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Abstract

In this paper we give a description of the generators of the prime level congruence sub-
groups of braid groups. Also, we give a new presentation of the symplectic group over a finite
field, and we calculate symmetric quotients of the prime level congruence subgroups of braid
groups. Finally, we find a finite generating set for the level-3 congruence subgroup of the
braid group on 3 strands.

1 Introduction

Let Bn be the braid group on n strands. By evaluating the (unreduced) Burau representation
Bn → GLn−1(Z[t±1]) at t = −1 we obtain a symplectic representation

ρ : Bn →

{
Spn−1(Z) if n is odd,

(Spn(Z))u if n is even,

where (Spn(Z))u is the subgroup of Spn(Z) fixing one vector u ∈ Zn [17, Proposition 2.1] (see also
[9] and [1]).

For a positive integer m, the projection Z→ Z/m induces a representation as follows:

ρm : Bn →

{
Spn−1(Z/m) if n is odd,

(Spn(Z/m))u if n is even.

Note that if m = 1, then ρ1 = ρ. For i > 1 the kernel of ρm is denoted by Bn[m] and it is called
the level -m congruence subgroup of Bn. The kernel of ρ is called the braid Torelli group, and it
is denoted by BIn. The group BIn has been extensively studied by Hain [18], Brendle-Margalit
[10, 12], and Brendle-Margalit-Putman [11].

For p prime, A’Campo proved that the homomorphism ρp is surjective, by explicitly calculating
the image of ρp [1, Theorem 1 (1)]. Wanjryb gave a presentation of Spn−1(Z/p) and (Spn(Z/p))u
as quotients of Bn [27, Theorem 1]. Let PBn be the pure braid group, that is, the kernel of the
epimorphism Bn → Sn, where Sn is the symmetric group on n letters. Our first result is an
analogue of Wanjryb’s theorem.

Theorem A For p prime, the groups Spn−1(Z/p) and (Spn(Z/p))u admit a presentation as
quotients of the pure braid group PBn.

This result is given as Theorem 5.3 in the paper.

A result of Arnol’d shows that Bn[2] = PBn, where PBn is the pure braid group [2]. Therefore,
for every k even, we have that Bn[k] � PBn. Our second result extends A’Campo’s theorem.

Theorem B For m = 2p1...pk, where pi ≥ 3 are primes, we have that PBn/Bn[m] is isomorphic

to
k⊕
i=1

Spn−1(Z/pi) if n is odd, and
k⊕
i=1

(Spn(Z/pi))u if n is even.

Theorem B is Theorem 5.1 (see also Theorem 5.2) in the paper.
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We also characterize quotient groups of congruence subgroups of braid groups. The braid
group Bn surjects onto the symmetric group Sn. The kernel of this map is well known to be the
pure braid group PBn. Also, by a result established by A’rnold [2] the group PBn is isomorphic
to Bn[2]. See also [9, Section 2] for further discussion. Therefore, we have Bn/Bn[2] ∼= Sn. We
generalize this result as stated in the following theorem.

Theorem C. For p prime number, the group Bn[p]/Bn[2p] is isomorphic to Sn.

Theorem C is Theorem 6.1 in the paper.

Topological description of congruence subgroups. A key part of the paper is a topological
interpretation of Bn[p], for p ≥ 3 prime, given in Section 4. The content of Section 4 was inspired
by Powell, who based on Birman’s work on the presentation of the symplectic group [8, Theorem
1], to show that the Torelli subgroup of the mapping class group is normally generated by bounding
pair maps, and Dehn twists about separating simple closed curves [25, Theorem 2].

Theorems A and B are used to find normal generators for Bn[m], where m = 2p1...pk and pi
is an odd prime. Motivated by Section 4 it would be interesting to find a topological description
of the generators of Bn[m] in the future.

Related results. The mapping class group Mod(Σ) of an orientable surface Σ is the group of
isotopy classes of homeomorphisms that preserve the orientation of Σ, fix the boundary pointwise,
and preserve the set of marked points setwise. We denote by Tc a Dehn twist about a simple closed
curve c. Let Σbg be a surface of genus g ≥ 1 with b boundary components, where b ∈ {1, 2}. It is

a special case of theorem of Birman-Hilden [7] that B2g+b embeds into Mod(Σbg) [15, Section 9.4].

We denote the image of this embedding by SMod(Σbg). As mentioned in the previous page, the
braid Torelli BI2g+b is the kernel of the symplectic representation of B2g+b. Hain conjectured that
BI2g+b is isomorphic to the group generated by Dehn twists about separating simple closed curves
inside SMod(Σbg) [18]. This conjecture was proved by Brendle-Margalit-Putman [11, Theorem A],
and also studied by Brendle-Margalit [10, 12]. By the definitions given in the beginning of the
paper, the group BI2g+b is a subgroup of B2g+b[m], for any m ∈ N.

For m ≥ 2, consider B2g+b[m] as a subgroup of SMod(Σbg)
∼= B2g+b. A consequence of a work

of Arnol’d shows that B2g+b[2] is isomorphic to the pure braid group PB2g+b [2] (see [9, Section
2] for explanation of this isomorphism). Combining the latter result with the work of Humphries
[19, Theorem 1] we obtain that B2g+b[2] is isomorphic to the normal closure of a square of a Dehn
twist about nonseparating simple closed curve in SMod(Σbg). Brendle-Margalit extended the latter

result by proving that the normal closure of the 4th power of a Dehn twist about a nonseparating
simple closed curve in SMod(Σbg) is isomorphic to B2g+b[4] [9, Main Theorem].

Let T2g+b(m) be the normal closure of the mth power of a Dehn twist in SMod(Σbg), where

g ≥ 1 and b = 1, 2. Coxeter proved that T2g+b(m) is a finite index subgroup of SMod(Σbg) = B2g+b

if and only if (2g + b− 2)(m− 2) < 4 [14, Section 10]. As mentioned above, T2g+b(2) = B2g+b[2].
Furthermore, Humphries gave a complete description of when a group generated by {T2g+b(mi) |
mi ∈ N}, for finite number of mi, is of finite index in PB2g+b [20, Theorem 1]. In addition,
Funar-Kohno proved that the intersection of all T2g+b(2m), where m ∈ N, is trivial [16, Theorem
1.1].

Finally, we note a more general definition of congruence subgroups of braid groups. Let Fn
be the free group of rank n. There is an inclusion Bn → Aut(Fn) [5, Theorem 1.9]. Consider a
characteristic subgroup H of finite index in Fn. The kernel of Aut(Fn) → Aut(Fn/H) is called
principal congruence subgroup, and any finite index subgroup of Aut(Fn) containing a principal
congruence subgroup is called congruence subgroup. A group G is said to have the congruence
subgroup propery if every finite index subgroup of G contains a principal congruence subgroup.
Asada proved that Bn satisfies the congruence subgroup property by using the notions of field
extensions and profinite groups [3, Theorem 3A, Theorem 5]. In contrast with Asada’s techniques,
Thurston gave a more elementary proof to the congruence subgroup property of Bn [22].
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Outline of the paper. In Section 2 we give basic background on braid groups, hyperelliptic
mapping class groups, the symplectic representation of braid groups, and the congruence subgroups
of braid groups. In Section 3 we recall some key results about the congruence subgroups of
symplectic groups. In Section 4 we give a topological interpretation of the generators of the prime
level congruence subgroups of braid groups. In Section 5 we prove Theorems A and B. In Section
6 we prove Theorem C.

Acknowledgments. I would like to thank my PhD supervisor Tara Brendle for her support
during my work on this paper.

2 Preliminaries

In this section we recall the definition of braid groups, hyperelliptic mapping class groups, and
the symplectic representation of braid groups.

2.1 Definitions of braid groups

Figure 1: The action of σ3 on a punctured disc.

Braid groups. For detailed description of the following definition, see Birman-Brendle’s survey
[6]. Let Σbg,n denote an orientable surface of genus g with n punctures and b boundary components.

If n = 0 we will simply write Σbg. If g = 0 and b = 1 then Σ1
0,n is homeomorphic to a punctured

disc. We enumerate the punctures from left to right. The braid group Bn on n strands is defined
to be the mapping class group Mod(Σ1

0,n) of Σ1
0,n. For 1 ≤ i ≤ n−1 we denote by σi the mapping

classes that interchanges the punctures i, i + 1 as depicted in Figure 1 for i = 3. The mapping
classes σi are called half-twists. It turns out that σi generate the braid group Bn. In fact we have
the following presentation

〈σ1, ..., σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi when |i− j| > 1〉 .

Consider the symmetric group Sn, and for 1 ≥ i ≥ n − 1 let si denote the generators of Sn,
that is the transpositions (i, i + 1). The map Bn → Sn defined by σi 7→ si is a well defined
homomorphism with kernel the pure braid group PBn. Let 1 ≤ i < j ≤ n − 1, we denote by ai,j
the element σj−1...σ

2
i ...σj−1. For 1 ≤ i < j ≤ n − 1 the group PBn admits a presentation with

generators ai,j and relations

P1. a−1r,sai,jar,s = ai,j , 1 ≤ r < s < i < j ≤ n or 1 ≤ i < r < s < j ≤ n,

P2. a−1r,sai,jar,s = ar,jai,ja
−1
r,j , 1 ≤ r < s = i < j ≤ n,

P3. a−1r,sai,jar,s = (ai,jas,j)ai,j(ai,jas,j)
−1, 1 ≤ r = i < s < j ≤ n,

P4. a−1r,sai,jar,s = (ar,jas,ja
−1
r,ja

−1
s,j )ai,j(ar,jas,ja

−1
r,ja

−1
s,j )
−1, 1 ≤ r < i < s < j ≤ n.

For more details about definitions and presentations of Bn and PBn see [6, Chapter 1].
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Figure 2: Action of the hyperelliptic involution.

Hyperelliptic mapping class groups. Let c be a nonseparating simple closed curve on a
surface Σbg,n. We denote by Tc the Dehn twist about the curve c. Dehn twists about nonseparating

simple closed curves generate Mod(Σbg). Consider a hyperelliptic involution ι as depicted in Figure

2. For b = 1, 2, ι acts on Σbg. Since ι does not fix the boundary components of Σbg pointwise, then

ι /∈ Mod(Σbg). We have a two fold branched cover Σbg → Σbg/ι. Topologically Σbg/ι is homeomorphic
to Σ1

0,2g+b (see Figure 2). We note that if q1, q2 denote the boundary components of Σ2
g, then

ι(q1) = q2.

Figure 3: Generators of the hyperelliptic mapping class group.

c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5
c6 c7

Consider the curves ci depicted in Figure 3, and let σi be the generators of B2g+b. We define
a map ξ : B2g+b → Mod(Σbg) by ξ(σi) = Tci . Since the braid, and the disjointness relations are
satisfied by σi and Tci , then ξ is a homomorphism. The image of ξ is called hyperelliptic mapping
class group, and it is denoted by SMod(Σbg). In fact we have B2g+b

∼= SMod(Σbg) [15, Theorem
9.2] (see also [24]).

2.2 Symplectic representation

In this section we will construct a representation for the braid group Bn. Firstly, we recall the
definition of Sp2n(Z). Let J be the 2n× 2n matrix(

0 In
−In 0

)
.

The symplectic group with integer coefficients is defined to be

Sp2n(Z) = {A ∈ GL(2n,Z) | ATJA = J}.

We also define the symplectic group with coefficients in Z/m to be

Sp2n(Z/m) = {A ∈ GL(2n,Z) | ATJA ≡ J mod(m)}

4



where m ∈ N. For a fixed u ∈ Z2n, we also recall

(Sp2n(Z))u = {t ∈ Sp2n(Z) | t(u) = u}.

Consider g ≥ 1 and b = 1, 2. Since B2g+b
∼= SMod(Σbg), we will use the action of SMod(Σbg) on

the first homology of Σbg to construct a representation for B2g+b.

Figure 4: Standard generators for H1(Σ1
g), and HP

1 (Σ2
g,Z).

y1

x1

y2

x2

y3

x3

y1

x1

y2

x2

y3

x3

y4
x4

Construction of the representation. We denote by ιa the algebraic intersection number
between curves of Σbg for g ≥ 1 and b = 1, 2. The form ιa is an alternating bilinear and nondegen-
erate. Every element of the mapping class group preserves ιa [15, Section 6.3]. Consider b = 1;
the oriented curves xi, yi of Σ1

g of Figure 4 form a symplectic basis for H1(Σ1
g;Z). The action of

SMod(Σ1
g) on H1(Σ1

g;Z) induces the following representation:

SMod(Σ1
g)→ Sp2g(Z).

If b = 2, the module H1(Σ2
g;Z) is not symplectic. Thus, we will consider a different module.

Fix a point on each of the boundaries of Σ2
g, and denote by Q the set that contains those two

points. Denote also by P the set that contains the two boundary components. We set HP
1 (Σ2

g;Z) ∼=
H1(Σ2

g, Q;Z)/〈P 〉. The module HP
1 (Σ2

g;Z) is symplectic [9, Section 2.1] (see also [26]). The basis

of HP
1 (Σ2

g;Z) is xi, yi as indicated on the right hand side of Figure 4. The action of SMod(Σ2
g) on

HP
1 (Σ2

g;Z) induces the following representation:

SMod(Σ2
g)→ (Sp2g+2(Z))yg+1 ,

where (Sp2g+2(Z))yg+1
stands for the subgroup of Sp2g+2(Z) that fixes the vector yg+1.

Since the map ξ : B2g+b → SMod(Σbg) is an isomorphism, we have a well defined representation

ρ : B2g+b →

{
Sp2g(Z) if b = 1

(Sp2g+2(Z))yg+1 if b = 2.

Image of the representation. We denote also by [c] the homology class of a curve c in Σbg.

For x, c nonseparating simple closed curves in Σbg, the automorphism T[c]([x]) = [x] + ιa(x, c)[c] is
called a transvection [15, Section 6.6.3]. We remark that for every integer m, we have Tm[c]([x]) =

[x] +mιa(x, c)[c].
Let Tci be a Dehn twist about a curve ci indicated in Figure 3. The image of Tci under the

symplectic representation is the transvection T[ci]. Also, since ξ(σi) = Tci as explained in the
previous section, we have ρ(σi) = T[ci]. We note also that ρ(σmi ) = Tm[ci].

Kernel of the symplectic representation. Assume that b = 1, 2, g ≥ 0, and recall that
B2g+b = Mod(D2g+b). The kernel of the symplectic representation ρ is denoted by BI2g+b, and
it is called the braid Torelli. It is a result by Brendle-Margalit-Putman that BI2g+b is generated
by Dehn twists about simple closed curves surrounding 3 or 5 number of puncture points [11,
Theorem C].

Consider the isomorphism ξ : B2g+b → SMod(Σbg). The image of BI2g+b in SMod(Σbg) under

ξ is denoted by SI(Σbg). The latter group is well known as the hyperelliptic Torelli group. Fur-

thermore, SI(Σbg) is generated by Dehn twists about symmetric separating simple closed curves
that bound a subsurface of genus 1 or 2 [11, Theorem A].
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2.3 Congruence subgroups of braid groups

Let m be a positive integer. The surjective homomorphisms H1(Σ1
g;Z) → H1(Σ1

g;Z/m) and

HP
1 (Σ2

g;Z)→ HP
1 (Σ2

g;Z/m) induce the following epimorphisms:{
Sp2g(Z)→ Sp2g(Z/m)

(Sp2g+2(Z))yg+1
→ (Sp2g+2(Z/m))yg+1

.

Thus we have a family of representations for the braid groups

ρm : B2g+b →

{
Sp2g(Z/m) if b = 1

(Sp2g+2(Z/m))yg+1 if b = 2,

where g ≥ 1. The kernels of the representations ρm are denoted by B2g+b[m] and they are known
as level-m congruence subgroups of braid groups.

3 Congruence subgroups of Symplectic groups

In this section we examine the structure of the congruence subgroups of symplectic groups.

Congruence subgroups and generators. The projection Z→ Z/m induces a surjective ho-
momorphism Sp2n(Z) → Sp2n(Z/m), whose kernel is the principal level m congruence subgroup
of Sp2n(Z) denoted by Sp2n(Z)[m]. The group Sp2n(Z)[m] consists of all matrices of the form
I2n +mA; where A ∈ Sp2n(Z). Furthermore, if m is a multiple of l then Sp2n(Z)[m] / Sp2n(Z)[l].

Next we give generators for Sp2n(Z)[p] when p is any prime number. Let r ∈ Z. We define
ei,j(r) to be the n×n matrix with (i, j)th entry equal to r and 0 otherwise. Let βi(r) be the n×n
matrix with (i, i)th and (i, i+ 1)th entries equal to r, (i+ 1, i+ 1)th and (i+ 1, i)th entries equal
to −r and 0 otherwise. Define also sei,j(r) to be the n× n matrix with (i, j)th and (j, i)th entries
equal to r and 0 otherwise. For 1 ≤ i ≤ j ≤ n we define:

Xi,j(r) = I2n +

(
0 0

sei,j(r) 0

)
, Yi,j(r) = I2n +

(
0 sei,j(r)
0 0

)
.

For 1 ≤ i, j ≤ n with i 6= j we define:

Zi,j(r) = I2n +

(
ei,j(r) 0

0 −ei,j(r)

)
.

For 1 ≤ i < n

Wi(r) = I2n +

(
βi(r) 0

0 −βi(r)

)
.

Finally,

U1(r) = I2n +

(
e1,1(r) e1,1(r)
−e1,1(r) −e1,1(r)

)
.

The following theorem gives a nice description of Sp2n(Z)[p] as a group generated by the
matrices above [13, Lemma 5.4].

Theorem 3.1 (Church-Putman). For n ≥ 2 and for a prime number p ≥ 2 the congruence
subgroup Sp2n(Z)[p] is generated by the set

S = {Xi,j(p),Yi,j(p),Zi,j(p),Wi(p),U1(p)}

where i, j are indices defined as above.
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We use Theorem 3.1 to prove the lemma below, since we do not know a concise proof in the
literature. In particular, we use the generators of Theorem 3.1 to prove that Sp2n(Z/b) can be
expressed as a quotient of some congruence subgroup of Sp2n(Z) when b is a prime number.

Lemma 3.2. Let a and b two distinct prime numbers. Then the following sequence is exact.

1→ Sp2n(Z)[ab]→ Sp2n(Z)[a]→ Sp2n(Z/b)→ 1.

Proof. The map Sp2n(Z)[a] → Sp2n(Z/b) sends every matrix A ∈ Sp2n(Z)[a] into its mod(b)
reduction. First, we prove the surjectivity of the latter map. The generators of Sp2n(Z/b) are
Xi,j(1)mod(b) and Yi,j(1)mod(b) where 1 ≤ i < j ≤ n. Define n to be the solution of the equation
an ≡ 1 mod(b). Then, Xi,j(a)n ≡ Xi,j(1) mod(b) and Yi,j(a)n ≡ Yi,j(1) mod(b). This proves the
surjectivity of the reduction map. The kernel of this reduction map contains matrices which satisfy
I2n+aA ≡ I2nmod(b). But since a and b are relatively primes, the latter equivalence holds if and
only if A = bB when B is a symplectic matrix. �

The following proposition gives a useful decomposition of Sp2n(Z/m) [23, Theorem 5].

Proposition 3.3 (Newman-Smart). Let m ∈ N and write m = pk11 p
k2
2 ...p

kl
l , where pkii are powers

of prime numbers. Then

Sp2n(Z/m) =

l⊕
i=1

Sp2n(Z/pkii ).

Newman-Smart also proved that the abelian group sp2n(Z/l) can be expressed as a quotient
of congruence subgroups of Sp2n(Z), [23, Theorem 7].

Proposition 3.4 (Newman-Smart). Let l,m ≥ 2 such that l divides m. Then we have the
following isomorphism.

Sp2n(Z)[m]/Sp2n(Z)[ml] ∼= sp2n(Z/l).

Lemma 3.2 and Propositions 3.3 and 3.4 play crucial role in Section 5, in which we explore the
structure of congruence subgroups of braid groups.

4 Topological interpretation of prime level congruence sub-
groups

The purpose of this section is the characterization of the group B2g+b[p] when p is prime. Since
B2g+b

∼= SMod(Σbg), it is convenient to study the kernel of the map

SMod(Σbg)→

{
Sp2g(Z/p) if b = 1,

(Sp2g+2(Z/p))yg+1
if b = 2

and we denote the map again by ρp. Also, we denote the kernel of ρp by B2g+b[p].
A’Campo proved that the homomorphism ρp is surjective [1, Theorem 1 (1)]. Later Assion

gave a presentation for Sp2g(Z/3) and (Sp2g+2(Z/3))yg+1
as quotients of braid groups [4]. Wajnryb

improved the result of Assion and generalized it for any prime number greater than 2 [27, Theorem
1]. We begin with the theorem of Wajnryb.

Theorem 4.1 (Wajnryb). Consider the curves ci depicted in Figure 3. Let G2g+b be a group with
generators Tc1 , ..., Tc2g+b−1

and relations R1 to R6 as follows.

R1. TciTci+1
Tci = Tci+1

TciTci+1
;

R2. [Tci , Tcj ] = 1, for |i− j| > 1;

7



R3. T pc1 = 1;

R4. (Tc1Tc2)6 = 1, for p > 3;

R5. T (p−1)/2
c1 T 4

c2T
−(p−1)/2
c1 = T 2

c2Tc1T
−2
c2 , for p > 3; and

R6. (Tc1Tc2Tc3)4 = AT 2
c1A
−1, for n > 4, whereA = Tc4T

2
c3Tc4T

(p−1)/2
c2 T−1c3 Tc2 .

Then G2g+1 is isomorphic to Sp2g(Z/p), and G2g+2 is isomorphic to (Sp2g+2(Z/p))yn+1
.

As a consequence of Theorem 4.1 we obtain elements of SMod(Σbg) which normally generate
B2g+b[p].

In the rest of the section we examine the elements of the relations of Theorem 4.1 in order to
give a topological description for the generators of Bn[p]. We note that relations R1 and R2 are
the defining relations in the presentation of the braid group.

We denote by [ci] the homology class of ci, and by T[ci] the transvection associated to the Dehn
twist Tci under the map

SMod(Σbg)→

{
Sp2g(Z/p) if b = 1,

(Sp2g+2(Z/p))yg+1
if b = 2.

By definition, the action of a transvection Tm[c] on an element u ∈ H1(Σ1
g,Z) (respectively HP

1 (Σ2
g,Z))

is defined to be Tm[c](u) = [u] +mî(u, [c])[c], where î stands for the algebraic intersection number.

R3: Powers of Dehn twists. The pth powers of Dehn twists about symmetric nonseparating
simple closed curves are easy to check by looking at their image in the symplectic group. The
symplectic representation sends T pc1 into the following matrix:(

1 p
0 1

)
⊕ I,

where I stands for the identity matrix of dimension depending on g and b (see Section 7.1.3).
The mod(p) reduction of the matrix above is the identity. Moreover, every Dehn twist about a
non-separating curve is conjugate to Tc1 . As a consequence, every Dehn twist in SMod(Σbg) raised
to the power of p lies in Bn[p].

R4: Symmetric separating Dehn twists. By the chain relation the element (Tc1Tc2)6 can
be represented by a Dehn twist Tγ , where γ is the symmetric separating curve bounding the genus
1 subsurface of Σbg as indicated in Figure 5 [15, Proposition 4.12]. We can generalize the relation

R4 by considering a symmetric separating curve δ of a genus k subsurface of Σbg. By the chain
relation there is a maximal chain of curves a1, ..., a2k in the subsurface of genus k with boundary
δ such that (Ta1 ...Ta2k)4k+2 = Tδ.

The fact that every symmetric separating simple closed curve δ is nullhomologous in H1(Σ1
g)

(respectively HP
1 (Σ2

g)) implies that T[δ](x) = x + ιa(x, [δ]) = x + 0 = x for every x ∈ H1(Σ1
g)

(respectively HP
1 (Σ2

g)), where T[δ] is the corresponding transvection of Tδ as described in Sec-

tion 2. Since for every symmetric separating curve δ in Σbg and Tδ ∈ B2g+b[p] we have that

(Ta1 ...Ta2k)4k+2 ∈ SI(Σbg) ⊂ B2g+b[p].

R5: Mod-p involution maps. We begin by modifying the relation R5 of Theorem 4.1.

Lemma 4.2. The relation R5 given above is equivalent to:

(T (p+1)/2
c1 T 4

c2)2 = (Tc1Tc2)3

in Sp2g(Z/p) (respectively (Sp2g+2(Z/p))yg+1
).

8



Figure 5: The curve γ that bound a surface of genus 1.

γ

c1
c2

Proof. We have that (Tc1Tc2)3 = Tc1T
2
c2Tc1T

2
c2 . Then

T (p−1)/2
c1 T 4

c2T
−(p−1)/2
c1 = T−1c1 (T (p+1)/2

c1 T 4
c2)2T−4c2 = T 2

c2Tc1T
−2
c2 .

On the other hand

(T (p+1)/2
c1 T 4

c2)2 = Tc1T
(p−1)/2
c1 T 4

c2T
−(p−1)/2
c1 T 4

c2 = Tc1T
2
c2Tc1T

2
c2 .

�

Now we examine the relation of Lemma 4.2.

RHS. For i = 1, 2, (Tc1Tc2)3([ci]) = −[ci], where [ci] stands for the homology class of ci. Thus,
the homeomorphism (Tc1Tc2)3 acts as the hyperelliptic involution on the subsurface bounded by
the boundary of the chain ch(c1, c2) (see Figure 5).

LHS. We have

(T (p+1)/2
c1 T 4

c2)2([c1]) = −8p[c2] + (4p2 + 2p− 1)[c1] ≡ −[c1] mod (p),

(T (p+1)/2
c1 T 4

c2)2([c2]) = 2p
p+ 1

2
[c1]− (2p+ 1)[c2] ≡ −[c2] mod (p)

Therefore, (T
(p+1)/2
c1 T 4

c2)2 acts as the hyperelliptic involution mod (p) in the subspace of H1(Σ1
g,Z/p)

(resp HP
1 (Σ2

g,Z/p)) spanned by [c1], [c2].

We can generalize Relation R5 as follows. For k even, consider any chain ch(a1, a2, ..., ak) of
symmetric simple closed curves such that Tai ∈ SMod(Σg,b) for all i ≤ k. Choose an f ∈ SMod(Σbg)

such that f([ai]) = −[ai]. Then (Ta1 ...Tak)k+1f−1 ∈ B2g+b[p]. We call this type of element an
mod-p involution map.

R6: Mod-p center maps. We describe a generalized version of (Tc1Tc2Tc3)4(AT−2c1 A
−1). Let

A1 be the trivial homeomorphism in SMod(Σbg). For k odd, and k ≥ 3, define

Ak = Tck+1
T 2
ck
Tck+1

T (p−1)/2
ck−1

T−1ck
Tck−1

Ak−2.

First, we deal with the case b = 1. (For b = 2 the process is exactly the same.) Consider the
symplectic bases {yi, xi} for H1(Σ1

g,Z) depicted on Figure 4.

Lemma 4.3. For k odd, we have that AkT[c1]A
−1
k = T[y(k+1)/2] in Sp2g(Z/p).

Note that if k = 3, then T[y2] = T[d3].

Proof. We need to prove that Ak([c1]) ≡ [c1] + [c3] + ... + [ck] ∈ Sp2g(Z/p). A direct calculation
shows that A3([c1]) ≡ [c1] + [c3] mod(p). Assume that the theorem is true for k − 2, that is

Ak−2([c1]) = [c1] + [c3] + ... + [ck−2]. Then Tck+1
T 2
ck
Tck+1

T
(p−1)/2
ck−1 T−1ck

Tck−1
([ck−2]) ≡ [ck−2] +

[ck] mod (p). The proof of the lemma follows. �
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Figure 6: The chain relation of R6.

c1

c2
c3

d3

d′3

Let k be an odd integer, and consider also the odd chain ch(c1, c2, ..., ck). By the chain re-
lation we have that (Tc1 ...Tck)k+1 = TdkTd′k , where dk = y(k+1)/2, and [dk] = [d′k] = [y(k+1)/2]

(see, for example, Figure 6). Thus, (T[c1]...T[ck])
k+1 = T 2

[y(k+1)/2]
∈ Sp2g(Z/p). On the other

hand, according to Lemma 4.3 we have that AkT
2
[c1]
A−1k = T 2

[y(k+1)/2]
∈ Sp2g(Z/p). Hence,

(Tc1 ...Tck)k+1AkT
−2
c1 A

−1
k ∈ Bn[p]. Note that if k = 3, the element (Tc1 ...Tck)k+1AkT

−2
c1 A

−1
k is

the same one as in the relation 6 of Theorem 4.1.
We can describe a generalized version of (Tc1 ...Tck)k+1AkT

−2
c1 A

−1
k . Consider any odd chain

ch(a1, a2, ..., ak), such that Tai ∈ SMod(Σ1
g) for all i ≤ k. Choose a homeomorphism h ∈

SMod(Σ1
g) such that h([a1]) = [a1] + [a3] + ...+ [ak] ∈ Sp2g(Σ

1
g). Then (Ta1 ...Tak)k+1hT−2a1 h

−1 lies

on B2g+1[p]. If we consider (Ta1 ...Tak)k+1 as the center of the subgroup K of SMod(Σbg) generated
by Ta1 ...Tak , then hT−2a1 h

−1 is the center mod(p) of the same group. Note that the choice of h is
not unique. We call this type of element an mod-p center map.

Generators for congruence subgroups. As a corollary of Theorem 4.1 we obtain the following
theorem.

Theorem 4.4. If p = 3, then B2g+b[3] is generated by Dehn twists raised to the power of 3, and
for 2g + b > 4 by mod-p center maps. For p > 3 the subgroup B2g+b[p] of SMod(Σbg) is generated
by Dehn twists raised to the power of p, by Dehn twists about symmetric separating curves, by
mod-p involution maps, and for 2g + b > 4 by mod-p center maps.

Finite set of generators. It is well known that every finite index subgroup of a finitely gen-
erated group, is finitely generated [21, Corollary 2.7.1]. The generating set in Theorem 4.4 is
infinite. When p = 3 and g = 1 we can find a finite set of generators.

Theorem 4.5. The group B3[3] is generated by four elements.

Proof. Set S = {T 3
c1 , T

3
c2 , Tc2T

3
c1T
−1
c2 , T

2
c2T

3
c1T
−2
c2 }. We denote by Γ the subgroup of B3[3] generated

by S. We prove that if we conjugate elements of S by Tc1 or Tc2 , then the resulting elements lie in
Γ. Since B3[3] is normally generated by S and since S generates a normal subgroup of B3, then
Γ = B3[3].

In the braid group we have the relation

TcjTcj−1
...T 3

ci ...T
−1
cj−1

T−1cj = T−1ci T
−1
ci+1

...T 3
cj ...Tci+1

Tci

We prove the theorem in three steps.

Step 1: Conjugates of T 3
c1 , T

3
c2 :

T−1c2 T
3
c1Tc2 = T−3c2 T

2
c2T

3
c1T
−2
c2 T

3
c2 ∈ Γ

T−1c1 T
3
2 Tc1 = T2T

3
c1T
−1
2 ∈ Γ

Tc1T
3
c2T
−1
c1 = T−1c2 T

3
c1Tc2 = T−3c2 T

2
c2T

3
c1T
−2
c2 T

3
c2 ∈ Γ.
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Step 2: Conjugates of Tc2T
3
c1T
−1
c2 :

Tc1Tc2T
3
c1T
−1
c2 T

−1
c1 = T 3

c2 ∈ Γ

T−1c1 Tc2T
3
c1T
−1
c2 Tc1 = T−2c1 T

3
c2T

2
c1 = T−3c1 (Tc1T

3
c2T
−1
c1 )T 3

c1 .

The latter is in Γ by step 1.

Step 3: Conjugates of T 2
c2T

3
c1T
−2
c2 :

T−1c1 T
2
c2T

3
c1T
−2
c2 Tc1 = T−1c1 T

3
c2T
−1
c2 T

3
c1Tc2T

−3
c2 Tc1 =

(T−1c1 T
3
c2Tc1)(T−1c1 T

−1
c2 T

3
c1Tc2Tc1)(T−11 T−3c2 Tc1)

The elements (T−1c1 T
3
c2Tc1), (T−1c1 T

−3
c2 Tc1) are in Γ by step 1.

T−1c1 T
−1
c2 T

3
c1Tc2Tc1 = T 3

c2

Finally, since T 2
c2T

3
c1T
−2
c2 = T 3

c2T
−1
c2 T

3
c1Tc2T

−3
c2 , it suffices to check that Tc1T

−1
c2 T

3
c1Tc2T

−1
c1 is in Γ.

But we have that

Tc1T
−1
c2 T

3
c1Tc2T

−1
c1 = T 2

c1T
3
c2T
−2
c1 = T 3

c1T
−1
c1 T

3
2 Tc1T

−3
c1 = T 3

c1Tc2T
3
c1T
−1
c2 T

−3
c1 ∈ Γ.

This proves the theorem. �

Since T 2
c2T

3
c1T
−2
c2 = T 3

c2T
−1
c2 T

3
c1Tc2T

−3
c2 we deduce that {T 3

c1 , T
3
c2 , Tc2T

3
c1T
−1
c2 , T

−1
c2 T

3
c1Tc2} is also

a generating set for B3[3].

5 Symplectic groups and pure braid groups

For i ∈ N, let pi denote a prime number greater than 2. In this section we characterize B2g+b[m],
wherem = 2p1p2...pk andm = 4p1p2...pk. Our strategy is to find a presentation for PB2g+b/B2g+b[m].
We recall that H1(PB2g+b,Z/2) is sp2g(Z/2), if b = 1 and Ann(yg+1) if b = 2, where Ann(yg+1) =
{h ∈ sp2g+2(Z/2) | h(yg+1) = 0} [9]. The generators of B2g+b are denoted by σi and the generators
of PB2g+b are denoted by ai,j as in Section 2.

Theorem 5.1. For m = 2p1p2...pk, where pi ≥ 3 are prime numbers, we have

PB2g+b/B2g+b[m] =

{ ⊕k
i=1 Sp2g(Z/pi) if b = 1,⊕k

i=1(Sp2g+2(Z/pi))yg+1
if b = 2.

Proof. We set m = 2p1p2...pk. We have the map

ρm : B2g+b →

{
Sp2g(Z)→ Sp2g(Z/m) if b = 1,

(Sp2g+2(Z))yg+1
→ (Sp2g+2(Z/m))yg+1

if b = 2

with kernel B2g+b[m]. By Lemma 3.3 we know that

Sp2g(Z/m) = Sp2g(Z/2)

k⊕
i=1

Sp2g(Z/pi).

If we restrict to the pure braid group, then the image of the map PB2g+1 → Sp2g(Z) is the
group Sp2g(Z)[2], (see [9, Theorem 3.3]). Furthermore, by Lemma 3.2 we have that the map
Sp2g(Z)[2]→ Sp(Z/pi) is surjective. Thus, the image of the map

Sp2g(Z)→ Sp2g(Z/m) = Sp2g(Z/2)

k⊕
i=1

Sp2g(Z/pi),
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after we restrict to Sp2g(Z)[2], is the group
⊕k

i=1 Sp2g(Z/pi). Hence, have a short exact sequence

1→ B2g+1[m]→ PB2g+1 →
k⊕
i=1

Sp2g(Z/pi)→ 1.

Likewise, since the image of the map PB2g+2 → (Sp2g+2(Z))yg+1
is (Sp2g+2(Z)[2])yg+1

(see [9,
Theorem 3.3]), and since (Sp2g+2(Z/m))yg+1

< Sp2g+2(Z/m), we can apply Lemma 3.3 and end
up with the following exact sequence.

1→ B2g+2[m]→ PB2g+2 →
k⊕
i=1

(Sp2g+2(Z/pi))yg+1 → 1.

This completes the proof. �

In the following statement we slightly generalize Lemma 5.1. The symplectic Lie algebra
sp2n(Z) consists of those elements A ∈ gl2n(Z) which satisfy the relation ATJ + JA = 0. We
define also

Ann(u) = {m ∈ sp2n(Z) | m(u) = 0},

where Ann(u) stands for the annihilator of the vector u. We have the following theorem.

Theorem 5.2. For m = 4p1p2...pk, where pi ≥ 3 are prime numbers , we have

PB2g+b/B2g+b[m] =

{
sp2g(Z/2)

⊕k
i=1 Sp2g(Z/pi) if b = 1,

Ann(e)
⊕k

i=1(Sp2g+2(Z/pi))yg+1
if b = 2.

Proof. We set m = 4p1p2...pk. By Lemma 3.3 we have that

Sp2g(Z/m) = Sp2g(Z/4)

k⊕
i=1

Sp2g(Z/pi).

We want to characterize the image of the map

B2g+b →

{
Sp2g(Z/4)

⊕k
i=1 Sp2g(Z/pi) if b = 1,

(Sp2g+2(Z/4))yg+1

⊕k
i=1(Sp2g+2(Z/pi))yg+1

if b = 2.

For b = 1 we only need to characterize the image of the restriction of the map above to PB2g+b.
In particular, we want to compute the image of the map PB2g+1 → Sp2g(Z/4). We know that
the image of the map PB2g+1 → Sp2g(Z) is Sp2g(Z)[2]. Consider the inclusion

Sp2g(Z)[2] ↪→ Sp2g(Z).

We quotient the above inclusion by Sp2g(Z)[4], and we get the following inclusion:

sp2g(Z/2) ↪→ Sp2g(Z/4).

We finally have
PB2g+1 → Sp2g(Z)[2]→ sp2g(Z/2) < Sp2g(Z/4).

Hence, the image of the map PB2g+1 → Sp2g(Z/4) is the abelian group sp2g(Z/2). Thus, we
have

PB2g+b/B2g+b[m] ∼= sp2g(Z/2)

k⊕
i=1

Sp2g(Z/pi).

For b = 2, the maps

PB2g+2 → (Sp2g+2(Z)[2])yg+1
→ Ann(yg+1)

12



are both surjective, [9, Lemma 3.5]. But Ann(yg+1) < (Sp2g+2(Z/4))yg+1 , and thus, the image of
the map

PB2g+2 → (Sp2g+2(Z/4))yg+1

is the group Ann(yg+1). Thus, we get

PB2g+2/B2g+2[m] ∼= Ann(yg+1)

k⊕
i=1

(Sp2g+2(Z/pi))yg+1
.

This completes the proof. �

In order to find generators for B2g+1[m], it suffices to find a presentation for Sp2g(Z/p) in
terms of pure braids. In the next proposition we prove that Sp2g(Z/p) admits a presentation as a
quotient of the pure braid group over some relations. These new relations are the generators for
B2g+1[2p]. Recall that the generators of PBn are defined to be ai,j = σj−1...σi+1σ

2
i σ
−1
i+1...σ

−1
j−1,

where 1 ≤ i < j ≤ n.

Proposition 5.3. Fix a prime number p, and put p = 2k+1. Let Hn be the group with generators
{ai,j} with defining relations as follows:

PR1. aki,i+1a
k
i+1,i+2a

k
i,i+1 = aki+1,i+2a

k
i,i+1a

k
i+1,i+2,

PR2. api,j = 1,

PR3. (a1,2a1,3a2,3)2 = 1 for p > 3,

PR4. a−1r,sai,jar,s = ai,j , 1 ≤ r < s < i < j ≤ n or 1 ≤ i < r < s < j ≤ n,

PR5. a−1r,sai,jar,s = ar,jai,ja
−1
r,j , 1 ≤ r < s = i < j ≤ n,

PR6. a−1r,sai,jar,s = (ai,jas,j)ai,j(ai,jas,j)
−1, 1 ≤ r = i < s < j ≤ n,

PR7. a−1r,sai,jar,s = (ar,jas,ja
−1
r,ja

−1
s,j )ai,j(ar,jas,ja

−1
r,ja

−1
s,j )
−1, 1 ≤ r < i < s < j ≤ n,

PR8. ai,j = ak+1
j−1,ja

k+1
j−2,j−1...ai,i+1a

k
i+1,i+2...a

k
j−1,j , 1 < |i− j| ≤ n,

PR9. a1,2a1,3a2,3 = C,where

C = (a
(p+1)/4
1,2 a22,3)2, if (p+ 1)/2 is even,

C = a
(p+3)/4
1,2 a21,3a

(p−1)/4
1,2 a22,3, if (p+ 1)/2 is odd.

PR10. a1,2a1,3a1,4a2,3a2,4a3,4 = Ba1,4B
−1,where

B = a3,5a4,5a
k/2
2,3 a

−1
3,4, if k is even,

B = a3,5a4,5a
k+1
2,3 a3,4, if k is odd.

If n = 2g + 1 then Hn is isomorphic to Sp2g(Z/p). On the other hand if n = 2g + 2, then Hn is
isomorphic to Sp2g+2(Z/p)yg+1

.

Note that relations PR4, PR5, PR6, PR7 are relations in the presentation of the pure braid
group given in Chapter 4. We begin with the group Gn defined in Theorem 4.1, and using Tietze
transformations, we obtain the presentation of Hn.

Proof. By Theorem 4.1 the group Gn has the following presentation:

Gn = 〈σi|R1, R2, R3, R4, R5, R6〉,

where 1 ≤ i < 2g+b. Let ai,j = σj−1...σi+1σ
2
i σ
−1
i+1...σ

−1
j−1 and denote this relation by PR11. Then

include PR11 into the presentation of Gn and add the generator ai,j to obtain

〈σi, ai,j |R1, R2, R3, R4, R5, R6, PR11〉.
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Since PBn is a subgroup of Bn, this means that R1 and R2 can be used to deduce the relations
PR4, PR5, PR6, PR7.

〈σi, ai,j |R1, R2, R3, R4, R5, R6, PR4, PR5, PR6, PR7, PR11〉.

The relation R2 can be deduced by PR11 and R3 and PR4

〈σi, ai,j |R1, R3, R4, R5, R6, PR2, PR4, PR5, PR6, PR7, PR11〉.

We derive two more relations from PR11 and R3.

σi = ak+1
i,i+1, σ−1i = aki,i+1.

Then PR1 is equivalent to R1, PR2 is equivalent to R3, PR3 is equivalent to R4, PR9 is equivalent
to R5, PR10 is equivalent to R6, and PR11 is equivalent to PR8. In other words,

〈σi, ai,j | PR1, PR2, PR4, PR5, PR6, PR7, PR8, PR9, PR10, σi = ak+1
i,i+1, σ

−1
i = aki,i+1〉

Finally, for 1 ≤ i < j ≥ 2g + b we have that

〈ai,j | PR1, PR2, PR4, PR5, PR6, PR7, PR8, PR9, PR10〉,

which is the presentation of Hn. �

As an application of Proposition 5.3, we can obtain generators for B2g+b[2p].

Corollary 5.4. For k = (p − 1)/2, the group B2g+b[2p] is normally generated by six types of
elements:

api,j ,

(a1,2a1,3a2,3)2,

a1,2a1,3a2,3C
−1,

a1,2a1,3a1,4a2,3a2,4a3,4Ba
−1
1,4B

−1,

aki,i+1a
k
i+1,i+2a

k
i,i+1a

−k
i+1,i+2a

−k
i,i+1a

−k
i+1,i+2,

ak+1
j−1,ja

k+1
j−2,j−1...ai,i+1a

k
i+1,i+2...a

k
j−1,ja

−1
i,j .

Actually we can use Proposition 5.3 to find normal generators for any Bn[m], where m is either
2p1...pk or 4p1...pk and pi ≥ 3 are prime numbers.

6 Symmetric quotients of congruence subgroups

In this section we explore factor groups of congruence subgroups of braid groups. From Section
3 we know that Bn[2] ∼= PBn and Bn/Bn[2] ∼= Sn. In the next theorem we generalize the latter
isomorphism.

Theorem 6.1. The quotient Bn[p]/Bn[2p] is isomorphic to Sn.

Before we proceed to the proof of Theorem 6.1, we will prove the following lemma.

Lemma 6.2. The groups Bn[2p] and Bn[2] ∩Bn[p] are isomorphic.

Proof. It is obvious that Bn[2p] < Bn[2] ∩ Bn[p]. By Proposition 3.3 we have the decomposition
Sp2g(Z/2p) = Sp2g(Z/2) ⊕ Sp2g(Z/p). By the homomorphism ρ : Bn → Sp2g(Z/2p) we deduce
that ρ(Bn[2] ∩Bn[p]) is trivial. Hence Bn[2] ∩Bn[p] < Bn[2p]. �

Now we can prove the main theorem of the section.
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Proof of Theorem 6.1. Denote by si the transposition i, i + 1, that is, the generators of Sn. We
have the following presentation.

Sn =
〈
s1, ..., sn−1 | s2i = 1, sisi+1si = si+1sisi+1, sisj = sjsi when |i− j| > 1

〉
.

Consider the natural epimorphism τ : Bn → Sn defined by τ(σi) = si. Fix a prime number
p > 2; then the restriction τ : Bn[p] → Sn is a surjective homomorphism as well. Indeed, we
have that τ(σpi ) = spi = si, and for any other generator g ∈ Bn[p] we have τ(g) = 1. Finally,
ker(τ) = Bn[2] ∩Bn[p] = Bn[2p] by Lemma 6.2. �
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Mathematische Annalen, 306(1):231–245, 1996.

[25] Jerome Powell. Two theorems on the mapping class group of a surface. Proceedings of the
American Mathematical Society, 68(3):347–350, 1978.

[26] Andrew Putman. Cutting and pasting in the Torelli group. Geom. Topol., 11:829–865, 2007.

[27] B. Wajnryb. A braidlike presentation of Sp(n, p). Israel J. Math., 76(3):265–288, 1991.

Charalampos Stylianakis, department of Mathematics & Statistics, University of Glasgow,
Glasgow, G12 8QW, UK.
E-mail address: c.stylianakis.1@research.gla.ac.uk

16


	1 Introduction
	2 Preliminaries
	2.1 Definitions of braid groups
	2.2 Symplectic representation
	2.3 Congruence subgroups of braid groups

	3 Congruence subgroups of Symplectic groups
	4 Topological interpretation of prime level congruence subgroups
	5 Symplectic groups and pure braid groups
	6 Symmetric quotients of congruence subgroups

