, . . . , gnx0, x0g1, . . . , x0gn)

in G has configuration C, belonging to Cont(g, φ
−1(F)). �
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We may call an homomorphism φ : G → H , generating-surjection,
if every ordered generating set of H is an image of an ordered gen-
erating set of G. It is clear that each generating-surjection, becomes
an epimorphism. We call two groups G and H generating-bijective, if
there are generating-surjections φ : G→ H , and ψ : H → G. From the
following lemma, it will be understood that generating-bijective groups
have same two-sided configuration sets:

Lemma 4.2. Let G and H be two finitely generated groups. Suppose

there is a generating-surjection φ : G→ H. Then Cont(H) ⊆ Cont(G).

Proof. Consider a configuration pair (h,F) of H . There exists a gen-
erating set g of G such that h = φ(g). Thus, by previous lemma,

Cont(h,F) = Cont(φ(g),F) = Cont(g, φ
−1(F))

This completes the proof. �

It is obvious that isomorphic groups are generating-bijective, but the
converse is not always true, as the following theorem will show this:

Theorem 4.3. There exist non-isomorphic finitely generating groups

with the same two-sided configuration sets.

Proof. Put R := Z[t, t−1], the ring of Laurent polynomials. Let K be
a group of matrices





1 B D
0 A C
0 0 1





where B, C and D belongs to R, and A ∈ 〈t〉. The group B is easily
checked to be finitely generated; Indeed, if we denote the above matrix
by (A,B,C,D), then (k1,k2,k3), in which

k1 = (t, 0, 0, 0) k2 = (1, 1, 0, 0) k3 = (1, 0, 1, 0)

becomes a generating set of K, because of the following equations:

km
1 = (tk, 0, 0, 0), k−m

1 k2k
k
1 = (1, tm, 0, 0)

km
1 k3k

−m
1 = (1, 0, tm, 0), [k3,k

−m
1 k2k

m
1 ] = (1, 0, 0, tm)

where m is an integer. The center of this group, Z(K), consists of
unipotent matrices with a single possibly non-trivial element in the
upper right corner

Z(K) = {(1, 0, 0, D) : D ∈ R}

It is clearly isomorphic to R. We can rewrite the product of the group
as bellow:

(A,B,C,D)(X, Y, Z,W ) = (AX,BX + Y, C + AW,D +BW + Z)
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By the above equality, one can see that the map

Φ : K → K, (A,B,C,D) 7→ (A,B, tC, tD)

introduced an automorphism of K.
Set Nm := tmZ[t], m ∈ Z. The automorphism Φ, implies that

K/Nm
∼= K/Φ(Nm) = K/Nm+1, m ∈ Z. Now, let G := K/N0 and

H := K/(2Z⊕N1). These groups are not isomorphic, for G is torsion
free and H is not.
Note that if k is an ordered set of K, such that its image under the

natural quotient map forms a generating set of K/Nm, then, also, the
image of Φ(k) will form a generating set of K/Nm. Thus, G and H are
generating-bijective. This and Lemma 4.2, complete the proof. �

Remark 2. The groups G and H in the above theorem are solvable.
this shows that the two concepts, configuration equivalence and iso-
morphism, are not equivalent for solvable and hence amenable groups.
these groups are not finitely presented and they are not residually finite,
for they are not Hopfian.
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