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EQUATIONS FOR SECANT VARIETIES OF CHOW VARIETIES

YONGHUI GUAN

Abstract. The Chow variety of polynomials that decompose as a product of linear forms has
been studied for more than 100 years. Finding equations in the ideal of secant varieties of
Chow varieties would enable one to measure the complexity the permanent to prove Valiant’s
conjecture VP ≠VNP. In this article, I use the method of prolongation to obtain equations
for secant varieties of Chow varieties as GL(V )-modules.

1. Introduction

1.1. Motivation from algebraic geometry. There has been substantial recent interest in the
equations of certain algebraic varieties that encode natural properties of polynomials (see e.g.
[6, 24, 21, 25, 26]). Such varieties are usually preserved by algebraic groups and it is a natural
question to understand the module structures of the spaces of equations. One variety of interest
is the Chow variety of polynomials that decompose as a product of linear forms, which is defined
by Chd(V ) = P{z ∈ S

dV ∣z = w1⋯wd for some wi ∈ V } ⊂ PS
dV, where V be a finite-dimensional

complex vector space and PSdV is the projective space of homogeneous polynomials of degree
d on the dual space V ∗.

The ideal of the Chow variety of polynomials that decompose as a product of linear forms
has been studied for over 100 years, dating back at least to Gordon and Hadamard. Let
Sδ(SdV ) denote the space of homogeneous polynomials of degree δ on SdV ∗. The Foulkes-

Howe map hδ,d ∶ S
δ(SdV ) → Sd(SδV ) (see §2.5 for the definition) was defined by Hermite

[19] when dim V = 2, and Hermite proved the map is an isomorphism in his celebrated “Her-
mite reciprocity”. Hadamard [16] defined the map in general and observed that its kernel is
Iδ(Chd(V

∗)), the degree δ component of the ideal of the Chow variety. The conjecture that hδ,d
is always of maximal rank dating back to Hadamard [17] has become known as the “Foulkes-
Howe conjecture”[9, 20]. Müller and Neunhöffer [30] proved the conjecture is false by showing
the map h5,5 is not injective. Brion [1, 2] proved the Foulkes-Howe conjecture is true asymp-
totically, giving an explicit, but very large bound for δ in terms of d and dim V . We do not
understand this map when d > 4 (see [1, 2, 9, 17, 20, 27]).

Brill and Gordon (see [11, 12, 22]) wrote down set-theoretic equations for the Chow variety
of degree d + 1, called “Brill’s equations”. Brill’s equations give a geometric derivation of set-
theoretic equations for the Chow variety, I computed Brill’s equations in terms of a GL(V )-
module from a representation-theoretic perspective [13], where GL(V ) denotes the general linear
group of invertible linear maps from V to V .

Let W be a complex vector space and X ⊂ PW ∗ be an algebraic variety, define σ0
r(X) =

⋃p1,⋯,pr∈X⟨p1,⋯, pr⟩ ⊂ PW
∗, where ⟨p1,⋯, pr⟩ denotes the projective plane spanned by p1,⋯, pr.

Define the r-th secant variety of X to be σr(X) = σ0
r(X) ⊂ PW ∗, where the overline denotes

closure in the Zariski topology.
Secant varieties of Chow varieties are invariant under the action of the group GL(V ), therefore

their ideals are GL(V )-modules (see §2.1). Previously very little was known about the ideals
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of secant varieties of Chow varieties, I obtained determinantal equations for these varieties in
[14]. In this article, I obtain equations for secant varieties of Chow varieties in terms of GL(V )-
modules based on what we know about the ideal of Chow varieties.

1.2. Motivation from complexity theory. Leslie Valiant [34] defined in 1979 an algebraic
analogue of the famous P versus NP problem (see Appendix in §8). The class VP is an
algebraic analog of the class P, and the class VNP is an algebraic analog of the class VP.
Valiant’s Conjecture VP ≠VNP [34] may be rephrases as “there does not exist polynomial size

circuit that computes the permanent”, defined by permn = ∑σ∈Sn
x1σ(1)x2σ(2)⋯xnσ(n) ∈ S

n
C
n2

,

where Sn is the symmetric group and C
n2

has a basis {xij}1≤i,j≤n. The readers can refer to
Appendix in §8 to learn more about circuits, complexity classes and Valiant’s Conjecture.

Let hn and gn be two positive sequences, define hn = ω(gn) if limn→∞
hn

gn
= ∞.

A geometric method to approach Valiant’s conjecture implicitly proposed by Gupta, Ka-
math, Kayal and Saptharishicite [15] is to determine equations for certain secant varieties. The
following theorem appeared in [23], it is a geometric rephrasing of results in [15].

Theorem 1.1. [15, 23] If for all but a finite number of m, for all r,n with rn < 2
√
m log(m)ω(1),

[ℓn−m permm] /∈ σr(Chn(Cm2+1)),

then Valiant’s Conjecture VP ≠VNP [34] holds.

Theorem 1.1 motivated me to study the varieties σr(Chd(V )). Although the equations I
obtain here cannot separate VP from VNP, the results come from a geometric perspective,
and these are the first low degree equations for secant varieties of Chow varieties, in addition to
the non-classical equations obtained in [14].

My results include

● Equations for σ2(Ch3(C6∗)) (Theorems 1.2 and 1.3).
● Equations for σr(Ch4(C4r∗)) (Theorem 1.4).
● Properties related to plethysm coefficients (Theorems 6.3 and 7.2).
● Equations for σr(Chd(Cdr∗)) when d is even (Theorem 1.5)

1.3. Results. Let X ⊂ W ∗ be an algebraic variety. Suppose we know the ideal of X, there
is a systematic method called prolongation (see §3.1 for definition) to compute the ideal of
σr(X), but this method is difficult to implement. This method was studied by J. Sidman and
S. Sullivant [31], and J.M. Landsberg and L. Manivel [24].

For any partition λ, let SλV be the irreducible GL(V )-module determined by the partition λ,
for example S(d)V = S

dV , while S(1d)V = Λ
dV is the d-th exterior power of V . The group GL(V )

has an induced action on Sk(SdV ) (see §2.1), so Sk(SdV ) a GL(V )-module, and Sk(SdV ) can
be decomposed into a direct sum of irreducible GL(V )-modules, the multiplicity of SλV in
Sk(SdV ) is the plethysm coeffcient pλ(k, d). To obtain equations for secant varieties, on one
hand I compute prolongations directly via differential operators and representation theory. On
the other hand, I rephrase prolongations and reduce computing prolongations to computing
polarization maps (see §3.1) via plethysm coefficients and Littlewood-Richardson coefficients
(see §2.3). This gives a path towards obtaining equations for secant varieties of Chow varieties
and other varieties.

Let Id(X) denote the degree d component of the ideal of X. For d = 3,

Theorem 1.2. Let dim V ≤ 6, I7(σ2(Ch3(V ∗))) = 0.
Also

Theorem 1.3. Let dim V ≥ 6, S(5,5,5,5,3,1)V ⊂ I8(σ2(Ch3(V ∗))).
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For d = 4,

Theorem 1.4. Consider dim V ≥ 4r,

S(6,6,44r−2)V ⊂ I4r+1(σr(Ch4(V ∗)).

A partition is an even partition if all the components of the partition are even numbers. When
d is even, any even partition with length no more than k has positive plethysm coefficients in
Sk(SdV ) [4].
Theorem 1.5. The isotypic component of S((2m+2)m,(2m)2mr−m)V is in I2mr+1(σr(Ch2m(V ∗))).
Moreover any module with even partition and smaller than ((2m + 2)2m−1,2) (with respect to
the lexicographic order in §2.3) is in I2mr+1(σr(Ch2m(V ∗))).

1.4. Organization. In §2, I review semi-standard tableaux, G-variety, the Little-Richardson
rule, how to write down highest weight vectors of a GL(V )-module via raising operators, and
the Foulkes-Howe map related to the ideal of the Chow variety Chd(V ∗). In §3, I explain how
to compute prolongations and multiprolongations of a GL(V )-module via differential operators
and representation theory to obtain equations for σr(Chd(V ∗)). In §4, I prove Theorems 1.2
and 1.3. In §5, I prove Theorem 1.4. In §6, I prove a theorem related to plethysm coefficients of
S2m(S2m+1V ) , and using this I prove Theorem 1.5. In §7, I prove a property about plethysm
coefficients. In §8, I include knowledge in computer science aboutP versusNP problem, circuits,
complexity classes and Valiant’s Conjecture

1.5. Acknowledgement. I thank my advisor J.M. Landsberg for discussing all the details
throughout this article. I thank C. Ikenmeyer and M. Michalek for discussing the plethysm
coefficients. Most of this work was done while the author was visiting the Simons Institute
for the Theory of Computing, UC Berkeley for the Algorithms and Complexity in Algebraic

Geometry program, I thank the Simons Institute for providing a good research environment.

2. Preliminaries

2.1. G-variety. I follow the notation in [22, §4.7].

Definition 2.1. Let W be a complex vector space. A variety X ⊂ PW is called a G-variety if
W is a module for the group G and for all g ∈ G and x ∈X, g ⋅ x ∈ X.

G has an induced action on SdW ∗ such that for any P ∈ SdW ∗ and w ∈W , g⋅P (w) = P (g−1 ⋅w).
Id(X) is a linear subspace of SdW ∗ that is invariant under the action of G, therefore:

Proposition 2.2. If X ⊂ PW is a G-variety, then the ideal of X is a G-submodule of S●W ∗ ∶=
⊕∞d=0 S

dW ∗.

Example 2.3. The group GL(V ) has an induced action on SdV and Sk(SdV ∗) similarly.
Chd(V ) and its secant varieties are invariant under the action of GL(V ), therefore they are
GL(V )-varieties and their ideals are GL(V )-submodules of S●(SdV ∗) =⊕∞k=0 S

k(SdV ∗).

Let X ⊂ PW be a G-variety, and M be an irreducible submodule of S●W ∗, then either
M ⊂ I(X) or M ∩ I(X) = ∅. Thus to test if M gives equations for X, one only need to test one
polynomial in M .
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2.2. Semi-standard tableaux. I follow the notation in [10] and [22]. A partition λ of an
integer d is λ = (λ1,⋯, λm) with λ1 ≥ ⋯ ≥ λm > 0, λj ∈ N and ∑m

i=1 λi = d. We say d is the order

of λ and m is the length of λ. We often denote this by λ ⊢ d. To a partition λ ⊢ d, we associate
a Young diagram, which is a left aligned collection of boxes with λi boxes in row i.

A filling of a Young diagram using the numbers {1,⋯, l} is an assignment of one number to
each box, with repetitions allowed. A filled Young diagram is called a Young tableau. A semi-

standard filling is one in which the entries are strictly increasing in the columns and weakly
increasing in the rows. Semi-standard tableau is similarly defined.

Let λ be a partition with order kd, a semi-standard tableau of shape λ and content k × d is
a semi-standard tableau associated to λ and filled with {1,⋯, k} such that each i ∈ {1,⋯, k}
appears d times.

2.3. The Little-Richardson rule and Pieri’s rule. Let π and µ be two partitions, the tensor
product SλV ⊗SµV is a GL(V )-module. The littlewood-Richardson coefficients cνπµ are defined
to be the multiplicity of SνV in SλV ⊗ SµV , i.e. SλV ⊗ SµV =⊕ν c

ν
πµSνV .

We order partitions lexicographically: λ > µ if the first nonvanishing λi − µi is positive. Nec-
essary conditions for cνπµ to be positive are ∣ν ∣ = ∣π∣ + ∣µ∣ and ν is greater than π and µ.

In particular SλV ⊗ SdV = cν
λ,(d)SνV .

Theorem 2.4. (Pieri’s rule)

cνλ,(d) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if ν is obtained from λ by adding d boxes to

the rows of λ with no two in the same column;

0 otherwise.

Example 2.5. By Pieri’s rule,

SaV ⊗ SbV = ⊕
0≤t≤s,s+t=a+b

S(s,t)V.

S(d,d)V ⊗ Sd2−dV =
d

⊕
j=0

S(d2−j,d,j)V.

2.4. Highest weight vectors of modules in Sk(SdV ) via raising operators. I follow the
notation in [10]. The group GL(V ) has a natural action on V ⊗d such that g ⋅ (v1 ⊗ v2⋯⊗ vd) =
g ⋅ v1 ⊗⋯⊗ g ⋅ vd. Let dim V = n and let {e1, e2,⋯, en} be a basis of V . Let B ⊂ GL(V ) be the
subgroup of upper-triangular matrices (a Borel subgroup). For any partition λ = (λ1,⋯, λn), let
SλV be the irreducible GL(V )-module determined by the partition λ. For each SλV , there is a
unique line that is preserved by B, called a highest weight line. Let gl(V ) be the Lie algebra of
GL(V ), there is an induced action of gl(V ) on V ⊗d. For X ∈ gl(V ),

X.(v1 ⊗ v2⋯⊗ vd) =X.v1 ⊗ v2⋯⊗ vd + v1 ⊗X.v2 ⊗⋯⊗ vd +⋯ + v1 ⊗ v2⋯⊗ vd−1 ⊗X.vd.

Let Ei
j ∈ gl(V ) such that Ei

j(ej) = ei and Ei
j(ek) = 0 when k ≠ j. If i < j, Ei

j is called a raising

operator; if i > j, Ei
j is called a lowering operator.

A highest weight vector of a GL(V )-module is a weight vector that is killed by all raising
operators. Each realization of the module SλV has a unique highest weight line. Let W be a
GL(V )-module, the multiplicity of SλV in W is equal to the dimension of the highest weight
space with respect to the partition λ.

Define the weight space W(a1,⋯,an)⊂ Sk(SdV ) to be the set of all the weight vectors whose

weights are (a1,⋯, an). Note that SdV has a natural basis {eα1

1 ⋯e
αn
n }α1+⋯+αn=d.
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Example 2.6. S(4,2)V ⊂ S
3(S2V ) has multiplicity 1.

Proof. Let v be a highest weight vector of S(4,2)V . The weight space W(4,2) has a basis

{(e21)
2(e22), (e

2
1)(e1e2)

2}. Write v = a(e21)
2(e22) + b(e21)(e1e2)

2, then E1
2v = 0 implies (2a +

2b)(e21)
2(e1e2) = 0, therefore a = −b, so the multiplicity of S(4,2)V in S3(S2V ) is 1. �

Proposition 2.7. The highest weight vector f of S(2k)V ⊂ S
k(S2V ) is determinant of the k × k

matrix M with Mij = eiej for 1 ≤ i, j ≤ k.

Proof. Since S(2k)V ⊂ S
k(S2V ) is of multiplicity one, we only need to prove detM is killed by

all raising operators Ei
i+1 (i = 1,2, ..., k − 1). By symmetry, we only need to prove detM is killed

by the raising operator E1
2 . It is straightforward to verify detM is killed by the raising operator

E1
2 . �

Remark 2.8. By observation, σk(Ch2(V ∗)) ⊂ S2V ∗ can be seen as the variety of symmetric
matrices of rank at most 2k, whose ideal is generated by (2k + 1) × (2k + 1) minors of the
matrix. By Proposition 2.7, these (2k + 1) × (2k + 1) minors are corresponding to the module
S(22k+1)V ⊂ S2k+1(S2V ), therefore S(22k+1)V is the generator of the ideal of σk(Ch2(V ∗)) for
k ≥ 1.

Proposition 2.9. The highest weight vector f of S(7,3,2)V ⊂ S
4(S3V ) is

f = (e31)
2(e1e22)(e2e

2
3) − 2(e

3
1)

2(e1e2e3)(e22e3) + (e
3
1)

2(e1e23)(e
3
2) − (e

3
1)(e

2
1e2)

2(e2e23)
+ 2(e31)(e

2
1e2)(e

2
1e3)(e

2
2e3) − 4(e

3
1)(e

2
1e2)(e1e

2
2)(e1e

2
3) + 0(e

3
1)(e

2
1e3)(e1e

2
2)(e1e2e3)

+ 3(e21e2)
3(e1e23) + 4(e1e2e3)

2(e21e2)(e
3
1) − (e

3
1)(e

2
1e3)

2(e32) + 3(e
2
1e2)(e1e

2
2)(e

2
1e3)

2

− 6(e21e2)
2(e21e3)(e1e2e3).

Proof. Let f ∈W(7,3,2) ⊂ S
4(S3V ) be a weight vector. The weight space W(7,3,2) ⊂ S

4(S3V ) has
dimension 12. Write f as a linear combination of the basis vectors and apply E1

2 and E2
3 to f ,

we get two systems of linear equations. There is a unique solution up to scale. �

Remark 2.10. The module S(7,3,2)V cuts out Ch3(V ∗) set-theoretically [13].

Proposition 2.11. The highest weight vector f of S(5,4,2,1)V ⊂ S
4(S3V ) is

f = e22e4h1 + e1e3e4h2 + e1e2e4h3 + e
2
1e4h4.(1)

Here

h4 = (e21e2)(e
3
2)(e1e

2
3) − (e1e

2
2)

2(e1e23) − (e
2
1e2)(e1e2e3)(e

2
2e3)

+ (e21e3)(e1e
2
2)(e

2
2e3) − (e1e

2
2)(e1e2e3)

2 − (e21e3)(e1e2e3)(e
3
2),

h3 = −E1
2h4, h1 =

1
2
E1

2E
1
2h4 is a highest weight vector of S(5,2,2)V ⊂ S

3(S3V ) and h2 = E
2
3E

1
2h4

is a highest weight vector of S(4,4,1)V ⊂ S
3(S3V ).

2.5. Foulkes-Howe map and the ideal of Chow variety. I follow the notation in [22,
§8.6]. Define the Foulkes-Howe map FHδ,d ∶ Sδ(SdV ) → Sd(SδV ) as follows: First include

Sδ(SdV ) ⊂ V ⊗δd. Next, regroup and symmetrize the blocks to (SδV )⊗d. Finally, thinking of
SδV as a single vector space, symmetrize again to land in Sδ(SdV ).

Example 2.12. FH2,2(x2 ⋅ y2) = (xy)2, and FH2,2((xy)2) = 1
2
[x2 ⋅ y2 + (xy)2].

FHδ,d is a GL(V )-module map and Hadamard [16] observed and Howe rediscovered the
following relationship between Foulkes-Howe map and ideal of Chow variety.
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Proposition 2.13. (Hadamard [16]) Ker FHδ,d = Iδ(Chd(V ∗)).
Corollary 2.14. When δ = d + 1, Ker FHd+1,d = Id+1(Chd(V ∗)). Therefore as an abstract

GL(V )-module, Id+1(Chd(V ∗)) ⊃ Sd+1(SdV ) − Sd(Sd+1V ).
Proposition 2.15. (Hermite [19], Hadamard [17], J.Müler and M.Neunhöfer)[30]) When d =
2,3,4, FHd,d are injective and hence surjective.

Proposition 2.16. (T. McKay [29]) If FHδ,d is surjective, then FHδ+1,d is surjective.

So when d = 2,3,4, FHd+1,d are surjective, and Id+1(Chd(V ∗)) = Sd+1(SdV ) − Sd(Sd+1V ) as
GL(V )- modules.

3. Prolongations, multiprolongations and partial derivatives

3.1. Prolongations, multiprolongations and ideals of secant varieties. I study prolonga-
tions, multiprolongations and how they relate to ideals of secant varieties. Let W be a complex
vector space with a basis {e1,⋯, en}.

Definition 3.1. For A ⊂ SdW , define the p-th prolongation of A to be:

A(p) = (A⊗ SpW ) ∩ Sp+dW.

It is equivalent to saying that

A(p) = {f ∈ Sp+dW ∣
∂pf

∂eβ
∈ A any β ∈ Nn with ∣β∣ = p}.

For any 1 ≤ k ≤ d, there is an inclusion Fk,d−k ∶ SdW ↪ SkW ⊗ Sd−kW , called a polarization

map. Here are properties of prolongation.

Proposition 3.2. For A ⊂ SdW , A(p) is the inverse image of A ⊗ SpW under the polarization
map Fd,p ∶ Sd+pW → SdW ⊗ SpW .

Proof. For any f ∈ S(p+d)W ,

Fd,p(f) = ∑
∣α∣=p

∂pf

∂eα
⊗ eα.

Hence

Fd,p(f) = ∑
∣α∣=p

∂pf

∂eα
⊗ eα ∈ A⊗ SpW ⇔

∂pf

∂eα
∈ A for any ∣α∣ = p⇔ f ∈ A(p).

�

Theorem 3.3. (J. Sidman, S. Sullivant [31]) Let X ∈ PW ∗ be an algebraic variety and let d be
the integer such that Id−1(X) = 0 and Id(X) ≠ 0. Then Ir(d−1)(σr(X)) = 0 and Ir(d−1)+1(σr(X)) =
Id(X)(r−1)(d−1).

Remark 3.4. Theorem 3.3 bounds the lowest degree of an element in the ideal of σr(X) if we
know generators of the ideal of X.

Proposition 3.5. Let X ⊂ PW ∗ be an algebraic variety, then Id(X)(p) ⊂ Id+1(X)(p−1).

Proof. Let f ∈ Id(X)(p) ⊂ Sd+pW , consider ∂p−1f
∂eα

with ∣α∣ = p − 1,

∂p−1f
∂eα

=
n

∑
i=1

∂pf

∂(eαei)
ei ∈ Id+1(X).

�
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Example 3.6. Consider Ch3(V ∗) with dim V ≥ 4, by Proposition 2.15 and Proposition 2.16,
I3(Ch3(V ∗)) = 0 and

I4(Ch3(V ∗)) = S4(S3V ) − S3(S4V ) = S(7,3,2)V + S(6,2,2,2)V + S(5,4,2,1)V.(2)

Therefore by Theorem 3.3 I6(σ2(X)) = 0 and I7(σ2(X)) = I4(X)(3).

The following proposition is about multiprolongations:

Proposition 3.7. (Multiprolongation [22] ) Let X ⊂ PW ∗ be an algebraic variety, a polynomial
P ∈ SδW is in Iδ(σr(X)) if and only if for any nonnegative decreasing sequence (δ1, δ2,⋯, δr)
with δ1 + δ2 +⋯+ δr = δ,

P̄ (v1,⋯, v1, v2,⋯, v2,⋯, vr,⋯, vr) = 0
for all vi ∈ X̂, where the number of v′is appearing in the formula is mi.

The following proposition rephrases multiprolongations.

Proposition 3.8. Let X ⊂ PW ∗ be an algebraic variety, for any positive integer δ and r, and
for any decreasing sequence δ⃗ = (δ1, δ2,⋯, δr) with δ1 + δ2 + ⋯ + δr = δ, consider the following
polarization maps

Fδ1,δ2,⋯,δr ∶ S
δW → Sδ1W ⊗ Sδ2W ⊗⋯⊗ SδrW.

Let A
δ⃗,i
= Sδ1W ⊗⋯⊗Sδi−1W ⊗ Iδi(X)⊗S

δi+1W ⊗⋯⊗SδrW ⊂ Sδ1W ⊗Sδ2W ⊗⋯⊗SδrW , then

Iδ(σr(X)) = ⋂
δ1+δ2+⋯+δr=δ

F−1δ1,δ2,⋯,δr(Aδ⃗,1
+⋯+A

δ⃗,r
)

Corollary 3.9. Id(X)((r−1)(d−1)) ⊂ Ir(d−1)+1(σr(X)).

Proof. By Proposition 3.8,

Ir(d−1)+1(σr(X)) = ⋂
δ1+δ2+⋯+δr=r(d−1)+1, δ1≥δ2≥⋯≥δr

F−1δ1,δ2,⋯,δr(Aδ⃗,1
+⋯+A

δ⃗,r
)

⊃ ⋂
δ1+δ2+⋯+δr=r(d−1)+1, δ1≥δ2≥⋯≥δr

F−1δ1,δ2,⋯,δr(Aδ⃗,1).

By similar arguments as Proposition 3.2, F−1δ1,δ2,⋯,δr(Aδ⃗,1
) = Iδ1(X)

(r(d−1)+1−δ1).

Since δ1 ≥ d, by Proposition 3.5, Id(X)((r−1)(d−1)) ⊂ Iδ1(X)
(r(d−1)+1−δ1), therefore

Id(X)((r−1)(d−1)) ⊂ Ir(d−1)+1(σr(X)). �

A new proof of Theorem 3.3. First, by Proposition 3.8,

Ir(d−1)(σr(X)) = ⋂
δ1+δ2+⋯+δr=r(d−1)

F−1δ1,δ2,⋯,δr(Aδ⃗,1
+⋯+A

δ⃗,r
).

In particular, when δ1 = δ2 = ⋯ = δr = (d−1), Aδ⃗,i = 0 for i = 1,⋯, r, so F−1δ1,δ2,⋯,δr(Aδ⃗,1+⋯+Aδ⃗,r) =
0. Therefore Ir(d−1)(σr(X)) = 0.
Second, by Proposition 3.8,

Ir(d−1)+1(σr(X)) = ⋂
δ1+δ2+⋯+δr=r(d−1)+1

F−1δ1,δ2,⋯,δr(Aδ⃗,1
+⋯+A

δ⃗,r
).

In particular, when δ1 = d, δ2 = ⋯ = δr = d − 1, Aδ⃗,i
= 0 for i = 2,⋯, r. so

F−1δ1,δ2,⋯,δr(Aδ⃗,1
+⋯+A

δ⃗,r
) = F−1δ1,δ2,⋯,δr(Aδ⃗,1

) = Id(X)((r−1)(d−1)).

Therefore Ir(d−1)+1(σr(X)) ⊂ Id(X)((r−1)(d−1)).
On the other hand, by Corollary 3.9, Id(X)((r−1)(d−1)) ⊂ Ir(d−1)+1(σr(X)), so equality holds. �
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Theorem 3.3, small examples and intuition lead to the following conjecture:

Conjecture 3.10. Let X ∈ PW ∗ be an algebraic variety, and δ = kr + l with 0 ≤ l < r, take δ⃗

such that δ1 = ⋯ = δl = k + 1 and δl+1 = ⋯ = δr = k, then

Iδ(σr(X)) = F−1δ1,δ2,⋯,δr(Aδ⃗,1
+⋯+A

δ⃗,r
).

Example 3.11. Consider Ch3(V ∗), by Example 3.6, I3(Ch3(V ∗)) = 0 and I4(Ch3(V ∗)) =
S(7,3,2)V + S(6,2,2,2)V + S(5,4,2,1)V . Consider the polarization maps

Fδ,8−δ ∶ S
8(S3V )→ Sδ(S3V )⊗ S8−δ(S3V ).

By Propositions 3.8 and 3.5,

I8(σ2(Ch3(V ∗))) =
8

⋂
δ=4

F−1δ,8−δ[S
δ(S3V )⊗ I8−δ(Ch3(V ∗)) + Iδ(Ch3(V ∗))⊗ S8−δ(S3V )]

=
8

⋂
δ=5

Iδ(Ch3(V ∗))(8−δ)⋂F−14,4[I4(Ch3(V ∗))⊗ S4(S3V )

+S4(S3V )⊗ I4(Ch3(V ∗))]

= I5(Ch3(V ∗))(3)⋂F−14,4[I4(Ch3(V ∗))⊗ S4(S3V )

+S4(S3V )⊗ I4(Ch3(V ∗))].(3)

3.2. Partial derivatives and prolongations. Let V = span{e1,⋯, en}, SdV has a natural
basis {eα1

1 ⋯e
αn
n ∶= e

α}α1+⋯+αn=d. Assume e1 > e2 > ⋯ > en. Define the dominance partial order

on the natural basis of SdV such that

eα > eβ ⇔ α1 +⋯+ αi ≥ β1 +⋯+ βi for each i.

It is equivalent to saying

eα > eβ ⇔ one can get eα from eβ via raising operators.

Let f ∈ W(a1,⋯,an) ⊂ S
k(SdV ), let α be the index of the last d elements in (a1,⋯, an), then

∂
∂eα

is the lowest possible partial derivative of f with respect to the dominance partial order.

Example 3.12. Let f ∈W(5,4,4,2) ⊂ S
5(S3V ), then α = (0,0,1,2) and the lowest possible partial

derivative of f is ∂f

∂e3e
2

4

.

Definition 3.13. Let eα = eα1

1 ⋯e
αj

j e
αj+1

j+1 ⋯e
αn
n , for j = 1,⋯, n − 1, define the normalized lowering

operators

Ẽ
j+1
j eα = eα1

1 ⋯e
αj−1
j e

αj+1+1
j+1 ⋯eαn

n .

The following proposition gives the relationship between raising operators and partial deriva-
tives of polynomials in Sk(SdV ).
Proposition 3.14. Let f ∈ Sk(SdV ) and eα be a basis vector of SdV , then

[
∂

∂eα
,E

j
j+1]f = (1 +αj+1)

∂f

∂(Ẽj+1
j eα)

.

Where Ẽ
j+1
j (j = 1,⋯, n − 1) are the normalized lowering operators.
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Proof. Since all the operators here are linear, we only to prove the case when f is a monomial.

Let eα = eα1

1 ⋯e
αj

j e
αj+1

j+1 ⋯e
αn
n , so Ẽ

j+1
j eα = eα1

1 ⋯e
αj−1
j e

αj+1+1
j+1 ⋯eαn

n = eβ . Write f = g(eα)m(eβ)n,
where g is not divisible by eα or eβ . Then

E
j+1
j f = (Ej+1

j g)(eα)m(eβ)n + gEj+1
j ((e

α)m)(eβ)n + g(eα)mE
j+1
j ((e

β)n)

= (Ej+1
j g)(eα)m(eβ)n +mg(eα)m−1Ej+1

j (e
α)(eβ)n + n(1 + αj+1)g(eα)m+1(eβ)n−1.

So

∂(Ej+1
j f)

∂eα
= m(Ej+1

j g)(eα)m−1(eβ)n +m(m − 1)g(eα)m−2Ej+1
j (e

α)(eβ)n +

n(m + 1)(1 +αj+1)g(eα)m(eβ)n−1.(4)

On the other hand
∂f

∂eα
=mg(eα)m−1(eβ)n.

E
j+1
j (

∂f

∂eα
) = m(Ej+1

j g)(eα)m−1(eβ)n +m(m − 1)g(eα)m−2Ej+1
j (e

α)(eβ)n +

nm(1 +αj+1)g(eα)m(eβ)n−1.(5)

Combining (4) and (5), we conclude:

∂(Ej+1
j f)

∂eα
−Ej

j+1(
∂f

∂eα
) = n(1 + αj+1)g(eα)m(eβ)n−1 = (1 +αj+1)

∂f

∂(Ẽj+1
j eα)

.

�

In particular if f ∈ Sk(SdV ) is a highest weight vector of some GL(V )-module, then

E
j
j+1(

∂f

∂eα
) = −(1 + αj+1)

∂f

∂(Ẽj+1
j eα)

.(6)

Therefore

Lemma 3.15. If f ∈ Sk+1(SdV ) is a highest weight vector for some GL(V )module S(a1,⋯,an)V =

SaV , then the lowest possible partial derivative ∂f
∂eα

is killed by all the raising operators, i.e.

either ∂f
∂eα

is 0 or a highest weight vector of Sa−αV ⊂ Sk(SdV ).
By induction on dominance partial order, I conclude

Proposition 3.16. If f ∈ Sk+1(SdV ) is a highest weight vector for some module S(a1,⋯,an)V =

SaV , then there exists a basis vector eβ of SdV such that ∂f

∂eβ
is a highest vector of Sa−βV ⊂

Sk(SdV ).
By Proposition 3.16,

Corollary 3.17. Let f ∈ Sk+1(SdV ) be a highest weight vector for some module S(a1,⋯,an)V =

SaV , if we can find all the eβ such that ∂f

∂eβ
is a highest vector of Sa−βV ⊂ Sk(SdV ), the sum of

all these modules is the smallest possible module such that SaV lies in its first prolongation.

For simplicity, write ∂f

∂eβ
= feβ from now on.

Example 3.18. Let f be the highest weight vector of S(7,3,2)V ⊂ S
4(S3V ) in Example 2.9, then

fe2e23
= (e31)

2(e1e22) − e
3
1(e

2
1e2)

2, which is a highest weight vector of S(7,2)V ⊂ S
3(S3V ).

The following proposition, tells us which prolongation a given module lies in.
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Proposition 3.19. If SaV ⊂ S
k+1(SdV ) with multiplicity ma > 0, let

Ma = {b∣SaV ⊂ SbV ⊗ SdV as abstract modules by Pieri′s rule

and SbV ⊂ S
k(SdV ) with multiplicity mb > 0}.

then

(SaV )⊕ma ⊂ (⊕
b∈Ma

(SbV )⊕mb)(1).

In particular,
ma ≤ ∑

b∈Ma

mb.

Proof. Consider the polarization map

Pk,1 ∶ S
k+1(SdV )→ Sk(SdV )⊗ SdV.

By Schur’s lemma

Pk,1((SaV )⊕ma) ⊂ (⊕
b∈Ma

(SbV )⊕mb)⊗ SdV.

By Proposition 3.2

(SaV )⊕ma ⊂ (⊕
b∈Ma

(SbV )⊕mb)(1).

Since Pk,1 is injective,

ma ≤ ∑
b∈Ma

mb.

�

Proposition 3.20. The module S(5,4,4,2)V ⊂ S
5(S3V ) is contained in (S(5,4,2,1)V ⊕S(4,4,4)V )(1).

Let f ∈ S(5,4,4,2)V ⊂ S
5(S3V ) be a highest weight vector, then fe1e24

is a highest weight vector

of S(4,4,4)V ⊂ S
4(S3V ) and fe2

3
e4

is a highest weight vector of S(5,4,2,1)V ⊂ S
4(S3V ). Therefore

S(5,4,4,2)V is not contained in the first prolongation of S(4,4,4)V or S(5,4,2,1)V .

Proof. Since

S4(S3V ) = S(12)V + S(10,2)V + S(9,3)V + S(8,4)V +

S(8,2,2)V + S(7,4,1)V + S(7,3,2)V + S(6,6)V +

S(6,4,2)V + S(6,2,2,2)V + S(5,4,2,1)V + S(4,4,4)V.

By Proposition 3.19, S(5,4,4,2) ⊂ (S(5,4,2,1)V ⊕ S(4,4,4)V )(1). By induction on the dominance
partial order, fe1e24

and fe2
3
e4

are killed by all raising operators. Let h1 be a highest weight

vector of S(4,4,4)V ⊂ S
4(S3V ) and h2 be a highest weight vector of S(5,4,2,1)V ⊂ S

4(S3V ). Set
fe1e24

= c1h1 and fe2
3
e4
= c2h2, where c1 and c2 are constants, then c1, c2 can not be both 0 by

Proposition 3.16.
Since fe3

3

∈ S(5,4,2,1)V ⊕S(4,4,4)V with weight (5,4,1,2), fe3
3

= c3E
4
3fe2

3
e4
, where c3 is a constant.

By (6), E3
4fe3

3

= −fe2
3
e4
, so c3E

3
4E

4
3fe2

3
e4
= −fe2

3
e4
, which implies c3(E3

3 − E
4
4)fe2

3
e4
= −fe2

3
e4
, so

c3 = −1. Since (fe1e24)e33 = (fe33)e1e24 ,

c1(h1)e3
3

= (−E4
3fe2

3
e4
)e1e24

= −c2(E4
3h2)e1e24

= −c2(E4
3(h2)e1e24 − (h2)e1e3e4)

= c2(h2)e1e3e4



EQUATIONS FOR SECANT VARIETIES OF CHOW VARIETIES 11

By Proposition 2.11, (h1)e3
3

and (h2)e1e3e4 are both highest weight vectors of S(4,4,1)V ⊂ S
4(S3V ),

by rescaling, we may assume they are equal, so c1 = c2, so c1 and c2 are both nonzero, therefore
fe1e24

is a highest weight vector of S(4,4,4)V ⊂ S4(S3V ) and fe2
3
e4

is a highest weight vector of

S(5,4,2,1)V ⊂ S
4(S3V ). �

4. The case when the degree is 3

Consider σ2(Ch3(V ∗)), without loss of generality we assume dim V = 6.

Proposition 4.1.

I4(Ch3(V ∗))(1) = S(7,2,2,2,2)V ⊕ S(6,4,2,2,1)V ⊕ S(5,5,3,1,1)V,

I4(Ch3(V ∗))(2) = S(8,2,2,2,2,2)V ⊕ S(7,4,2,2,2,1)V ⊕ S(6,5,3,2,2,1)V ⊕ S(5,5,5,1,1,1)V,

I4(Ch3(V ∗))(3) = 0.

Proof. First we claim

I4(Ch3(V ∗))(1) = S(7,2,2,2,2)V ⊕ S(6,4,2,2,1)V ⊕ S(5,5,3,1,1)V.(7)

By (2),
I4(Ch3(V ∗)) = S(7,3,2)V + S(6,2,2,2)V + S(5,4,2,1)V.

By computer softwares (e.g. Lie),

S4(S3V ) = S(12)V + S(10,2)V + S(9,3)V + S(8,4)V +

S(8,2,2)V + S(7,4,1)V + S(7,3,2)V + S(6,6)V +

S(6,4,2)V + S(6,2,2,2)V + S(5,4,2,1)V + S(4,4,4)V.

and

S5(S3V ) = S(15)V + S(13,2)V + S(12,3)V + S(11,4)V + S(11,2,2)V + S(10,5)V + S(10,4,1)V + S(10,3,2)V +

S(9,6)V + 2S(9,4,2)V + S(9,2,2,2)V + S(8,6,1)V + S(8,5,2)V + S(8,4,3)V + S(8,4,2,1)V +

S(8,3,3,2)V + S(7,6,2)V + S(7,5,2,1)V + S(7,4,4)V + S(7,4,3,1)V + S(7,4,2,2)V +

S(7,2,2,2,2)V + S(6,6,3)V + S(6,5,2,2)V + S(6,4,4,1)V + S(6,4,2,2,1)V + S(5,5,3,1,1)V + S(5,4,4,2)V.

Since I4(Ch3(V ∗)) contains all the modules with length 4 in S4(S3V ), by Proposition 3.19 any

module with length 5 in S5(S3V ) is in I4(Ch3(V ∗)(1).
On the other hand, the other modules with length no more than 4 in S5(S3V ) are not in

I4(Ch3(V ∗)(1): By Proposition 3.16, for any module with length no more than 4 in S5(S3V ),
one can find a partial derivative of a highest weight vector of this module such that it is a
highest weight vector of a module in S4(S3V ) but not in I4(Ch3(V ∗). For most modules,
we can check directly, but for some modules, we need to verify carefully. For example, By
Proposition 3.20, S(5,4,4,2) ⊂ (S(5,4,2,1) ⊕ S(4,4,4)V )(1), but fe1e24

is a highest weight vector of

S(4,4,4)V ⊊ I4(Ch3(V ∗)), so S(5,4,4,2) is not not in I4(Ch3(V ∗)(1). I conclude

I4(Ch3(V ∗))(1) = S(7,2,2,2,2)V ⊕ S(6,4,2,2,1)V ⊕ S(5,5,3,1,1)V.

Similarly, by studying the modules in S6(S3V ) and S7(S3V ), we conclude

I4(Ch3(V ∗))(2) = S(8,2,2,2,2,2)V ⊕ S(7,4,2,2,2,1)V ⊕ S(6,5,3,2,2,1)V ⊕ S(5,5,5,1,1,1)V,

I4(Ch3(V ∗)(3) = 0.

�

Therefore by Proposition 4.1 and Theorem 3.3,
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Theorem 4.2. (restatement of Theorem 1.2) I7(σ2(Ch3(V ∗))) = I4(Ch3(V ∗))(3) = 0.
Also

Theorem 4.3. (restatement of Theorem 1.3) I8(σ2(Ch3(V ∗))) ⊃ S(5,5,5,5,3,1)V.

Proof. By Example 3.8, I8(σ2(Ch3(V ∗))) = I5(Ch3(V ∗))(3)⋂F−14,4[I4(Ch3(V ∗)) ⊗ S4(S3V ) +
S4(S3V ) ⊗ I4(Ch3(V ∗))]. Since all the modules with 5 columns in S5(S3V ) are contained in
I5(Ch3(V ∗)), by Proposition 3.2 and Schur’s lemma,

(8) S(5,5,5,5,3,1)V ⊂ I5(Ch3(V ∗)(3).

Consider the map

F4,4 ∶ S
8(S3V )→ S4(S3V )⊗ S4(S3V ).

Let I4(Ch3(V ∗))
c denote the complement to I4(Ch3(V ∗)) in S4(S3V ). Since

I4(Ch3(V ∗))
c
= S(12)V + S(10,2)V + S(9,3)V + S(8,4)V +

S(8,2,2)V + S(7,4,1)V + S(6,6)V + S(6,4,2)V + S(4,4,4)V,

and S(5,5,5,5,3,1)V ⊈ S(4,4,4)V ⊗ S(4,4,4)V , by the Littlewood-Richardson rule,

S(5,5,5,5,3,1)V ⊈ I4(Ch3(V ∗))
c ⊗ I4(Ch3(V ∗))

c
.

Therefore by Schur’s lemma

S(5,5,5,5,3,1)V ⊂ F
−1
4,4(I4(Ch3(V ∗))⊗ S4(S3V ) + S4(S3V )⊗ I4(Ch3(V ∗))).

The result follows. �

Remark 4.4. Since σ2(Ch3(C5∗)) is a proper subset of PS3(C5∗), by inheritance (see [22]), the
ideal of σ2(Ch3(V ∗)) should contain modules with length 5. So S(5,5,5,5,3,1)V is not enough to
cut out σ2(Ch3(V ∗)) set-theoretically. One can get length 5 modules with high degree in the
ideal of σ2(Ch3(V ∗)) by Koszul Young flattenings [14], but I still do not know whether they
are enough to define σ2(Ch3(V ∗)) set-theoretically. We know that dim S(5,5,5,5,3,1)V = 1134 and
codim σ2(Ch3(V ∗)) = 24, therefore σ2(Ch3(V ∗)) is very far from being a complete intersection.
Obviously PS3(C5∗) with dimension 34 is in the zero set of S(5,5,5,5,3,1)V , while the dimension
of σ2(Ch3(V ∗)) is 31, the next question is: what is the difference between the dimension of
σ2(Ch3(V ∗)) and the zero set of S(5,5,5,5,3,1)V ?

5. The case when the degree is 4

Consider σr(Ch4(V ∗)) ⊂ S4(V ∗), where dim V ≥ 4r, prolongations enable one to find modules
in the ideal of σr(Ch4(V ∗)).
Theorem 5.1. (restatement of Theorem 1.4) When dim V ≥ 4r,

I4r+1(σr(Ch4(V ∗))) = I5(Ch4(V ∗))(4r−4)

and
S(6,6,44r−2)V ⊂ I4r+1(σr(Ch4(V ∗))).

Proof. By Proposition 2.13, Proposition 2.15 and Proposition 2.16, I4(Ch4(V ∗)) = 0 and I5(Ch4(V ∗)) =
S5(S4V ) − S4(S5V ), so I5(Ch4(V ∗))c = S4(S5V ). By Theorem 3.3,

I4r+1(σr(Ch4V
∗)) = I5(Ch4V

∗)(4r−4).

Consider the polarization map

F4r−4,5 ∶ S4r+1(S4V )→ S4r−4(S4V )⊗ S5(S4V ),
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by Proposition 3.2,

I5(Ch4V
∗)(4r−4) = F−14r+1,4(S

4r−4(S4V )⊗ I5(Ch4(V ∗))).

Since S(6,6,6,2) ⊂ S
4(S5V ) has the lowest highest weight vector with respect to the lexicographic

order among all the modules in S4(S5V ), by the Littlewood-Richardson rule,

S(6,6,44r−2)V ⊊ S
4r−4(S4V )⊗ I5(Ch4(V ∗))c = S4r−4(S4V )⊗ S4(S5V ).

Therefore by Schur’s lemma

S(6,6,44r−2)V ⊂ I5(Ch4V
∗)(4r−4) = I4r+1(σr(Ch4(V ∗)).

�

Remark 5.2. Consider r = 2 and dim V = 8. Since σ2(Ch4C
4∗)) is a proper subset PS4(C4∗), by

inheritance (see [22]), the ideal of σ2(Ch4(V ∗)) contains modules with length 4. So S(6,6,4,4,4,4,4,4)V
is not enough to cut out σ2(Ch4(V ∗)) set-theoretically. One can get a length 4 module
with high degree in the ideal of σ2(Ch4(V ∗)) by Koszul Young flattenings [14], but I still
do not know whether they are enough to define σ2(Ch4(V ∗)) set-theoretically. We know that
dim S(6,6,4,4,4,4,4,4)V = 336 and codim σ2(Ch3(V ∗)) = 272, therefore σ2(Ch4(V ∗)) is far from

being a complete intersection. Obviously PS4(C7∗) with dimension 210 is in the zero set of
S(6,6,4,4,4,4,4,4)V , while the dimension of σ2(Ch4C

4∗)) is 57, The next question is: what is the
difference between the dimension of σ2(Ch4(V ∗)) and the zero set of S(6,6,4,4,4,4,4,4)V ?

6. General case for even degrees

Let λ be a partition of order kd, recall a semi-standard tableau of shape λ and content k × d
is a semi-standard tableau associated to λ and filled with {1,⋯, k} such that each i ∈ {1,⋯, k}
appears d times.

Proposition 6.1. [3] Let λ be a partition with order kd with d odd , then the multiplicity of
λ in Sk(SdV ) is less than or equal to the number of semi-standard tableaux of shape λ and
content k × d with the additional property : for each pair (i, j),1 ≤ i ≠ j ≤ k, the set of columns
of i is not exactly the columns of j.

Proposition 6.2. [28] Let λ be a partition with order kd and let u be even, then

mult(SλV,S
k(SdV )) =mult(Sλ+(uk)V,S

k(Sd+uV )).

Theorem 6.3. S((2m+2)2m−1 ,2)V ⊂ S2m(S2m+1V ), with multiplicity 1, and S((2m+2)2m−1 ,2)V is
the smallest module with respect to the lexicographic order among all the modules in the de-
composition of S2m(S2m+1V ).

Proof. First, let λ = (λ1,⋯, λ2m) be a partition with order 4m2 + 2m and smaller than ((2m +
2)2m−1,2) with respect to the lexicographic order, then λ1 ≤ 2m + 2 and λ2m ≥ 3. Consider
the semi-standard tableaux with content 2m × (2m + 1); the first 3 columns must be filled with

{1,⋯,2m}. Therefore there are (λ1−3
2m−2) ≤ 2m−1 possible sets of columns, but there are 2m num-

bers to be filled in the semi-standard tableaux, so by Proposition 6.1, mult(SλV,S
2m(S2m+1V )) =

0.
Second, consider the partition λ = ((2m + 2)2m−1,2), by Proposition 6.2,

mult(SλV,S
2m(S2m+1V )) =mult(S(2m2m−1)V,S

2m(S2m−1V )). By [20] formula (80),

mult(S(2m2m−1)V,S
2m(S2m−1V )) = 1. The only filling is the following (I take m=3 as an exam-

ple).
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1 1 1 1 1 2
2 2 2 2 3 3
3 3 3 4 4 4
4 4 5 5 5 5
5 6 6 6 6 6

�

Let d = 2m ≥ 4 and dim V ≥ 2mr, consider the variety σr(Ch2m(V ∗)) ⊂ S2mV ∗.

Theorem 6.4. (restatement of Theorem 1.5) The isotypic component of

S((2m+2)m,(2m)2mr−m)V is contained in I2m+1(Ch2m(V ∗))(2m(r−1)) ⊂ I2mr+1(σr(Ch2m(V ∗))).More-

over any module with even partition and smaller than ((2m + 2)2m−1,2) (with respect to the
lexicographic order) is in I2mr+1(σr(Ch2m(V ∗))).

Proof. By Theorem 6.3, S((2m+2)2m−1 ,2)V is the smallest module (with respect to the lexico-

graphic order) in the decomposition of S2m(S2m+1V ). Therefore by Corollary 2.14, any module
smaller than S((2m+2)2m−1 ,2)V (with respect to the lexicographic order) is not in I2m+1(Ch2m(V ∗))c ⊂
S2m+1(S2mV ).

Consider the polarization map

F2mr−2m,2m+1 ∶ S
2mr+1(S2mV )→ S2mr−2m(S2mV )⊗ S2m+1(S2mV ).

By Proposition 3.2,

I2m+1(Ch2m(V ∗))(2m(r−1)) = F−12mr−2m,2m+1(S
2mr−2m(S2mV )⊗ I2m+1(Ch2m(V ∗))).

By the Littlewood-Richardson rule,

S((2m+2)m ,(2m)2mr−m)V ⊊ S
2mr−2m(S2mV )⊗ I2m+1(Ch2m(V ∗))c.

Moreover any module in S2mr+1(S2mV ) with even partition and smaller than ((2m+ 2)2m−1,2)
is not contained in S2mr−2m(S2mV )⊗ I2m+1(Ch2m(V ∗)))c.

Therefore by Schur’s lemma the isotypic component of S((2m+2)m ,(2m)2mr−m)V is contained in

F−12mr−2m,2m+1[S
2mr−2m(S2mV )⊗ I2m+1(Ch2m(V ∗))] = I2m+1(Ch2m(V ∗))(2m(r−1)).

Moreover any module in S2mr+1(S2mV ) with even partition and smaller than ((2m+ 2)2m−1,2)
(with respect to the lexicographic order) is in I2m+1(Ch2m(V ∗))(2m(r−1)).

By Corollary 3.9, I2m+1(Ch2m(V ∗))(2m(r−1)) ⊂ I2mr+1(σr(Ch2m(V ∗))), the results follow. �

7. A property about Plethysm

Lemma 7.1. [27, 5, 28] mult(SλV,S
k(S2lV )) =mult(SλT V,Sk(Λ2lV )), and mult(SλV,

Sk(S2l+1V )) =mult(SλT V,Λk(Λ2lV )).
Theorem 7.2. Let d be even, if S(a1,⋯,ap) ⊂ Sk(SdV ) and S(b1,⋯,bq) ⊂ Sl(SdV ) with ap ≥ b1,
then

S(a1,⋯,ap,b1,⋯,bq) ⊂ S
k+l(SdV )

as long as dim V ≥ k + l.

Proof. Let λ = (a1,⋯, ap) and µ = (b1,⋯, bq). By Lemma 7.1, mult(SλT V,Sk(ΛdV )) > 0 and

mult(SµT V,Sl(ΛdV )) > 0, so mult(SλT+µT V,Sk+l(ΛdV )) > 0. By Lemma 7.1 again,

mult(S(λ,µ)V,S
k+l(SdV )) > 0.
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�

Remark 7.3. This is false when d is odd: C.Ikenmeyer gave a counter-example for d = 3. There
exists k0 such that S6k0V ⊂ S

2k0(S3V ) but S6k0+1V ⊊ S
2k0+2(S3V ).

8. Appendix

8.1. P versus NP problem. Informally speaking, the P versus NP problem (see e.g.[32]) asks
whether every problem whose solution can be quickly verified by a computer can also be quickly
solved by a computer. An early mention of it was a 1956 letter written by Kurt Gödel to John
von Neumann. Gödel asked whether a certain problem could be solved in quadratic or linear
time [18]. The precise statement of the P versus NP problem was introduced in 1971 by Stephen
Cook in [7] and is considered to be the most important open problem in theoretical computer
science [8].

In computational complexity theory, a decision problem is a question in some formal system
with a yes-or-no answer, depending on the values of input parameters. The class P consists of
all those decision problems that can be solved in an amount of time that is polynomial in the
size of the input; the class NP consists of all those decision problems whose positive solutions
can be verified in polynomial time given the right information. For example, given a set A of
n integers and a subset B of A, the statement that “B adds up to zero”can be quickly verified
with at most (n − 1) additions. However, there is no known algorithm to find a subset of A
adding up to zero in polynomial time.

8.2. Valiant’s conjecture.

Definition 8.1. An arithmetic circuit C over C and the set of variables {x1, ..., xN} is a directed
acyclic graph with vertices of in-degree 0 and exactly one vertex of out-degree 0. Every vertex in
it with in degree zero is called an input gate and is labeled by either a variable xi or an element
in C. Every other gate is labeled by either + or ×, exactly one vertex of out-degree 0.

A circuit has two complexity measures associated with it: size and depth. The size of a circuit
is the number of gates in it, and the depth of a circuit is the length of the longest directed path
in it.

Proposition 8.2. On an arithmetic circuit C, each gate computes a polynomial. The polynomial
computed by the output gate is denoted by PC and called the polynomial defined by the circuit.

Definition 8.3. The class VP consists of sequences of polynomials (pn) of polynomial of degree
d(n) and variables v(n), where d(n) and v(n) are bounded by polynomials in n and such that
there exists a sequence of arithmetic circuits Cn of polynomially bounded size such that Cn
defines pn.

Example 8.4. The sequence (detn) ∈VP, where detn denotes the determinant of a n×nmatrix.

Definition 8.5. Consider a sequence h = (hn) of polynomials in variables x1,⋯, xn of the form

hn = ∑
e∈{0,1}n

gn(e)xe11 ⋯x
en
n ,

where (gn) ∈VP. The class VNP is defined to be the set of all sequences the form h.

Definition 8.6. A problem P is hard for a complexity class C if all problems in C can be
reduced to P (i.e. there is an algorithm to translate any instance of a problem in C to an
instance of P with comparable input size). A problem P is complete for C if it is hard for C

and P ∈C.
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Proposition 8.7. [33] The sequence (permn) is VNP-complete.

Therefore to prove Valiant’s Conjecture VP ≠VNP [34], we only need to prove there does
not exist a polynomial size circuit computing the permanent.
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