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Abstract. Powerful skew arithmetic circuits are introduced. These are skew arith-
metic circuits with variables, where input gates can be labelled with powersxn

for binary encoded numbersn. It is shown that polynomial identity testing for
powerful skew arithmetic circuits belongs tocoRNC2, which generalizes a cor-
responding result for (standard) skew circuits. Two applications of this result are
presented: (i) Equivalence of higher-dimensional straight-line programs can be
tested incoRNC2; this result is even new in the one-dimensional case, where the
straight-line programs produce strings. (ii) The compressed word problem (or cir-
cuit evaluation problem) for certain wreath products of finitely generated abelian
groups belongs tocoRNC2.

1 Introduction

Polynomial identity testingis the following computational problem: The input is a cir-
cuit, whose internal gates are labelled with either addition or multiplication and its
input gates are labelled with variables (x1, x2, . . .) or constants (−1, 0, 1), and it is
asked whether the output gate evaluates to the zero polynomial (in this paper, we al-
ways work in the polynomial ring over the coefficient ringZ or Zn for n ≥ 2). Based
on the Schwartz-Zippel-DeMillo-Lipton Lemma, Ibarra and Moran [12] proved that
polynomial identity testing overZ or Zp belongs to the classcoRP (the complements
of problems in randomized polynomial time). Whether there is a deterministic polyno-
mial time algorithm for polynomial identity testing is an important problem. In [13] it
is shown that if there exists a language inDTIME(2O(n)) that has circuit complexity
2Ω(n), thenP = BPP (and henceP = RP = coRP). There is also an implication that
goes the other way round: Kabanets and Impagliazzo [14] proved that if polynomial
identity testing belongs toP, then (i) there is a language inNEXPTIME that does not
have polynomial size circuits, or (ii) the permanent is not computable by polynomial
size arithmetic circuits. Both conclusions represent major open problems in complexity
theory. Hence, although it is quite plausible that polynomial identity testing belongs to
P (by [13]), it will be probably very hard to prove (by [14]).

It is known that for algebraic formulas (where the circuit isa tree) and more gen-
erally, skew circuits (where for every multiplication gate, one of the two input gates is
a constant or a variable), polynomial identity testing belongs tocoRNC (but it is still
not known to be inP), see [14, Corollary 2.1]. This holds, since algebraic formulas and
skew circuits can be evaluated inNC if the variables are substituted by concrete (binary
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coded) numbers. Then, as for general polynomial identity testing, the Schwartz-Zippel-
DeMillo-Lipton Lemma yields acoRNC-algorithm.

In this paper, we identify a larger class of circuits, for which polynomial identity
testing is still incoRNC; we call these circuitspowerful skew circuits. In such a circuit,
we require that for every multiplication gate, one of the twoinput gates is either a con-
stant or a powerxN of a variablex, where the exponentN is given in binary notation.
One can replace this powerxN by a subcircuit of sizelogN using iterated squaring, but
the resulting circuit is no longer skew. The main result of this paper states that polyno-
mial identity testing for powerful skew circuits over the ringsZ[x] andFp[x] is still in
coRNC (in fact,coRNC2). For this, we use an identity testing algorithm of Agrawal and
Biswas [1], which computes the output polynomial of the circuit modulo a polynomial
p(x) of polynomially bounded degree, which is randomly chosen from a certain sample
space. Moreover, in our application, all computations can be done in the ringFp[x] for
a prime numberp of polynomial size. This allows us to compute the big powersxN

modulop(x) in NC2 using an algorithm of Fich and Tompa [8]. It should be noted that
the application of the Agrawal-Biswas algorithm is crucialin our situation. If, instead
we would use the Schwartz-Zippel-DeMillo-Lipton Lemma, then we would be forced
to computeaN mod m for randomly chosen numbersa andm with polynomially
many bits. Whether this problem (modular powering) belongsto NC is a famous open
problem [9, Problem B.5.6].

We present two applications of ourcoRNC identity testing algorithm. The first one
concerns the equivalence problem for straight-line programs. Here, a straight-line pro-
gram (SLP) is a context-free grammarG that computes a single wordval(G). In this
context, SLPs are extensively used in data compression and algorithmics on compressed
data, see [17] for an overview. It is known that equivalence for SLPs, i.e., the question
whetherval(G) = val(H) for two given SLPs, can be decided in polynomial time. This
result was independently discovered by Hirshfeld, Jerrum,and Moller [11], Mehlhorn,
Sundar, and Uhrig [21], and Plandowski [22]. All known algorithms for the equivalence
test are sequential and it is not clear how to parallelize them. Here, we exhibit anNC2-
reduction from the equivalence problem for SLPs to identitytesting for skew powerful
circuits. Hence, equivalence for SLPs belongs tocoRNC. Moreover, our reduction im-
mediately generalizes to higher dimensional pictures for which SLPs can be defined in a
fashion similar to the one-dimensional (string) case, using one concatenation operation
in each dimension. For two-dimensional SLPs, Berman et al. [4] proved that equiva-
lence belongs tocoRP using a reduction to PIT. We can improve this result tocoRNC.
Whether equivalence of two-dimensional (resp., one-dimensional) SLPs belongs toP
(resp.,NC) is open.

Our second application concerns the compressed word problem for groups. LetG
be a finitely generated (f.g.) group, and letΣ be a finite generating set forG. For the
compressed word problem forG, brieflyCWP(G), the input is an SLP (as described in
the preceding paragraph) over the alphabetΣ ∪ Σ−1, and it is asked whetherval(G)
evaluates to the group identity. The compressed word problem is a succinct version
of the classical word problem (Does a given word overΣ ∪ Σ−1 evaluate to the group
identity?). One of the main motivations for the compressed word problem is the fact that
the classical word problem for certain groups (automorphism groups, group extensions)
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can be reduced to the compressed word problem for simpler groups [18, Section 4.2].
For finite groups (and monoids) the compressed word problem was studied in Beaudry
et al. [2], and for infinite groups the problem was studied forthe first time in [16].
Subsequently, several important classes of f.g. groups with polynomial time compressed
word problems were found: f.g. nilpotent groups, f.g. free groups, graph groups (also
known as right-angled Artin groups or partially commutative groups), and virtually
special groups. The latter contain all Coxeter groups, one-relator groups with torsion,
fully residually free groups, and fundamental groups of hyperbolic 3-manifolds; see
[18] for details. For the important class of f.g. linear groups, i.e., f.g. groups of matrices
over a field, one can show that the compressed word problem reduces to polynomial
identity testing (overZ or Zp, depending on the characteristic of the field) and hence
belongs tocoRP [18, Theorem 4.15]. Vice versa, it was shown that polynomialidentity
testing overZ can be reduced to the compressed word problem for the linear group
SL3(Z) [18, Theorem 4.16]. The proof is based on a construction of Ben-Or and Cleve
[3]. This result indicates that derandomizing the compressed word problem for a f.g.
linear group will be in general very difficult.

In this paper, we consider the compressed word problem for wreath products. IfG
is a f.g. non-abelian group, then the compressed word problem for the wreath product
G ≀ Z is coNP-hard [18, Theorem 4.21]. On the other hand, we prove thatCWP(Z ≀ Z)
is equivalent w.r.t.NC2-reductions to identity testing for powerful skew circuits. In
particular,CWP(Z ≀ Z) belongs tocoRNC. The latter result generalizes to any wreath
productG ≀H , whereH = Zn for somen andG is a finite direct product of copies of
Z andZp for primesp.

2 Background from complexity theory

Recall thatRP is the set of all problemsA for which there exists a polynomial time
bounded randomized Turing machineR such that: (i) ifx ∈ A thenR acceptsx with
probability at least1/2, and (ii) if x 6∈ A thenR acceptsx with probability0. The class
coRP is the class of all complements of problems fromRP.

We use standard definitions concerning circuit complexity,see e.g. [23] for more
details. In particular we will consider the classNCi of all problems that can be solved
by a circuit family(Cn)n≥1, where the size ofCn (the circuit for length-n inputs) is
polynomially bounded inn, its depth is bounded byO(logi n), andCn is built from
input gates, NOT-gates and AND-gates and OR-gates of fan-intwo. The classNC is
the union of all classesNCi. All circuit families in this paper will be logspace-uniform,
which means that the mappingan 7→ Cn can be computed in logspace. A few times, we
will mention the classDLOGTIME-uniformTC0, see [10] for details. Here, it is only
important thatDLOGTIME-uniformTC0 is contained inNC1.

To define a randomized version ofNCi, one uses circuit families with additional
inputs. So, let thenth circuit Cn in the family haven normal input gates plusm random
input gates, wherem is polynomially bounded inn. For an inputx ∈ {0, 1}n one
defines the acceptance probability as

Prob[Cn acceptsx] =
|{y ∈ {0, 1}m | Cn(x, y) = 1}|

2m
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Here,Cn(x, y) = 1 means that the circuitCn evaluates to1 if the ith normal input gate
gets theith bit of the input stringx, and theith random input gate gets theith bit of the
random stringy. Then, the classRNCi is the class of all problemsA for which there
exists a polynomial size circuit family(Cn)n≥0 of depthO(logi n) with random input
gates that uses NOT-gates and AND-gates and OR-gates of fan-in two, such that for all
inputsx ∈ {0, 1}∗ of lengthn: (i) if x ∈ A, thenProb[Cn acceptsx] ≥ 1/2, and (ii) if
x 6∈ A, thenProb[Cn acceptsx] = 0. As usual,coRNCi is the class of all complements
of problems fromRNCi. Section B.9 in [9] contains several problems that are known
to be inRNC, but which are not known to be inNC; the most prominent example is the
existence of a perfect matching in a graph.

3 Polynomials and circuits

n this paper we deal with polynomial ringsR[x1, . . . , xk] in several variables, whereR
is the ring of integersZ or the ringZn of integers modulon ≥ 2. For computational
problems, we have to distinguish between two representations of polynomials. Let

p(x1, . . . , xk) =

l
∑

i=1

aix
ei,1
1 · · ·x

ei,k
k

be a multivariate polynomial.

– The standard representationof p(x) is the sequence of tuples(ai, ei,1, . . . , ei,k),
where the coefficientai is represented in binary notation (of course this is only
important for the coefficient ringZ) and the exponentsei,j are represented in unary
notation. Let|p| =

∑n
i=1(⌈log |ai|⌉+ ei,1 + · · ·+ ei,k).

– The succinct representationof p(x) is the sequence of tuples(ai, ei,1, . . . , ei,k),
where both the coefficientai and the exponentsei,j are represented in binary nota-
tion. Let ||p|| =

∑n
i=1(⌈log |ai|⌉+ ⌈log ei,1⌉+ · · ·+ ⌈log ei,k⌉).

We use the following result of Eberly [7] (see also [10]).

Proposition 1. Iterated addition, iterated multiplication, and divisionwith remainder
of polynomials fromZ[x] or Fp[x] (p is a prime that can be part of the input in binary en-
coding) that are given in standard representation belong toNC1 (in fact,DLOGTIME-
uniformTC0).

Consider a commutative semiringS = (S,⊕,⊗). An algebraic circuit (or just circuit)
overS is a tripleC = (V, rhs, A0), whereV is a finite set ofgatesor variables,A0 ∈ V
is the output gate, andrhs (for right-hand side) maps everyA ∈ V to an expression (the
right-hand side ofA) of one of the following three forms:

– a semiring elements ∈ S (such a gate is aninput gate),
– B ⊕ C with B,C ∈ V (such a gate is anaddition gate),
– B ⊗ C with B,C ∈ V (such a gate is amultiplication gate).
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Moreover, we require that the directed graph

graph(C) = (V, {(A,B) ∈ V × V | B occurs inrhs(A)})

is acyclic. Every gateA ∈ V evaluates to an elementvalC(A) ∈ S in the natural way
and we setval(C) = valC(A0). A circuit overS is called skew if for every multiplication
gateA one of the two gates (or both of them) inrhs(A) is an input gate.

A branching program overS is a tupleA = (V,E, λ, s, t), where(V,E) is a di-
rected acyclic graph,λ : E → S assigns to each edge a semiring element, ands, t ∈ V .
Let P be the set of all paths froms to t. For a pathp = (v0, v1, . . . , vn) ∈ P (v0 = s,
vn = t) we defineλ(p) =

∏n
i=1 λ(vi−1, vi) as the product (w.r.t.⊗) of all edge labels

along the path. Finally, the value defined byA is

val(A) =
∑

p∈P

λ(p).

It is well known that skew circuits and branching programs are basically the same ob-
jects.

It is well known that the value defined by a branching programA can be computed
using matrix powers. W.l.o.g. assume thatA = ({1, . . . , n}, E, λ, 1, n) and consider
the adjacency matrixM of the edge-labelled graph({1, . . . , n}, E, λ), i.e., the(n×n)-
matrixM with M [i, j] = λ(i, j). Then

val(A) =

( n
∑

i=0

M i

)

[1, n].

For many semiringsS, this simple fact can be used to get anNC2-algorithm for com-
putingval(A). Then+ 1 matrix powersM i (0 ≤ i ≤ n) can be computed in parallel,
and every power can be computed by a balanced tree of heightlog i ≤ logn, where
every tree node computes a matrix product. Hence, we obtain anNC2-algorithm, if

(i) the number of bits needed to represent a matrix entry inMn is polynomially
bounded inn and the number of bits of the entries inM , and

(ii) the product of two matrices over the semiringS can be computed inNC1.

Point (ii) holds if products of two elements and iterated sums in S can be computed
in NC1. For the following important semirings these facts are wellknown (see also
Proposition 1):(Z[x],+, ·), (Zn[x],+, ·) for n ≥ 2, (Z ∪ {∞},min,+), and (Z ∪
{−∞},max,+). Here, we assume that polynomials are given in thestandard repre-
sentation. For the polynomial ringZ[x] also note that every entryp(x) of the matrix
powerMn is a polynomial of degreen ·m, wherem is the maximal degree of a poly-
nomial inM , and all coefficients are bounded by(n ·m · a)n (and hence need at most
n · (logn+ logm+ logn) bits), wherea is the maximal absolute value of a coefficient
in M . Hence point (i) above holds. The following lemma sums up theabove discussion.

Lemma 1. The output value of a given skew circuit (or branching program) over one
of the following semirings can be computed inNC2:
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(i) (Z[x],+, ·) and (Zn[x],+, ·) for n ≥ 2 (polynomials are given in the standard
representation, andn can be part of the input in binary representation)

(ii) (Z ∪ {∞},min,+) and(Z ∪ {−∞},max,+) (integers are given in binary rep-
resentation)

Point (i) of Lemma 1 also holds for the polynomial rings(Z[x1, . . . , xk],+, ·) and
(Zn[x1, . . . , xk],+, ·) as long as the numberk of variables is not part of the input:
The polynomialp(x1, . . . , xk) =

∏k
i=1(xi+1) can be defined by a branching program

with O(k) edges labeled by the polynomialsxi+1, but the product of these polynomials
has2k monomials. Also note that it is important that we use the standard representation
for polynomials in (i): The polynomialp(x) =

∏n
i=1(x

2i + 1) can be represented by a

branching program withO(n) edges labeled by the polynomialsx2i + 1 but p(x) has
2n monomials.

In this paper, we will mainly deal with circuits over a polynomial ringR[x1, . . . , xk],
where the ringR is either(Z,+, ·) or (Zn,+, ·). LetR be one of these rings. By defini-
tion, in such a circuit every input gate is labelled with a polynomial fromR[x1, . . . , xk].
Usually, one considers circuits where the right-hand side of an input gate is a polyno-
mial given in standard representation (or, equivalently, aconstanta ∈ R or variable
xi); we will also use the term “standard circuits” in this case.For succinctness reasons,
we will also consider circuits overR[x1, . . . , xk], where the right-hand sides of input
gates are polynomials given in succinct representation. For general circuits this makes
no real difference (since a big powerxN can be defined by a subcircuit of sizeO(logN)
using iterated squaring), but for skew circuits we will gainadditional succinctness. We
will use the term “powerful skew circuits”. Formally, apowerful skew circuitover the
polynomial ringR[x1, . . . , xk] is a skew circuit over the ringR[x1, . . . , xk] as defined
above, where the right-hand side of every input gate is a polynomial that is given in
succinct representation (equivalently, we could require that the right-hand side is a con-
stanta ∈ R or a powerxN

i with N given in binary notation). We define the size of a
powerful skew circuitC as follows: First, define the sizesizeC(A) of a gateA ∈ V as
follows: If A is an addition gate or a multiplication gate, thensizeC(A) = 1, and ifA is
an input gate withrhs(A) = p(x1, . . . , xk), thensizeC(A) = ||p(x1, . . . , xk)||. Finally,
we define the size ofC as

∑

A∈V sizeC(A).
A powerful branching programis an algebraic branching program(V,E, λ, s, t)

over a polynomial ringR[x1, . . . , xk], where every edge labelλ(e) (e ∈ E) is a polyno-
mial that is given in succinct representation. The size of a powerful branching program
is
∑

e∈E ||λ(e)||. From a given powerful skew circuit one can compute in logspace an
equivalent powerful branching program and vice versa.

Note that the transformation of a powerful skew circuit overR[x1, . . . , xk] into an
equivalent standard skew circuit (where every input gate islabelled by a polynomial
given in standard representation) requires an exponentialblow-up. For instance, the
smallest standard skew circuit for the polynomialxN has sizeN , whereasxN can be
trivially obtained by a powerful skew circuit of size⌈logN⌉.

A central computational problem in computational algebra is polynomial identity
testing, briefly PIT. LetR be a ring that is effective in the sense that elements ofR
can be encoded by natural numbers in such a way that addition and multiplication inR
become computable operations. Then, PIT for the ringR is the following problem:
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Input: A numberk ≥ 1 and a circuitC over the ringR[x1, . . . , xk].
Question:Is val(C) the zero-polynomial?

For the ringsZ andZp (p prime) the following result was shown in [12]; forZn with n
composite, it was shown in [1].

Theorem 1. For each of the ringsZ andZn (n ≥ 2), PIT belongs to the classcoRP.

Note that the numberk of variables is part of the input in PIT. On the other hand,
there is a well-known reduction from PIT to PIT restricted tounivariate polynomials
(polynomials with a single variable) [1]. For a multivariate polynomialp(x1, . . . , xk) ∈
R[x1, . . . , xk] let degi(p) be the degree ofp in the variablexi. It is the largest number
d such thatxd

i appears in a monomial ofp. Let p(x1, . . . , xk) be a polynomial and let
d = 1 +max{degi(p) | 1 ≤ i ≤ k}. We define the univariate polynomialU(p) as

U(p) = p(y1, yd, . . . , yd
k−1

).

Hence, the polynomialU(p) is obtained fromp(x1, . . . , xk) by replacing every mono-
mial a · xn1

1 · · ·xnk

1 by a · yN , whereN = n1 + n2d+ · · ·nkd
k−1 is the number with

base-d representation(n1, n2, . . . , nk). The polynomialp is the zero-polynomial if and
only if U(p) is the zero-polynomial.

The following lemma can be also shown for arbitrary circuits, but we will only need
it for powerful skew circuits.

Lemma 2. Given a powerful skew circuitC for the polynomialp(x1, . . . , xk), the fol-
lowing can be be computed inNC2:

(i) The binary encoding ofd = 1 +max{degi(p) | 1 ≤ i ≤ k} and
(ii) a powerful skew circuitC′ for U(p) .

Proof. Let C be a powerful skew circuit for the polynomialp(x1, . . . , xk). In order to
computedegi(p), we construct a circuit over the max-plus semiring as follows: Take
the circuitC. If A is an input gate that is labelled with the polynomiala(x1, . . . , xk),
then relabelA with the binary coded numberdegi(a). Moreover, for a gateA with
rhs(A) = B + C (resp.,rhs(A) = B × C) we setrhs(A) = max(B,C) (resp.,
rhs(A) = B + C). The resulting circuit is clearly skew. Therefore it can beevaluated
in NC2 by Lemma 1.

Once the numberd = 1 + max{degi(p) | 1 ≤ i ≤ k} is computed we simply
replace every monomiala · xn1

1 · · ·xnk

k in the circuitC by the monomiala · yN , where
N = n1 + n2d + · · ·nkd

k−1. The binary encoding ofN can be computed from the
binary encodings ofn1, . . . , nk even inDLOGTIME-uniformTC0. ⊓⊔

Note that the above reduction from multivariate to univariate circuits does not work for
standard skew circuits: the output circuit will be powerfulskew even if the input circuit
is standard skew. For instance, the polynomial

∏k
i=1 xi (which can be produced by a

standard skew circuit of sizek) is transformed into the polynomialy2
k−1, for which the

smallest standard skew circuit has sizeΩ(2k).
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4 PIT for powerful skew circuits

The main result of this paper is:

Theorem 2. For each of the ringsZ andFp (p is a prime that can be part of the input
in unary encoding), PIT for powerful skew circuits belongs to the classcoRNC2.

The proof of Theorem 2 has two main ingredients: The randomized identity testing
algorithm of Agrawal and Biswas [1] and the modular polynomial powering algorithm
of Fitch and Tompa [8]. Let us start with the identity testingalgorithm of Agrawal and
Biswas. We will only need the version for the polynomial ringFp[x], wherep is a prime
number.

Consider a polynomialP (x) ∈ Fp[x] of degreed. The algorithm of Agrawal and
Biswas consists of the following steps (later we will apply this algorithm to the polyno-
mial defined by a powerful skew circuit), where0 < ǫ < 1 is an error parameter:

1. Letℓ be a number withℓ ≥ log d andt = max{ℓ, 1ǫ}
2. Find the smallest prime numberr such thatr 6= p andr does not divide any of

p− 1, p2 − 1, . . . , pℓ−1 − 1. It is argued in [1] thatr ∈ O(ℓ2 log p).
3. Randomly choose a tupleb = (b0, . . . , bℓ−1) ∈ {0, 1}ℓ and compute the poly-

nomialTr,b,t(x) = Qr(Ab,t(x)), whereQr(x) =
∑r−1

i=0 xi is therth cyclotomic

polynomial andAb,t(x) = xt +
∑ℓ−1

i=0 bi · x
i.

4. Accept, ifP (x) modTr,b,t(x) = 0, otherwise reject.

Clearly, if P (x) = 0, then the above algorithm accepts with probability1. For a non-
zero polynomialP (x), Agrawal and Biswas proved:

Theorem 3 ([1]).LetP (x) ∈ Fp[x] be a non-zero polynomial of degreed. The above
algorithm rejectsP (x) with probability at leastε.

The second result we are using was shown by Fich and Tompa:

Theorem 4 ([8]).The following computation can be done inNC2:

Input: A unary encoded prime numberp, polynomialsa(x), q(x) ∈ Fp[x] such that
deg(a(x)) < deg(q(x)) = d, and a binary encoded numberN .

Output: The polynomiala(x)N modq(x).

Remark 1.In [8], it is stated that the problem can be solved using circuits of depth
(logn)2 log logn for the more general case that the underlying field isFpℓ , wherep
andℓ are given in unary representation. The main bottleneck is the computation of an
iterated matrix productA1A2 · · ·Am (for m polynomial in the input length) of(d×d)-
matrices over the fieldFpℓ . In our situation (where the field isFp) we easily obtain an
NC2-algorithm for this step: Two(d × d)-matrices overFp can be multiplied inNC1

(actually inDLOGTIME-uniformTC0). Then we compute the productA1A2 · · ·Am by
a balanced binary tree of depthlogm. Also logspace-uniformity of the circuits is not
stated explicitly in [8], but follows easily since only standard arithmetical operations on
binary coded numbers are used.
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Proof of Theorem 2.By Lemma 2 we can restrict to univariate polynomials. We first
prove the theorem for the case of a powerful skew circuitC over the fieldFp, where the
prime numberp is part of the input but specified in unary notation.

Let p be a unary encoded prime number andA = ({1, . . . , n}, 1, n, λ) be a power-
ful branching program withn nodes that is equivalent toC. LetP (x) = val(A) ∈ Fp[x].
Fix an error probability0 < ε < 1. Our randomizedNC2-algorithm is based on
the identity testing algorithm of Agrawal and Biswas. It accepts with probability 1 if
val(A) = 0 and accepts with probability at mostǫ if P (x) 6= 0. Let us go through
the four steps of the Agrawal-Biswas algorithm to see that they can be implemented in
NC2.

Step 1.An upper bound on the degree ofP (x) can be computed inNC2 as in the proof
of Lemma 2. For the numberℓ we can take the number of bits of this degree bound,
which is polynomial in the input size. Lett = max{ℓ, 1ǫ}.

Step 2.For the prime numberr we know thatr ∈ O(ℓ2 log p), which is a polynomial
bound. Hence, we can test in parallel all possible candidates for r. For a certain can-
didater, we check in parallel whether it is prime (recall thatr is of polynomial size)
and whether it divides any of the numbersp − 1, p2 − 1, . . . , pℓ−1 − 1. The whole
computation is possible inNC1.

Step 3.Let b = (b0, . . . , bℓ−1) ∈ {0, 1}ℓ be the chosen tuple. We have to compute
the polynomialTr,b,t(x) = Qr(Ab,t(x)), whereQr(x) =

∑r−1
i=0 xi andAb,t = xt +

∑ℓ−1
i=0 bi ·x

i. This is an instance of iterated multiplication (for the powersAb,t(x)
i) and

iterated addition of polynomials. Hence, by Proposition 1 also this step can be carried
out inNC1. Note that the degree ofTr,b,t(x) is t · (r − 1), i.e., polynomial in the input
size.

Step 4.For the last step, we have to computeP (x) modTr,b,t(x). For this, we consider
in parallel all monomialsa · xN that occur in an edge label of our powerful algebraic
branching programA. Recall thata ∈ Fp andN is given in binary notation. Using the
Fich-Tompa algorithm we computexN modTr,b,t(x) (with a(x) = x) in NC2. We then
replace the edge labela · xN by a · (xN modTr,b,t(x)). Let B the resulting algebraic
branching program. Every polynomial that appears as an edgelabel inB is now given
in standard form. Hence, by Lemma 1 we can compute inNC2 the output polynomial
val(B). Clearly,P (x) modTr,b,t(x) = val(B) modTr,b,t(x). The latter polynomial can
be computed inNC1 by Proposition 1.

Let us now prove Theorem 2 for the ringZ. Let A = ({1, . . . , n}, 1, n, λ) be a
powerful algebraic branching program overZ with n nodes and letP (x) = val(A).
Let us first look at the coefficients ofP (x). Letm be the maximum absolute value|a|,
wherea ·xN is an edge label ofA. Since there are at most2n many paths froms to t in
A, every coefficient of the polynomialP (x) belongs to the interval[−(2m)n, (2m)n].
Let k = n · (⌈log(m)⌉ + 1) + 1 andp1, . . . , pk be the firstk prime numbers. Each
primepi is polynomially bounded ink (and hence the input size) and the list of primes
can be computed inNC1 by doing in parallel all necessary divisibility checks on unary
encoded numbers.

The Chinese remainder theorem implies thatP (x) = 0 if and only if P (x) ≡
0 mod pi for all 1 ≤ i ≤ k. We can carry out the latter tests in parallel using the
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above algorithm for a unary encoded prime number. The overall algorithm accepts if
we accept for every primepi. If P (x) = 0, then we will accept for every1 ≤ i ≤ k
with probability 1, hence the overall algorithm accepts with probability 1. On the other
hand, ifP (x) 6= 0, then there exists a primepi (1 ≤ i ≤ k) such that the algorithm
rejects with probability at least1 − ε. Hence, the overall algorithm will reject with
probability at least1− ε as well. ⊓⊔

5 Multi-dimensional straight-line programs

Let Γ be a finite alphabet. Forl ∈ N let [l] = {1, . . . , l}. An n-dimensional picture
overΓ is a mappingp :

∏n
j=1[lj] → Γ for somelj ∈ N. Let dom(p) =

∏n
j=1[lj]. For

1 ≤ j ≤ n we define|p|j = lj as the length ofp in thej th dimension. Note that one-
dimensional pictures are simply finite words. LetΓ ∗

n denote the set ofn-dimensional
pictures overΓ . On this set we can define partially defined concatenation operations◦i
(1 ≤ i ≤ n) as follows: For picturesp, q ∈ Γ ∗

n , the picturep◦i q is defined if and only if
|p|j = |q|j for all 1 ≤ j ≤ n with i 6= j. In this case, we have|p◦iq|j = |p|j (= |q|j) for
j 6= i and|p◦iq|i = |p|i+|q|i. Let lj = |p◦iq|j . For a tuple(k1, . . . , kn) ∈

∏n
j=1[lj ]we

finally set(p ◦i q)(k1, . . . , kn) = p(k1, . . . , kn) if ki ≤ |p|i and(p ◦i q)(k1, . . . , kn) =
q(k1, . . . , ki−1, ki − |p|i, ki+1, . . . , kn) if ki > |p|i. These operations generalize the
concatenation of finite words.

An n-dimensional straight-line program (SLP)over the terminal alphabetΓ is a
triple A = (V, rhs, S), whereV is a finite set of variables,S ∈ V is the start variable,
andrhs maps each variableA to its right-hand siderhs(A), which is either a terminal
symbola ∈ Γ or an expression of the formB ◦i C, whereB,C ∈ V and1 ≤ i ≤ n
such that the following additional conditions are satisfied:

– The relation{(A,B) ∈ V × V | A occurs inrhs(A)} is acyclic.
– One can assign to eachA ∈ V and1 ≤ i ≤ n a number|A|i with the following

properties: Ifrhs(A) ∈ Γ then|A|i = 1 for all i. If rhs(A) = B ◦i C then|A|i =
|B|i + |C|i and|A|j = |B|j = |Cj | for all j 6= i.

These conditions ensure that every variableA evaluates to a uniquen-dimensional pic-
turevalA(A) such that|valA(A)|i = |A|i for all 1 ≤ i ≤ n. Finally,val(A) = valA(S)
is the picture defined byA. We omit the indexA if the underlying SLP is clear from the
context. We define the size of the SLPA = (V, Γ, S, P ) as|A| = |V |.

A one-dimensional SLP is a context-free grammar that generates a single word.
Two-dimensional SLPs were studied in [4].

A simple induction shows that for everyn-dimensional SLPA of sizem and every
1 ≤ i ≤ n one has|val(A)|i ≤ O(3m/3) [5, proof of Lemma 1]. On the other hand,
it is straightforward to define an SLPB of sizem such that|val(B)|i = 2m for all
dimensionsi. Hence, an SLP can be seen as a compressed representation of the picture
it generates, and exponential compression rates can be achieved in this way.

5.1 Equality testing for compressed strings and n-dimensional pictures

Given twon-dimensional SLPs we want to know whether they evaluate to the same
picture. In [4] it was shown that this problem belongs tocoRP by translating it to poly-
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nomial identity testing. For a givenn-dimensional picturep : dom(p) → {0, 1} we
define the polynomial

fp(x1, ..., xn) =
∑

(e1,...,en)∈dom(p)

p(e1, ..., en)

n
∏

i=1

xei
i .

We considerfp as a polynomial fromZ2[x1, . . . , xn]. For twon-dimensional pictures
p andq such that|p|i = |q|i for all 1 ≤ i ≤ n we clearly havep = q if and only if
fp + fq = 0 (recall that coefficients are fromZ2). In [4], it was observed that from an
SLPA for a pictureP , one can easily construct an arithmetic circuit for the polynomial
fp, which leads to acoRP-algorithm for equality testing. Since the circuit forfp is
actually powerful skew, we get:

Theorem 5. The question whether twon-dimensional SLPsA andB evaluate to the
samen-dimensional picture is incoRNC2 (here,n is part of the input).

Proof. Let A1 = (V1, rhs1, S1) andA2 = (V2, rhs2, S2) ben-dimensional SLPs over
the alphabetΓ . We can assume thatV1 ∩ V2 = ∅ andΓ = {0, 1} (if Γ = {a1, . . . , ak}
then we encodeai by 0i1k−i).

First we calculate|A|i for every1 ≤ k ≤ n and everyA ∈ V1 ∪ V2 in NC2 by
evaluating additive circuits overN, see Lemma 1. If|S1|i 6= |S2|i for some1 ≤ k ≤ n,
then we haveval(A1) 6= val(A2). Otherwise, we construct the circuit

C = (V1 ∪ V2 ∪ {S}, rhs, S)

overZ2[x1, . . . , xn] with:

rhsC(A) = B + x
|B|k
k · C if rhs1(A) = B ◦k C or rhs2(A) = B ◦k C,

rhsC(A) = a if rhs1(A) = a ∈ {0, 1} or rhs2(A) = a ∈ {0, 1}, and

rhs(S) = S1 + S2

Thenval(C) = fval(A1) + fval(A2) and soval(C) = 0 if and only if val(A1) = val(A2).
ObviouslyC becomes a powerful skew circuit after splitting right-handsides of the form
B + xN · C. Hence, Theorem 2 allows to check incoRNC2 whetherval(C) = 0. ⊓⊔

It should be noted that even in the one-dimensional case (where equality testing for
SLPs can be done in polynomial time [11,21,22]), no randomizedNC-algorithm was
known before.

6 Circuits over wreath products

As a second application of identity testing for powerful skew circuits we will consider
the circuit evaluation problem (also known as the compressed word problem) for wreath
products of finitely generated abelian groups. The wreath product is an important op-
eration in group theory. The next subsection briefly recallsthe definition and some
well-known results. We assume some basic familiarity with group theory.
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6.1 Wreath products

LetG andH be groups. The restricted wreath productH ≀G is defined as follows:

– Elements ofH ≀G are pairs(f, g), whereg ∈ G andf : G → H is a mapping such
thatf(a) 6= 1H for only finitely manya ∈ G (1H is the identity element ofH).

– The multiplication inH ≀ G is defined as follows: Let(f1, g1), (f2, g2) ∈ H ≀ G.
Then(f1, g1)(f2, g2) = (f, g1g2), wheref(a) = f1(a)f2(g

−1
1 a).

For readers, who have not seen this definition before, the following intuition might be
helpful: An element(f, g) ∈ H ≀G can be thought as a finite collection of elements ofH
that are sitting in certain elements ofG (the mappingf ) together with a distinguished
element ofG (the elementg), which can be thought as a cursor moving aroundG.
If we want to compute the product(f1, g1)(f2, g2), we do this as follows: First, we
shift the finite collection ofH-elements that corresponds to the mappingf2 by g1: If
the elementh ∈ H \ {1H} is sitting in a ∈ G (i.e., f2(a) = h), then we removeh
from a and put it to the new locationg1a ∈ G. This new collection corresponds to
the mappingf ′

2 : a 7→ f2(g
−1
1 a). After this shift, we multiply the two collections of

H-elements pointwise: If ina ∈ G the elementsh1 andh2 are sitting (i.e.,f1(a) = h1

andf ′
2(a) = h2), then we put the producth1h2 into theG-locationa. Finally, the new

distinguishedG-element (the new cursor position) becomesg1g2.
The following lemma seems to be folklore.

Lemma 3. The group(A×B) ≀G embeds into(A ≀G)× (B ≀G).

Proof. Let πA : A × B → A be the natural projection morphism and similarly for
πB : A×B → B. We define an embeddingϕ : (A×B) ≀G → (A ≀G)× (B ≀G) by

ϕ(f, g) =

(

(f ◦ πA, g), (f ◦ πB, g)

)

.

Clearly,ϕ is injective. Moreover, it is easy to see thatϕ is a group homomorphism.⊓⊔

A proof of the following simple lemma can be found for instance in [19].

Lemma 4. Let K be a subgroup ofH of finite indexm and letG be a group. Then
Gm ≀K is isomorphic to a subgroup of indexm in G ≀H .

6.2 Compressed word problems

LetG be a finitely generated group and letΣ be a finite generating set forG, i.e., every
element ofG can be written as a finite product of elements fromΣ and inverses of
elements fromΣ. Let Γ = Σ ∪ {a−1 | a ∈ Σ}. For a wordw ∈ Γ ∗ we writew = 1
in G if and only if the wordw evaluates to the identity ofG. The word problemfor
G asks, whetherw = 1 in G for a given input word. There exist finitely generated
groups and in fact finitely presented groups (groups that aredefined by finitely many
defining relations) with an undecidable word problem. Here,we are interested in the
compressed word problemfor a finitely generated group. For this, the input wordw is
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given in compressed form by a one-dimensional SLP as defined in Section 5. Recall that
a one-dimensional picture over an alphabetΓ is simply a finite word overΓ . Hence,
val(A) is a word ifA is a one-dimensional SLP. In the following we always mean one-
dimensional SLPs when using the term SLP. The compressed word problem forG asks,
whetherval(A) = 1 in G for a given SLPA.

The compressed word problem is related to the classical wordproblem. For in-
stance, the classical word problem for a f.g. subgroup of theautomorphism group of
a groupG can be reduced to the compressed word problem forG, and similar results
are known for certain group extensions, see [18] for more details. Groups, for which
the compressed word problem can be solved in polynomial timeare [18]: finite groups,
f.g. nilpotent groups, f.g. free groups, graph groups (alsoknown as right-angled Artin
groups or partially commutative groups), and virtually special groups, which are groups
that have a finite index subgroup that embeds into a graph group. The latter groups form
a rather large class that include for instance Coxeter groups, one-relator groups with
torsion, residually free groups, and fundamental groups ofhyperbolic 3-manifolds. In
[2] the parallel complexity of the compressed word problem (there, called the circuit
evaluation problem) for finite groups was studied, and the following result was shown:

Theorem 6 ([2]). Let G be a finite group. IfG is solvable, thenCWP(G) belongs to
the classNC2. If G is not solvable, thenCWP(G) is P-complete.

The following two results are proven in [18].

Theorem 7 (Theorem 4.15 in [18]).For every f.g. linear group the compressed word
problem belongs to the classcoRP.

This result is shown by reducing the compressed word problemfor a f.g. linear group
to polynomial identity testing for the ringZ. Also a kind of converse of Theorem 7 is
shown in [18]:

Theorem 8 (Theorem 4.16 in [18]).The problemCWP(SL3(Z)) and polynomial iden-
tity testing for the ringZ are polynomial time reducible to each other.

This result is shown by using the construction of Ben-Or and Cleve [3] for simulating
arithmetic circuits by matrix products.

Finally, the following result was recently shown in [15]; itgeneralizes Theorem 6.

Theorem 9 ([15]).LetG be a f.g. group having a normal subgroupH such thatH is
f.g. nilpotent and the quotient groupG/H is finite solvable. ThenCWP(G) ∈ NC2.

To the knowledge of the author, there is no example of a groupG not having the prop-
erties from Theorem 9, for whichCWP(G) belongs toNC.

6.3 CWP(Z ≀ Z) and identity testing for powerful skew circuits

In this section, we explore the relationship between the compressed word problem for
the wreath productZ ≀Z and polynomial identity testing for powerful skew circuits. We
show that these two problems are equivalent w.r.t.NC2-reductions.
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LetG = Z ≀Z. We consider the generatorsa andt of G, wheret (resp.,a) generates
theZ on the left (resp., right). So, witha (resp.,a−1) we move the cursor to the left
(resp., right) and witht (resp.,t−1) we add one (resp., subtract one) from the value at
the current cursor position. LetΓ = {a, t, a−1, t−1}.

For a wordw ∈ Γ ∗ we define∆(w) = |w|a − |w|a−1 ∈ Z. The wordw is positive
if ∆(u) ≥ 0 for every prefixu of w that ends witht or t−1. The wordw is well-
formed, if it is positive and∆(w) = 0. If w is positive and(f, g) ∈ G is a group
element represented by the wordw, thenf(x) 6= 0 implies thatx ∈ N (intuitively, the
Z-generatort or its inverse is never added to a position outside ofN). If in additionw
is well-formed theng = 0. For a given positive wordw ∈ Γ ∗ we define a polynomial
pw(x) ∈ Z[x] inductively as follows:

– pε(x) = 0.
– If w = ua orw = ua−1, thenpw(x) = pu(x).
– If w = utδ with δ ∈ {1,−1}, thenpw(x) = pu(x) + δ · xd, whered = ∆(w) =
∆(u).

If the positive wordw represents the group element(f, g) ∈ G, then the polynomial
pw(x) encodes the mappingf in the following sense: The coefficient of the monomial
xe in pw(x) is exactlyf(e). In particular, the following equivalence holds for every
positive wordw ∈ Γ ∗:

w = 1 in G ⇔ (pw(x) = 0 and∆(w) = 0)

Lemma 5. From a given SLPA over the alphabetΓ one can compute inNC2 a pow-
erful skew circuitC such thatval(C) = pw(x), wherew = ak val(A) a−k and k =
|val(A)|. In particular,val(A) = 1 in G if and only if(val(C) = 0 and∆(val(A)) = 0).

Proof. Let k = |val(A)|. Our construction is divided into the following two steps:

Step 1.Using iterated squaring, we add further nonterminals toA such thatval(Ak) =
ak andval(A−1

k ) = a−k for distinguished non-terminalsAk andA−1
k . Then, we define

the SLPB by definingrhsB(A) = Akt
δA−1

k for every variableA with rhsA(A) = tδ

(δ ∈ {−1, 1}). All other right-hand sides ofA are left unchanged. Then,val(B) =
ak val(A) a−k in G.

Let B = (V, rhsB, S) for the further consideration. Note that for everyA ∈ V ,
the wordvalB(A) is positive. Hence, for everyA ∈ V we can define the polynomial
pA(x) := pval(A)(x). Moreover, letdA = ∆(val(A)) ∈ Z; these numbersdA can be
computed by an additive circuit inNC2, see Lemma 1.

For everyA ∈ V let

mA = min({∆(u) | u is a prefix ofval(A) that ends witht or t−1}),

where we setmin(∅) = 0. Sinceval(A) is positive, we havemA ≥ 0. The polynomial
pA(x) can be uniquely written as

pA(x) = xmA · qA(x),

14



for a polynomialqA(x). The numbersmA can be computed inNC2, using the following
identity, whereα(A) denotes the set of symbols occurring invalB(A).

mA =



















0 if rhsB(A) = aδ

k if rhsB(A) = Akt
δA−1

k

min{mB, dB +mC} if rhsB(A) = BC andα(C) ∩ {t, t−1} 6= ∅

mB if rhsB(A) = BC andα(C) ∩ {t, t−1} = ∅

Note that these rules define a skew circuit in the semiring(Z ∪ {∞},min,+). Hence,
by Lemma 1 the circuit can be evaluated inNC2.

Step 2.We now construct a circuitC such that for everyA ∈ V we have:

valC(A) = qA(x).

We define the rules of the circuitC as follows:

– If rhsB(A) = aδ for δ ∈ {−1, 1}, then we setrhsC(A) = 0.
– If rhsB(A) = Akt

δA−1
k for δ ∈ {−1, 1}, then we setrhsC(A) = δ.

– If rhsB(A) = BC andα(C) ∩ {t, t−1} = ∅, then we setrhsC(A) = B.
– If rhsB(A) = BC andα(C) ∩ {t, t−1} 6= ∅, thenmA = min{mB, dB +mC} and

we setrhsC(A) = (MB ×B) + (MC × C), where

MB =

{

1 if mB ≤ dB +mC

xmB−dB−mC if mB > dB +mC

MC =

{

1 if mB ≥ dB +mC

xdB+mC−mB if mB < dB +mC .

Note that the resulting circuit is powerful skew. ⊓⊔

Corollary 1. The compressed word problem forZ ≀Z isNC2-reducible to PIT for pow-
erful skew circuits over the ringZ[x].

In the rest of this section we show that PIT for powerful skew circuits can be reduced
in NC2 to CWP(Z ≀ Z). By Proposition 2, it suffices to consider the univariate case.

Lemma 6. Let u, v ∈ Γ ∗ be well-formed. Thenw = uv is well-formed too and
pw(x) = pu(x) + pv(x).

Lemma 7. Let u ∈ Γ ∗ be well-formed,n,m ∈ N and letw = anuma−n. Thenw is
well-formed too andpw(x) = m · xn · pu(x).

Lemma 8. From a given powerful skew circuitC over the ringZ[x], one can compute
in NC2 an SLPA over the alphabetΓ such that the following holds:

– val(A) is well-formed and
– pval(A)(x) = val(C).
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Proof. Let C = (V, rhsC , A0). The set of nonterminals of our SLPA containsV , a
disjoint copyV ′ = {V ′ | A ∈ V } of V , plus some auxiliary nonterminals. The start
nonterminal isA0. For every nonterminalA ∈ V we will havepvalA(A)(x) = valC(A)
and for every nonterminalA′ ∈ V ′ we will havepvalA(A′)(x) = −valC(A). We define
the right-hand sides ofA as follows:

– If rhsC(A) = b · xn, then we setrhsA(A) = antba−n andrhsA(A′) = ant−ba−n.
– If rhsC(A) = B + C, then we setrhsA(A) = BC and rhsA(A′) = B′C′ The

correctness of this step follows from Lemma 6.
– If rhsC(A) = B ×C, where w.l.o.g.C is an input gate withrhsC(C) = b · xn, then

we setrhsA(A) = anBba−n andrhsA(A′) = anB−ba−n, where we setB−x =
(B′)x for x ≥ 1. The correctness of this step follows from Lemma 7.

It follows by a straightforward induction that for everyA ∈ V , the stringsvalA(A) and
valA(A

′) are well-formed. ⊓⊔

From Lemma 5 and 8 we directly obtain:

Corollary 2. The compressed word problem forZ≀Z is equivalent w.r.t.NC2-reductions
to PIT for powerful skew circuits over the ringZ[x].

In exactly the same way we can show:

Corollary 3. The compressed word problem forZn ≀ Z (n ≥ 2) is equivalent w.r.t.
NC2-reductions to PIT for powerful skew circuits over the ringZn[x].

6.4 Compressed word problems incoRNC
2

In this section, we apply the results from the last section tofind groups for which the
compressed word problem belongs tocoRNC2. Recall from Section 6.2 that the only
known examples of groups with a word problem inNC are groupsG having a normal
subgroupH such that (i)H is f.g. nilpotent and (ii)G/H is finite solvable. For wreath
products we use the following lemma:

Lemma 9. For everyk ≥ 1 and every finitely generated groupG, CWP(G ≀ Zk) is
NC2-reducible toCWP(G ≀ Z).

Proof. The idea is similar to the proof of Proposition 2. LetG be generated by the fi-
nite setΣ. Fix the generating set{a1, a2, . . . , ak} for Zk, where everyai generates
a Z-copy. ThenG ≀ Zk is generated by the setΓ = Σ ∪ {a1, a2, . . . , ak}. Let A
be an SLP over the alphabetΓ ∪ Γ−1. First, we compute inNC2 the numberd =
2(|val(A)| + 1). Note that for allai, bi ∈ Z (1 ≤ i ≤ k) with |ai|, |bi| ≤ |val(A)| we
have:(a1, . . . , ak) = (b1, . . . , bk) if and only if

∑k
i=1 ai · d

i−1 =
∑k

i=1 bi · d
i−1.

From our SLPA we construct a new SLPB by replacing every occurrence ofai
(resp.,a−1

i ) in a right-hand side by a new variable that producesad
i−1

(resp.,a−di−1

).
This implies the following: If(f, (z1, . . . , zk)) (resp.,(h, z)) is the group element of
CWP(G ≀ Zk) (resp.,CWP(G ≀ Z)) represented byval(A) (resp.,val(B)), thenz =
∑k

i=1 zi · d
i−1 and for all (x1, . . . , xk) ∈ Zk, f(x1, . . . , xk) = h(x), wherex =

∑k
i=1 xi · di−1. It follows thatval(A) = 1 in G ≀ Zk if and only if val(B) = 1 in G ≀ Z.

⊓⊔
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By Lemma 3 and Lemma 9 the compressed word problem for a group(G × H) ≀ Zn

can be reduced inNC2 to the compressed word problems for the groupsG ≀Z andH ≀Z
Together with Theorem 2 and Corollary 2 and 3 we obtain the following result:

Corollary 4. LetG be a finite direct product of copies ofZ andZp for primesp. Then,
for everyn ≥ 1, CWP(G ≀ Zn) belong tocoRNC2.

It is not clear, whether in Corollary 4 we can replaceG by an arbitrary finitely generated
abelian group. On the other hand, if we apply Theorem 1 instead of Theorem 2 we
obtain:

Corollary 5. LetG be f.g. abelian and letH be f.g. virtually abelian (i.e.,H has a f.g.
abelian subgroup of finite index). ThenCWP(G ≀H) belongs tocoRP.

Proof. Let K ≤ H be a f.g. abelian subgroup of finite indexm in H . Moreover, either
K = 1 or K ∼= Zk for somek ≥ 1. By Lemma 4,Gm ≀ K is isomorphic to a sub-
group of indexm in G ≀ H . If the groupA is a finite index subgroup of the groupB,
thenCWP(B) is polynomial-time many-one reducible toCWP(A) [18, Theorem 4.4].
Hence, it suffices to show thatCWP(Gm ≀ K) belongs tocoRP. SinceGm is finitely
generated abelian, it suffices to considerCWP(Zn ≀K) (n ≥ 2) andCWP(Z ≀K). The
caseK = 1 is clear. So, assume thatK ∼= Zk. By Corollary 4,CWP(Z ≀Zk) belongs to
coRNC. Moreover, by Theorem 1 and Corollary 3,CWP(Zn ≀Zk) belongs tocoRP. ⊓⊔

Recall that for a subgroupH of a groupG, [H,H ] denotes thecommutator subgroup
of G. It is the subgroup ofG generated by all elementsh1h2h

−1
1 h−1

2 with h1, h2 ∈ H .
It is well known that ifN is a normal subgroup ofG, then also[N,N ] is a normal
subgroup ofG. Hence, one can consider the quotient groupG/[N,N ]. The following
result of Magnus [20] has many applications in combinatorial group theory.

Theorem 10 (Magnus embedding theorem).LetFk be a free group of rankk and let
N be a normal subgroup ofFk. ThenFk/[N,N ] ≤ Zk ≀ Fk/N .

Theorem 11. LetFk be a free group of rankk and letN be a normal subgroup ofFk

such thatFk/N is f.g. virtually abelian. ThenCWP(Fk/[N,N ]) belongs tocoRNC2.

Proof. By the Magnus embedding theorem, the groupFk/[N,N ] embeds into the
wreath productZk ≀ (Fk/N). For the latter group, the compressed word problem be-
longs tocoRNC2 by Corollary 4. ⊓⊔

7 Open problems

Our coRNC2 identity testing algorithm for powerful skew circuits onlyworks for the
coefficient ringsZ andZp with p prime. It is not clear how to extend it toZn with n
composite. The Agrawal-Biswas identity testing algorithmalso works forZn with n
composite. But the problem is that the Fich-Tompa algorithmonly works for polyno-
mial rings overZp with p prime. For equality testing for multi-dimensional straight-line
programs it remains open whether a polynomial time algorithm exists. For the one-
dimensional (string) case, a polynomial time algorithm exists. Here, it remains open,
whether the equality problem is inNC.

17



References

1. M. Agrawal and S. Biswas. Primality and identity testing via chinese remaindering.Journal
of the Association for Computing Machinery, 50(4):429–443, 2003.

2. M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word to circuit
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