
ar
X

iv
:1

51
1.

02
05

6v
2 

 [
m

at
h.

G
R

] 
 3

0 
A

pr
 2

01
8

Polynomial-time right-ideal morphisms and congruences

J.C. Birget

24.iv.2018

Abstract

We continue with the functional approach to the P-versus-NP problem, begun in [4, 3]. We
previously constructed a monoid RMP that is non-regular iff NP 6= P. We now construct homo-
morphic images of RMP with interesting properties. In particular, the homomorphic imageMP

poly

of RMP is finitely generated and J 0-simple, and is non-regular iff P 6= NP. The group of units of
MP

poly is the famous Richard Thompson group V .

1 Introduction

In [4] we defined the monoids fP and RMP. The monoid fP consists of the partial functions A∗ → A∗

that are computable by deterministic Turing machines in polynomial time, and that have polynomial
I/O-balance (defined below). In [4] it was proved that fP is finitely generated. The submonoid RMP

consists of the elements of fP that are right-ideal morphisms of A∗ (defined below). This monoid
was studied further in [3], where we proved that RMP is not finitely generated. We saw that the
one-way functions (in the sense of worst-case time-complexity) are exactly the non-regular element of
fP, and that f ∈ RMP is regular in fP iff f is regular in RMP. So, one-way functions exist iff fP is
non-regular, iff RMP is non-regular. It is well-known that one-way functions (according to worst-case
time-complexity) exist iff NP 6= P. For P-vs.-NP, see e.g. [13, 14, 10, 12, 16]; for worst-case one-way
functions, see e.g. [10, 12]. For definitions related to semigroups and monoids, see e.g. [11].

In this paper we define some congruences on RMP that are algebraic forms of the padding ar-
gument. The padding argument is often used in computational complexity in order to decrease the
complexity of a problem by lengthening the inputs (since complexity is measured as a function of
the input-length, lengthening the input reduces complexity). We use the padding argument in the
proof of finite generation of fP in [4]; for another use, see Lemma 2.22. These congruences lead to
infinitely many quotient monoids (i.e., homomorphic images of RMP), some of which have interesting
and unique properties:
• MP

poly is regular iff RMP is regular (iff NP = P); moreover, MP
poly is finitely generated, and its

group of units is the well-known finitely presented infinite simple group V of Richard Thompson [9];
• MP

E3 is a homomorphic image ofMP
poly and is regular;

• MP
bd is a homomorphic image of MP

E3, acts faithfully on the Cantor space Aω, and has just two
non-zero D-classes;
• MP

end is a homomorphic image ofMP
bd, is congruence-simple, and has just one non-zero D-class.

More details about these motivations are given at the end of this Introduction.

We now give some definitions. A function f : A∗ → A∗ is polynomially balanced iff there exists a
polynomial p such that for all x ∈ Dom(f): |f(x)| ≤ p(|x|) and |x| ≤ p(|f(x)|).

Here we always use A = {0, 1} as our alphabet. In [4], RMP was called RMP
2 , where the subscript

2 indicated the size of A; but since here the size of A will always be 2, we drop the subscript 2.
For an alphabet A, the set of all words over A is denoted by A∗; this includes the empty string

ε. By a “word” or “string” we will always mean a finite word. The set of all non-empty words over
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A is denoted by A+ (= A∗ − {ε}). The length of a word x ∈ A∗ is denoted by |x|. For n ≥ 0 we let
An = {x ∈ A∗ : |x| = n}, and A≤n = {x ∈ A∗ : |x| ≤ n}.

For two strings v,w ∈ A∗, when v is a prefix of w we write v ≤pref w; i.e., there exists x ∈ A∗

such that vx = w. The relation ≤pref is a partial order on A∗, and is called the prefix order. We
write v <pref w when v ≤pref w and v 6= u (strict prefix order). We write v ‖pref w when v ≤pref w or
w ≤pref v, and then we say that v and w are prefix-comparable. One easily proves that w ‖pref v iff
there exist x1, x2 ∈ A∗ such that wx1 = vx2. A set P ⊂ A∗ is a prefix code iff no two elements of P
are prefix-comparable. A set R ⊆ A∗ is a right ideal iff RA∗ = R. It is easy to prove (see e.g. [4]) that
for every right ideal R there exists a unique prefix code P such that R = P A∗. For prefix codes and
related concepts, see e.g. [2].

For a partial function f : A∗ → A∗, the domain is Dom(f) = {x ∈ A∗ : f(x) is defined}, and the
image is Im(f) = f(A∗) = f(Dom(f)). When we say “function”, we mean partial function. When
Dom(f) = A∗, f is a called a total function. The restriction of f to a set S ⊆ A∗ is denoted by f |S .
The identity map on A∗ is denoted by 1 or 1A∗ , and its restriction to S is denoted by 1S .

A function h: A∗ → A∗ is a right-ideal morphism iff Dom(h) is a right ideal, and all x ∈ Dom(h)
and all w ∈ A∗: h(xw) = h(x)w. In that case, Im(h) is also a right ideal. For a right-ideal morphism
h, let domC(h) (called the domain code) be the prefix code that generates Dom(h) as a right ideal.
Similarly, let imC(h), called the image code, be the prefix code that generates Im(h) as a right ideal.
In general, imC(h) ⊆ h(domC(h)), and it can happen that imC(h) 6= h(domC(h)).

It will often be useful to represent any set S ⊆ {0, 1,#}∗ as a prefix code. We choose one way
to do that, as follows. Let P = {00, 01, 11}; this is obviously a prefix code. We define code(0) =
00, code(0) = 01, code(#) = 11. For w = a1 . . . a1 . . . an ∈ {0, 1,#}∗ we define code(w) =
code(a1) . . . code(ai) . . . code(an). Then for every L ⊆ {0, 1}∗, code(L) 11 (defined to be {code(x) 11 :
x ∈ L}) is a prefix code. We also encode any function f : A∗ → A∗ into a right-ideal morphism fC :
A∗ → A∗, defined by domC(fC) = code(Dom(f)) 11, and fC(code(x) 11) = code(f(x)) 11 (for all
x ∈ Dom(f)). The right-ideal morphisms fC , for f ∈ fP, have the following important normality
property (see Def. 5.6): fC

(

domC(fC)
)

= imC(fC). This follows immediately from the fact that
fC

(

domC(fC)
)

= {code(f(x)) 11 : x ∈ Dom(f)} is a prefix code.
We define

RMP = {f ∈ fP : f is a right-ideal morphism of A∗}.
By Prop. 2.6 in [4], if f ∈ RMP is regular in fP then f is regular in RMP. Hence: The monoid RMP

is regular iff P = NP.

Since P 6= NP is equivalent to the non-regularity of RMP, we are interested in approaches towards
proving non-regularity or regularity of this monoid. In this paper we study some congruences onRMP;
these provide us with infinitely many homomorphic images of RMP. Four of these are of particular
interest; they form a chain RMP

։ MP
poly ։ MP

E3 ։ MP
bd ։ MP

end. The last three are regular

monoids. Moreover, we find a submonoid RMn+o(n) of RMP which is non-regular, and which maps
homomorphically ontoMP

poly; in addition, RMn+o(n) is ≡poly-equivalent to RMP (see the Remark at
the end of the paper for details). Thus we have the following monoid homomorphisms (where ր is
injective):

RMP

1:1 ր ↓↓
RMn+o(n)

։ MP
poly ։ MP

E3 ։ MP
bd ։ MP

end

whereMP
poly is regular iff RMP is regular (Theorem 5.16), andMP

E3 (henceMP
bd andMP

end) is regular.

On the other hand, RMn+o(n) is non-regular (Prop. 6.2). The triangle of maps starting at RMn+o(n)

is a commutative diagram. These monoids have other interesting properties:
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• MP
poly (hence its homomorphic images) is finitely generated (Theorem 4.7); on the other hand,

RMP is not finitely generated (see [3]).

• MP
end is congruence-simple and has only one non-zero D-class (Theorems 2.24 and 2.23); soMP

end

is the end of the chain. A priori, it was not obvious that RMP should have a coarsest non-trivial
congruence at all.

• MP
bd has exactly two non-zero D-classes (Theorem 3.22), and acts faithfully on Aω; in fact,MP

bd is
the monoid of the action of RMP on Aω (Prop. 3.8).

• The group of units ofMP
poly,MP

E3, andMP
bd, is the famous Richard Thompson group V , alias G2,1

(Theorem 3.16(2)), whereas the group of units of RMP is trivial ([4] Prop. 2.12).

In the above homomorphism chain, the monoid MP
poly (which is regular iff P = NP) is placed

between a monoid that is proved to be non-regular, and a monoid that is proved to be regular.
Whether all this brings us closer to an answer to the P-vs.-NP question remains open.

2 End-equivalence

We start out with the most basic congruence on RMP, which turns out to be maximal (i.e., it is not
contained in any other congruence, except the trivial congruence).

Definition 2.1 Two sets L1, L2 ⊆ A∗ are end-equivalent (denoted by L1 ≡end L2) iff the right ideals
L1A

∗ and L2A
∗ intersect the same right ideals of A∗ (i.e., for every right ideal R ⊆ A∗: R∩L1A

∗ 6= ∅
iff R ∩ L2A

∗ 6= ∅).

Here we say that two sets S1 and S2 intersect iff S1 ∩ S2 6= ∅. Note that for ≡end it is intersection
with LiA

∗ that matters, not just intersection with Li (unless Li is already a right ideal). The empty
set is only end-equivalent to itself. In the above definition it is sufficient to use intersections with
monogenic right ideals (a monogenic right ideal is of the form wA∗ with w ∈ A∗):

Lemma 2.2 L1 ≡end L2 iff L1A
∗ and L2A

∗ intersect the same monogenic right ideals.

Proof. Let R be any right ideal R that intersects L1A
∗, and let x ∈ R ∩ L1A

∗. Then xA∗ ⊆ R;
and xA∗ intersects L1A

∗, hence (by intersection with the same monogenic right ideals), xA∗ intersects
L2A

∗. So, since xA∗ ⊆ R, R also intersects L2A
∗. In the same way one proves that every right ideal

that intersects L2A
∗ also intersects L1A

∗. ✷

Note that if L1 ≡end L2 and L1 6= ∅, then L1A
∗ ∩ L2A

∗ 6= ∅. Indeed, L1A
∗ has a non-empty

intersection with itself, so by end-equivalence, L1A
∗ intersects L2A

∗ non-emptily too. However, if
L1 ≡end L2 it could happen that L1 ∩ L2 = ∅; e.g., let L1 = {1} and L2 = {10, 11}.

The next Lemma 2.3(1) implies that ≡end is definable in the first-order logic of A∗ with concate-
nation.

Lemma 2.3 Let L1, L2 ⊆ A∗.

(1) L1 ≡end L2 iff

(∀x1 ∈ L1, w1 ∈ A∗)(∃x2 ∈ L2)[ x1w1 ‖pref x2 ] and

(∀x2 ∈ L2, w2 ∈ A∗)(∃x1 ∈ L1)[ x1 ‖pref x2w2 ].

(2) If L1 ≡end L2 then L1 ≡end L2 ≡end L1A
∗ ∩ L2A

∗ ≡end L1 ∪ L2.

Proof. (1) If L1A
∗ and L2A

∗ intersect the same right ideals then for every x1 ∈ L1 and w1 ∈ A∗, the
right ideal x1w1A

∗ intersects L2A
∗; hence there exists x2 ∈ L2 and u1, u2 ∈ A∗ such that x1w1u1 =

x2u2. Hence, x1w1 and x2 are prefix comparable. Similarly, for every x2 ∈ L2 and w2 ∈ A∗ there
exists x1 ∈ L1 such that x1 and x2w2 are prefix comparable.
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In the other direction, let us assume the prefix comparability condition, and let R be a right ideal
that intersects L1A

∗. We want to show that R also intersects L2A
∗. Since R intersects L1A

∗, there
exists x1w1 ∈ R such that x1 ∈ L1 and w1 ∈ A∗. Then let x2 ∈ L2 be prefix comparable with x1w1.
If x1w1 = x2z for some z ∈ A∗ then x2z = x1w1 ∈ R, so R intersects L2A

∗. If x2 = x1w1z for some
z ∈ A∗ then x2 ∈ R (since x1w1 ∈ R, and R is a right ideal), so R intersects L2 (and L2A

∗).

(2) Every right ideal that intersects L1A
∗ ∩L2A

∗ obviously intersects L1A
∗ and L2A

∗. If a right ideal
R intersects L1A

∗, let x1w1 ∈ L1A
∗ ∩ R. Then by end-equivalence, the right ideal x1w1A

∗ intersects
L2A

∗, i.e., x1w1z ∈ L2A
∗ for some z ∈ A∗. But x1w1z also belongs to R, so R intersects L1A

∗∩L2A
∗.

So, L1A
∗ and L1A

∗ ∩ L2A
∗ are end-equivalent.

If a right ideal R intersects (L1 ∪ L2)A
∗ = L1A

∗ ∪ L2A
∗ then R intersects L1A

∗ or L2A
∗. If R

intersects L1A
∗, then since L1 ≡end L2, it intersects L2A

∗ too; so in any case, R intersects L2A
∗.

Hence, L1 ∪ L2 ≡end L2. ✷

Lemma 2.4 (1) If f is a right-ideal morphism, and if L1, L2 ⊆ Dom(f) are sets such that L1 ≡end L2,
then f(L1) ≡end f(L2).

(2) For any right-ideal morphism f , f(domC(f)) ≡end imC(f).

Proof. (1) Let R be any right ideal that intersects f(L1)A
∗, and let y1 ∈ R ∩ f(L1)A

∗. So, since
L1 ⊆ Dom(f), we have y1 = f(x1)u1 for some x1 ∈ L1, u1 ∈ A∗. And since y1 ∈ R we have also
x1u1 ∈ f−1(y1) ⊆ f−1(R). Thus, x1u1 ∈ f−1(R)∩L1A

∗. Since f−1(R) is a right ideal and L1 ≡end L2,
there exists x2u2 ∈ f−1(R) ∩ L2A

∗ (with x2 ∈ L2, u2 ∈ A∗). Hence, f(x2)u2 ∈ f(f−1(R) ∩ L2A
∗) ⊆

R ∩ f(L2)A
∗; here we use f(f−1(R)) ⊆ R and L2 ⊆ Dom(f). So, R intersects f(L2)A

∗. Similarly,
any right ideal that intersects f(L2)A

∗ intersects f(L1)A
∗. Thus f(L1) ≡end f(L2).

(2) Obviously, L ≡end LA
∗ for any set L ⊆ A∗. We also have f(domC(f)) A∗ = f(domC(f)A∗) =

imC(f)A∗. Hence f(domC(f)) ≡end imC(f). ✷

Let Aω be the set of all ω-sequences of elements of A; we call the elements of Aω ends. See e.g.
[15] for the study of infinite words. For a set L ⊆ A∗, the set LAω is called the ends of L, and
denoted by ends(L); equivalently, ends(L) is the set of ends that have at least one prefix in L, so
ends(L) = ends(LA∗). The Cantor set topology on Aω is described by {LAω : L ⊆ A∗} as set of open
sets. Similarly, A∗ is a topological space too, with the set of right ideals as set of open sets; we call
this the right-ideal topology of A∗.

Notation: For S ⊆ Aω, the closure is denoted by cl(S), and the interior by in(S).

In any topological space, two sets intersect the same open sets iff they have the same closure.
Hence we have the following topological characterization of end-equivalence.

Proposition 2.5 For all L1, L2 ⊆ A∗: L1 ≡end L2 iff cl(ends(L1)) = cl(ends(L2)) in the Cantor
space Aω, iff cl(L1) = cl(L2) in the right-ideal topology of A∗. ✷

The following example illustrates the importance of closure in the above Proposition. Let L1 = 0∗1,
and L2 = {ε}. Then 0∗1 ≡end {ε}, and cl(0∗1 {0, 1}ω) = {0, 1}ω = cl({ε} {0, 1}ω ). But ends(0∗1) 6=
ends({ε}), since ends({ε}) = {0, 1}ω , while ends(0∗1) = 0∗1 {0, 1}ω = {0, 1}ω − {0ω}.

The equivalence relation ≡end can be generalized to a pre-order: For L1, L2 ⊆ A∗ we define
L1 ⊆end L2 iff every right ideal that intersects L1A

∗ also intersects L2A
∗. Obviously, L1 ≡end L2 iff

L1 ⊆end L2 and L2 ⊆end L2. And we have: L1 ⊆end L2 iff cl(ends(L1)) ⊆ cl(ends(L2)).

The following Lemma shows that a one-point change in ends(P ) does not change end-equivalence.

Lemma 2.6 For any prefix code P ⊂ A∗ and any end v ∈ ends(P ) there exists a prefix code, called
P (−v), such that ends(P (−v)) = ends(P )− {v} and P (−v) ≡end P .
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Proof. Let v = v1 . . . vi . . . ∈ ends(P ), where vi ∈ A for all i ≥ 1. Since v ∈ ends(P ), there exists
i0 ≥ 0 such that v1 . . . vi0 ∈ P . We now define

P (−v) = (P − {v1 . . . vi0}) ∪ {v1 . . . vi0 . . . vj vj+1 : j ≥ i0}.
The set {v1 . . . vi0 . . . vj vj+1 : j ≥ i0} is the border of the end v from v1 . . . vi0 onwards; indeed,
v1 . . . vi0 . . . vj vj+1 is the sibling node of v1 . . . vi0 . . . vj vj+1, and the latter is a prefix of v. Clearly,
P (−v) is a prefix code and ends(P (−v)) = ends(P )− {v}.

To show that P (−v) ≡end P , it is obvious that every right ideal that intersects P (−v)A∗ also
intersects PA∗ (since ends(P (−v)) ⊆ ends(P )). Conversely, let R ⊆ A∗ be any right ideal that
intersects PA∗ (at say u ∈ R ∩ PA∗); we want to show that R also intersects P (−v)A∗. If u ∈
(P − {v1 . . . vi0}) A∗ then u ∈ P (−v)A∗. Alternatively, v1 . . . vi0 is a prefix of u, i.e., u = v1 . . . vi0 z
for some z ∈ A∗. Let v1 . . . vi0 . . . vj be the longest prefix of u that is also a prefix of the end v. If u =
v1 . . . vi0 . . . vj , then u vj+1 = v1 . . . vi0 . . . vjvj+1 ∈ R ∩ P (−v)A∗; if, on the other hand, |u| > j then u
is of the form u = v1 . . . vi0 . . . vjvj+1 . . . (the only alternative would be that u = v1 . . . vi0 . . . vjvj+1 . . . ,
but that would contradict the maximality of j). Thus, u = v1 . . . vi0 . . . vjvj+1 . . . ; this belongs to
P (−v)A∗, since v1 . . . vi0 . . . vjvj+1 ∈ P (−v). ✷

Proposition 2.7 For any prefix code P ⊂ A∗, we have:
⋃

Q≡endP
ends(Q) = in(cl(ends(P ))), and

⋃

Q≡endP
QA∗ ≡end P .

Moreover,
⋂

Q≡endP
ends(Q) = ∅ =

⋂

Q≡endP
QA∗.

Proof. Concerning the union of sets of ends:
[⊆]: If Q ≡end P , then (by Prop. 2.5), ends(Q) ⊆ cl(ends(P )). And ends(Q) is open, hence ends(Q) ⊆
in(cl(ends(P ))).
[⊇]: If x ∈ A∗ is such that ends({x}) ⊆ in(cl(ends(P ))), then ends({x}) ⊆ cl(ends(P )), hence
cl(ends({x}) ⊆ cl(ends(P )), hence cl(ends({x} ∪ P )) = cl(ends(P )). Therefore, {x} ∪ P ≡end P
(by Prop. 2.5). Thus, ends({x}) ⊆ ⋃

Q≡endP
ends(Q) for every ends({x}) ⊆ in(cl(ends(P ))); thus

in(cl(ends(P ))) ⊆ ⋃

Q≡endP
ends(Q).

Concerning the union of the QA∗: Let R be any right ideal that intersects
⋃

Q≡endP
QA∗. Then

(by the definition of union) there exists Q ≡end P such that R intersects QA∗. Since Q ≡end P , every
right ideal intersecting QA∗ intersects PA∗, so R intersects PA∗. Conversely, it is obvious that every
right ideal that intersects P also intersects

⋃

Q≡endP
QA∗. Thus,

⋃

Q≡endP
QA∗ ≡end P .

Concerning the intersection of the QA∗, we observe that for any n > 0, P An ≡end P . Moreover,
⋂

n>0 P A
nA∗ = ∅ (since for any length n, this intersection contains no word of length < n). Hence

⋂

Q≡endP
QA∗ (which is a subset of

⋂

n>0 P A
nA∗) is ∅.

Concerning the intersection of the ends(Q): By Lemma 2.6 we have
⋂

v∈ends(P ) ends(P (−v)) = ∅.
The result follows, since P (−v) ≡end P . ✷

End-equivalence can also be defined for right-ideal morphisms:

Definition 2.8 Two right-ideal morphisms f1, f2 are end-equivalent (denoted by f1 ≡end f2) iff
Dom(f1) ≡end Dom(f2), and the restrictions of f1 and f2 to Dom(f1) ∩Dom(f2) are equal.

Notation: By [f ]end we denote the ≡end-equivalence class of f in RMP. So for f ∈ RMP we have
[f ]end = {g ∈ RMP : g ≡end f} ⊂ RMP. Note that although ≡end is defined for all right-ideal
morphisms, we define [f ]end to contain only elements of RMP.

Proposition 2.9 (1) Let P1, P2 ⊂ A∗ be prefix codes such that P1 ≡end P2, let P∩ be the prefix code
that generates the right ideal P1A

∗ ∩ P2A
∗, and let P∪ be the prefix code that generates the right ideal

P1A
∗ ∪ P2A

∗. Then P1 ≡end P2 ≡end P∩ ≡end P∪.
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(2) Let f1, f2 be right-ideal morphisms such that f1 ≡end f2. Then f1 ∩ f2 and f1 ∪ f2 are right-ideal
morphisms, and f1 ≡end f2 ≡end f1 ∩ f2 ≡end f1 ∪ f2.
(3) If f1, f2 ∈ RMP and f1 ≡end f2, then f1 ∩ f2, f1 ∪ f2 ∈ RMP.

Proof. (1) This follows from Lemma 2.3(2), and the fact that LA∗ ≡end L for all sets L ⊆ A∗.
(2) By (1) we have Dom(f1) ≡end Dom(f2) ≡end Dom(f1) ∩ Dom(f2) ≡end Dom(f1) ∪ Dom(f2). Also,
Dom(f1 ∩ f2) = Dom(f1) ∩ Dom(f2). And since f1 = f2 on Dom(f1 ∩ f2) we have f1 = f1 ∩ f2 on
Dom(f1 ∩ f2). Hence f1 ≡end f1 ∩ f2, and similarly for f2. Also, Dom(f1 ∪ f2) = Dom(f1) ∪ Dom(f2).
And f1 = f1 ∪ f2 on Dom(f1), and f2 = f1 ∪ f2 on Dom(f2), hence f1 ≡end f1 ∪ f2 ≡end f2.
(3) Since the complexity class P is closed under ∩ and ∪, Dom(f1 ∩ f2) and Dom(f1 ∪ f2) belong
to P. Since f1 ∩ f2 is the restriction of f1 to Dom(f1 ∩ f2), we have f1 ∩ f2 ∈ RMP

2 . To compute
(f1 ∪ f2)(x) in polynomial time, check whether x ∈ Dom(f1), and if so, compute f1(x); otherwise,
check whether x ∈ Dom(f2), and compute f2(x). Polynomial balance of f1 ∩ f2 and f1 ∪ f2 follows
from the polynomial balance of f1 and f2. ✷

Corollary 2.10 Every ≡end-class (within RMP or within the monoid of all right-ideal morphisms)
is a lattice under ⊆, ∪ and ∩. In particular, [f ]end is a lattice, for every f ∈ RMP.

Proof. The lattice property follows from Prop. 2.9. ✷

Proposition 2.11 (preservation of injectiveness under ≡end).
If f, g are right-ideal morphisms such that g ≡end f , and if f is injective, then g is injective.

Proof. From g ≡end f it follows that f and g agree on D = Dom(g) ∩ Dom(f). So, h = g|D = f |D is
injective. Also, h ≡end g. To show that g is injective, let x1, x2 ∈ Dom(g) be such that g(x1) = g(x2).
From D = Dom(h) ≡end Dom(g) it follows that x1A

∗ intersects Dom(h) at x1u (for some u ∈ A∗).
Hence, since g is a right-ideal morphism, g(x1u) = g(x2u), where x1u ∈ Dom(h) and x2u ∈ Dom(g).
Again, since Dom(h) ≡end Dom(g) it follows that x2uA

∗ intersects Dom(h) at x2uv (for some v ∈ A∗).
Then g(x1uv) = g(x2uv), where x1uv ∈ Dom(h) and x2uvDom(h). Since h(x1uv) = g(x1uv) =
g(x2uv) = h(x2uv), injectiveness of h implies x1uv = x2uv; hence x1 = x2, so g is injective. ✷

Definition 2.12 (maximum extension). For any right-ideal morphism f : A∗ → A∗ we define

fe,max =
⋃ {g : g is a right-ideal morphism with g ≡end f}.

It can happen that fe,max 6∈ RMP when f ∈ RMP (and that is in fact the “usual” case – see Prop.
3.9).

Proposition 2.13.
(1) For every right-ideal morphism f , fe,max is a function, and a right-ideal morphism A∗ → A∗. It is
the maximum extension of f among all right-ideal morphisms that are ≡end f . So, fe,max ≡end f , and
fe,max is the unique right-ideal morphism that is maximal (under ⊆) in the set {g : g is a right-ideal
morphism, and f ≡end g}.
(2) For any right-ideal morphisms h, k : A∗ → A∗:

h ≡end k iff he,max = ke,max.

Proof. (1) If fe,max were not a function there would exist right-ideal morphisms g1, g2 such that
g1 ≡end g2 ≡end f , f ⊆ g1, f ⊆ g2, and for some x ∈ Dom(g1) ∩ Dom(g2): g1(x) 6= g2(x). But
f ⊆ g1 ∪ g2, and by Prop. 2.9, f ≡end gi ≡end g1 ∪ g2, and g1 ∪ g2 is a function. Hence g1(x) = g2(x)
for all x ∈ Dom(g1) ∩ Dom(g2). So, fe,max(x) has at most one value for all x. The facts that fe,max is
a right-ideal morphism, and that it is maximum, are straightforward.
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By Prop. 2.7, Dom(f) ≡end

⋃

g≡endf
Dom(g). Since fe,max agrees with f on Dom(f) we conclude

that f ≡end fe,max.

(2) This follows immediately from f ≡end fe,max. ✷

A right-ideal morphism f : A∗ → A∗ can be extended to the partial function f : Aω → Aω, defined
as follows:

f(pw) = f(p)w, for any p ∈ domC(f) and w ∈ Aω.

Then Dom(f) ∩ Aω = domC(f)Aω = Dom(f)Aω; and Im(f) ∩ Aω = imC(f)Aω = Im(f)Aω. We use
the same name f for the extended function, and its restrictions to A∗ or to Aω; the context will always
make it clear which function is being used.

Any right-ideal morphism f : A∗ → A∗ is continuous (with respect to the topology defined on
A∗ by the right ideals); indeed, for every right ideal R ⊆ A∗, f−1(R) is a right ideal. Similarly, the
extension of f to Aω is a continuous function in the Cantor space topology.

Lemma 2.14 There exist right-ideal morphisms f, g : A∗ → A∗ such that

Dom(fe,max) A
ω $ in(cl(Dom(f) Aω)), and

ge,max ◦ fe,max 6= (g ◦ f)e,max .

Proof. For example, let domC(f) = 0∗1, and f(02n1) = 02n+11, and f(02n+11) = 02n1, for all
n ≥ 0. Then f = fe,max; indeed, any strict extension of f would need to make f(0m) defined for some
m ≥ 0; but such an extension to a right-ideal morphism would not agree with f on Dom(f) (since f
transposes 02n1 and 02n+11). So, Dom(fe,max) {0, 1}ω = 0∗1 {0, 1}ω , whereas cl(0∗1 {0, 1}ω) = {0, 1}ω ,
and in({0, 1}ω) = {0, 1}ω .

Since f in the above example is injective, we can let g = f−1. We have f = fe,max and f−1 =
(f−1)e,max. Then ge,max◦fe,max is the identity restricted to 0∗1 {0, 1}∗, whose maximum end-equivalent
extension is the full identity 1A∗ . So in this example, ge,max ◦ fe,max 6= (g ◦ f)e,max. ✷

Lemma 2.15 Let f1, f2 be right-ideal morphisms with f1 ≡end f2, and let x ∈ Dom(f1). Then there
exists v ∈ A∗ such that xvA∗ ⊆ Dom(f2), and for all w ∈ A∗: f2(xvw) = f1(xvw).

Proof. If x ∈ Dom(f1) then the right ideal xA∗ intersects Dom(f1), hence xA
∗ intersects Dom(f2)

(since Dom(f1) ≡end Dom(f2)). Thus there exists xv ∈ xA∗ such that xv ∈ Dom(f2). Hence xvA∗ ⊆
Dom(f2) (since Dom(f2) is a right ideal). We have f2(xvw) = f1(xvw) because f1 and f2 agree where
they are both defined. ✷

Just as we saw for right-ideal morphisms in general, fe,max can be extended to domC(fe,max)A
ω.

Proposition 2.16 For all right-ideal morphisms f, g : A∗ → A∗ we have:

g ≡end f iff ge,max = fe,max on Aω.

Proof. The implication “⇒” is clear from the definitions. Conversely, if ge,max and fe,max act the
same on Aω then Dom(ge,max) A

ω = Dom(fe,max) A
ω, hence cl(Dom(ge,max) A

ω) = cl(Dom(fe,max) A
ω).

Hence (by Prop. 2.5), Dom(ge,max) ≡end Dom(fe,max). Since Dom(h) ≡end Dom(he,max) for any righ-
ideal morphism h, we conclude that Dom(g) ≡end Dom(f).

Since for all w ∈ Aω, ge,max(w) = fe,max(w), we have for all x ∈ Dom(g) ∩ Dom(f) and all v ∈ Aω:
ge,max(xv) = fe,max(xv). Hence (since ge,max(xv) = ge,max(x) v, and similarly for f), ge,max(x) v =
fe,max(x) v, for all v ∈ Aω. Taking v = 10ω (for example) then implies ge,max(x) = fe,max(x), for all
x ∈ Dom(g) ∩ Dom(f). Since ge,max agrees with g on Dom(g) (and similarly for f), we conclude that
g(x) = f(x), for all x ∈ Dom(g) ∩ Dom(f). Hence, g ≡end f . ✷
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Remark. It is also true that g ≡end f is equivalent to the following: Dom(g) ≡end Dom(f), and g
and f agree on ends(Dom(g)) ∩ ends(Dom(f)). However, g ≡end f is not equivalent to the property
that g and f agree on Aω; indeed, the actions of g and f on Aω could have different domains (even if
g ≡end f). In Cor. 3.8 we will see that g and f agree on Aω iff g ≡bd f (which is a different congruence
than ≡end).

Proposition 2.17 The relation ≡end is a congruence for right-ideal morphisms; i.e., for all right-ideal
morphisms f1, f2, g: if f1 ≡end f2, then f1g ≡end f2g and gf1 ≡end gf2.

Proof. The result follows from the next four claims.

Claim 1. Dom(f1g) ≡end Dom(f2g).

Proof. Let R be a right-ideal that intersects Dom(f1g), so there exists x1 ∈ R such that x1 ∈ Dom(f1g);
equivalently, g(x1) ∈ Dom(f1). Thus, g(R) intersects Dom(f1), therefore (since Dom(f1) ≡end Dom(f2),
and g(R) is a right ideal) g(R) intersects Dom(f2). So, for some g(x2) ∈ g(R) with x2 ∈ R, g(x2) ∈
Dom(f2). The latter is equivalent to x2 ∈ Dom(f2g); so R intersects Dom(f2g). [This proves Claim 1.]

Claim 2. f1g and f2g agree on Dom(f1g) ∩ Dom(f2g).

Proof. Suppose x ∈ Dom(f1g) ∩ Dom(f2g). Then f1g(x) and f2g(x) are defined, so g(x) ∈ Dom(f1) ∩
Dom(f2). Hence, since f1 and f2 agree on Dom(f1)∩Dom(f2) (because f1 ≡end f2), we have f1g(x) =
f2g(x). [This proves Claim 2.]

Claim 3. Dom(gf1) ≡end Dom(gf2).

Proof. Let R be a right ideal that intersects Dom(gf1), so there exists x ∈ R such that gf1(x) is defined,
hence f1(x) is defined. Hence, by Lemma 2.15, there exists v ∈ A∗ such that xv ∈ Dom(f1)∩Dom(f2),
and f1(xv) = f2(xv). Thus, gf1(xv) = gf2(xv). So, xv ∈ Dom(gf2). Since R is a right ideal, xv ∈ R,
hence R intersects Dom(gf2).

In a similar way one proves that every right ideal that intersects Dom(gf2) also intersects Dom(gf1).
[This proves Claim 3.]

Claim 4. gf1 and gf2 agree on Dom(gf1) ∩ Dom(gf2).

Proof. Since f1 ≡end f2, f1 and f2 agree on Dom(f1) ∩ Dom(f2). Moreover, Dom(gfi) ⊆ Dom(fi) (for
i = 1, 2), so the Claim holds. [This proves Claim 4.] ✷

Corollary 2.18 For all right-ideal morphisms f, g : A∗ → A∗, (ge,max ◦ fe,max)e,max = (g ◦ f)e,max.

Proof. By Prop. 2.13(1), ge,max ≡end g and fe,max ≡end f . Hence by Prop. 2.17, ge,max◦fe,max ≡end g◦f .
✷

Definition 2.19 (ends monoidMP
end). The ends monoid consists of the ≡end-classes of RMP; the

multiplication is the multiplication of ≡end-classes. It is denoted byMP
end, or by RMP/≡end.

As a set, MP
end = {[f ]end : f ∈ RMP}. The multiplication in MP

end is well-defined since ≡end is a
congruence, by Prop. 2.17. Hence, MP

end is a monoid which is a homomorphic image of RMP. The
monoid version M2,1 of the Richard Thompson group V (a.k.a. G2,1) is a submonoid ofMP

end; M2,1 is
defined in [6]; see [9] for more information on the Thompson group.

There is a one-to-one correspondence between ≡end-classes and maximum end-extensions of ele-
ments of RMP (by Prop. 2.16). So,MP

end can also be defined as

MP
end = ({fe,max : f ∈ RMP}, ·)

with multiplication “·” defined by

ge,max · fe,max = (ge,max ◦ fe,max)e,max (= (g ◦ f)e,max).

Here we used Cor. 2.18.
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For the remainder of this section we need some definitions.
For any monoid M , the L-order (denoted by ≤L) and the R-order (denoted by ≤R), are defined

(for any s, t, u, v ∈M) by t ≤L s iff there exists m ∈M such that t = ms; and v ≤R u iff there exists
n ∈ M such that v = un. The D-relation on M is defined (for x, y ∈ M) by x ≡D y iff there exists
z ∈ M such that x ≡R z ≡L y; equivalently, there exists w ∈ M such that x ≡L w ≡R y. A monoid
M is called D0-simple if M has only one D-class, except possibly for a zero. These are well-known
concepts in semigroup theory; see e.g., [11].

A right ideal R ⊆ A∗ is called essential iff R ≡end A
∗ (iff cl(ends(R)) = Aω). Equivalently, the

prefix code that generated R (as a right ideal) is a maximal prefix code.
For any function f : A∗ → A∗, the relation modf is the equivalence relation defined on Dom(f) by

x1 modf x2 iff f(x1) = f(x2). The equivalence classes of modf are {f−1f(x) : x ∈ Dom(f)}. For two
partial functions g, f : A∗ → A∗, we say modf ≤ modg (“the relation modf is coarser than modg”,
or “modg is finer than modf”) iff Dom(f) ⊆ Dom(g), and for all x ∈ Dom(f): g−1g(x) ⊆ f−1f(x).
Equivalently, modf ≤ modg iff every modf -class is a union of modg-classes.

A monoid M is called congruence-simple iff M is non-trivial and the only congruences on M are
the equality relation and the one-class congruence.

The length-lexicographic order on {0, 1}∗ is a well-order, defined as follows for any x1, x2 ∈ {0, 1}∗:
x1 ≤ℓℓ x2 iff |x1| < |x2|, or |x1| = |x2| and x1 precedes x2 in the dictionary order on {0, 1}∗ (based
on the alphabetic order 0 < 1).

The next lemma is the RMP-version of Prop. 2.1 of [4].

Lemma 2.20 If f, r ∈ RMP and r is regular with an inverse r′ ∈ RMP then:

(1) f ≤R r iff f = rr′f iff Im(f) ⊆ Im(r).

(2) f ≤L r iff f = fr′r iff modf ≤ modr.

Proof. (1) f ≤R r iff for some u ∈ RMP: f = ru. Then f = rr′ru = rr′f . Also, it is straightforward
that f = ru implies Im(f) ⊆ Im(r).

Conversely, if Im(f) ⊆ Im(r) then 1Im(f) = 1Im(r) ◦ 1Im(f) = r ◦ r′|Im(r) ◦ 1Im(f). Hence, f =
1Im(f) ◦ f = r ◦ r′|Im(r) ◦ 1Im(f) ◦ f = r ◦ r′|Im(r) ◦ f ≤R r.

(2) f ≤L r iff for some v ∈ RMP: f = vr. Then f = vrr′r = fr′r. And it is straightforward that
f = vr implies modf ≤ modr.

Conversely, if modf ≤ modr then for all x ∈ Dom(f), r−1r(x) ⊆ f−1f(x). And for every
x ∈ Dom(f), {f(x)} = f ◦ f−1 ◦ f(x). Moreover, f ◦ r−1 ◦ r(x) ⊆ f ◦ f−1 ◦ f(x) = {f(x)}, and
since r−1 ◦ r(x) 6= ∅, it follows that f ◦ r−1 ◦ r(x) = {f(x)}. So, f = f ◦ r−1 ◦ r. Moreover,
f ◦ r′ ◦ r(x) ∈ f ◦ r−1 ◦ r(x) = {f(x)}, hence f ◦ r′ ◦ r(x) = f(x). Hence, f = fr′r ≤L r. ✷

Definition 2.21 (rank function). For any set S ⊆ A∗ the rank function of S is defined for all
x ∈ S by rankS(x) = |{z ∈ S : z ≤ℓℓ x}| (where ≤ℓℓ denotes the length-lexicographic order). When
x 6∈ S, rankS(x) is undefined.

We will use padding with a fully time-constructible function in order to turn any algorithm into
a linear-time algorithms. A “Turing machine” will always mean a multi-tape Turing machine. By
definition, a function t: N→ N is fully time-constructible iff t is total, and increasing, and there exists
a deterministic Turing machine such that for some n0 ∈ N, and for all n ≥ n0, and for every input of
length n, the machine runs for time exactly t(n).

For example, any polynomial function n 7→ c (nd + 1) (where c, d are positive integers), and any
exponential function n 7→ c dn (where c > 0 and d ≥ 2 are integers) are known to be fully time-
constructible. The sum t1(n)+ t2(n), and the product t1(n) ·t2(n) of two fully time-constructible func-
tions are also fully time-constructible. See e.g. [13], [1], [16], for information about time-constructible
functions.
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Lemma 2.22 Let f : {0, 1}∗ → {0, 1}∗ be a partial recursive right-ideal morphism with decidable
domain. Then we have:

(1) There exists a fully time-constructible function t such that f is computed by a Turing machine with
time-complexity ≤ t.
(2) Let t be any fully time-constructible function such that f is computed by a Turing machine with
time-complexity ≤ t. Let F be the restriction of f to

⋃

x∈domC(f) xA
|x|·t(|x|)A∗. In other words,

domC(F ) =
⋃

x∈domC(f) xA
|x|·t(|x|); and F (xuv) = f(x)uv for all x ∈ domC(f), u ∈ A|x|·t(|x|),

v ∈ A∗.
Then F ≡ends f , and F has linear time-complexity and has linear balance (both bounded from above

by the function n 7→ 3n).

Proof. (1) Let M be a deterministic Turing machine that computes f and that eventually halts on
every input. We construct a new Turing machine M ′ for f which has the same running time for on
all inputs of length ≤ n, for all n. On input x ∈ An, M ′ simulates M on all inputs of length n, but
only outputs f(x). If f(x) is not defined, M ′ produces no output, but since Dom(f) is decidable,
M ′ nevertheless has a time-complexity for every input. Let t be the time-complexity function of M ′.
Then t is fully time-constructible, and it is the running time of a Turing machine that that halts for
all inputs and that computes f .

(2) Since each set A|x|·t(|x|) is a maximal prefix code, we have domC(F ) ≡ends domC(f). Also, F is
a restriction of f . Hence, F ≡ends f .

To compute F (w) in linear time, we first consider the case where w ∈ Dom(F ), i.e., w = xuv for
some x ∈ domC(f), u ∈ A|x|·t(|x|), v ∈ A∗. We first run the Turing machine for f on the prefixes of xuv
until x (the smallest prefix on which f is defined) is found. In detail, each prefix of w is considered in
turn, and copied on a work tape; when the next prefix is considered, one more letter is added on the
right, and the head of the work tape is moved back to the left end. So the copying of prefixes takes
time ≤ |x|2 (≤ |x| · t(|x|)). Checking that the prefix belongs to Dom(f) takes time ≤ t(|x|), so check
all the prefixes takes time ≤ |x| · t(|x|). In total, the time to find x and to compute f(x) takes time
≤ 2 |x| · t(|x|).

Then we check that the rest of the input, namely uv, has length |x| · t(|x|). Since |x| · t(|x|) is
time-constructible, this can be done in time ≤ |x| · t(|x|). During this time, uv is copied to the output
tape; this takes time |uv| = |x| · t(|x|)+ |v|. So the total time is ≤ 2 |x| t(|x|)+ |x| t(|x|)+ |v| ≤ 3 · |xuv|
(since |u| = |x| t(|x|)). Thus, F (xuv) is computed in time ≤ 3 · |xuv|.

The complexity bound implies that |F (xuv)| ≤ 3·|xuv|. For the input balance we have: |F (xuv)| =
|f(x)|+ |u|+ |v| ≥ 1

2 · |x| · t(|x|) + 1
2 · |u|+ |v| ≥ 1

2 · |xuv|.
To handle the case of an arbitrary input w (not necessarily in Dom(F )), we follow the same

procedure as above, but we add a counter that stops the computation after time 3 |w|. The machine
rejects, and produces no output, if w has not been found to be in Dom(F ) by that time. ✷

Theorem 2.23 The monoid MP
end is regular, D0-simple, and finitely generated. Moreover, every

≡end-class contains a regular element of RMP.

Proof. An initial remark: Every D0-simple monoid is regular; but we prove regularity separately first
because it will be used in the proof of D0-simplicity.

For every f ∈ RMP there exists an inverse function f ′ that is balanced, but that is not nec-
essarily polynomial-time computable; balance is inherited from f if we restrict the domain of f ′

to Im(f). Let T (.) be a fully time-constructible upper bound on the time-complexity of f ′ (see
Lemma 2.22). We can restrict both f and f ′ in order to reduce the time-complexity (padding ar-
gument), while preserving end-equivalence, as in Lemma 2.22: Namely, we replace domC(f ′) by the
prefix code

⋃

y∈domC(f ′) y A
|y|·T (|y|). Let F ′ be this restriction of f ′, and let the restriction of f be

F = f ◦ F ′ ◦ f = idDom(F ′) ◦ f . Then F and F ′ have polynomial (in fact, linear) time-complexity,
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so F,F ′ ∈ RMP. Moreover, F ′ is an inverse of F , and f ≡end F , and f ′ ≡end F ′. Therefore,
f ≡end F = FF ′F ∈ [f ]end · [F ′]end · [f ]end. Hence [f ]end = [f ]end · [F ′]end · [f ]end, so [f ]end is regular in
MP

end. And F (≡end f) is a regular element of RMP.

Proof of D0-simplicity: For every non-empty f ∈ RMP there exists f0 ∈ RMP such that f ≡end f0
and such that imC(f0) is infinite. Indeed, let us pick some x0 ∈ domC(f) and define f0 by

domC(f0) = (domC(f)− {x0}) ∪ x0 0∗1;

f0(x0 0
n1) = f(x0) 0

n1 for all n ≥ 0, and

f0(x) = f(x) for all x ∈ domC(f)− {x0}.
Then imC(f0) contains f(x0) 0∗1, hence it is infinite. So, from now on we assume that for f itself,
imC(f) is infinite.

Claim: If f ∈ RMP has infinite imC(f), then there exists a right-ideal morphism g with the following
properties: g is partial recursive with decidable domain, domC(g) is a maximal prefix code, g is
injective, and Im(g) = Im(f).

Proof of the Claim: We construct g as follows. Let ≤ℓℓ denote the length-lexicographic order on {0, 1}∗.
For any y ∈ imC(f), we can compute rank(y) = |{z ∈ imC(f) : z ≤ℓℓ y}|; computability follows from
the fact that f is polynomially balanced. The function rank is injective; it is also onto N since imC(f)
is infinite. We define g(0n1) to be the element y ∈ imC(f) such that rank(y) = n (for any n ≥ 0). So,
g is injective and g−1(y) = 0rank(y)1 for all y ∈ imC(f). We have domC(g) = 0∗1, which is a maximal
prefix code; obviously, 0∗1 is a decidable language. Then g is partial recursive with decidable domain,
and injective, and Im(f) = Im(g). This proves the Claim.

Let t(.) be a fully time-constructible upper bound on the time complexities of g, g−1, f and f ′.
Then, by padding f and g as in Lemma 2.22 we obtain functions f1, g1 ∈ RMP such that f ≡end f1,
g ≡end g1, both f1 and g1 are computable in linear time, and both f1 and g1 are regular in RMP.
Moreover, domC(g1) (≡end 0∗1) is a maximal prefix code (equivalently, Dom(g1) is an essential right
ideal), g1 is injective, and Im(f1) = Im(g1).

Since Im(f1) = Im(g1) and f1, g1 are regular elements of RMP, Lemma 2.20(1) implies f1 ≡R g1.
Since g1 is injective, the relation modg1 is the equality relation on Dom(g1). Hence, since g1 is a

regular element of RMP, Lemma 2.20(2) implies that g1 ≡L 1Dom(g1) (the identity map restricted to
Dom(g1)). Since domC(g1) is a maximal prefix code, Dom(g1) is an essential right ideal; equivalently,
1Dom(g1) ≡end 1.

Overall we now have f ≡end f1 ≡R g1 ≡L 1Dom(g1) ≡end 1. Hence, inMP
end, [f ]end ≡D [1]end.

Proof of finite generation: The proof is based on the fact that RMP has evaluation maps for
programs with bounded balance and time-complexity. This was described in detail in Section 4 of [4]
and Section 2 of [3]. We briefly give the definition here: For a polynomial q2 such that q2(n) = a (n2+1)
(for some fixed large constant a), we define an evaluation map evRC

q2
∈ RMP by

evRC
q2
(code(w) 11uv) = code(w) 11 φw(u) v,

for all Turing machine programs w with balance and time-complexity ≤ q2, and all u ∈ domC(φw),
and v ∈ A∗. Here, φw ∈ RMP denotes the function with program w. Then we have

φw = π′|code(w) 11| ◦ evRC
q2
◦ πcode(w) 11.

where π′n is defined by π′n(x1x2) = x2 whenever x1, x2 ∈ A∗ with |x1| = n (and π′n is undefined on
other arguments); and πu is defined by πu(x) = ux for all u, x ∈ A∗. See [3] for the proof that such a
function evRC

q2
exists.

In the proof of regularity ofMP
end above, we saw that every φv ∈ RMP is end-equivalent to some

φw ∈ RMP such that φw has linear time-complexity (in fact, it is ≤ 3n, by Lemma 2.22). We can
obtain φw as φw = φv ◦ 1Pw

, where

Pw =
⋃

x∈domC(φv)
xAT (|x|)2 ;
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here, T (.) is the time-complexity of φw. Since T (.) is a polynomial of the form c (n2 +1), the function
n 7→ n ·T (n)2 is fully time-constructible. Since the time-complexity of φw is linear with coefficient ≤ 3
(by Lemma 2.22), the evaluation map evRC

q2
can evaluate φw without any need for further padding; so

we have

φv ≡end φw = π′|code(w) 11| ◦ evRC
q2
◦ πcode(w) 11 .

So,MP
end is generated by {[π0]end, [π1]end, [π′1]end, [evRC

q2
]end}. ✷

In the proof of Theorem 2.24 the concept of J 0-simplicity is used. By definition, a monoid M
with a zero is J 0-simple iff for all non-zero elements a, b ∈M there exist x1, x2, x3, x4 ∈M such that
a = x1bx2 and b = x3ax4. For more information on the J -relation and the J -preorder, see e.g. [11].
Obviously, D0-simplicity implies J 0-simplicity.

Theorem 2.24 MP
end is congruence-simple.

Proof. The proof is similar to the proof of congruence-simplicity of the Thompson-Higman monoid
M2,1 in [7]. Let 0 be the ≡end-class of the empty map; this class consists only of the empty map 0.
When ∼= is any congruence on MP

end that is not the equality relation, we will show that the whole
monoid MP

end is congruent to 0. We will make use of J 0-simplicity of MP
end, which follows from its

D0-simplicity (and also from the J 0-simplicity of RMP, Prop. 2.7 in [4]).
Since ∼= is a congruence onMP

end, and since ≡end is a congruence on RMP, it follows that ∼= can
also be defined as a congruence on RMP that is coarser than ≡end. We will show that if ∼= on RMP

is not ≡end, then ∼= is the trivial (one-class) congruence.

Case (0): Assume that Φ ∼= 0 for some element Φ 6= 0 in MP
end. Then for all α, β ∈ MP

end we have
obviously αΦβ ∼= 0. Moreover, by J 0-simplicity, MP

end = {αΦβ : α, β ∈ MP
end}, since Φ 6= 0. Hence

all elements are congruent to 0.

For the remainder of the proof we let ϕ,ψ ∈ RMP−{0} be representatives of two different ≡end-
classes (i.e., ϕ 6≡end ψ) such that [ϕ]end ∼= [ψ]end. Notation: For any u, v ∈ A∗, (v ← u) denotes the
right-ideal morphism uw 7→ vw (for all w ∈ A∗).

Case (1): Dom(ϕ) 6≡end Dom(ψ).
Then there exists x1 ∈ A∗ such that x1A

∗ intersects Dom(ϕ) (e.g., at x0), but x1A
∗ does not

intersect Dom(ψ). Then x0A
∗ ⊆ Dom(ϕ), but Dom(ψ) ∩ x0A∗ = ∅. Or, vice versa, there exists

x0 ∈ A∗ such that x0A
∗ ⊆ Dom(ψ), but Dom(ϕ) ∩ x0A∗ = ∅. Let us assume the former.

Letting β = (x0 ← x0), we have ϕβ(.) = (ϕ(x0)← x0). But ψ β(.) = 0, since x0A
∗∩Dom(ψ) = ∅.

So, [ϕβ]end ∼= [ψ β]end = 0, but [ϕβ]end 6= 0. Hence, applying case (0) to Φ = [ϕβ]end we conclude
that the entire monoidMP

end is congruent to 0.

Case (2.1): Dom(ϕ) ≡end Dom(ψ) and Im(ϕ) 6≡end Im(ψ).
Then there exists y0 ∈ A∗ such that y0A

∗ ⊆ Im(ϕ), but Im(ψ) ∩ y0A∗ = ∅; or, vice versa,
y0A

∗ ⊆ Im(ψ), but Im(ϕ) ∩ y0A∗ = ∅. Let us assume the former.
Let x0 ∈ A∗ be such that y0 = ϕ(x0). Then (y0 ← y0) ◦ ϕ ◦ (x0 ← x0) = (y0 ← x0). On the

other hand, (y0 ← y0) ◦ ψ ◦ (x0 ← x0) = 0. Indeed, if x0A
∗ ∩ Dom(ψ) = ∅ then for all w ∈ A∗:

ψ ◦ (x0 ← x0)(x0w) = ψ(x0w) = ∅. And if x0A
∗ ∩ Dom(ψ) 6= ∅ then for those w ∈ A∗ such

that x0w ∈ Dom(ψ) we have (y0 ← y0) ◦ ψ ◦ (x0 ← x0)(x0w) = (y0 ← y0)(ψ(x0w)) = ∅, since
Im(ψ) ∩ y0A∗ = ∅. Now case (0) applies to 0 6= Φ = [(y0 ← y0) ◦ ϕ ◦ (x0 ← x0)]end ∼= 0; hence all
elements ofMP

end are congruent to 0.

Case (2.2): Dom(ϕ) ≡end Dom(ψ) and Im(ϕ) ≡end Im(ψ).
Then we can restrict ϕ and ψ to Dom(ϕ) ∩ Dom(ψ) (≡end Dom(ϕ) ≡end Dom(ψ)), by choice of

representatives in [ϕ]end, respectively [ψ]end; so now domC(ϕ) = domC(ψ). Since ϕ 6= ψ, there exist
x0 ∈ domC(ϕ) = domC(ψ) and y0 ∈ Im(ϕ), y1 ∈ Im(ψ), such that ϕ(x0) = y0 6= y1 = ψ(x0). We have
two subcases.
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Subcase (2.2.1): y0 and y1 are not prefix-comparable.
Then (y0 ← y0) ◦ ϕ ◦ (x0 ← x0) = (y0 ← x0).
On the other hand, (y0 ← y0) ◦ ψ ◦ (x0 ← x0)(x0w) = (y0 ← y0)(y1w) = ∅ for all w ∈ A∗ (since

y0 and y1 are not prefix-comparable). So, (y0 ← y0) ◦ ψ ◦ (x0 ← x0) = 0. Hence case (0) applies to
0 6= Φ = [(y0 ← y0) ◦ ϕ ◦ (x0 ← x0)]end ∼= 0.

Subcase (2.2.2): y0 is a prefix of y1, and y0 6= y1. (The case where y0 is a prefix of y1 is similar.)
Then y1 = y0au1 for some a ∈ A, u1 ∈ A∗. Letting b ∈ A−{a}, and y2 = y0b, we obtain a string y2

that is not prefix-comparable with y1. Now, (y2 ← y2) ◦ϕ ◦ (x0 ← x0)(x0b) = (y2 ← y2)(y0b) = y2;
so, Φ = (y2 ← y2) ◦ ϕ ◦ (x0 ← x0) 6= 0. But for all w ∈ A∗, (y2 ← y2) ◦ ψ ◦ (x0 ← x0)(x0w)
= (y2 ← y2)(y1w) = ∅, since y2 and y1 are not prefix-comparable; so, (y2 ← y2)◦ψ ◦ (x0 ← x0) = 0.
Thus, case 0 applies to 0 6= Φ = (y2 ← y2) ◦ ϕ ◦ (x0 ← x0) ∼= (y2 ← y2) ◦ ψ ◦ (x0 ← x0) = 0. ✷

Proposition 2.25 The group of units of MP
end is

{[f ]end : f ∈ RMP and f is a bijection between two essential right ideals of A∗}.

Proof. If f ∈ RMP is a bijection between essential right ideals, then f is also a bijection from
R1 = Dom(f) onto R2 = Im(f); and R1 and R2 are decidable subsets of A∗ (since R1 ∈ P and
R2 ∈ NP). Hence f−1: R2 → R1 is partial recursive, and has decidable domain and image. Also,
f ◦ f−1 = idR2

, and f−1 ◦ f = idR1
. Since R1, R2 are essential right ideals, idR2

≡end id ≡end idR1
. So,

[f ]end · [f−1]end = [id]end = [f−1]end · [f ]end. By Lemma 2.22, f−1 is ≡end-equivalent to an element of
RMP (with linear time-complexity and linear balance). Hence, [f−1]end ∈ MP

end; so [f ]end belongs to
the group of units.

Conversely, suppose [F ]end ≡H [id]end in MP
end, where F ∈ RMP. Then there exists f ∈ RMP

such that f ≡end F , and f regular in RMP (by Theorem 2.23). Since [f ]end ≡L [id]end, there exist
f2, idR2

∈ RMP such that f2 ◦ f = idR2
; and idR2

∈ RMP implies R2 ∈ P. Since [f ]end ≡R [id]end,
there exist f1, idR1

∈ RMP such that f ◦ f1 = idR1
; and idR1

∈ RMP implies R1 ∈ P. Since
idR2

≡end id ≡end idR1
, R1 and R2 are essential. Since f and idR2

are regular, Lemma 2.20(1) implies
Im(f) = R2. Since f and idR1

are regular, Lemma 2.20(2) implies f is injective and Dom(f) = R1.
Hence, f is a bijection from R1 onto R2. ✷

We prove next that in the definition ofMP
end we can replace RMP by the monoid RMrec, defined by

RMrec = {f : f is a right-ideal morphism on A∗ that is partial recursive, Dom(f) is
decidable, and f has a total recursive input-output balance}.

Recall that [f ]end ∈ RMP is defined by [f ]end = {F ∈ RMP : F ≡end f}.

Proposition 2.26 The monoid RMrec/≡end is isomorphic to RMP/≡end (=MP
end).

Proof. Let us show that the map H: [f ]end 7−→ {F ∈ RMrec : F ≡end f} (for all f ∈ RMP)
is a bijection from MP

end onto RMrec/ ≡end. The map H is injective because different ≡end-classes
are disjoint, in both RMP and RMrec. The map is also surjective because for every g ∈ RMrec

there exists gpad ∈ RMP such that gpad ≡end g. We can take gpad to be the restriction of g to
⋃

y∈domC(g) y A
|y|·t(|y|)A∗, as in Lemma 2.22. Moreover, H is a homomorphism since ≡end is a congru-

ence. ✷

Question: We proved that MP
end is a congruence-simple homomorphic image of RMP. Does RMP

have other congruence-simple homomorphic images?
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3 Bounded end-equivalence

Definition 3.1 (bounded end-equivalence of sets).
(1) Two sets L1, L2 ⊂ A∗ are boundedly end-equivalent (denoted by L1 ≡bd L2) iff L1 ≡end L2, and
there exists a total function β: N → N such that for all x1 ∈ L1 and x2 ∈ L2: x1 ‖pref x2 implies
|x1| ≤ β(|x2|) and |x2| ≤ β(|x1|).
(2) More generally, let T be any non-empty family of total functions N→ N such that:
• T contains upper bounds on sum and composition; this means that for all τ1, τ2 ∈ T there exist
τ3, τ4 ∈ T such that for all n ∈ N: τ1(n) + τ2(n) ≤ τ3(n), and τ1(τ2(n)) ≤ τ4(n).
• There exists τ ∈ T such that τ is an increasing function, and n ≤ τ(n) for all n ∈ N.

Two sets L1, L2 ⊂ A∗ are T -end-equivalent (denoted by L1 ≡T L2) iff L1 ≡end L2, and there
exists a function τ ∈ T such that for all x1 ∈ L1 and x2 ∈ L2: x1 ‖pref x2 implies |x1| ≤ τ(|x2|) and
|x2| ≤ τ(|x1|).

Note that the bounding function β or τ for L1 ≡bd L2 depends on L1 and L2. The only assumption
on the function β: N→ N is that it is total on N; no computability assumptions are made.

Examples and counter-examples:

For any prefix code P ⊂ A∗ and any total function β: N→ N we have
⋃

x∈P xAβ(|x|) ≡bd P .
For the prefix codes {0, 1} and 0∗1 we have {0, 1} ≡end 0∗1, but {0, 1} 6≡bd 0∗1.
When P is a prefix code, P 6≡bd P A

∗; in this, ≡bd differs from ≡end. And A
∗ is not ≡bd-equivalent

to itself, so ≡bd is not reflexive in general. When L is a prefix code, L is boundedly end-equivalent
to itself. If L is a union of two prefix codes, then L might not be boundedly end-equivalent to itself
(e.g., {0, 1} ∪ {0n1 : n ≥ 0}). From here on we will use ≡bd only between prefix codes.

Closure of T under composition guarantees that ≡T is transitive. Typical examples of families T as
above are the following (where we only take those functions that are increasing and satisfy n ≤ τ(n)):
• NN, i.e., the family of all total functions on N; then ≡T is ≡bd.
• rec = the family of all partial recursive functions N → N with decidable domain, i.e., the partial
recursive functions that are extendable to total recursive functions.
• E3 = the family of all elementary recursive functions, i.e., level 3 of the Grzegorczyk hierarchy;
these are the primitive recursive functions with size bounded by a constant iteration of exponentials.
• poly = the family of all polynomials with non-negative integer coefficients.
• lin = the family of all affine functions of the form n 7→ an+ b (where a ≥ 1, b ≥ 0).

We have the following Cantor-space characterization of ≡bd between prefix codes:

Proposition 3.2 For prefix codes P1, P2 ⊂ A∗ we have P1 ≡bd P2 iff ends(P1) = ends(P2).

Proof. [⇐] If ends(P1) = ends(P2) then by applying closure we obtain P1 ≡end P2 (by Prop. 2.5).
To prove boundedness of this end-equivalence, let x1 ∈ P1, x2 ∈ P2 be such that x1 ‖pref x2. Let us
assume x1 is a prefix of x2 (if x2 is a prefix of x1 the reasoning is symmetric). The existence of a total
function β: N → N such that |x2| ≤ β(|x1|) for every x2 that has x1 as a prefix, is equivalent to the
finiteness of x1A

∗ ∩ P2 for every x1 ∈ P1. Indeed, the lengths of the words in a set S ⊆ A∗ (over a
finite alphabet A) are bounded iff that set S is finite.

Since ends(P1) = ends(P2), every end that passes through x1 (i.e., that belongs to the subtree x1A
∗

of A∗) intersects P2. Hence, the tree x1A
∗ − P2A

+ = (x1A
∗ − P2A

∗) ∪ (P2 ∩ x1A∗) has no infinite
path. By the König Infinity Lemma, this implies that this tree is finite. Hence x1A

∗ ∩ P2, which is
the set of leaves of this finite tree, is finite.

[⇒] If P1 ≡bd P2 with bounding function β: N → N, consider x1w ∈ ends(P1), with x1 ∈ P1 and
w ∈ Aω. If x1 has a prefix x2 ∈ P2 then obviously, x1w ∈ ends(P2).
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Let us assume next that x1 does not have a prefix in P2; we want to show that in this case too,
x1w ∈ ends(P2). For every n ∈ N, let wn be the prefix of length n of w. Since P1 ≡end P2, every
right ideal x1wnA

∗ intersects P2A
∗; so, x1wnun = x2,nvn for some x2,n ∈ P2 and some un, vn ∈ A∗. It

follows that x1 ‖pref x2,n, hence x1 is a prefix of x2,n (since we assumed that x1 does not have a prefix
in P2). Hence, |x2,n| ≤ β(|x1|). It also follows from x1wnun = x2,nvn that x1wn ‖pref x2,n, so either
x1wn is a prefix of x2,n, or x2,n is a prefix of x1wn (while x1 is also a prefix of x2,n).

Case 1: x1wn is a prefix of x2,n. Then |x2,n| ≥ |x1| + n. If we choose n so that n > β(|x1|), this
case is ruled out.

Case 2: x2,n is a prefix of x1wn. Then x2,n is a vertex on the end x1w (between x1 and x1wn),
hence x1w is equal to an end through x2,n, so x1w ∈ ends(P2). ✷

Remarks:
(1) Prop. 3.2 was proved for prefix codes. When P1, P2 ⊆ A∗ are not prefix codes, the proposition does
not always hold. E.g., A∗ 6≡bd A

∗ (non-reflexivity, as we saw), but obviously ends(A∗) = ends(A∗).
One could argue that ends(L1) = ends(L2) is the more reasonable definition of “L1 ≡bd L2”. But

our definition of ≡bd (Def. 3.1) has the advantage of generalizing to ≡T .
In any case, since we will use ≡bd only with prefix codes, the question doesn’t matter in this paper.

(2) The relation ≡bd can be generalized to a pre-order, denoted by ⊆bd: For prefix codes P1, P2 ⊂ A∗

we define P1 ⊆bd P2 iff ends(P1) ⊆ ends(P2). Equivalently, P1 ⊆bd P2 iff there exists Q ⊆ P2 such
that P1 ≡bd Q. Similarly, ≡T can be generalized by defining P1 ⊆T P2 iff there exists Q ⊆ P2 such
that P1 ≡T Q.

Notation: For any right ideal R ⊆ A∗, the prefix code that generates R (as a right ideal) is denoted
by prefC(P ).

Proposition 3.3 For any prefix code P ⊂ A∗, we have:
⋂ {ends(Q) : Q is a prefix code and Q ≡bd P} = ends(P ),
⋂ {QA∗ : Q is a prefix code and Q ≡bd P} = ∅,

prefC
(
⋃ {QA∗ : Q is a prefix code and Q ≡bd P}

)

≡bd P .

Proof. The first intersection is ends(P ) since ends(Q) = ends(P ) when Q ≡bd P ; so this result is
different than the corresponding result for ≡end (in Prop. 2.7). For the second intersection result this
is similar to the proof of Prop. 2.7.

For the union of the QA∗ we have by Prop. 2.7, prefC
(
⋃

Q≡bdP
QA∗

)

≡end P . Also, by Prop.

3.2, ends(QA∗) = ends(P ) for every prefix code Q such that Q ≡bd P ; hence, ends
(
⋃

Q≡bdP
QA∗

)

=
ends(P ). Then the result follows by Prop. 3.2. ✷

Definition 3.4 (bounded end-equivalence of functions). Two right-ideal morphisms f, g are
boundedly end-equivalent (denoted by f ≡bd g) iff domC(f) ≡bd domC(g), and f(x) = g(x) for all
x ∈ Dom(f) ∩Dom(g). Equivalently, f ≡bd g iff f ≡end g and domC(f) ≡bd domC(g).

For any family T of total functions as in Def. 3.1 we define: f ≡T g iff f ≡end g and domC(f) ≡T

domC(g).

Notation: When f ∈ RMP, the ≡bd-class in RMP of f is denoted by [f ]bd. So, [f ]bd = {g ∈ RMP :
g ≡bd f}. More generally, [f ]T denotes the ≡T -class in RMP of f . Note that we define [f ]bd and
[f ]T to only contain elements of RMP.

For the rest of this Section we study ≡bd. The relations ≡poly and ≡E3 will be investigated in the
next Section.
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Proposition 3.5 (1) Let P1, P2 ⊂ A∗ be prefix codes such that P1 ≡bd P2, let P∩ be the prefix code
that generates the right ideal P1A

∗ ∩ P2A
∗, and let P∪ be the prefix code that generates the right ideal

P1A
∗ ∪ P2A

∗. Then P1 ≡bd P2 ≡bd P∩ ≡bd P∪.
(2) Let f1, f2 be right-ideal morphisms such that f1 ≡bd f2. Then f1 ∩ f2 and f1 ∪ f2 are right-ideal
morphisms, and f1 ≡bd f2 ≡bd f1 ∩ f2 ≡bd f1 ∪ f2.

Proof. (1) This follows from Prop. 3.2, since ends(P1A
∗∩P2A

∗) = ends(P1)∩ends(P2) and ends(P1A
∗∪

P2A
∗) = ends(P1) ∪ ends(P2).

For (2) the proof is similar to the proof of Prop. 2.9. ✷

Just as for ≡end (see Def. 2.12), we define a maximum extension within a ≡bd-class or a ≡T -class.

Definition 3.6 For any right-ideal morphism f : A∗ → A∗ we define

fb,max =
⋃

{g : g is a right-ideal morphism with g ≡bd f}.
For a family T of functions as in Def. 3.1 we define

fT ,max =
⋃ {g : g is a right-ideal morphism with g ≡T f}.

Then, just as in Prop. 2.13, we have:

Proposition 3.7.
(1) For every right-ideal morphism f , fb,max is a function, and a right-ideal morphism A∗ → A∗.
Moreover, f ≡bd fb,max.

(2) For any right-ideal morphisms f, g we have: g ≡bd f iff gb,max = fb,max.

Proof. The same proof as for Prop. 2.13 works here (using Prop. 3.5 and Prop. 3.3). ✷

Recall the action of a right-ideal morphism f : A∗ → A∗ on Aω: For any p ∈ domC(f) and w ∈ Aω, we
define f(pw) = f(p)w. The domain of the action of f on Aω is domC(f) Aω. Accordingly, RMP acts
on Aω (non-faithfully). We have the following characterization of ≡bd in terms of the Cantor space:

Corollary 3.8 Two right-deal morphisms f, g : A∗ → A∗ have the same action on Aω iff g ≡bd f .
Hence on Aω: gb,max ◦ fb,max = (g ◦ f)b,max.

The relation ≡bd is a congruence on the monoid of all right-ideal morphisms of A∗, and in par-
ticular on RMP.

Proof. If g ≡bd f then domC(g) ≡bd domC(f), hence by Prop. 3.2: ends(domC(g)) = ends(domC(f)).
So the actions of f and g on Aω have the same domain. Since g ≡bd f , the functions f and g agree
on their common domain in Aω, so they have the same action on Aω.

Conversely, if f and g act in the same way on Aω then ends(domC(g)) = ends(domC(f)), so
domC(g) ≡bd domC(f) (by Prop. 3.2). Also, if f and g act in the same way on Aω then for all
x ∈ Dom(f) ∩ Dom(g) and for all w ∈ Aω: f(xw) = g(xw). Hence (since x ∈ Dom(f) ∩ Dom(g)),
f(x) = g(x). So, f and g agree on Dom(f) ∩ Dom(g), hence f ≡bd g.

The rest of the corollary follows now. ✷

Proposition 3.9 There exists g ∈ RMrec such that Dom(gb,max) is undecidable; so gb,max 6∈ RMrec.
Moreover, this function g can be chosen so that in addition we have gb,max = ge,max.

Proof. Let L ⊂ 0∗ (over the one-letter alphabet {0}) be an r.e. language that is undecidable. We
assume in addition that for all 0i, 0j ∈ L we have |i−j| > 2 (if i 6= j). LetM be a deterministic Turing
machine that accepts L. Let T (0n) be the running time of M on input 0n ∈ L; T (w) is undefined for
w ∈ {0, 1}∗ − L. We define the right-ideal morphism g by
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domC(g) =
⋃

0n∈L 0n {0, 1} 1 {0, 1}T (0n),

g(0na1z) = 0n a 1z,

if 0n ∈ L, a ∈ {0, 1}, and z ∈ {0, 1}T (0n) {0, 1}∗. Here a denotes the complement of a (i.e., 0 = 1,
1 = 0). The set domC(g) is a prefix code because of the |i− j| > 2 condition on L.

Membership in Dom(g) is decidable in linear time: for an input 0na1z with a ∈ {0, 1} and z ∈
{0, 1}∗, it suffices to run the machine M for ≤ |z| steps on 0n. And |g(0na1z)| = |0na1z|, hence
g ∈ RMP.

We consider the following right-ideal morphism h, which extends g:

domC(h) = L {0, 1} 1,
h(0na1) = 0n a 1,

if 0n ∈ L, a ∈ {0, 1}.
We claim that h = gb,max = ge,max. Indeed, we have h ≡bd g, since ends(domC(g)) = L {0, 1} 1 {0, 1}ω

= ends(domC(h))) (using Prop. 3.2). And h cannot be further extended to a right-ideal morphism
that is ≡bd h (because h permutes 0n01, 0n11).

Also, cl(ends(domC(h))) = L {0, 1} 1 {0, 1}ω ∪ {0ω}. But h cannot be extended to any prefix
0i (i ∈ N) of 0ω (again because h permutes 0n01, 0n11). So, h is also the maximal ≡end-equivalent
extension of g. ✷

Lemma 3.10 For every right-ideal morphisms f and g such that f ⊆ g and f ≡bd g we have:

(1) For all x ∈ domC(g): xA∗ ∩ domC(f) is finite.

(2) For any x ∈ domC(g), f can be extended to a right-ideal morphism whose domain code is
(domC(f)− xA∗) ∪ {x} (this is called a one-point extension of f).

If f ∈ RMP then this extension is also in RMP.

(3) For any finite subset C ⊂ domC(g), f can be extended to a right-ideal morphism whose domain
code includes C (this is called a finite extension of f).

This extension belongs to RMP if f ∈ RMP.

(4) Items (1), (2), (3) hold in particular when g = fb,max.

(5) There exist f ∈ RMP such that for some x ∈ domC(fe,max) the set xA∗ ∩ domC(f) is infinite.

Proof. (1) Let β(.) be the bounding function that corresponds to f ≡bd g. Then the tree

Tx,f = {z ∈ A∗ : x is a prefix of z and z is a prefix of some word in domC(f)}
has x as root and xA∗ ∩ domC(f) as set of leaves, and has depth ≤ β(|x|). Moreover, the degree of
each vertex is ≤ 2. Hence the tree Tx,f and its set of leaves xA∗ ∩ domC(f) are finite.
(2) Since f ≡bd g and f ⊆ g, every end that starts at x intersects domC(f). Since g and f agree on
domC(f), f can be extended from Dom(f) to (xA∗∩domC(f))∪Dom(f). For domain codes, the effect
of this extension is to replace xA∗ ∩ domC(f) by {x}.

If f ∈ RMP then the one-point extension is also in RMP, since xA∗ ∩ domC(f) is finite.
(3) follows from (2).
(4) Recall that f ≡bd fb,max, by Prop. 3.7.(1); hence the Lemma applies to the maximum≡bd-equivalent
extension fb,max.
(5) For ≡end and fe,max the situation is different. E.g., when f = 1|0∗1, we have fe,max = 1 and
domC(fe,max) = {ε}. Then for x = ε we have x {0, 1}∗ ∩ domC(f) = 0∗1, which is infinite. ✷

The precise definitions of one-point and finite extensions of a right-ideal morphism are as follows.

Definition 3.11 Let f, g be right-ideal morphisms. We call g a one-point extension of f iff (1) g is
an extension of f , (2) g ≡bd f , (3) there exists x0 ∈ domC(g) such that Dom(g) = x0A

∗ ∪ Dom(f).
We call g a finite extension of f iff (1) f ⊆ g, and (2) g ≡bd f , as above, and (3) there exists a

finite prefix code F ⊆ domC(g) such that Dom(g) = FA∗ ∪ Dom(f).
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A one-point extension is a special case of a finite extension (when F = {x0}), and a finite extension
can be constructed by a finite sequence of one-point extensions.

It follows from the definition that for a finite extension, domC(g) = F ∪ (domC(f)− FA∗).
Moreover, domC(f) ∩ FA∗ is finite (by Lemma 3.10(1)). Since domC(g) = F ∪ (domC(f) −

(domC(f) ∩ FA∗)), we conclude that the symmetric difference domC(g) △ domC(f) is finite. Con-
versely, suppose that f ⊆ g, g ≡bd f , and domC(g) △ domC(f) is finite; then g is a finite ex-
tension of f (in the sense of Def. 3.11). Indeed, F = domC(g) − domC(f) is finite, and satisfies
Dom(g) = FA∗ ∪ Dom(f). Thus, for right ideal morphisms g, f that satisfy f ⊆ g and g ≡bd f we
have: g is a finite extension of f iff domC(g) △ domC(f) is finite.

By Lemma 3.10, fb,max can be constructed from f by an ω-sequence of one-point extensions. On
the other hand, the example f = id|0∗1 shows that a right-ideal morphism f might be extendable
(to id ≡end f in this example), without having any finite extension. So, in general, fe,max cannot be
obtained from f by an ω-sequence of finite extensions.

The following consequence of the Lemma is a little surprising.

Proposition 3.12 Let T be any family of functions as in Def. 3.1 such that, in addition, poly ⊆ T .
Then for every right-ideal morphism f , fT ,max = fb,max.

In particular, fpoly,max = fb,max.

Proof. Since ≡T implies ≡bd, fT ,max ⊆ fb,max.
On the other hand let x ∈ domC(fb,max). Since f ≡bd fT ,max ≡bd fb,max, if we let F = fT ,max

we have fb,max = Fb,max. For every x ∈ domC(Fb,max), xA
∗ ∩ domC(F ) is finite (by Lemma 3.10);

and F can be extended to a right-ideal morphism F0 which is defined on x. Since xA∗ ∩ domC(F )
is finite, F0 ≡T F . But since F is already ≡T -maximum, the extension F0 of F is F itself. So,
F (x) = F0(x) = fb,max(x). Since this holds for every x ∈ domC(fb,max), it follows that F = fb,max. ✷

Proposition 3.13 For a right-ideal morphism f , the following are equivalent:
(1) f is finitely extendable, to a strictly larger domain;
(2) there exist x0, y0 ∈ A∗ such that (x00, y00), (x01, y01) ∈ f , and (x0, y0) 6∈ f ;
(3) f 6= fb,max.

Proof. The implication (2)⇒(1) is clear, since (x00, y00), (x01, y01) ∈ f implies that f can be
extended to f ∪ {(x0, y0)}. And (1) implies that f $ f ∪ {(x0, y0)} ⊆ fb,max, so (1) implies (3).

Let us prove that that (3) implies (2). By (3) there exists z ∈ domC(fb,max) with z 6∈ Dom(f).
Consider the rooted tree with root z and vertex set and edges set respectively

V = {zw : w ∈ A∗ and zw is a prefix of a word in zA∗ ∩ domC(f)},
E = {(v, va) ∈ V × V : a ∈ A}.

This is a binary tree (every vertex has ≤ 2 children), and it is saturated (i.e., every vertex has either
2 children or none). The set of leaves is zA∗ ∩ domC(f), and this set is finite (by Lemma 3.10); hence
since the tree is saturated, it is finite. Also, since z 6∈ Dom(f) and since the tree is saturated, the tree
has at least 3 vertices. Let d be the depth of the tree (number of edges in a longest path from the
root). Let x0 be any non-leaf vertex at distance d− 1 from the root; since x0 is not a leaf, it has two
children, namely x00 and x01. Then x00 and x01 are at distance d from the root, so they are leaves,
i.e., x00, x01 ∈ zA∗ ∩ domC(f). Let y0 = fb,max(x0); then for a ∈ {0, 1} we have y0a = fb,max(x0a),
and the latter is equal to f(x0a) (since x00, x01 ∈ domC(f)). Hence, (x0, y0) satisfies (2). ✷

We mention the following, which will however not be used in this paper:

Fact. For every f ∈ fP, the encoded right-ideal morphism fC is not finitely extendable, and not
infinitely extendable. In other words, fC = (fC)b,max = (fC)e,max.
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Proof. The encoding fC was defined in the Introduction. It follows from that definition that
domC(fC) ⊆ {0, 1}∗ 11, so we never have z0, z1 ∈ domC(fC) for any z ∈ A∗. Hence, by Prop.
3.13, fC is not finitely extendable, so fC = (fC)b,max.

Proof that fC is not infinitely extendable: Let P ⊂ A∗ be any prefix code such that domC(fC) ⊆
PA∗ and domC(fC) ≡end P ; we want to show that P = domC(fC), which means that fC cannot be
extended to a larger domain. Let us abbreviate domC(fC) by D.

Since P ≡end D we have (by Lemma 2.3): (∀p ∈ P )(∃x11 ∈ D)[ p ‖pref x11 ]; moreover, since D ⊂
PA∗, this p is a prefix of x11. Hence, since D ⊂ {00, 01}∗ 11, we conclude that p ∈ {00, 01}∗ ·{ε, 1, 11};
i.e., for each p ∈ P we have three possibilities: p ∈ {00, 01}∗, p ∈ {00, 01}∗ 1, p ∈ {00, 01}∗ 11.
Claim 1. If p ∈ {00, 01}∗ 11 then p ∈ D.

Proof. Since p is a prefix of a word x11 ∈ D, and p ∈ {00, 01}∗ 11, we conclude p = x11 (since
{00, 01}∗ 11 is a prefix code). [End, proof of Claim 1.]

Claim 2. P ∩ {00, 01}∗ 1 = ∅; i.e., p cannot be in {00, 01}∗ 1.
Proof. If there exists p ∈ P ∩ {00, 01}∗ 1 and p is a prefix of some x11 ∈ {00, 01}∗ 11, then p = x1.
But then P 6≡end D, since the right ideal p0A∗ = x10A∗ ⊆ {00, 01}∗ 10A∗ intersects PA∗ but not
{00, 01}∗ 11A∗. [End, proof of Claim 2.]

Claim 3. P ∩ {00, 01}∗ = ∅; i.e., p cannot be in {00, 01}∗ .
Proof. Assume there exists p ∈ P ∩ {00, 01}∗ such that p is a prefix of some x11 ∈ {0, 1}∗ 11.
But then P 6≡end D, since the right ideal p10A∗ = x10A∗ ⊆ {00, 01}∗ 10A∗ intersects PA∗ but not
{00, 01}∗ 11A∗. [End, proof of Claim 3.]

We are left with only case 1, i.e., P ⊆ D. Hence P = D, since D ≡end P . ✷

Notation: The quotient monoid ofRMP under the congruence≡bd ofRMP is denoted byRMP/≡bd;
this is also the quotient monoid for the action of RMP on Aω.

Moreover, RMP/≡bd will also be denoted byMP
bd.

Recall that RMrec consists of all right-ideal morphisms that are partial recursive with decidable
domain, and that have a total recursive input-output balance.

Proposition 3.14 The monoid RMrec/≡bd is isomorphic to RMP/≡bd (=MP
bd).

Proof. This is proved in the same way as Prop. 2.26. ✷

Lemma 3.15 If P,Q are prefix codes such that P ≡bd Q, and if P is finite, then Q is finite.

Proof. Let β be the length-bounding (total) function associated with P ≡bd Q. Since P ≡bd Q, every
element x2 ∈ Q is prefix-comparable to some x1 ∈ P . Since P is finite, the elements of P can have
only finitely many prefixes, hence the set of elements of Q that are prefixes of some element(s) of P is
finite. Moreover, each x1 ∈ P can be the prefix of only finitely many x2 ∈ Q, since every such x2 has
length ≤ β(|x1|). Since P is finite, the set of length bounds {β(|x1|) : x1 ∈ P} is finite. Hence Q is
finite. ✷

The next theorem refers to the well-known Richard Thompson group V (a.k.a. G2,1). In order to
make the paper self-contained we define V next. First, let

riAutfin = {f : f is a right-ideal morphism of A∗, such that
(1) f is injective,
(2) domC(f) and imC(f) are maximal prefix codes,
(3) domC(f) (and hence imC(f)) is finite}.

The notation “riAutfin” stands for right-ideal automorphism with finite domain code. Every element of
riAutfin can be given by a bijection between two finite maximal prefix codes, and it is straightforward
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to prove that riAutfin is a submonoid of RMP. For every finite maximal prefix code P , idPA∗ is an
idempotent of riAutfin, hence riAutfin is not a group. The Thompson group V is defined by

V = riAutfin/≡bd (≤MP
bd).

See [8] for details, and a proof that this is a group; riAutfin is studied in [5]. This group has remarkable
properties (e.g., it is finitely presented and simple), and can be defined in several ways. It was
introduced by Richard J. Thompson in the 1960s along with two other remarkable groups; see [9] for
more background.

Theorem 3.16.
(1) The monoid MP

bd is regular, J 0-simple, and finitely generated. Every element of RMP is ≡bd-
equivalent to a regular element of RMP.

(2) For any family T of total functions as in Def. 3.1, the group of units of MP
T is the Richard

Thompson group V (a.k.a. G2,1). In particular, the group of units of MP
bd is V .

(3) MP
T , and in particular MP

bd, is not congruence-simple.

Proof. (1) Regularity and finite generation are proved in the same way as forMP
end (Theorem 2.23,

and Lemma 2.22). Since RMP is J 0-simple, so is its homomorphic image RMP/≡bd (=MP
bd).

(2) By Lemma 3.15 (and since ≡T implies ≡bd), if f ∈ RMP has a finite domC(f) then every element of
[f ]T has a finite domain code. Hence when domC(f) is finite, [f ]T = [f ]bd. It now follows immediately
from the definition so every element of V belongs toMP

T . Thus, V is a subgroup of the group of units.
Conversely, suppose [F ]T ≡H [id]T in MP

T , where F ∈ RMP. We note first that if e ∈ RMP

satisfies e ≡T id, then e = idPA∗, for some finite maximal prefix code P ⊂ A∗ (finiteness follows from
Lemma 3.15). Now [F ]T ≡H [id]T implies that there is a maximal prefix code P1 ⊂ A∗ in P such that
idP1A∗ ≡T id, and there exists g2 ∈ RMP such that g2 ◦ F = idP1A∗ (since [F ]T ≡L [id]T ). Then,
idP1A∗ ≡T id implies F ◦ idP1A∗ ≡T F . Letting f = F ◦ idP1A∗ (≡T F ), we now have [f ]T ≡H [id]T and
g2 ◦ f = idP1A∗ with f ◦ g2 ◦ f = f . So f is regular.

We also have f ◦ g1 = idP2A∗ (since [f ]T ≡R [id]T ), where g1 ∈ RMP and P2 is a finite maximal
prefix code. Since idP2A∗ ≡T id ≡T idP2A∗ , we have P2 ≡T {ε} ≡T P2. Since f and idP2A∗ are regular,
Lemma 2.20(1) implies Im(f) = P2A

∗. Since f and idP1A∗ are regular, Lemma 2.20(2) implies that
f is injective and Dom(f) = P1A

∗. Hence, f is a bijection from P1A
∗ onto P2A

∗, with P1, P2 finite.
Thus, [f ]T (= [F ]T ) belongs to the Thompson group V .

(3) Obviously, the congruence ≡T is a refinement of ≡end, so there is a surjective homomorphism
MP

T ։ MP
end. By (2) and Prop. 2.25, these two monoids have different groups of units, so they

are not isomorphic, hence the above surjective homomorphism is not injective. So, ≡T is a strict
refinement of ≡end, soMP

T is not congruence-simple. ✷

Proposition 3.17.
(1) In RMP we have: If 1 ≡D f , then imC(f) is finite.

(2) The monoid RMP is not D0-simple.

Proof. (1) If 1 ≡D f then f is obviously regular (since 1 is regular, and the whole D-class is regular
if it contains a regular element). By definition of ≡D, 1 ≡D f iff 1 ≡L g ≡R f for some g ∈ RMP.
By Lemma 2.20 this implies that domC(g) is finite (and, moreover, g is injective, and domC(g) is
a maximal prefix code), and that Im(g) = Im(f); hence imC(g) = imC(f). Since domC(g) is finite,
imC(g) is finite. Hence imC(f) (= imC(g)) is finite.

(2) Consider f ∈ RMP defined (for all n ≥ 0) by f(02n1) = 02n+11 and f(02n+11) = 02n1; so,
domC(f) = imC(f) = 0∗1. Then imC(f) is infinite, so by (1), f 6≡D id in RMP. ✷

Let M2,1 denote the monoid generalization of the Thompson group V (= G2,1). To define M2,1,
consider first RMfin = {f ∈ RMP : domC(f) is finite}. Then, M2,1 = RMfin/≡bd; see [6].
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Proposition 3.18.
(1) In MP

bd, the D-class of the identity contains M2,1 − {0}.
(2) In MP

bd, the R-class of the identity contains some elements that are not in M2,1.

Proof. (1) The monoid M2,1 is the submonoid {[f ]bd ∈ MP
bd : domC(f) is finite}. In Theorem 2.5

of [6] it was proved that M2,1 is D0-simple. Therefore, M2,1 − {0} is contained in the D-class of 1 in
MP

bd.
(2) By Lemma 2.11 in [4], the R-class of 1 in RMP is {f ∈ RMP : ε ∈ Im(f)}. Consider f ∈ RMP

defined by f(0n1) = 0n for all n ≥ 0; so, domC(f) = 0∗1 and imC(f) = {ε}. Hence f is in the
R-class of 1. But [f ]bd (∈ MP

bd) does not belong to M2,1, since the infinite prefix code 0∗1 is not
≡bd-equivalent to a finite prefix code, by Lemma 3.15. ✷

Lemma 3.19 If R2 ⊆ R1 are right ideals of A∗ and R2 is essential, then R1 is also essential.
If R2 is essential and finitely generated (as a right ideal), then R1 is finitely generated.

Proof. Every right ideal xA∗ intersects R2, hence xA
∗ obviously intersects R1 (since R2 ⊆ R1). So

R1 is essential. If R2 is a finitely generated essential right ideal then R2 = P2A
∗ for a finite maximal

prefix code P2. It follows that A∗ − P2A
∗ is a finite set. Moreover, R1 is generated by a subset of

P2 ∪ (R1 − P2A
∗). This is a subset of P2 ∪ (A∗ − P2A

∗), which is finite. ✷

Lemma 3.20 (See also Lemma 5.9.) If f1, f2 ∈ RMP satisfy f1 ≡bd f2, then imC(f1) ≡bd imC(f2).

Proof. By Prop. 3.2 and Cor. 3.8: f1 ≡bd f2 iff domC(f1) A
ω = domC(f2) A

ω and f1, f2 agree on
Dom(f1) ∩ Dom(f2). Thus f1 ≡bd f2 implies imC(f1) A

ω = f1(domC(f1) A
ω) = f1(domC(f1) A

ω ∩
domC(f2) A

ω) = f2(domC(f1) A
ω ∩ domC(f2) A

ω) = f2(domC(f2) A
ω) = imC(f2) A

ω. So imC(f1) A
ω

= imC(f2) A
ω, hence (by Prop. 3.2 again), imC(f1) ≡bd imC(f2). ✷

Notation: For any right ideal R ⊆ A∗, the (unique) prefix code that generates R as a right ideal is
denoted by prefC(R).

Lemma 3.21.
(1) Let R ⊆ A∗ be an essential right ideal such that R ∈ P. If [1]bd ≡D [1R]bd in MP

bd, then R is
finitely generated (as a right ideal).
(2) The monoid MP

bd is not D0-simple.

Proof. (1) We have [1]bd ≡D [f ]bd iff [1]bd ≡L [g]bd ≡R [f ]bd for some g ∈ RMP. The relation
[1]bd ≡L [g]bd is equivalent to [1]bd = [m]bd [g]bd for some m ∈ RMP, hence 1 ≡bd mg. So (by Lemma
3.15), 1PA∗ = mg for some finite maximal prefix code P ⊂ A∗. It follows from 1PA∗ = mg that
PA∗ ⊆ Dom(g). Since PA∗ is a finitely generated essential right ideal, it follows (by Lemma 3.19)
that Dom(g) is also a finitely generated essential right ideal. In summary, so far we have shown that
[1]bd ≡L [g]bd ≡R [f ]bd, where g is such that

domC(g) is a finite maximal prefix code.

We are interested in the case when f = 1R, where R ⊂ A∗ is an essential right ideal with [1]bd ≡D

[1R]bd. Then [1]bd ≡L [g]bd ≡R [f ]bd, with g as above. The relation [g]bd ≡R [1R]bd implies that
1R ≡bd gh for some h ∈ RMP. And this implies that 1R1

= gh for some right ideal R1 such that
prefC(R1) ≡bd prefC(R); hence, R1 is essential (since R is essential). From 1R1

= gh it follows that
R1 ⊆ Im(g); this implies that Im(g) is essential (by Lemma 3.19). Moreover, since Dom(g) is finitely
generated (as we saw above), g(Dom(g)) = Im(g) is finitely generated. So, Im(g) is a finitely generated
essential right ideal, i.e.,

imC(g) is a finite maximal prefix code.

The relation [g]bd ≡R [1R]bd also implies that g ≡bd 1R · k′ for some k′ ∈ RMP; let g′1 = 1R · k′.
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Let g1 = g′1 ·1Dom(g); hence 1Dom(g1) = 1Dom(g′
1
) ·1Dom(g) = 1Dom(g) ·1Dom(g′

1
). And let k = k′ ·1Dom(g1).

Multiplying g ≡bd g
′
1 = 1R · k′ on the right by 1Dom(g) yields:

g ≡bd g1 = 1R · k′ · 1Dom(g),

and then multiplying this on the right by 1Dom(g′
1
) yields

(g ≡bd) g1 = idR · k′ · idDom(g) · idDom(g′
1
) = idR · k′ · idDom(g′

1
) · idDom(g),

since 1Dom(g′
1
) and 1Dom(g) commute, and since Dom(g1) ⊆ Dom(g′1). Moreover,

k′ · 1Dom(g′
1
) · 1Dom(g) = k′ · 1Dom(g1) = k.

Thus we have g1 = 1R · k; this implies Im(g1) ⊆ R. Since g ≡bd g1, and Im(g) is essential (as we
saw above), Lemma 3.20 implies that Im(g1) is also essential. And since Dom(g) is finitely generated
(as we saw above), and g ≡bd g1, it follows that Dom(g1) is finitely generated (by Lemma 3.15).
Hence, Im(g1) = g1(Dom(g1)) is finitely generated. So now we have Im(g1) ⊆ R (seen above), where
Im(g1) is an essential right ideal that is finitely generated. By Lemma 3.19, it follows that R is finitely
generated.

(2) Let R be an essential right ideal in P such that prefC(R) is infinite. Such right ideals exist; examples
are 0∗1A∗ and 0∗10∗1A∗. Then by (1), [1]bd 6≡D [1R]bd. ✷

We can now completely characterize the D-relation inMP
bd:

Theorem 3.22 The monoid MP
bd has exactly two non-zero D-classes, namely

D1 = {[f ]bd : [f ]bd contains f 6= 0 such that imC(f) is finite} and

D2 = {[f ]bd : [f ]bd contains f such that imC(f) is infinite}.

Proof. The sets D1 and D2 are disjoint and they form a bipartition of MP
bd − {[0]bd}. Indeed, if

g ∈ [f ]bd then imC(g) ≡bd imC(f) (by Lemma 3.20); and finiteness of imC(f) implies finiteness of
imC(g) (by Prop. 3.15). Thus, if [f ]bd ∈ D1 then all elements of [f ]bd have finite image code, so
[f ]bd 6∈ D2. Recall that by definition, [f ]bd = {ϕ ∈ RMP : ϕ ≡bd f}. Let us also define

[[f ]]bd = {ξ ∈ RMrec : ξ ≡bd f}.
By Prop. 3.14,MP

bd (= RMP/≡bd) is isomorphic to RMrec/≡bd. For the remainder of this proof we
represent MP

bd by RMrec/≡bd. Let us reformulate the description of the two non-zero D-classes in
terms of RMrec:

∆1 = { [[f ]]bd : [[f ]]bd contains f 6= 0 such that imC(f) is finite},
∆2 = { [[f ]]bd : [[f ]]bd contains f such that imC(f) is infinite}.

The sets ∆1 and ∆2 are disjoint and form a bipartition of RMrec/ ≡bd −{[[0]]bd}; this holds for
the same reason as in the case of D1 and D2 above, since Lemma 3.20 and Prop. 3.15 apply to all
right-ideal morphisms.

By Lemma 3.21(2)), MP
bd is not D0-simple, hence ∆1 ∪ ∆2 is not one D-class. So to prove the

Theorem it suffices to prove that all elements in ∆1 are D-related, and all elements in ∆2 are D-related
inMP

bd.

(1) Let us prove that all elements of ∆1 are D-related.
Every element of [[id]]bd is of the form idPA∗, where P is a maximal prefix code, and by Lemma

3.15, P is finite. If g ∈ RMrec is such that domC(g) is finite, then g ∈ RMP. By Lemma 2.20,
if g ∈ RMP is injective and domC(g) is a finite maximal prefix code, then g ≡L iddomC(g)A∗ ; hence

[[g]]bd ≡L [[id]]bd (inMP
bd). For any f ∈ RMrec with finite imC(f), we want to show that f ≡R g in

RMrec for some g of the above type. Then we will have [[f ]]bd ≡R [[g]]bd ≡L [[id]]bd inMP
bd; so every

[[f ]]bd ∈ ∆1 will be in the D-class of [[id]]bd.
Let imC(f) = {yi : i = 1, . . . , N}, where N = |imC(f)| (finite). Let X = {xi : i = 1, . . . , N} ⊆

domC(f) be such that xi ∈ f−1(yi); i.e., X is a choice set for the restriction of f−1 to imC(f). Since
X ⊆ domC(f), X is a finite prefix code. Let P ⊂ A∗ be any finite maximal prefix code of size N , and
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let (p1, . . . , pN ) be any total ordering of P . We define an injective right-ideal morphism α ∈ RMP

(⊆ RMrec) by domC(α) = P , imC(α) = X, and α(piw) = xiw (for all i = 1, . . . , N , and w ∈ A∗).
Let g = f ◦α. So, domC(g) = P (which is a finite maximal prefix code), and imC(g) = imC(f). And

g, restricted to domC(g), is a bijection from P to imC(f), so g is injective on Dom(g) = PA∗. (In fact,
[g]bd ∈M2,1, the Thompson-Higman monoid defined in [6]).) Let β = g−1 ◦f ; this is well defined since
g is injective. Note that g ◦ g−1 is the restriction of the identity map to imC(f)A∗ = Im(f) = Im(g);
thus, g ◦ β = g ◦ g−1 ◦ f = idIm(f) ◦ f = f . Thus, g = f ◦ α and g ◦ β = f , so g ≡R f in RMrec.

(2) Let us prove that all elements of ∆2 are D-related.
By Prop. 3.14,MP

bd (= RMP/≡bd) is isomorphic to RMrec/≡bd.

Claim 1: Let P,Q ⊂ A∗ be prefix codes that are infinite and decidable. Then there exists a bijection
α ∈ RMrec from P onto Q.

Proof: For any infinite set S ⊆ A∗, the rank function of S is a bijection from S onto N, defined for
x ∈ S by rankS(x) = |{w ∈ S : w <ℓℓ x}|. To make rankS(.) a function between words, we represent
a natural integer n ∈ N by 0n1, so Im(rankS) = 0∗1.

If S is decidable, rankS is partial recursive with decidable domain S. And rankS has a computable
input-output balance when S is infinite and decidable. Then α = rank−1

Q ◦ rankP is a bijection from
P onto Q with the claimed properties. Finally, α can be extended to a bijective right-ideal morphism
from PA∗ onto QA∗; thus, α ∈ RMrec. This proves Claim 1.

As a consequence of the proof of Claim 1, idPA∗ = α ◦ idQA∗ and idQA∗ = α−1 ◦ idPA∗ . Hence for
all infinite decidable prefix codes P and Q we have: idPA∗ ≡L idQA∗ in RMrec.

Claim 2: For any f ∈ RMrec, f ≡R idIm(f).

Proof: For f ∈ RMrec, Im(f) is a decidable set, because of the computable I/O-balance. Every
f ∈ RMrec has an inverse in RMrec, and since Im(f) is decidable, such an inverse can be restricted to
Im(f). If f ′ is such an inverse with domain Im(f), we have: f ◦ f ′ = idIm(f). Moreover, idIm(f) ◦ f = f .
This proves Claim 2.

By Claim 2 and the consequence of Claim 1 we now have: If f, g ∈ RMrec and if imC(f), imC(g)
are infinite, then f ≡R idIm(f) ≡L idIm(g) ≡R g. ✷

4 Polynomial and exponential end-equivalences

The relations ≡T , in particular ≡poly and ≡E3, were defined in Def. 3.1 for prefix codes, and in
Def. 3.4 for right-ideal morphisms. We call ≡poly the polynomial end-equivalence relation, and ≡E3

the exponential end-equivalence (or elementary recursive end-equivalence) relation. Throughout this
section, T denotes a family of functions as in Def. 3.1, possibly with additional properties. When ≡T

is applied between prefix codes, it is an equivalence relation. Transitivity follows from the fact that
T is closed under composition. For two prefix codes P1, P2 ⊂ A∗ and τ ∈ T , we say that lengths in
P1 and P2 are τ -related iff |x1| ≤ τ(|x2|) and |x2| ≤ τ(|x1|) for all x1 ∈ P1, x2 ∈ P2 with x1‖prefx2.
In particular, when T is the set of polynomials we say “polynomially related”. The latter is the most
interesting, due to its connections with NP.

If L1, L2,M1,M2 are prefix codes such that L1 ≡T L2, M1 ⊆ L1, M2 ⊆ L2, and M1 ≡end M2,
then M1 ≡T M2. Indeed, the bounding function τ ∈ T that appear in the definition of L1 ≡T L2,
also works for M1 ≡T M2.

There exists f ∈ RMP such that f(domC(f)) 6≡T imC(f), and ≡T is not reflexive on f(domC(f)).
Moreover, f can be chosen so that there exist prefix codes P1, P2 ⊂ Dom(f) with P1 ≡T P2, such
that f(P1) 6≡T f(P2). As an example, let f ∈ RMP be defined by f(0n1w) = 0nw for all n ≥ 0
and w ∈ {0, 1}∗; so domC(f) = 0∗1, and imC(f) = {ε}. Then, f(domC(f)) = 0∗ 6≡bd {ε} = imC(f),
and f(domC(f)) = 0∗ 6≡bd 0∗ = f(domC(f)) (non-reflexive). Note that 6≡bd implies 6≡T . To show the
possibility of f(P1) 6≡T f(P2) when P1 ≡T P2, let f be as in the example above, and let P1 = P2 = 0∗1.
Then f(P1) = f(P2) = 0∗; but 0∗ 6≡bd 0∗ (non-reflexivity in this case).
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There exist f ∈ RMP and prefix codes P1, P2 ⊂ Im(f) such that P1 ≡poly P2 but f−1(P1) 6≡end

f−1(P2). For example, let domC(f) = {00, 01, 1}, and f(00) = 00, f(01) = 0, f(1) = ε; so f ∈ RMP.
Then f−1({ε}) = {1}, f−1({0}) = {01, 10}, f−1({1}) = {11}, f−1({01}) = {101, 011}, f−1({00}) =
{100, 010, 00}. Let P1 = {ε}, P2 = {0, 1}, and P3 = {00, 01, 1}. Then P1 ≡poly P2 ≡poly P3, but
f−1(P1), f

−1(P2), and f−1(P3) are all 6≡end, since f−1(P1) = {11}, f−1(P2) = {01, 10, 11}, and
f−1(P3) = {11, 100, 010, 00, 101, 011}.

The following is the ≡T version of Propositions 2.9 and 3.5.

Proposition 4.1 For any family of functions T , as in Def. 3.1 we have the following.

(1) Let P1, P2 ⊂ A∗ be prefix codes such that P1 ≡T P2, let P∩ be the prefix code that generates the
right ideal P1A

∗∩P2A
∗, and let P∪ be the prefix code that generates the right ideal P1A

∗∪P2A
∗. Then

P1 ≡T P2 ≡T P∩ ≡T P∪.

(2) Let f1, f2 be right-ideal morphisms such that f1 ≡T f2. Then f1 ∩ f2 and f1 ∪ f2 are right-ideal
morphisms, and f1 ≡T f2 ≡T f1 ∩ f2 ≡T f1 ∪ f2.

Proof. (1) By Prop. 2.9, P∩ ≡end P∪ ≡end P1 ≡end P2.
Length bounds: It is known (and easily proved) that P∪ ⊆ P1 ∪ P2. Hence, if x ∈ P∪, p1 ∈ P1,

and x ‖pref p1, then either x ∈ P1 (and then x = p1), or x ∈ P2 (and then |x|, |p1| are τ -related since
P1 ≡T P2). Similarly, if x ∈ P∪, p2 ∈ P2, and x ‖pref p2, then |x|, |p2| are τ -related.

It is also the case that P∩ ⊆ P1 ∪ P2, and a similar reasoning applies here.
(2) We conclude from (1) that Dom(fi) ≡T Dom(f1) ∩Dom(f2) ≡T Dom(f1) ∪ Dom(f2), for i = 1, 2.

Also, Dom(f1∩ f2) = Dom(f1)∩Dom(f2). And since f1 = f2 on Dom(f1∩ f2) we have f1 = f1∩ f2
on Dom(f1 ∩ f2). Hence f1 ≡T f1 ∩ f2, and similarly for f2.

Also, Dom(f1 ∪ f2) = Dom(f1) ∪ Dom(f2). And f1 = f1 ∪ f2 on Dom(f1), and f2 = f1 ∪ f2 on
Dom(f2), hence f1 ≡T f1 ∪ f2 ≡T f2. ✷

Corollary 4.2 Every ≡T -class in RMP is a lattice under ⊆, ∪ and ∩. ✷

Theorem 4.3 Let T be any family of functions as in Def. 3.1. and letM be any monoid of right-ideal
morphisms with I/O-balance function in T . Then the relation ≡T is a congruence on M.

Proof. Clearly, ≡T is an equivalence relation (for transitivity we use the fact that T has upper
bounds for composition, see Def. 3.1(2)). For the multiplicative property, let f1, f2, g ∈ M, and
suppose f1 ≡T f2; we want to prove that f1 g ≡T f2 g and g f1 ≡T g f2. Since ≡T implies ≡bd, the
actions of f1 and f2 on Aω are the same, hence f1g ≡bd f2g, and gf1 ≡bd gf2 (using Cor. 3.8). It now
suffices to check the T -relation for lengths in the domain codes.

• Proof that domC(f1g) ≡T domC(f2g):
e want to show that lengths in domC(f1g) and domC(f2g) are T -related. Let x1 ∈ domC(f1g)

and x2 ∈ domC(f2g) be prefix-comparable. By Prop. 4.1(2) we can assume that f2 ⊆ f1, hence
Dom(f2) ⊆ Dom(f1); hence, x2 ≥pref x1 (i.e., x1 is a prefix of x2).

Since x2 ≥pref x1, we have g(x2) ≥pref g(x1). Since xi ∈ domC(fig), we have g(xi) ∈ Dom(fi); hence
there exists zi ∈ domC(fi) with g(xi) ≥pref zi (for i = 1, 2). Since z2 ≤pref g(x2) ≥pref g(x1) ≥pref z1,
we have z2 ‖pref g(x1) and z2 ‖pref z1. Since f1 ≡T f2, |z1| and |z2| are τ12-related for some τ12 ∈ T
(depending only on f1, f2). We can assume τ12(n) ≥ n for all n ∈ N and that τ12 is increasing, since
T contains such a function and T has upper bounds for sum (see Def. 3.1(2)).

Since f2 ⊆ f1, Dom(f2) ⊆ Dom(f1), hence for all d2 ∈ domC(f2) and all d1 ∈ domC(f1): if
d2 ‖pref d1 then d2 ≥pref d1; therefore, z2 ≥pref z1. We now have two cases:

g(x2) ≥pref g(x1) ≥pref z2 ≥pref z1, or
g(x2) ≥pref z2 ≥pref g(x1) ≥pref z1.

Case 1: g(x1) ≥pref z2.
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Now g(x1) ∈ Dom(f2) (since g(x1) ≥pref z2), hence x1 ∈ g−1(Dom(f2)), so x1 ∈ Dom(f2g). Since
x2 ∈ domC(f2g) and x2 ≥pref x1 it follows that x2 = x1.

This implies obviously that |x2| = |x1|, hence |x2| and |x1| are τ12-related (since τ12(n) ≥ n).
Case 2: z2 ≥pref g(x1).

Being a right-ideal morphism of A∗, g is a one-to-one correspondence between the ≥pref -chains

x2 ≥pref . . . ≥pref x1 and

g(x2) ≥pref . . . ≥pref g(x1)

in A∗. (It is easy to see that any right-ideal morphism f of A∗ is injective on any chain x >pref

xm1 >pref xm1m2 >pref . . . >pref xm1m2 . . . mk, if x ∈ Dom(f); this holds even if f is not injective
on all of Dom(f).) Since g(x2) ≥pref z2 ≥pref g(x1), let t2 be the (unique) inverse image of z2 in the
upper chain; so x2 ≥pref t2 ≥pref x1, and g(t2) = z2 (∈ domC(f2)). Then t2 ∈ g−1(domC(f2)), hence
t2 ∈ Dom(f2g). Moreover, t2 ≤pref x2 ∈ domC(f2g) implies that t2 = x2 (since domC(f2g) is a prefix
code, and in a prefix code, prefix comparable elements are equal). Therefore, g(t2) = g(x2), hence
(since g(t2) = z2), z2 = g(x2). Thus, g(x2) ∈ domC(f2). Since we also have z1 ∈ domC(f1) we conclude
that |g(x2)| ≤ τ12(|z1|) (since lengths in domC(f2) and domC(f1) are τ12-related). And |z1| ≤ |g(x1)|
(since g(x1) ≥pref z1), hence |g(x2)| ≤ τ12(|g(x1)|) (since τ12 is increasing). Letting τg denote the
balance polynomial of g, we obtain: |x2| ≤ τg(|g(x2)|) ≤ τg(τ12(|g(x1)|)) ≤ τg ◦ τ12 ◦ τg(|x1|).

We also have |x2| ≥ |x1| (since x2 ≥pref x1).
In summary, domC(f1g) ≡T domC(f2g) for any function in T that bounds τg ◦ τ12 ◦ τg from above.

• Proof that domC(gf1) ≡T domC(gf2):
Let x1 ∈ domC(gf1), x2 ∈ domC(gf2) be prefix-comparable. We want to show that |x1|, |x2| are

T -related. As before, we can assume that f2 ⊆ f1, hence x2 ≥pref x1 (i.e., x1 is a prefix of x2).
Since gf1(x1) is defined, f1(x) is defined for all x ≥pref x1.
Since f2 ⊆ f1 and since x2 ∈ Dom(gf2) ⊆ Dom(f2) ⊆ Dom(f1), we have f2(x2) = f1(x2). Let

z2 ∈ domC(f2) be such that x2 ≥pref z2. Then, z2 ≤pref x2 ≥pref x1, hence z2 ‖pref x1; so we have two
cases: x1 ≥pref z2, or x2 ≥pref z2 ≥pref x1.

Case 1: x1 ≥pref z2 (∈ domC(f2)):
Then x1 ∈ Dom(f2), thus f2(x1) = f1(x1) (since f2 ⊆ f1, and f2(x1) is defined). So gf2(x1) =

gf1(x1), and gf2(x1) is defined, i.e., x1 ∈ Dom(gf2). Since x2 ∈ domC(f2) and x2 ‖pref x1, it follows
that x1 ≥pref x2. So x1 = x2 (since we also have x2 ≥pref x1). So |x1|, |x2| are T -related.
Case 2: x2 ≥pref z2 ≥pref x1.

Since z2 ∈ domC(f2), f2(z2) is defined, hence f2(z2) = f1(z2) (since f2 ⊆ f1). Hence gf2(z2) is
defined (since gf1(x) is defined for all x ≥pref x1, and f2(z2) = f1(z2)), i.e., z2 ∈ Dom(gf2). Therefore,
z2 ≥pref x2, since z2 ‖pref x2 and x2 ∈ domC(gf2). But since we also have x2 ≥pref z2, it follows that
z2 = x2.

Let z1 ∈ domC(f1) be such that x1 ≥pref z1. Then we have the ≥pref -chain x2 = z2 ≥pref x1 ≥pref z1.
Since |z2| ≤ τ12(|z1|) it follows (since x2 = z2 and |z1| ≤ |x1|) that |x2| ≤ τ12(|x1|). Also, |x1| ≤ |x2|.
So, |x1| and |x2| are τ12-related.

In summary, domC(gf1) ≡T domC(gf2) for the function τ12. ✷

Notation: Let RMP/≡T denote the set of ≡T -congruence classes in RMP; we will abbreviate
RMP/≡T byMP

T . In particular, we will considerMP
poly,MP

E3, andMP
lin.

Similarly, RMNP/≡T denotes the set of ≡T -congruence classes in RMNP. Here, RMNP (also
called RMΣ1) is the monoid

RMNP = {f : f is a polynomially balanced right-ideal morphism A∗ → A∗ that is computable
by a polynomial-time deterministic Turing machine with an oracle in NP}.

See [4], section 6, for more details on the similarly defined fPNP.

By Theorem 4.3 we have (if poly ⊆ T ):
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Corollary 4.4 Let T be as in Def. 3.1 with, in addition, poly ⊆ T . Then for every monoid M of
right-ideal morphisms with polynomial I/O-balance, M/≡T is a monoid. In particular, RMP/≡poly

(=MP
poly) and RMNP/≡poly are monoids, and there is a homomorphic embedding

MP
poly →֒ RMNP/≡poly .

Proof. The first statements follow from the fact that ≡T is a congruence.
Every ≡poly-class of RMNP contains at most one ≡poly-class of RMP, since ≡poly is transitive;

hence we have the embedding. ✷

But if P 6= NP then a ≡poly-class of RMNP that contains elements of RMP could also contain
functions that are not in RMP; i.e., a ≡poly-class of RMP could be a strict subset of the corresponding
≡poly-class if P 6= NP. So if P 6= NP, the embedding above is not an inclusion.

Let T1,T2 be families of functions as in Def. 3.1. If T1 ⊆ T2 then ≡T1 ⊆ ≡T2 ; hence there exists
a surjective monoid morphism RMP/≡T1 ։ RMP/≡T2 . In particular we have surjective monoid
morphisms

MP
poly ։ MP

E3 ։ MP
bd ։ MP

end ։ {1}.

Since MP
end is congruence-simple, the right-most arrow (onto the one-element monoid) cannot be

factored (except by using automorphisms as factors).

Proposition 4.5 Let T be as in Def. 3.1, with the additional condition that poly ⊆ T . Then every
≡T -class of RMP contains functions whose I/O-balance and time-complexity are linear (bounded from
above by the function n 7→ 3n).

Proof. We proceed as in Lemma 2.22(2). For any f ∈ RMP and any function τ ∈ T , we define the
right-ideal morphism Ff,τ by

domC(Ff,τ ) =
⋃

x∈domC(f) x {0, 1}|x|·τ(|x|), and

Ff,τ (xzw) = f(x) zw,

for all x ∈ domC(f), z ∈ {0, 1}|x|·τ(|x|), and w ∈ {0, 1}∗. Then f ≡T Ff,τ (since {0, 1}|x|·τ(|x|) is a
maximal prefix code, see Lemma 2.22(2)).

Let τ be a polynomial upper bound on the I/O-balance and the time-complexity of f . We can
choose τ to be a polynomial of the form n 7→ a · (nd+1); then τ ∈ T and τ is fully time-constructible.
Then Ff,τ has linear I/O-balance and time-complexity with coefficient le3, by Lemma 2.22(2). ✷

We saw in [4] that fP and RMP do not contain evaluation maps (contrary to the monoid fR of all
partial recursive functions with partial recursive balance function). By definition, a (coded) evaluation
map for fR is a partial function eval ∈ fR such that for every f ∈ fR there exists w ∈ {0, 1}∗ (called a
program for f) such that for all x ∈ Dom(f): eval(code(w) 11x) = f(x). We saw that fP and RMP

contain partial functions that play the role of evaluation maps in a limited way: For every polynomial
q of degree > 1 there exists evalq that works as an evaluation map for functions whose time-complexity
and I/O-balance are less than q; for fP, see section 4 of [4], for RMP, see section 2 of [3].

An interesting property of MP
poly is that it has “evaluation elements” that play the same role as

evaluation maps; of course, elements ofMP
poly are not maps but equivalence classes of maps. We will

also see thatMP
poly, contrary to RMP, is finitely generated.

Definition 4.6 A class [e0] ∈ MP
poly is called an evaluation element iff there exists e ∈ [e0] such that

for every [f0] ∈ MP
poly, there exists u ∈ {0, 1}∗ such that [e(code(u) 11 (·))] = [f0(·)].

Here code(u) 11 (·) denotes the function x ∈ {0, 1}∗ 7−→ code(u) 11x.
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Equivalently,
(∃e ∈ [e0]) (∀[f0] ∈ MP

poly) (∃f ∈ [f0]) (∃u ∈ {0, 1}∗) (∀x ∈ Dom(f)) : e(code(u) 11x) = f(x).

The function code(.) was defined in the Introduction (just before the definition of RMP).

Theorem 4.7 The monoid MP
poly has evaluation elements and is finitely generated.

Proof. For any polynomial q of the form q(n) = a · (nd + 1) with d > 1 and a ≥ 3, we consider the
evaluation function evalRC

q defined by evalRC
q (code(u) 11xz) = φu(x) z; here u is any program with

linear time-complexity and I/O-balance (with coefficient ≤ 3), x ∈ domC(φu), and z ∈ A∗. By Prop.
4.5, every φv ∈ RMP is ≡poly-equivalent to some φu ∈ RMP such that φu has time-complexity and
I/O-balance less than the function n 7→ 3n; thus, [evalRC

q ] is an evaluation element.

Defining evRC
q by evRC

q (code(u) 11xz) = code(u) 11 φu(x) z, we also have

φu = π′|code(u) 11| ◦ evRC
q ◦ πcode(u) 11.

So,MP
poly is generated by {[π0], [π1], [π′1], [evRC

q ]}. ✷

We saw that when poly ⊆ T thenMP
T is a homomorphic image ofMP

poly. Hence we have:

Corollary 4.8 If poly ⊆ T then MP
T is finitely generated. ✷

We do not know whether MP
poly is regular (and this is equivalent to P = NP by Theorem 5.16),

but forMP
E3 we can prove:

Proposition 4.9 The monoid MP
E3 is regular.

Proof. Consider [f ] ∈ MP
E3, i.e., an ≡E3-class in RMP for some f ∈ RMP. Suppose f has I/O

balance and time-complexity ≤ T for some polynomial T . To show that f has an inverse with
elementary recursive I/O balance and time-complexity, let y ∈ Im(f) and consider all words x of
length |x| ≤ T (|y|); for each such x we test whether x ∈ Dom(f), and (if so) we compute f(x), in time
≤ T (|x|). On input y we output the first x in length-lexicographic order such that f(x) = y. All this
takes time ≤ |A|ℓ ·T (ℓ), where ℓ is the minimum length of x ∈ f−1(y); so ℓ ≤ T (|y|) (by I/O-balance).
The bound τ(|y|) = |A|T (|y|) ·T (T (|y|)) is elementary recursive, and testing whether y ∈ Im(f) is also
elementary recursive, since Im(f) ∈ NP ⊂ E3. So f has an inverse f ′ with elementary recursive I/O
balance and time-complexity.

Let τ(n) be a fully time-constructible elementary recursive upper bound on |A|T (n) · T (T (n)) and
on the time it takes to test whether y ∈ Im(f) (when |y| = n). The function n 7→ 2n is fully time-
constructible, and if T (n) = a · (nd + 1) then T (T (n)) has an upper bound that has that form too.
Moreover, the product of fully time-constructible functions is fully time-constructible.

So f ′ has balance and time-complexity bounded by τ . We use Lemma 2.22(2) in the same way as
in the proof of regularity ofMP

end (Theorem 2.23); we pad f ′ by taking the restriction F ′ of f ′ to

Dom(F ′) =
⋃

y∈domC(f ′) y A
|y|·τ(|y|)A∗.

And we restrict f to F = f ◦ F ′ ◦ f = idDom(F ′) ◦ f . Then FF ′F = F , and F and F ′ have linear

time-complexity and balance (by Lemma 2.22(2)), hence F,F ′ ∈ RMP. Moreover, f ≡E3 F and
f ′ ≡E3 F

′, since A|y|·τ(|y|) is a maximal prefix code and n → n · τ(n) is elementary recursive. So [F ′]
is an inverse of [f ] (= [F ]) inMP

E3. ✷

5 Inverses in MP
poly

In this section we study the regular elements of RMP and of MP
poly, and we eventually show that

RMP is regular iffMP
poly is regular.
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5.1 Properties of inverses in RMP

Here are a few useful facts about inverses that were not proved in [4], [3].

Lemma 5.1 For any right-ideal morphism g: g−1(imC(g)) ⊆ domC(g).

Proof. If x ∈ g−1(imC(g)) (⊆ Dom(g)), then x = pw for some p ∈ domC(g) and w ∈ A∗; hence,
g(x) = g(p) w, and g(x) ∈ imC(g). Since g(p) w ∈ imC(g) and g(p) ∈ Im(g), we have g(p) w = g(p)
(since imC(g) is a prefix code, and g(p)w ∈ imC(g) cannot have a strict prefix in the right ideal
generated by imC(g)). So, w = ε, hence x = pw = p ∈ domC(g). ✷

Lemma 5.2 For every right-ideal morphism g we have:
(1) imC(g) ⊆ g(domC(g)).
(2) If g is injective then imC(g) = g(domC(g)).
(3) If g′ is an inverse of g and if Dom(g′) = Im(g), then the inverse g′ is injective.

Proof. (1) By applying g to the inclusion in Lemma 5.1 we obtain: gg−1(imC(g)) ⊆ g(domC(g));
since gg−1 = idIm(g), the result follows.
(2) When g is injective, let g(x) ∈ g(domC(g)) with x ∈ domC(g). Then g(x) ∈ Im(g) = imC(g)A∗; so
g(x) = uv for some u ∈ imC(g), v ∈ A∗. Let z ∈ Dom(g) be such that g(z) = u; then z = st for some
s ∈ domC(g), t ∈ A∗. Hence, g(x) = uv = g(z) v = g(zv) = g(stv). Since g is injective, this implies
that x = stv, so s and x are prefix-comparable. But then s = x, since x and s belong to the prefix
code domC(g). Therefore t = v = ε. It follows that g(x) = uv = u ∈ imC(g), so g(x) ∈ imC(g). Thus,
g(domC(g)) ⊆ imC(g) when g is injective.
(3) For all y1, y2 ∈ Dom(g′) = Im(g), g′(yi) ∈ g−1(yi) (i = 1, 2). If y1 6= y2 then g−1(y1) is disjoint
from g−1(y2), so g

′(y1) 6= g′(y2). ✷

Proposition 5.3 If f ∈ RMP (or ∈ fP) is regular then f has an injective inverse f ′ ∈ RMP

(respectively ∈ fP) with the additional property that Dom(f ′) = Im(f).

Proof. Let F ′ ∈ RMP (or ∈ fP) be an inverse of f , so Im(f) ⊆ Dom(F ′). Since f is regular we
know (by Prop. 1.9 in [4]) that Im(f) is in P. Hence the restriction f ′ = F ′|Im(f) belongs to RMP

(respectively to fP). Moreover, the restriction of an inverse of f to Im(f) is always an injective inverse
of f (by Lemma 5.2(3)). ✷

As a consequence of Prop. 5.3 we have:

Corollary 5.4 Every regular D-class of fP and of RMP contains injective partial functions. ✷

Question: Do non-regular D-classes also contain injective partial functions (that are thus not regular)?
This is equivalent to the existence of injective one-way functions.

Lemma 5.5.
(1) For every right-ideal morphism f : A∗ → A∗ and every prefix code P ⊂ A∗ we have: f−1(P ) is a
prefix code, and f−1(P )A∗ ⊆ f−1(PA∗).

(2) There exists f ∈ RMP and a prefix code P such that f−1(P ) A∗ 6= f−1(P A∗).

(3) There exists f ∈ RMP and a prefix code P such that f(P ) is not a prefix code.

Proof. (1) If x1 is a prefix of x2 = x1u, with x1, x2 ∈ f−1(P ), then f(x1) and f(x2) = f(x1)u both
belong to the prefix code P , hence f(x1) = f(x1)u, hence u = ε. Now x2 = x1u implies x2 = x1. So,
in f−1(P ), prefix-related words are equal, hence f−1(P ) is a prefix code.

Obviously, f−1(P ) ⊆ f−1(PA∗). Moreover, PA∗ is a right ideal, hence f−1(PA∗) is a right ideal.
Therefore, f−1(P )A∗ ⊆ f−1(PA∗) A∗ = f−1(PA∗).
(2) Example: Let f(0n1) = 0n for all n ≥ 0, with domC(f) = 0∗1, and imC(f) = {ε}. Let P = {ε}.
Then f−1(P ) A∗ = f−1({ε}) {0, 1}∗ = 1 {0, 1}∗, and f−1(P A∗) = f−1({0, 1}∗) = 0∗1 {0, 1}∗.
(3) Example: For f as in (2), let P = 0∗1. We obtain f(P ) = 0∗, which is not a prefix code. ✷
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Definition 5.6 (normal morphism). A right-ideal morphism f is called normal iff f(domC(f)) =
imC(f).

Thus, f is normal iff its restriction to domC(f) maps into (hence onto) imC(f); in other words, f is
entirely defined by the way it relates domC(f) to imC(f). On the other hand, a non-normal right-ideal
morphism g will map domC(g) to a larger set than imC(g), i.e., imC(g) $ g(domC(g)).

Examples of normal and non-normal right-ideal morphisms:
Every injective right-ideal morphism is normal (by Lemma 5.2).
The encodings of the elements of fP are normal; we saw near the beginning of the Introduction

that for all f ∈ fP, fC is normal.
The following is a non-normal regular element of RMP: Let domC(g) = 0 1∗; and let g(0n1w) =

0n w for all n ≥ 0 and all w ∈ {0, 1}∗. Then imC(g) = {ε} 6= 0∗ = g(domC(g). So in this example,
imC(g) and g(domC(g) are extremely different.

Lemma 5.7 A right-ideal morphism f is normal iff domC(f) = f−1(imC(f)).

Proof. The right-to-left implication is trivial since ff−1 = 1Im(f).
Conversely, let us assume normality, i.e., f(domC(f)) = imC(f). Then f−1(imC(f)) ⊆ domC(f)

by Lemma 5.1. To prove that domC(f) ⊆ f−1(imC(f)), let x ∈ domC(f). Then f(x) ∈ f(domC(f)) =
imC(f); the latter equality holds by the assumption of normality. So, f(x) ∈ imC(f), hence x ∈
f−1(imC(f)). Thus, domC(f) ⊆ f−1(imC(f)). ✷

Proposition 5.8 (1) The set {f ∈ RMP : f is normal} is not closed under composition, i.e., it is
not a submonoid. In fact, there exist regular normal elements of RMP whose composite is regular but
not normal.
(2) There exist a regular normal g ∈ RMP and a prefix code P ⊂ Dom(g) with P ≡poly domC(g), such
that g(P ) is not a prefix code.

Proof. (1) This is shown by the following example. Let f, g ∈ RMP be defined by domC(f) = {0, 1}
and f(0) = 0, f(1) = 10; domC(g) = {0, 1} and g(0) = g(1) = 0. Then f(domC(f)) = imC(f) =
{0, 10}, and g(domC(g)) = imC(g) = {0}; so, f and g are normal. Now, domC(gf) = {0, 1} and
gf(0) = 0, gf(1) = 00. So, gf(domC(gf)) = {0, 00}, which is not a prefix code; and imC(gf) = {0}.
Thus, gf is not normal.
(2) Take g as above, and P = {0, 10, 11}. Then g(P ) = {0, 00, 01}, which is not a prefix code. ✷.

Miscellaneous

The remaining Definition and Facts of this subsection will not be used in the rest of the paper.

Definition 5.M1 For any right-ideal morphism f : A∗ → A∗, the normalization fN of f is the
restriction of f to f−1(imC(f)) A∗. So, domC(fN ) = f−1(imC(f)) (⊆ domC(f)).

Then fN is normal: fN(domC(fN ) = f(domC(fN )) = f(f−1(imC(f)) = imC(f), and this is equal to
imC(fN ), by Prop. 5.M2 (next). Moreover, f−1(imC(f)) is a prefix code (by Lemma 5.5(1)).

Note that fN ∈ RMP iff f−1(imC(f)) ∈ P. Indeed, if fN ∈ RMP then domC(fN ) ∈ P; and if
domC(fN ) ∈ P then the restriction of f (∈ RMP) is in RMP.

We conjecture that fN is not always in RMP when f ∈ RMP; this conjecture is motivated by
Prop. 5.M3 below.

Proposition 5.M2 For any right-ideal morphism f and its normalization fN , we have: Im(fN ) =
Im(f), and imC(fN ) = imC(f).

Proof. Obviously, Im(fN ) ⊆ Im(f). Conversely, let y ∈ Im(f), so y = qw for some q ∈ imC(f) and
w ∈ A∗. Then q = f(p) for some p ∈ domC(f) ∩ f−1(imC(f)) = domC(fN ), hence y = f(p)w =
f(pw) ∈ Im(fN ). ✷
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We know that for all f ∈ fP, Dom(f) is in P and Im(f) is in NP (Prop. 1.9 in [4]). What can be said
about the complexity of imC(f)? The complexity class DP (⊆ ∆P

2 = PNP) is defined by

DP = {L1 − L0 : L1, L0 ∈ NP}.
Obviously, NP ∪ coNP ⊆ DP. There exist DP-complete problems, e.g., the following: critical3SAT =
{β : β is a boolean formula in 3cnf that is not satisfiable, but for every clause c in β, the removal of c
results in a boolean formula β − {c} that is satisfiable}. See e.g. [14].

Proposition 5.M3 For all f ∈ fP, imC(f) is in DP, and when f is normal then imC(f) is in NP.

Proof. We have x ∈ imC(f) iff the following hold: (1) x ∈ Im(f), and (2) for every strict prefix p
of x: p 6∈ Im(f). The second condition is equivalent to not(∃p)[ p <pref x and p ∈ Im(f) ]. Hence,
imC(f) ∈ DP.

However since domC(f) is in P, f(domC(f)) is in NP; so when f is normal then imC(f) (=
f(domC(f))) is in NP. ✷

Normalization works well with inverses:

Proposition 5.M4 For any right-ideal morphism f and its normalization fN we have:
(1) If f ′1 is an inverse of fN then f ′1 is also an inverse of f .
(2) If f ′ is any inverse of f then the restriction F ′ of f ′ to Im(f) is an injective (hence normal)
inverse of f . Moreover, if f, f ′ ∈ RMP then F ′ ∈ RMP.

Proof. (1) Let us show that f ′1 is an inverse of f . Since Im(f) = Im(fN ), for all x ∈ Dom(f) there
exists x1 ∈ Dom(fN ) such that f(x) = fN (x1). Now, f(x) = fN (x1) = fNf

′
1fN (x1) = fNf

′
1f(x) ⊆

ff ′1f(x); the latter holds since fN is a restriction of f . But since ff ′1f is a function, and fNf
′
1f(x) is

defined, we have fNf
′
1f(x) = ff ′1f(x). Thus, f(x) = ff ′1f(x).

(2) The only part of the domain of an inverse of f that matters (in the relation ff ′f = f) is Im(f)
(which is always a subset of Dom(f ′)). So the restriction F ′ of f ′ to Im(f) is an inverse of f . For any
inverse f ′ of f we have: f ′(imC(f)) ⊆ f−1(imC(f)), which is a prefix code by Lemma 5.5(1); so, F ′ is
normal. For any inverse, the restriction to Im(f) is injective, since for all y1 6= y2 in Im(f), f−1(y1)
and f−1(y2) are disjoint.

If f, f ′ ∈ RMP
2 then f is regular, so by Prop. 1.9 in [4], Im(f) is in P. Hence the restriction of f ′

to Im(f) is in RMP
2 . ✷.

We know (Prop. 6.1 in [4]) that every element of fP, and in particular, every element of RMP,
has an inverse in fPNP. We show next that every element of RMP has an inverse in RMNP. We first
extend Prop. 2.6 of [4] to fPNP and to RMNP.

Lemma 5.M5 If an element f ∈ RMP has an inverse in fP (or in fPNP), then f also has an inverse
in RMP (respectively in RMNP).

Moreover, this inverse in RMP (resp. fPNP) can be chosen to be injective (and hence normal).

Proof. If f has an inverse in fP then the result was proved in Prop. 2.6 of [4].
Let f ′0 ∈ fPNP be an inverse of f ; we want to construct an inverse f ′ of f that belongs to RMNP.

We know (Prop. 1.9 of [4]) that Im(f) is in NP. Hence we can restrict f ′0 to Im(f), i.e., Dom(f ′0) = Im(f).
We proceed to define f ′(y) for y ∈ Im(f).

First, we compute the shortest prefix p of y that satisfies p ∈ Dom(f ′0) = Im(f). Since Im(f) ∈ NP,
this can be done in polynomial time with calls to an NP oracle. Now, y = p z for some string z.

Second, we define f ′(y) = f ′0(p) z, where p and z are as above. Thus, f ′ is a right-ideal morphism.

Let us verify that f ′ has the claimed properties. Clearly, f ′ is computable in polynomial time with
calls to an NP oracle, and is polynomially balanced (the latter following from the fact that f ′ is an
inverse of f , which we prove next); thus, f ′ is a right-ideal morphism in fPNP, so f ′ ∈ RMNP. To
prove that f ′ is an inverse of f , let x ∈ Dom(f). Then f(f ′(f(x))) = f(f ′(p z)), where y = f(x) = p z,
and p is the shortest prefix of y such that p ∈ Im(f). Then, f ′(p z) = f ′0(p) z, by the definition of f ′.
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Then, since f is a right-ideal morphism, f(f ′0(p) z) = f(f ′0(p)) z = p z (the latter since f ′0 is an inverse
of f , and since p ∈ Im(f)). Hence, ff ′|Im(f) = 1Im(f). Thus, f

′ is an inverse of f .
Note that since Dom(f ′) = Im(f), the inverse f ′ described above is injective. Indeed, if Dom(f ′) =

Im(f) then f ′ = f ′|Im(f), so ff
′ = 1Dom(f ′), which implies that f ′ is injective (hence normal by Lemma

5.2). ✷

Proposition 5.M6 Every element of RMP has an inverse in RMNP, and this inverse can be chosen
to be injective (and hence normal).

Proof. By Prop. 6.1 in [4], every element of RMP has an inverse in fPNP. The result then follows
from Lemma 5.M5. ✷

Proposition 5.M7 Let f0 ∈ RMP, and let f be any right-ideal morphism such that f ≡poly f0. Then
f ∈ RMP iff Dom(f) ∈ P.

Hence, if f0 ∈ RMP, and Dom(f) ∈ P, and f 6∈ RMP, then f 6≡poly f0.

Proof. We know that for all f ∈ RMP, Dom(f) ∈ P. For the converse, if x ∈ Dom(f) (which can be
checked in polynomial time), then either x ∈ Dom(f0) or x is a prefix of a word xu ∈ domC(f0). If
x ∈ Dom(f0) we can immediately compute f0(x) (= f(x)), using the polynomial-time algorithm of f0.

If xu ∈ domC(f0) for some u ∈ A∗, we can compute f0(xu) in polynomial time (as a function of
|xu|). Here, u is the shortest word such that xu ∈ domC(f0). So, |u| is polynomially bounded in terms
of |x| (because domC(f) ≡poly domC(f0)). Therefore, the computation of f0(xu) takes polynomial time
as a function of |x|.

Also, f0(xu) = f(xu) = f(x) u; so we obtain f(x) by removing the suffix u from f0(xu); we know
u, since it is the shortest word such that xu ∈ domC(f0) (and domC(f0) ∈ P when f ∈ RMP). ✷

Proposition 5.M8
(1) There exist prefix codes P1, P0 ⊂ A∗ such that P1 ≡poly P0, and P0 ∈ P, but P1 6∈ P. The prefix
code P1 can be chosen to have any complexity above polynomial, or to be undecidable; if P 6= NP then
P1 can be chosen in DP.

(2) There exist right ideal morphisms f1, f0 such that f1 ≡poly f0, and f0 ∈ RMP, but f1 6∈ RMP. If
P 6= NP then f1 can be chosen in RMNP.

Proof. (1) We construct a family of examples. Let L ⊂ A∗ be any set that is not in P. Let

P0 = {00, 01}∗ 11, and

P1 = {code(x) 11 : x ∈ L} ∪ {code(x) 110 : x 6∈ L} ∪ {code(x) 111 : x 6∈ L}.
Then P1, P0 are prefix codes, P1 ≡poly P0, and P0 ∈ P. But P1 6∈ P since L is polynomial-time reducible
to P1.

(2) Let f0, f1 be the identity map restricted to P0A
∗, respectively P1A

∗ (with P0, P1 as above). Then
f1 ≡poly f0, and f0 ∈ RMP; but f1 6∈ RMP since domC(f1) = P1 6∈ P. If P 6= NP then L can be
chosen in NP− P, and then f1 6∈ RMP. ✷

Question: Assuming P 6= NP, is there F ∈MP
poly such that for all f ∈ F : Dom(f) 6∈ P?

5.2 MP
poly vs. RMP, regarding regularity

It is obvious that if RMP is regular then MP
poly (= RMP/ ≡poly) is regular, being a homomorphic

image of RMP. The converse is also true, but the proof is not obvious, mainly because of the existence
on non-normal functions in RMP. Many of the results of this sub-section hold for MP

T (where T is
any family of functions as in Def. 3.1).

Lemma 5.9 If f0, f are right-ideal morphisms with f0 ≡end f and f0 ⊆ f , then imC(f0) ≡end imC(f).
If poly ⊆ T and f0, f ∈ RMP satisfy f0 ≡T f and f0 ⊆ f , then imC(f0) ≡T imC(f).
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Compare with Lemma 3.20.

Proof. Since f0 ⊆ f we also have Im(f0) ⊆ Im(f). Suppose a right ideal R intersects Im(f); so there
exists x ∈ Dom(f) such that f(x) ∈ R∩ Im(f). Hence, x ∈ f−1(R∩ Im(f)) = f−1(R)∩Dom(f); so the
right ideal f−1(R) intersects Dom(f), hence by end-equivalence, f−1(R) also intersects Dom(f0). So
there exists x0 ∈ f−1(R)∩Dom(f0), and this implies that f(x0) ∈ ff−1(R)∩f(Dom(f0)) = R∩ Im(f0).
So, R intersects Im(f0).

For the second statement, let y0 ∈ imC(f0) and y ∈ imC(f) be such that y ≤pref y0 = yw (for some
w ∈ A∗). We want to show that |y0| and |y| are related by some function in T that depends only
on f and f0. Since f−1

0 (imC(f0)) ⊆ domC(f0) and f−1(imC(f)) ⊆ domC(f) (by Lemma 5.1), there
exists x ∈ domC(f) such that y = f(x), and hence y0 = f(x)w = f(xw); and xw ∈ f−1

0 (imC(f0)) ⊆
domC(f0). So, x ∈ domC(f) and xw ∈ domC(f0), and xw ≥pref x, hence |x| and |xw| are length-related
by a function in T (because f0 ≡T f). Moreover, |f(x)| and |x| are polynomially related (because of
the I/O-balance of f), and |f0(xw)| and |xw| are polynomially related (because of the I/O-balance of
f0). Thus, |y| and |y0| are length-related by a function in T . ✷

Lemma 5.10 Let h, g be any right-ideal morphisms such that hgh ≡bd h. Then hgh ⊆ h, and
hgh g hgh = hgh.

Proof. For all functions we have Dom(hgh) ⊆ Dom(h), so since hgh ≡bd h, we have hgh ⊆ h. Hence,
for all x ∈ Dom(hgh) we have hgh(x) = h(x), and hg is defined on h(x). Since hgh(x) = h(x)
and hg is defined on h(x), hg is defined on hgh(x), and we have hghgh(x) = hgh(x) = h(x) for all
x ∈ Dom(hgh). By the same argument, hg is defined on hghgh(x), on hgh(x), and on h(x), and
we have: hghghgh(x) = hghgh(x) = hgh(x) = h(x). In particular: hgh g hgh(x) = hgh(x) for all
x ∈ Dom(hgh). ✷

Proposition 5.11 Let F,G be any ≡T -equivalence classes in RMP. Then we have:

(Inverses) FGF = F iff there exist f ∈ F and g ∈ G such that fgf = f .

(Mutual inverses) FGF = F and GFG = G iff there exist f ∈ F and g ∈ G such that fgf = f
and gfg = g .

Proof. For the first statement: If f ∈ F and g ∈ G satisfy fgf = f then FGF = F since ≡T is
a congruence, and F = [f ], G = [g]. Conversely, if FGF = F then for any h ∈ F , g ∈ G, we have
hgh ≡T h. Hence, for any g ∈ G, letting f = hgh ∈ FGF = F we have fgf = f (by Lemma 5.10).

For the second statement: The right-to-left implication is obvious since ≡T is a congruence. Con-
versely, FGF = F implies fg1f = f for some f ∈ F and g1 ∈ G (by the ”Inverses” statement of the
Proposition, that we just proved). Let g = g1fg1 ∈ GFG = G. Then fgf = fg1fg1f = fg1f = f ,
and gfg = g1fg1fg1fg1 = g1fg1fg1 = g1fg1 = g. ✷

Lemma 5.12 Let P0, P1 ⊂ A∗ be prefix codes with P0A
∗ ⊆ P1A

∗ and P0 ≡T P1; let τ ∈ T be the
function used for P0 ≡T P1. Then for every y1 ∈ P1 and every t ∈ A∗ with |t| ≥ τ(|y1|): y1t ∈ P0A

∗.

Proof. By definition, ≡T implies ≡bd, so P0A
ω = P1A

ω (by Prop. 3.2). Hence for all y1 ∈ P1, t ∈ A∗,
and w ∈ Aω: the end y1tw intersects P0, i.e., some prefix of y1tw is in P0. If |t| ≥ τ(|y1|) then this
prefix is a prefix of y1t (by the definition of ≡T and the choice of τ). Hence, y1t ∈ P0A

∗. ✷

Terminology: A normal inverse of a right-ideal morphism f is any normal right-ideal morphism f ′

(i.e., f ′(domC(f ′)) = imC(f ′), by Def. 5.6) such that f ′ is an inverse of f .

Lemma 5.13 Let g, f be right-ideal morphisms such that g ⊆ f , and let f ′ be any inverse of f such
that f ′(Im(g)) ⊆ Dom(g). Then f ′ is also an inverse of g.
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Proof. For x ∈ Dom(g), f ′g(x) is defined, since g ⊆ f and since f(x) (= g(x)) is defined, and f ′

is defined on f(x). And gf ′g(x) is defined since f ′(Im(g)) ⊆ Dom(g). Hence, gf ′g(x) = ff ′f(x) =
f(x) = g(x), since g ⊆ f . ✷

Lemma 5.14 and Theorem 5.16 below are only proved for MP
poly; it is not clear for what other MP

T

they hold.
For the next Lemma, recall that if g ∈ RMP is regular then g has a normal inverse g′ ∈ RMP; in

fact, we can choose g′ to be injective such that Dom(g′) = Im(g) (see Prop. 5.3, Lemma 5.2, and Def.
5.6).

Main Lemma 5.14 (inverse of a ≡poly-equivalent extension). Suppose f, f0 ∈ RMP are such
that f0 ⊆ f and f0 ≡poly f . Suppose also that f is normal. Then we have:

(1) If f0 is regular then f is regular.

(2) For every injective inverse f ′0 ∈ RMP of f0 such that Dom(f ′0) = Im(f0), there exists an injective
inverse f ′1 ∈ RMP of f such that domC(f ′0) ≡poly domC(f ′1).

(3) Moreover, f ′1 is also an inverse of f0. But f ′1 cannot always be chosen to be an extension of the
given f ′0.

Proof. (1) follows from (2), since every regular element f0 of RMP has an injective inverse f ′0
satisfying Dom(f ′0) = Im(f0) (by Prop. 5.3 and Lemma 5.2).

(2) Let f ′0 be an inverse of f0 as assumed, hence f ′0(imC(f0)) ⊆ f−1
0 (imC(f0)) ⊆ domC(f0) (the latter

“⊆” holds by Lemma 5.1).

Claim: If f is normal then for all y ∈ imC(f) and all t ∈ A∗: f−1(yt) = f−1(y) t.

Proof of Claim: [⊆]: x ∈ f−1(yt) iff f(x) = yt. Since x ∈ Dom(f) we have x = pw for p ∈ domC(f),
xw ∈ A∗, so f(x) = yt = f(p)w; hence f(p) and y are prefix-comparable. By normality, f(p) ∈
imC(f); hence f(p) = y (since y ∈ imC(f) by assumption, and imC(f) is a prefix code). Thus,
f(x) = yt = f(p)w = yw, so w = t (since y = f(p)). Hence x = pw = pt ∈ f−1(y) t.
[⊇] (this holds also when f is not normal): x ∈ f−1(y) t implies f(x) ∈ f(f−1(y) t). Since f−1(y) ⊆
f−1(imC(f)) ⊆ domC(f) (the latter “⊆” holds by Lemma 5.1), we have f(f−1(y) t) = f(f−1(y)) t =
{yt}. Hence, x ∈ f−1(yt). [End, Proof of Claim]

Now let y ∈ imC(f), and let t ∈ A∗ be any string such that yt ∈ imC(f0). Since f0 ⊆ f and
f0 ≡poly f , we have imC(f0) ≡poly imC(f) (by Lemma 5.9); hence, |t| ≤ q(|y|) for some polynomial q.
And by Lemma 5.12 (with T = poly), we can pick t to be t = 0q(|y|); then t can be computed from
y in polynomial time. Since f ′0(yt) ∈ f−1

0 (yt) ⊆ f−1(yt), we have by the Claim: f ′0(yt) ∈ f−1(y) t.
Since f ′1(y) should belong to f−1(y), we define:

f ′1(y) is is prefix of f ′0(yt) obtained by removing the suffix t.

Then, indeed, f ′1(y) ∈ f−1(y). In general, for all y ∈ imC(f) and all z ∈ A∗, we define f ′1(yz) = f ′1(y) z.
Then f ′1(yz) ∈ f−1(yz), hence f ′1 is an inverse of f . By construction, domC(f ′1) = imC(f), hence f ′1
is injective (by Lemma 5.2(3)). And f ′1(y) is polynomial-time computable, since t = 0q(|y|) and since
f ′0 ∈ RMP. Finally, f ′1 is polynomially balanced, since f ′0 is polynomially balanced and |t| ≤ q(|y|).

By Lemma 5.9, imC(f0) ≡poly imC(f). Hence, domC(f ′0) = imC(f0) ≡poly imC(f) = domC(f ′1), so
domC(f ′0) ≡poly domC(f ′1).

(3) By Lemma 5.13, f ′1 is an inverse of f0. In order to apply Lemma 5.13 we need to check that
f ′1(Im(f0)) ⊆ Dom(f0). For all yz ∈ imC(f0) (with y ∈ imC(f)) we have f ′1(yz) ∈ f−1(yz); and
f−1(yz) = f−1

0 (yz) when yz ∈ imC(f0). Moreover, f−1
0 (yz) ⊆ Dom(f0). Hence, f ′1(imC(f0)) ⊆

Dom(f0), and thus f ′1(Im(f0)) ⊆ Dom(f0).
By Lemma 5.15 below, the inverse f ′0 of f0 is not necessarily a restriction of an inverse of f . So f ′0

is not always extendable to an inverse of f . ✷
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Lemma 5.15 There exist f, g ∈ RMP such that g ⊆ f , g ≡poly f , and g is regular, but such that
not every inverse g′ ∈ RMP (not even every injective inverse) of g is extendable to an inverse of f .

Proof. This is illustrated by the following example:

f(0) = f(1) = 1, with domC(f) = {0, 1}, imC(f) = {1}; and

g(00) = g(10) = 10, g(01) = g(11) = 11, with domC(g) = {00, 10, 01, 11}, imC(g) = {10, 11}.
Then every inverse f ′ of f satisfies either f ′(1) = 0 or f ′(1) = 1. In particular, f has two injective
inverses with domain code {1} (= imC(f)), namely f ′0 and f ′1, given by f ′0(1) = 0 and f ′1(1) = 1.

And g has four injective inverses with domain code {10, 11} (= imC(g)). Two of them, namely
g′0 and g′0, are restrictions of f ′0, respectively f

′
1, defined by g′0(10) = 00, g′0(11) = 01, and g′1(10) =

10, g′1(11) = 11. The two other injective inverses of g with domain code {10, 11} are g′2 and g′3, defined
by g′2(10) = 00, g′2(11) = 10, and g′3(10) = 10, g′3(11) = 01. These are not restrictions of inverses of
f , since every inverse f ′ of f satisfies either f ′(1) = 0 or f ′(1) = 1, hence f ′(10) = 10, f ′(11) = 11, or
f ′(10) = 00, f ′(11) = 01; in either case, g′2, g

′
3 are not restrictions of f ′. ✷

Theorem 5.16 The monoid MP
poly is regular iff RMP is regular.

Proof. Obviously, if RMP is regular then its homomorphic image MP
poly is regular, since ≡poly is a

congruence.
For the converse we will show that if MP

poly is regular then fP is regular; the latter implies that

RMP is regular (by Prop. 2.6 of [4]). For any f ∈ fP, let fC ∈ RMP be the encoding of f , as defined
near the beginning of the Introduction. Then fC is normal (see the Examples after Def. 5.6). Let
F = [fC ] ∈ MP

poly be the ≡poly-class of fC in RMP, and let F ′ ∈ MP
poly be an inverse of F . A

consequence of FF ′F = F inMP
poly is that for all h ∈ F and all g ∈ F ′: hgh ≡poly h. Then by Lemma

5.10, hgh ∈ F and hgh is regular with inverse g ∈ F ′. Also, hgh ⊆ h. Let h = fC , which is normal.
Then the Lemma 5.14(1) applies since hgh ⊆ h, hgh ≡poly h (with h = fC), h is normal, and hgh is
regular. Hence Lemma 5.14(1) implies that h = fC is regular in RMP. Hence by Prop. 3.4(2) in [4],
f is regular in fP. ✷

Comments: The proof of Theorem 5.16 also shows the following fact: If all normal elements of RMP

are regular then RMP is regular. Thus the set of all normal elements of RMP plays a crucial role.
It remains an open question whether we have the following element-wise properties: Let F ∈ MP

poly

(hence F ⊂ RMP); if F is regular in MP
poly, does that imply that every f ∈ F is regular in RMP?

Equivalently, let f0, f ∈ RMP be such that f0 ⊆ f , f0 ≡poly f , and f0 is regular; does that imply that
f is regular? Lemma 5.14(1) yields this statement when f is normal.

6 A non-regular monoid that maps onto MP
poly

We show that there is a non-regular submonoid of RMP that maps homomorphically onto MP
poly.

The fact that some non-regular monoid maps onto MP
poly is trivial, by itself, because we could use

a (finitely generated) free monoid for this. However, there is a non-regular submonoid RMn+o(n) of
RMP such that the following monoid homomorphisms (where ր is injective) form a commutative
diagram:

RMP

ր ↓↓
RMn+o(n)

։ MP
poly

The construction of RMn+o(n) is intuitive, but we need some definitions.
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We will use the classical Landau symbol o. For two total functions t1, t2: N → R≥0 we say that
“t1 is o(t2)” iff there exists a total function ǫ: N→ R≥0 such that limn→∞ ǫ(n) = 0, and for all n ∈ N,
t1(n) ≤ ǫ(n) · t2(n). In particular, a total function t: N → N is said to be n + o(n) iff there exists a
total function ǫ: N → R≥0 such that limn→∞ ǫ(n) = 0, and for all n ∈ N: t(n) ≤ n + ǫ(n) · n. Since
n + ǫ(n) · n = (1 + ǫ(n)) · n, we can also write (1 + o(1)) · n for n + o(n). (By the definition of the
Landau symbol, a function t: N→ R≥0 is o(1) iff limn→∞ t(n) = 0.)

Clearly, the set of total functions N→ N that are n+ o(n) is closed under composition.
An RMP-machine is a multi-tape Turing machine M with a read-only input-tape that contains

the input, and with a write-only output-tape, such that the input-tape head and the output-tape head
never move left. The machine has an accept state; when M halts, the content of the output-tape is a
valid output iffM is in the accept state (whenM halts in a non-accept state, the output is undefined).
A convention of this sort is necessary, otherwise there is always an output (possibly the empty string).
Let fM denote the input-output function of M . We assume that for every x ∈ Dom(fM ) and every
word z ∈ A∗, the computation of M on input xz has the following property: the input-tape head does
not start reading z until fM (x) has been written on the output tape. (To “read” a letter ℓ means to
make a transition whose input-tape letter is this letter ℓ.) This is not the complete definition of an
RMP-machine, but that is all we need here; the details are given at the beginning of Section 2 in [3].
We define the following submonoid of RMP:

RMn+o(n) = {f ∈ RMP : f can be computed by an RMP-machine whose input-output
balance and time-complexity are n+ o(n)}.

It should be pointed out that the bound |x| + o(|x|) is only assumed when f(x) is defined; for x 6∈
Dom(f), we do not assume any time-bound. Of course, there exists also a machine that runs in
polynomial time for all inputs, but then it is not guaranteed that the running time is |x| + o(|x|) for
accepted inputs. An RMP-machine whose time and balance on accepted inputs are n+ o(n) is called
an RMn+o(n)-machine.

Note that RMn+o(n) is a strict subset of RMlin, that consists of the elements of RMP that
have linear upper-bounds on their balance and their time-complexity (where by “linear” we mean
any function of the form n 7→ an + b for some natural integers a, b). Indeed, if t(.) is n + o(n)
then t(n) ≤ 2n + c for some constant c; the strictness of the inclusion comes from the fact that
RMlin contains, for example, functions whose output-length is twice the input-length, and the function
n 7→ 2n is not n+ o(n).

Lemma 6.1 RMn+o(n) is a monoid.

Proof. Let f1, f2 ∈ RMn+o(n) and let M1,M2 be RMn+o(n)-machines that compute f1, respectively
f2. Since the set of functions that are n+ o(n) is closed under composition, the I/O-balance of f2 ◦ f1
is n+ o(n).

To compute f2 ◦f1(x) in time n+o(n) (where n = |x|), we combineM1 andM2 into an RMn+o(n)-
machine M , as follows. The output-tape of M1 and the input-tape of M2 are combined into one
work-tape of M ; we call this work-tape the intermediate tape. On input x, the machine M starts
simulating M1 and starts writing f1(x) on the intermediate tape; as soon as there is something on
this intermediate tape, M starts the simulation of M2 on f1(x). The writing of f1(x) by M1 takes
at most o(n) more steps than it takes to read x; the computation of f1(x), except for this o(n)-step
delay, is done in parallel (simultaneously) with the reading of x. Similarly, when M2 reads f1(x) as an
input, it computes f2(f1(x)) at the same time as it reads f1(x), except for a o(|f1(x)|)-step delay; but
o(|f1(x)|) means ≤ ǫ1(|x|) · |f1(x)| ≤ ǫ1(|x|) · (|x| + ǫ2(|x|) · |x|), and this is ≤ ǫ(|x|) · |x| (for some
functions ǫ with limit 0); hence, o(|f1(x)|) is o(|x|). So when x ∈ Dom(f2 ◦ f1) the total time taken by
M (i.e., M1 and M2 working together, mostly in parallel) is |x|+ o(|x|). ✷

Proposition 6.2 The monoid RMn+o(n) is non-regular. In fact, there exists a real-time function in
RMn+o(n) that has no inverse in RMn+o(n).
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Proof. We use the encoding function code: {0, 1,#}∗ 7−→ {00, 01, 11}∗ , replacing 0 by 00, 1 by 01,
and # by 11 (as discussed at the beginning of the Introduction). For a string x, xrev denotes the string
in reverse (i.e., backwards) order.

Consider the right-ideal morphism defined for all x,w ∈ {0, 1}∗ by

s: code(x) 11 0|x|w 7−→ 02 |x| 11 xrev w ,

where domC(s) =
⋃

k≥0 {00, 01}k 11 0k. Thus s is injective and length-preserving, and belongs to

RMP. Moreover, s belongs toRMn+o(n) since anRMn+o(n)-machine can compute s
(

code(x) 11 0|x|w
)

in time ≤ n+ o(n), where n = 2 |x|+2+ |x|+ |w|, as follows: The machine reads code(x) in time 2 |x|,
while writing x on a work-tape and while writing 02 |x| on the output-tape. When 11 is encountered in
the input, the head of the work-tape is at the right end of x. The machine copies 11 to the output-tape,
then reads 0|x| in the input, while copying the work-tape from right to left to the output-tape; thus,
xrev is written. When the work-tape head reaches the left end of the work-tape, the input-tape head
reaches w on the input-tape while copying it to the output-tape. Note that the above machine is a
real-time Turing machine, with running time ≤ n+ c for some constant c ≥ 0.

We show next that s does not have an inverse in RMn+o(n); hence RMn+o(n) is not regular.
For every inverse s′ of s we have s′(02 |x| 11 xrev) = code(x) 11 0|x|. It is easy to see that although
s′ can be chosen so as to belong to RMP, s′ cannot be evaluated in time ≤ n + o(n); here, n =
|code(x)| + 2 + |x| = 2 |x| + 2 + |x|. Indeed, an RMn+o(n)-machine reads the input 02 |x| 11 xrev only
once, from left to right. While 02 |x| is being read, xrev has not yet been seen, so no letter-pair of
code(x) can be written on the output-tape; indeed, the machine is deterministic, so anything written
on the output-tape up to this moment would be false for some input x. At the moment xrev starts
being read, the machine has made 2 |x|+2 steps, and no output has been written yet (except perhaps
one 0). To write down the output (which has length n) will take at least n steps from here onward. So
the total time will be ≥ n+2 |x|+2 ≥ n+n/2. But n+n/2 does not have n+o(n) as an upper-bound.
✷

Proposition 6.3 The monoid RMn+o(n)/≡poly is isomorphic to RMP/≡poly (=MP
poly).

Proof. We show that the embedding [g]poly ∈ RMn+o(n)/≡poly 7−→ [g]poly ∈ MP
poly is surjective.

More precisely, for every f ∈ RMP with time-complexity and balance ≤ p(.) (a polynomial), we
construct a function F ∈ RMn+o(n) such that F ≡poly f . This is done by a padding argument similar
to the one in Lemma 2.22: F is the restriction of f to

⋃

x∈domC(f) xA
q(|x|) A∗, where q(.) is a fully

time-constructible function that satisfies (n · p(n))2 < q(n) for all n ∈ N. The function q(.) exists by
Lemma 2.22(1); in fact, since p(.) is a polynomial, q(.) can be chosen to be a fully time-constructible
polynomial of the form n 7→ a (n + 1)d. Since every Aq(|x|) is a maximal prefix code and since q is
polynomial bound, F ≡poly f .

We want to show that F ∈ RMn+o(n). We construct a Turing machine MF that on input xvw
computes f(x) vw in time n+ o(n), where x ∈ domC(f), v ∈ Aq(|x|), w ∈ A∗, and n = |xvw|. On input
z 6∈ Dom(f), MF should reject, but we do not care how much time MF takes in that case. On input
xvw, MF works as follows. First it finds x as the first prefix of the input that belongs to Dom(f), and
writes f(x) on the output-tape; this takes time ≤ 2 |x| · p(|x|) (see the proof of Lemma 2.22(2)). If no
prefix of the input is in Dom(f), MF rejects. If x ∈ domC(f) is found, since domC(f) is a prefix code,
the end of x, and the beginning of v, are uniquely determined within the input xvw. Next, MF finds
v, consisting of the next q(|x|) letters, and concatenates this to the right of f(x) on the output-tape;
since q is fully time-constructible, this can be done in time q(|x|) exactly. If the remainder vw of the
input has length < q(|x|), MF rejects. If v is found, the remainder w of the input is copied to the
output-tape.

So the total time of the computation (if there is an output) is ≤ 2 |x| · p(|x|) + q(|x|) + |w|. Since
n = |xvw|, |v| = q(|x|), and since 2 |x| · p(|x|) =

√

q(|x|), the total time is ≤ √n + n, which is
≤ n+ o(n). ✷
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As a consequence of Prop. 6.3 and earlier results we have:

Corollary 6.4 P 6= NP iff there exists a function in RMn+o(n) that has no inverse in RMP.

Proof. If some F ∈ RMn+o(n) (⊂ RMP) has no inverse in RMP, then RMP is not regular, hence
P 6= NP (by results from [4], as we saw in the Introduction).

Conversely, suppose every F ∈ RMn+o(n) has some inverse F ′ ∈ RMP. By Prop. 6.3, every
element ofMP

poly is an ≡poly-class of the form [F ] for some F ∈ RMn+o(n). Since FF ′F = F , we have

[F ][F ′][F ] = [F ] (since ≡poly is a congruence by Theorem 4.3). HenceMP
poly is regular. By Theorem

5.16 this implies that RMP is regular. ✷

Remark. By Corollary 6.4, if P 6= NP then this is “witnessed” by an element of RMn+o(n). Although
RMn+o(n) is not regular by itself, its non-regularity inRMP is not obvious (and equivalent to P 6= NP).

It is not especially surprising thatRMn+o(n) is non-regular; ultimately, this is due to the limitations
of tapes as storage devices. By itself, it is not too surprising either that RMn+o(n) is ≡poly-equivalent

toMP
poly. The ≡poly-equivalence of RMn+o(n) andMP

poly is proved by pushing the familiar padding
argument a little further. The combination of the two facts is interesting, however, because ≡poly-

equivalence means that RMn+o(n) and MP
poly are very close to each other; yet, RMn+o(n) is non-

regular, while the non-regularity ofMP
poly is equivalent to P 6= NP.
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