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ON RINGS OF DIFFERENTIAL ROTA-BAXTER OPERATORS

XING GAO, LI GUO, AND MARKUS ROSENKRANZ

Abstract. Using the language of operated algebras, we construct and investigate a class
of operator rings and enriched modules induced by a derivation or Rota-Baxter operator.
In applying the general framework to univariate polynomials, one is led to the integro-
differential analogs of the classical Weyl algebra. These are analyzed in terms of skew
polynomial rings and noncommutative Gröbner bases.
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1. Introduction

The ring of differential operators F [∂] over a given differential ring (F , ∂) is a fun-
damental algebraic structurea in the area of differential algebra [25, 22, 8], especially in
differential Galois theory [36] and D-module theory [11]. Building on this framework and
specializing to the case of linear ordinary differential equations (LODEs), the larger ring of
integro-differential operators F [∂,

r
] ⊃ F [∂] over an integro-differential ring (F , ∂,

r
) was

introduced in [26, 27] for describing, computing and factoring the Green’s operators of reg-
ular boundary problems for LODEs. As one knows from the classical theory, such Green’s
operators will be integrals with the Green’s function as its nucleusb. Algebraically speak-
ing, the Green’s operators are contained in the ring of integral operators F [

r
] ⊂ F [∂,

r
]

associated to the Rota-Baxter algebra (F ,
r
).

In the present paper we introduce the ring of differential Rota-Baxter operators F [∂,
u
]

over a given differential Rota-Baxter algebra (F , ∂,
u
). Although closely related to the

integro-differential operator ring F [∂,
r
], this ring has a more delicate algebraic structure

and a distinct range of applicability. In fact, we shall see that the ring of integro-differential

Date: July 16, 2018.
aSee the end of this section for conventions on notation and terminology.
bThis is usually called the kernel k(x, y) of an integral operator f(x) 7→

r
k(x, y) f(y) dy. In algebra, we

prefer the less common term nucleus for avoiding confusion with the kernel of a homomorphism.
1
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operators is a quotient of F [∂,
u
]: Loosely speaking, we may view (F , ∂,

u
) as an integro-

differential algebra whose integral is initialized at a “generic point”; the passage to the
quotient is then interpreted as “fixing the integration constant” (Propositions 3.4 and 5.5).
For the particular case of polynomial coefficients F = k[x] over a field k ⊇ Q, this has been
studied in the context of the (integro-differential) Weyl algebra [24], including the aforemen-
tioned specialization isomorphism that fixes the integration constant. For this setting we
now provide also a generalization isomorphism that goes the opposite route of embedding
the finer structure of differential Rota-Baxter operators into an integro-differential operator
ring containing a generic point (Theorem 5.6).

As to be expected from the quotient relation mentioned above, the ring of differential
Rota-Baxter operators F [∂,

u
] has a broader range of applicability. In particular, various

classical distribution spaces from analysis can be construed as modules over F [∂,
u
] but

not over F [∂,
r
], taking F = C∞(R) or F = R[x] as coefficients (Example 3.8(c)). This

is in stark contrast to F = C∞(R) or F = R[x] itself, which is both an F [∂,
r
]-module

and an F [∂,
u
]-module, with

r
:=

u
:=

r x

0
the standard Rota-Baxter operator on F .

This is so because distributions can be differentiated arbitrarily but in general they cannot
be evaluated (any point can be in the singular support of a distribution). In particular,
the crucial identity

r
f ′ = f − f(0) for smooth functions f ∈ C∞(R) fails to hold for

distributions f ∈ D′(R). The upshot is that distributions have a sheaf structure (restrictions
to open subsets) but no evaluations (“restrictions to points”).

Besides the ring of differential Rota-Baxter operators F [∂,
u
], which is the main object

introduced in this paper, we have already mentioned the related operator rings F [∂], F [
r
]

and F [∂,
r
]. It should be recalled [27, Prop. 17] that the latter ring is more than the sum

of the two others. In fact (Proposition 3.4), we have F [∂,
r
] = F [∂] ∔ F [

r
]\F ∔ (e) as

k-modules, where e := 1F −
r
◦ ∂ is the induced evaluation. Having four different operator

rings, it will be expedient to describe a universal algebraic setting that allows to generate
these four operator rings—and possibly others—in a uniform manner (Example 3.4).

In fact, we shall use a slightly more special setting that is better adapted to our needs:
While universal algebra applies to all varieties (categories whose objects are sets A endowed
with any number of n-operations An → A, subject to laws in equational form), we shall only
need k-algebras endowed with one or several unary operations A → A, usually known as
operated algebras. This leads to significant simplifications: While the algorithmic machinery
of universal algebra is generally dependent on rewriting and the Knuth-Bendix algorithm,
the situation of operated algebras is amenable to Gröbner(-Shirshov) bases [7, 4, 6]. More-
over, the latter are closely related to and compatible with the skew polynomial approach
used in [24] for constructing the integro-differential Weyl algebra.

It should be emphasized that we allow arbitrary laws to be imposed on operated algebras,
not just multilinear laws as one might be led to expect from the examples. For ground rings
of characteristic zero, we show how to transform arbitrary laws to multilinear ones, using
a suitable polarization process. This may also be the reason why the usual treatment is
based on multilinear laws. For instance (Example 2.19(b)), Rota-Baxter algebras of weight
zero are normally defined through the axiom (

r
f)(

r
g) =

r
f
r
g +

r
g
r
f , which may be

viewed as the polarized version of (
r
f)2 = 2

r
f
r
f ; in characteristic zero these identities

are equivalent. For showing that
r
is a Rota-Baxter operator, the latter identity may be

better (e.g. using induction on some degree of f rather than double induction on f and g).
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Since we have in mind various applications for function algebras, we restrict ourselves in
this paper to operator rings over commutative algebras. However, the construction would
work in essentially the same way for noncommutative algebras, writing the laws in terms
of noncommutative rather than commutative decorated words (Definition 2.1). This could
be employed for operator rings over matrix-valued functions; however, we shall not pursue
this further in the scope of the present paper.

Terminology and Notation. We use N = {0, 1, 2, . . .} for the natural numbers with
zero. If M is a (multiplicative) monoid M with zero element 0 ∈M , the subset of nonzero
elements is denoted byM× :=M\{0}. If Z is any set, we write respectivelyM(Z) and C(Z)
for the free monoid and the free commutative monoid on Z; its identity is denoted by 1.

Unless specified otherwise, all rings and algebras are assumed to be associative and unital
(whereas nonunital rings will be called rungs). All modules and algebras are over a fixed
commutative ring k, which will be specialized to a field of characteristic zero in Section 5.
All modules are taken to be left modules. A (commutative or noncommutative) ring without
zero divisor is called a domain. We write AlgR and ModR for the category of R-modules
and R-algebras, respectively (suppressing the subscript R in the case R = k). We denote the
k-span of a set Z by kZ; the ring of noncommutative polynomials is thus given by k〈X〉 :=
kM(X) and the ring of commutative polynomials by k[X ] := kC(X).

Let A be a k-module with k-submodule A′. Then A \ A′ denotes a linear complement
of A, rather than the set-theoretic one. (We will only use this notation when such linear
complements exist and the specific choice is irrelevant.)

For ∂ and
r
we employ operator notation as in analysis; for example we write (∂f)(∂g)

rather than ∂(f)∂(g). Juxtaposition has precedence over the operators so that we have
for instance ∂ fg := ∂(fg) and

r
f
r
g :=

r
(f

r
g). Moreover, we use also the customary

notation f ′ for the derivative ∂f , and by analogy f 8 for the antiderivative
r
f .

Structure of the Paper. In Section 2 we start by introducing the appropriate tools
for describing varieties and their laws in the framework of Ω-operated algebras. The main
result in this section is the reduction of arbitrary laws to homogeneous and multilinear laws
(Corollary 2.18). We end the section by introducing the four basic varieties coming from
analysis (Example 2.19). In Section 3, the operator ring for a given variety is introduced
(Definition 3.2). Modules over the operator rings are described equivalently as a special class
of Ω-operated modules (Proposition 3.6). The operator rings and modules are exemplified
in the four basic varieties (Proposition 3.4 and Example 3.8). Section 4 is devoted to one
of the four operator rings that is introduced here for the first time: the ring of differential
Rota-Baxter operators. Here the main results are a left adjoint to the forgetful functor from
integro-differential to differential Rota-Baxter algebras (Theorem 4.6) and the embedding
of the differential Rota-Baxter operator ring into a suitable integro-differential operator ring
(Theorem 4.8). Finally, we turn to the important special case of polynomial coefficients in
Section 5, thus considering integro-differential and differential Rota-Baxter analogs for the
Weyl algebra. The most important result is that the so-called integro-differential algebra
introduced in [24] is in fact the ring of differential Rota-Baxter operators with polynomial
coefficients (Corollary 5.4), which also implies the embedding result by specializing the
generic one (Theorem 5.6).
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2. Varieties of Operated Algebras

Recall that an Ω-operated algebra (A;Pω | ω ∈ Ω) is an algebra A together with certain
k-linear operators Pω : A→ A. Here no restrictions are imposed on the operators Pω. The
category of Ω-operated algebras is denoted by Alg(Ω), the full subcategory of commutative
Ω-operated algebras by CAlg(Ω). For S ⊆ A, we use the notation (S) for the operated
ideal generated by S.

We describe now the free object CΩ(X) of CAlg(Ω) over a countable set of generators X .
The construction proceeds via stages CΩ,n(X) that are defined recursively as follows. We
start with CΩ,0(X) := C(X). Then for each ω ∈ Ω we create ⌊C(X)⌋ω := {⌊u⌋ω | u ∈ C(X)}
as a disjoint copy of C(X) and define

CΩ,1(X) := C
(

X ⊎
⊎

ω∈Ω

⌊C(X)⌋ω
)

,

where ⊎ means disjoint union. Note that elements in ⌊C(X)⌋ω are merely symbols indexed
by C(X); for example, ⌊1⌋ω is not the identity. The inclusion X →֒ X ⊎

⊎

ω∈Ω

⌊CΩ,0(X)⌋ω
induces a monomorphism

i0,1 : CΩ,0(X) = C(X) →֒ CΩ,1(X) = C
(

X ⊎
⊎

ω∈Ω

⌊CΩ,0(X)⌋ω
)

of free commutative monoids through which we identify CΩ,0(X) with its image in CΩ,1(X).
For n ≥ 2, inductively assume that CΩ,n−1(X) has been defined and the embedding

in−2,n−1 : CΩ,n−2(X) →֒ CΩ,n−1(X)

has been obtained. Then we define

CΩ,n(X) := C
(

X ⊎
⊎

ω∈Ω

⌊Cn−1(X)⌋ω
)

.

Since CΩ,n−1(X) = C
(

X ⊎
⊎

ω∈Ω

⌊CΩ,n−2(X)⌋ω
)

is a free commutative monoid, once again the
injections

⌊CΩ,n−2(X)⌋ω →֒ ⌊CΩ,n−1(X)⌋ω
induce a monoid embedding

CΩ,n−1(X) = C
(

X ⊎
⊎

ω∈Ω

⌊Cn−2(X)⌋ω
)

→֒ CΩ,n(X) = C
(

X ⊎
⊎

ω∈Ω

⌊Cn−1(X)⌋ω
)

.

Finally we define the monoid

CΩ(X) :=
⋃

n≥0

CΩ,n(X)

whose elements are called (commutative) Ω-decorated bracket words in X .

Definition 2.1. Let X be a set, ⋆ a symbol not in X and X⋆ := X ∪ {⋆}.

(a) By an Ω-decorated ⋆-bracket word on X we mean any expression in CΩ(X
⋆) with

exactly one occurrence of ⋆. The set of all Ω-decorated ⋆-bracket words on X is
denoted by C⋆

Ω(X).
(b) For q ∈ C⋆

Ω(X) and u ∈ CΩ(X), we define q[u] := q[⋆ 7→ u] to be the Ω-decorated
bracket word in C(X) obtained by replacing the letter ⋆ in q by u.

(c) For s =
∑

i ciui ∈ kCΩ(X), where ci ∈ k, ui ∈ CΩ(X) and q ∈ C⋆
Ω(X), we define

q[s] :=
∑

i ciq[ui], which is in kCΩ(X).

More generally, with ⋆1, · · ·⋆n distinct symbols not in X , set X⋆n := X ∪ {⋆1, . . . , ⋆n}.
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(d) We define an Ω-decorated (⋆1, . . . , ⋆n)-bracket word on X to be an expression in
CΩ(X

⋆n) with exactly one occurrence of each of ⋆j, 1 ≤ j ≤ n. The set of all
Ω-decorated (⋆1, . . . , ⋆n)-bracket words on X is denoted by C⋆n

Ω (X).
(e) For q ∈ C⋆n

Ω (X) and u1, . . . , un ∈ kCΩ(X), we define

q[u1, . . . , un] := q[⋆1 7→ u1, . . . , ⋆n 7→ un]

to be obtained by replacing the letter ⋆j in q by uj for 1 ≤ j ≤ n.

The notation q[θ] used above for θ = {⋆ 7→ u} and θ = {⋆1 7→ u1, . . . , ⋆n 7→ un} can be

extended to any substitution θ : X⋆n ∼
→ X⋆n; see below after Proposition 2.3.

Now we describe the free object in the category CAlg(Ω). For each ω ∈ Ω we introduce
an operator ⌊ ⌋ω : CΩ(X) → CΩ(X) acting as u 7→ ⌊u⌋ω. Then (CΩ(X); ⌊ ⌋ω | ω ∈ Ω) is a
commutative operated monoid; its linear span (kCΩ(X); ⌊ ⌋ω∈Ω | ω ∈ Ω) is a commutative
operated algebra. It is moreover free in the sense of the following proposition [14, 17]. In
the language of universal algebra, kCΩ(X) appears as the term algebra in the variety of
Ω-operated algebras [1].

Proposition 2.2. The triple (kCΩ(X); ⌊ ⌋ω | ω ∈ Ω; jX), with jX : X →֒ CΩ(X) the natural
embedding, is the free commutative Ω-operated algebra on X. In other words, for any
commutative Ω-operated algebra A and any set map f : X → A, there is a unique extension
of f to a homomorphism f̄ : kCΩ(X) → A of Ω-operated algebras.

In the remainder of this section, we assume that k is a Q-algebra. We first define po-
larization for the non-commutative case and then induce polarization for the commutative
case via a natural homomorphism. The term polarization is adopted from Rota’s early
study [5, p. 928] of this normalization process (second line in the proof of Prop. 2.1).

The construction of noncommutative Ω-decorated bracket words MΩ(X) is parallel to the
commutative case CΩ(X), using everywhere M(X) in place of C(X); the reader is referred
to [17] for details. Clearly, kCΩ(X) is the quotient of kMΩ(X) modulo the commutators.

Proposition 2.3. The triple (kMΩ(X); ⌊ ⌋ω | ω ∈ Ω; jX), with jX : X →֒ MΩ(X) again
the natural embedding, is the free Ω-operated algebra on X. This means for any Ω-operated
algebra A and for any set map f : X → A, there exists a unique extension of f to a homo-
morphism f̄ : kMΩ(X) → A of Ω-operated algebras.

Operated algebras usually satisfy additional relations, for example the aforementioned
Rota-Baxter axiom (

r
f)(

r
g) =

r
f
r
g+

r
g
r
f in the case of Rota-Baxter algebras. We model

such relations by decorated bracket words E ⊆ kCΩ(Y ) or E ⊆ kMΩ(Y ), depending on
whether we intend the commutative or noncommutative case. Note that here we use a new
set of variables Y that should be distinct from the set X of generators (see Proposition 2.7
below for an example combining the two sets of variables). Since relations are closed under
linear combinations, we may take E ⊆ kCΩ(Y ) or E ⊆ kMΩ(Y ) to be k-submodules.
Elements l ∈ E will be called laws of the corresponding variety. In the following, we assume
the noncommutative case but everything can be translated easily to the commutative case
to which we shall return explicitly before Lemma 2.15.

For any operated algebra A and θ : Y → A, by the universal property of kMΩ(Y ) as
the free Ω-operated algebra on Y , there is a unique morphism of Ω-operated algebras
θ̄ : kMΩ(Y ) → A that extends θ. We use the notation l[θ] := θ̄(l) for the corresponding
instance of an l ∈ kMΩ(Y ); formally this is the element of A obtained from l upon replacing
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every y ∈ Y by θ(y) ∈ A, and ⌊⌋ω by Pω for ω ∈ Ω. For the special case A = kMΩ(Y ) this
covers the substitutions mentioned in Definition 2.1.

Definition 2.4. Let E be a submodule of kMΩ(Y ).

(a) An E-related algebra is defined to be an Ω-operated algebra A such that l[θ] = 0 for
any law l ∈ E and any assignment θ : Y → A.

(b) The substitution closure S(E) ⊆ kMΩ(Y ) of the laws E is defined to be the sub-
module spanned by all instances l[θ] with l ∈ E and θ : Y → kMΩ(Y ).

If E = {l}, we speak of an l-algebra, and we write S(l) for S(E).

Since it is usually clear from the context that E denotes a set of laws (rather than the
ground ring), we will often say E-algebra instead of E-related algebra. In the terminology
of universal algebra, the category of E-algebras (for a fixed set of laws E) forms a variety,
which we write here as Alg(Ω|E). As mentioned in the Introduction, the concept of variety
is more general since its operators need not be unary or linear. For our purposes, this
extended generality is not needed and would only complicate matters, for instance using
congruence relations in place of operated ideals [10, §1.2].

Lemma 2.5. Let E be a submodule of kMΩ(Y ). Then every E-algebra is an S(E)-algebra,
and vice versa.

Proof. The sufficiency is clear since we have E ⊆ S(E). For showing the necessity, let A be
an E-algebra, and take l[θ] ∈ S(E) with l ∈ E and θ : Y → kMΩ(Y ). For any η : Y → A,
define η̃ : Y → A by setting η̃(y) := θ(y)[η] for any y ∈ Y , that is, η̃(y) is obtained
by replacing y in θ(y) by η(y). Then we have l[θ][η] = l[η̃] = 0, as A is an E-algebra
and l ∈ E. �

Example 2.6. Let Ω be a singleton and E = k{⌊y1y2⌋ − ⌊y1⌋y2 − y1⌊y2⌋}. Then

S(E) = k{⌊uv⌋ − ⌊u⌋v − u⌊v⌋ | u, v ∈ MΩ(Y )}

is the substitution closure. (This describes the variety of differential algebras.)

Using substitution closure, it is easy to characterize the free E-algebra. Again, this is a
special case of a well-known result in universal algebra [10, Prop. 1.3.6].

Proposition 2.7. For any submodule E ⊆ kMΩ(Y ) and any set X, let SE = SE(X) denote
the operated ideal of kMΩ(X) generated by all l[θ] with l ∈ E and θ : Y → kMΩ(X). Then
the free E-algebra on X is the quotient FE(X) := kMΩ(X)/SE.

Further exploiting the linear structure of Ω-operated algebras, it turns out that we may
actually assume that E consists of linear combinations of multilinear monomials sharing the
same variables. Let us make this precise. Given a monomial u ∈ MΩ(Y ), we define its degree
in y ∈ Y , denoted by degy u, as the number of times that y appears in u. Its total degree is
given by deg u :=

∑

y∈Y degy u. Note that if degy u = n there exists q ∈ M⋆n
Ω (Y \{y}) such

that u = q[y, . . . , y]. We call l multilinear c if degy l = 1 for each variable y appearing in l.

cIn rewriting, this means one can turn the equation l = λ1u1 + · · · + λmum = 0 into a rewrite rule
uk → (λ1/λk)u1 + · · · + (λk−1/λk)uk−1 + (λk+1/λk)uk+1 + · · · + (λm/λk)um for any leading term uk,
and the resulting rule will be linear in the sense of [1, Def. 6.3.1]. In fact, the rewriting terminology allows
variables to be absent in terms; this is not needed for our present purposes.
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For any l ∈ E and y ∈ Y , let ly,n (n ≥ 0) denote the linear combination of those
monomials of l that have degree n in y, with the convention that ly,n = δ0,nl if y does not
appear in l. Then l has the unique homogeneous decomposition

l =
∑

n≥0

ly,n

into its y-homogeneous parts.

Definition 2.8. Let l ∈ kMΩ(Y ) be homogeneous in y ∈ Y with degy l = n such that
one has l =

∑

i≤k ci qi[y, . . . , y] with coefficients ci ∈ k× and monomials qi ∈ M⋆n
Ω (Y \{y}).

Then the polarization of l in y is

Py(l) :=
∑

τ∈Sn

∑

i≤k

ci qi[τy1, . . . , τyn],

where the substitution variables y1, . . . , yn ∈ Y are mutually distinct.

Note that l can be recovered (up to a multiple) from Py(l) through replacing y1, . . . , yn
by y; this process is called centralization. For terms containing more variables, we can also
apply polarization so long as the terms are homogeneous in all variables.

Definition 2.9. Let l ∈ kMΩ(Y ) be homogeneous in all its variables. Then we define its
polarization P(l) as the result of successively polarizing all variables in l.

A different order of the variables in l in the polarization process and a different choice
of the substitution variables in l amounts to a bijection of the substitution variables. Thus
the polarization of l is unique (up to bijection of variables) and multilinear. Renaming
variables if necessary, we may further assume that the number of variables not appearing
in E is countably infinite; hence polarization will not run out of substitution variables.

Example 2.10. In this example, Ω is a singleton so that we may abbreviate ⌊. . .⌋ω by ⌊. . .⌋
and MΩ(Y ) by M(Y ).

(a) Consider l = ⌊y⌊y⌋⌋ ∈ M(Y ) with y ∈ Y . Its polarization is given by P(l) = Py(l) =
⌊y1⌊y2⌋⌋ + ⌊y2⌊y1⌋⌋, and we recover 2⌊y⌊y⌋⌋ by y1, y2 7→ y.

(b) Let l = x2y2 ∈ M(Y ) with x, y ∈ Y . Then Py(l) = x2y1y2 + x2y2y1 and hence
P(l) = Px(Py(l)) = y3y4y1y2 + y4y3y1y2 + y3y4y2y1 + y4y3y2y1 with y1, y2, y3, y4 ∈ Y .

(c) For l = ⌊y2⌋ − 2⌊y⌋y ∈ kM(Y ) we get Py(l) = ⌊y1y2⌋+ ⌊y2y1⌋ − 2⌊y1⌋y2 − 2⌊y2⌋y1.

Lemma 2.11. Let E ⊆ kMΩ(Y ) be a submodule and l ∈ S(E) arbitrary. If l =
∑

i ly,i is
the homogeneous decomposition of l in y, we have ly,i ∈ S(E) for each i.

Proof. If n is the maximal degree of l in y, clearly ly,i = 0 ∈ S(E) for i > n. Replacing y
in l by jy for 1 ≤ j ≤ n+ 1, we obtain

l[jy] =

n
∑

i=0

ji ly,i.

Regard these equations as a linear system in unknowns ly,i. Then the coefficient matrix
is non-singular as a Vandermonde matrix. Thus one can solve for ly,0, . . . , ly,n as Q-linear
combinations of l[jy] ∈ S(E), which shows that the ly,i are themselves in S(E). �
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We can use the preceding technique to conclude that the polarized form of a law is
always contained in the substitution closure. To see why this is so, consider a typical
example l = ⌊y⌊y⌋⌋ ∈ M(Y ) with y ∈ Y . Replacing y by y1 + y2 with y1, y2 ∈ Y , we have

⌊(y1 + y2)⌊y1 + y2⌋⌋ = ⌊y1⌊y1⌋⌋ + ⌊y2⌊y2⌋⌋ + ⌊y1⌊y2⌋⌋+ ⌊y2⌊y1⌋⌋ ∈ S(l)

and so Py(l) := ⌊y1⌊y2⌋⌋+ ⌊y2⌊y1⌋⌋ ∈ S(l) by Lemma 2.11. Let us state the general result.

Lemma 2.12. Let E ⊆ kMΩ(Y ) be a submodule, and assume l ∈ E is homogeneous in y.
Then we have Py(l) ∈ S(E).

Proof. Since Py is a k-linear operator, we only need to consider l ∈ MΩ(Y ). We prove
the result by induction on degy l. If degy l = 1, we have Py(l) = l ∈ S(E). Assuming the
result for degy l ≤ n − 1, we consider the case degy l = n. By our assumption on l, we
have l = q[y, . . . , y] with q ∈ M⋆n

Ω (Y \{y}). Replacing y by z1 + z2, we obtain

(1) S(E) ∋ q[z1 + z2, · · · , z1 + z2] = q[z1, . . . , z1] + q[z2, . . . , z2] + l̃.

Since q[z1, . . . , z1] and q[z2, · · · , z2] are in the k-module S(E) we have l̃ ∈ S(E). We deter-

mine the homogeneous decomposition l̃ =
∑n−1

j=1 l̃z1,j with respect to z1. From Lemma 2.11,

we know l̃z1,j ∈ S(E). We note that degz1 l̃ < n and likewise degz2 l̃ < n. By the induction

hypothesis, we have Pz1(l̃z1,j) ∈ S(E) for 0 < j < n. Moreover, l̃z1,j is homogeneous in z1
of degree j > 0, hence l̃z1,j is homogeneous in z2 of degree n − j < n. From the definition

of Pz1(l̃z1,j), we see that Pz1(l̃z1,j) is also homogeneous in z2 of degree n − j < n. By the

induction hypothesis again, we obtain now Pz2(Pz1(l̃z1,j)) ∈ S(E). Thus it suffices to prove

(2) Py(l) = Pz2(Pz1(l̃z1,j))

for 0 < j < n. By its definition, Py(l) is a sum of n! terms each of the form q[τy1, . . . , τyn]
with τ ∈ Sn, so we write it as

(3) Py(l) =
∑

τ∈Sn

q[τy1, . . . , τyn].

On the other hand, we note that

q[z1 + z2, . . . , z1 + z2] =
∑

I⊆[n]

q[I; z1, z2],

where for each subset I ⊆ [n], the term q[I; z1, z2] is obtained from q by replacing ⋆i by z1
for i ∈ I and by z2 otherwise. For I = [n] and I = ∅ we obtain the first two terms in (1),
while for 0 < j < n we get

l̃z1,j =
∑

|I|=j

q[I; z1, z2].

Then we have

(4) Pz2(Pz1(l̃z1,j)) =
∑

|I|=j,τ1,τ2

q[I; τ1, τ2],

where τ1 ranges over all bijections I
∼
→ [j] and τ2 over all bijections [n] \ I

∼
→ [n] \ [j], and

where q[I; τ1, τ2] := q[τy1, . . . , τyn] is obtained from q ∈ C⋆n
Ω (X) via the permutation τ ∈ Sn

defined by τ(i) = τ1(i) for i ∈ I and τ(i) = τ2(i) for i ∈ [n] \ I. By this construction,
distinct triples (I; τ1, τ2) corresponds to distinct permutations τ ∈ Sn, so distinct monomials
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in Eq. (4) also correspond to distinct monomials in Eq. (3). However, there are exactly
(

n
j

)

j!(n− j)! = n! such triples, so the sums in the two equations must agree, and the proof

of (2) is complete. �

We introduce now polarization for a collection of laws E. It turns out that the resulting
module, spanned by multilinear monomials, defines the same variety as the original E.

Definition 2.13. Let E be a submodule of kMΩ(Y ). Then we define its polarization P(E)
as the submodule of kMΩ(Y ) spanned by the polarizations of all homogeneous components
of elements of E.

Theorem 2.14. For any submodule E ⊆ kMΩ(Y ), an Ω-operated algebra is an E-algebra
if and only if it is a P(E)-algebra.

Proof. By construction, we have E ⊆ P(E). By Lemma 2.5, it suffices to prove that P(E)
is contained in S(E). Choose a law l ∈ E and a variable y ∈ Y appearing in l. Then we
have Py(l) ∈ S(E) from Lemma 2.12; repeating the process for the other variables com-
pletes the proof. �

Let us now go back to the commutative case. The concepts of degree and total degree
can of course be defined in the same way. By a straightforward induction on the depth of
bracket words, one obtains the following normalization result.

Lemma 2.15. Every element of CΩ(Y ) can be uniquely written as a bracket word in which
all variables of Y appear in increasing order.

The lemma gives an embedding ̺ : kCΩ(Y ) →֒ kMΩ(Y ) as modules. On the other hand,
as algebras, we have kCΩ(Y ) ∼= kMΩ(Y )/∼, where ∼ is the operated ideal of kMΩ(Y )
generated by the set {uv− vu | u, v ∈ MΩ(Y )}. Let π : kMΩ(Y ) → kCΩ(Y ) be the natural
projection. We carry over the notion of polarization from the noncommutative case, in the
following natural way (by abuse of notation we continue to use the same symbol P for the
commutative polarization).

Definition 2.16. Let E be a submodule of kCΩ(Y ). If l ∈ kCΩ(Y ) is homogeneous in all
its variables, we define its polarization as P(l) := π(P(̺(l))). Similarly, the polarization of
the module is defined as P(E) := π(P(̺(E))).

Example 2.17. As in Example 2.10, we suppress the (unique) operator labels.

(a) Let l = x2y2 ∈ kCΩ(Y ) with x, y ∈ Y . Then its polarization is P(l) = 4y1y2y3y4
with y1, y2, y3, y4 ∈ Y .

(b) For l = ⌊y2⌋ − 2⌊y⌋y ∈ kCΩ(Y ) we have Py(l) = 2⌊y1y2⌋ − 2⌊y1⌋y2 − 2y1⌊y2⌋.

As an immediate corollary to Theorem 2.14, we obtain that also in the commutative case
one may polarize all laws and still describe the same variety.

Corollary 2.18. For any submodule E ⊆ kCΩ(Y ), an Ω-operated algebra is an E-algebra
if and only if it is a P(E)-algebra.

In this sense, it is no loss of generality if one requires that E-algebras be described by
multilinear laws (but see our remarks in the Introduction). The classical examples for
varieties of operated algebras are indeed of this form. For avoiding cumbersome notation,
we shall henceforth dispense with the brackets in the main examples, writing ∂f for ⌊f⌋∂
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and
r
f for ⌊f⌋r . Likewise, we shall often identify the operations Pω : A→ A of an operated

algebra (A;Pω |ω ∈ Ω) with their labels ω. Note also that an E-algebra is to be understood
as the corresponding kE-algebra if E is not already a k-submodule of kCΩ(Y ). Of course,
equations of the form l = r are a shorthand for l − r ∈ kCΩ(Y ).

Example 2.19. Take Y = {f, g} for the variables. Then the four main varieties for doing
analysis are the following collections of E-algebras with operators Ω.

(a) The variety Diffλ of differential k-algebras [25, 22, 8] of weight λ ∈ k:
Here Ω(Diffλ) = {∂}, and E(Diffλ) := {∂ fg = (∂f)g+f(∂g)+λ (∂f)(∂g)} consists
only of the Leibniz axiom.

(b) The variety RBλ of Rota-Baxter k-algebras [3, 31, 32, 18] of weight λ ∈ k:
Here Ω(RBλ) = {

r
} and E(RBλ) := {(

r
f)(

r
g) =

r
f
r
g +

r
g
r
f + λ

r
fg} consists

of the Rota-Baxter axiom.
(c) The variety DRBλ of differential Rota-Baxter k-algebras [19] of weight λ ∈ k:

Now Ω(DRBλ) = Ω(Diffλ) ∪ Ω(RBλ) = {∂,
r
} contains both operators, and the

laws are given by E(DRBλ) = E(Diffλ) ∪ E(RBλ) ∪ {∂
r
f = f}. The last law is

the so-called section axiom, which specifies a “weak coupling” between ∂ and
r
.

(d) The variety IDλ of integro-differential k-algebras [20] of weight λ ∈ k:
This has the same operators Ω(IDλ) = Ω(DRBλ) but different laws—the weak
coupling of DRBλ is replaced by a stronger coupling [20, Thm. 2.5]: From various
equivalent formulations, we choose

E(IDλ) = E(Diffλ) ∪ {f
r
g =

r
f ′

r
g +

r
fg + λ

r
f ′g, ∂

r
f = f},

where the middle law describes integration by parts (which is strictly stronger than
the Rota-Baxter axiom of RBλ).

As in [27, Def. 8] we call a differential (differential Rota-Baxter, integro-differential) algebra
ordinary if ker ∂ = k. For example, (k[x], d/dx) is ordinary but (k[x, y], ∂/∂x) is not.

The above varieties provide the basic motivation for our study of the operator rings (to be
defined in the next section), which are crucial for solving boundary problems in an algebraic
setting. While this is not the focus of the present paper, the reader may refer to the end of
the next section for some remarks on this application (and especially on the role played by
differential Rota-Baxter algebras).

3. Operator Rings and Modules

We begin now with the description of the operator rings for a given variety of operated
algebras. This proceeds in two steps—we introduce first a class of operator rings that
does not take into account any law that might be imposed on a given operated algebra
(Definition 3.1). In the second step we can then impose the given laws in a suitable form
onto the free operators constructed in the first step (Definition 3.2). As mentioned in the
Introduction, we work here only with commutative coefficient algebras, so from now on
everything is commutative (except of course the operator rings).

Definition 3.1. Let (A;Pω |ω ∈ Ω) be a commutative Ω-operated algebra. Then we define
the induced ring of free operators as the free product A[Ω] := A ∗ k〈Ω〉.

The obvious abuse of notation A[Ω] is harmless since confusion with the commutative
polynomial ring is unlikely. See also Remark 3.3 for further justification of this notation.
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If A is an E-algebra for a submodule E ⊆ kCΩ(Y ), we would like an operator ring that
reflects the laws of E; we will construct it as a suitable quotient of the free operators A[Ω],
using the following translation from laws to operators. The operator corresponding to a
specific law shall be called the induced relator. For example, a differential ring (A, ∂) is
an Ω-operated algebra with Ω = {∂} satisfying the Leibniz law (fg)′ = f ′g + fg′, which
induces the relator ∂f − f∂ − f ′ ∈ A[Ω]; see Proposition 3.4 (a) for more details.

From Corollary 2.18, we may assume that E ⊆ kCΩ(Y ) is spanned by homogeneous and
multilinear elements. We may also assume that none of these is of total degree 0 since
such laws are either redundant (if l = 0) or else describe a trivial variety. Since Y is
countable, we can write its elements as yj (j ∈ N). Then every basis element of E having
total degree k + 1 can be written in the variables y0, . . . , yk by a change of variables; the
resulting variety remains the same by Lemma 2.5. We call such basis elements the standard
laws for the variety. For the translation process, we think of the lead variable y0 as the
argument of the induced relator with y1, . . . , yk constituting its parameters. The latter
can be instantiated by assignments, which we view as arbitrary maps a : Y ′ → A on the
parameter set Y ′ := Y \ {y0}. Since arguments are processed from right to left, we shall
use the order yk, . . . , y1, y0 in the sequel.

The induced relator [l]a ∈ A[Ω] for a standard law l under an assignment a is now defined
by recursion on the depth of l. Taking l 7→ [l]a to be k-linear, it suffices to consider
monomials l. For the base case take l ∈ CΩ,0(yk, . . . , y1, y0) = C(yk, . . . , y1, y0) with l of
total degree k + 1. By multilinearity l = yk · · · y1 y0, and we set [l]a := a(yk) · · · a(y1).
Now assume [. . . ]a has been defined for monomial standard laws of depth at most n and
consider l ∈ CΩ,n+1(yk, . . . , y1, y0). By multilinearity and the definition of CΩ,n+1, there
exists t ∈ CΩ,n+1(yk, . . . , y1) such that either l = ty0 or l = t⌊l′⌋ω for a certain operator
label ω ∈ Ω and l′ ∈ CΩ,n(yk, . . . , y1, y0) being a monomial standard law of depth n. We
set [l]a := ā(t) in the former case and use the recursion [l]a := ā(t)ω [l′]a in the latter,
where ā : CΩ,n+1(yk, . . . , y1) → A is the monoid homomorphism induced by the (restricted)
assignment map a : {yk, . . . , y1} → A through the universal property of CΩ,n+1(yk, . . . , y1).
This completes the definition of [l]a. We can now introduce the ring of E-operators as the
quotient of the free operators modulo the translated variety laws.

Definition 3.2. Let A be an E-algebra for a submodule E ⊆ kCΩ(Y ). Then we define the
ring of E-operators as A[Ω|E] := A[Ω]/[E], where [E] ⊂ A[Ω] is the ideal generated by [l]a
for all standard laws l ∈ E and assignments a : Y ′ → A.

Let us now look at the classical linear operator rings for the varieties of Example 2.19.
Each of them comes with a noncommutative Gröbner basis and term order, providing
transparent canonical forms and enabling a computational treatment via the well-known
Diamond Lemma [4, Thm. 1.2]. As in the latter reference, we write the elements of the
Gröbner basis in the form m → p instead of m − p in order to emphasize the role of the
leading monomial m and the tail polynomial p, suggesting their use as rewrite rules.

Remark 3.3. In the sequel, we identify identities with the varieties they define; for example
we write F [∂ | Diffλ] for F [∂ | E(Diffλ)], with E(Diffλ) taken from Example 2.19(a).
In practice, this notation is of course contracted to F [∂], further justifying the abuse of
notation mentioned after Definition 3.1.
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Proposition 3.4. Let > be any graded lexicographic term order on F [Ω] satisfying ∂ > f
for all f ∈ F if ∂ ∈ Ω. Then the following four linear operator ringsd can be characterized
by Gröbner bases as follows (primes and backprimes refer to the operations in F):

(a) Given (F , ∂) ∈ Diffλ, the ring of differential operators F [∂] := F [∂ |Diffλ] has the
Gröbner basis GB(Diffλ) = {∂f → f∂ + λ f ′∂ + f ′ | (f ∈ F)}.

(b) Given (F ,
r
) ∈ RBλ, the ring of integral operators F [

r
] := F [

r
| RBλ] has the

Gröbner basis GB(RBλ) = {
r
f
r
→ f 8

r
−

r
f 8 − λ

r
f | f ∈ F}.

(c) Given (F , ∂,
u
) ∈ DRBλ, we consider next the ring of differential Rota-Baxter

operators F [∂,
u
] := F [∂,

u
| DRBλ]. Its Gröbner basis is given by the combined

rewrite rules GB(DRBλ) = GB(Diffλ) ∪GB(RBλ) ∪ {∂
r
→ 1}.

(d) For (F , ∂,
r
) ∈ IDλ, the ring of integro-differential operators F [∂,

r
] := F [∂,

r
|IDλ]

has Gröbner basis GB(IDλ) := GB(DRBλ) ∪ {
r
f∂ → f −

r
f ′ − e(f) e | f ∈ F},

providede the shift f 7→ f + λf ′ has an inverse f 7→ f .

We have F [∂,
r
] = F [∂] ∔ F [

r
]\F ∔ (e) as k-modules, where F [∂,

r
] contains both F [∂]

and F [
r
] as subalgebras. Moreover, if I is the ideal generated by {ef − e(f) e | f ∈ F}, we

have F [∂,
r
] ∼= F [∂,

u
]/I, where

u
:=

r
is viewed as part of (F , ∂,

u
) ∈ DRBλ.

Proof. Let us first prove the four items stated in the proposition (viewing all axioms in the
main variable g and using arbitrary assignments a with a(f) ∈ F shortened to f):

(a) Clearly, the only relators are [l]a = ∂f−f ′−f∂−λ f ′∂, corresponding to the Leibniz
axiom l := ∂fg − (∂f)g − f(∂g) − λ (∂f)(∂g) = 0. From ∂ > f one sees that the
leading monomial is ∂f . There is just one S-polynomial coming from the overlap
ambiguity ∂fg between the rule ∂f → f∂+λ f ′∂+f ′ and the (tacit) rule fg → f ∗F g.
Using the Leibniz rule in F , one checks immediately that the S-polynomial reduces
to zero, so GB(Diffλ) is indeed a Gröbner basis.

(b) Here the Rota-Baxter axiom l := (
r
f)(

r
g)−

r
f
r
g −

r
g
r
f − λ

r
fg = 0 yields the

relators [l]a = f 8
r
−

r
f
r
−

r
f 8 − λ

r
f whose leading monomial is

r
f
r
because the

term order is graded. One obtains an S-polynomial from the self-overlap
r
f
r
f̄
r
of

the rule
r
f
r
→ f 8

r
−

r
f 8− λ

r
f . Again one checks that this S-polynomial reduces

to zero, and GB(RBλ) is thus a Gröbner basis.
(c) The relators are those of (a) and (b), and additionally ∂

r
− 1 whose corresponding

rule is clearly ∂
r

→ 1 because of the grading. Apart from the previous ones, we
have the additional overlap ambiguity ∂

r
f
r
, and again its S-polynomial immediately

reduces to zero so that GB(DRBλ) is a Gröbner basis.
(d) From the definition e := 1−

r
∂ and the Leibniz rule we have the tautological relation

fg − e(fg) =
r
f ′g +

r
fg′ + λ

r
f ′g′.

Let us start by recalling [20, Thm. 2.5(b)] that the well-known integration-by-parts
axiom g

r
f −

r
g′

r
f −

r
fg − λ

r
g′f = 0 characterizing IDλ is equivalent to the

multiplicativity condition e(fg) = e(f) e(g). Indeed, by the definition of e, the

dNote that we rely on the context to disambiguate the notations F [∂,
u
] and F [∂,

r
]. In the frame of this

paper, a Rota-Baxter operator will always be denoted by
u

when it comes from a differential Rota-Baxter

algebra, and by
r
when it comes from an integro-differential algebra.

eThis is of course always satisfied in the zero weight case (with trivial shift). But it is also satisfied in the
classical example with weight λ = ±1: the sequence space MZ over a k-module M with forward/backward
difference as derivation. This has increment/decrement as mutually inverse shifts.
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condition is
r
(fg)′ +

r
f ′ ·

r
g′ = f

r
g′ + g

r
f ′. From this one obtains the axiom by

expanding (fg)′ according to the (weighted) Leibniz rule and substituting f  
r
f .

Conversely, the axiom of IDλ implies that im
r
is an ideal of F . From the definition

of e one has the identity fg = ef eg + ef
r
g′ + eg

r
f ′ +

r
f ′ ·

r
g′, which yields

multiplicativity upon applying e since e projects onto ker ∂ so that ef eg ∈ ker ∂
is left invariant (note that ker ∂ is a subalgebra of F because of the Leibniz rule).
The three remaining terms are all in the ideal

r
f , which is the complement of ker ∂

under the projection, hence they vanish under e.
We exploit the equivalent characterization of IDλ in terms e(fg) = e(f) e(g) by

substituting the tautological relation from above to obtain the equivalent law

l :=
r
fg′ − fg +

r
f ′g + λ

r
f ′g′ + e(f) e(g) = 0.

This axiom gives rise to the new relator [l]a =
r
(f +λf ′) ∂− f +

r
f ′+e(f) e, which

yields the rule
r
f∂ → f −

r
f ′ − e(f) e upon replacing f by f and picking

r
f∂

as the leading monomial due to the grading. Since the plain Rota-Baxter axiom is
implied by the integration-by-parts axiom [20, Lem. 2.3(b)], the relator constructed
in Item (c) is also contained in the current relator ideal, hence the corresponding
rule is admissible in GB(IDλ). For seeing that this is again a Gröbner basis, we
refer to the proof of [27, Prop. 13]. The latter assumes that k is a field and uses
a k-basis of F but this is only a convenience tuned to the algorithmic treatment.
As pointed out after [28, Prop. 26], choosing a basis is avoided by factoring out
the linear ideal (this happens in the formation of the free operators A[Ω] in the
current setup). Note also that here we take Φ = {e}, which means all rules of [27,
Table 1] with characters ϕ, ψ ∈ Φ on the right-hand side are absent.f With this
understanding, the above definition of F [∂,

r
] coincides with the one in [27], which

therefore establishes GB(IDλ) as a Gröbner basis.

We prove now the k-module decomposition

(5) F [∂,
r
| IDλ] = F [∂ |Diffλ]∔ F [

r
|RBλ]\F ∔ (e)

with (e) ⊂ F [∂,
r
|IDλ] being the two-sided ideal generated by e. Note that here and in the

rest of this proof, we renounce the abbreviation of F [Ω |E] by F [Ω] used in the statement of
the proposition. This is because we need to distinguish the free operator ring from various
E-operator rings. Furthermore, we write F [Ω]E for the k-submodule of normal forms
in F [Ω] with respect to the reduction system induced by E and the given term order on F [Ω].
By the well-known Diamond Lemma [4, Thm. 1.2], we have F [∂,

r
] = F [∂,

r
]IDλ
∔ [IDλ].

We claim that it suffices to prove

(6) F [∂,
r
]IDλ

= F [∂]Diffλ
∔ F [

r
]RBλ

\F ∔ (e)IDλ
.

fThe character e ∈ Φ is not part of the operator set Ω, and its appearance on the right-hand side is to
be understood merely as an abbreviation e := 1 −

r
∂. Moreover, the corresponding rules with e on the

left-hand side are not required in E since they follow from the other rules.
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Indeed, substituting the decomposition (6) into the Diamond-Lemma decomposition and
then taking the quotient by [IDλ] yields

g

(7) F [∂,
r
| IDλ] =

F [∂]Diffλ
+ [IDλ]

[IDλ]
∔

F [
r
]RBλ

\F + [IDλ]

[IDλ]
∔

(e)IDλ
+ [IDλ]

[IDλ]
.

Since Diffλ ⊂ IDλ, we may replace the first denominator on the right-hand side of (7)
by

(

F [∂]Diffλ
+ [Diffλ]

)

+ [IDλ] = F [∂] + [IDλ], using now the Diamond Lemma for Diffλ.
In the same way, the second denominator is given by F [

r
] \ F + [IDλ]. For the third

denominator we get (e) directly from the Diamond Lemma. Applying the second isomor-
phism theorem to the first and second summand yields (5) since [IDλ] ∩ F [∂] = [Diffλ]
and [IDλ] ∩

(

F [
r
] \ F

)

= [RBλ], noting that (e)/[IDλ] is just (e) ⊂ F [∂,
r
| IDλ] in (5).

We give now a proof of (6), which follows closely the more general argumenth given
in [28], specifically Lemma 23 as well as Propositions 25 and 26 therein. Let us start by
analyzing the irreducible monomials. We claim that each monomial w ∈ F [∂,

r
]IDλ

is
either of the form w = f∂i ∈ F [∂]Diffλ

(f ∈ F , i ≥ 0) or w = f
r
g ∈ F [

r
]RBλ

(f, g ∈ F)
or f

r
∂i+1 (f ∈ F , i ≥ 0). If w contains any occurrences of ∂, they must be in the

tail of w since ∂f (f ∈ F) is reducible relative to [Diffλ] ⊂ IDλ and also ∂
r

relative
to [∂

r
−1] ⊂ [IDλ]. This means we have w = v∂i with prefix monomial v ∈ F [

r
] and i ≥ 0.

But then v can have at most one occurrence of
r
since

r
f
r
(f ∈ F) is reducible relative

to [RBλ] ⊂ [IDλ]. Hence we have either w = g
r
f∂i or w = f∂i for some f, g ∈ F . In the

latter case, we obtain w ∈ F [∂]Diffλ
and are done. In the former case, we can must have i = 0

or f = 1 since otherwise w is reducible relative to relative to [
r
f∂−f+

r
f ′+e(f) e] ⊂ [IDλ].

Hence we have either the case w = g
r
f ∈ F [

r
]RBλ

, where f = 1 is possible. Or else we
have the irreducible monomial w = g

r
∂i with i > 0.

Next we analyze the irreducible elements of (e)IDλ
; unlike those of F [∂]Diffλ

and F [
r
]Diffλ

,
these are not monomials. Since any element of (e)IDλ

can be written as a k-linear com-
bination of wew̃ 6= 0 with monomials w, w̃, it suffices to analyze those. As we have seen
above, if w contains any occurrences of ∂, they must be at its tail. But since ∂e = 0, there
can in fact be no ∂ in w. By the above analysis of normal forms for w, the only remaining
possibilities are w = f and w = f

r
g for some f, g ∈ F . But the latter is also excluded

since
r
ge =

r
g −

r
g
r
∂ is reducible relative to [RBλ] ⊂ IDλ. Hence we conclude w = f .

Regarding the monomial m̃, we it cannot start with any g ∈ F since eg = g −
r
∂g is re-

ducible relative to [Diffλ] ⊂ IDλ. Furthermore, w̃ cannot start with
r
since e

r
= 0. By our

analysis of irreducible monomials, this leaves with the only remaining possibility w̃ = ∂i.
Altogether this show that wew̃ = fe∂i. We may thus conclude that all three k-modules
on the right-hand side of (6) are in fact left F -modules with the following generators:
While F [∂]Diffλ

is generated by ∂i (i ≥ 0), and F [
r
]RBλ

\ F by
r
f (f ∈ F), the normal

forms in (e)IDλ
are generated by e∂i.

For establishing (6), it is sufficient to show that each U ∈ F [∂,
r
]IDλ

splits uniquely
as U = U∂+Ur +Ue, containing a part U∂ ∈ F [∂]Diffλ

, a part Ur ∈ F [
r
]RBλ

\F , and finally a

part Ue ∈ (e)IDλ
. Each irreducible monomial f∂i of U is put into U∂ , and each irreducible

monomial f
r
g into Ur . For irreducible monomials of the form f

r
∂i+1 = f∂i − fe∂i,

gNote that M = A ∔ B ∔ C ∔ Z implies M/Z = (A + Z)/Z ∔ (B + Z)/Z ∔ (C + Z)/Z for arbitrary
submodules A,B,C, Z of some module M .

hThe proofs in [28] use only ring-theoretic properties of k; no field or zero characteristic is required.
They are more general in that they allow character sets Φ ) {e}.
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we put f∂i into U∂ and −fe∂i into Ue. Thus we have U = U∂ + Ur + Ue; let us now

prove uniqueness. Hence assume
∑

i ai∂
i +

∑

i bi
r
ci +

∑

i die∂
i = 0, each sum having

finitely many nonzero coefficients ai, bi, cj, di ∈ F . By the definition of e, this is the same
as

∑

i(ai + di)∂
i +

∑

i bi
r
ci −

∑

i di
r
∂i+1 = 0. By the definition of the free operator

ring F [∂,
r
], all monomials are linearly independent over k, hence ai + di = bi = di = 0

and then also ai = 0. This completes the uniqueness proof for splitting U . We have now
established the k-module decomposition (6) and therefore also (5). Since F [∂] and F [

r
]

are both closed under multiplication, they are subalgebras of F [∂,
r
].

Finally, let us prove the quotient statement F [∂,
u
| IDλ] ∼= F [∂,

u
| DRBλ]/I, where

for once we use the same symbol for the Rota-Baxter operator in IDλ and DRBλ. (Recall
that the notational distinction between

r
and

u
is purely a convenience that allows us to

suppress the laws to be factored out.) Writing out the definitions, we must thus prove

F [∂,
u
]

[IDλ]
∼=

F [∂,
u
]

[DRBλ]

/

[ef − e(f) e | f ∈ F ],

which reduces to showing [IDλ]/[DRBλ] = [ef − e(f) e | f ∈ F ] by the third isomorphism
theorem. Hence it suffices to show [IDλ] = [DRBλ]∔ [ef − e(f) e | f ∈ F ] as k-modules,
where the directness of the sum is obvious. For the inclusion from left to right, we must
show that every

r
f∂ − f +

r
f ′ + e(f) e is in [ID′

λ] := [DRBλ] + [ef − e(f) e | f ∈ F ].

Substituting f+λf ′ for f , we may also show that every rf :=
r
(f+λf ′) ∂−f+

r
f ′+e(f) e

is in [ID′
λ]. But we have indeed

rf =
r (
f∂ + λ f ′∂ + f ′ − ∂f

)

−
(

ef − e(f) e
)

∈ [ID′
λ]

since the first summand is in Diffλ ⊂ DRBλ and the second in [ef − e(f) e | f ∈ F ]. For
the inclusion from right to left, it suffices to show that every ef − e(f) e is in IDλ. But we
have just proved that rf + ef − e(f) e ∈ [Diffλ] ⊂ [IDλ]. Since we have also rf ∈ IDλ, the
proof is completed. �

As the name suggests, there is another important aspect to E-operators that we should
consider here—they operate on suitable domains. These domains are a special class of mod-
ules that we shall now introduce. Recall first that an Ω-operated module (M ; pω |ω ∈ Ω) over
a commutative ring A is an A-module M with A-linear operators pω : M → M . As in the
case of Ω-operated algebras, no restrictions are imposed on the operators pω. An operated
morphism ϕ : (M ; pω |ω ∈ Ω) → (M ′; p′ω |ω ∈ Ω) is an A-linear homomorphism ϕ : M →M ′

such that ϕ◦pω = p′ω ◦ϕ for all ω ∈ Ω; the resulting category of Ω-operated modules over A
is denoted by ModA(Ω).

Now assume that A ∈ CAlg(Ω) is an operated algebra. Then the free operators T ∈
A[Ω] act naturally on the Ω-operated A-module M . Since T is a k-linear combination of
noncommutative monomials t ∈ M(Ω ⊎ A), it suffices to define t ·m for m ∈ M . By the
universal property ofM(Ω⊎A), we obtain a unique monoid action by setting ω ·m := pω(m)
for ω ∈ Ω and a ·m := am for a ∈ A. Thus M becomes an A[Ω]-module, and we can now
introduce the module-theoretic analog of E-algebras.

Definition 3.5. Fix an operated algebra A ∈ CAlg(Ω) and a submodule E ⊆ kCΩ(Y ) of
standard laws. Then an E-related module over A is an operated module M ∈ ModA(Ω)
with L ·m = 0 for all relators L ∈ [E] and m ∈M .
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Again we will briefly speak of E-modules (since the context will make it clear that E is
a set of laws). They form a full subcategory of ModA(Ω) denoted by ModA(Ω|E). The
role of the E-operator ring becomes clear now: Operators correspond to the natural action
defined above if A is an E-algebra. This can be made precise by the following statement.

Proposition 3.6. Let A be an E-algebra for a submodule E ⊆ kCΩ(Y ). Then we have the
isomorphism of categories ModA(Ω|E) ∼= ModA[Ω|E].

Proof. As noted above, an E-module M ∈ ModA(Ω|E) ⊆ ModA(Ω) can also be viewed
as an A[Ω]-module under the natural action, and as such it satisfies [E] · M = 0. But
then the action of A[Ω|E] with (T + [E]) · m := T · m is well-defined and gives M the
structure of an A[Ω|E]-module. Conversely, every such module restricts to an operated
module M ∈ ModA(Ω) with [E] ·M = 0.

Of course, every morphism ofModA[Ω|E] is also a morphism ofModA(Ω|E). For the other
direction, let ϕ be a morphism of E-modules. For showing ϕ

(

(T+[E])·m
)

=
(

T+[E]
)

·ϕ(m)
for T ∈ A[Ω] and m ∈ M , it suffices to show ϕ(T · m) = T · ϕ(m). Since ϕ is k-linear,
we may assume a monomial T ∈ M(Ω ⊎ A) and use induction on the degree of T . The
base case T = 1 is trivial, hence assume the claim for monomials of degree n and let T
have degree n + 1. Then there exists T ′ ∈ M(Ω ⊎A) of degree n such that either T = aT ′

for a ∈ A or T = ωT ′ with ω ∈ Ω. In the former case the claim follows because ϕ is A-
linear, in the latter case because it is a morphism of Ω-operated modules. This completes
the proof that ϕ is also a morphism of ModA[Ω|E]. �

Fact 3.7. Some standard constructions for creating new modules also work in the operated
setting. Let us mention a few that are also relevant for the examples to be given afterwards.

(a) If A is an E-algebra and S an arbitrary set, the free module AS is an E-module. The
action of pω (ω ∈ Ω) on a module element f ∈ AS is defined by (pωf)(s) := Pω(fs)
for s ∈ S. It is easy to see that for any free operator L ∈ A[Ω] and f ∈ AS one
has (L · f)(s) = L · f(s) for all s ∈ S, where the left action takes place in AS and
the right action in A. Hence one obtains L · f = 0 for all relators L ∈ [E] ⊂ A[Ω]
and all f ∈ AS, which confirms that AS is an E-module. Note that AS is free as an
A-module but generally not as an A[Ω|E]-module (see Example 3.8(a) below).

(b) If M1, . . . ,Mk are E-modules over A, their direct product M1 × · · · ×Mk is an E-
module with operators pω (ω ∈ Ω) acting component-wise. If M1 = · · · = Mk = M ,
this gives the free module MS over the finite set S = {1, . . . , k}.

(c) Whenever M is an E-module over A, the dual module M∗ is naturally an E∗-module
with operators p∗ω (ω ∈ Ω); here p∗ω : M

∗ → M∗ is defined as the dual map of the
A-linear map pω : M → M . If L ∈ A[Ω] is any free operator and f ∈ M∗ one checks
immediately that (L∗ · f)(m) = f(L ·m) for all m ∈ M . In other words, the action
on M∗ is the dual of the action on M . In particular, one sees that L∗ · f = 0 for all
relators L ∈ [E] ⊂ A[Ω] and all f ∈M∗, confirming that M∗ is E∗-related (meaning
it satisfies the transpose of all relators induced by E). Since any E-algebra A is also
an E-module over itself, A∗ is also an E∗-module.

(d) If M is an E-module with a submodule M ′ ⊆ M that is closed under all all oper-
ators pω (ω ∈ Ω), their restrictions to the submodule M ′ make the latter into an
E-module or, more precisely, an E-related submodule of M .
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Example 3.8. Let us now exemplify the concept of E-module for the four standard varieties
given in Example 2.19, corresponding to the four operator rings of Proposition 3.4. We make
again use of the convention stated in Remark 3.3.

(a) The Diffλ-modules are commonly known as differential modules [33, Def. 1.2.4(iii)],
usually taken with weight λ = 0 over a differential field (F , ∂). Their equivalent
formulation as F [∂]-modules is often used as an alternative definition [36, Def. 2.5].
Differential modules are crucial for differential Galois theory as they provide an
abstract way of formulating linear differential equations. In the important special
case when the underlying differential ring is F = k[x], the operator ring is the Weyl
algebra A1(k), and the corresponding A1(k)-modules are known as D-modules [11]
since D := A1(k) = k[x][∂] is the underlying differential operator ring. For example,
k[x]n is a differential module by Fact 3.7(b). If k is a field, any k-basis e1, . . . , en of k

n

is of course a k[x]-basis for k[x]n but since ∂e1, . . . , ∂en = 0 it is not an A1(k)-basis.
In other words, k[x]n is free as a k[x]-module but not as a k[x][∂]-module.

Another important class of examples with k = R is concerned with vector fields
on a manifold M . In detail, each vector field V ∈ X(M) induces a covariant deriva-
tive ∇V : X(M) → X(M) with characteristic property ∇V (fW ) = f ′W + f ∇V (W )
for f ∈ C∞(M) and W ∈ X(M). The vector fields X(M) thus form a differential
module over the differential algebra C∞(M).

(b) The category of RBλ-modules has been introduced in [15, Def. 2.1(a)] under the
name of Rota-Baxter module for a given Rota-Baxter algebra (F ,

r
). Their equiva-

lent description in terms of F [
r
]-modules is elaborated in [15, §2.2].

(c) Similarly, we introduce now the category of DRBλ-modules, which we may also call
differential Rota-Baxter modules. In D-module theoryi, it is often pointed out that
various spaces of (real or complex valued) distributions are differential modules (for
weight λ = 0 and ground field k = R or k = C) and hence D-modules since dis-
tributions can be multiplied by smooth functions so they are in particular modules
over F := k[x]. It is seldom appreciated that some of these distribution spaces are
in fact differential Rota-Baxter modules over F and hence F [∂,

u
]-modules. For

example, let D′(R)+ ⊂ D′(R) be the space of all distributions T with left-bounded
support, meaning supp(T ) ⊆ [a,∞[ for some a ∈ R. Analogously, we write D(R)− for
the space of test functions with right-bounded support; it is clear that this is a (non-
unital!) differential Rota-Baxter algebra with standard derivation ∂ and Rota-Baxter
operator

u
:= −

r ∞

x
. In fact, D(R)− is a degenerate (nonunital) integro-differential

algebra since the induced evaluation e := 1D(R)+ −
u

◦ ∂ = 0 is trivially multi-
plicative. In other words, ∂ is bijective with

u
as its inverse, and the strong Rota-

Baxter axiom f
u
g =

u
f ′

u
g +

u
fg immediately follows from f ′

u
g = (f

u
g)′ − fg.

If H ∈ D′(R)+ is the Heaviside function, the operator
u
: D′(R)+ → D′(R)+ defined

by the convolution
u
T := H ⋆T is known to be a two-sided inverse [12, §13.1] of the

distributional derivative ∂. One checks that
u
: D′(R)+ → D′(R)+ is the transpose ofu

: D(R)− → D(R)−, just as the distributional derivative ∂ : D
′(R)+ → D′(R)+ is (by

definition) the transpose of the standard derivation ∂ : D(R)− → D(R)−. Thus we

iThe two occurrences of D in “D-modules” and in the distribution space D′(R) are unrelated. In fact,
D′(R) is the dual of the differentiable class D(R) := C∞

0 (R) of smooth functions with compact support.
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obtain a Rota-Baxter module (D′(R)+, ∂,
u
), which is actually a degenerate integro-

differential module over the nonunital Rota-Baxter algebra D(R)−. Of course, one
may apply a similar construction to endow the space D′(R)− of right-bounded distri-
butions with the structure of a differential Rota-Baxter module over the nonunital
differential Rota-Baxter algebra of left-bounded test functions.

(d) Finally, let us consider the category of IDλ-modules, which we also call integro-
differential modules. Again we shall give an important example from distribution
theory. Endowing E(R) := C∞(R) with the usual derivation ∂ = d/dx and the Rota-
Baxter operator

u
f :=

r x

0
f(ξ) dξ yields a “dually integro-differential” module E∗(R)

by Fact 3.7(c), as the dual of the integro-differential algebra (E(R), ∂,
u
). Just as the

one-sided distribution spaces of Item (c), this is in fact a differential module as well
as a Rota-Baxter module since the relators ∂f → f∂+f ′ and

u
f
u
→ f 8

u
−

u
f 8 are

skew-symmetric under transposition. Hence we should take the negated transposes
of ∂,

r
: E(R) → E(R); this is of course standard practice in defining the distributional

derivative [12, §4]. As the two signs cancel, we obtain the transposed section lawu
◦ ∂ = 1E ′(R).
One checks that both ∂ and

u
restrict to the topological dual E ′(R) ⊂ E∗(R)

consisting of all continuous functionals E(R) → k, relative to the well-known locally
convex topology of E(R); see for example [35, (7.8)]. Therefore E ′(R) is a differential
Rota-Baxter submodule of E∗(R) by Fact 3.7(d), except that the section law is trans-
posed. In analysis, E ′(R) is known as the space of compactly supported distributions.
It may seem surprising that ∂ is injective and

u
surjective on E ′(R). In fact, one

checks that ker
u

= Rδ0 and im(∂) = {T ∈ E ′(R) | T (1) = 0}. It is known [35, (10.4)]
that in D′(R) ⊃ E ′(R), the kernel of ∂ is given by the constant distributions; but
since their support is R, they are not in E ′(R). Conversely, the image of ∂ on D′(R)
is full [35, Cor. §11.2] since the constant function 1 is not compactly supported so
the condition T (1) = 0 is void. As we have seen, ∂ is not surjective on E ′(R), which
is of course well-known [35, Ex. 11.2].

Is (E ′(R), ∂,
u
) an integro-differential module (with transposed section law)? One

must check if the (transposed) induced evaluation e := 1E ′(R)−∂ ◦
u
: E ′(R) → E ′(R)

is multiplicative in the sense that e(fT ) = e(f) e(T ) for all T ∈ E ′(R) and f ∈ E(R).
Since e : E ′(R) → E ′(R) is the transpose of e : E(R) → E(R), one has e(T ) = T (1) δ0
for any T ∈ E ′(R). But then one sees that

e(ex δ1) = δ1(e
x) · δ0 = e · δ0 6= e(ex) e(δ1) = 1 · δ0,

which shows that E ′(R) is in fact not an integro-differential module. The problem is
that the corresponding relator ef → e(f) e gets transposed to fe → e(f) e, which
yields the true identity f e(T ) = f(0) e(T ) or f T (1) δ0 = f(0) T (1) δ0. If T (1) = 0,
this is trivially valid; otherwise division by T (1) yields the familiar sifting property
of the Dirac distribution [12, p. 38]. Of course we may replace δ0 by δc for any c ∈ R

if we use the Rota-Baxter operator
r x

a
on E(R) instead of

r x

0
.

For seeing an honest integro-differential module, we refer to [30], where the algebraic
distribution module (DF , ð, �

r
) over a given ordinary shifted integro-differential algebra F ,

such as the classical example F = C∞(R), is constructed and investigated. This provides
a purely algebraic structure (involving no topology, in particular taking F only as an
integro-differential algebra with shift maps such as f(x) 7→ f(x − c) for c ∈ R in the
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classical example), providing just piecewise functions and Dirac distributions on top of F .
In the classical example, this gives rise to the Heaviside function Ha = H(x− a) and their
derivatives δa. Compared to the analytic distribution spaces of Example 3.8 (c), (d), this
is a very small module. However, it contains exactly what is needed for specifying and
computing the Green’s operator G ∈ F [∂,

r
] of a LODE boundary problem [34, §§2,3].

Acting as G : F → F , it can be assigned a Green’s function g(x, ξ). This is a (bivariate)
function involving Heavisides and—for ill-posed problems— also Diracs, characterized by a
distributional differential equation. For a comprehensive presentation, we refer the reader
to [30], specifically Theorems 26 and 29 therein. The actual computation of the Green’s
operator G on the basis of a given fundamental system is detailed in [27], the extraction of
the Green’s function g(x, ξ) from G in [29].

4. Differential Rota-Baxter Operators

As pointed out earlier, the operator rings in Proposition 3.4(a), (b), (d) are known and
defined elsewhere, but the ring in (c) is introduced here for the first time. In the rest of this
paper, we will therefore concentrate on the ring F [∂,

u
]. As a first step, let us analyze its

canonical forms, in a way similar to [28, Prop. 25] and the above k-module decomposition
for F [∂,

r
]. In the following, recall that F [

u
]\F denotes a linear complement rather than

the set-theoretic one.

Lemma 4.1. Let (F , ∂,
u
) ∈ DRBλ. Then we have F [∂,

u
] = F [∂] ∔ F [

u
]\F ∔ [e],

where [e] := k{f
u
g ∂k | f, g ∈ F ; k > 0} is a rung that we call the evaluation rung.

Proof. The proof of the direct sum is completely analogous to that of the corresponding
statement in Proposition 3.4, with (6) being replaced by

(8) F [∂,
u
]DRBλ

= F [∂]Diffλ
∔ F [

u
]RBλ

\ F ∔ [e]DRBλ
.

The analysis of irreducible monomials w ∈ F [∂,
u
]DRBλ

is also the same, except that the
remaining case w = f

u
g∂k with f, g ∈ F and k ≥ 0 cannot be reduced any further. We

have of course w ∈ [e] if k > 0 and w ∈ F [
u
]RBλ

otherwise. The direct sum (8) now follows
immediately since the evaluation rung [e], unlike the evaluation ideal (e), is generated by
irreducible monomials.

It remains to prove that [e] is multiplicatively closed, meaning (f
u
g ∂k)(f̃

u
g̃ ∂k̃) ∈ [e].

It suffices to ensure wk :=
u
g ∂k f̃

u
g̃ ∂ ∈ [e], and for that we use induction over k > 0.

For k = 1 we have ∂f̃ = f̃ ′ + f̃∂ + λ f̃ ′∂ and wk =
u
f̃ ′g

u
g̃ ∂ +

u
f̃gg̃ ∂ + λ

u
f̃ ′gg̃∂ ∈ [e]

after applying the Rota-Baxter rule in the first summand. For the induction step we
consider wk+1, assuming the claim holds for k. We obtain

wk+1 =
u
g∂kf̃ ′

u
g̃ ∂ +

u
g∂kf̃ g̃∂ + λ

u
g∂kf̃ ′g̃∂,

where the first summand is contained in [e] by the induction hypothesis and the second
expands into a linear combination of terms having the shape w̃k∂

l (1 ≤ l ≤ k + 1), which
are clearly contained in [e] as well. �

Note that both F [
u
]+ := F [

u
]\F and F [∂]+ := F [∂]\F are rungs, which feature in the

alternative k-module decomposition

F [∂,
u
] = F ∔ F [∂]+ ∔ F [

u
]+ ∔ [e].
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Moreover, one checks immediately that [e] is actually an (F [
u
]+,F [∂]+)-bimodule. Accord-

ing to the subsequent lemma, the evaluation rung is also closely related to the evaluation
(hence its name). Note that we continue to call the projector e := 1F−

u
∂ the evaluation of

the differential Rota-Baxter algebra (F , ∂,
u
) although it is not multiplicative (unless F is

in fact an integro-differential algebra). However, it is still a projector onto ker ∂ along im
r
.

By abuse of language, the corresponding e ∈ F [∂,
u
] will also be referred to as evaluation.

Lemma 4.2. The evaluation rung [e] is a bimodule over k[e], with e as right annihilator.

Proof. Since e
2 = e, the ring k[e] is the k-span of 1 and e. Therefore it suffices to verify

the inclusion e [e] ⊆ [e] and [e] e = 0. The latter is immediate from the definition of [e],
the former follows from e f

u
g ∂k = [e(f),

u
] g∂k ∈ [e] via the Rota-Baxter axiom; here the

bracket denotes the commutator in F [∂,
u
]. �

Before we study further properties of differential Rota-Baxter algebras and their operator
rings, let us give two simple examples (the weight is zero for both).

Example 4.3. Let k have characteristic zero. The most basic example of a differential
Rota-Baxter algebra is clearly the polynomial ring k[x], with standard derivation ∂ = d/dx
and Rota-Baxter operator

r
=

r x

0
or more generally

r x

a
for any initialization point a ∈ k.

Here we think of
r x

a
: k[x] → k[x] in purely algebraic terms, as the k-linear map defined

by xk 7→ (xk+1 − ak+1)/(k + 1). This example will play a great role in Section 5 although
it is not a genuine example (in the sense that it is also an integro-differential algebra).

Example 4.4. For seeing a natural example of a differential Rota-Baxter algebra that is not
an integro-differential algebra, we call on analysis. Of course, the primordial example of an
integro-differential algebra consists of the (real or complex valued) smooth functions C∞(R)
or C∞[a, b]; see [27, Ex. 5]. Here ∂ and

r
=

r x

ξ
(ξ ∈ R or ξ ∈ [a, b]) are defined analytically.

A slight variation of this example leads to a differential Rota-Baxter algebra, namely the
(real or complex valued) piecewise smooth functions PC∞(R) or PC∞[a, b]. For example,
we take all functions that are smooth on the whole domain minus finitely many points. The
operations are defined as before except that ∂f and

r
f is undefined at the points where f is

so. (The ring operations +,−, ∗ have to be defined carefully since singularities may cancel;
the result is always to be taken with all removable singularities actually removed. This
process is also well-known in complex analysis where meromorphic functions can be defined
in a similar way.)

The piecewise smooth functions are clearly a differential Rota-Baxter algebra. However,
they are not an integro-differential algebra for if they were, the evaluation 1 − ∂

r
would

be multiplicative—which it cannot be for functions undefined on the initialization point ξ.
For a more explicit example, let us take PC∞[0, 1] with initialization point ξ = 0. The
Heaviside function h(x) := H(x − 1/2) ∈ PC∞[0, 1] is the characteristic function of the
subinterval [1/2, 1], and we have

r
h =

r x

1/2
dx = x − 1/2 but h ·

r
1 = H(x − 1/2) x.

This means we have
r
(h · 1) 6= h ·

r
1 although h ∈ ker ∂, and [20, Rem. 2.6(c)] shows

that (PC∞[0, 1], ∂,
r
) is not an integro-differential algebra.

In Proposition 3.4 the relation between the operator rings F [∂,
u
] and F [∂,

r
] is illumi-

nated in one direction only: It shows the differential Rota-Baxter operators F [∂,
u
] to have

a finer structure from which one obtains the integro-differential operator ring F [∂,
r
] as

a quotient. However, we shall see below (Proposition 4.8) that the finer ring F [∂,
u
] can
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also be embedded into a suitably “generic” integro-differential operator ring. Applying this
to the special case of polynomial coefficients will enable us to give an operator-theoretic
interpretation to the integro-differential Weyl algebra (Section 5).

As a preparation to this construction, let us first determine the free integro-differential
algebra (F̃ , ∂,

u
) over a given differential Rota-Baxter algebra (F , ∂,

r
). In other words,

we want to “extend” F just enough to build an integro-differential structure. Categorically
speaking, the association F 7→ F̃ is the left adjoint of the forgetful functor IDλ → DRBλ.
However, note that

r
is not an extension of

u
.

Proposition 4.5. Given (F , ∂,
u
) ∈ DRBλ, construct F̃ = F ⊗K F over K := ker ∂,

extending the derivation to ∂ : F̃ → F̃ , f ⊗ fε 7→ (∂f) ⊗ fε and defining
r
: F̃ → F̃ viar

f ⊗ fε := (
u
f) ⊗ fε − 1 ⊗ (fε

u
f). Then one obtains (F̃ , ∂,

r
) ∈ IDλ with evaluation

e(f ⊗ fε) = 1⊗ ffε, and an embedding ι : F → F̃ , f 7→ f ⊗ 1 of differential algebras.

Proof. Let us first reassure ourselves that ∂ : F̃ → F̃ is well-defined. It suffices to prove
that

∑

i f(i) ⊗ fε(i) = 0 implies
∑

i f(i)
′ ⊗ fε(i) = 0 for finite families f(i), fε(i) ∈ F .

Hence assume
∑

i f(i) ⊗ fε(i) = 0. By [13, Lem. 6.4], there are c(i, j) ∈ K and g(i) ∈ F
satisfying the relations

∑

j c(i, j) g(j) = f(i) for all i and
∑

i c(i, j) fε(i) = 0 for all j,

which yields
∑

i f(i)
′ ⊗ fε(i) =

∑

ij c(i, j) g(j)
′ ⊗ fε(i) =

∑

j g(j)
′ ⊗

(
∑

i c(i, j) fε(i)
)

= 0

since c(i, j)′ = 0. Next we note that ι : F → F̃ is injective since its image is F ⊗K K ∼= F ;
it is a morphism of Diffλ because ∂(f ⊗ 1) = f ′ ⊗ 1.

The same argument can be used to demonstrate that
r
: F̃ → F̃ is well-defined. Hence

assume
∑

i f(i) ⊗ fε(i) = 0 as before; we show
∑

i

(u
f(i)

)

⊗ fε(i) =
∑

i 1 ⊗
(

fε(i)
u
f(i)

)

.
Since c̃(i, j) :=

u
c(i, j) g(j)− c(i, j)

u
g(j) ∈ K, we get c̃(i, j)⊗ fε(i) = 1 ⊗ c̃(i, j) fε(i) and

therefore
∑

i

(u
f(i)

)

⊗ fε(i) =
∑

i,j

c̃(i, j)⊗ fε(i) =
∑

i,j

1⊗ c̃(i, j) fε(i) =
∑

i

1⊗
(

fε(i)
u
f(i)

)

,

where the first equality uses
∑

i,j

(

c(i, j)
u
g(j)

)

⊗fε(i) =
∑

j

(u
g(j)

)

⊗
(
∑

i c(i, j) fε(i)
)

= 0

and the last
∑

i,j 1⊗
(

c(i, j)
u
g(j)

)

fε(i) =
∑

j 1⊗
(
∑

i c(i, j) fε(i)
)u
gj = 0.

Using now the fact that
u
: F → F is a Rota-Baxter operator, a short calculation reveals

that
r
: F̃ → F̃ is as well. Moreover, it is immediate that ∂

r
= 1F̃ , so (F̃ , ∂,

r
) is at least

a differential Rota-Baxter algebra. Its evaluation is given by

e (f ⊗ fε) = f ⊗ fε −
r
f ′ ⊗ fε = f ⊗ fε − (

u
f ′)⊗ fε + 1⊗ (fε

u
f ′)

= eF(f)⊗ fε + 1⊗ (fε
u
f ′) = 1⊗ fε

(

eF(f) +
u
f ′
)

= 1⊗ fεf,

where in the third step we have used the definition of the evaluation on F and in the fourth
the fact that all tensors are over K = ker ∂ = ime. From this we see that the evaluation
on F̃ is multiplicative, which implies (F̃ , ∂,

r
) ∈ IDλ by [20, Thm. 2.5(b)]. �

Theorem 4.6. The integro-differential algebra F̃ defined in Proposition 4.5 is free over F .
In other words, any DRBλ-morphism ϕ : F → G to an integro-differential algebra G factors
as ϕ = ϕ̃ ◦ ι for a unique IDλ-morphism ϕ̃ : F̃ → G.

Proof. Let us first prove uniqueness of ϕ̃. Assuming ϕ = ϕ̃ ◦ ι, we have ϕ̃(f ⊗ 1) = ϕ(f).
Moreover, 1 ⊗ fε = e(fε ⊗ 1) implies ϕ̃(1 ⊗ fε) = eG

(

ϕ̃(fε ⊗ 1)
)

= eG

(

ϕ(fε)
)

since ϕ̃ is
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an IDλ-morphism and thus commutes with the evaluation. As ϕ̃ is a morphism of k-algebras
we obtain ϕ̃(f ⊗ fε) = ϕ(f) eG

(

ϕ(fε)
)

, which determines ϕ̃ : F̃ → G uniquely.
For proving existence, it suffices to show that defining ϕ̃(f ⊗fε) := ϕ(f) eG

(

ϕ(fε)
)

yields
an IDλ-morphism ϕ̃. Indeed, it is a k-algebra homomorphism since ϕ and eG are; one
sees immediately that it respects the derivation. Let us now check that ϕ̃ also respects the
Rota-Baxter structure, meaning ϕ̃

(r
(f ⊗ fε)

)

=
r
G
ϕ̃(f ⊗ fε). For the left-hand side, we

apply ϕ̃ to
r
f ⊗ fε = (

u
f)⊗ fε − 1⊗ (fε

u
f) to obtain

ϕ(
u
f) eG

(

ϕ(fε)
)

− eG

(

ϕ(fε
u
f)
)

= eG

(

ϕ(fε)
)

(

ϕ(
u
f)− eG

(

ϕ(
u
f)
)

)

using the multiplicativity of ϕ and eG on the second term. Since by definition 1G−eG =
r
G
∂G ,

the parenthesized expression above is
r
G
∂G ϕ(

u
f) =

r
G
ϕ
(

∂
u
f) =

r
G
ϕ(f). For the right-

hand side, using
r
G
on ϕ̃(f⊗fε) = ϕ(f) eG

(

ϕ(fε)
)

yields eG
(

ϕ(fε)
) r

G
ϕ(f) since (G, ∂G ,

r
G
) is

an integro-differential algebra and
r
G
is linear over ker ∂G = im eG by [20, Rem. 2.6(d)]. �

The crucial point of the embedding of F [∂,
u
] into a ring of integro-differential operators

is that
r
f∂k, though a normal form of F [∂,

u
], splits when viewed as an integro-differential

operator. Its reduction to normal forms can be computed as follows.

Lemma 4.7. Let (F , ∂,
r
) be an integro-differential algebra. Then we have

(9)
r
f∂k =

k−1
∑

i=0

(−1)i
(

f (i) − e(f (i)) e
)

∂k−i−1 + (−1)k
r
f (k)

for all k > 0.

Proof. We use induction on k > 0. The base case k = 1 follows from the IDλ-relator of
Proposition 3.4(d). Assume now the claim holds for some k > 0. Then we have

r
f∂k+1 =

k−1
∑

i=0

(−1)i
(

f (i) − e(f (i)) e
)

∂k−i + (−1)k
r
f (k)∂,

and the last term yields (−1)kf (k) + (−1)k+1
e(f (k)) e+ (−1)k+1

r
f (k+1) by the case k = 1.

Incorporating the first two summands into the summation, one obtains (9) with k + 1 in
place of k, which completes the induction. �

We can now provide the embedding of differential Rota-Baxter operators into a ring of
integro-differential operators with “generic” integral. The punch line is that one must pass
to the free integro-differential algebra introduced in Proposition 4.6. Since its Rota-Baxter
operator introduces new integration constants, one may view it as being initialized at a
generic point; this will become clearer in Section 5.

Theorem 4.8. Let (F , ∂,
u
) be an ordinary differential Rota-Baxter algebra, and (F̃ , ∂,

r
)

the free integro-differential algebra defined in Proposition 4.6. Then the assignment

(10) f∂k 7→ f∂k, f
u
f̃ 7→ f

r
f̃ , f

u
f̃∂k 7→ f

r
f̃∂k

defines an algebra monomorphism ψ : F [∂,
u
] → F̃ [∂,

r
].

Proof. From Proposition 3.4 we know that F [∂,
u
] = F [∂]∔F [

u
]\F ∔ [e], where the three

components have normal forms f∂k, f
u
f̃ and f

u
f̃∂k, respectively. Hence the map ψ is

well-defined, and it is clearly k-linear. We can also describe ψ in a different but equivalent
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way: Recall that F ∗ k〈∂,
u
〉 is a coproduct in the category of (noncommutative) algebras,

with canonical injections i1 : F → F ∗ k〈∂,
u
〉 and i2 : k〈∂,

u
〉 → F ∗ k〈∂,

u
〉. Similarly,

F̃ ∗k〈∂,
r
〉 is a coproduct with canonical injections ı̃1 and ı̃2. Then by the universal property

for the coproduct F∗k〈∂,
u
〉, there is an algebra morphism j : F∗k〈∂,

u
〉 → F̃∗k〈∂,

r
〉 such

that j◦i1 = ı̃1◦ι and j◦i2 = ı̃2◦i, where i : k〈∂,
u
〉 → k〈∂,

r
〉 is the (trivial) isomorphism that

renames
u
into

r
. Writing [RBλ] ⊂ F∗k〈∂,

u
〉 and [IDλ] ⊂ F̃∗k〈∂,

r
〉 for the relator ideals

of F [∂,
u
] and F̃ [∂,

r
], respectively, we have j [DRBλ] ⊂ [IDλ] and hence p̃j[DRBλ] = 0

for the canonical projection p̃ : F̃ ∗ k〈∂,
r
〉 → F̃ [∂,

r
] =

(

F̃ ∗ k〈∂,
r
〉
)/

[IDλ]. Writing

p : F ∗ k〈∂,
u
〉 → F [∂,

u
] =

(

F ∗ k〈∂,
u
〉
)/

[DRBλ] for the other projection, we conclude

that p̃j : F ∗ k〈∂,
u
〉 → F̃ [∂,

r
] descends to an algebra morphism F [∂,

u
] → F̃ [∂,

r
], which

is easily recognized as ψ so that p̃j = ψp.
It remains to prove that ψ is injective. Recall that although f

u
f̃∂k ∈ F [∂,

u
] is a normal

form, this is not the case for its image f
r
f̃∂k ∈ F̃ [∂,

r
]. In fact, we will apply Lemma 4.7

for rewriting the latter as a k-linear combination of F̃ [∂,
r
]-normal forms. Now to show

that ψ is injective, assume ψ(
∑

j wj) = 0 with wj 6= 0. Since F̃ [∂,
r
] = F̃ [∂]∔F̃ [

r
]\F̃∔(e),

those ψ(wj) ∈ F̃ [∂,
r
] in the sum

∑

j ψ(wj) = 0 that belong to F [∂] and F [
r
]\F must cancel

with corresponding contributions in the expansion (9) of the other ψ(wj) ∈ F̃ [∂,
r
]. Hence

we are left with a sum of the form
∑

k,l wk,l = 0 of evaluation terms coming from ψ(fl
u
gl ∂

k),
which are given by

wk,l =

k−1
∑

i=0

(−1)i+1fl e(g
(i)
l ) e∂k−i−1 =

k−1
∑

i=0

(−1)i+1(fl ⊗ g
(i)
l ) e∂k−i−1 ∈ (e) ⊂ F̃ [∂,

r
].

Let k̄ be the highest exponent k occurring among the ψ(fl
u
gl ∂

k), and set wl := wl,k̄. Since

the e∂i are k-linearly independent, extracting the highest-order terms e∂k̄−1, correspond-
ing to i = 0 in the above sum, yields the relation

∑

l fl ⊗ gl = 0. Applying the crite-
rion [13, Lem. 6.4] there exist alm ∈ k and hm ∈ F such that

∑

m almhm = fl for each l,
and

∑

l alm gl = 0 for each m. This implies
∑

l fl
u
gl ∂

k =
∑

m hm
u(

∑

l almgl
)

∂k = 0,
which means that there are no k-th order terms wj ∈ [e] ⊂ F [∂,

u
] in the original

sum ψ(
∑

j wj) = 0. By induction on k, we conclude that
∑

j wj has in fact no term wj ∈ [e].

But then there are no terms wj ∈ F [∂] or wj ∈ F [
u
]\F since their images in F̃ [∂,

r
] would

have nothing to cancel. Hence
∑

j wj = 0, completing the proof that ψ is injective. �

Since the ring of integro-differential operators is rather well-understood [27, 28], it is
advantageous to have a description of the less familiar and somewhat more subtle differential
Rota-Baxter operator ring F [∂,

u
] as a subring of F̃ [∂,

r
]. However, there is a price to pay—

the expansion of integration constants from k ⊂ F to k ⊗k F ⊂ F̃ . This becomes even
more transparent in the case of polynomial coefficients, which we describe next.

5. The Integro-Differential Weyl Algebra

It is most efficient for our purposes to view the classical Weyl algebra A1(k) in the
language of skew polynomial rings [10, §7.3] since this allows a smooth passage to the
Rota-Baxter case and moreover provides a convenient framework for algorithmic tasks [9].
Let us recall the basic setup (without the twist endomorphism that we shall not need here).
For this section we assume that k is a field of characteristic zero.
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If A is a k-algebraj with derivation δ : A → A and ξ an indeterminate, the skew polyno-
mial ring A[ξ; δ] is the free left A-module

⊕

n≥0Aξ
n with k-basis ξn. The multiplication

on A[ξ; δ] extends the one on A through the rule ξa = aξ + δ(a), subject to the obvious
identifications ξ0 = 1, ξn+1 = ξξn. Extending also the homotheties in the obvious way, one
obtains a k-algebra A[ξ; δ] that contains A as subalgebra.

Using A = k[x] with the standard derivation δ = d/dx and indeterminate ξ = ∂ yields the
one-dimensional Weyl algebra A1(k) = k[x][∂; δ]. One can also introduce the n-dimensional
Weyl algebra in a similar way, starting with the algebra A = k[x1, . . . , xn] and the deriva-
tions δk = ∂/∂xk and adjoining the indeterminates ξk = ∂k to obtain the skew poly-
nomial ring An(k) = k[x1, . . . , xn][∂1, δ1] · · · [∂n, δn]. Here we restrict ourselves to the one-
dimensional case, for which we shall henceforth use the alternative notation A1(∂) := A1(k)
as in [24]. In view of the upcoming Rota-Baxter analogs, we refer to A1(∂) as the differential
Weyl algebra.

To be more precise, we actually employ the opposite route of defining A1(∂) := k[∂][x; δ]
where δ : k[∂] → k[∂] is now defined as the negative of the standard derivation, so that
δ(∂n) := −n ∂n−1. One sees immediately that both definitions are equivalent since the
Weyl algebra enjoys the well-known automorphism x ↔ −∂. The reason for this unusual
definition is that, for the Rota-Baxter counterpart of A1(∂), only the second definition
will work.k Indeed, we introduce [24] the integro Weyl algebra A1(ℓ) := k[ℓ][x; δ] with the
derivation δ(ℓn) := +n ℓn+1. Note that here as in [24] we use ℓ rather than

r
for the Rota-

Baxter operator; this improves the readability of iterated integrals and emphasizes the dual
nature of ∂ and ℓ.

Both derivations are fully determined by their action on the generators, namely δ(∂) = −1
and δ(ℓ) = ℓ2. The former encodes the Leibniz axiom in the commutator form [x, ∂] = 1,
the latter the analogous Rota-Baxter axiom [x, ℓ] = ℓ2. Let us now make this precise by
comparing those Weyl algebras with the corresponding linear operator rings of Section 3.
From now on, all weights are zero; we shall suppress the subscript λ = 0 for the standard
varieties in Diff 0, RB0, DRB0 and ID0.

Lemma 5.1. We have A1(∂) ∼= k[x][∂ |Diff ] and A1(ℓ) ∼= k[x][ℓ |RB] as k-algebras.

Proof. By Proposition 3.4 we know that k[x][∂ | Diff ] and k[x][ℓ | RB] are respectively
defined by the Leibniz relation ∂f = f∂+ f ′ and the Rota-Baxter relation ℓfℓ = f 8ℓ− ℓf 8;
the latter employs the notation ℓ instead of

r
for uniformity. Clearly, it is enough to

require the relations on the k-basis xn of k[x]. But the Leibniz relation for f = xn follow
immediately by a simple induction argument from the special case f = x, which is just
the commutator relation [∂, x] = −1. For the Rota-Baxter relation, we show now that it
suffices to take the special case f = 1, embodied in the commutation [x, ℓ] = ℓ2. We use
induction on n > 0 to prove n ℓxn−1ℓ ≡ xnℓ− ℓxn modulo the two-sided ideal (xℓ− ℓx− ℓ2).

jIn contrast to [10, §7.3], we do not require that A be a domain though if it is then A[ξ; δ] is as well.
One sees easily [23, §1.1.2] that the construction works for any k-algebra A, and this will indeed be crucial
for our definition of the integro-differential Weyl algebra.

kFollowing the standard definition of the differential case, one would need δ(x) = −ℓ2, which does not
yield a derivation δ : k[x] → k[x]. Algorithmically speaking, the problem is that while the degrees of ∂ are
decreasing, the ones of ℓ are increasing; see the remark before [24, Def. 2].
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The base case n = 1 being trivial, assume the claim for n ≥ 1. Then we have

ℓxnℓ ≡ n ℓ2xn−1ℓ+ ℓ2xn ≡ n (xℓ− ℓx)xn−1ℓ+ (xℓ− ℓx)xn

or (n+ 1) ℓxnℓ ≡ nxℓxn−1ℓ+ xℓxn − ℓxn+1 ≡ xn+1ℓ− ℓxn+1,

where the last step uses the induction hypothesis. Hence we obtain

(11) k[x][∂ |Diff ] ∼= k〈x, ∂〉/(∂x − x∂ − 1) and k[x][ℓ |RB] ∼= k〈x, ℓ〉/(xℓ− ℓx− ℓ2).

Using the reductions x∂ → ∂x−1 and xℓ → ℓx+ℓ2 for the ideals in (11), this corresponds to
the multiplication in the skew polynomial rings A1(∂) = k[∂][x; δ] and A1(ℓ) = k[ℓ][x; δ]. �

The integro Weyl algebra shares certain common features with its differential counterpart
but also exhibits some striking differences [24]. While both are Noetherian integral domains,
the differential Weyl algebra is a simple ring but the integro Weyl algebra is not. On
the other hand, the latter comes with a natural grading whereas the former only enjoys
filtration. In this paper, we are not concerned with their further study. Let us just mention
the following noteworthy commutations.

Lemma 5.2. We have the commutations [xi, ℓ] = i ℓxi−1ℓ and [x, ℓj] = j ℓj+1 in A1(ℓ).

Proof. The first commutation is [24, Lem. 11] and follows also from the proof of Lemma 5.1
above. The second commutation is the defining property of A1(ℓ) = k[ℓ][x; δ] as a skew
polynomial ring. �

For introducing the integro-differential Weyl algebra A1(∂, ℓ) one needs a coefficient do-
main k[∂, ℓ] that contains k[∂] as well as k[ℓ], subject to the natural requirement ∂ℓ = 1.
In other words, we set k[∂, ℓ] = k〈D,L〉/(DL − 1) where ∂ and ℓ are the residue classes
of D and L, respectively. This ring has been studied extensively; see for example [21, 16].
The derivation δ on k[∂, ℓ] is determined uniquely as an extension of the derivations on k[∂]
and k[ℓ]. Defining now the integro-differential Weyl algebra by A1(∂, ℓ) := k[∂, ℓ][x; δ], it is
immediately clear that A1(∂, ℓ) contains A1(∂) and A1(ℓ) as subalgebras.

We refer again to [24] for some basic algebraic properties of A1(∂, ℓ); for deeper and
more general results one may consult [2] and the references therein. Let us only mention
that A1(∂, ℓ) is neither Noetherian nor free of zero divisors. Writing e := 1− ℓ∂ ∈ A1(∂, ℓ)
for what we call again the evaluation, we have A1(∂, ℓ) = A1(∂) ∔ A1(ℓ)\k[x] ∔ (e) as
k-modules [24, (18)]. The resemblance with the decomposition of Lemma 4.1 is no coinci-
dence as can be seen in Corollary 5.4 below.

Lemma 5.3. For A1(∂, ℓ) one may choose the k-bases Bi := D ∪ R ∪ Ei (i = 1, 2, 3)
containing the subbases D = {xi∂k | i, k ≥ 0} and R = {xiℓj | i ≥ 0; j > 0} together with

(a) E1 := {xiℓje∂k | i, j, k ≥ 0},
(b) E2 := {xiℓj∂k | i ≥ 0; j, k > 0},
(c) E3 := {xiℓxj∂k | i, j ≥ 0; k > 0}.

Hence one has B2 = {xiℓj∂k | i, j, k ≥ 0} for the case (b). Moreover, one may also use the
subbasis R′ := {xiℓxj | i, j ≥ 0} in place of R.

Proof. The basis B1 has already been derived; see the observation before [24, Lem. 19].
Both R and R′ are known to be k-bases of A1(ℓ)\k[x] ≤ A1(∂, ℓ), called the right basis and
the mid basis; see [24, Cor. 12] and the remark before [24, Lem. 11]. Hence the subbases R
and R′ are interchangeable.
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Let us next prove that B2 is also a basis. We write D(n) := {xi∂k | 0 ≤ i, k ≤ n} and
R(n) := {xiℓj | 0 ≤ i ≤ n, 0 < j ≤ n} for the truncations of D and R. Likewise we have
E1(n) :={xiℓje∂k | 0 ≤ i ≤ n; 0 ≤ j, k < n} and E2(n) :={xiℓj∂k | 0 ≤ i ≤ n; 0 < j, k ≤ n}
for the truncated complements. Now set Bi(n) := D ∪R ∪ Ei for i = 1 and i = 2. Clearly
we have |B1(n)| = |B2(n)| and

lim
−→

Bi(n) = Bi

for i = 1 and i = 2. Since

ℓje∂k = ℓj(1− ℓ∂)∂k = ℓj∂k − ℓj+1∂k+1

we see that B2(n) generates kB1(n). But the latter has B1(n) for a basis since it is a subset
of the k-basis B1 of A1(∂, ℓ). Since B2(n) is thus a generating set of the same cardinality,
we conclude that B2(n) is also a k-basis of kB1(n) and hence linearly independent, and so
are those of B2 = lim

−→
B2(n). It follows that B2 is a k-basis of A1(∂, ℓ).

In fact, one can easily exhibit an explicit basis transformation between B1 and B2. We
define ψ : kB2 → kB1 by fixing D and R while setting

ψ(xiℓj∂k) =

{

xi(ℓj−k −
∑k

m=1 ℓ
j−m

e∂k−m) if j ≥ k,

xi(∂k−j −
∑j

m=1 ℓ
j−m

e∂k−m) if j < k.

Similarly, we define ϕ : kB1 → kB2 by fixing again D and R, and sending xiℓje∂k to
xi(ℓj∂k − ℓj+1∂k+1). Let us now show that ψ ◦ ϕ = 1 and ϕ ◦ ψ = 1. Obviously it suffices
now to consider E1 and E2. For j ≥ k one has

(ϕ ◦ ψ)(xiℓj∂k) = ϕ(xiℓj−k −
k

∑

m=1

xiℓj−m
e∂k−m)

= xiℓj−k −
k

∑

m=1

xi(ℓj−m∂k−m − ℓj−m+1∂k−m+1) = xiℓj∂k;

and for j < k again

(ϕ ◦ ψ)(xiℓj∂k) = ϕ(xi∂k−j −

j
∑

m=1

xiℓj−m
e∂k−m)

= xi∂k−j −

j
∑

m=1

xi(ℓj−m∂k−m − ℓj−m+1∂k−m+1) = xiℓj∂k.

For the other direction, in case j ≥ k one obtains

(ψ ◦ ϕ)(xiℓje∂k) = ψ(xiℓj∂k − xiℓj+1∂k+1)

= xi
(

k
∑

m=0

ℓj−m
e∂k−m −

k
∑

m=1

ℓj−m
e∂k−m

)

= xiℓje∂k;

and in case j < k likewise

(ψ ◦ ϕ)(xiℓje∂k) = ψ(xiℓj∂k − xiℓj+1∂k+1)

= xi
(

j
∑

m=0

ℓj−m
e∂k−m −

j
∑

m=1

ℓj−m
e∂k−m

)

= xiℓje∂k.
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Since B1 is a k-basis of A1(∂, ℓ) we have the isomorphism A1(∂, ℓ) ∼= kB1, which together
with the isomorphism ϕ : kB1

∼= kB2 yields A1(∂, ℓ) ∼= kB2, and this implies that B2 is
also a k-basis of A1(∂, ℓ) as already proved above.

For proving that B3 is a k-basis of A1(∂, ℓ), one proceeds similarly using the transition
maps ϕ : kB2 → kB3 and ψ : kB3 → kB2 defined by

ϕ(xiℓj∂k) =

j−1
∑

m=0

(−1)m

m! (j −m− 1)!
xi+j−m−1ℓxm∂k,

ψ(xiℓxj∂k) =

j
∑

m=0

(−1)j−m j!

m!
xi+mℓj−m+1∂k

in view of the identities [24, (17)/(16)]. Alternatively, one may use the two truncated
bases B′

2(n) := D(n) ∪ R(n) ∪ E′
2(n) and B3(n) := D(n) ∪ R(n) ∪ E3(n) converging

to B2 = lim
−→

B
′
2(n) and B3 = lim

−→
B3(n), where one defines

E
′
2(n) := {xiℓj∂k | 0 ≤ i < n; 0 < j, k ≤ n; i+ j ≤ n},

E3(n) := {xiℓxj∂k | 0 ≤ i, j < n; 0 < k ≤ n; i+ j < n}.

The rest of the argument is then as above, withB′
2 in place ofB1, andB3 in place ofB2. �

The three bases correspond to direct decompositions A1(∂, ℓ) = kD ∔ kR ∔ kEi (i =
1, 2, 3) with standard components kD = A1(∂) and kR = A1(ℓ)\k[x]. The extra component
is either the evaluation ideal kE1 = (e), the left k[x]-submodule kE2, or the evaluation
rung [e] = kE3.

Corollary 5.4. We have A1(∂, ℓ) ∼= k[x][∂,
u
|DRB] as k-algebras.

Proof. In view of the decomposition in Lemma 4.1 and the isomorphisms of Lemma 5.1,
this follows immediately from Lemma 5.3 since the evaluation rung [e] ≤ k[x][∂,

u
] has the

k-basis {xi
u
xj∂k | i, j ≥ 0, k > 0}, which corresponds to E3. �

It is now easy to derive the following specialization isomorphism [24, Thm. 20] from the
general quotient result on the differential Rota-Baxter operator rings.

Proposition 5.5. We have A1(∂, ℓ)/(ex) ∼= k[x][∂,
r
| ID] as k-algebras.

Proof. Using the isomorphism of Corollary 5.4, this follows from Proposition 3.4. �

Note that here we have used the standard Rota-Baxter operator
r
: xk 7→ xk+1/(k + 1)

for the integro-differential Weyl algebra and the corresponding integro-differential operator
ring k[x][∂,

r
]. As can be seen from [24, Thm. 20], one can also start from any other

integro-differential structure (∂,
r
) on k[x] for obtaining a similar isomorphism except that

one factors out the ideal (ex−ce) where c := e(x) ∈ k is the integration constant associated
with the integral operator

r
.

The specialization isomorphism (Proposition 5.5) can be interpreted as “simulating”
integro-differential operators by differential Rota-Baxter operators (in the important case
of polynomial coefficients). Since the structure of the latter is finer, this is in principle
not surprising. However, we can also derive a corresponding generalization isomorphism
that identifies the finer ring of differential Rota-Baxter operators as a subalgebra in an
overarching integro-differential operator ring. To this end, we take our earlier result of the
general theory (Theorem 4.8) and interpret it in the more concrete polynomial setting.



28 XING GAO, LI GUO, AND MARKUS ROSENKRANZ

Theorem 5.6. For ε transcendental over k, endow k̃[x] = k[x, ε] with derivation ∂ = ∂/∂x
and integral

r
=

r x

ε
. Then there is a unique k-algebra monomorphism

ι : A1(∂, ℓ) →֒ k̃[x][∂,
r
]

that sends ℓ to
r
while fixing x and ∂.

Proof. Applying Theorem 4.8 to F := k[x] we observe that F̃ = k[x] ⊗k k[x] ∼= k[x, ε],
defined by Proposition 4.5, has the derivation and integral as described in the current
theorem. Indeed, ∂(xi ⊗ xj) = ∂(xi) ⊗ xj means ∂(xiεj) = (∂/∂x) xiεj for the derivation
while

r
(xi ⊗ xj) = (

u
xi) ⊗ xj − 1 ⊗ (xj

u
xi), where

u
denotes the standard Rota-Baxter

operator on k[x], translates to
r
xiεj = xi+1

i+1
εj − εj εi+1

i+1
=

r x

ε
xiεj

for the integral. Hence F̃ coincides with k̃[x] as an integro-differential algebra.

Let us now consider the map ι : A1(∂, ℓ) → k̃[x][∂,
r
]. Since x, ∂ and ℓ generate A1(∂, ℓ),

the uniqueness claim follows. But we know from Corollary 5.4 that A1(∂, ℓ) ∼= F [∂,
u
], and

with this identification the map ι is clearly the same as the k-algebra monomorphism given
in Theorem 4.8. �

The intuitive idea behind the generalization isomorphism is that one adjoins a generic
initialization point ε for the integral

r
. The associated (multiplicative) evaluation e = 1−

r
∂

sends f(x, ε) ∈ k̃[x] to f(ε, ε) ∈ k̃ := k[ε]. This yields an isomorphic copy ι
(

A1(∂, ℓ)
)

of the
integro-differential Weyl algebra in k̃[x][∂,

r
]. However, one should observe that ι

(

A1(∂, ℓ)
)

by itself is only a differential Rota-Baxter operator ring and not an integro-differential
operator ring: The evaluation f(x, ε) 7→ f(ε, ε) does not restrict to a map on its coefficient
domain k[x].

One may also derive a k-basis of ι
(

A1(∂, ℓ)
)

≤ k̃[x][∂,
r
]. For any integro-differential

operator ring one has the relation
r
fe = (

r
f) e; see [27, Table 1] and Footnote f in the

proof of Proposition 3.4. Setting f = 1 and iterating j times the integral
r

=
r x

ε
one

obtains the relation
r
· · ·

r
e = (x− ε)j/j! e. Hence ι maps the basis elements xiℓje∂k ∈ E1

of Lemma 5.3 to (1/j!) xi(x− ε)j e∂k while “fixing” those of D and R′.
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