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Abstract

Let G be a group acting on a tree T with finite edge stabilizers of bounded order.

We provide, in some very interesting cases, upper bounds for the complexity of the

intersection H ∩K of two tame subgroups H and K of G in terms of the complexities

of H and K. In particular, we obtain bounds for the Kurosh rank Kr(H ∩K) of the

intersection in terms of Kurosh ranks Kr(H) and Kr(K), in the case where H and

K act freely on the edges of T .

1 Introduction

In 1954, Howson [9] showed that the intersection of two finitely generated subgroups H

andK of a free group F is also finitely generated and provided an upper bound for the rank

r(H ∩K) of H ∩K in terms of r(H) and r(K). The Hanna Neumann conjecture, proved

independently by Friedman [8] and Mineyev [12] in 2011, says that r(H ∩K) ≤ r(H)r(K),

where r(A) = max{0, r(A) − 1} is the reduced rank of a free group A.

For free products the situation is analogous. Let Γ be a group. The Kurosh rank,

denoted Kr(Γ), of a free product decomposition Γ = ∗i∈IGi of Γ is defined to be the

number of (non-trivial) factors Gi. By the Kurosh subgroup theorem, any subgroup H

of Γ inherits a free product decomposition H = ∗j∈JHj ∗ F , where each Hj is non-

trivial and conjugate to a subgroup of a free factor of Γ and F is a free group. The

(subgroup) Kurosh rank of H of Γ with respect to the above splitting of Γ, is the sum

|J | + r(F ), which we again denote by Kr(H). The reduced Kurosh rank of H is defined

to be Kr(H) = max{0,Kr(H)− 1}.

Free products also have the Howson property, in the following sense: if H, K are

subgroups of Γ of finite Kurosh rank, then H ∩K also has finite rank (see [15, Theorem

2.13 (1)] for a proof). In [11], Ivanov proved that if Γ is torsion free, then Kr(H ∩K) ≤

2Kr(H)Kr(K). It is shown in [1], that if Γ is right-orderable, then the coefficient 2 can

be replaced by 1.
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The problem of finding bounds for the “rank” of the intersection of subgroups in

free products and more generally in groups satisfying the Howson property has also been

considered in [14, 4, 10, 6, 7, 16, 17, 2].

In this paper, we obtain, under appropriate hypotheses, bounds for the complexity of

the intersection of tame subgroups in groups acting on trees with finite edge stabilizers.

Let G be a group acting on a (simplicial) tree T without inversions. A vertex v of T is

called (G-) degenerate if Gv = Ge for some edge e incident to v. The corresponding vertex

[v]G of the quotient graph T/G is also called degenerate. Let H be a subgroup of G. We

denote by r(T/H) the rank of the fundamental group of T/H and by Vndeg(T/H) the set

of H-non-degenerate vertices of T/H. The complexity CT (H) of H with respect to T is

defined to be the sum CT (H) = r(T/H)+ |Vndeg(T/H)| ∈ [0,∞], if H contains hyperbolic

elements, and 1 otherwise. The reduced complexity of H with respect to T , is defined as

CT (H) = max{CT (H) − 1, 0}. The subgroup H of G is called tame if either H fixes a

vertex, or H contains a hyperbolic element and the quotient graph TH/H is finite, where

TH is the unique minimal H-invariant subtree of T . By [15, Theorem 2.13], if each edge

stabilizer is finite, then the intersection of two tame subgroups H, K of G is again tame.

In the case where H ∩K fixes a vertex, we obviously have CT (H ∩K) ≤ CT (H) ·CT (K).

Finitely generated subgroups are examples of tame subgroups. In the case of free

products, finite Kurosh rank implies tameness (see Lemma 2.3) and the complexity of a

non-trivial subgroup is exactly its Kurosh rank (see section 2 for more details). Our first

main result is the following.

Theorem 3.3. Let G be a group acting on a tree T with finite quotient and finite stabilizers

of edges and let H, K be tame subgroups of G such that H ∩K does not fix a vertex of T .

1. If TH/H and TK/K do not contain degenerate vertices of valence two, then

CT (H ∩K) ≤
(
6NM + 12(M − 1)N

)
· CT (H) · CT (K),

where N = max
{
|Gx ∩ HK| : x ∈ ET

}
and M = max{MH ,MK} ≤ max

{
|Gx| :

x ∈ ET
}
.

2. Suppose H and K satisfy the following property: for each H-degenerate (resp. K-

degenerate) vertex v of T , the stabilizer Hv (resp. Kv) stabilizes each edge in the

star of v. Then

CT (H ∩K) ≤ 6N · CT (H) · CT (K).

In particular, if H,K act freely on the edges of T , then

KT (H ∩K) ≤ 6N ·KT (H) ·KT (K).
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In the special case where both H and K act freely on T , the above inequality was

proved by Zakharov in [16].

Now let G = ∗AGi∗F be the free product of the amalgamated free product of Gi’s with

a finite amalgamated subgroup A and F , such that A is normal in each Gi. Following Dicks

and Ivanov [6], we define a3(Gi/A) = min
{
|Γ| : Γ is a subgroup of Gi/A with |Γ| ≥ 3

}

and θ(Gi/A) =
{

a3(Gi/A)
a3(Gi/A)−2

}
∈ [1, 3], where ∞

∞−2 := 1.

We represent G as the fundamental group of a graph of groups (G,Ψ), where Ψ is the

wedge of copies of [0, 1] (one copy for each factor Gi) and a bouquet of circles (one for each

free generator of F ). To each copy of [0, 1] and to the wedge point we associate the group

A, and to each circle we associate the trivial group. To each of the remaining vertices we

associate a factor Gi. Let T be the corresponding universal tree.

Theorem 3.6. Let G = ∗AGi ∗ F be the free product of the amalgamated free product of

Gi’s with a finite amalgamated subgroup A and F , such that A is normal in each Gi. We

consider the natural action of G on T defined above. Suppose that H and K are tame

subgroups (with respect to T ) of G which act freely on the edges of T . Then H ∩K is tame

and

KT (H ∩K) ≤ 2 · θ ·N ·KT (H) ·KT (K) ≤ 2 · θ · |A| ·KT (H) ·KT (K) ,

where θ = max{θ(Gi/A) : i ∈ I} and N = max
{
|gAg−1 ∩HK| : g ∈ G

}
.

As an immediate corollary we obtain the main result of [11] mentioned above.

It should be noted that the arguments in the proof of Theorem 3.6, work in a slightly

more general setting as well. Thus, with essentially the same proof, we obtain Theorem

3.9 (see also Remark 3.7): If H, K are tame subgroups of a free product ∗AGi with a finite

and normal amalgamated subgroup A, then CT (H ∩K) ≤ 2 ·θ · |A∩HK| ·CT (H) ·CT (K),

where θ = max{θ(Gi/A) : i ∈ I} and T is defined as above for F = 1.

After posting the first version of this paper on the arXiv, the authors learned from A.

Zakharov that he, in collaboration with S. Ivanov, had also recently obtained (unpublished)

upper bounds for the Kurosh rank of the intersection of free product subgroups in groups

acting on trees with finite edge stabilizers.

Acknowledgements. We are grateful to Dimitrios Varsos for many useful discussions

and comments. We are also grateful to the anonymous referee for careful reading of the

manuscript and pointing out a mistake in an earlier version.

2 Preliminaries

To fix our notation, we first recall the definition of a graph.
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Definition 2.1. A graph X consists of a (nonempty) set of vertices V X, a set of edges

EX, a fixed-point free involution −1 : EX → EX (e 7→ e−1) and a map i : EX → V X.

The vertex i(e) is called the initial vertex of the edge e. The terminal vertex t(e) of e is

defined by t(e) = i(e−1).

Throughout, let G be a group acting on a (simplicial) tree T (without inversions, i.e.

ge 6= e−1 for any g ∈ G and e ∈ EX). By Bass-Serre theory, for which we refer to [5, 13],

this is equivalent to saying that G is the fundamental group of the corresponding graph

of groups (G, T/G). If x ∈ T , we denote by [x]G the G-orbit of x and by Gx its stabilizer.

An element g ∈ G is elliptic if it fixes a vertex of T and hyperbolic otherwise. If H is a

subgroup of G containing a hyperbolic element, then there is a unique minimalH-invariant

subtree TH which is the union of the axes of the hyperbolic elements of H.

We recall that a subgroupH of G is called tame if either H fixes a vertex, orH contains

a hyperbolic element and the quotient graph TH/H is finite. By [15, Prop. 2.2], the

subtree TH is a “core” for the action of H on T in the sense that r(T/H)+ |Vndeg(T/H)| =

r(TH/H)+|Vndeg(TH/H)|, i.e. CT (H) = CTH
(H). From this it follows that the complexity

of a tame subgroup is finite.

Finitely generated subgroups of G are examples of tame subgroups, since a finitely

generated group Γ acting by isometries on T , either fixes a point of T or else contains a

hyperbolic isometry and the quotient graph TΓ/Γ is finite.

Remark 2.2. We note that if the G-stabilizer of each edge is finite and there is a bound

on their orders, then any subgroup of G consisting of elliptic elements fixes a vertex of T

([15, Lem. 2.5]).

If we restrict attention to subgroups H of G that act edge-freely on T , then the Kurosh

rank KT (H) of H (with respect T ) is defined to be the complexity CT (H) of H.

Let Γ = ∗i∈IGi be a free product and H a subgroup of Γ. By the Kurosh subgroup

theorem, H = ∗i∈I,gi(H ∩ giGig
−1
i ) ∗ F , where for each i, gi ranges over a set of double

coset representatives in Gi\Γ/H and F is a free group intersecting each conjugate gGig
−1

trivially. The (subgroup) Kurosh rank of H with respect the above free product decom-

position of Γ, denoted by Kr(H), is the sum |Λ| + rank(F ), where |Λ| is the number of

all non-trivial factors H ∩ giGig
−1
i . Note that the Kurosh rank of Γ is the number of

non-trivial factors Gi.

It is not difficult to verify that the numbers |Λ|, rank(F ) depend only on H and the

given free product decomposition of Γ. In fact, if T is any Γ-tree corresponding to the

given decomposition of Γ, then the Kurosh rank of H with respect to Γ = ∗i∈IGi is equal

to the Kurosh rank KT (H) of the associated free product decomposition of H coming

from the action of H on T . Thus, if H is non-trivial, then Kr(H) = KT (H) = CT (H).
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Lemma 2.3. Let G be a group acting on a tree T and H a subgroup of G that act edge-

freely on T . If KT (H) < ∞, then H is tame.

Proof. It suffices to consider the case when H contains a hyperbolic element. Let π :

T → T/H be the natural projection given by π(x) = [x]H . Since KT (H) < ∞, there are

finitely many vertices v1, . . . , vn of T/H with non-trivial group and finitely many edges

e1, . . . , em of T/H such that X = T/H \ {e1, . . . , em} is a maximal tree of T/H. Let Y

be the finite subgraph of T/H consisting of {e1, . . . , em} and all geodesics in X between

endpoints of the e′is and v1, . . . , vn. We claim that π−1(Y ) is connected. To see this, let

p = x1 · · · xk be a reduced path connecting vertices of π−1(Y ) such that no edge of p lies

in π−1(Y ). Then π(p) is contained in the complement T/H \ Y of Y . Since Y contains

the edges e1, . . . , em, each component C of T/H \ Y is a tree, and it is not difficult to see

that C intersects T/H \Y in only one vertex. It follows that there is an index i such that

π(xi) = π(xi+1)
−1. This means that hxi = x−1

i+1 for some h ∈ H and hence h fixes the

initial vertex v of xi. From the construction of Y , v is degenerate and therefore h = 1,

which contradicts the choice of p.

Thus, π−1(Y ) is a connected H-invariant subgraph of T . It follows that TH ⊆ π−1(Y ).

We conclude that TH/H is finite, being a subgraph of Y .

3 Proofs of the main results

Let Y be a graph and v a vertex of Y . The star of v, denoted StarY (v), is the set of edges

of Y with initial vertex v, i.e. StarY (v) = {e ∈ EY | i(e) = v}. The valence or degree of

v in Y , denoted degY (v), is the number of edges in the star of v.

Lemma 3.1. Let G be a group acting on a tree T , let H be a tame subgroup of G containing

hyperbolic elements and let X̃ be the graph obtained from X = TH/H by attaching a loop

at each H-non-degenerate vertex. Then

CT (H) = r(X̃) =
1

2

∑(
deg

X̃
([v]H )− 2

)
,

where the sum is taken over all vertices [v]H of X̃.

Proof. The reduced rank of a graph is equal to the number of its (geometric-oriented)

edges minus the number of its vertices. The minimality of TH implies that each vertex

of X of valence one is H-non-degenerate. Therefore, every vertex of X̃ has valence at

least two. Now an easy calculation shows that the sum
∑(

degX̃([v]H) − 2
)
, over all

vertices [v]H of X̃, is equal to 2r(X̃). By construction of X̃, we have r(X̃) = CT (H)

which completes the proof.
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Lemma 3.2. Let G be a group acting on a tree T and let A and B be subgroups of G such

that A ⊆ B. Suppose that A and B contain hyperbolic elements and that v is a vertex of

TB. We consider the graph map πB : TA/A −→ TB/B given by π([x]A) = [x]B.

1. |Star([v]A)| ≤ |Gv ∩B| · |Star([v]B)| (provided that they are finite).

2. If, moreover, Bv is B-degenerate and stabilizes each edge in StarTB
(v), then the

restriction πB : Star([v]A) −→ Star([v]B) is an embedding.

Proof. Suppose that [e1]A and [e2]A are two edges in the star of [v]A with π([e1]A) =

π([e2]A). Then there are a1, a2 ∈ A and b ∈ B such that i(e1) = a1v, i(e2) = a2v and

e1 = be2. It follows that i(e1) = bi(e2) and thus a1v = ba2v. Hence a
−1
1 ba2 ∈ Gv∩B = Bv.

Now, if [x]A is an edge in the star of [v]A with π([x]A) = π([e1]A) = π([e2]A), then as before

i(x) = axv and x = bxe2 for some ax ∈ A and bx ∈ B. If we assume further that a−1
1 ba2 =

a−1
x bxa2, then a−1

1 b = a−1
x bx and so [e1]A = [be2]A = [a1a

−1
x bxe2]A = [bxe2]A = [x]A. This

means that each fiber of the restriction (on stars) has at most |Gv ∩B| elements, and the

first assertion follows.

Now, if Bv stabilizes each edge in StarTB
(v), then a−1

1 ba2 stabilizes a
−1
2 e2 and therefore

[e1]A = [be2]A = [a1a
−1
2 e2]A = [e2]A.

In view of this lemma, we defineMB := max{|Gv∩B| : v is a B-degenerate vertex of T }.

The following is our first main result.

Theorem 3.3. Let G be a group acting on a tree T with finite quotient and finite stabilizers

of edges and let H, K be tame subgroups of G such that H ∩K does not fix a vertex of T .

1. If TH/H and TK/K do not contain degenerate vertices of valence two, then

CT (H ∩K) ≤
(
6NM + 12(M − 1)N

)
· CT (H) · CT (K),

where N = max
{
|Gx ∩ HK| : x ∈ ET

}
and M = max{MH ,MK} ≤ max

{
|Gx| :

x ∈ ET
}
.

2. Suppose H and K satisfy the following property: for each H-degenerate (resp. K-

degenerate) vertex v of T , the stabilizer Hv (resp. Kv) stabilizes each edge in the

star of v. Then

CT (H ∩K) ≤ 6N · CT (H) · CT (K).

In particular, if H,K act freely on the edges of T , then

KT (H ∩K) ≤ 6N ·KT (H) ·KT (K).

Proof. Since H ∩ K does not fix a vertex, it follows from Remark 2.2 that H ∩ K, H

and K contain hyperbolic elements. Let TH∩K , TH , TK be the minimal subtrees of T
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invariant under H ∩ K, H, K, respectively. Let πH : TH∩K/H ∩ K −→ TH/H and

πK : TH∩K/H ∩K −→ TK/K be the natural projections (defined as in Lemma 3.2). We

consider the map π = (πH , πK) : TH∩K/H ∩K −→ TH/H × TK/K given by π([x]H∩K) =

([x]H , [x]K). By [3, Proposition 8.7], each fiber π−1([x]H , [x]K), where x is an edge or a

vertex, has exactly |Hx\Gx ∩HK/Kx| elements. It follows that for each edge x the fiber

π−1([x]H , [x]K) has at most N elements.

For convenience we simplify notation by setting X = TH∩K/H ∩K, Y = TH/H and

Z = TK/K. As in Lemma 3.1, we construct graphs X̃, Ỹ and Z̃, by attaching a loop at

each non-degenerate vertex of X, Y and Z, respectively.

1) By Lemma 3.1, it suffices to show that

∑

V X̃

(
deg

X̃
([v]H∩K)− 2

)
≤

(
3NM + 6N(M − 1)

)∑

V Ỹ

(
deg

Ỹ
([v]H)− 2

)
·
∑

V Z̃

(
deg

Z̃
([v]K)− 2

)
.

(1)

For any pair of vertices (a, b) ∈ Y × Z, we will show that

∑

v∈π−1(a,b)

(
degX̃(v)− 2

)
≤

(
3NM + 6N(M − 1)

)
·
(
degỸ (a)− 2

)
·
(
degZ̃(b)− 2

)
(2)

from which (1) follows. The rest of the proof follows similar arguments to those given in

[4], [6] and [11]. Let {v1, . . . , vn} be the vertices of π−1(a, b). Since the fiber of any edge

of Y × Z contains at most N edges, we have

n∑

i=1

degX(vi) ≤ N · degY (a) · degZ(b). (3)

We consider three cases depending on whether or not a and b are degenerate.

Case 1. Suppose that a is H-non-degenerate and b is K-non-degenerate. Then degY (a) =

degỸ (a) − 2, degZ(b) = degZ̃(b)− 2 while degX(vi) is equal to degX̃(vi)− 2 or degX̃(vi).

Hence

n∑

i=1

(
deg

X̃
(vi)−2

)
≤

n∑

i=1

degX(vi) ≤ N ·degY (a)·degZ(b) = N ·
(
deg

Ỹ
(a)−2

)
·
(
deg

Z̃
(b)−2

)
.

Case 2. Exactly one of a, b, say b, is degenerate. Then each vi is (H ∩K)-degenerate as

well, and thus degY (a) = deg
Ỹ
(a) − 2, degX(vi) = deg

X̃
(vi) and deg

Z̃
(b) = degZ(b) > 2.

Also, by Lemma 3.2, for each i we have degX(vi) ≤ M degZ(b).

If n ≤ N · degY (a), then

n∑

i=1

(
degX̃(vi)− 2

)
=

n∑

i=1

(
degX(vi)− 2

)
≤ n ·

(
M degZ(b)− 2

)
≤ N · degY (a)

(
M degZ(b)− 2

)

≤ N · degY (a)
(
M

(
degZ(b)− 2

)
+ 2(M − 1)

)

= NM
(
degỸ (a)− 2

)(
degZ̃(b)− 2

)
+ 2N(M − 1)

(
degỸ (a)− 2

)
(4)

≤
(
NM + 2N(M − 1)

)
·
(
degỸ (a)− 2

)
·
(
degZ̃(b)− 2

)
,

7



where the last inequality follows because deg
Z̃
(b) > 2.

On the other hand, if n ≥ N · degY (a), then

n∑

i=1

(
deg

X̃
(vi)− 2

)
=

n∑

i=1

degX(vi)− 2n ≤ N · degY (a) · degZ(b)− 2N · degY (a)

= N degY (a) ·
(
degZ(b)− 2

)
= N

(
deg

Ỹ
(a)− 2

)(
deg

Z̃
(b)− 2

)
. (5)

Case 3. Finally, suppose that a, b are degenerate in Y , Z, respectively. Then each ver-

tex vi is (H ∩K)-degenerate as well and deg
Ỹ
(a) = degY (a) > 2, deg

X̃
(vi) = degX(vi),

deg
Z̃
(b) = degZ(b) > 2. Moreover, by Lemma 3.2, degX(vi) ≤ min{M degY (a),M degZ(b)}.

Suppose that degZ(b) = min{degY (a),degZ(b)} and hence degY (a) = max{degY (a),degZ(b)}

(the other case is handled in the same way).

If n ≤ N · degY (a), then

n∑

i=1

(
deg

X̃
(vi)−2

)
=

n∑

i=1

(
degX(vi)−2

)
≤ n·

(
M degZ(b)−2

)
≤ N ·degY (a)·

(
M degZ(b)−2

)
.

On the other hand, if n ≥ N · degY (a), then

n∑

i=1

(
degX̃(vi)−2

)
=

n∑

i=1

degX(vi)−2n ≤ N ·degY (a)·degZ(b)−2N ·degY (a) ≤ N ·degY (a)·
(
degZ(b)−2

)
.

Thus, in each case we have

n∑

i=1

(
degX̃(vi)− 2

)
≤ N · degY (a) ·

(
M degZ(b)− 2

)
. (6)

Since degY (a) ≥ 3, or equivalently, degY (a) ≤ 3
(
degY (a)− 2

)
, it follows that

n∑

i=1

(
degX̃(vi)− 2

)
≤ 3N ·

(
degY (a)− 2

)
·
(
M degZ(b)− 2

)

≤ 3N ·
(
degY (a)− 2

)
·
(
M

(
degZ(b)− 2

)
+ 2(M − 1)

)

= 3NM ·
(
degY (a)− 2

)
·
(
degZ(b)− 2

)
+ 6N(M − 1) ·

(
degY (a)− 2

)

≤
(
3NM + 6N(M − 1)

)
·
(
degỸ (a)− 2

)
·
(
degZ̃(b)− 2

)
. (7)

This completes the proof of part 1) of the theorem.

2) To prove the second part, again by Lemma 3.1, it suffices to show that

∑

v∈π−1(a,b)

(
deg

X̃
(v) − 2

)
≤ 3N

(
deg

Ỹ
(a)− 2

)
·
(
deg

Z̃
(b)− 2

)
, (8)

for each pair of vertices (a, b) ∈ Y ×Z. Proceeding exactly as before, we distinguish three

cases. In Case 1, where both a and b are non-degenerate, we get the same inequality. In

Cases 2 and 3, by Lemma 3.2 (2), we can now use 1 instead of M . Thus in Cases 2 and

3, we obtain respectively (from 4-5 and 7) the inequalities

n∑

i=1

(
deg

X̃
(vi)− 2

)
≤ N

(
deg

Ỹ
(a)− 2

)
·
(
deg

Z̃
(b)− 2

)
(9)
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and

n∑

i=1

(
degX̃(vi)− 2

)
≤ 3N

(
degỸ (a)− 2

)
·
(
degZ̃(b)− 2

)
. (10)

It remains only to consider the case when both a and b are degenerate (in which case we are

in Case 3) and degY (a) = 2, where a is the vertex of maximal degree. If degY (a) = 2, then

degZ(b) = 2 too, and inequality 8 follows since, by Lemma 3.2 (2), degX̃(vi) = degX(vi) ≤

min{degY (a),degZ(b)} for each i.

Corollary 3.4. ([16, Theorem 1]) Let G be a group acting on a tree T with finite quotient

and finite stabilizers of edges and let H, K be finitely generated subgroups of G which

intersect trivially each vertex stabilizer (and hence they are free groups). Then H ∩K is

finitely generated and

r(H ∩K) ≤ 6N · r(H) · r(K),

where N = max
{
|Gx ∩HK| : x ∈ ET

}
.

Corollary 3.5. Let G be a group acting on a tree T with finite quotient, finite stabilizers

of edges and infinite vertex stabilizers. If H and K are subgroups of finite index in G,

then

CT (H ∩K) ≤ 2N · CT (H) · CT (K).

Proof. If the G-stabilizer of every vertex is infinite and both H and K are of finite index

in G, then each vertex stabilizer is also infinite under the action of H or K (being of finite

index in the corresponding G-stabilizer) and thus Cases 2 and 3 do not occur.

Following [6], given a groupG, we define a3(G) = min
{
|Γ| : Γ is a subgroup of G with |Γ| ≥

3
}
and θ(G) =

{
a3(G)

a3(G)−2

}
∈ [1, 3], where ∞

∞−2 := 1.

In the sequel, we prove that if H,K act freely on the edges, then the coefficient 6 in

the above theorem can be replaced by a number 2θ, where θ ∈ [1, 3], by imposing some

extra hypotheses on the structure of G.

Let Gi, i ∈ I, be a family of groups together with a group A, let φi : A −→ Gi be

a family of monomorphisms and let ∗AGi be the amalgamated free product of Gi’s with

amalgamated subgroup A (with respect to φi). We can think of each φi as an inclusion.

Let F be a free group and let G = ∗AGi ∗ F be the free product of F and ∗AGi. We

construct a graph of groups (G,Ψ) with fundamental group G as follows. The graph Ψ

consists of a wedge of open edges ei = [u0, ui], i ∈ I (i.e. one for each factor Gi and

distinct endpoints u0 and ui, i ∈ I, 0 /∈ I), together with a wedge of loops lj , one for each

free generator of F , attached at a vertex u0 with vertex group A. To each edge ei we

associate the group A, to each loop lj we associate the trivial group and to each vertex ui

we associate the group Gi. We denote by T the corresponding universal tree.

9



Theorem 3.6. Let G = ∗AGi ∗ F be the free product of the amalgamated free product of

Gi’s with a finite amalgamated subgroup A and F , such that A is normal in each Gi. We

consider the natural action of G on T defined above. Suppose that H and K are tame

subgroups (with respect to T ) of G which act freely on the edges of T . Then H ∩K is tame

and

KT (H ∩K) ≤ 2 · θ ·N ·KT (H) ·KT (K) ≤ 2 · θ · |A| ·KT (H) ·KT (K) ,

where θ = max{θ(Gi/A) : i ∈ I} and N = max
{
|gAg−1 ∩HK| : g ∈ G

}
.

Proof. We proceed as in the proof of Theorem 3.3. With the notation of that proof, we

have to prove that

n∑

i=1

(
degX̃(vi)− 2

)
≤ θ ·N ·

(
degỸ (a)− 2

)
·
(
degZ̃(b)− 2

)
(11)

for any pair of vertices (a, b) ∈ Y × Z (recall that {v1, . . . , vn} denotes the vertices of

π−1(a, b)). Since H, K act freely on the edges of T , it follows, by Lemma 3.2 (2), that

we can use 1 instead of M . Suppose first that at least one of a and b is non-degenerate.

Then the arguments of Cases 1, 2 of the proof of Theorem 3.3 apply to show that

n∑

i=1

(
deg

X̃
(vi)− 2

)
≤ N ·

(
deg

Ỹ
(a)− 2

)
·
(
deg

Z̃
(b)− 2

)
(12)

and inequality 11 holds. Thus it suffices to consider the case where a is H-degenerate

and b is K-degenerate (i.e. Case 3 in the proof of Theorem 3.3). In this case we have

degY (a) = degỸ (a), degZ(b) = degZ̃(b) and degX(vi) = degX̃(vi), while by Lemma 3.2

(2), degX(vi) ≤ min{degY (a),degZ(b)}. For each i ∈ {1, . . . , n}, choose a vertex, wi, of T ,

so that [wi]H∩K = vi ∈ π−1(a, b). Note that all w1, . . . , wn lie in the same G-orbit. There

are two subcases to consider.

(i) wi and u0 are in the same G-orbit, i.e. wi = giu0 for some gi ∈ G. Notice that

Hwi
= Kwi

= giAg
−1
i ∩ H = giAg

−1
i ∩ K = 1. If one of the vertices a or b has valence

2, then (each) vi has valence 2 as well and inequality 11 is obvious. If both a and b have

valence at least 3, then

n∑

i=1

(
deg

X̃
(vi)− 2

)
≤ n ·

(
deg

Ỹ
(a)− 2

)
≤ |Hwi

\Gwi
∩HK/Kwi

|
(
deg

Ỹ
(a)− 2

)
· (3− 2)

≤ N ·
(
deg

Ỹ
(a)− 2

)
·
(
deg

Z̃
(b)− 2

)
≤ θ(G) ·N ·

(
deg

Ỹ
(a)− 2

)
·
(
deg

Z̃
(b)− 2

)
.

(ii) wi and uj are in the same G-orbit for some j ∈ I, i.e. there exists gi ∈ G such that

wi = giuj. As before, we may assume that both a and b have valence at least 3.

If n ≤ N , then

n∑

i=1

(
deg

X̃
(vi)− 2

)
≤ N ·

(
deg

Ỹ
(a)− 2

)
· (3− 2) ≤ N ·

(
deg

Ỹ
(a)− 2

)
·
(
deg

Z̃
(b)− 2

)
.
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Suppose now that n > N . Let R = {gλ}λ∈Λ be a set of representatives of left cosets

of A in Gj . From the construction of X = T/G, the stars of different vertices of π−1(a, b)

are disjoint, while each edge in the star of [giuj]Γ, where Γ = H ∩ K,H or K, is of

the form [xej ]Γ and its terminal vertex is [giuj ]Γ. It follows that there is γ ∈ Γ such that

γxuj = giuj and thus g−1
i γx ∈ Gj . If we write g

−1
i γx as gλ(x)a, where gλ(x) ∈ R and a ∈ A,

then [xej ]Γ = [γ−1gigλ(x)aej ]Γ = [gigλ(x)aej]Γ = [gigλ(x)ej ]Γ. It follows that there exists a

subset Ri
Γ of R such that Star([wi]Γ) =

{
[gigλej ]Γ : gλ ∈ Ri

Γ

}
and |Ri

Γ| = |Star([wi]Γ)|.

In particular, |Ri
H | = |StarY (a)| and |Ri

K | = |StarZ(b)|.

Fix i ∈ {1, . . . , n}. For any k ∈ {1, . . . , n}, let Ck be the subset of RH × RK :=

Ri
H × Ri

K consisting of all pairs (gλ, gµ) such that
(
[gigλej ]H , [gigµej ]K

)
is the image

under π of some edge [xej ]H∩K in the star of [gkuj]H∩K = vk in X. Let φ : Gj → Gj/A

denote the natural epimorphism. Note that the restriction of φ on R is a bijection.

We will show that φ(Ck) =
{(

φ(gλ), φ(gµ)
)
: (gλ, gµ) ∈ Ck

}
is a single-quotient subset

of φ(RH)× φ(RK), in the terminology of [6], i.e. that the product φ(gλ) · φ(gµ)
−1 is con-

stant for all pairs (gλ, gµ) ∈ Ck. Suppose that y1 and y2 are edges in the star of vk and that

π(yt) =
(
[gigλ(t)ej ]H , [gigµ(t)ej ]K

)
, t = 1, 2. We want to show that φ(gλ(1)) · φ(gµ(1))

−1 =

φ(gλ(2)) · φ(gµ(2))
−1. From the above analysis, we can write yt = [gkgs(t)ej ]H∩K for some

gs(t) ∈ Rk
H∩K , t = 1, 2, and thus π(yt) =

(
[gkgs(t)ej ]H , [gkgs(t)ej ]K

)
. It follows that

(
[gkgs(1)ej ]H , [gkgs(1)ej ]K

)
=

(
[gigλ(1)ej ]H , [gigµ(1)ej]K

)
, and that

(
[gkgs(2)ej ]H , [gkgs(2)ej ]K

)
=

(
[gigλ(2)ej ]H , [gigµ(2)ej]K

)
. Hence there are h1, h2 ∈ H, k1, k2 ∈ K and a1, a2, a3, a4 ∈ A

such that

gkgs(1) = h1gigλ(1)a1, gkgs(2) = h2gigλ(2)a3

gkgs(1) = k1gigµ(1)a2, gkgs(2) = k2gigµ(2)a4

By normality of A in Gj , the stabilizer of any edge in the star of wi is equal to giAg
−1
i .

Therefore our assumption that wi is H,K degenerate implies that H ∩Gwi
= H ∩ giAg

−1
i

and K ∩Gwi
= K ∩ giAg

−1
i . Now, from the first two equalities above we deduce that

h−1
2 h1 = gigλ(2)a3g

−1
s(2)gs(1)a

−1
1 g−1

λ(1)g
−1
i ∈ H∩giGjg

−1
i = H∩Gwi

= H∩giAg
−1
i = 1, (13)

while from the last two

k−1
2 k1 = gigµ(2)a4g

−1
s(2)gs(1)a

−1
2 g−1

µ(1)g
−1
i ∈ K∩giGjg

−1
i = K∩Gwi

= K∩giAg
−1
i = 1. (14)

The above relations imply that gλ(2)a3g
−1
s(2)gs(1)a

−1
1 g−1

λ(1) = 1 and gµ(2)a4g
−1
s(2)gs(1)a

−1
2 g−1

µ(1) =

1. Thus, gλ(1)g
−1
µ(1) = gλ(2)a3g

−1
s(2)gs(1)a

−1
1 a2g

−1
s(1)gs(2)a

−1
4 g−1

µ(2), from which it follows that

φ(gλ(1)) · φ(gµ(1))
−1 = φ(gλ(2)) · φ(gµ(2))

−1.

Our aim is to apply [6, Corollary 3.5], which requires pairwise-disjoint, single-quotient

subsets. Note that if the intersection Ck ∩ Cs is nonempty, then there are edges y1 and

y2 in StarX(vk) and StarX(vs), respectively, such that π(y1) = π(y2). Thus, for each

k = 1, . . . , n, we choose a subset Fk of StarX(vk) with |F1|+ · · ·+ |Fn| maximum such that
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the restriction of π on the union ∪n
k=1Fk is an injection. In particular, they are pairwise-

disjoint. Since the inverse image of any edge of Y ×Z under π contains at most N elements,

we have |StarX(v1)|+ · · ·+ |StarX(vn)| ≤ N
(
|F1|+ · · ·+ |Fn|

)
. If CF (k) denotes the subset

of Ck corresponding to edges of Fk, then CF (1), . . . , CF (n) are pairwise-disjoint. It follows

that φ(CF (1)), . . . , φ(CF (n)) are pairwise-disjoint, single-quotient subsets of φ(RH)×φ(RK)

and [6, Corollary 3.5] applies to show that

n∑

k=1

(
|φ(CF (k))| − 2

)
≤ θ(Gj/A) ·

(
|φ(RH )| − 2

)
·
(
|φ(RK)| − 2

)
.

Finally

n∑

k=1

(
degX̃(vk)− 2

)
=

n∑

k=1

(
degX(vk)− 2

)
=

n∑

k=1

|StarX(vk)| − 2n ≤ N ·

n∑

k=1

|Fk| − 2N

= N ·

n∑

k=1

(
|CF (k)| − 2

)
= N ·

n∑

k=1

(
|φ(CF (k))| − 2

)

≤ N · θ(Gj/A) ·
(
|φ(RH)| − 2

)
·
(
|φ(RK)| − 2

)

= N · θ(Gj/A) ·
(
|RH | − 2

)
·
(
|RK | − 2

)

≤ N · θ ·
(
degỸ (a)− 2

)
·
(
degZ̃(b)− 2

)
.

This completes the proof.

Remark 3.7. The analogous theorem with the same proof is valid for fundamental groups

of graphs of groups (G,Ψ) defined as follows. The subject graph Ψ is the same as the one

defined previously (prior to Theorem 3.6). To the terminal vertex ui of ei we associate the

group Gi, to the common initial vertex of ei’s we associate the finite group A, and to each

open edge ei we associate a subgroup Ai of A normally embedded in Gi such that Ai0 = A

for some i0 (this means that the “central” vertex is G-degenerate and thus Gwi
= gAg−1

in Case (i) of the proof). To each loop we associate the trivial group. We need normality

of Ai in Gi in order to make the natural map Gi → Gi/Ai a homomorphism (and thus the

same arguments in Case (ii) work equally well to this more general setting).

As a corollary, we obtain the main result of Ivanov in [11] (in fact our proof can be

slightly modified to generalize [6, Theorem 6.3] as well).

Corollary 3.8. Suppose that H1, H2 are subgroups of a free product G = ∗a∈IGa and H1,

H2 have finite Kurosh rank K(H1), K(H2). Then the intersection H1 ∩H2 also has finite

Kurosh rank and

Kr(H1 ∩H2) ≤ 2 · θ(G) ·Kr(H1) ·Kr(H2).

In particular, if G is torsion-free (or more generally, every finite subgroup of G has order

at most 2), then

Kr(H1 ∩H2) ≤ 2 ·Kr(H1) ·Kr(H2).
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Proof. By Lemma 2.3 and the comments preceding it, the subgroup Kurosh rank is equal

to the Kurosh rank with respect to T (i.e. Kr(·) = KT (·), where T is as above) and finite

Kurosh rank implies tameness.

In the case of free products with a finite, normal subgroup amalgamated, we can use

the same arguments to improve the bound for the complexity of the intersection of tame

subgroups.

Let Gi, i ∈ I, be a family of groups together with a group A and let G = ∗AGi

be the amalgamated free product of Gi’s with amalgamated subgroup A (with respect

to a family of monomorphisms, regarded as inclusions). We construct a tree of groups

(G, T0) with fundamental group G as usual. The tree T0 consists of a wedge of open edges

ei = [u0, ui], i ∈ I (one for each factor Gi) attached at a vertex v0 (where 0 /∈ I) with

vertex group A. To each edge we associate the group A and to each vertex vi we associate

the group Gi. We denote by T the corresponding universal tree.

Theorem 3.9. Let G = ∗AGi be the amalgamated free product of Gi’s with a finite and

normal amalgamated subgroup A. We consider the action of G on T defined above. If H

and K are tame subgroups (with respect to T ) of G, then H ∩K is tame and

CT (H ∩K) ≤ 2 · θ · |A ∩HK| · CT (H) · CT (K),

where θ = max{θ(Gi/A) : i ∈ I}.

Proof. The proof is exactly the same as the proof of Theorem 3.6. There are two things

to note:

(a) The normality of A in G and the fact that v0 is a G-degenerate vertex imply that for

each subgroup B of G the B-stabilizer of the star of any B-degenerate vertex v of T

is equal to Bv and therefore Lemma 3.2 (2) applies (i.e we can again use 1 instead

of M to obtain inequality 12).

(b) Using the notation of the proof of Theorem 3.6, the relations 13 and 14 now give

gλ(2)a3g
−1
s(2)

gs(1)a
−1
1 g−1

λ(1)
∈ A and gµ(2)a4g

−1
s(2)

gs(1)a
−1
2 g−1

µ(1)
∈ A. Since A is the kernel

of φ, we again conclude that φ(gλ(1)) · φ(gµ(1))
−1 = φ(gλ(2)) · φ(gµ(2))

−1.

Remark 3.10. In general, there are examples (see [11, 16]) showing that the bounds ob-

tained in the previous two theorems are sharp.
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