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ON THE TAME AUTHOMORPHISM APPROXIMATION,

AUGMENTATION TOPOLOGY OF AUTOMORPHISM GROUPS AND

Ind-SCHEMES, AND AUTHOMORPHISMS OF TAME

AUTOMORPHISM GROUPS

ALEXEI KANEL-BELOV, JIE-TAI YU, AND ANDREY ELISHEV

Abstract. We study topological properties of Ind-groups Aut(K[x1, . . . , xn]) and
Aut(K〈x1, . . . , xn〉) of automorphisms of polynomial and free associative algebras via
Ind-schemes, toric varieties, approximations, and singularities.

We obtain a number of properties of Aut(Aut(A)), where A is the polynomial or free
associative algebra over the base field K. We prove that all Ind-scheme automorphisms
of Aut(K[x1, . . . , xn]) are inner for n ≥ 3, and all Ind-scheme automorphisms of
Aut(K〈x1, . . . , xn〉) are semi-inner.

As an application, we prove that Aut(K[x1, . . . , xn]) cannot be embedded into
Aut(K〈x1, . . . , xn〉) by the natural abelianization. In other words, the Automorphism
Group Lifting Problem has a negative solution.

We explore close connection between the above results and the Jacobian conjecture, as
well as the Kanel-Belov – Kontsevich conjecture, and formulate the Jacobian conjecture
for fields of any characteristic.

We make use of results of Bodnarchuk and Rips, and we also consider automorphisms
of tame groups preserving the origin and obtain a modification of said results in the tame
setting.
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1. Introduction and main results

1.1. Automorphisms of K[x1, . . . , xn] and K〈x1, . . . , xn〉. Let K be a field. The main

objects of this study are the K-algebra automorphism groups AutK[x1, . . . , xn] and

AutK〈x1, . . . , xn〉 of the (commutative) polynomial algebra and the free associative alge-

bra with n generators, respectively. The former is equivalent to the group of all polynomial

one-to-one mappings of the affine space An
K . Both groups admit a representation as a col-

imit of algebraic sets of automorphisms filtered by total degree (with morphisms in the

direct system given by closed embeddings) which turns them into topological spaces with

Zariski topology compatible with the group structure. The two groups carry a power

series topology as well, since every automorphism ϕ may be identified with the n-tuple

(ϕ(x1), . . . , ϕ(xn)) of the images of generators. This topology plays an especially impor-

tant role in the applications, and it turns out – as reflected in the main results of this study

– that approximation properties arising from this topology agree well with properties of

combinatorial nature.

Ind-groups of polynomial automorphisms play a central part in the study of the Jacobian

conjecture of O. Keller as well as a number of problems of similar nature. One outstanding
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example is provided by a recent conjecture of Kanel-Belov and Kontsevich (B-KKC), [6, 7],

which asks whether the group

Sympl(C2n) ⊂ Aut(C[x1, . . . , x2n])

of complex polynomial automorphisms preserving the standard Poisson bracket

{xi, xj} = δi,n+j − δi+n,j

is isomorphic1 to the group of automorphisms of the n-th Weyl algebra Wn

Wn(C) = C〈x1, . . . , xn, y1, . . . , yn〉/I,

I = (xixj − xjxi, yiyj − yjyi, yixj − xjyi − δij) .

The physical meaning of Kanel-Belov and Kontsevich conjecture is the invariance of the

polynomial symplectomorphism group of the phase space under the procedure of defor-

mation quantization.

The B-KKC was conceived during a successful search for a proof of stable equivalence of

the Jacobian conjecture and a well-known conjecture of Dixmier stating that Aut(Wn) =

End(Wn) over any field of characteristic zero. In the papers [6, 7] a particular family of

homomorphisms (in effect, monomorphisms) Aut(Wn(C)) → Sympl(C2n) was constructed,

and a natural question whether those homomorphisms were in fact isomorphisms was

raised. The aforementioned morphisms, independently studied by Tsuchimoto to the

same end, were in actuality defined as restrictions of morphisms of the saturated model of

Weyl algebra over an algebraically closed field of positive characteristic - an object which

contains Wn(C) as a proper subalgebra. One of the defined morphisms turned out to have

a particularly simple form over the subgroup of the so-called tame automorphisms, and

it was natural to assume that morphism was the desired B-KK isomorphism (at least for

the case of algebraically closed base field). Central to the construction is the notion of

infinitely large prime number (in the sense of hyperintegers), which arises as the sequence

(pm)m∈N of positive characteristics of finite fields comprising the saturated model. This

leads to the natural problem ([7]):

Problem. Prove that the B-KK morphism is independent of the choice of the infinite

prime (pm)m∈N.

A general formulation of this question in the paper [7] goes as follows:

1In fact, the conjecture seeks to establish an isomorphism Sympl(K2n) ≃ Aut(Wn(K)) for any field K

of characteristic zero in a functorial manner.
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For a commutative ring R define

R∞ = lim
→

(
∏

p

R′ ⊗ Z/pZ /
⊕

p

R′ ⊗ Z/pZ

)
,

where the direct limit is taken over the filtered system of all finitely generated subrings

R′ ⊂ R and the product and the sum are taken over all primes p. This larger ring possesses

a unique ”nonstandard Frobenius” endomorphism Fr : R∞ → R∞ given by

(ap)primes p 7→ (app)primes p.

The Kanel-Belov and Kontsevich construction returns a morphism

ψR : Aut(Wn(R)) → SymplR2n
∞

such that there exists a unique homomorphism

φR : Aut(Wn)(R) → Aut(Pn)(R∞)

obeying ψR = Fr∗ ◦φR. Here Fr∗ : Aut(Pn)(R∞) → Aut(Pn)(R∞) is the Ind-group ho-

momorphism induced by the Frobenius endomorphism of the coefficient ring, and Pn is

the commutative Poisson algebra, i.e. the polynomial algebra in 2n variables equipped

with additional Poisson structure (so that Aut(Pn(R)) is just Sympl(R2n) - the group of

Poisson structure-preserving automorphisms).

Question. In the above formulation, does the image of φR belong to

Aut(Pn)(i(R) ⊗Q) ,

where i : R → R∞ is the tautological inclusion? In other words, does there exist a unique

homomorphism

φcanR : Aut(Pn)(R) → Aut(Pn)(R⊗Q)

such that ψR = Fr∗ ◦i∗ ◦ φ
can
R .

Comparing the two morphisms φ and ϕ defined using two different free ultrafilters, we

obtain a ”loop” element φϕ−1 of AutInd(Aut(Wn)), (i.e. an automorphism which preserves

the structure of infinite dimensional algebraic group). Describing this group would provide

a solution to this question.

Some progress toward resolution of the B-KKC independence problem has been made

recently in [10, 11], although the general unconditional case is still open.

In the spirit of the above we propose the following

Conjecture. All automorphisms of the Ind-group Sympl(C2n) are inner.

A similar conjecture may be put forward for Aut(Wn(C)).
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We are focused on the investigation of the group Aut(Aut(K[x1, . . . , xn])) and the cor-

responding noncommutative (free associative algebra) case. This way of thinking has its

roots in the realm of universal algebra and universal algebraic geometry and was conceived

in the pioneering work of Boris Plotkin. A more detailed discussion can be found in [5].

Wild automorphisms and the lifting problem. In 2004, the celebrated Nagata

conjecture over a field K of characteristic zero was proved by Shestakov and Umirbaev [30,

31] and a stronger version of the conjecture was proved by Umirbaev and Yu [34]. Let K

be a field of characteristic zero. Every wild K[z]-automorphism (wild K[z]-coordinate) of

K[z][x, y] is wild viewed as a K-automorphism (K-coordinate) of K[x, y, z]. In particular,

the Nagata automorphism (x − 2y(y2 + xz) − (y2 + xz)2z, y + (y2 + xz)z, z) (Nagata

coordinates x− 2y(y2 + xz) − (y2 + xz)2z and y + (y2 + xz)z) are wild. In [34], a related

question was raised:

The lifting problem. Can an arbitrary wild automorphism (wild coordinate) of the

polynomial algebra K[x, y, z] over a field K be lifted to an automorphism (coordinate) of

the free associative algebra K〈x, y, z〉?

In the paper [8], based on the degree estimate [25, 24], it was proved that any wild z-

automorphism including the Nagata automorphism cannot be lifted as a z-automorphism

(moreover, in [9] it is proved that every z-automorphism of K〈x, y, z〉 is stably tame and

becomes tame after adding at most one variable). It means that if every automorphism

can be lifted, then it provides an obstruction z′ to z-lifting and the question to estimate

such an obstruction is naturally raised.

In view of the above, we may ask the following:

The automorphism group lifting problem. Is Aut(K[x1, . . . , xn]) isomorphic to a

subgroup of Aut(K〈x1, . . . , xn〉) under the natural abelianization?

The following examples show this problem is interesting and non-trivial.

Example 1. There is a surjective homomorphism (taking the absolute value) from C∗

onto R+. But R+ is isomorphic to the subgroup R+ of C∗ under the homomorphism.

Example 2. There is a surjective homomorphism (taking the determinant) from GLn(R)

onto R∗. But obviously R∗ is isomorphic to the subgroup R∗In of GLn(R).
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In this paper we prove that the automorphism group lifting problem has a negative

answer.

The lifting problem and the automorphism group lifting problem are closely related to

the Kanel-Belov and Kontsevich Conjecture (see Section 3.1).

Consider a symplectomorphism ϕ : xi 7→ Pi, yi 7→ Qi. It can be lifted to some auto-

morphism ϕ̂ of the quantized algebra W~[[~]]:

ϕ̂ : xi 7→ Pi + P 1
i ~ + · · · + Pm

i ~m; yi 7→ Qi +Q1
i ~ + · · · +Qm

i ~m.

The point is to choose a lift ϕ̂ in such a way that the degree of all Pm
i , Q

m
i would be

bounded. If that is true, then the B-KKC follows.

1.2. Main results. The main results of this paper are as follows.

Theorem 1.1. Any Ind-scheme automorphism ϕ of NAut(K[x1, . . . , xn]) for n ≥ 3 is

inner, i.e. is a conjugation via some automorphism.

Theorem 1.2. Any Ind-scheme automorphism ϕ of NAut(K〈x1, . . . , xn〉) for n ≥ 3 is

semi-inner (see definition 1.6).

NAut denotes the group of nice automorphisms, i.e. automorphisms which can be ap-

proximated by tame ones (definition 3.1). In characteristic zero case every automorphism

is nice.

For the group of automorphisms of a semigroup a number of similar results on set-

theoretical level was obtained previously by Kanel-Belov, Lipyanski and Berzinsh [4, 5].

All these questions (including Aut(Aut) investigation) take root in the realm of Universal

Algebraic Geometry and were proposed by Boris Plotkin. Equivalence of two algebras

having the same generalized identities and isomorphism of first order means semi-inner

properties of automorphisms (see [4, 5] for details).

Automorphisms of tame automorphism groups. Regarding the tame automorphism

group, something can be done on the group- theoretic level. In the paper of H. Kraft and I.

Stampfli [23] the automorphism group of the tame automorphism group of the polynomial

algebra was thoroughly studied. In that paper, conjugation of elementary automorphisms

via translations played an important role. The results of our study are different. We de-

scribe the group Aut(TAut0) of the group TAut0 of tame automorphisms preserving the
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origin (i.e. taking the augmentation ideal onto an ideal which is a subset of the augmen-

tation ideal). This is technically more difficult, and will be universally and systematically

done for both commutative (polynomial algebra) case and noncommutative (free associa-

tive algebra) case. We observe a few problems in the shift conjugation approach for the

noncommutative (free associative algebra) case, as it was for commutative case in [23].

Any evaluation on a ground field element can return zero, for example in Lie polynomial

[[x, y], z]. Note that the calculations of Aut(TAut0) (resp. AutInd(TAut0), AutInd(Aut0))

imply also the same results for Aut(TAut) (resp. AutInd(TAut), AutInd(Aut)) according

to the approach of this article via stabilization by the torus action.

Theorem 1.3. Any automorphism ϕ of TAut0(K[x1, . . . , xn]) (in the group-theoretic

sense) for n ≥ 3 is inner, i.e. is a conjugation via some automorphism.

Theorem 1.4. The group TAut0(K[x1, . . . , xn]) is generated by the automorphism

x1 7→ x1 + x2x3, xi 7→ xi, i 6= 1

and linear substitutions if Char(K) 6= 2 and n > 3.

Let GN ⊂ TAut(K[x1, . . . , xn]), EN ⊂ TAut(K〈x1, . . . , xn〉) be tame automorphism

subgroups preserving the N -th power of the augmentation ideal.

Theorem 1.5. Any automorphism ϕ of GN (in the group-theoretic sense) for N ≥ 3 is

inner, i.e. is given by a conjugation via some automorphism.

Definition 1.6. An anti-automorphism Ψ of a K-algebra B is a vector space automor-

phism such that Ψ(ab) = Ψ(b)Ψ(a). For instance, transposition of matrices is an anti-

automorphism. An anti-automorphism of the free associative algebra A is a mirror anti-

automorphism if it sends xixj to xjxi for some fixed i and j. If a mirror anti-automorphism

θ acts identical on all generators xi, then for any monomial xi1 · · · xik we have

θ(xi1 · · · xik) = xik · · · xi1 .

Such an anti-automorphism will be generally referred to as the mirror anti-automorphism.

An automorphism of Aut(A) is semi-inner if it can be expressed as a composition of an

inner automorphism and a conjugation by a mirror anti-automorphism.

Theorem 1.7. a) Any automorphism ϕ of TAut0(K〈x1, . . . , xn〉) and also

TAut(K〈x1, . . . , xn〉) (in the group-theoretic sense) for n ≥ 4 is semi-inner, i.e. is a

conjugation via some automorphism and/or mirror anti-automorphism.

b) The same is true for En, n ≥ 4.
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The case of TAut(K〈x, y, z〉) is substantially more difficult. We can treat it only on

Ind-scheme level, but even then it is the most technical part of the paper (see section 5.2).

For the two-variable case a similar proposition is probably false.

Theorem 1.8. a) Let Char(K) 6= 2. Then AutInd(TAut(K〈x, y, z〉)) (resp.

AutInd(TAut0(K〈x, y, z〉))) is generated by conjugation by an automorphism or a mirror

anti-automorphism.

b) The same is true for AutInd(E3).

By TAut we denote the tame automorphism group, AutInd is the group of Ind-scheme

automorphisms (see section 2.2).

Approximation allows us to formulate the celebrated Jacobian conjecture for any char-

acteristic.

Lifting of the automorphism groups. In this article we prove that the automor-

phism group of polynomial algebra over an arbitrary field K cannot be embedded into the

automorphism group of free associative algebra induced by the natural abelianization.

Theorem 1.9. Let K be an arbitrary field, G = Aut0(K[x1, . . . , xn]) and n > 2. Then

G cannot be isomorphic to any subgroup H of Aut(K〈x1, . . . , xn〉) induced by the natural

abelianization. The same is true for NAut(K[x1, . . . , xn]).

2. Varieties of automorphisms

2.1. Elementary and tame automorphisms. Let P be a polynomial that is indepen-

dent of xi with i fixed. An automorphism

xi 7→ xi + P, xj 7→ xj for i 6= j

is called elementary. The group generated by linear automorphisms and elementary ones

for all possible P is called the tame automorphism group (or subgroup) TAut and elements

of TAut are tame automorphisms.

2.2. Ind-schemes and Ind-groups.

Definition 2.1. An Ind-varietyM is the direct limit of algebraic varieties M = lim
−→

{M1 ⊆

M2 · · · }. An Ind-scheme is an Ind-variety which is a group such that the group inversion

is a morphism Mi → Mj(i) of algebraic varieties, and the group multiplication induces

a morphism from Mi ×Mj to Mk(i,j). A map ϕ is a morphism of an Ind-variety M to
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an Ind-variety N , if ϕ(Mi) ⊆ Nj(i) and the restriction ϕ to Mi is a morphism for all i.

Monomorphisms, epimorphisms and isomorphisms are defined similarly in a natural way.

Example. M is the group of automorphisms of the affine space, and Mj are the sets

of all automorphisms in M with degree ≤ j.

There is an interesting

Problem. Investigate growth functions of Ind-varieties. For example, the dimension

of varieties of polynomial automorphisms of degree ≤ n.

Note that coincidence of growth functions of Aut(Wn(C)) and Sympl(C2n) would imply

the Kanel-Belov – Kontsevich conjecture [7].

Definition 2.2. The ideal I generated by variables xi is called the augmentation ideal.

For a fixed positive integer N > 1, the augmentation subgroup HN is the group of all

automorphisms ϕ such that ϕ(xi) ≡ xi mod IN . The larger group ĤN ⊃ HN is the

group of automorphisms whose linear part is scalar, and ϕ(xi) ≡ λxi mod IN (λ does not

depend on i). We often say an arbitrary element of the group ĤN is an automorphism

that is homothety modulo (the N -th power of) the augmentation ideal.

3. The Jacobian conjecture in any characteristic, Kanel-Belov –

Kontsevich conjecture, and approximation

3.1. Approximation problems and Kanel-Belov – Kontsevich Conjecture. Let

us give formulation of the Kanel-Belov – Kontsevich Conjecture:

B −KKCn: Aut(Wn) ≃ Sympl(C2n).

A similar conjecture can be stated for endomorphisms

B −KKCn: End(Wn) ≃ Sympl End(C2n).

If the Jacobian conjecture JC2n is true, then the respective conjunctions over all n of

the two conjectures are equivalent.

It is natural to approximate automorphisms by tame ones. There exists such an approx-

imation up to terms of any order for polynomial automorphisms as well as Weyl algebra

automorphisms, symplectomorphisms etc. However, the naive approach fails.

It is known that Aut(W1) ≡ Aut1(K[x, y]) where Aut1 stands for the subgroup of

automorphisms of Jacobian determinant one. However, considerations from [28] show

that Lie algebra of the first group is the algebra of derivations of W1 and thus possesses
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no identities apart from the ones of the free Lie algebra, another coincidence of the vector

fields which diverge to zero, and has polynomial identities. These cannot be isomorphic

[6, 7]. In other words, this group has two coordinate system non-smooth with respect

to one another (but integral with respect to one another). One system is built from the

coefficients of differential operators in a fixed basis of generators, while its counterpart is

provided by the coefficients of polynomials, which are images of the basis x̃i, ỹi.

In the paper [28] functionals on m/m2 were considered in order to define the Lie algebra

structure. In the spirit of that we have the following

Conjecture. The natural limit of m/m2 is zero.

It means that the definition of the Lie algebra admits some sort of functoriality problem

and it depends on the presentation of (reducible) Ind-scheme.

In his remarkable paper, Yu. Bodnarchuk [16] established Theorem 1.1 by using Shafare-

vich’s results for the tame automorphism subgroup and for the case when the Ind-scheme

automorphism is regular in the sense that it sends coordinate functions to coordinate

functions. In this case the tame approximation works (as well as for the symplectic case),

and the corresponding method is similar to ours. We present it here in order to make the

text more self-contained, as well as for the purpose of tackling the noncommutative (that

is, the free associative algebra) case. Note that in general, for regular functions, if the

Shafarevich-style approximation were valid, then the Kanel-Belov – Kontsevich conjecture

would follow directly, which is absurd.

In the sequel, we do not assume regularity in the sense of [16] but only assume that the

restriction of a morphism on any subvariety is a morphism again. Note that morphisms of

Ind-schemes Aut(Wn) → Sympl(C2n) have this property, but are not regular in the sense

of Bodnarchuk [16].

We use the idea of singularity which allows us to prove the augmentation subgroup

structure preservation, so that the approximation works in this case.

Consider the isomorphism Aut(W1) ∼= Aut1(K[x, y]). It has a strange property. Let

us add a small parameter t. Then an element arbitrary close to zero with respect to tk

does not go to zero arbitrarily, so it is impossible to make tame limit! There is a sequence

of convergent product of elementary automorphisms, which is not convergent under this

isomorphism. Exactly the same situation happens for Wn. These effects cause problems

in perturbative quantum field theory.
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3.2. The Jacobian conjecture in any characteristic. Recall that the Jacobian con-

jecture in characteristic zero states that any polynomial endomorphism

ϕ : Kn → Kn

with constant Jacobian is globally invertible.

A naive attempt to directly transfer this formulation to positive characteristic fails

because of the counterexample x 7→ x − xp (p = CharK), whose Jacobian is everywhere

1 but which is evidently not invertible. Approximation provides a way to formulate a

suitable generalization of the Jacobian conjecture to any characteristic and put it in a

framework of other questions.

Definition 3.1. An endomorphism ϕ ∈ End(K[x1, . . . , xn]) is good if

for any m there exist ψm ∈ End(K[x1, . . . , xn]) and

φm ∈ Aut(K[x1, . . . , xn]) such that

• ϕ = ψmφm

• ψm(xi) ≡ xi mod (x1, . . . , xn)m.

An automorphism ϕ ∈ Aut(K[x1, . . . , xn]) is nice if for any m there exist ψm ∈

Aut(K[x1, . . . , xn]) and φm ∈ TAut(K[x1, . . . , xn]) such that

• ϕ = ψmφm

• ψm(xi) ≡ xi mod (x1, . . . , xn)m, i.e. ψm ∈ Hm.

Anick [1] has shown that if Char(K) = 0, any automorphism is nice. However, this is

unclear in positive characteristic.

Question. Is any automorphism over arbitrary field nice?

Ever good automorphism has Jacobian 1, and all such automorphisms are good - and

even nice - when Char(K) = 0. This observation allows for the following question to be

considered a generalization of the Jacobian conjecture to positive characteristic.

The Jacobian conjecture in any characteristic: Is any good endomorphism over

arbitrary field an automorphism?

Similar notions can be formulated for the free associative algebra. That justifies the

following

Question. Is any automorphism of free associative algebra over arbitrary field nice?
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Question (version of free associative positive characteristic case of JC). Is any

good endomorphism of the free associative algebra over arbitrary field an automorphism?

3.3. Approximation for the automorphism group of affine spaces. Approximation

is the most important tool utilized in this paper. In order to perform it, we have to

prove that ϕ ∈ AutInd(Aut0(K[x1, . . . , xn]) preserves the structure of the augmentation

subgroup.

The proof method utilized in theorems below works for commutative associative and free

associative case. It is a problem of considerable interest to develop similar statements for

automorphisms of other associative algebras, such as the commutative Poisson algebra (for

which the Aut functor returns the group of polynomial symplectomorphisms); however,

the situation there is somewhat more difficult.

The following two theorems, for the commutative and the free associative cases, respec-

tively, constitute the foundation of the approximation technique.

Theorem 3.2. Let ϕ ∈ AutInd(Aut0(K[x1, . . . , xn])) and let HN ⊂ Aut0(K[x1, . . . , xn]) be

the subgroup of automorphisms which are identity modulo the ideal (x1, . . . , xn)N (N > 1).

Then ϕ(HN ) ⊆ HN .

Theorem 3.3. Let ϕ ∈ AutInd(Aut0(K〈x1, . . . , xn〉)) and let HN be again the subgroup

of automorphisms which are identity modulo the ideal (x1, . . . , xn)N . Then ϕ(HN ) ⊆ HN .

Corollary 3.4. In both commutative and free associative cases under the assumptions

above one has ϕ = Id.

Proof. Every automorphism can be approximated via the tame ones, i.e. for any ψ

and any N there exists a tame automorphism ψ′
N such that ψψ′

N
−1 ∈ HN .

The main point therefore is why ϕ(HN ) ⊆ HN whenever ϕ is and Ind-automorphism.

Proof of Theorem 3.2.

The method of proof is based upon the following useful fact from algebraic geometry:

Lemma 3.5. Let

ϕ : X → Y
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be a morphism of affine varieties, and let A(t) ⊂ X be a curve (or rather, a one-parameter

family of points) in X. Suppose that A(t) does not tend to infinity as t → 0. Then the

image ϕA(t) under ϕ also does not tend to infinity as t→ 0.

The proof is straightforward and is left to the reader.

We now put the above fact to use. For t > 0 let

Â(t) : An
K → An

K

be a one-parameter family of invertible linear transformations of the affine space preserv-

ing the origin. To that corresponds a curve A(t) ⊂ Aut0(K[x1, . . . , xn]) of polynomial

automorphisms whose points are linear substitutions. Suppose that, as t tends to zero,

the i-th eigenvalue of A(t) also tends to zero as tki , ki ∈ N. Such a family will always

exist.

Suppose now that the degrees {ki, i = 1, . . . n} of singularity of eigenvalues at zero are

such that for every pair (i, j), if ki 6= kj , then there exists a positive integer m such that

either kim ≤ kj or kjm ≤ ki.

The largest such m we will call the order of A(t) at t = 0. As ki are all set to be positive

integer, the order equals kmax

kmin
.

Let M ∈ Aut0(K[x1, . . . , xn]) be a polynomial automorphism.

Lemma 3.6. The curve A(t)MA(t)−1 has no singularity at zero for any A(t) of order

≤ N if and only if M ∈ ĤN , where ĤN is the subgroup of automorphisms which are

homothety modulo the augmentation ideal.

Proof. The ‘If’ part is elementary, for if M ∈ ĤN , the action of A(t)MA(t)−1 upon

any generator xi (with i fixed)2 is given by

A(t)MA(t)−1(xi) = λxi + t−ki
∑

l1+···+ln=N

al1...lnt
k1l1+···+knlnxl11 · · · xlnn +

+Si(t, x1, . . . , xn),

where λ is the homothety ratio of (the linear part of) M and Si is polynomial in x1, . . . , xn

of total degree greater than N . Now, for any choice of l1, . . . , ln in the sum, the expression

k1l1 + · · · + knln − ki ≥ kmin

∑
lj − ki = kminN − ki ≥ 0

for every i, so whenever t goes to zero, the coefficient will not blow up to infinity. Obviously

the same argument applies to higher-degree monomials within Si.

2Without loss of generality we may assume that the coordinate functions xi correspond to the principal

axes of Â(t).
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The other direction is slightly less elementary; assuming that M /∈ ĤN , we need to

show that there is a curve A(t) such that conjugation of M by it produces a singularity

at zero. We distinguish between two cases.

Case 1. The linear part M̄ of M is not a scalar matrix. Then – after a suitable basis

change (see the footnote) - it is not a diagonal matrix and has a non-zero entry in the

position (i, j). Consider a diagonal matrix A(t) = D(t) such that on all positions on the

main diagonal except j-th it has tki and on j-th position it has tkj . Then D(t)M̄D−1(t)

has (i, j) entry with the coefficient tki−kj and if kj > ki it has a singularity at t = 0.

Let also ki < 2kj . Then the non-linear part of M does not produce singularities and

cannot compensate the singularity of the linear part.

Case 2. The linear part M̄ of M is a scalar matrix. Then conjugation cannot produce

singularities in the linear part and we as before are interested in the smallest non-linear

term. Let M ∈ HN\HN+1. Performing a basis change if necessary, we may assume that

ϕ(x1) = λx1 + δxN2 + S,

where S is a sum of monomials of degree ≥ N with coefficients in K.

Let A(t) = D(t) be a diagonal matrix of the form (tk1 , tk2 , tk1 , . . . , tk1) and let (N + 1) ·

k2 > k1 > N · k2. Then in A−1MA the term δxN2 will be transformed into δxN2 t
Nk2−k1 ,

and all other terms are multiplied by tlk2+sk1−k1 with (l, s) 6= (1, 0) and l, s > 0. In this

case lk2 + sk1 − k1 > 0 and we are done with the proof of Lemma 3.6.

The next lemma is proved by direct computation. Recall that for m > 1, the group

Gm is defined as the group of all tame automorphisms preserving the m-th power of the

augmentation ideal.

Lemma 3.7.

a) [Gm, Gm] ⊂ Hm, m > 2. There exist elements

ϕ ∈ Hm+k−1\Hm+k, ψ1 ∈ Gk, ψ2 ∈ Gm, such that ϕ = [ψ1, ψ2].

b) [Hm,Hk] ⊂ Hm+k−1.

c) Let ϕ ∈ Gm\Hm, ψ ∈ Hk\Hk+1, k > m. Then [ϕ,ψ] ∈ Hk\Hk+1.

Proof. a) Consider elementary automorphisms

ψ1 : x1 7→ x1 + xk2 , x2 7→ x2, xi 7→ xi, i > 2;

ψ2 : x1 7→ x1, x2 7→ x2 + xm1 , xi 7→ xi, i > 2.
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Set ϕ = [ψ1, ψ2] = ψ−1
1 ψ−1

2 ψ1ψ2.

Then

ϕ : x1 7→ x1 − xk2 + (x2 − (x1 − xk2)m)k,

x2 7→ x2 − (x1 − xk2)m + (x1 − xk2 + (x2 − (x1 − xk2)m)k)m, xi 7→ xi, i > 2.

It is easy to see that if either k or m is relatively prime with Char(K), then not all terms

of degree k +m− 1 vanish. Thus ϕ ∈ Hm+k−1\Hm+k.

Now suppose that Char(K) ∤ m, then obviously m−1 is relatively prime with Char(K).

Consider the mappings

ψ1 : x1 7→ x1 + xk2 , x2 7→ x2, xi 7→ xi, i > 2;

ψ2 : x1 7→ x1, x2 7→ x2 + xm−1
1 x3, xi 7→ xi, i > 2.

Set again ϕ′ = [ψ1, ψ2] = ψ−1
1 ψ−1

2 ψ1ψ2. Then ϕ′ acts as

x1 7→ x1 − xk2 + (x2 − (x1 − xk2)m−1x3)
k =

= x1 − k(x1 − xk2)m−1xk−1
2 x3 + S,

x2 7→ x2 − (x1 − xk2)m−1x3 + (x1 − xk2 + (x2 − (x1 − xk2)m−1x3)
k)m−1x3,

xi 7→ xi, i > 2;

here S stands for a sum of terms of degree ≥ m+k. Again we see that ϕ ∈ Hm+k−1\Hm+k.

b) Let

ψ1 : xi 7→ xi + fi; ψ2 : xi 7→ xi + gi,

for i = 1, . . . , n; here fi and gi do not have monomials of degree less than or equal to

m and k, respectively. Then, modulo terms of degree ≥ m + k, we have ψ1ψ2 : xi 7→

xi+fi+gi+
∂fi
∂xj

gj , so that modulo terms of degree ≥ m+k−1 we get ψ1ψ2 : xi 7→ xi+fi+gi

and ψ2ψ1 : xi 7→ xi + fi + gi. Therefore [ψ1, ψ2] ∈ Hm+k−1.

c) If ϕ(Im) ⊆ Im and

ψ : (x1, . . . , xn) 7→ (x1 + g1, . . . , xn + gn)

is such that for some i0 the polynomial gi0 contains a monomial of total degree k (and all gi

do not contain monomials of total degree less than k), then, by evaluating the composition

of automorphisms directly, one sees that the commutator is given by

[ϕ,ψ] : (x1, . . . , xn) 7→ (x1 + g1 + S1, . . . , xn + gn + Sn)

with Si containing no monomials of total degree < k + 1. Then the image of xi0 is xi0

modulo polynomial of height k.
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Corollary 3.8. Let Ψ ∈ AutInd(NAut(K[x1, . . . , xn])). Then

Ψ(Gn) = Gn, Ψ(Hn) = Hn.

Corollary 3.8 together with Proposition 4.3 of the next section imply Theorem 3.2, for

every nice automorphism, by definition, can be approximated by tame ones. Note that in

characteristic zero every automorphism is nice (Anick’s theorem).

3.4. Lifting of automorphism groups.

3.4.1. Lifting of automorphisms from Aut(K[x1, . . . , xn]) to Aut(K〈x1, . . . , xn〉).

Definition 3.9. In the sequel, we call an action of the n-dimensional torus Tn on K〈x1, . . . , xn〉

(the number of generators coincides with the dimension of the torus) linearizable if it is

conjugate to the standard diagonal action given by

(λ1, . . . , λn) : (x1, . . . , xn) 7→ (λ1x1, . . . , λnxn).

The following result is a direct free associative analogue of a well-known theorem of

Bia lynicki-Birula [14, 15]. We will make frequent reference of the classical (commutative)

case as well, which appears as Theorem 4.1 in the text.

Theorem 3.10. Any effective action of the n-torus on K〈x1, . . . , xn〉 is linearizable.

The proof is somewhat similar to that of Theorem 4.1, with a few modifications. We

will address this issue in the upcoming paper [22].

As a corollary of the above theorem, we get

Proposition 3.11. Let T n denote the standard torus action on K[x1, . . . , xn]. Let T̂ n

denote its lifting to an action on the free associative algebra K〈x1, . . . , xn〉. Then T̂ n is

also given by the standard torus action.

Proof. Consider the roots x̂i of this action. They are liftings of the coordinates xi. We

have to prove that they generate the whole associative algebra.

Due to the reducibility of this action, all elements are product of eigenvalues of this

action. Hence it is enough to prove that eigenvalues of this action can be presented as a

linear combination of this action. This can be done along the lines of Bia lynicki-Birula

[15]. Note that all propositions of the previous section hold for the free associative algebra.

Proof of Theorem 3.3 is similar. Hence we have the following
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Theorem 3.12. Any Ind-scheme automorphism ϕ of Aut(K〈x1, . . . , xn〉) for n ≥ 3 is

inner, i.e. is a conjugation by some automorphism.

We therefore see that the group lifting (in the sense of isomorphism induced by the

natural abelianization) implies the analogue of Theorem 3.2.

This also implies that any automorphism group lifting, if exists, satisfies the approxi-

mation properties.

Proposition 3.13. Suppose

Ψ : Aut(K[x1, . . . , xn]) → Aut(K〈z1, . . . , zn〉)

is a group homomorphism such that its composition with the natural map Aut(K〈z1, . . . , zn〉) →

Aut(K[x1, . . . , xn]) (induced by the projection K〈z1, . . . , zn〉 → K[x1, . . . , xn]) is the iden-

tity map. Then

(1) After a coordinate change Ψ provides a correspondence between the standard torus

actions xi 7→ λixi and zi 7→ λizi.

(2) Images of elementary automorphisms

xj 7→ xj , j 6= i, xi 7→ xi + f(x1, . . . , x̂i, . . . , xn)

are elementary automorphisms of the form

zj 7→ zj , j 6= i, zi 7→ zi + f(z1, . . . , ẑi, . . . , zn).

(Hence image of tame automorphism is tame automorphism).

(3) ψ(Hn) = Gn. Hence ψ induces a map between the completion of the groups of

Aut(K[x1, . . . , xn]) and Aut(K〈z1, . . . , zn〉) with respect to the augmentation sub-

group structure.

Proof of Theorem 1.9

Any automorphism (including wild automorphisms such as the Nagata example) can be

approximated by a product of elementary automorphisms with respect to augmentation

topology. In the case of the Nagata automorphism corresponding to

Aut(K〈x1, . . . , xn〉),

all such elementary automorphisms fix all coordinates except x1 and x2. Because of (2)

and (3) of Proposition 3.13, the lifted automorphism would be an automorphism induced

by an automorphism of K〈x1, x2, x3〉 fixing x3. However, it is impossible to lift the Nagata
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automorphism to such an automorphism due to the main result of [8]. Therefore, Theorem

1.9 is proved.

4. Automorphisms of the polynomial algebra and the approach of

Bodnarchuk–Rips

Let Ψ ∈ Aut(Aut(K[x1, . . . , xn])) (resp. Aut(TAut(K[x1, . . . , xn])),

Aut(TAut0(K[x1, . . . , xn])), Aut(Aut0(K[x1, . . . , xn]))).

4.1. Reduction to the case when Ψ is identical on SLn. We follow [23] and [16]

using the classical theorem of Bia lynicki-Birula [14, 15]:

Theorem 4.1 (Bia lynicki-Birula). Any effective action of torus Tn on Cn is linearizable

(recall the definition 3.9).

Remark. An effective action of Tn−1 on Cn is linearizable [15, 14]. There is a conjecture
whether any action of Tn−2 on Cn is linearizable, established for n = 3. For codimension > 2,
there are positive-characteristic counterexamples [2].

Remark. Kraft and Stampfli [23] proved (by considering periodic elements in T) that an
effective action T has the following property: if Ψ ∈ Aut(Aut) is a group automorphism, then
the image of T (as a subgroup of Aut) under Ψ is an algebraic group. In fact their proof is also
applicable for the free associative algebra case. We are going to use this result.

Returning to the case of automorphisms ϕ ∈ AutInd Aut preserving the Ind-group struc-

ture, consider now the standard action xi 7→ λixi of the n-dimensional torus T ↔ T n ⊂

Aut(C[x1, . . . , xn]) on the affine space Cn. Let H be the image of T n under ϕ. Then by

Theorem 4.1 H is conjugate to the standard torus T n via some automorphism ψ. Com-

posing ϕ with this conjugation, we come to the case when ϕ is the identity on the maximal

torus. Then we have the following

Corollary 4.2. Without loss of generality, it is enough to prove Theorem 1.1 for the case

when ϕ|T = Id.

Now we are in the situation when ϕ preserves all linear mappings xi 7→ λixi. We have

to prove that it is the identity.

Proposition 4.3 (E. Rips, private communication). Let n > 2 and suppose ϕ preserves

the standard torus action on the commutative polynomial algebra. Then ϕ preserves all

elementary transformations.

Corollary 4.4. Let ϕ satisfy the conditions of Proposition 4.3. Then ϕ preserves all tame

automorphisms.
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Proof of Proposition 4.3. We state a few elementary lemmas.

Lemma 4.5. Consider the diagonal action T 1 ⊂ T n given by automorphisms: α : xi 7→

αixi, β : xi 7→ βixi. Let ψ : xi 7→
∑

i,J aiJx
J , i = 1, . . . , n, where J = (j1, . . . , jn) is the

multi-index, xJ = xj1 · · · xjn. Then

α ◦ ψ ◦ β : xi 7→
∑

i,J

αiaiJx
JβJ ,

In particular,

α ◦ ψ ◦ α−1 : xi 7→
∑

i,J

αiaiJx
Jα−J .

Applying Lemma 4.5 and comparing the coefficients we get the following

Lemma 4.6. Consider the diagonal T 1 action: xi 7→ λxi. Then the set of automorphisms

commuting with this action is exactly the set of linear automorphisms.

Similarly (using Lemma 4.5) we obtain Lemmas 4.7, 4.9, 4.10:

Lemma 4.7. a) Consider the following T 2 action:

x1 7→ λδx1, x2 7→ λx2, x3 7→ δx3, xi 7→ λxi, i > 3.

Then the set S of automorphisms commuting with this action is generated by the following

automorphisms:

x1 7→ x1 + βx2x3, xi 7→ εixi, i > 1, (β, εi ∈ K).

b) Consider the following T n−1 action:

x1 7→ λIx1, xj 7→ λjxj , j > 1 (λI = λi22 · · ·λinn ).

Then the set S of automorphisms commuting with this action is generated by the following

automorphisms:

x1 7→ x1 + β

n∏

j=2

x
ij
j , (β ∈ K).

Remark. A similar statement for the free associative case is true, but one has to

consider the set Ŝ of automorphisms x1 7→ x1 + h, xi 7→ εixi, i > 1, (ε ∈ K, and the

polynomial h ∈ K〈x2, . . . , xn〉 has total degree J - in the free associative case it is not just

monomial anymore).

Corollary 4.8. Let ϕ ∈ Aut(TAut(K[x1, . . . , xn])) stabilizing all elements from T. Then

ϕ(S) = S.
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Lemma 4.9. Consider the following T 1 action:

x1 7→ λ2x1, xi 7→ λxi, i > 1.

Then the set S of automorphisms commuting with this action is generated by the following

automorphisms:

x1 7→ x1 + βx22, xi 7→ λixi, i > 2, (β, λi ∈ K).

Lemma 4.10. Consider the set S defined in the previous lemma. Then [S, S] = {uvu−1v−1}

consists of the following automorphisms

x1 7→ x1 + βx2x3, x2 7→ x2, x3 7→ x3, (β ∈ K).

Lemma 4.11. Let n ≥ 3. Consider the following set of automorphisms

ψi : xi 7→ xi + βixi+1xi+2, βi 6= 0, xk 7→ xk, k 6= i

for i = 1, . . . , n − 1. (Numeration is cyclic, so for example xn+1 = x1). Let βi 6= 0 for all

i. Then all of ψi can be simultaneously conjugated by a torus action to

ψ′
i : xi 7→ xi + xi+1xi+2, xk 7→ xk, k 6= i

for i = 1, . . . , n in a unique way.

Proof. Let α : xi 7→ αixi. Then by Lemma 4.5 we obtain

α ◦ ψi ◦ α
−1 : xi 7→ xi + βixi+1xi+2α

−1
i+1α

−1
i+2αi

and

α ◦ ψi ◦ α
−1 : xk 7→ xk

for k 6= i.

Comparing the coefficients of the quadratic terms, we see that it is sufficient to solve

the system:

βiα
−1
i+1α

−1
i+2αi = 1, i = 1, . . . , n− 1.

As βi 6= 0 for all i, this system has a unique solution.

Remark. In the free associative algebra case, instead of βx2x3 one has to consider

βx2x3 + γx3x2.
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4.2. The lemma of Rips.

Lemma 4.12 (E. Rips). Let Char(K) 6= 2, |K| = ∞. Linear transformations and ψ′
i

defined in Lemma 4.11 generate the whole tame automorphism group of K[x1, . . . , xn].

Proposition 4.3 follows from Lemmas 4.6, 4.7, 4.9, 4.10, 4.11, 4.12. Note that we have

proved an analogue of Theorem 1.1 for tame automorphisms.

Proof of Lemma 4.12. Let G be the group generated by elementary transformations

as in Lemma 4.11. We have to prove that is isomorphic to the tame automorphism

subgroup fixing the augmentation ideal. We are going to need some preliminaries.

Lemma 4.13. Linear transformations of K3 and

ψ : x 7→ x, y 7→ y, z 7→ z + xy

generate all mappings of the form

φbm(x, y, z) : x 7→ x, y 7→ y, z 7→ z + bxm, b ∈ K.

Proof of Lemma 4.13. We proceed by induction. Suppose we have an automorphism

φbm−1(x, y, z) : x 7→ x, y 7→ y, z 7→ z + bxm−1.

Conjugating by the linear transformation (z 7→ y, y 7→ z, x 7→ x), we obtain the auto-

morphism

φbm−1(x, z, y) : x 7→ x, y 7→ y + bxm−1, z 7→ z.

Composing this on the right by ψ, we get the automorphism

ϕ(x, y, z) : x 7→ x, y 7→ y + bxm−1, z 7→ z + yx+ xm.

Note that

φm−1(x, y, z)−1 ◦ ϕ(x, y, z) : x 7→ x, y 7→ y, z 7→ z + xy + bxm.

Now we see that

ψ−1φm−1(x, y, z)−1 ◦ ϕ(x, y, z) = φbm

and the lemma is proved.

Corollary 4.14. Let Char(K) ∤ n (in particular, Char(K) 6= 0) and |K| = ∞. Then G

contains all the transformations

z 7→ z + bxkyl, y 7→ y, x 7→ x

such that k + l = n.
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Proof. For any invertible linear transformation

ϕ : x 7→ a11x+ a12y, y 7→ a21x + a22y, z 7→ z; aij ∈ K

we have

ϕ−1φbmϕ : x 7→ x, y 7→ y, z 7→ z + b(a11x+ a12y)m.

Note that sums of such expressions contain all the terms of the form bxkyl. The corollary

is proved.

4.3. Generators of the tame automorphism group.

Theorem 4.15. If Char(K) 6= 2 and |K| = ∞, then linear transformations and

ψ : x 7→ x, y 7→ y, z 7→ z + xy

generate all mappings of the form

αb
m(x, y, z) : x 7→ x, y 7→ y, z 7→ z + byxm, b ∈ K.

Proof of theorem 4.15. Observe that

α = β ◦ φbm(x, z, y) : x 7→ x + bym, y 7→ y + x+ bym, z 7→ z,

where β : x 7→ x, y 7→ x+ y, z 7→ z. Then

γ = α−1ψα : x 7→ x, y 7→ y, z 7→ z + xy + 2bxym + by2m.

Composing with ψ−1 and φ2b2m we get the desired

α2b
m(x, y, z) : x 7→ x, y 7→ y, z 7→ z + 2byxm, b ∈ K.

Corollary 4.16. Let Char(K) ∤ n and |K| = ∞. Then G contains all transformations of

the form

z 7→ z + bxkyl, y 7→ y, x 7→ x

such that k = n+ 1.

The proof is similar to the proof of Corollary 4.14. Note that either n or n + 1 is not

a multiple of Char(K) so we have

Lemma 4.17. If Char(K) 6= 2 then linear transformations and

ψ : x 7→ x, y 7→ y, z 7→ z + xy

generate all mappings of the form

αP : x 7→ x, y 7→ y, z 7→ z + P (x, y), P (x, y) ∈ K[x, y].
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We have proved Lemma 4.12 for the three variable case. In order to treat the case n ≥ 4

we need one more lemma.

Lemma 4.18. Let M(~x) = a
∏
xkii , a ∈ K, |K| = ∞, Char(K) ∤ ki for at least one of

ki’s. Consider the linear transformations denoted by

f : xi 7→ yi =
∑

aijxj, det(aij) 6= 0

and monomials Mf = M(~y). Then the linear span of Mf for different f ’s contains all

homogenous polynomials of degree k =
∑
ki in K[x1, . . . , xn].

Proof. It is a direct consequence of the following fact. Let S be a homogenous subspace

of K[x1, . . . , xn] invariant with respect to GLn of degree m. Then S = Spk

m/pk
, p =

Char(K), Sl is the space of all polynomials of degree l.

Lemma 4.12 follows from Lemma 4.18 in a similar way as in the proofs of Corollaries

4.14 and 4.16.

4.4. Aut(TAut) for general case. Now we consider the case when Char(K) is arbitrary,

i.e. the remaining case Char(K) = 2. Still |K| = ∞. Although we are unable to prove

the analogue of Proposition 4.3, we can still play on the relations.

Let

M = a

n−1∏

i=1

xkii

be a monomial, a ∈ K. For polynomial P (x, y) ∈ K[x, y] we define the elementary

automorphism

ψP : xi 7→ xi, i = 1, . . . , n − 1, xn 7→ xn + P (x1, . . . , xn−1).

We have P =
∑
Mj and ψP naturally decomposes as a product of commuting ψMj

. Let

Ψ ∈ Aut(TAut(K[x, y, z])) stabilizing linear mappings and φ (Automorphism φ defined in

Lemma 4.13). Then according to the corollary 4.8 Ψ(ψP ) =
∏

Ψ(ψMj
). If M = axn then

due to Lemma 4.13

Ψ(ψM ) = ψM .

We have to prove the same for other type of monomials:

Lemma 4.19. Let M be a monomial. Then

Ψ(ψM ) = ψM .
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Proof. Let M = a
∏n−1

i=1 x
ki
i . Consider the automorphism

α : xi 7→ xi + x1, i = 2, . . . , n− 1; x1 7→ x1, xn 7→ xn.

Then

α−1ψMα = ψ
x
k1
1

∏n−1

i=2
(xi+x1)ki

= ψQψ
ax

∑n−1
i=2

ki
1

.

Here the polynomial

Q = xk11

(
n−1∏

i=2

(xi + x1)
ki − ax

∑
ki

1

)
.

It has the following form

Q =

n−1∑

i=2

Ni,

where Ni are monomials such that none of them is proportional to a power of x1.

According to Corollary 4.8, Ψ(ψM ) = ψbM for some b ∈ K. We need only to prove that

b = 1. Suppose the contrary, b 6= 1. Then

Ψ(α−1ψMα) =


 ∏

[Ni,x1] 6=0

Ψ(ψNi
)


 ◦ Ψ(ψ

ax

∑n−1
i=2

ki
1

) =


 ∏

[Ni,x1] 6=0

ψbiNi


 ◦ ψ

ax

∑n−1
i=2

ki
1

for some bi ∈ K.

On the other hand

Ψ(α−1ψMα) = α−1Ψ(ψM )α = α−1ψbMα =


 ∏

[Ni,x1] 6=0

ψbNi


 ◦ ψ

ax

∑n−1
i=2

ki
1

Comparing the factors ψ
ax

∑n−1
i=2

ki
1

and ψ
ax

∑n−1
i=2

ki
1

in the last two products we get b = 1.

Lemma 4.19 and hence Proposition 4.3 are proved.

5. The approach of Bodnarchuk–Rips to automorphisms of

TAut(K〈x1, . . . , xn〉) (n > 2)

Now consider the free associative case. We treat the case n > 3 on group-theoretic level

and the case n = 3 on Ind-scheme level. Note that if n = 2 then Aut0(K[x, y]) =

TAut0(K[x, y]) ≃ TAut0(K〈x, y〉) = Aut0(K〈x, y〉) and description of automorphism

group of such objects is known due to J. Déserti.
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5.1. The automorphisms of the tame automorphism

group of K〈x1, . . . , xn〉, n ≥ 4.

Proposition 5.1 (E. Rips, private communication). Let n > 3 and let ϕ preserve the

standard torus action on the free associative algebra K〈x1, . . . , xn〉. Then ϕ preserves all

elementary transformations.

Corollary 5.2. Let ϕ satisfy the conditions of the proposition 5.1. Then ϕ preserves all

tame automorphisms.

For free associative algebras, we note that any automorphism preserving the torus action

preserves also the symmetric

x1 7→ x1 + β(x2x3 + x3x2), xi 7→ xi, i > 1

and the skew symmetric

x1 7→ x1 + β(x2x3 − x3x2), xi 7→ xi, i > 1

elementary automorphisms. The first property follows from Lemma 4.9. The second one

follows from the fact that skew symmetric automorphisms commute with automorphisms

of the following type

x2 7→ x2 + x23, xi 7→ xi, i 6= 2

and this property distinguishes them from elementary automorphisms of the form

x1 7→ x1 + βx2x3 + γx3x2, xi 7→ xi, i > 1.

Theorem 1.2 follows from the fact that the forms βx2x3+γx3x2 corresponding to general

bilinear multiplication

∗β,γ : (x2, x3) 7→ βx2x3 + γx3x2

lead to associative multiplication if and only if β = 0 or γ = 0; the approximation also

applies (see section 3.3).

Suppose at first that n = 4 and we are dealing with K〈x, y, z, t〉.

Proposition 5.3. The group G containing all linear transformations and mappings

x 7→ x, y 7→ y, z 7→ z + xy, t 7→ t

contains also all transformations of the form

x 7→ x, y 7→ y, z 7→ z + P (x, y), t 7→ t.
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Proof. It is enough to prove that G contains all transformations of the following form

x 7→ x, y 7→ y, z 7→ z + aM, t 7→ t, a ∈ K,

where M is a monomial.

Step 1. Let

M = a

m∏

i=1

xkiyli or M = a

m∏

i=1

yl0xkiyli

or

M = a

m∏

i=1

xkiyli or M = a

m∏

i=1

xkiylixkm+1 .

Define the height of M , H(M), to be the number of segments comprised of a specific

generator - such as xk - in the word M . (For instance, H(a
∏m

i=1 x
kiylixkm+1) = 2m+ 1.)

Using induction on H(M), one can reduce to the case when M = yxk. Let M = M ′xk

such that H(M ′) < H(M). (Case when M = M ′yl is obviously similar.) Let

φ : x 7→ x, y 7→ y, z 7→ z +M ′, t 7→ t.

α : x 7→ x, y 7→ y, z 7→ z, t 7→ t+ zxk.

Then

φ−1 ◦ α ◦ φ : x 7→ x, y 7→ y, z 7→ z, t 7→ t−M + zxk.

The automorphism φ−1 ◦ α ◦ φ is the composition of automorphisms

β : x 7→ x, y 7→ y, z 7→ z, t 7→ t−M

and

γ : x 7→ x, y 7→ y, z 7→ z, t 7→ t+ zxk.

Observe that β is conjugate to the automorphism

β′ : x 7→ x, y 7→ y, z 7→ z −M, t 7→ t

by a linear automorphism

x 7→ x, y 7→ y, z 7→ t, t 7→ z.

Similarly, γ is conjugate to the automorphism

γ′ : x 7→ x, y 7→ y, z 7→ z + yxk, t 7→ t.

We have thus reduced to the case when M = xk or M = yxk.

Step 2. Consider automorphisms

α : x 7→ x, y 7→ y + xk, z 7→ z, t 7→ t
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and

β : x 7→ x, y 7→ y, z 7→ z, t 7→ t+ azy.

Then

α−1 ◦ β ◦ α : x 7→ x, y 7→ y, z 7→ z, t 7→ t+ azxk + azy.

It is a composition of the automorphism

γ : x 7→ x, y 7→ y, z 7→ z, t 7→ t+ azxk

which is conjugate to the needed automorphism

γ′ : x 7→ x, y 7→ y, z 7→ z + yxk, t 7→ t

and an automorphism

δ : x 7→ x, y 7→ y, z 7→ z, t 7→ t+ azy,

which is conjugate to the automorphism

δ′ : x 7→ x, y 7→ y, z 7→ z + axy, t 7→ t

and then to the automorphism

δ′′ : x 7→ x, y 7→ y, z 7→ z + xy, t 7→ t

(using similarities). We have reduced the problem to proving the statement

G ∋ ψM , M = xk

for all k.

Step 3. Obtain the automorphism

x 7→ x, y 7→ y + xn, z 7→ z, t 7→ t.

This problem is similar to the commutative case of K[x1, . . . , xn] (cf. Section 4).

Proposition 5.3 is proved.

Returning to the general case n ≥ 4, let us formulate the remark made after Lemma

4.7 as follows:

Lemma 5.4. Consider the following T n−1 action:

x1 7→ λIx1, xj 7→ λjxj , j > 1; λI = λi22 · · ·λinn .

Then the set S of automorphisms commuting with this action is generated by the following

automorphisms:

x1 7→ x1 +H, xi 7→ xi; i > 1,

where H is any homogenous polynomial of total degree i2 + · · · + in.
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Proposition 5.3 and Lemma 5.4 imply

Corollary 5.5. Let Ψ ∈ Aut(TAut0(K〈x1, . . . , xn〉)) stabilize all elements of torus and

linear automorphisms,

φP : xn 7→ xn + P (x1, . . . , xn−1), xi 7→ xi, i = 1, . . . , n− 1.

Let P =
∑

I PI , where PI is the homogenous component of P of multi-degree I. Then

a) Ψ(φP ) : xn 7→ xn + PΨ(x1, . . . , xn−1), xi 7→ xi, i = 1, . . . , n− 1.

b) PΨ =
∑

I P
Ψ
I ; here PΨ

I is homogenous of multi-degree I.

c) If I has positive degree with respect to one or two variables, then PΨ
I = PI .

Let Ψ ∈ Aut(TAut0(K〈x1, . . . , xn〉)) stabilize all elements of torus and linear automor-

phisms,

φ : xn 7→ xn + P (x1, . . . , xn−1), xi 7→ xi, i = 1, . . . , n− 1.

Let ϕQ : x1 7→ x1, x2 7→ x2, xi 7→ xi + Qi(x1, x2), i = 3, . . . , n − 1, xn 7→ xn;

Q = (Q3, . . . , Qn−1). Then Ψ(ϕQ) = ϕQ by Proposition 5.3.

Lemma 5.6. a) ϕ−1
Q ◦ φP ◦ ϕQ = φPQ

, where

PQ(x1, . . . , xn−1) = P (x1, x2, x3 +Q3(x1, x2), . . . , xn−1 +Qn−1(x1, x2)).

b) Let PQ = P
(1)
Q + P

(2)
Q , P

(1)
Q consist of all terms containing one of the variables

x3, . . . , xn−1, and let P
(1)
Q consist of all terms containing just x1 and x2. Then

PΨ
Q = PΨ

Q = P
(1)Ψ
Q + P

(2)Ψ
Q = P

(1)Ψ
Q + P

(2)
Q

.

Lemma 5.7. If P
(2)
Q = R

(2)
Q for all Q then P = R.

Proof. It is enough to prove that if P 6= 0 then P
(2)
Q 6= 0 for appropriate Q =

(Q3, . . . , Qn−1). Let m = deg(P ), Qi = x2
i+1m

1 x2
i+1m

2 . Let P̂ be the highest-degree

component of P , then P̂ (x1, x2, Q3, . . . , Qn−1) is the highest-degree component of P
(2)
Q . It

is enough to prove that

P̂ (x1, x2, Q3, . . . , Qn−1) 6= 0.

Let x1 ≺ x2 ≺ x2 ≺ · · · ≺ xn−1 be the standard lexicographic order. Consider the

lexicographically minimal term M of P̂ . It is easy to see that the term

M |Qi 7→xi
, i = 3, n− 1
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cannot cancel with any other term

N |Qi 7→xi
, i = 3, n− 1

of P̂ (x1, x2, Q3, . . . , Qn−1). Therefore P̂ (x1, x2, Q3, . . . , Qn−1) 6= 0.

Lemmas 5.6 and 5.7 imply

Corollary 5.8. Let Ψ ∈ Aut(TAut0(K〈x1, . . . , xn〉)) stabilize all elements of torus and

linear automorphisms. Then PΨ = P , and Ψ stabilizes all elementary automorphisms and

therefore the entire group TAut0(K〈x1, . . . , xn〉).

We obtain the following

Proposition 5.9. Let n ≥ 4 and let Ψ ∈ Aut(TAut0(K〈x1, . . . , xn〉)) stabilize all elements

of torus and linear automorphisms. Then either Ψ = Id or Ψ acts as conjugation by the

mirror anti-automorphism.

Let n ≥ 4. Let Ψ ∈ Aut(TAut0(K〈x1, . . . , xn〉)) stabilize all elements of torus and linear

automorphisms. Denote by EL an elementary automorphism

EL : x1 7→ x1, . . . , xn−1 7→ xn−1, xn 7→ xn + x1x2

(all other elementary automorphisms of this form, i.e. xk 7→ xk + xixj, xl 7→ xl for l 6= k

and k 6= i, k 6= j, i 6= j, are conjugate to one another by permutations of generators).

We have to prove that Ψ(EL) = EL or Ψ(EL) : xi 7→ xi; i = 1, . . . , xn−1, xn 7→

xn + x2x1. The latter corresponds to Ψ being the conjugation with the mirror anti-

automorphism of K〈x1, . . . , xn〉.

Define for some a, b ∈ K

x ∗a,b y = axy + byx.

Then, in any of the above two cases,

Ψ(EL) : xi 7→ xi; i = 1, . . . , xn−1, xn 7→ xn + x1 ∗a,b x2

for some a, b.

The following lemma is elementary:

Lemma 5.10. The operation ∗ = ∗a,b is associative if and only if ab = 0.

The associator of x, y, and z is given by

{x, y, z}∗ ≡ (x ∗ y) ∗ z − x ∗ (y ∗ z) =

ab(zx− xz)y + aby(xz − zx) = ab[y, [x, z]].
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Now we are ready to prove Proposition 5.9. For simplicity we treat only the case n = 4

– the general case is dealt with analogously. Consider the automorphisms

α : x 7→ x, y 7→ y, z 7→ z + xy, t 7→ t,

β : x 7→ x, y 7→ y, z 7→ z, t 7→ t+ xz,

h : x 7→ x, y 7→ y, z 7→ z, t 7→ t− xz.

(Manifestly h = β−1.) Then

γ = hα−1βα = [β, α] : x 7→ x, y 7→ y, z 7→ z, t 7→ t− x2y.

Note that α is conjugate to β via a generator permutation

κ : x 7→ x, y 7→ z, z 7→ t, t 7→ y, κ ◦ α ◦ κ−1 = β

and

Ψ(γ) : x 7→ x, y 7→ y, z 7→ z, t 7→ t− x ∗ (x ∗ y).

Let

δ : x 7→ x, y 7→ y, z 7→ z + x2, t 7→ t,

ǫ : x 7→ x, y 7→ y, z 7→ z, t 7→ t+ zy.

Let γ′ = ǫ−1δ−1ǫδ. Then

γ′ : x 7→ x, y 7→ y, z 7→ z, t 7→ t− x2y.

On the other hand we have

ε = Ψ(ǫ−1δ−1ǫδ) : x 7→ x, y 7→ y, z 7→ z, t 7→ t− (x2) ∗ y.

We also have γ = γ′. Equality Ψ(γ) = Ψ(γ′) is equivalent to the equality x∗(x∗y) = x2∗y.

This implies x ∗ y = xy and we are done.

5.2. The group AutInd(TAut(K〈x, y, z〉)). This is the most technically loaded part of

the present study. At the moment we are unable to accomplish the objective of describing

the entire group Aut TAut(K〈x, y, z〉). In this section we will determine only its subgroup

AutInd TAut0(K〈x, y, z〉), i.e. the group of Ind-scheme automorphisms, and prove Theo-

rem 1.8. We use the approximation results of Section 3.3. In what follows we suppose

that Char(K) 6= 2. As in the preceding chapter, {x, y, z}∗ denotes the associator of x, y, z

with respect to a fixed binary linear operation ∗, i.e.

{x, y, z}∗ = (x ∗ y) ∗ z − x ∗ (y ∗ z).
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Proposition 5.11. Let Ψ ∈ AutInd(TAut0(K〈x, y, z〉)) stabilize all linear automorphisms.

Let

φ : x 7→ x, y 7→ y, z 7→ z + xy.

Then either

Ψ(φ) : x 7→ x, y 7→ y, z 7→ z + axy

or

Ψ(φ) : x 7→ x, y 7→ y, z 7→ z + byx

for some a, b ∈ K.

Proof. Consider the automorphism

φ : x 7→ x, y 7→ y, z 7→ z + xy.

Then

Ψ(φ) : x 7→ x, y 7→ y, z 7→ z + x ∗ y,

where x ∗ y = axy + byx. Let a 6= 0. We can make the star product ∗ = ∗a,b into

x ∗ y = xy + λyx by conjugation with the mirror anti-automorphism and appropriate

linear substitution. We therefore need to prove that λ = 0, which implies Ψ(φ) = φ.

The following two lemmas are proved by straightforward computation.

Lemma 5.12. Let A = K〈x, y, z〉. Let f ∗ g = fg + λfg. Then {f, g, h}∗ = λ[g, [f, h]].

In particular {f, g, f}∗ = 0, f ∗ (f ∗ g) − (f ∗ f) ∗ g = −{f, f, g}∗ = λ[f, [f, g]],

(g ∗ f) ∗ f − g ∗ (f ∗ f) = {g, f, f}∗ = λ[f, [f, g]].

Lemma 5.13. Let ϕ1 : x 7→ x + yz, y 7→ y, z 7→ z; ϕ2 : x 7→ x, y 7→ y, z 7→ z + yx;

ϕ = ϕ−1
2 ϕ−1

1 ϕ2ϕ1. Then modulo terms of order ≥ 4 we have:

ϕ : x 7→ x+ y2x, y 7→ y, z 7→ z − y2z

and

Ψ(ϕ) : x 7→ x+ y ∗ (y ∗ x), y 7→ y, z 7→ z − y ∗ (y ∗ z).

Lemma 5.14. a) Let φl : x 7→ x, y 7→ y, z 7→ z + y2x. Then

Ψ(φl) : x 7→ x, y 7→ y, z 7→ z + y ∗ (y ∗ x).

b) Let φr : x 7→ x, y 7→ y, z 7→ z + xy2. Then

Ψ(φr) : x 7→ x, y 7→ y, z 7→ z + (x ∗ y) ∗ y.
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Proof. According to the results of the previous section we have

Ψ(φl) : x 7→ x, y 7→ y, z 7→ z + P (y, x)

where P (y, x) is homogenous of degree 2 with respect to y and degree 1 with respect to

x. We have to prove that H(y, x) = P (y, x) − y ∗ (y ∗ x) = 0.

Let τ : x 7→ z, y 7→ y, z 7→ x; τ = τ−1, φ′ = τφlτ
−1 : x 7→ x + y2z, y 7→ y, z 7→ z.

Then Ψ(φ′l) : x 7→ x+ P (y, z), y 7→ y, z 7→ z.

Let φ′′l = φlφ
′
l : x 7→ x+ P (y, z), y 7→ y, z 7→ z + P (y, x) modulo terms of degree ≥ 4.

Let τ : x 7→ x − z, y 7→ y, z 7→ z and let ϕ2, ϕ be the automorphisms described in

Lemma 5.13.

Then

T = τ−1φ−1
l τφ′′l : x 7→ x, y 7→ y, z 7→ z

modulo terms of order ≥ 4.

On the other hand

Ψ(T ) : x 7→ x +H(y, z) −H(y, x), y 7→ y, z 7→ z + P

modulo terms of order ≥ 4. Because degy(H(y, x) = 2, degx(H(y, x)) = 1 we get H = 0.

Proof of b) is similar.

Lemma 5.15. a) Let

ψ1 : x 7→ x+ y2, y 7→ y, z 7→ z; ψ2 : x 7→ x, y 7→ y, z 7→ z + x2.

Then

[ψ1, ψ2] = ψ−1
2 ψ−1

1 ψ2ψ1 : x 7→ x, y 7→ y, z 7→ z + y2x+ xy2,

Ψ([ψ1, ψ2]) : x 7→ x, y 7→ y, z 7→ z + (y ∗ y) ∗ x+ x ∗ (y ∗ y).

b)

φ−1
l φ−1

r [ψ1, ψ2] : x 7→ x, y 7→ y, z 7→ z

modulo terms of order ≥ 4 but

Ψ
(
φ−1
l φ−1

r [ψ1, ψ2]
)

: x 7→ x, y 7→ y,

z 7→ z + (y ∗ y) ∗ x+ x ∗ (y ∗ y) − (x ∗ y) ∗ y − y ∗ (y ∗ x) =

= z + 4λ[x[x, y]]

modulo terms of order ≥ 4.



TAME APPROXIMATION 33

Proof. a) can be obtained by direct computation. b) follows from a) and the lemma

5.12.

Proposition 5.11 follows from Lemma 5.15.

We need a few auxiliary lemmas. The first one is an analogue of the hiking procedure

from [21, 3].

Lemma 5.16. Let K be algebraically closed, and let n1, . . . , nm be positive integers. Then

there exist k1, . . . , ks ∈ Z and λ1, . . . , λs ∈ K such that

•
∑
ki = 1 modulo Char(K) (if Char(K) = 0 then

∑
ki = 1).

•
∑

i k
nj

i λi = 0 for all j = 1, . . . ,m.

For λ ∈ K we define an automorphism ψλ : x 7→ x, y 7→ y, z 7→ λz.

The next lemma provides for some translation between the language of polynomials and

the group action language. It is similar to the hiking process [3, 21].

Lemma 5.17. Let ϕ ∈ K〈x, y, z〉. Let ϕ(x) = x, ϕ(y) = y +
∑

iRi + R′, ϕ(z) = z + Q.

Let deg(Ri) = N , let also the degree of all monomials in R′ be greater than N , and let the

degree of all monomials in Q be greater than or equal to N . Finally, assume degz(Ri) = i

and the z-degree of all monomials of R1 greater than 0.

Then

a) ψ−1
λ ϕψλ : x 7→ x, y 7→ y +

∑
i λ

iRi + R′′, z 7→ z + Q′. Also the total degree of

all monomials comprising R′ is greater than N , and the degree of all monomials of Q is

greater than or equal to N .

b) Let φ =
∏(

ψλ−1

i
ϕψλi

)ki
. Then

φ : x 7→ x, y 7→ y +
∑

i

Riλ
ki
i + S, z 7→ z + T

where the degree of all monomials of S is greater than N and the degree of all monomials

of T is greater than or equal to N .

Proof. a) By direct computation. b) is a consequence of a).

Remark. In the case of characteristic zero, the condition of K being algebraically

closed can be dropped. After hiking for several steps, we need to prove just

Lemma 5.18. Let Char(K) = 0, let n be a positive integer. Then there exist k1, . . . , ks ∈ Z

and λ1, . . . , λs ∈ K such that

•
∑
ki = 1.
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•
∑

i k
n
i λi = 0.

Using this lemma we can cancel out all the terms in the product in the Lemma 5.17

except for the constant one. The proof of Lemma 5.18 for any field of zero characteristic

can be obtained through the following observation:

Lemma 5.19. (
n∑

i=1

λi

)n

−
∑

j

(
λ1 + · · · + λ̂j + · · · + λn

)n
+ · · ·+

+(−1)n−k
∑

i1<···<ik

(xi1 + · · · + xik)n + · · · + (−1)n−1 (xn1 + · · · + xnn) = n!

n∏

i=1

xi

and if m < n then
(

n∑

i=1

λi

)m

−
∑

j

(
λ1 + · · · + λ̂j + · · · + λn

)m
+ · · ·+

+(−1)n−k
∑

i1<···<ik

(xi1 + · · · + xik)m + · · · + (−1)n−1 (xm1 + · · · + xmn ) = 0.

The lemma 5.19 allows us to replace the n-th powers by product of constants, after that

the statement of Lemma 5.18 becomes transparent.

Lemma 5.20. Let ϕ : x 7→ x +R1, y 7→ y +R2, z 7→ z′, such that the total degree of all

monomials in R1, R2 is greater than or equal to N . Then for Ψ(ϕ) : x 7→ x + R′
1, y 7→

y+R′
2, z 7→ z′′ with the total degree of all monomials in R′

1, R
′
2 also greater than or equal

to N .

Proof. Similar to the proof of Theorem 3.2.

Lemmas 5.20, 5.17, 5.16 imply the following statement.

Lemma 5.21. Let ϕj ∈ Aut0(K〈x, y, z〉), j = 1, 2, such that

ϕj(x) = x, ϕj(y) = y +
∑

i

Rj
i +R′

j , ϕj(z) = z +Qj.

Let deg(Rj
i ) = N , and suppose that the degree of all monomials in R′

j is greater than N ,

while the degree of all monomials in Q is greater than or equal to N ; degz(Ri) = i, and

the z-degree of all monomials in R1 is positive. Let R1
0 = 0, R2

0 6= 0.

Then Ψ(ϕ1) 6= ϕ2.

Consider the automorphism

φ : x 7→ x, y 7→ y, z 7→ z + P (x, y).
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Let Ψ ∈ AutInd TAut0(k〈x, y, z〉) stabilize the standard torus action pointwise. Then

Ψ(φ) : x 7→ x, y 7→ y, z 7→ z +Q(x, y).

We denote

Ψ̄(P ) = Q.

Our goal is to prove that Ψ̄(P ) = P for all P if Ψ stabilizes all linear automorphisms and

Ψ̄(xy) = xy. We proceed by strong induction on total degree. The base case corresponds

to k = 1 and l = 1 and is assumed. We then heave

Lemma 5.22.

Ψ̄(xkyl) = xkyl

provided that Ψ̄(P ) = P for all monomials P (x, y) of total degree < k + l.

Proof.

Let

φ : x 7→ x, y 7→ y, z 7→ z + xkyl,

ϕ1 : x 7→ x + yl, y 7→ y, z 7→ z,

ϕ2 : x 7→ x, y 7→ y + xk, z 7→ z,

ϕ3 : x 7→ x, y 7→ y, z 7→ z + xy,

h : x 7→ x, y 7→ y, z 7→ z − xk+1.

Then, for k > 1 and l > 1

g = hϕ−1
3 ϕ−1

1 ϕ−1
2 ϕ3ϕ1ϕ2 :

x 7→ x− yl + (y − (x− yl)k)l,

y 7→ y − (x− yl)k + (x− yl + (y − (x− yl)k)l)k,

z 7→ z − xy − xk+1 + (x− yl)(y − (x− yl)k).

Observe that the height of g(x)−x, g(y)− y and g(z)− z is at least k+ l− 1, when k > 1

or l > 1. We then use Theorem 3.2 and the induction step. Applying Ψ yields the result

because Ψ(ϕi) = ϕi, i = 1, 2, 3 and ϕ(HN ) ⊆ HN for all N . The lemma is proved.

Let

Mk1,...,ks = xk1yk2 · · · yks

for even s and

Mk1,...,ks = xk1yk2 · · · xks
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for odd s, k =
∑n

i=1 ki. Then

Mk1,...,ks = Mk1,...,ks−1
yks

for even s and

Mk1,...,ks = Mk1,...,ks−1
xks

for odd s.

We have to prove that Ψ̄(Mk1,...,ks) = Mk1,...,ks . By induction we may assume that

Ψ̄(Mk1,...,ks−1
) = Mk1,...,ks−1

.

For any monomial M = M(x, y) we define an automorphism

ϕM : x 7→ x, y 7→ y, z 7→ z +M.

We also define the automorphisms

φek : x 7→ x, y 7→ y + zxk, z 7→ z

and

φok : x 7→ x+ zyk, y 7→ y, z 7→ z.

We will present the case of even s - the odd s case is similar.

Let De
zxk be a derivation of K〈x, y, z〉 such that De

zxk(x) = 0, De
zxk(y) = zxk, De

zxk(z) =

0. Similarly, let Do
zyk

be a derivation of K〈x, y, z〉 such that Do
zyk

(y) = 0, Do
zxk(x) = zyk,

Dzyk(z)o = 0.

The following lemma is proved by direct computation:

Lemma 5.23. Let

u = φeks
−1ϕ(Mk1,...,ks−1

)−1φeksϕ(Mk1,...,ks−1
)

for even s and

u = φoks
−1ϕ(Mk1,...,ks−1

)−1φoksϕ(Mk1,...,ks−1
)

for odd s. Then

u : x 7→ x, y 7→ y +Mk1,...,ks +N ′, z 7→ z +De
zxk(Mk1,...,ks−1

) +N

for even s and

u : x 7→ x+Mk1,...,ks +N ′, y 7→ y, z 7→ z +Do
zxk(Mk1,...,ks−1

) +N

for odd s, where N , N ′ are sums of terms of degree > k =
∑s

i=1 ki.
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Let ψ(Mk1,...,ks) : x 7→ x, y 7→ y, z 7→ z +Mk1,...,ks ,

αe : x 7→ x, y 7→ y − z, z 7→ z, αo : x 7→ x− z, y 7→ y, z 7→ z,

Let PM = Ψ(M) −M . Our goal is to prove that PM = 0.

Let

v = ψ(Mk1,...,ks)
−1αeψ(Mk1,...,ks)uα

−1
e

for even s and

v = ψ(Mk1,...,ks)
−1αoψ(Mk1,...,ks)uα

−1
o

for odd s.

The next lemma is also proved by direct computation:

Lemma 5.24. a)

v : x 7→ x, y 7→ y +H, z 7→ z +H1 +H2

for even s and

v : x 7→ x+H, y 7→ y, z 7→ z +H1 +H2

for odd s

b)

Ψ(v) : x 7→ x, y 7→ y + PMk1,...,ks
+ H̃, z 7→ z + H̃1 + H̃2

for even s and

Ψ(v) : x 7→ x+ PMk1,...,ks
+ H̃, y 7→ y, z 7→ z + H̃1 + H̃2

for odd s, where H2, H̃2 are sums of terms of degree greater than k =
∑s

i=1 ki, H, H̃ are

sums of terms of degree ≥ k and positive z-degree, H1, H̃1 are sums of terms of degree k

and positive z-degree.

Proof of Theorem 1.8. Part b) follows from part a). In order to prove a) we are going

to show that Ψ̄(M) = M for any monomialM(x, y) and for any Ψ ∈ AutInd(TAut(〈x, y, z〉))

stabilizing the standard torus action T 3 and φ. The automorphism Ψ(ΦM ) has the form

described in Lemma 5.24. But in this case Lemma 5.21 implies Ψ̄(M) −M = 0.

6. Some open questions concerning the tame automorphism group

As the conclusion of the paper, we would like to raise the following questions.

(1) Is it true that any automorphism ϕ of Aut(K〈x1, . . . , xn〉) (in the group-theoretic

sense - that is, not necessarily an automorphism preserving the Ind-scheme struc-

ture) for n = 3 is semi-inner, i.e. is a conjugation by some automorphism or mirror

anti-automorphism?
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(2) Is it true that Aut(K〈x1, . . . , xn〉) is generated by affine automorphisms and au-

tomorphism xn 7→ xn + x1x2, xi 7→ xi, i 6= n? For n ≥ 5 it seems to be easier

and the answer is probably positive, however for n = 3 the answer is known to be

negative, cf. Umirbaev [33] and Drensky and Yu [18]. For n ≥ 4 we believe the

answer is positive.

(3) Is it true that Aut(K[x1, . . . , xn]) is generated by linear automorphisms and auto-

morphism xn 7→ xn + x1x2, xi 7→ xi, i 6= n? For n = 3 the answer is negative: see

the proof of the Nagata conjecture [30, 31, 34]. For n ≥ 4 it is plausible that the

answer is positive.

(4) Is any automorphism ϕ of Aut(K〈x, y, z〉) (in the group-theoretic sense) semi-

inner?

(5) Is it true that the conjugation in Theorems 1.3 and 1.7 can be done by some tame

automorphism? Suppose ψ−1ϕψ is tame for any tame ϕ. Does it follow that ψ is

tame?

(6) Prove Theorem 1.8 for Char(K) = 2. Does it hold on the set-theoretic level, i.e.

Aut(TAut(K〈x, y, z〉)) are generated by conjugations by an automorphism or the

mirror anti-automorphism?

Similar questions can be formulated for nice automorphisms.
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