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POST-LIE ALGEBRA STRUCTURES FOR NILPOTENT LIE ALGEBRAS

DIETRICH BURDE, CHRISTOF ENDER, AND WOLFGANG ALEXANDER MOENS

Abstract. We study post-Lie algebra structures on (g, n) for nilpotent Lie algebras. First we
show that if g is nilpotent such that H0(g, n) = 0, then also n must be nilpotent, of bounded
class. For post-Lie algebra structures x · y on pairs of 2-step nilpotent Lie algebras (g, n) we
give necessary and sufficient conditions such that x◦y = 1

2
(x ·y+y ·x) defines a CPA-structure

on g, or on n. As a corollary we obtain that every LR-structure on a Heisenberg Lie algebra
of dimension n ≥ 5 is complete. Finally we classify all post-Lie algebra structures on (g, n) for
g ∼= n ∼= n3, where n3 is the 3-dimensional Heisenberg Lie algebra.

1. Introduction

Post-Lie algebras and post-Lie algebra structures arise in many areas of mathematics and
physics. One particular area is differential geometry and the study of geometric structures on
Lie groups. Here post-Lie algebras arise as a natural common generalization of pre-Lie algebras
[15, 16, 21, 2, 3, 4] and LR-algebras [6, 7], in the context of nil-affine actions of Lie groups.
On the other hand, post-Lie algebras have been introduced by Vallette [22] in connection with
the homology of partition posets and the study of Koszul operads. They have been studied by
several authors in various contexts, e.g., for algebraic operad triples [17], in connection with
modified Yang-Baxter equations, Rota-Baxter operators, universal enveloping algebras, double
Lie algebras, R-matrices, isospectral flows, Lie-Butcher series and many other topics [1, 13, 14].
Our work on post-Lie algebras centers around the existence question of post-Lie algebra struc-
tures for given pairs of Lie algebras, on algebraic structure results, and on the classification of
post-Lie algebra structures. For a survey on the results and open questions see [5, 8, 9]. A
particular interesting class of post-Lie algebra structures is given by commutative structures,
so-called CPA-structures. For the existence question of CPA-structures on semisimple, perfect
and complete Lie algebras, see [10, 11]. For nilpotent Lie algebras, these questions are usually
harder to answer. In [12] we proved, among other things, that every CPA-structure on a nilpo-
tent Lie algebra without abelian factor is complete, i.e., that all left multiplications L(x) are
nilpotent. It is a natural question to ask how this result extends to general post-Lie algebra
structures on pairs of nilpotent Lie algebras. In some cases we can associate a CPA-structure
on g or on n to a given PA-structure on (g, n), and we can show the nilpotency of the left
multiplications.

The paper is structured as follows. In section 2 we recall the basic notions of post-Lie algebra
structures, or PA-structures, and we introduce annihilators, which generalize the ones from the
case of CPA-structures. In particular, we consider the invariant H0(g, n) for the g-module n

with the action given by a given PA-structure. In section 3 we prove that, given a PA-structure
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x · y on (g, n) where g is nilpotent and H0(g, n) = 0, that n must be nilpotent of class at most

|X|2
|X|
. Here X is a certain finite set arising from a group grading of n. This improves a

structure result from [8], where we had shown that n must be solvable, without the assumption
on the invariants. The proof uses recent results on arithmetically-free group gradings of Lie
algebras, given in [19, 20]. In section 4 we associate to any PA-structure on pairs (g, n) of
two-step nilpotent Lie algebras a CPA-structure on g or on n, by the formula

x ◦ y =
1

2
(x · y + y · x).

However, this does not work in general. It turns out that certain identities have to be satisfied.
We determine these identities. In some special cases this also implies that all left multiplications
L(x) of the PA-structure are nilpotent, because this is true for the associated CPA-structure.
This is true in particular for g abelian and n a Heisenberg Lie algebra of dimension n ≥ 5.

Finally, in section 5, we classify all PA-structures x · y on pairs of 3-dimensional Heisenberg Lie
algebras. The result is a long list, with rather complicated structures. They satisfy, however,
very nice properties, which we cannot prove without the classification. For example, all left
multiplications L(x) are nilpotent and L([x, y]) + R([x, y]) = 0 for all x, y ∈ V . Furthermore,
x ◦ y = 1

2
(x · y + y · x) defines a CPA-structure on g.

2. Preliminaries

Let K denote a field of characteristic zero. We recall the definition of a post-Lie algebra
structure on a pair of Lie algebras (g, n) over K, see [8]:

Definition 2.1. Let g = (V, [ , ]) and n = (V, { , }) be two Lie brackets on a vector space V

over K. A post-Lie algebra structure, or PA-structure on the pair (g, n) is a K-bilinear product
x · y satisfying the identities:

x · y − y · x = [x, y]− {x, y}(1)

[x, y] · z = x · (y · z)− y · (x · z)(2)

x · {y, z} = {x · y, z}+ {y, x · z}(3)

for all x, y, z ∈ V .

Define by L(x)(y) = x · y and R(x)(y) = y · x the left respectively right multiplication
operators of the algebra A = (V, ·). By (3), all L(x) are derivations of the Lie algebra (V, {, }).
Moreover, by (2), the left multiplication

L : g → Der(n) ⊆ End(V ), x 7→ L(x)

is a linear representation of g. The right multiplication R : V → V, x 7→ R(x) is a linear map,
but in general not a Lie algebra representation.
If n is abelian, then a post-Lie algebra structure on (g, n) corresponds to a pre-Lie algebra

structure on g. In other words, if {x, y} = 0 for all x, y ∈ V , then the conditions reduce to

x · y − y · x = [x, y],

[x, y] · z = x · (y · z)− y · (x · z),
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i.e., x · y is a pre-Lie algebra structure on the Lie algebra g, see [8]. If g is abelian, then the
conditions reduce to

x · y − y · x = −{x, y}

x · (y · z) = y · (x · z),

x · {y, z} = {x · y, z}+ {y, x · z},

i.e., −x · y is an LR-structure on the Lie algebra n, see [8].

Another particular case of a post-Lie algebra structure arises if the algebra A = (V, ·) is com-

mutative, i.e., if x · y = y · x is satisfied for all x, y ∈ V , so that we have L(x) = R(x) for
all x ∈ V . Then the two Lie brackets [x, y] = {x, y} coincide, and we obtain a commutative
algebra structure on V associated with only one Lie algebra [10]:

Definition 2.2. A commutative post-Lie algebra structure, or CPA-structure on a Lie algebra
g is a K-bilinear product x · y satisfying the identities:

x · y = y · x(4)

[x, y] · z = x · (y · z)− y · (x · z)(5)

x · [y, z] = [x · y, z] + [y, x · z](6)

for all x, y, z ∈ V .

In [11], Definition 2.5 we had introduced the notion of an annihilator in A for a CPA-structure.
This can be generalized to PA-structures as follows.

Definition 2.3. Let A = (V, ·) be a post-Lie algebra structure on a pair of Lie algebras (g, n).
The left and right annihilators in A are defined by

AnnL(A) = {x ∈ A | x · A = 0},

AnnR(A) = {x ∈ A | A · x = 0}.

Both spaces are in general neither left nor right ideals of A, unlike in the case of CPA-
structures. So we view them usually just as vector subspaces of V . However, the next lemma
shows that the annihilators satisfy some other properties. Recall that n is a g-module via the
product x · y for x ∈ g and y ∈ n. The zeroth Lie algebra cohomology is given by

H0(g, n) = {y ∈ n | x · y = 0 ∀ x ∈ g}.

Lemma 2.4. The annihilators in A equal the kernels of L respectively R, i.e.,

AnnL(A) = ker(L) = {x ∈ A | L(x) = 0},

AnnR(A) = ker(R) = {x ∈ A | R(x) = 0}.

The subspace AnnL(A) is a Lie ideal of g, and the subspace AnnR(A) coincides with H0(g, n).

Proof. The equalities are obvious. Since L : g → Der(n) is a Lie algebra representation, ker(L)
is a Lie ideal of g. �

Suppose that V is 2-dimensional, with g abelian and n non-abelian. Then there is a basis
(e1, e2) of V such that [e1, e2] = 0 and {e1, e2} = e1. We have classified all PA-structures on
(g, n) in [8], section 3.
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Example 2.5. Every PA-structure on (g, n) ∼= (K2, r2(K)) in the above basis is of the form

e1 · e1 = αe1, e2 · e1 = (β + 1)e1,

e1 · e2 = βe1, e2 · e2 = γe1,

for α, β, γ ∈ K satisfying the condition β(β− 1)−αγ = 0. For all these PA-structures we have

dimAnnL(A) = dimAnnR(A) = dimH0(g, n) = 1.

More precisely we have

AnnL(A) =

{

〈γe1 − βe2〉, if (β, γ) 6= (0, 0),

〈e1 − αe2〉, if β = γ = 0,

AnnR(A) =

{

〈βe1 − αe2〉, if (α, β) 6= (0, 0),

〈γe1 − e2〉, if α = β = 0.

3. Nilpotency of g and n

We have proved in [8], Proposition 4.3 the following structure result for post-Lie algebra
structures on (g, n).

Proposition 3.1. Suppose that there exists a post-Lie algebra structure on (g, n), where g is

nilpotent. Then n is solvable.

In this section we will prove a stronger version of this proposition by applying recent results
on arithmetically-free group-gradings of Lie algebras from [19, 20]. A grading of a Lie algebra
n by a group (G, ◦) is a decomposition

n =
⊕

g∈G

ng

into homogeneous subspaces, such that for all g, h ∈ G, we have [ng, nh] ⊆ ng◦h. The set
X := {g ∈ G | ng 6= 0} is called the support of the grading. For an abelian group (G,+) such a
subset X of G is called arithmetically-free, if and only if X is finite and

{x+ ky | k ∈ N ∪ {0}} ⊆ X implies y 6∈ X.

In general, a subset X of an arbitrary group G is called arithmetically-free, if and only if X is
finite and every subset of X of pairwise commuting elements is arithmetically free. The result
which we want to apply is Theorem 3.14 of [19] and Theorem 3.7 of [20]. It it the following
result:

Theorem 3.2. Let n be a Lie algebra over a field K which is graded by a group G. If the

support X of the grading is arithmetically-free, then n is nilpotent of |X|-bounded class. If G

is in addition free-abelian, the bound can be given by |X|2
|X|
.

What additional conditions do we need in Proposition 3.1, in order to conclude that n is
nilpotent? Certainly n need not be nilpotent in general, as we have seen in Example 2.5. There
are PA-structures on (g, n) for g abelian and g solvable, but non-nilpotent. In all these cases
the space H0(g, n) is non-trivial. In fact, the classification of PA-structures in dimension 2,
given in [8], shows that n is nilpotent in all cases where g is nilpotent and H0(g, n) = 0. It
turns out that this is true in general.
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Theorem 3.3. Suppose that there exists a post-Lie algebra structure on (g, n), where g is

nilpotent and H0(g, n) = 0. Then n is nilpotent of class at most |X|2
|X|

.

Proof. Since g is nilpotent there is a weight space decomposition for the g-module n, see [12],
section 2. It is given by

n =
⊕

α∈g∗

nα,

satisfying [nα, nβ] ⊆ nα+β for all α, β ∈ g∗. For a weight α we have nα 6= 0, and there are
only finitely many weights. Hence the support X is finite. The grading group G = (g∗,+) is
free-abelian, so that we can also write

n =
⊕

α∈(Zn,+)

nα.

Because of H0(g, n) = 0 we know that 0 is not a weight. Hence the support X is arithmetically-

free and we can apply Theorem 3.2. Hence n is nilpotent of class at most |X|2
|X|
. �

For PA-structures on (g, n) where both g and n are nilpotent and indecomposable, we often
see that all left multiplication operators L(x) are nilpotent. We have recently proved this in
the special case of CPA-structures, i.e., where g = n, see [12]:

Theorem 3.4. Let x · y be a CPA-structure on g, where g is nilpotent with Z(g) ⊆ [g, g]. Then
all left multiplications L(x) are nilpotent.

We have called a Lie algebra g with Z(g) ⊆ [g, g] a stem Lie algebra. It seems that this result
has a natural generalization to PA-structures on pairs of nilpotent Lie algebras. So we pose the
following question.

Question 3.5. Let x · y be a PA-structure on (g, n) where both g and n are nilpotent stem Lie

algebras. Is it true that all left multiplications L(x) are nilpotent?

Examples of PA-structures in low dimensions show that there are counterexamples with g or
n not nilpotent. For the following example, let g be the 3-dimensional solvable non-nilpotent
Lie algebra r3,λ(K) with basis {e1, e2, e3} and [e1, e2] = e2, [e1, e3] = λe3 for λ ∈ K×, and n be
the Heisenberg Lie algebra n3(K) with {e1, e2} = e3.

Example 3.6. There is a PA-structure on (g, n) given by

e1 · e1 = (λ− 1)e1 + αe2 + βe3, e1 · e2 = e2 + γe3,

e1 · e3 = λe3, e2 · e1 = (γ + 1)e3,

with α, β, γ ∈ K, where L(e1) is not nilpotent.

Indeed, trL(e1) = 2λ 6= 0, since 2 6= 0.

4. PA-structures on pairs of two-step nilpotent Lie algebras

Let (g, n) be a pair of two-step nilpotent Lie algebras and x · y be a PA-structure on (g, n).
We would like to associate with x · y a CPA-structure on g or on n, by the formula

x ◦ y =
1

2
(x · y + y · x).
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This will not always give a CPA-structure. However, we can find suitable conditions on g, n
and on x · y, so that the new product indeed gives a CPA-structure.
Let us denote by ad(x) the adjoint operators for g with ad(x)(y) = [x, y], and by Ad(x) the
adjoint operators for n with Ad(x)(y) = {x, y}. Furthermore L(x) and R(x) are the left and
right multiplication operators. The axioms for a PA-structure on (g, n) in operator form are as
follows:

L(x)−R(x) = ad(x)− Ad(x)(7)

L([x, y]) = [L(x), L(y)](8)

[L(x),Ad(y)] = Ad(L(x)y)(9)

for all x, y ∈ V .

Lemma 4.1. The axioms for a PA-structure on (g, n) imply the following operator identities.

[L(x),Ad(y)] + [Ad(x), L(y)] = Ad([x, y])− Ad({x, y})(10)

[R(x), ad(y)] + [ad(x), R(y)] = [L(x), ad(y)] + [ad(x), L(y)](11)

+ [Ad(x), ad(y)] + [ad(x),Ad(y)]− 2[ad(x), ad(y)]

for all x, y ∈ V .

Proof. Using (7) and (9) we obtain

[L(x),Ad(y)] = Ad(x · y)

= Ad([x, y]− {x, y}+ y · x)

= Ad([x, y])−Ad({x, y}) + Ad(y · x)

= Ad([x, y])−Ad({x, y}) + [L(y),Ad(x)]

This shows (10). Taking Lie brackets of (7) with ad(x) and ad(y) gives

[L(x), ad(y)]− [R(x), ad(y)] = [ad(x), ad(y)]− [Ad(x), ad(y)]

[L(y), ad(x)]− [R(y), ad(x)] = [ad(y), ad(x)]− [Ad(y), ad(x)]

The difference gives (11). �

If g and n are 2-step nilpotent, then the terms [ad(x), ad(y)] and Ad({x, y}) vanish.

Lemma 4.2. Suppose that x · y is a PA-structure on (g, n), where g and n are 2-step nilpotent,

and

[L(x) +R(x), ad(y)] = ad(x · y + y · x)(12)

for all x, y ∈ V . Then we have

[L(x) +R(x), ad(y)] = [L(y) +R(y), ad(x)](13)

2[L(x), ad(y)] + 2[ad(x), L(y)] = [ad(y),Ad(x)] + [Ad(y), ad(x)](14)

Proof. Since ad(x · y + y · x) is symmetric in x and y, (12) implies (13). We can rewrite it as

[R(x), ad(y)] + [ad(x), R(y)] = [ad(y), L(x)] + [L(y), ad(x)]

Together with (11) we obtain (14). �
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Proposition 4.3. Let x · y be a PA-structure on (g, n), where g and n are 2-step nilpotent.

Then

x ◦ y =
1

2
(x · y + y · x)

defines a CPA-structure on g if and only if (12) holds for all x, y ∈ V .

Proof. Let ℓ(x) and r(x) be the left and right multiplications given by ℓ(x)(y) = x ◦ y and
r(x)(y) = y ◦ x. By (7) we have

ℓ(x) =
1

2
(L(x) +R(x))

= L(x)−
1

2
ad(x) +

1

2
Ad(x).

The axioms of a CPA-structure on g in operator form are given by

ℓ(x) = r(x)

ℓ([x, y]) = [ℓ(x), ℓ(y)]

[ℓ(x), ad(y)] = ad(ℓ(x)y)

We will show that these axioms follow from (12). The computations will also show that the
axioms are in fact equivalent to (12). Clearly ℓ(x) = r(x) is obvious since the product x ◦ y is
commutative. The third identity is just (12) if we write ℓ(x) = 1

2
(L(x) + R(x)). So it remains

to show the second identity. The left-hand side is given by

ℓ([x, y]) = L([x, y])−
1

2
ad([x, y]) +

1

2
Ad([x, y])

= L([x, y]) +
1

2
Ad([x, y]),

because g is 2-step nilpotent. On the other hand, using [ad(x), ad(y)] = [Ad(x),Ad(y)] = 0 we
have

[ℓ(x), ℓ(y)] = [L(x)−
1

2
ad(x) +

1

2
Ad(x), L(y)−

1

2
ad(y) +

1

2
Ad(y)]

= [L(x), L(y)]−
1

2
[L(x), ad(y)] +

1

2
[L(x),Ad(y)]−

1

2
[ad(x), L(y)]

−
1

4
[ad(x),Ad(y)] +

1

2
[Ad(x), L(y)]−

1

4
[Ad(x), ad(y)]

We have [L(x), L(y)] = L([x, y]) by (8) and

1

2
Ad([x, y]) =

1

2
[L(x),Ad(y)] +

1

2
[Ad(x), L(y)]

by (10), because n is 2-step nilpotent. For the difference we obtain

ℓ([x, y])− [ℓ(x), ℓ(y)] =
1

2
[L(x), ad(y)] +

1

2
[ad(x), L(y)] +

1

4
[ad(x),Ad(y)] +

1

4
[Ad(x), ad(y)]

= 0

by using (14). �
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Remark 4.4. The identity (12) can be rewritten as

x · [y, z] + [y, z] · x = [y, x · z] + [y, z · x]− [z, x · y]− [z, y · x](15)

for all x, y, z ∈ V . This yields another operator version of (12):

L([y, z]) +R([y, z]) = ad(y)(L(z) +R(z))− ad(z)(L(y) +R(y))(16)

for all y, z ∈ V . This identity is trivially satisfied if g is abelian.

It is quite remarkable that identity (12) holds for all PA-structures on (g, n), where g and n

are isomorphic to the 3-dimensional Heisenberg Lie algebra, see Corollary 5.3. However, this is
not always true. Let (e1, . . . , e5) be a basis of V and define the Lie brackets of g and n by

[e1, e2] = e5, [e3, e4] = e5,

{e1, e4} = e5, {e2, e3} = e5

Then g and n are both isomorphic to the 5-dimensional Heisenberg Lie algebra.

Example 4.5. There exists a PA-structure on the above pair (g, n), which does not satisfy the

identity (12). It is given by

e2 · e1 = −e5, e3 · e2 = e5, e3 · e3 = e2,

e4 · e1 = e5, e4 · e3 = −e5.

Hence we cannot apply Proposition 4.3.

Indeed, setting (x, y, z) = (e3, e1, e3) in (15) we obtain

0 = [e1, 2e3 · e3] = 2e5,

a contradiction.

We can apply Proposition 4.3 to the case where n is abelian. In this case, PA-structures on
(g, n) correspond to pre-Lie algebra structures on g.

Corollary 4.6. Let x · y be a pre-Lie algebra structure on g, where g is 2-step nilpotent. Then

x ◦ y =
1

2
(x · y + y · x)

defines a CPA-structure on g if and only if all L(x) are derivations of g. If in addition Z(g) ⊆
[g, g], then all L(x) are nilpotent.

Proof. We have R(x) = L(x)− ad(x) so that identity (12) reduces to

[L(x) +R(x), ad(y)] = [2L(x)− ad(x), ad(y)]

= 2[L(x), ad(y)],

and

ad(x · y + y · x) = ad(2x · y − [x, y])

= 2ad(L(x)y).

So it is equivalent to [L(x), ad(y)] = ad(L(x)y), which says that all L(x) are derivations of g.
So x ◦ y is a CPA-product on g by Proposition 4.3. With ℓ(x) = x ◦ y we have

L(x) = ℓ(x) +
1

2
ad(x).
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By Theorem 3.6 of [12] all ℓ(x) are nilpotent, since Z(g) ⊆ [g, g]. Furthermore we have

[ℓ(x), ad(y)] = ad(ℓ(x)y)

=
1

2
(ad(x · y) + ad(y · x))

= 0,

because [y · x, z] = [x · y − [x, y], z] = [x · y, z] for all x, y, z ∈ n. Since L(x) is the sum of two
commuting nilpotent operators, it is nilpotent. �

Note that Medina studied pre-Lie algebras where all L(x) are derivations in [18], under the
name of left-symmetric derivation algebras.

Proposition 4.3 has a counterpart for associated CPA-structures on n.

Proposition 4.7. Let x · y be a PA-structure on (g, n), where g and n are 2-step nilpotent.

Then

x ◦ y =
1

2
(x · y + y · x)

defines a CPA-structure on n if and only if

[ad(x),Ad(y)] = Ad([x, y])(17)

L({x, y})− L([x, y]) =
1

2
(ad({x, y}) + [ad(y), L(x)] + [L(y), ad(x)])(18)

for all x, y ∈ V .

Proof. Let ℓ(x) and r(x) be the left and right multiplications given by ℓ(x)(y) = x ◦ y and
r(x)(y) = y ◦ x. By (7) we have

ℓ(x) =
1

2
(L(x) +R(x))

= L(x)−
1

2
ad(x) +

1

2
Ad(x)

The axioms of a CPA-structure on n are given by

ℓ(x) = r(x)

ℓ({x, y}) = [ℓ(x), ℓ(y)]

[ℓ(x),Ad(y)] = Ad(ℓ(x)y)

The first identity is obvious. For the third identity we have

[ℓ(x),Ad(y)] = [L(x)−
1

2
ad(x) +

1

2
Ad(x),Ad(y)]

= [L(x),Ad(y)]−
1

2
[ad(x),Ad(y)] +

1

2
[Ad(x),Ad(y)]

= [L(x),Ad(y)]−
1

2
[ad(x),Ad(y)]

and
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Ad(ℓ(x)y) = Ad(L(x)y)−
1

2
Ad([x, y]) +

1

2
Ad({x, y})

= Ad(L(x)y)−
1

2
Ad([x, y])

By (9) and (17) the two sides are equal. It remains to show the second identity. We have

ℓ({x, y}) = L({x, y})−
1

2
ad({x, y}) +

1

2
Ad({x, y})

= L({x, y})−
1

2
ad({x, y})

On the other hand we have, using (10) and (17) we have

[ad(x),Ad(y)] = Ad([x, y])

= [L(x),Ad(y)] + [Ad(x), L(y)]

= [Ad(x), ad(y)]

Hence we obtain, using (8) and 2-step nilpotency

[ℓ(x), ℓ(y)] = [L(x)−
1

2
ad(x) +

1

2
Ad(x), L(y)−

1

2
ad(y) +

1

2
Ad(y)]

= [L(x), L(y)]−
1

2
[L(x), ad(y)] +

1

2
[L(x),Ad(y)]−

1

2
[ad(x), L(y)]

−
1

4
[ad(x),Ad(y)] +

1

2
[Ad(x), L(y)]−

1

4
[Ad(x), ad(y)]

= L([x, y])−
1

2
[L(x), ad(y)]−

1

2
[ad(x), L(y)]

By (18), both sides are equal. �

The identities (17),(18) may not hold in general for PA-structures on 2-step nilpotent Lie
algebras. Let (e1, e2, e3) be a basis of V and define the Lie brackets of g and n by

[e1, e2] = e3, {e2, e3} = e1.

Then g and n are both isomorphic to the 3-dimensional Heisenberg Lie algebra.

Example 4.8. There exists a PA-structure on the above pair (g, n), which does not satisfy the

identities (17), (18). It is given by

e1 · e2 = e3, e2 · e3 = −
1

2
e1.

Hence we cannot associate a CPA-structure on n to it by Proposition 4.7.

This is the CPA-structure of type 6 in Proposition 5.2 with r7 = 1 and α = β = 0. We
have Ad([e2, e3]) = 0, but [ad(e2),Ad(e3)](e2) = ad(e2) Ad(e3)e2 = e3. This contradicts (17).
Similarly, (18) does not hold for (x, y) = (e1, e2).

Corollary 4.9. Let x · y be a PA-structure on (g, n), where g is abelian, n is 2-step nilpotent

Then

x ◦ y =
1

2
(x · y + y · x)

defines a CPA-structure on n if and only if {n, n} · n = 0.
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Proof. If g is abelian then (17) is trivially satisfied and (18) reduces to L({x, y}) = 0 for all
x, y ∈ V . Hence the claim follows from Proposition 4.7. �

The identity L({x, y}) = 0 also implies R({x, y}) = 0 by (7) as ad({x, y}) = Ad({x, y}) = 0.
So we have {n, n} · n = n · {n, n} = 0 in the corollary. A PA-structure x · y on (g, n) with g

abelian corresponds to an LR-structure on n by −x·y, see [7]. So we may identify PA-structures
on (g, n) with g abelian with LR-structures on n.

Corollary 4.10. Every LR-structure on n, where n is 2-step nilpotent with Z(n) ⊆ {n, n} and

{n, n} · n = 0 is complete, i.e., all L(x) are nilpotent.

Proof. By Corollary 4.9, x◦y = 1
2
(x·y+y ·x) defines a CPA-structure on n. With ℓ(x)(y) = x◦y

we have

L(x) = ℓ(x)−
1

2
Ad(x).

By Theorem 3.6 of [12] all ℓ(x) are nilpotent, since Z(n) ⊆ {n, n}. We have Ad(x)2 = 0 for all
x ∈ V and

[ℓ(x),Ad(y)] = Ad(ℓ(x)y)

=
1

2
(Ad(x · y) + Ad(y · x))

= 0,

because {x · y, z} = {x · y−{y, x}, z} = {x · y, z} for all x, y, z ∈ n. Since L(x) is the difference
of two commuting nilpotent operators, it is nilpotent. �

The following lemma is helpful to give examples of 2-step nilpotent Lie algebras satisfying
the conditions of Corollary 4.9, i.e., with

L({x, y}) = R({x, y}) = 0

for all x, y ∈ V .

Lemma 4.11. Let x ·y be a PA-structure on (g, n), where g is abelian and n is 2-step nilpotent.

Then for each p, q, x ∈ n with {x, p} = {x, q} = 0 we have

x · {p, q} = 0.

Proof. By (3) we have

0 = q · {x, p} = {q · x, p}+ {x, q · p}

0 = p · {x, q} = {p · x, q}+ {x, p · q}

Using (1), which is u · v − v · u = {v, u}, and taking the difference above gives

0 = {q · x, p} − {p · x, q}+ {x, q · p− p · q}

= {q · x, p} − {p · x, q}+ {x, {p, q}}

= {q · x, p} − {p · x, q}

because n is 2-step nilpotent. But {q · x, p} = {p · x, q} implies

{x · q, p} = {x · p, q},
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because {v · u, w} = {u · v − {v, u}, w} = {u · v, w} for all u, v, w ∈ n. We obtain

x · {p, q} = {x · p, q}+ {p, x · q}

= {x · q, p}+ {p, x · q}

= 0.

�

Proposition 4.12. Let x·y be a PA-structure on (g, n), where g is abelian and n is a Heisenberg

Lie algebra of dimension n ≥ 5. Then Z(n) · n = n · Z(n) = 0, and

x ◦ y =
1

2
(x · y + y · x)

defines a CPA-structure on n.

Proof. We may choose a basis {ei, fi, z | i = 1, . . . , m} for n with Lie brackets [ei, fi] = z for all
1 ≤ i ≤ m. Then {n, n} = Z(n) = 〈z〉. Taking (p, q) = (e1, f1) in Lemma 4.11 yields

x · z = x · {p, q} = 0

for all basis vectors x of n different from e1, f1. Because of m ≥ 2 we can choose (p, q) = (e2, f2)
to obtain x · z = 0 also for x = e1 and x = f1. We obtain Z(n) · n = n ·Z(n) = 0, and the claim
follows from Corollary 4.9. �

Note that the proposition is not true for the 3-dimensional Heisenberg Lie algebra n3(K).
Let {e1, e2, e3} be a basis with {e1, e2} = e3. Then

e2 · e1 = e3, e2 · e2 = −e2, e2 · e3 = −e3, e3 · e2 = −e3

is a PA-structure on (K3, n3(K)), namely the negative of the LR-structure A4 in [6], Proposition
3.1. We have e2 · e3 6= 0, so that n · Z(n) 6= 0. Indeed, the argument in the above proof does
not work for m = 1.

Corollary 4.13. Every LR-structure on n, where n is a Heisenberg Lie algebra of dimension

n ≥ 5 is complete.

Proof. By Proposition 4.12, every LR-structure on n satisfies {n, n} · n = 0, so that the claim
follows from Corollary 4.10 since Z(n) = {n, n}. �

5. PA-Structures on pairs of Heisenberg Lie algebras

In this section we want to list all PA-structures on (g, n) where g is the 3-dimensional Heisen-
berg Lie algebra n3(K) and n ∼= g. There is a basis (e1, e2, e3) of V such that [e1, e2] = e3, and
the Lie brackets of n are given by

{e1, e2} = r1e1 + r2e2 + r3e3,

{e1, e3} = r4e1 + r5e2 + r6e3,

{e2, e3} = r7e1 + r8e2 + r9e3,

with structure constants r = (r1, . . . , r9) ∈ K9. The Jacobi identity gives polynomial conditions
on these structure constants. The Lie algebra n is isomorphic to the Heisenberg Lie algebra
n3(K) if and only if n is 2-step nilpotent with 1-dimensional center.
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Lemma 5.1. Let n be isomorphic to the Heisenberg Lie algebra over K. Then every structure

constant vector r for n belongs to one of the following three types A, B and C:

r =

(

r1, r2, r3,−
r1r2

r3
,−

r22
r3
,−r2,

r21
r3
,
r1r2

r3
, r1

)

, r3 6= 0

r =

(

0, 0, 0, r4, r5, 0,−
r24
r5
,−r4, 0

)

, r5 6= 0

r = (0, 0, 0, 0, 0, 0, r7, 0, 0), r7 6= 0

Proof. Since n is nilpotent we have tr Ad(ei)
k = 0 for i, k ∈ {1, 2, 3}. For k = 1 we obtain the

linear conditions (r6, r8, r9) = (−r2,−r4, r1), and for k = 2 we obtain the quadratic conditions

r22 + r3r5 = 0,

r21 − r3r7 = 0,

r24 + r5r7 = 0.

These conditions already imply the Jacobi identity. Assume that r1 6= 0. Then the quadratic

equations imply that r3 6= 0, r5 = −
r2
2

r3
, r7 =

r2
1

r3
, and r24 =

(

r1r2
r3

)2

. So we obtain two

cases. If r4 = r1r2
r3

, then the nilpotency of Ad(e3) implies that r2 = r4 = 0. We obtain

r = (r1, 0, r3, 0, 0, 0,
r2
1

r3
, 0, r1), which is of type A and represents the Heisenberg Lie algebra,

with 1-dimensional center Z(n) = 〈r1e1 + r3e3〉. In the other case, r4 = − r1r2
r3

, and we obtain

r =

(

r1, r2, r3,−
r1r2

r3
,−

r22
r3
,−r2,

r21
r3
,
r1r2

r3
, r1

)

of type A, with 1-dimensional center Z(n) = 〈r1e1 + r2e2 + r3e3〉. A similar analysis also gives
the result for r1 = 0 by distinguishing r2 6= 0 and r2 = 0. In the end it is used that r is not the
zero vector, because n is not abelian. �

In the following proposition we list all possible PA-structures on pairs of Heisenberg Lie
algebras (g, n) as above by the left multiplication operators L(e1), L(e2), L(e3). Surprisingly we
obtain L(e3) = −1

2
Ad(e3) in all cases, so that we need not list L(e3). The parameters in the

list are in K.

Proposition 5.2. Every PA-structure on (g, n) with g = n3(K) and n ∼= g is of one of the

following list. We always have L(e3) = −1
2
Ad(e3).

1. n is of type A with r =
(

r1, r2, r3,−
r1r2
r3

,−
r2
2

r3
,−r2,

r2
1

r3
, r1r2

r3
, r1

)

, r2, r3 6= 0 and

L(e1) =









r1α
r2

−
r1(2r1α+r2

2
)

2r2
2

r1r2
2r3

α −
2r1α+r2

2

2r2

r2
2

2r3

β −2r1β+r2r3
2r2

r2
2









, L(e2) =











r1(r22−2r1α)

2r2
2

r3
1
α

r3
2

−
r2
1

2r3

r2
2
−2r1α

2r2

r2
1
α

r2
2

− r1r2
2r3

r2(r3−2)−2r1β
2r2

r1(r1β+r2)

r2
2

− r1
2
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2. n is of type A with r =
(

r1, 0, r3, 0, 0, 0,
r2
1

r3
, 0, r1

)

, r3 6= 0 and

L(e1) =







0 − r1
2

0

0 0 0

0 2−r3
2

0






, L(e2) =









r1
2

α −
r2
1

2r3

0 0 0
r3
2

β − r1
2









3. n is of type A with r = (0, 0, r3, 0, 0, 0, 0, 0, 0) , r3 6= 0 and

L(e1) =







α −α2

β
0

β −α 0

γ δ 0






, L(e2) =









−α2

β
α3

β2 0

−α α2

β
0

r3 − 1 + δ
α(β(1−r3)−αγ−2βδ)

β2 0









with β 6= 0.

4. n is of type A with r = (0, 0, r3, 0, 0, 0, 0, 0, 0) , r3 6= 0 and

L(e1) =







0 0 0

0 0 0

α β 0






, L(e2) =







0 γ 0

0 0 0

r3 − 1 + β δ 0







with αγ = 0.

5. n is of type B with r =
(

0, 0, 0, r4, r5, 0,−
r2
4

r5
,−r4, 0

)

, r5 6= 0 and

L(e1) =









r4α
r5

−
r2
4
α

r2
5

− r4
2

α − r4α
r5

− r5
2

β − r4β

r5
0









, L(e2) =











−
r2
4
α

r2
5

r3
4
α

r3
5

r2
4

2r5

− r4α
r5

r2
4
α

r2
5

r4
2

− r4β+r5
r5

r4(r4β+r5)

r2
5

0











6. n is of type C with r = (0, 0, 0, 0, 0, 0, r7, 0, 0) , r7 6= 0 and

L(e1) =







0 0 0

0 0 0

0 1 0






, L(e2) =







0 α − r7
2

0 0 0

0 β 0







Note that the list includes all CPA-structures on n3(K) among the types 2, 3, 4. This recovers
the classification given in [10], Proposition 6.3.

Corollary 5.3. Let x · y be a PA-structure on (g, n) with g ∼= n ∼= n3(K). Then all left

multiplication operators L(x) are nilpotent, and the following identities hold:

x · {y, z} = 0,

[x, y] · z = z · [x, y],

[x, y · z] + [x, z · y] = [y, x · z] + [y, z · x]

for all x, y, z ∈ V . In particular

x ◦ y =
1

2
(x · y + y · x)

defines a CPA-structure on g.
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Proof. The identities follow from the explicit classification. It is obvious from Proposition 5.2
that all PA-structures satisfy

L([x, y]) +
1

2
Ad([x, y]) = 0,

which then by (7), applied to [x, y], gives

L([x, y]) +R([x, y]) = 0.

This says that [x, y] · z = z · [x, y] for all x, y, z. Then identity (15), and hence (12) is satisfied,
and we obtain a CPA-structure on g by Proposition 4.3. �

Remark 5.4. For a PA-structure on (g, n) with g ∼= n ∼= n3(K), the right multiplications R(x)
need not be nilpotent for all x ∈ V . For the PA-structure of type C in Proposition 5.2 we have

R(e2) =







0 α r7
2

0 0 0

1 β 0






,

which has characteristic polynomial t3 − r7
2
t with r7 6= 0.
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