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Congruence subgroups of braid groups

Charalampos Stylianakis

Abstract

In this paper we give a description of the generators of the prime level congruence sub-
groups of braid groups. Also, we give a new presentation of the symplectic group over a finite
field, and we calculate symmetric quotients of the prime level congruence subgroups of braid
groups. Finally, we find a finite generating set for the level-3 congruence subgroup of the
braid group on 3 strands.

1 Introduction

Let B, be the braid group on n strands. By evaluating the (unreduced) Burau representation
B,, — GL,,_1(Z[t*']) at t = —1 we obtain a symplectic representation

p: B, — Sp,,_1(Z) if nis odd,
o (Sp,(Z)),, if n is even,

where (Sp,,(Z)),, is the subgroup of Sp,,(Z) fixing one vector u € Z™ [I7, Proposition 2.1] (see also

[9) and [1I).

For a positive integer m, the projection Z — Z/m induces a representation as follows:

o By — Sp,,_1(Z/m) if n is odd,
e (Sp,(Z/m)),, if n is even.

Note that if m = 1, then p; = p. For ¢ > 1 the kernel of p,, is denoted by B, [m] and it is called
the level-m congruence subgroup of B,. The kernel of p is called the braid Torelli group, and it
is denoted by BZ,. The group BZ, has been extensively studied by Hain [18], Brendle-Margalit
[10, 12], and Brendle-Margalit-Putman [IT].

For p prime, A’Campo proved that the homomorphism p, is surjective, by explicitly calculating
the image of p, [1, Theorem 1 (1)]. Wanjryb gave a presentation of Sp,,_;(Z/p) and (Sp,,(Z/p))u
as quotients of B,, [27, Theorem 1]. Let PB,, be the pure braid group, that is, the kernel of the
epimorphism B,, — S,, where S, is the symmetric group on n letters. Our first result is an
analogue of Wanjryb’s theorem.

Theorem A For p prime, the groups Sp,_,(Z/p) and (Sp,(Z/p))w admit a presentation as
quotients of the pure braid group PB,,.

This result is given as Theorem in the paper.

A result of Arnol’d shows that B,,[2] = PB,,, where PB,, is the pure braid group [2]. Therefore,
for every k even, we have that B, [k] < PB,. Our second result extends A’Campo’s theorem.

Theorem B Form = 2p;...pg, where p; > 3 are primes, we have that PB,, /B, [m] is isomorphic
to @ SPn_1(Z/p;) if n is odd, and @(Spn(Z/pl))u if n is even.

Theorem B is Theorem (see also Theorem in the paper.



We also characterize quotient groups of congruence subgroups of braid groups. The braid
group B,, surjects onto the symmetric group S,. The kernel of this map is well known to be the
pure braid group PB,,. Also, by a result established by A’rnold [2] the group PB,, is isomorphic
to Bp[2]. See also [9, Section 2] for further discussion. Therefore, we have B,,/B,[2] & S,,. We
generalize this result as stated in the following theorem.

Theorem C. For p prime number, the group B, [p]/B,[2p] is isomorphic to S,.

Theorem C is Theorem [6.1] in the paper.

Topological description of congruence subgroups. A key part of the paper is a topological
interpretation of B,,[p], for p > 3 prime, given in Section 4. The content of Section 4 was inspired
by Powell, who based on Birman’s work on the presentation of the symplectic group [8, Theorem
1], to show that the Torelli subgroup of the mapping class group is normally generated by bounding
pair maps, and Dehn twists about separating simple closed curves [25, Theorem 2.

Theorems A and B are used to find normal generators for B,,[m|, where m = 2p;...p; and p;
is an odd prime. Motivated by Section 4 it would be interesting to find a topological description
of the generators of B, [m] in the future.

Related results. The mapping class group Mod(X) of an orientable surface ¥ is the group of
isotopy classes of homeomorphisms that preserve the orientation of 3., fix the boundary pointwise,
and preserve the set of marked points setwise. We denote by T, a Dehn twist about a simple closed
curve c. Let EZ be a surface of genus g > 1 with b boundary components, where b € {1,2}. It is
a special case of theorem of Birman-Hilden [7] that Bagis embeds into Mod (%) [15, Section 9.4].
We denote the image of this embedding by SMod(Eg). As mentioned in the previous page, the
braid Torelli BZ2444 is the kernel of the symplectic representation of Byg4. Hain conjectured that
BZ24+ is isomorphic to the group generated by Dehn twists about separating simple closed curves
inside SMod(%%) [I8]. This conjecture was proved by Brendle-Margalit-Putman [IT, Theorem A],
and also studied by Brendle-Margalit [I0, [12]. By the definitions given in the beginning of the
paper, the group BZy444 is a subgroup of Bagyp[m], for any m € N.

For m > 2, consider Bagip[m] as a subgroup of SMod(Zg) = Byg4b- A consequence of a work
of Arnol’d shows that Bgy1p[2] is isomorphic to the pure braid group PBag1p [2] (see [, Section
2] for explanation of this isomorphism). Combining the latter result with the work of Humphries
[19, Theorem 1] we obtain that Bag3[2] is isomorphic to the normal closure of a square of a Dehn
twist about nonseparating simple closed curve in SMod(Eg). Brendle-Margalit extended the latter
result by proving that the normal closure of the 4" power of a Dehn twist about a nonseparating
simple closed curve in SMod(X?) is isomorphic to Bags[4] [9, Main Theorem].

Let Tag44(m) be the normal closure of the m" power of a Dehn twist in SMod (%), where
g >1andb=1,2. Coxeter proved that Tag;5(m) is a finite index subgroup of SMod(X%) = By
if and only if (29 + b — 2)(m — 2) < 4 [14}, Section 10]. As mentioned above, T2445(2) = Bag+s[2].
Furthermore, Humphries gave a complete description of when a group generated by {724+5(m;) |
m; € N}, for finite number of m;, is of finite index in PBsgyp [20, Theorem 1]. In addition,
Funar-Kohno proved that the intersection of all T41(2m), where m € N, is trivial [16, Theorem
1.1].

Finally, we note a more general definition of congruence subgroups of braid groups. Let F,
be the free group of rank n. There is an inclusion B,, — Aut(F;,) [5, Theorem 1.9]. Consider a
characteristic subgroup H of finite index in F,. The kernel of Aut(F,) — Aut(F,/H) is called
principal congruence subgroup, and any finite index subgroup of Aut(F;,) containing a principal
congruence subgroup is called congruence subgroup. A group G is said to have the congruence
subgroup propery if every finite index subgroup of G contains a principal congruence subgroup.
Asada proved that B,, satisfies the congruence subgroup property by using the notions of field
extensions and profinite groups [3, Theorem 3A, Theorem 5]. In contrast with Asada’s techniques,
Thurston gave a more elementary proof to the congruence subgroup property of B,, [22].



Outline of the paper. In Section 2 we give basic background on braid groups, hyperelliptic
mapping class groups, the symplectic representation of braid groups, and the congruence subgroups
of braid groups. In Section 3 we recall some key results about the congruence subgroups of
symplectic groups. In Section 4 we give a topological interpretation of the generators of the prime
level congruence subgroups of braid groups. In Section 5 we prove Theorems A and B. In Section
6 we prove Theorem C.

Acknowledgments. I would like to thank my PhD supervisor Tara Brendle for her support
during my work on this paper.

2 Preliminaries

In this section we recall the definition of braid groups, hyperelliptic mapping class groups, and
the symplectic representation of braid groups.

2.1 Definitions of braid groups

Figure 1: The action of o3 on a punctured disc.

Braid groups. For detailed description of the following definition, see Birman-Brendle’s survey
[6]. Let ng denote an orientable surface of genus g with n punctures and b boundary components.
If n = 0 we will simply write Eg. If g=0and b =1 then E(l)m is homeomorphic to a punctured
disc. We enumerate the punctures from left to right. The braid group B, on n strands is defined
to be the mapping class group Mod (% ,,) of ¥ ,,. For 1 <i < n—1 we denote by o; the mapping
classes that interchanges the punctures i,7 4+ 1 as depicted in Figure [I] for ¢ = 3. The mapping
classes o; are called half-twists. It turns out that o; generate the braid group B,. In fact we have
the following presentation

<01, vy On—1 | 0i0i4105 = 0i41040441,0{05 = 0;0; when |Z *j| > 1> .

Consider the symmetric group S,, and for 1 > i > n — 1 let s; denote the generators of S,,,
that is the transpositions (i,4 + 1). The map B, — S, defined by o; — s; is a well defined
homomorphism with kernel the pure braid group PB,. Let 1 <7 < j <n — 1, we denote by a; ;
the element Uj,l...af...oj,l. For 1 <i < j <n—1 the group PB,, admits a presentation with
generators a; ; and relations

1

P1. ar_’sai’jar’szai,j,1§r<s<i<j§n0r1§i<r<s<j§n,

-1
LSV

P2. Ay Qi jAr s = Gr ;G jQ 1<r<s=1i<j<n,

1 1 . .
P3. a,saijars = (aijas )aij(aijas;)”, 1<r=i<s<j<mn,

P4. a‘r,sai’jar’s - (G‘Ta]asdar,j as,j)a”hj (aT;Ja’SaJa’r,j as,j) ’ 1 S r<i<s<y S n.

For more details about definitions and presentations of B,, and PB,, see [0, Chapter 1].
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Figure 2: Action of the hyperelliptic involution.

Hyperelliptic mapping class groups. Let ¢ be a nonseparating simple closed curve on a
surface me. We denote by T, the Dehn twist about the curve c. Dehn twists about nonseparating
simple closed curves generate Mod(Zg). Consider a hyperelliptic involution ¢ as depicted in Figure
For b =1,2, ¢ acts on Eg. Since ¢ does not fix the boundary components of Eg pointwise, then
v ¢ Mod(X%). We have a two fold branched cover X% — X! /.. Topologically X! /1 is homeomorphic
tz) 2))(1),29% (see Figure . We note that if ¢1,q2 denote the boundary components of Zg, then
t\q1) = q2.

Figure 3: Generators of the hyperelliptic mapping class group.

Consider the curves ¢; depicted in Figure @ and let o; be the generators of Bagy,. We define
a map & : Bogyp — Mod(EZ) by &(0;) = Te,. Since the braid, and the disjointness relations are
satisfied by o, and T¢,, then £ is a homomorphism. The image of £ is called hyperelliptic mapping
class group, and it is denoted by SMod(Eg). In fact we have Bogyp = SMod(Eg) [15, Theorem
9.2] (see also [24]).

2.2 Symplectic representation

In this section we will construct a representation for the braid group B,. Firstly, we recall the
definition of Sp,,(Z). Let J be the 2n x 2n matrix

0o I,
-1, 0 )°
The symplectic group with integer coefficients is defined to be
Spy,(Z) = {A € GL(2n,7Z) | ATJA = J}.

We also define the symplectic group with coefficients in Z/m to be
SPa, (Z/m) = {A € GL(2n,Z) | ATJA = Jmod(m)}



where m € N. For a fixed u € Z?", we also recall

(SP2n(Z))u = {t € Spy,(Z) | t(u) = u}.

Consider g > 1 and b = 1,2. Since Byg4p = SMod(Eg), we will use the action of SMod(Eg) on
the first homology of ES to construct a representation for Bygy.
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Figure 4: Standard generators for H (X}), and H{ (X2, Z).

Construction of the representation. We denote by ¢, the algebraic intersection number
between curves of Zf’] for g > 1 and b =1,2. The form ¢, is an alternating bilinear and nondegen-
erate. Every element of the mapping class group preserves i, [15, Section 6.3]. Consider b = 1;
the oriented curves x;,y; of Z; of Figure [4| form a symplectic basis for Hl(E;; Z). The action of
SMod(%}) on H;(X};Z) induces the following representation:

SMod(%}) — Spy,(Z).

If b = 2, the module Hl(Eg; Z) is not symplectic. Thus, we will consider a different module.
Fix a point on each of the boundaries of Eg, and denote by @Q the set that contains those two
points. Denote also by P the set that contains the two boundary components. We set HY’ (Eg; 7)==
H (%2, Q;Z)/(P). The module H{ (¥;Z) is symplectic [, Section 2.1] (see also [26]). The basis
of HY (X2;Z) is x;,y; as indicated on the right hand side of Figure {4 The action of SMod(X2) on
HY (X%; Z) induces the following representation:

SMod(2) — (Spay42(Z))

Yg+19

where (Spa,2(Z))y,,, stands for the subgroup of Sp,,,,(Z) that fixes the vector yg41.
Since the map & : Bagip — SMod(Eg) is an isomorphism, we have a well defined representation

Spay(Z) ifb=1

p: B2 +b —7 .
! {(Sp2g+2(Z))yg+l if b= 2.

Image of the representation. We denote also by [¢] the homology class of a curve ¢ in Eg.
For z, ¢ nonseparating simple closed curves in X%, the automorphism Tig([2]) = [z] + ta(z, ¢)[c] is
called a transvection [I5, Section 6.6.3]. We remark that for every integer m, we have T7j([z]) =
[] + meig(z, c)[c].

Let T¢, be a Dehn twist about a curve ¢; indicated in Figure [} The image of T¢, under the
symplectic representation is the transvection Tj.). Also, since {(o;) = T, as explained in the
previous section, we have p(o;) = Tj,). We note also that p(o}") =T}
Kernel of the symplectic representation. Assume that b = 1,2, g > 0, and recall that
Bog+s = Mod(D2g+p). The kernel of the symplectic representation p is denoted by BZo44p, and
it is called the braid Torelli. It is a result by Brendle-Margalit-Putman that BZy444 is generated
by Dehn twists about simple closed curves surrounding 3 or 5 number of puncture points [IT],
Theorem CJ.

Consider the isomorphism & : Bag1y — SMod(Zg). The image of BZ244p in SMod(Eg) under
¢ is denoted by SI(ZZ). The latter group is well known as the hyperelliptic Torelli group. Fur-
thermore, SI(EZ) is generated by Dehn twists about symmetric separating simple closed curves
that bound a subsurface of genus 1 or 2 [I1, Theorem A].



2.3 Congruence subgroups of braid groups

Let m be a positive integer. The surjective homomorphisms H;(X};Z) — Hy(X};Z/m) and
H{'(¥2;Z) — H{ (X2; Z/m) induce the following epimorphisms:

{ Spag(Z) =  Spay(Z/m)
(Sp2g+2 (Z))yg+1 — (Sp2g+2 (Z/m))yg+1 .

Thus we have a family of representations for the braid groups

Spa, (Z/m) ifb=1
(Sp2g+2 (Z/m))yg+1 ifb= 27

where g > 1. The kernels of the representations p,, are denoted by Bag4p[m] and they are known
as level-m congruence subgroups of braid groups.

Pm : BQngb — {

3 Congruence subgroups of Symplectic groups

In this section we examine the structure of the congruence subgroups of symplectic groups.

Congruence subgroups and generators. The projection Z — Z/m induces a surjective ho-
momorphism Sps,, (Z) — Sps, (Z/m), whose kernel is the principal level m congruence subgroup
of Spy, (Z) denoted by Sp,,,(Z)[m]. The group Sp,,(Z)[m] consists of all matrices of the form
I, + mA; where A € Sp,,,(Z). Furthermore, if m is a multiple of [ then Sp,,,(Z)[m] < Sp,,, (Z)[I].

Next we give generators for Sp,,,(Z)[p] when p is any prime number. Let r € Z. We define
e; j(r) to be the n x n matrix with (i, j)'" entry equal to r and 0 otherwise. Let 3;(r) be the n x n
matrix with (4,4)*" and (i,7 + 1)** entries equal to r, (i + 1,7 4+ 1)** and (i + 1,4)*" entries equal
to —r and 0 otherwise. Define also se; ;(r) to be the n x n matrix with (4,7)!" and (j,4)"" entries
equal to r and 0 otherwise. For 1 < i < j < n we define:

0 0 0 i
Xij(r) =Izn+( seis(r) 0 )7 Vij(r) = I + ( X se (J)(T) )

For 1 <i,j <n with i # j we define:

—e€;,(r)

Zii(r) = L + ( 62'7;(')(7’) 0 ) |

For1<i<mn

Finally,

Un(r) = Ion + < eri(r)  eia(r) ) .

—e11(r) —erq(r)

The following theorem gives a nice description of Sp,,(Z)[p] as a group generated by the
matrices above [I3] Lemma 5.4].

Theorem 3.1 (Church-Putman). For n > 2 and for a prime number p > 2 the congruence
subgroup Spo,, (Z)[p] is generated by the set

S ={Xi;(p), Vi), Zi;(p), Wi(p), Ur(p)}

where i,j are indices defined as above.



We use Theorem to prove the lemma below, since we do not know a concise proof in the
literature. In particular, we use the generators of Theorem to prove that Sps,,(Z/b) can be
expressed as a quotient of some congruence subgroup of Sp,,,(Z) when b is a prime number.

Lemma 3.2. Let a and b two distinct prime numbers. Then the following sequence is exact.

1 = Sp,,,(Z)[ab] — Sps,,(Z)[a] — Sps,,(Z/b) — 1.

Proof. The map Sp,,(Z)[a] — Sps,(Z/b) sends every matrix A € Sp,,(Z)[a] into its mod(b)
reduction. First, we prove the surjectivity of the latter map. The generators of Sp,,(Z/b) are
X; ;(1)mod(b) and Y; ;(1) mod(b) where 1 < i < j < n. Define n to be the solution of the equation
an = 1mod(b). Then, &; ;(a)” = X; ;(1) mod(d) and Y; ;j(a)™ = V; ;(1) mod(b). This proves the
surjectivity of the reduction map. The kernel of this reduction map contains matrices which satisfy
Is,, + aA = I, mod(b). But since a and b are relatively primes, the latter equivalence holds if and
only if A = bB when B is a symplectic matrix. O

The following proposition gives a useful decomposition of Sp,,,(Z/m) [23| Theorem 5].
Proposition 3.3 (Newman-Smart). Let m € N and write m = p]flpg"‘...pf’, where pfi are powers
of prime numbers. Then

l
Spoa(Z/m) = D Span 2/,

Newman-Smart also proved that the abelian group sp,,,(Z/l) can be expressed as a quotient
of congruence subgroups of Sp,,,(Z), [23, Theorem 7].

Proposition 3.4 (Newman-Smart). Let I,m > 2 such that | divides m. Then we have the
following isomorphism.

Lemma 3.2 and Propositions 3.3 and 3.4 play crucial role in Section 5, in which we explore the
structure of congruence subgroups of braid groups.

4 Topological interpretation of prime level congruence sub-
groups

The purpose of this section is the characterization of the group Bagp[p] when p is prime. Since
Bogyp = SMod(Eg)7 it is convenient to study the kernel of the map

SMod(Zg) N Sp2g(Z/p) ?f b=1,
(Sp2g+2(Z/p))yg+1 ifb=2
and we denote the map again by p,. Also, we denote the kernel of p, by Bagys[p].

A’Campo proved that the homomorphism p,, is surjective [I, Theorem 1 (1)]. Later Assion
gave a presentation for Sp, (Z/3) and (Spy,42(Z/3)),,,, as quotients of braid groups [4]. Wajnryb
improved the result of Assion and generalized it for any prime number greater than 2 [27, Theorem
1]. We begin with the theorem of Wajnryb.

Theorem 4.1 (Wajnryb). Consider the curves c¢; depicted in Figure @ Let Gag4p be a group with

generators T, , ..., Te,, ., , and relations R1 to R6 as follows.
R1. TciTCi+1 c; — Tci+1TCiTCi+1;

R2. [T,,,T.,]=1, forli—j|>1;



R3. TP =1;
R4. (T.,T.,)° =1, forp>3;

R5. TP=DRTAT-0=D/2 =727, T2 forp > 3; and

C1+cg

R6. (T.,T.,T.,)" = AT2 A™", forn > 4, where A = T,, T2 T,, TP~ V/*T_'T,,.

Ca—c3Ca"co

Then Gagy1 is isomorphic to Spa,(Z/p), and Gagyo is isomorphic to (Spayyo(Z/P))y, .-

As a consequence of Theorem we obtain elements of SMod(Eg) which normally generate
Bagb[p)-

In the rest of the section we examine the elements of the relations of Theorem E.1] in order to
give a topological description for the generators of B, [p]. We note that relations R1 and R2 are
the defining relations in the presentation of the braid group.

We denote by [c;] the homology class of ¢;, and by Tj, the transvection associated to the Dehn
twist T, under the map

Spay(Z/p) ifb=1,

SMod(x?
) {(szgw(z/p))ygﬂ ifb=2.

By definition, the action of a transvection 7|y on an element u € Hy (X4, Z) (respectively HY (¥2, 7))

is defined to be Ty} (u) = [u] + mi(u, [c])[c], where 7 stands for the algebraic intersection number.

R3: Powers of Dehn twists. The pt* powers of Dehn twists about symmetric nonseparating
simple closed curves are easy to check by looking at their image in the symplectic group. The
symplectic representation sends 7% into the following matrix:

1 p
(0 1)@17

where I stands for the identity matrix of dimension depending on g and b (see Section 7.1.3).
The mod(p) reduction of the matrix above is the identity. Moreover, every Dehn twist about a
non-separating curve is conjugate to 7.,. As a consequence, every Dehn twist in SMod(Ez) raised
to the power of p lies in B, [p].

R4: Symmetric separating Dehn twists. By the chain relation the element (7,,7.,)® can
be represented by a Dehn twist T’,, where v is the symmetric separating curve bounding the genus
1 subsurface of Eg as indicated in Figure [15, Proposition 4.12]. We can generalize the relation
R4 by considering a symmetric separating curve ¢ of a genus k subsurface of Zg. By the chain
relation there is a maximal chain of curves aq, ..., as; in the subsurface of genus k with boundary
§ such that (T, ...Ty,, )** 2 = T;.

The fact that every symmetric separating simple closed curve § is nullhomologous in H 1(2;)
(respectively H{ (X2)) implies that Tisj(z) = @ + ta(z,[6]) = # + 0 = = for every z € Hy(X})
(respectively H{ (X2)), where Tjs is the corresponding transvection of Ty as described in Sec-
tion 2. Since for every symmetric separating curve ¢§ in Eg and T5 € Bggip[p] we have that
(Ta1~~~Ta2k)4k+2 S SI(ZZ) C B2g+b[p]'

R5: Mod-p involution maps. We begin by modifying the relation R5 of Theorem
Lemma 4.2. The relation R5 given above is equivalent to:
(Tc(fﬂrl)/?TCt)? _ (Tc1T02)3

in Spyy(Z/p) (respectively (Spagi2(Z/P))y, s )-



ey o o

v

Figure 5: The curve v that bound a surface of genus 1.

Proof. We have that (T.,T.,)* = T.,T2T., T2 . Then

Ci~co~C1r ey

T VAT T 0= = T TP ) T = T T, T2,
On the other hand
(TPAVRTA N = 1, T2 oD — 1, T2 T, T

ClrcgrC17ca”

Now we examine the relation of Lemma [£.2]

RHS. Fori=1,2, (T.,T.,)*([c;]) = —[e;], where [c;] stands for the homology class of ¢;. Thus,
the homeomorphism (7T, T.,)® acts as the hyperelliptic involution on the subsurface bounded by
the boundary of the chain ch(cy,ca) (see Figure [5)).

LHS. We have

(TPTI2T2 )2 ([e1]) = —8plea] + (4p® + 2p — 1)[e1] = —[e1] mod (p),

(Tc(fﬂ)/QTé)Q([czD = 2pp;_ 1 [e1] = (2p + 1)[e2] = —[e2] mod (p)

Therefore, (TP 2Tf2 )? acts as the hyperelliptic involution mod (p) in the subspace of Hy (X, Z/p)
(resp Hf(Zg, 7Z/p)) spanned by [c1], [ea].

We can generalize Relation R5 as follows. For k even, consider any chain ch(a, ag, ..., ax) of
symmetric simple closed curves such that T,, € SMod(X, ) for alli < k. Choose an f € SMod(Zg)
such that f([a;]) = —[a;]. Then (T,,.. T, )**1f~1 € Bagis[p]. We call this type of element an
mod-p involution map.

R6: Mod-p center maps. We describe a generalized version of (T, 1., T¢,)* (AT, >A™"). Let
Aj be the trivial homeomorphism in SMod(ZZ). For k odd, and k > 3, define

Ap—a.

k—1

Ay =T, T2 T, , TP V21T,

Ck+1"Crp ™ Ck+1"Cr—1
First, we deal with the case b = 1. (For b = 2 the process is exactly the same.) Consider the
symplectic bases {y;, x;} for Hl(E;, Z) depicted on Figure
Lemma 4.3. For k odd, we have that AkT[Cl]A,gl =Tlys1y/2] 0 SP2g(Z/p).
Note that if £ = 3, then T}, = Tjq,)-

Proof. We need to prove that Ay ([c1]) = [c1] + [e3] + ... + [ck] € Spe,(Z/p). A direct calculation
shows that As([c1]) = [e1] + [e3] mod(p). Assume that the theorem is true for & — 2, that is
Aa(ler]) = [er] + les] + o ena]. Then Ty T2 Ty TV PTM T (fena]) = lena] +
[ex] mod (p). The proof of the lemma follows. O



Figure 6: The chain relation of R6.

Let k be an odd integer, and consider also the odd chain ch(cq,ca,...,cx). By the chain re-
lation we have that (7,,...T,, )**! = Ta, Tay, where d, = Yy(ry1)/2, and [di] = [di] = [y(ry1) /2]

(see, for example, Figure @ Thus, (Tie,]---Tle,) T = T@(Hl)/g] € Spy,(Z/p). On the other

hand, according to Lemma we have that AkT[ch]A,Zl = T[z<k+1>/2] € Spg,(Z/p). Hence,
(Tey .. To MY AT 2 ALY € Byp). Note that if k& = 3, the element (T,,...T., )" T A, T2 A" is
the same one as in the relation 6 of Theorem (.1l

We can describe a generalized version of (T.,...T., )" A, T;2A4;". Consider any odd chain
ch(ay,as,...,ar), such that T,, € SMod(Z;) for all + < k. Choose a homeomorphism h €
SMod(X}) such that h([a1]) = [a1] + [as] + ... + [ax] € Spy,(X}). Then (Ty,..To, )* AT, 2k~ lies
on Bag1[p]. If we consider (T, ...T,, )**1 as the center of the subgroup K of SMod(Zg) generated
by Ty,... T4, , then hTa_lQh_1 is the center mod(p) of the same group. Note that the choice of h is
not unique. We call this type of element an mod-p center map.

Generators for congruence subgroups. As a corollary of Theorem [£.I]we obtain the following
theorem.

Theorem 4.4. If p = 3, then Bagi[3] is generated by Dehn twists raised to the power of 3, and
for 29+ b > 4 by mod-p center maps. For p > 3 the subgroup Bagyp[p] of SMod(Eg) is generated
by Dehn twists raised to the power of p, by Dehn twists about symmetric separating curves, by
mod-p involution maps, and for 2g +b > 4 by mod-p center maps.

Finite set of generators. It is well known that every finite index subgroup of a finitely gen-
erated group, is finitely generated [2I, Corollary 2.7.1]. The generating set in Theorem is
infinite. When p = 3 and g = 1 we can find a finite set of generators.

Theorem 4.5. The group Bs[3] is generated by four elements.

Proof. Set S ={T2 T3 ,T.,T2 T ', T2 T3 T;*}. We denote by I' the subgroup of Bs[3] generated
by S. We prove that if we conjugate elements of S by T¢, or T,, then the resulting elements lie in

I'. Since Bs[3] is normally generated by S and since S generates a normal subgroup of Bs, then
I’ = Bs[3].

In the braid group we have the relation

To,Te, - To T T =T T, T2 T,

FEPRITY PP ci teiprr civi1tc

We prove the theorem in three steps.

Step 1: Conjugates of T2 ,T3

c1?7¢co”

—173 _ =32 3 —2m3
T, ToTe, =TT, T, T T, €T

T 'TST,., = T2 T, €T
T, 13T, =T, ‘T3 T., =T, T2 T3 T,,°T3 €T.

Ci1~caTcCy () cac17eCo
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Step 2: Conjugates of T,., T2 T ':

27 C17 C2

T, T, T2 T 'T. ' =T €T

C2"cy17"ca c1

T T, T2 T\ T,, =T, *T2 T2 = T, *(T., T2 T )T .

c1 C2"cyp e coT Ci~ca™ ey

The latter is in I" by step 1.

Step 3: Conjugates of T2 T3 T2

c27C1 ™ C2

T 2T T T, =T, ' TS T T2 T, T, T, =

c1 coc17eCo c2 7 Cc2 C2 =" co

(T T3 T ) (T T T3 T, T, ) (T T T
The elements (chchSchl)v (Tachgchl) are in T by step 1.
—1p—13 3
TT AT, T, = T

Finally, since T2 T3 T2 = T3 T_ch?’lT T3, it suffices to check that T, T_1T031T T 1lisin I.

ca2—c17Cca c2 ™ C2 C2"cg C1+co Cc2"cqp

But we have that

T. T T2 T, T, = T2 13T, * = T2 T, ' I9T., T, > = T2 T, T2 T.'T.° €T.

C1~co Cc2+"cp c1 o ca2C1 c1c1 Ci1~cy C2"c17 Co
This proves the theorem. (I
Since T2 T2 T2 = T3 T.'T? T,,T..> we deduce that {72, T3, T.,T2 T ', T T2 T.,} is also

catertes c27c2 c2tco c1) e T2t ep e
a generating set for Bs[3].

5 Symplectic groups and pure braid groups

For i € N, let p; denote a prime number greater than 2. In this section we characterize Bagyp[m],
where m = 2pps...pr and m = 4p1ps...p. Our strategy is to find a presentation for PBagy,/Bagys[m].
We recall that Hy (P Bagys,Z/2) is 5p,(Z/2), if b = 1 and Ann(yg41) if b = 2, where Ann(y,11) =

{h € spoy12(Z/2) | h(yg+1) = 0} [9]. The generators of Bygyy, are denoted by o; and the generators

of PBygyy are denoted by a; ; as in Section 2.

Theorem 5.1. For m = 2p1ps...pg, where p; > 3 are prime numbers, we have

Dy Spay(Z/p:) ifb=1,

PBagiy/Bagsm] = {@f_1(8p2g+2 (Z/pi))yg+1 fb=2.

Proof. We set m = 2p1ps...px. We have the map

SpQQ(Z) — SpQg(Z/m) ifb=1,
(szg+2 (Z))yg+1 - (Sp2g+2(Z/m))y9+1 ifo=2

with kernel Bggyp[m]. By Lemma [3.3| we know that

Pm * BQg+b — {

k
SPag(Z/m) = Spag(Z/2) D) Spay (Z/pi).-

i=1

If we restrict to the pure braid group, then the image of the map PBagy1 — Spy,(Z) is the
group Sp,,(Z)[2], (see [9, Theorem 3.3]). Furthermore, by Lemma we have that the map
Spa,(Z)[2] — Sp(Z/p;) is surjective. Thus, the image of the map

k

SPog(Z) — Spag(Z/m) = Spay(Z/2) @ Spag(Z/pi),
i=1

11



after we restrict to Spy,(Z)[2], is the group @le Spay(Z/pi). Hence, have a short exact sequence

k
1— BQng][m] — PB29+1 — @SPQQ(Z/])Z‘) — 1.

i=1

Likewise, since the image of the map PBagys — (Spagi2(Z))y,.r 18 (SPagi2(Z)[2])y,,, (see [9)
Theorem 3.3]), and since (Spagyo(Z/m))y, ., < SPayia(Z/m), we can apply Lemma and end
up with the following exact sequence.

k
1 = Bagya[m] = PBagyz — @(Sp2g+2(z/pi))yg+1 — L

i=1
This completes the proof. ]

In the following statement we slightly generalize Lemma [5.1] The symplectic Lie algebra
$P,,,(Z) consists of those elements A € gl,, (Z) which satisfy the relation AT.J + JA = 0. We
define also

Ann(u) = {m € spy,,(Z) | m(u) = 0},

where Ann(u) stands for the annihilator of the vector u. We have the following theorem.
Theorem 5.2. For m = 4p1ps...px, where p; > 3 are prime numbers , we have

5p2g(Z/2) @f:l Sp2g(Z/pz) Zfb = ]-7

PBoyiy/Bagip[m] = {Ann(e) @le(sngw(z/pi))ygﬂ if b=2.

Proof. We set m = 4p1ps...pi. By Lemma [3.3] we have that

k
Sp2g(Z/m) = Sp2g (z/4) @ Sp2g (Z]p;).

i=1
We want to characterize the image of the map

SPag (Z/4) B}, Spay(Z/pi) ifb=1,
k .
(Sp2g+2 (Z/4))yg+1 @i:](sp2g+2 (Z/pi))yg+1 ifb=2.

For b = 1 we only need to characterize the image of the restriction of the map above to PBagy.
In particular, we want to compute the image of the map PBagy1 — Spy,(Z/4). We know that
the image of the map PBag11 — Spy,(Z) is Spy,(Z)[2]. Consider the inclusion

We quotient the above inclusion by Sp,,(Z)[4], and we get the following inclusion:

5Py (Z/2) = Spay(Z/4).

B29+b — {

We finally have
PBgy1 = Spgy(Z)[2] — §po,(Z/2) < Spy,(Z/4).

Hence, the image of the map PBagy1 — Spy,(Z/4) is the abelian group spy,(Z/2). Thus, we

have
k

PBag 1/ Bagrp[m] = sps,(Z/2) GB Spay(Z/pi)-
=1

For b = 2, the maps

PBygra = (Spag12(Z)[2])y, = Ann(ygi1)

12



are both surjective, [9, Lemma 3.5]. But Ann(yy41) < (Spagy2(Z/4))y,,,, and thus, the image of
the map
PB29+2 — (Sp2g+2(Z/4))yg+1

is the group Ann(yg41). Thus, we get

k
PB29+2/BQ.Q+2[ } Ann( yq+1 @ Sp29+2 Z/Z’t))ng-
i=1

This completes the proof. O

In order to find generators for Bag1[m], it suffices to find a presentation for Spy,(Z/p) in
terms of pure braids. In the next proposition we prove that SpQg(Z /p) admits a presentation as a

quotient of the pure braid group over some relations. These new relations are the generators for
1

Bog+1[2p]. Recall that the generators of PB,, are defined to be a; ; = Uj_l...0i+1cri20;_11...aj__1,
where 1 <i < j <n.

Proposition 5.3. Fiz a prime number p, and put p = 2k+1. Let H,, be the group with generators
{a; ;} with defining relations as follows:

k k k _k k k
PRI. Qg 41 A41,i42% 541 = Qip1 5423 i4+1T4+1,5+2>

PR2. a¥. =1,

1,3

PRS. (a1,2a1,3a273)2 = 1f01‘p > 37

PRJ. a;’;ai’jar’szai,j, 1<r<s<i<j<norl<i<r<s<jy<mn,
-1

PR5. a, awars—amawa”, 1<r<s=i<j<n,

71 —_— .. . .. .. . 71 — 9 y
PRG6. a,ja;jars = (aijasj)a;j(aijas ;) , 1 <r=i<s<j<n,

-1 1 -1 1 —1y-1 . .
PR7. a, ja;jars = (arjas ja, 7Jas7])al,](ar7]a§7]a Jasj) ,1<r<i<s<j<n,

_ k+l k1 k ok S
PRS. ai; =a;7y ;a775 i 1.0ii410541,540--05_1 5, 1 <|i—j| <mn,
PRYI. aj.20a1 3023 = C,where
1)/4 . )
C = (% " "a35)2, if (p+1)/2 is even

C = a&{’ﬁ/ a% 3a(p /4 a2 3, of (p+ 1)/2 s odd.
PR10. a1,201,301,402 302 403 4 = Ba174B_1,Where

B = a375a475a§7/32a?:411, if k is even,

B= a375a475a§:§1a3,4, ka is odd.

Ifn=2g+1 then H, is isomorphic to Spy,(Z/p). On the other hand if n = 2g + 2, then H, is
isomorphic to Spay o(Z/P)y,. -

Note that relations PR4, PR5, PR6, PR7 are relations in the presentation of the pure braid
group given in Chapter 4. We begin with the group G,, defined in Theorem and using Tietze
transformations, we obtain the presentation of H,.

Proof. By Theorem the group G,, has the following presentation:

Gn = (0i| R1, R2, R3, R4, R5, R6),

where 1 <14 < 2g+0b. Let a; ; = aj_l...oiHJiza;_ll...Jj__ll and denote this relation by PR11. Then
include PR11 into the presentation of G, and add the generator a; ; to obtain

(07,a; ;] R1, R2, R3, RA, R5, R6, PR11).

13



Since PB,, is a subgroup of B, this means that R1 and R2 can be used to deduce the relations
PR4, PR5, PR6, PRT.

(0i,ai ;] R1, R2, R3, R4, R5, R6, PR4, PR5, PR6, PR7, PR11).
The relation R2 can be deduced by PR11 and R3 and PR4
(04,04 ] R1, R3, R4, R5, R6, PR2, PR4, PR5, PR6, PR7, PR11).

We derive two more relations from PRI11 and R3.

k1 -1 _ k
Oi = Q11,0 = Ay 41

Then PRI is equivalent to R1, PR2 is equivalent to R3, PR3 is equivalent to R4, PR9 is equivalent
to R5, PR10 is equivalent to R6, and PR11 is equivalent to PR8. In other words,

(0i,a:;| PR1, PR2, PR4, PR5, PR6, PR7, PR8, PR9, PR10,0; = a{} 07 = af, ;)
Finally, for 1 <1i < j > 2g 4+ b we have that
(a; ;| PR1,PR2, PR4, PR5, PR6, PR7, PR8, PR9, PR10),
which is the presentation of H,,. [l

As an application of Proposition we can obtain generators for Bagys[2p].

Corollary 5.4. For k = (p — 1)/2, the group Bagip[2p] is normally generated by siz types of
elements:

p
@i

2
(a1,2a1,3023)",
-1
a1,2a1,3a2,30 )

—1p-1
01,201,301,4612,3&2,4&3,43@1,43 )

k k k —k -k —k

Qi 41541 5420 i4+1 Q11 542D 341041 42>
k41 k41 ok k -1
Aj—1,j%—2,j—1Biit1 g1 g2 A1, 5 -

Actually we can use Proposition to find normal generators for any B,,[m], where m is either
2py...px or 4py...pr and p; > 3 are prime numbers.

6 Symmetric quotients of congruence subgroups

In this section we explore factor groups of congruence subgroups of braid groups. From Section
3 we know that B,[2] = PB, and B,,/B,[2] = S,. In the next theorem we generalize the latter
isomorphism.

Theorem 6.1. The quotient B, [p]/Bn[2p] is isomorphic to S,.
Before we proceed to the proof of Theorem we will prove the following lemma.
Lemma 6.2. The groups B,[2p] and B,[2] N B,[p] are isomorphic.

Proof. Tt is obvious that B,[2p] < B,[2] N By[p]. By Proposition [3.3| we have the decomposition
Spa,(Z/2p) = Spy,(Z/2) © Spy,(Z/p). By the homomorphism p : B,, — Sp,,(Z/2p) we deduce
that p(B,[2] N B,[p]) is trivial. Hence B,[2] N B, [p] < B,[2p]. O

Now we can prove the main theorem of the section.

14



Proof of Theorem 6.1. Denote by s; the transposition 4,7 + 1, that is, the generators of S,,. We
have the following presentation.

2 . .
S, = <51, vy Sn—1 | 87 =1,8;8;418; = Si+15:Si41, 5:Sj = $;8; when |i — j| > 1>.

Consider the natural epimorphism 7 : B, — S,, defined by 7(0;) = s;. Fix a prime number
p > 2; then the restriction 7 : B,[p] — S, is a surjective homomorphism as well. Indeed, we
have that 7(c?) = s? = s;, and for any other generator g € B,,[p] we have 7(g) = 1. Finally,
ker(7) = B,[2] N B,[p] = Bx[2p] by Lemma O
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