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TAMING THE HYDRA:
THE WORD PROBLEM AND EXTREME INTEGER COMPRESSION
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Asstract. For a finitely presented group, the word problem asks forlgorihm which
declares whether or not words on the generators represeiehtity. The Dehn function
is a complexity measure of a direct attack on the word prolidgm@pplying the defining re-
lations. Dison & Riley showed that a “hydra phenomenon” gixise to novel groups with
extremely fast growing (Ackermannian) Dehn functions. édee show that nevertheless,
there are fiicient (polynomial time) solutions to the word problems a#gh groups. Our
main innovation is a means of computinffi@ently with enormous integers which are
represented in compressed forms by strings of Ackermanctituns.
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1. INTRODUCTION

1.1. Ackermann functions and compressed integersAckermann functiongy : N —» N
are a family of increasingly fast-growing functions begimgAy : N — n+1,A; : n— 2n,
andA; : n — 2", and with subsequerf,; defined recursively so tha 1(n + 1) =
AA;1(n) andA;;1(0) = 1. (More detalils follow in Sectiog.)

Starting with zero and successively applying a few suchtfans and their inverses can
produce an enormous integer. For example,

AsPoAZA0(0) = AsAoAZ(1) = AsAoAi(2) = AsAg(4) = Ag(5) = 2°°5%6

because 5

2
As(5) = ASAs(0) = AX(1) = 227 = 265598

In this way Ackermann functions provide highly compact esgantations for some very
large numbers.

In principle, we could compute with these representatignevaluating the integers they
represent and then using standard integer arithmetichsutan be monumentally iffe
cient because of the sizes of the integers. We will explaim twocalculate #iciently in a
rudimentary way with such representations of integers:

Theorem 1. Fix an integer k> 0. There is a polynomial-time algorithm, which on input
a word w on %1, . ..,A,fl, declares whether or not (@) represents an integer, and if so
whether w0) < 0, w(0) = 0 or w(0) > 0.

(The manner in whickv(0) might fail to represent an integer is that as it is evaddtom
right to left, anA*! is applied to an integer outside its domain. Details are ittiSe 2.1

In fact our algorithm halts in time bounded above by a polyizwf degree 4+ k—see
Section2.3. We have not attempted to optimize the degrees of the poliaidunds on
time complexity here or elsewhere in this article.)

1.2. The word problem and Dehn functions. Our interest in Theorern originates in
group theory. Elements of a groliwith a generating se& can be represented by words—
that is, products of elements éfand their inverses. To work with, it is useful to have
an algorithm which, on input a word, declares whether thatiwepresents the identity
element inl". After all, if we can recognize when a word represents thatitle then we
can recognize when two words represent the the same gromemieand thereby begin
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to compute inl. The issue of whether there is such an algorithm is known @svtid
problemfor (T, A) and was first posed by Deh8,[10] in 1912. (He did not precisely ask
for an algorithm, of course, rathezihe Methode angeben, um mit einer endlichen Anzahl
von Schritten zu entscheideh—that is, ‘specify a method to decide in a finite number of
steps..))

Suppose a group has a finite presentation

<al,~-~,am|rl,~-~,rn>~

The Dehn functiorArea : N — N quantifies the diiculty of adirect attackon the word
problem: roughly speaking Are@(is the minimalN such that if a word of length at most
nrepresents the identity, then it does so ‘as a consequehaembstN defining relations.

Here is some notation that we will use to make this more peecisssociated to a set
{a1, @, ...} (@analphabej is the set of inverse Iette{a{l, a;l, .. } The inverse map is the
involution defined or{afl, afz} that mapsa — a ! anda* — a for all i. Write
W = W(ay, @, ...) whenw is a word on the lettera;?, a3, .... The inverse map extends
to words by sendingv = X; -+ xs > X5t x;t = w! when eachx € {afl, a;l}
Wordsu andv arecyclic conjugatesvhenu = of andv = Sa for some subwords andp.
Freely reducinga word means removing zﬂrjﬂaj“ subwords. Fol" presented as above,
applying a relationto a wordw = w(ay, ..., am) means replacing some subwardvith
another subword such that someyclic conjugatef ro—* is one ofri?, ... r&.

For a wordw representing the identity ifi, Areav) is the minimalN > 0 such that there
is a sequence dfeely reducedvordswy, ..., wy with wg the freely reduced form ofv,
andwy is the empty word, such that for aJlwi,, can be obtained fromw; by applying a
relation and therfreely reducing TheDehn functiomrea :N — N is defined by

Area(n) := max{Area@) | wordsw with £(w) < nandw=1inT}.

This is one of a number of equivalent definitions of the Demtfion. While a Dehn func-
tion is defined for a particular finite presentation for a groits growth type—quadratic,
polynomial, exponential etc.—does not depend on this eédiehn functions are impor-
tant from a geometric point-of-view and have been studigdresively. There are many
places to find background, for exampde b, 6, 10, 15, 16, 30, 31].

If Area(n) is bounded above by a recursive functibfn), then there is a ‘brute force’
algorithm to solve the word problem: to tell whether or notaeg wordw represents the
identity, search through all the possible ways of applyingast f (n) defining relations
and see whether one redueetd the empty word. (There are finitely presented groups for
which there is no algorithm to solve the word proble3nZ8].) Conversely, when a finitely
presented group admits an algorithm to solve its word probRreag) is bounded above
by a recursive function (in fact Area)is a recursive function)14].

There are finitely presented groups for which an extringjoathm is far more ficient
than this intrinsic brute-force approach. A simple exaniple

7? = (a,b | ab=ba)

(which has Dehn function Area) ~ n?). Given a word made up of the letteas' andb*?,
the extrinsic approach amounts to searching exhaustiedyigh all the ways of sHiiing
lettersa*?® past letterd** to see if there is one which brings eaatt together with ara™
to be cancelled, and likewise eagtt together with &%, It is much more #icient to read
through the word and check that the numbea &f the same as the numberaf, and the
number ofb is the same as the numbertof.
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There are more dramatic examples where Arpsya fast growing recursive function (so
the ‘brute force’ algorithm succeeds but is extremelflicent), but there arefigcient
ways to solve the word problem. Cohen, Madlener & Otto buidt first examples. in a
series of papers/[ 8, 26] where Dehn functions were first defined. They designed their
groups in such a way that the ‘intrinsic’ method of solving tlvord problem involves
running a very slow algorithm which has been suitably ‘ent=et] in the presentation.
But running this algorithm is pointless as it is construdtetalt (eventually) on all inputs
and so presents no obstacle to the word representing thityddineir examples all admit
algorithms to solve the word problem in running times thatarmosin — exg?(n) for
some¢. But for eachk € N they have examples which have Dehn functions growing like
n— Ac(n). Indeed, better, they have examples with Dehn functiowgmglike n — Ay(n).

Recently, more extreme examples were constructed by Khadaich, Miasnikov & Sapir2(Q].
By simulating Minsky machines in groups, for every recuediunctionf : N — N, they
construct a finitely presented group (which also happens tesidually finite and solvable
of class 3) with Dehn function growing faster thénbut with word problem solvable in
polynomial time.

There are also ‘naturally arising’ groups which have fastwgng Dehn function but an
efficient (that is, polynomial-time) solution to the word prein. A first example is
(a,b | blab=a?).

Its Dehn function grows exponentially (see, for exampl®, put the group admits a faith-
ful matrix representation

11 1/2 0
aH(o 1)’ b'_’( 0 1)’
and so it is possible to checkigiently when a word oa*! andb*! represents the identity
by multiplying out the corresponding string of matrices.

A celebrated 1-relator group due to Baumslapdrovides a more dramatic example:
(a,b | (bta'b)a(btab) = a?).
Llog, n)
Platonov P9 proved its Dehn function grows like —exp,(exp, - - - (exp,(1)) - - - ), where
exp,(n) := 2". (Earlier results in this direction are i@,[14, 15].) Nevertheless, Miasnikov,

Ushakov & Won PR7] solve its word problem in polynomial time. (In unpublishedrk
I. Kapovich and Schupp showed it is solvable in exponeritiz {33].)

Higman'’s group
(a,b,c,d | btab=a% c'bc=b? dlcd=c? alda=d?)

from [19 is another example. Diekert, Laun & UshakdJ] recently gave a polynomial
time algorithm for its word problem and, citing a 2010 leetof Bridson, claim it too has
Dehn function growing like a tower of exponentials.

The groups we focus on in this article are yet more extremteifabexamples’. They arose
in the study ohydra groupsby Dison & Riley [12] . Let

0:F(a,...,a) » F(ag,...,a)

be the automorphism of the free group of réduch that(a;) = a; andd(a) = aja;_1 for
i =2,...,k The family

Gk = (an,....at | trat=6() ¥i>1),
are callechydra groups TakeHNN-extensions
I = (ar,....a.tp | tlat=6@), [pat] =1 Vi>1)
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of Gk where the stable lettgr commutes with all elements of the subgroup
He = (at,...,at).

Itis shown in [L2] that fork = 1,2, .., the subgroup is free of rankk andI'y has Dehn
function growing liken — Ay(n). Here we prove that nevertheless:

Theorem 2. For all k, the word problem of is solvable in polynomial time.

(In fact, our algorithm halts within time bounded above bycdypomial of degree & +
k + 2—see SectioBh.)

1.3. The membership problem and subgroup distortion. Distortionis the root cause of
the Dehn function of ' growing liken — Ay(n). The massive gap between Dehn function
and the time-complexity of the word problem by is attributable to a similarly massive
gap between distortion functiorand the time-complexity of membership problentHere
are more details.

SupposeH is a subgroup of a grou@ andG andH have finite generating sef and
T, respectively. S@& has aword metric ¢ (g, h), the length of a shortest word !
representingth, andH has a word metricy similarly.

Thedistortionof Hin G is
Dist5(n) := max dr(1,g)| ge Hwithds(l,g) <n}.

(Distortion is defined here with respect to spec8iandT, but their choices do nofi@ct
the qualitative growth of Diﬁ[(n).) A fast growing distortion function signifies that
‘folds back on itself’ dramatically as a metric subspacé&of

The membership problerfor H in G is to find an algorithm which, on input of a word on
S*1, declares whether or not it represents an elemeht. of

If the word problem ofG is decidable (as it is for alby, because, for instance, they are
free-by-cyclic) and we have a recursive upper bound on®igt then there is a brute-
force solution to the membership problem fdrin G. If the input wordw has lengtm,
then search through all words @it* of length at most Dig}(n) for one representing the
same element as. This is, of course, likely to be extremely iffieient, and especially so
for Hy in Gy as the distortion Di.,%tk grows liken — Ai(n). Nevertheless:

Theorem 3. For all k, the membership problem forgHh Gy is solvable in polynomial
time.

(Our algorithm actually halts within time bounded above posynomial of degreeld +
k—see Sectio’.) We will use this to prove Theorefh

1.4. The hydra phenomenon. The reasoiy are namedhydra groupss that the extreme
distortion ofHy in Gy stems from a string-rewriting phenomenon which is a reimiagj of
the battle between Hercules and the Lernean Hydra, a mytieeat which grew two new
heads for every one Hercules severed. Thinklojdraas a wordv onay, ap, ag, . . .. Her-
cules fightsv as follows. He removesiits first letter, then the remainitigis regenerate in
that for alli > 1, each remaining; becomes;a;_1 (and each remaining; is unchanged).
This repeats. An induction on the highest index present shibat every hydra eventually
becomes the empty word. (Details are 1?][) Hercules is then declared victorious. For
example, the hydrayaga; is annihilated in 5 steps:

dpazay — agzadpad; — a1y — audy — A1 — empty word
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DefineH (w) to be the number of steps required to reduce a hyidathe trivial word (so
H(azaga;) = 5). Then, fork = 1,2, ..., define functionsHy : N — N by H(n) = H(&}).
It is shown in [L2] that H, and A« grow at the same rate for &l= 1,2,... since the two
families exhibit a similar recursion relation.

Here is an outline of the argument frorhZ as to why Disﬁt grows at least as fast as

n - Hi(n) (and so as fast as— Ax(n)). Whenk > 2 andn > 1, there is a reduced word
Un ON{ayt, .. ., at}** of lengthHi(n) representingt”«(" in Gy on account of the hydra
phenomenon. (For examplezs = (axt)%(ast)(azt)(ast)® equalsast’ in G, sinceay, a,

ay, ag, a1, a1, anday are theH>(3) = 7 initial letters removed by Hercules as he vanquishes
the hydraag.) This can be used to show that@

ajag tag a,'a." = Ukn (aot) (aat) (aat) ™ ucn ™.

The word on the left is a product of lengtin 2 4 of the generatorgy, . .., an, t)*! of Gy

and that on the right is a product of lengt#an) + 3 of the generatorgt, . . ., at)** of

Hy. As Hy is free of rankk and this word is reduced, it is not equal to any shorter word on
these generators.

1.5. The organization of this article and an outline of our strategies. We prove The-
orem1 in Section2. Here is an outline of the algorithm we construct. Given advor
wW(Ao, . . ., AY) we attempt to pass to successive new wevdbat areequivalentow in that

w (0) represents an integer if and onlyit0) does, and when they both de(0) = w'(0).
These words are obtained by making substitutions thatpfiance, replace a lettéy, 1
inw by a subwordAiAHlAgl (this substitution stems from the recursion defining Acker-
mann functions), or we delete a subwa¥a\ ! or A"A;.. The aim of these changes is to
eliminate all the letter#\ %, .. .,A;l in w, as these present the greatest obstacle to check-
ing whether such a word represents an integer. Oncijha .., At remain inw’, when
calculatingw’(0) letter-by-letter starting from the right, onAgl can trigger decreases in
absolute value. So to determine the sigmt(D) it suffices to evaluate/ (0) letter-by-letter
from the right, stopping if the integer calculated ever ed=the length ofv.

In order to reach suchw& we ‘cancel’ away Ietters&;l with someA; somewhere further
to the right in the word. We do this by manipulatingiixes of the formAtuAv such that
u = u(A,...,A_1). Such siffixes either admit substitutions to make a similaffiguwith
theAi‘l andA; eliminated, or they can be recognized not to evaluate totegém because
u cannot carry the eleme§v(0) € Img A to another element of Img; since the gaps
between elements of Imgy are large.

A number of dificulties arise. For instance, there are exceptional cases wéplacing
A1 by AiAMAal fails to preserve validity. Another issue is that we mustueashat the
process terminates, and so we may, for example, have tairdeoanA; ‘artificially’ to
cancel with some\™.

To show that our algorithm halts in polynomial time, we arghbat the lengths of the
successive words remain bounded by a constant téifv@s(the length ofw), and integer
arithmetic operations performed only ever involve intsggrabsolute value at mos£@v).

The group theory in this paper (specifically Theor@nactually requires a variant of The-
orem1 (specifically, Propositio.4). Accordingly, in Sectior8 we introduce a family of
functions which we cally-functions, which are closely related to Ackermann funtsio
and we adapt the earlier results and proofs to these. (Wevieeliheoreni is of intrinsic
interest because Ackermann functions are well-known dihcient computation with this
form of highly compressed integers is novel. This is why wexdbpresent Propositias 4

only.)
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We give a polynomial-time solution to the membership probler Hy in Gy in Sectiord. 1,
proving Theoren3. Here is an outline of our algorithm. Suppos@y, .. ., ax, t) is a word
representing an element Gf. To tell whether or now represents an element lf, first
collect all thet** at the front by shfiling them to the left through the word, applyisgt

as appropriate to the interveniagso that the element @ represented does not change.
The resultis a wordl v wherelr| < £(w) andv = v(ay, . . ., &) has length at most a constant
times£(w)X. Then carry the" back throughv working from left to right, converting (if
possible) what lies to the left of the powertafo a word on the generatoast, .. ., axt of
Hx. Some examples can be found in Sectioh

The power ot being carried along will vary as this proceeds and, in faant, get extremely
large as a result of the hydra phenomenon. So instead ofrigéaick of the power di-
rectly, we record it as a word ag-functions. Very roughly speaking, checking whether
this process ever gets stuck (in which casg Hy) amounts to checking whether an associ-
atedy-word is valid. If the end of the word is reached, we then haweal onast, . . ., ayt
times some power df where the power is represented by-avord. We then determine
whether or notv € Hy by checking whether or not th@tword represents 0. Both tasks
can be accomplished suitablffieiently thanks to Propositiod.4.

A complication is that the power dfis not carried through from left to right one letter
at a time. Rathelw is partitioned into subwords which we calleces These pieces are
determined by the locations of tleg anda.* in v. Each contains at most org and at
most onea;l, and if theay is present in a piece, it is the first letter of that piece, and
it the a ! is present, it is the last letter. The powertads, in fact, carried through one
piece at a time. Whether it can be carried through a p@hm;‘” (here,e1,&2 € {0,1)
andu = u(a,...,ax 1) is reduced) depends anin a manner that can be recursively
analyzed by decomposingnto pieces with respect to the locations of El;fél it contains.
The main technical result behind the correctness of ourilgo is the ‘Piece Criterion’
(Propositiord.10, which also serves to determine whether a potvean pass through a
piecer—that is, whethet' 7 = ot for someo € Hy and somes € Z—and, if it can, how
to represensg by any-word.

Reducing Theoremn2 to Theorem3 is relatively straight-forward. It requires little more
than a standard result about HNN-extensions, as we willaéx Sectiorb.

1.6. Comparison with power circuits and straight-line programs. Our methods com-
pare and contrast with those used to solve the word proble®Bgomslag’s group inZ7]
and Higman'’s group in1[1], wherepower circuitsare the key tool. Power circuits provide
concise representations of integers. Those of sipresent (some) integers up to size a
heightn tower of powers of 2. There aréfieient algorithms to perform addition, subtrac-
tion, and multiplication and division by 2 with power-ciitvepresentations of integers,
and to declare which of two power circuits represents trgelainteger.

We too use concise representations of large integers, Imlaae of power circuits we use
strings of Ackermann functions. These have the advantagetiby may represent much
larger integers. After allAz(n) = exﬁzn‘l)(l) already produces a tower of exponents, and
the higher rank Ackermann functions grow far faster. Howewe are aware of fewer
efficient algorithms to perform operations with strings of Ackann functions than are
available for power circuits: we only have Theorém

Our methods also bear comparison with the work of Lohrey)eseter and their coau-
thors [L7, 18, 21, 22, 23, 24, 32] on efficient computation in groups and monoids where
words are given in compressed forms usstigight-line programsnd are compared and
manipulated using polynomial-time algorithms due to HaderPlandowski and Lohrey.
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For instance Schleimer obtained polynomial-time algonghsolving the word problem
for free-by-cyclic groups and automorphism groups of freeugs and the membership
problem for the handlebody subgroup of the mapping classgjiro[32].

2. EFFICIENT CALCULATION WITH ACKERMANN-COMPRESSED INTEGERS

2.1. Preliminaries. Let N = {0,1,2,...}. Ackermann functions@A; : Z — Z and
A N - Nfori=23,...are defined recursively by

(i) Aog(n)=n+1forallneZ,
(i) Ag(n) =2nforallnez,
(i) A(0)=1foralli>2,and
(iv) Ai;i(n+1)=AA,(n)foralln>0andalli > 1.

Our choices ofzZ as the domains foAg and A; and our definition ofA, represent small
variations on the standard definitions of Ackermann fumgjaeflecting the definitions
of the functionsy; to come in Sectiod.1l The following table, showing some values of
Ai(n), can be constructed by first inserting the 0, 1 rows and them = 0 column, and
then filling in the subsequent rows left-to-right accordiaghe recurrence relation.

012 3 4 n
Al 2 3 4 5 . n+1
AlO 2 4 6 8 2n
All 2 4 8 16 on

2
As|1 2 4 16 65536 - }n
2
2
Ac|1 2 4 65536 . 165536 -
2

Foralli > 2 andn > 1, A(n) = A" ,(1) by repeatedly applying (iv) and usiig(0) = 1.

So for alln > 0, Ay(n) = 2" andAs(n) is an-fold iterated power of 2, in other words, a
tower of powers of 2 of height. The recursion (iv) causes the functions’ extraordinarily
fast growth. Indeed, because of the increasing nestingeakttursion, thé\ represent the
successive graduations in a hierarchy of all primitive rsime functions due to Grzegor-
czyk.

The functionsA; are all strictly increasing and hence injective (see LenZnip So they
have partial inverses:

() Ay:Z — Z mappingn— n-1,
(I A7*:2z — Z mappingn — n/2, and
(y A*:imgA — Nforalli> 1.

Parts (—7) of the following lemma are adapted from Lemma 2. 1% jwith modifications
to account for the fact tha, is defined a® — n + 1 here rather than — n + 2. Part )
guantifies the spareness of the imagé\gfAs, ... in a way that will be vital to our proof
of Theoreml (specifically, in our proof the correctness of the subr@BasePinch). It
will tell us that if u = U(Aq, ..., A1) anduA(n) € ImgAg butuA(n) # Ac(n), thené(u)
must be relatively large.
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Lemma 2.1.

Q) A(l) =2 Vi >0,

(2) A2 = 4 Vix>1,

(3) A(n) < ALa(n) Vi>1;n>0,
4) A(n) < A(n+1) Yi,n >0,

(5) n < A(n) Yi,n >0,

(with equality in(5) if and only if i= 1 and n= 0)

(6) A(n)+A(mM < A(n+m) Yi,n,m> 1,
@) AN +m < A(n+m) Yi,n,m> 0,
(8) [A(n) — Ai(M)| > %Ai(n) Yi>2andn+m

Proof. Equations {) and @) follow from Ai.1(n + 1) = Aj/A;1(n) by induction oni. It is
easy to check thaBj holds ifi = 1 or if n = 0 and that4) and 6) hold ifi = 0, ifi = 1
orif n=0. Itis clear 6) holds ifi = 1. The inequality ) holds ifi = 0,i = 1 orm= 0.
The inductive arguments for the above inequalities are idhemtical to the corresponding
ones in Lemma 2.1 oflZ]. For (8), note that the result is true wher: 2 asA,(n) = 2" for
all n e N and, given how each of the successive rows is constructedtfiose preceding
them, it follows that it is true for alil > 2. ]

When a wordv = w(Ay, ..., Ay) is non-empty, we let rank() denote the maximurinsuch
that A** occurs inw andn(w) denote the number o&;*,..., Al in w. For example, if
w = At AsA T AT A, then rank(y) = 4 andp(w) = 2.

As we said in Sectiod.1, strings of Ackermann functiondfer a means of representing
integers. Forxy,...,%, € {AL,..., A}, we say the wordv = X,X,_1--- Xy is valid if
XmXm-1 - - - X1(0) is defined for all 0< m < n. That is, if we evaluatev(0) by proceeding
throughw from right to left applying successive, we never encounter the problem that
we are trying to apply; to an integer outside its domain, andw(®) is a well-defined
integer.

For examplew := A; A1 A Ao is valid, andw(0) = log,(2- 2- (0+ 1)) = 2. ButAxA;* and
A1A11A0 are not valid becauseal(O) = —1lis not inN (the domain ofA;) and because
Ag(0) = 1is notin Z (the domain ofA;%).

Form € Z, thesignof m, denoted sgm(), is —, 0, or+ depending on whethen < 0,m = 0,
or m > 0, respectively. So Theorefnstates that there is a polynomial-time algorithm to
test validity ofw(Ay, . .., A) and, when valid, to determine the signve(0).

We sayw(Ay, . .., A) andw (A, . . ., A areequivalentand writew ~ w whenw andw’
are either both invalid, or are both valid amD) = w'(0).

2.2. Examples and general strategy We fix an integek > 0 throughout the remainder
of this article.

We will motivate and outline our design of our algoritttokermann by means of some
examples. The details aickermann and it subroutines (which we refer to parenthetically
below) follow in Sectior?.3.

First consider the case where the war@,, ..., Ay) in question satisfieg(w) = 0—that
is, contains nA;%, ..., AL, Suchw are not hard to handle because, to check validity of
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w, we only need to make sure that Apin w with i > 2 takes a negative input whev{0)
is evaluated. (SucW are handled by the subroutiResitive.) Here is an example.

Example 2.2. Letw = APA1A; AsA;*AxA1 Az A0, which is a word of length 17 with
n(w) = 0. We can evaluate directly working from right to left thaft,valid, w(0) =
A56A1A51A5(12). At this point we are reluctant to calculaig(12) as it is enormous, and
instead recognize th#ts(12) is larger tharf(w) = 17 Bounds), which as we will explain
in a moment we can do suitably quickly. We then deduce what valid andw(0) > 0,
becauseﬁ«(;l are the only letters further to the left which would lower tfedue, were the
evaluation to continue, and there cannot be enough of theeath O or a negative number.

In general, ifp(w) = 0, our algorithm starts evaluating(0) working right to left. Let
w; denote the length-suffix of w. The only letters inw which could decrease absolute
value areAgl, so if|w;(0)| > £(w) for somej andw is valid, then sgn;(0)) = sgn{v(0)).
Moreover, if|w,-(0)| > {(w), then the only way fails to be valid is ifw;(0) < 0 and the
prefix of w to the left ofw; contains one of;, Az, .... So after either exhausting or
reaching such g and then scanning the remaining lettersvirthe algorithm can halt and
decide whether or not(0) is valid, and if so its sign.

This technique adapts to compavgd) with a constant —

Example 2.3. Takew as in Example.2. We see thatv(0) > 2 by applying the same
technique to find thatv(0) — 2 = A62W(O) > 0. Here, the size oAs(12) still dwarfs
t’(AgZW) =19, so the computation carried out is essentially the same.

So, how do we determine thag(12) > 17 or, indeedAs(12) > 19 for Example®.2 and

2.3? The recursio®,1(n + 1) = A/A;1(n) implies that ImgA € ImgA; for all i > 2.

Suppose we wish to know wheth&j(n) is less than some constantThe cases = 0, 1

are easy to handle @g(n) = n+ 1 andAy(n) = 2nfor all n. So are the cases= 0,1,2 as
Ai(0) = 1, A(1) = 2, andAi(2) = 4 for alli. As for other values off andn, the recursion
allows a subroutineBpunds) to list thei > 2 andn > 3 for which Ai(n) < c.

For instance, to find thie> 2 andn > 0 for which A;(n) < 17, first calculaté\,(n) = 2" for
all nfor which Ax(n) < 17, filling in the first row of the following table.

nN=0 n=1 n=2 n=3 n=4

Ay 1 2 4 8 16

As 1 2 4 16

Ay 1 2 4
Now fill the table one row at a time. We start wifg(0) = 1 andAz(1) = 2, and then
As(2) = A2A3(0) = Ax(1) = 2. ThenAg(2) = A2A3(1), which is 4 because, as we already
know, Ag(1) = 2 andA,(2) = 4. Similarly, Az(3) = 16. AndAz(4) = AxA3(3) = Ax(16),
which must be greater than 16 sindg(16) is not in the table. We carry out the same
process fody. We discover tha#\4(3) = AsA4(2) = Az(4) is at least 17 sincAz(4) is not
already in the table. At this point we halt, reasoning hgB) > Ai(3) > 17 for all j > i
(see Lemma.1).

Ackermann’s strategy, on input a word, is to reduce to the caggw) = 0 by progressing
through a sequence of equivalent words, facilitated by:

Lemma 2.4. Suppose & U(Ao, ..., Ax) and v= v(Ay, ..., As). The following equivalences
hold if v is invalid or if v is valid and satisfies the furtherraitions indicated:

UALV ~ UAALAGNY V(0)>O0andi> 1,
uALv ~ uAAL A v0)>landi> 1,
uAlAv ~ uv V0)>0andi> 0.
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Proof. If vis invalid, then any word with gfix v is invalid, SOUA 1V ~ quAi+1A61v and
UATLV ~ UAATL AV

Assumev is valid. If v(0) > 0, thenA;*v(0) > 0 so thatA1v and AA 1A v are valid
words and by the recursion defining the functions,

Aav(0) = AAL1(V(0)- 1) = AAL1A;'V(0).
ThusuA,1v ~ uA.»AHlAglv since their validity is equivalent to the validity afon input
Ai+lV(O)'

Supposev(0) > 1. If v(0) = Aj;1(c) for somec € Z, thenc > 0 because > 1, so
v(0) = AjAi;1(c — 1). Conversely(0) = AiAi;1(c— 1) impliesc > 1. Thus

AALATV(0) = ¢ = ATV(0),
anduAA LAtV ~ uALv because their validity is equivalent to validity ofon input
AV).

ThatuA Ay ~ uvunder the given assumptions is apparent because the cond) > 0
ensures(0) is in the domain of\;, given that > 2. O

We will frequently make tacit use of this fact, which is imniegte from the definitions:

Lemma 2.5. If w(Ay, ..., Ax) and W(Ay, . .., A can be expressed aswwuv and w = uv
for some equivalent gixes v~ V', then w~ w

Here is an outline of whatckermann does on input a valid word. A description of
how Ackermann checks the hypotheses of Lemraa and what it does when they fail is
postponed until the end of the outline.

1. Locate the rightmogk ! in w for whichr > 1. We aim to eliminate this letter, to
get a wordw with n(w’) < n(w) andw ~ w’ by ‘cancelling’ it with anA, that lies
somewhere to its right and with no higher rank letters in leetawv However there
may be no such, in which case we manufacture one. Accordingly —

1.1. If every letter to the right A1 is of rank less tham, then append either
AalAr if r>1orA; if r =1to create an equivalent word endingAn.

1.2. Locate the first letted, that lies to the right of ouA;* and hag’ > r. If
I’ > r, substituted, 1 A, Ay for this A, thenA, _A._1 A;* for the resulting
Ar_1, and so on, as per Lemn2ad until we have created afy (Whole).

Thereby, obtain a word equivalentwowhich has sffix s = A-*uAv for someu

andv with n(u) = n(v) = 0 and rankgq) < r. (Reduce.)

2. We now invoke a subroutin®inch,) which will either declares (and sow)
invalid, or will convertsto an equivalent worG\'ov for somel € Z.

Suppose first that rankl = r — 1 > 0. We will explain how to eliminate
an A,_; from u. On repetition, this will give a Word\g‘A;lﬁArv ~ ssuch that
rank@) <r — 2. (CutRank;.)

2.1. Find the leftmosA,_1 in sand write

S = A;lu/Ar,]_U”ArV

where rank{’) < r — 1 and rank(”) < r — 1. SubstituteAoA7* AL for A
as per Lemma.4to give

AATT AU A QU'AY ~ s
2.2. ApplyPinch,_; to the sufix A;}lu’A,,lu”A,v to give an equivalent word
Ayu”Av for somel” € Z. Thereby get

AOAr—lAgunArV ~ s
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2.3. Likewise eliminate ai\,_1; from u” in A;lA'(;u”A,v, and so on, until we
arrive at
AATTIAV ~ s
such thamme Z and rank() < r — 2.
To reduce the rank of the subword between &é and theA, further we
manufacture ai; and anA,_; and then proceed recursively. Accordingly —
2.4. Substitute foA~! andA, as per Lemma&.4to get

AT (AT A TALAAD Y ~ s
2.5. CallPinch,_; on the stfix A~% GA_1A A;'v to obtain

ATAAY ARG ~ s

for somel” € Z (FinalPinch,).
Eliminate A’* and A, from the sufix A-*AjA/Aj'v using a method we will
shortly explain via Exampl@.7 to give an equivalent gfix Ay’ A;'v for some
I”” € Z (BasePinch). Thereby, ifw is the word obtained fronw by substitut-
ing the sifix beginning with the finalA:* with AT**Al" Ajlv, thenw ~ w' and
n(w’) < n(w), as required.
Repeat steps-3 until we have an equivalent word with ig?, . .., A;l.
Use the strategyésitive) from Example2.2 above.

To make legitimate substitutions as per LemPain Stepsl.2, 2.1, and2.4, we have to
examine certain gtixes. In every instance we are:

1.

2.

either substitutindy A 1A;* for an A1, in which case we have to check that the
suffix v (which hasy(v) = 0) after thatA;,; hasv(0) > 0,

or substitutingAoA LAt for an A}, in which case we have to check that the
suffix v after thatA-} (which again hag(v) = 0) hasv(0) > 1.

So validity ofv and the hypothesig0) > 0 orv(0) > 1 (and indeed whethes(0) < 0,
whethenv(0) = 1, or whethew(0) < 0, which we will soon also need) can be checked in
the manner of Examples2and2.3, and ifvis invalid, thenw is invalid.

Suppose, then, we are in Case is valid, butv(0) < 0.

e If i > 0 andv(0) < 0, thenA;,1v, and sow, is invalid.
e If i > 1 andv(0) = 0, thenA;;1v(0) = 1 and so, instead of making the planned

substitution, the giix Aj;1v can be replaced by the equivaléqy.

If i = 1andv(0) = 0, then we have a $lix A,v which we replace by the equivalent
AoA (V).

Wheni = 0, no substitution is necessary becaA§éuA1v is valid if and only if
u(0) is even. If sau = A'0 for some even andA;*uAwv can be replaced by the

equivalentA'O/ %y,

Suppose, on the other hand, that we are in Casésiialid, butvis valid andv(0) < 1. The
algorithm actually only tries to make substitutions tqfl when the input word has ffix
Ai‘fluAMvo for some subwords andvgp such thaty(u) = n(vo) = 0 and rankq) < i+ 1
(andv = uA;1Vp). It proceeds as follows:

e If v(0) = 1 andi > 0, output the equivalentt; v,
e If i = 0 use the fact thaA\IluAlvo is valid if and only ifu(0) is even. Ifu(0) is

evenu = A'O for some even integéreplace the sfix AiluAlvo by the equivalent

A!J/ZVO.

e If v(0) <0, thenA ! vis invalid.
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(In Case i, it is not obvious that outputtinlg;""(o)vo is better than simply returning the
empty word to represent zero. However, the inductive cansbn of the algorithm re-
quires that the output word retain aféx vo.)

Example 2.6. Letw = AgA;L A A2A2A0. A quick direct calculation shows is valid and
w(0) = 4, but here is how oukckermann handles it.

1. First aim to eliminate thé‘gl (the subroutin®educe). Look to the right of the
A1 for the first subsequent letter (if any) of rank at least 2, elgrtheA,.
2. Tryto ‘cancel’ theA;* with the A (Pinch,) —
2.1. Reduce the rank of the subwaxgh3 betweerA;* andA; as follows CutRank;).
2.1.1. Use the technique of Examp® (Positive) to check that the gfix
ALAZAA s valid andAiAZAA0(0) > 1. So, by by Lemma.4, we
can legitimately substituta3A;*A;* for A;* to obtain

AA AT AL A A A ~ W

2.1.2. Cancel the'A; (strictly speaking, this is done by callifgtRank,
on ASTATTALAZAAg, and therPinchy) to give
PATAZAAG ~ W
2.2. Next follow Step2.4 from the outline above. Seek to replace the subword
ASLA3A; by an appropriate power of (by calling FinalPinch, on the
suffix s := AT AZALAo) as follows.

2.2.1. Checkdo(0) # 0 andAZA-Aq(0) # 1, so we can substitutpA; AL
for A;1 andA;AA;! for A in s (as per Lemma.4) to get

AA AT AZ AL AAS A ~ s
2.2.2. Convert the subword;*AZA; to a power ofA (by calling Pinch,
on A*A3A1 A A Ao, Which callsBasePinch; since the subword be-

tween theA;* and theA; is a power ofA). It replacesA;*AZA; by Ag
(which is appropriate becausex(2 2)/2 = x + 1) to give
S = AAAMAA) ~ s
2.2.3. The exponent sum of th betweenAs! andA; in s is 1. (Were
it non-zero and less than half 86A;*Aq(0) = 1, thenAA; Ao(0)
would be too far from another integer in the image\efn) for s’ to be
valid.) But, in this case, we evaluafg*AjArA; Ag(0) by computing
that it is 2 directly from right to left, and then evaluating'(2) = 1
(by calling Bounds(2¢(w))). So A7 AcAA;AN(0) = 1, and we can
conclude that
s ~ MAGA.
(Preserving the gtix AalAO appears unnecessary here, but it reflects
the recursive design of the algorithm.)
So
W= ASATAY ~ w
3. Nown(w) = 0. So evaluatev from right-to-left in the manner of Examp2
(Positive) and declare that is valid andw(0) > 0.

In our next example, the input word has the foARtuA v with n(u) = n(v) = 0 and

rankU) < r < r’. As there is noA, with which we can ‘cancel’ thé\ !, we manufacture
one by using Lemma&.4 to create arA; to the left of theA, and thereby reduce to a
situation similar to the preceding example. This exampe akrves to explain how we
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resolve the special casﬁglA'oA,v which is crucial for avoiding explicit computation of
large numbers.

Example 2.7. Setw = A1 A;2AzAT%.

1. lIdentify the rightmosf\* with i > 1, namely theA;. Scanning to the right of
A1, the firstA) we encounter with > 2 is theAs. (Sendw to Reduce, which
callsWhole.)

2. Use techniques from Examp#e2 (Positive) to check thatA}’%(0) > 0. So we
can substitute!\zAgAgl for Az, as per Lemma&.4, to obtain

Wo = AJTAPAAAGIAT ~ w.
3. We check we can make substitutions as in Ler@mdor A* andA, to give

Wi = (oA ATY) AG? (AuAAct) AAG AR ~ w.

(RuncCutRank, onw which does nothing as rank(< 1, and then start running
FinalPinchy(Wp).)

4. We now want to reduce the rank of the subword betweem;ﬁemdAz to zero
(Pinchy), and so weKasePinch;) process the gfix

to replaceA;*A;%A; by At giving

Wo = AoA AT ALAT ASAGTAY ~ w

(the equivalence being because 22)/2 = x - 1).

5. Now the subword ofv, betweenégl andA; has rank 0 (which caus@®inch, to
end and we return tBinalPinchy, which in turn invoke®asePinchy). AsA;is
the functionN — N mappingn - 2", if AJAA;LAsA;LALY(0) is in the domain
of Agl for somez € Z \ {0}, then the large gaps between powers of 2 ensure that
2zl > AA P AsAGIALYY(0). In the case ofvy, we havez = —1 and so we see that
W, is invalid by checking thafo Ay AsAG*ATYY(0) > 2. We can do thisféiciently
in the manner of Exampl2.3 by noting thatAsA;*AL%°(0) exceeds the threshold
U(AA ASAAL) + 2 = 106. So we declane invalid.

A major reasomckermann halts in polynomial time, is that as it manipulates words, it
does not substantially increase their lengths. One suibeittemploysBounds, takes an
integer as its input. All others input a wondand output an equivalent wovd and in every
case but twof(w’) < £(w). The exceptions are the subroutifille andReduce, where
(W) < £(w) + 2k. But they are each called at mogtv) < £(w) times wherAckermann

is run on inputw, so they do not cause length to blow up. The way this contrdéngth

is achieved is that while length is increased by making switisins as per Lemma.4,
those increases ardfset by a process of replacing affsx of the form A-tuA v (with
n(u) = n(v) = 0 and ranky() < r) by an equivalent stix of the formA'Ov with I < £(u).

The technique of exploiting the large gaps between powe2stofsidestep direct calcula-
tion applies to all words of the foriA X AZAv wherer > 2 andz # 0, after all the gaps in
the range ofA, grow even faster when > 2. In Lemma2.1(8), we showed that if € Z

is non-zero and\;lA'OA,v is valid, then | > Av(0). This condition can befgciently
checked ify(v) = 0. If 2I| > A,v(0), direct computation of the value AflA'OArv(O) (using
Bounds(2|l|)) becomes ficient relative taf(w) since|l| < £(w).

Our final example is a circumstance where we are unable to swkitutions because a
hypothesis of Lemma.4fails.
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Example 2.8. Letw = A§1A51A3A0. Direct calculation shows thatis valid andw(0) = 0,
but here is how our algorithm proceeds.

1. As before, we identify the.‘\gl, the subsequeris, and the subwor(zlkal that
separates them. (C@inchs on AgluAgv whereu = Agl andv = Ag.)

2. First we check tha#g is valid andAg(0) > 0 and so is in the domain dfs.
Then we check thaA51A3A0 is valid (a necessary condition for validity of)
andAalAgAO(O) > 0 (a necessary condition to be in the domair;(\gﬂ‘). (In both
cases we uskositive.)

3. We notice that there are i or As! betweenA;! and A to remove. Pinchg
runsCutRanks(w), which does not change.)

4. We seek to substitut®oA; At for At and AxAsA* for As. (Pinchs calls
FinalPinchs.) But, by calculating thaf\;*A;*AsAq(0) = 0 (which is done by
calling Positive(A;*A; AsAg)), we discover thaf\;*AsAg(0) = 1, violating a
hypothesis of Lemma.4.

5. Invoke a subroutin@dfieToZero) for this special case. We calculate the integer
m = v(0) by testing whethef;™v(0) = 0 starting withm = 1 and incrementingn
by 1 until we obtain a string equal to zero. In this exampie Ay, and sam = 1.
We returnA;™ = Ag*Ag whereA;™v(0) = 0 = Ar}(1) = A7*v(0). It would be
simpler to return the empty word, but the recursive strictffPinch requires
the output of an equivalent word whosefsuis v.

6. 7(A;*Ao) = 0, so the algorithm explicitlyfiirms validity, finds the sign of;*Aq(0),
and returns 0.Rositive.)

2.3. Our algorithm. We continue to have an integkr> 0 fixed and work with words
on the alphabe{\gl, e A,fl. The polynomial time bounds we establish in this section all
depend ork.

Our first subroutine follows the procedure explained in Bec2.2, so we only sketch it
here.

Algorithm 2.1 — Bounds.

o Input¢ € N (expressed in binary).

o Return a list of all the (at most (Igd)>?) triples of integersr( n, A;(n)) such thar > 2,

n> 3, andA/(n) < ¢.

o Halt in time O(¢).
list all values ofAy(n) = 2" for which 2< n < |log, ¢]
recall (from Lemma2.1) thatAj(2) = 4 for alli > 2

3: use the recursioAj;1(n+ 1) = AjAi;1(n) to calculate allA (n) < ¢ forr > 3andn > 3,

halting whenA,(3) > ¢

Correctness oBounds. Bounds generates its list of triples by first listing the at most
Llog,(¢)] triples (2 n, Ax(n)) such thatn > 3 andAx(n) = 2" < ¢, which it can do in
time O((log, ¢)?) since( is expressed in binary. It then reads through this list ared tise
recurrence relation (and the fact taf(2) = 4) to list all the (3n, Az(n)) for whichn > 3
andAg(n) < ¢. It then uses those to list the, @ A4(n)) similarly, and so on. For all > 3,
Ar(3) = A_1(4) = 2A._1(3), and s0A((3) > 2. So the triplesi;n, A/(n)) outputted by
Bounds all haver < [log, £]. Asr increases, there are fewesuch thatA,(n) < ¢. So the
complete listBounds outputs comprises at most (6?2 triples of binary numbers each
recorded by a binary string of length at mostJégand it is generated in tim@(¢). O



W. DISON, E. EINSTEIN AND T.R. RILEY

input w

_.--» Reduce | Positive —3 50, whethemw(0) < 0,
. w(0) = 0, orw(0) > 0

i Bounds
oS Ackermann Yy _ ) declare whether or
WZ“ NN not w is valid and, if
o

/ \ y S g
+ | Pinchy Pinch,_; e Pinch, Pinch,
/ / / = BasePinch
N\ \
‘\ | CutRank, CutRank;,_; o CutRank,
N / Bounds

7(w) lowyg, req

e FinalPinch,

FinalPinchy FinalPinchy ;

Ficure 1. An outline of the design dfickermann, indicating which rou-
tines call which other routines. Any routine may declarevalid and
halt the algorithm. FronReduce, the algorithm progresses Rinch;,
wherer is the subscript of the rightmost @1, . ..,A;l to remain in

w. The progression through tfRinch;, CutRank;, andFinalPinch,
(shown boxed) is involved (and not apparent from the diagaun ul-
timately decreaseg(w) by one. A further routin@neToZero (which
handles certain special cases) does not appear, but id bgle number
of the routines shownPositive also serves as a routine, but only its
role in providing the final step in the algorithm is indicatadhe figure.

(In fact,Bounds halts in time polynomial in log¢, but we are content with th@(¢) bound
because other terms will dominate our cost-analyses ofiltines that caBounds.)

Remark 2.9. Bounds does not give anyr(n, A;(n)) for which A;(n) > ¢butr < 1orn < 2.
Nevertheless, such triples require negligible computatioidentify. After all, A;(0) = 1,

Ar(1) =2 andA(2) = 4 forallr > 1 andAog(n) = n+ 1 andA;(n) = 2nforalln € Z.

Correctness oPositive. Aswis a word onAgl, Ay, ..., A (thatis,n(w) = 0), decreases
in absolute value only occur in increments of vg®) is evaluated from right to left. The
domains ofA, A(;l andA; areZ, and ofAy, As, ... areN, sow is invalid only when some

A with i > 1 meets a negative input. If the thresholdy, is exceeded, thew must be
valid andw(0) > 0, as subsequent letter-by-letter evaluation could neastr a negative
value. Ifx;...x;(0) < —n for somei (which is easily tested as it can only first happen when
X IS A51 or A1), thenw is valid if and only if none of the subsequent letters &se. . ., Ay;
moreover, ifw is valid, thenw(0) < 0. If w is exhausted, then the algorithm has fully

calculatedv(0) (andw(0)| < n) and has confirmed as valid.

Positive calls Bounds once with inputn = ¢(w), which produces its list of at most
(log, n)? triples in timeO(n). The thresholds employed Rositive ensure that it per-

forms arithmetic operations (adding one, doubling, conmggabsolute values) with inte-
gers of absolute value at mast Each such operation takes tirn?), so they and the

necessary searches of the outpuBofinds take timeO(n3). O
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Algorithm 2.2 — Positive.
o Inputawordw = XpXn_1- - Xg Wherexy, ..., X, € {Agl Aq,. Ak}
o Returninvalid whenw s invalid and sgnf/(0)) whenw is valid.
o Haltin time O(£(w)3).
run Bounds(n)
evaluatex; (0), thenxyx;(0), and so on until
3 e eitherw(0) has been evaluated
e or somex;...x1(0) > n (checked by consulting the outputBdunds(n))
e Or somex;...x1(0) < —n (that is,x; # Agl andx;...x;(0) < 0)
6: e Or somex;...x; is found to be invalid (that isg # Agl andx...x;(0) < 0)
then, respectivelyeturn
* sgn(w(0))
9: e sgn(w(0)) = +
oif Xiy1,...,% & {Ag, ..., A}, thensgnw(0)) = —, elseinvalid
e invalid

Our next subroutine is the ranB(= 0 case oPinch,, to come.

Algorithm 2.3 — BasePinch.
o Inputawordw = A-luAvwith r > 1, u = u(Ao), v = (Ao, ..., A) andn(v) = 0.
o Either return thatv is invalid, or return a valid wordv' = A'(;v ~ wsuch that’(w) <
o(w) — 2.
o Haltin time O(£(w)%).
setl := u(0) (SOA, is u with all A2 AF! subwords removed angf *A A,V ~ w)
if Positive(Arv) = invalid, halt andreturn invalid
3: if r > 2 andv(0) < 0 (checked usinBositive), halt andreturn invalid
if | =0, halt andreturn w :=v
if r =1, halt andreturn w’ := Agzv orinvalid depending on whetheis even or odd

we now havd # 0 andr > 1
run Positive(A'OA,v) to determine ifA'OA,v(O) < 0 (so outside the domain @€!)
9: if so,halt andreturn invalid
run Positive(A;?'Av) to determine whethekv(0) > 2|l|
if so,halt andreturn
12:
we now have that & v(0) < |I] and 0< A v(0) < 2|l] andAv(0) + | < 3]I|
calculatev(0) by runningPositive(A;'v) fori =0,1,..., |l
15: run Bounds(3]l|)
search the output @ounds(3|l|) to find A,v(0)
setm:= Av(0) + |
18: search the output &ounds(3|l]) for c with A,(c) = m(soc = A;lA'OArv(O) =w(0))
if such ac exists,halt andreturn w’ := Ag“’(o)v
else haltandreturn invalid

Correctness oBasePinch. The idea is that whew is valid, eithed = O or the sparseness
of the image ofA; implies thatl is large enough that(0) can be calculatedficiently.
Here is why the algorithm runs as claimed.

3: If v(0) < 0, thenw is invalid.
4: 1f r > 2, thenA 1A v ~ vby Lemma2.4.
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5: SinceA; is the functionn — 2n, the parity ofA'OA,v(O) is the parity ofl when
r = 1, and determines the validity of.

8,10: We knowAyA v andA;?"'A v are valid at these points because is valid.

11: Letq = v(0). For allp # qwe haveA(q) — A (p)| > 3A (M) by Lemma2.1(8),
and sdA:(q) — A (p)| > |l]. If Af‘lA'OA,v is valid, then there exists € N such that
Ac(p) = AYAV(0) = | + A(q), but then/A(p) — A (a)| = II| for somep # ¢ (since
| # 0), contradictingAr(q) — Ar(p)| > |. Thusw is invalid.

13 The reason & Arv(0) is thatr > 1 and so Img\ contains only positive integers.
And A:v(0) < 2]l] because of line§0and11. It follows thatv(0) < |I| because
2v(0) = A1v(0) < Av(0) < 2|l|. Andv(0) > 0 sincev(0) is in the domain of,
which isN whenr > 1. We haveA A v(0) < 3|I| here becausa, v(0) < 2|l and
SOALAV(0) < | +2]I|.

18 If m=Av0)+1 = A{)A,V(O) is in the domain ofA-%, thenm > 0. And, from
line 13, we knowm < 3|l|, so this will findc if it exists. If no suchc exists,wis
invalid.

19 ASYOV0) = c = ATL(1 + AV(0)) = AT TALANV(0).

We must show that(w’) < ¢(w) — 2. In the cases of line$ and5, this is immediate, so
suppose > 2. As for line19, we will show thatc — v(0)| < |I|, from which the result will
immediately follow.

First supposé > 0. By Lemma2.1 and the fact tha¥(0) > 0, we haveA(v(0) + 1) >
A (V(0)) + 1. Sov(0) + I > A"L(Av(0) +1) = c. Soc—Vv(0) < | =l]. And 0 < ¢ - v(0)
becausé\(c) = A (v(0)) + | > A/ (v(0)). So|c — v(0)| < |I|, as required.

Suppose, on the other harigs 0. Then

c = ATAAV0) < ATTAV(0) = V(0)

and sdc — v(0)| = v(0)—c. But then|c — v(0)| < v(0) because&(0),c > 0. So ifv(0)+I <0,
then|c—v(0)] < —I = |l|, as required. Suppose instead ti) + | > 0. We have that
A(v(0) + 1) < A(v(0)) + | becauseA(p — m) < A(p) — mby Lemma2.1 (7) for all
p=mz> 0. Sov(0)+1 < ArY(A/(v(0)) +1) = c. Sol < ¢-v(0). Andc - v(0) < 0 because
Ar(€) = Av(0) + 1 < Av(0). Solc— v(0) < |l], again as required.

Next we explain why the integer calculations performed lgydlgorithm involve integers
of absolute value at most@v). The algorithm call®ositive on words of length at most
3¢(w), and so (by the properties Bésitive established), each time itis call@®hsitive
calculates with integers no larger thaf(\8). On input 3I| < 3¢(w), Bounds calculates
with integers of absolute value at mogi(®). The only remaining integer manipulations
concerrm, 1, 2|I|, Arv(0), all of which have absolute value at mog{\8).

Finally, thatBasePinch halts in timeO(¢(w)?) is straightforward given the previously
established cubic and linear halting timesPositive andBounds, respectively, and the
following facts. It may add a pair of positive binary numbeech at most Zw), may
determine the parity of a number of absolute value at Mi@el, and may halve an even
positive number less thaifw). It callsPositive at mostl|+3 < £(w) + 3 times, each time
on input a word of length at most@v). It callsBounds at most once—in that event the
input toBounds is a non-negative integer that is at moé{@ and the output oBounds is
searched at most twice and has s@og, £(W))?). ]
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Algorithm 2.4 — OneToZero.
o Input a valid wordw = A *uAv with 5(u) = n(v) = 0,u # €, uAV(0) = 1 andr > 2.
o Returna WordAg"(o)v ~ w of length at most(w) — 2.
o Haltin time O(£(w)%).
run Positive(A;™) form=0,1,... until it declares thaf;™v = 0
halt andoutput A;™v

Correctness ofneToZero.

1: Aswi s valid, v(0) is in the domain of\;, which isN asr > 2. Som = v(0) will
eventually be found.
2: w(0) = Ar}(1) = 0 and soA;™v ~ w as required, sinc;™v(0) = 0.

Sincen(u) = 0, the only letteru may contain which decreases the value in the course of
evaluatinguA-v(0) is Agl. So, azuAv(0) = 1 andA,v(0) > v(0) + 1, there must be at least
v(0) lettersAs in u. Sof(u) > V(0). Sof(A;YOV) < ¢(w) - 2, as required.

OneToZero callsPositive m = v(0) < £(u) < £(w) times, each time on input of length at
most/(w). So, by the established propertiePokitive, it halts in timeO(£(w)*). O

The inputw to OneToZero necessarily has(0) = 0, so it would seem it should just output
the empty word rather thaAg"(O)v. However,0neToZero is used byPinch,, which we
will describe next and whose inductive construction reggithe stfix v.

Pinch, forr > 1 is a family of subroutines which we will construct alongsfdrther fam-
ilies CutRank, andFinalPinch, forr > 2. Pinch,_; is a subroutine o€utRank; and of
FinalPinch,. CutRank, andFinalPinch, are subroutines dfinch;. It may appear that
we could discar€utRank, and use&FinalPinch; instead, by expandirinalPinch;, to
allow inputs with rank() = r — 1 and expandinBinch; to allow inputs where rankj = r.
But this would cause problems with maintaining théisuw.

Algorithm 2.5 — Pinch, forr > 1.
o Input a wordw = A-1uA v with 5(u) = (v) = 0 and rank() < r — 1.
o Either return thatv is invalid, or return a valid wordv' = A'(;v ~ w such that(w) <
o(w) — 2.
o Haltin O(£(w)* (1) time.
if r = 1 run BasePinch(w) and therhalt
run Positive(Vv) to determine whetheris invalid orv(0) < 0
3: if sohalt andreturn invalid
run Positive(uA) to determine whetharAvis valid oruAv(0) < 0
if sohalt andreturn invalid
6: run CutRank, (W)
it either declaresvinvalid, in which caséalt andreturn invalid
or it returns a worav' = AiOA;lu’A,v such that
o: W ~w, {(W) < f(w), n(u) =0,u" # eandrankg¢’) <r -1
run FinalPinch, (A-1u'Arv)
if it declaresA-*u’ Arvinvalid, halt andreturn invalid
12: elseit outputsALv for somel, in which casesetw” := Ailv
run Positive(w”)
if it declaresw” invalid, halt andreturn invalid
15: else returnw”
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Algorithm 2.6 — CutRank, forr > 2.

o Input a wordw = A tuAv with n(u) = n(v) = 0 and rankif) < r — 1.

o Either declarew invalid, or returnw’ = A'Ov wheref(w) < £(w) — 2, or returnw’ =
ALASTI AV ~ wwhere rankif') <t - 2,p(u) = 0, andf(w) < £(w).

o Haltin time O(£(w)* ).

seti = 0 and re-express asAiOA;luArv
if v(0) < O (checked usinBositive), halt andreturn invalid
3: if uis the empty wordhalt andreturn v
while rank@) =r — 1do
run Positive(A;'uAV) to test whetheuAv(0) = 1
6: if sohalt andreturn the outpuw = A'Ov of OneToZero(w)
run Positive(uAv) to test whetheuAv(0) < 0
if so,halt andreturn invalid
9: expressu asu’A,_1u” where rank(’) < r — 1 (i.e. locate the leftmogk,_; in u)
incrementi by 1
setw := AJATTATL U A _1u” Ay (i.e. substitutefoA T A1 for A7t inw)
12: run Pinch,_1 (AL UA_1U”AV)
if it returns invalidhalt, return invalid
elseletwp := AJu”Arv be the (valid) word returned

15: setw 1= AJA W
setu := ASu” so thatw = ALA-TUA vV
end while
18: return w

Correctness oPinch;_; implies the correctness @utRank; for all r > 2. The idea of
CutRank; is that each pass around the while loop eliminatesAneg from u. So in the
output, rankq) < r — 1.

If r > 2, then the domain oA isN, and sow is invalid whenv(0) < 0.

Sincev(0) > 0 now, Lemma2.4 applies.

(W) < £(w) — 2 by the specifications @neToZero.

If uAv(0) < 0, it is outside the domain %! (asr > 2), so the algorithm’s input

is invalid.

11: Substituting gives an equivalent word here by LeninasinceuAv(0) > 1. At
this point,£(w) is at most 2 more than its initial length.

16: Noww s no longer than it was at the start of tivkile loop becausBinch;_; (as-
suming it does not halt) trims at least 2 lettersetting the gain at liné1. The
wordw here at the end of thehile loop is equivalent to thes at the start because
of our remark on linel1 and because we are replacing &isuA ™ u'A,_1u”Av
by an equivalent word produced Bynch;,_;.

18: It follows from our remarks on linesl and16that£(w) here is at most the length

of thew originally inputted.

The while loop is traversed at ma&iv) times. Each timePositive (twice),OneToZero
andPinch;_; may be called, and by the remarks above, their inputs areyalaflength
at most£(w). So, as each of these subroutines halt in tDt&w)*~2), CutRank, halts
in O(C(w)*(-D) time. O

Correctness oPinch,_; implies correctness d&inalPinch, forr > 2.

2: If uAV(0) < 1, then it is outside the domain &f*.
4: uAvis valid if and only ianluArv is valid.
8: In this casev(0) is outside the domain &;.
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Algorithm 2.7 — FinalPinch, forr > 2.

o Inputawordw = A-tuA v with n(u) = n(v) = 0,u # € and rank() < r — 1.
o Either declarevinvalid or return a wordA'Ov ~ w of length at most(w) — 2.
o Haltin O(£(w)*-2) time.

run Positive(AgluAv) = 0 to decide among the following cases
if AaluAvis invalid oruA-v(0) < 1, halt andreturn invalid
3 if uAv(0) = 1, halt andreturn OneToZero; (W)
we now have thatiA v is valid anduAv(0) > 1

6: run Positive(v) to determine whether(0) < 0, v(0) = 0, orv(0) > 0
if v(0) < 0, halt andreturn invalid

if v(0)=0
if r = 2, run BasePinch(A-1uAv)
12: if it returnsinvalid, halt and do likewise
else haltand return its resuld\'(;v, which will satisfyZ(A'(;v) <{(w) -2
if r > 2, run Pinch,_1 (A7, uA _1v)
15: if it returnsinvalid, halt and do likewise
elseit returnsAyv for somell| < £(u)
if 1 <0, halt andreturn invalid

18: run BasePinch(A-1A1Av)
if it returnsinvalid, halt and do likewise
elseit returnsAjv for somell’| < I - 1] = 1 - 1,
21: in which casehalt andreturn A}*v
if v(0) > 0

24: run Pinch, _1 (AL uA 1A AY)
if it returnsinvalid, halt and do likewise
elseit returnsA'OA,Aglv for some|l] < ¢£(u)
27: run BasePinch(A *A A A;V)
if it returnsinvalid, halt and do likewise
elseit returnsAy A;v for somell”| < |,
30: in which casehalt andreturn A'(;'v

11 If r = 2, the rank ofu is zero, sBasePinch applies.

13 €(A'(;v) < ¢(w) — 2 by properties oBasePinch.

160 w ~ AoATATLUA_vwhenr > 2 andv(0) = 0, becausé\v ~ A,_;v and we
can substitutéoA *A L for AL as per Lemma.4, given thatuAv(0) > 1. So
if A"t uA_yvisinvalid, then so isv. And if Pinch,_; gives us that\ % uA_v ~
ALV, thenw ~ AgA AV

17: If I <0, thenw is invalid because\'ov(O) < 0 and lies outside of the domain of
AL (sincer > 2).

19: Next, working fromw ~ AOA;lA'Ov established in our comment above on lirG
we get thatv ~ AgA-*AL 1A v becausd\;*Av ~ v, given thatr > 2 andv(0) = 0.
So, if BasePinch tells us thatA *A; *A v is invalid, then so isv.

20: || - 1] = - 1 here becaude> 0 here.

21: Similarly, if A7XAGTAV ~ Ajv, thenw ~ AJ*Iv. Now, |7 +1] < [I| + 1 < | by
line 20, andl < ¢(u) in the case > 2 of line 16. So¢(A)*v) < {(w) — 2, as
required.
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23 W~ AoAPACL UA 1 A Ay v because Lemna4tells us that substituting, _, A Ayt
for Ar and AGATIAL for A7t in w gives an equivalent word ag0) > 0 and
uA_1v(0) > 1. This word is longer thaw by 2.

25 So, if the siffix A1 uA_1A;Aj*vis invalid, then so isv.

26: Similarly, if the sufix A" UA_1A AV ~ ALAAGY, thenw ~ AoATTALA ALy,

28 If the sufix A- A A A; v is invalid, then so isv.

30: If the sufix A;LALAAGNY ~ AU AV, thenw ~ AgAT Agv ~ A'v and has length
at mosté(w) — 2 sincell”| < |I| and (from line26) |I| < £(u) (or to put it another
way, we have takemoA *A- uAALv (see the comment on lin23) which is
four letters longer thaw, andPinch;_; andBasePinch have each shortened it
by two).

FinalPinch, halts inO(£(w)*(-?) time because it makes at most four calls on subrou-
tines Positive, OneToZero, Pinch,_; orBasePinch) and, each time, the subroutine has
input of length at mosf(w) + 2 and halts irO(¢(w)**~2) time. O

Correctness o€utRank, andFinalPinch; implies correctness dfinch, forr > 2.

3: If vis invalid, then so isv. If v(0) < 0, thenv(0) is outside the domain & (as
r > 2) and sow is invalid.
5: If uAvisinvalid, then so isv. If uAv(0) < 0, thenv(0) is outside the domain of
Al (asr > 2) and sow is invalid.
10: (AT AY) < (W) < £(w), the second inequality being by an established prop-
erty of CutRank;,.
11 If the suffix A-lu’Arv of W is invalid, then so isv,, and hence so is.
12: w” ~ wbecause it is obtained by replacing théfisuA-1u’'A,v of w' by an equiv-
alent word.
13 n(w”) = 0, so we can usBositive to determine validity ofv’. Also, {(w”) <
i+0(ALV) < i+0(ATUAV) -2 = ((w) -2 < £(w), the second and final inequalities
follow from established properties BinalPinch, andCutRank,, respectively.

ThatPinch, runs inO(£(w)***-1) time follows directly from the time bounds for the sub-
routinesPositive, CutRank,, BasePinch andFinalPinch, as it calls these at most six

times in total and on each occasion, the input has length at f{w)—see the comments

above on lined0and13. O

Correctness oPinch, for r > 1 and ofCutRank, andFinalPinch, forr > 2. Forr =1,
the correctness @finch; follows from that ofBasePinch. As explained above, far> 2,
the correctness dfutRank, andFinalPinch, implies that ofPinch,, and the correctness
of Pinch,_; implies that ofCutRank, andFinalPinch;. So, by induction om, Pinch; is
correct for allr > 1. O

Correctness cReduce. The idea is to eliminate the rightmo&t® with 1 < r < k fromw
by either usingPinch; directly on a sffix of w or by manipulatingv into an equivalent
word with a sifix that can be input intBinch,;.

4: Ay*A(0) = 0 (sincer > 2), SOWoASTA, ~ Wo.
6: A, ~ A'woASMA, and sow ~ w. Evidently,n(w) = n(w) — 1. And {(w) =
L(wr) + 1] < €(wy) + €(W) + 1 = £(w) < £(w) + 2K, as required.
8. A1(0) = 0, sow,A; ~ Wa.
100 A) ~ Al'w,Ar ~ AT'w, and sow ~ w, as required. Also, evidently(w) =
n(w) — 1, andé(w’) < £(w) + 2k, as required.
13 Moreovern(ws) = n(wy) = 0 because(w,) = 0, as will be required in liné>5.
15: The length ofw” is at most(w) — £(w;) — 2 by properties oPinch,.
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Algorithm 2.8 — Reduce.
o Input a wordw with n(w) > 0.

o Either return thatv is invalid, or return a wordv’ ~ w with £(w’) < ¢(w) + 2k and

n(w) = n(w) — 1.
o Haltin O(¢(w)* 1) time.

expressv asw; A 'w, wherer > 1 andi(w,) = 0
(i.e. locate rightmosf;t, ASL, ..., At in w)

if rank@w,) < r andr > 2, run Pinch, (A 'WoASA,)
if it declaresA; *w,Ag' A, invalid, halt andreturn invalid

6: elseit returnsA{) for some|l| < £(w-) + 1, in which caseeturn w' := WlA{)

if rank@v,) = 0 andr = 1, run Pinchy(A7'w,A;)
9: if it declaresAllszl invalid, halt andreturn invalid
elseit returnsA}, for somell| < ¢(wy), in which caseeturn w' := wi A}

12: if rankfwvy) > r
expressv, aswsAsw, wherer < sand rank{vs) <r
run Positive(w,) to decide among the following cases
15: if r = s=1, setw”’ = Pinch; (A ‘WzAswy)
else ifwy is invalid orv(0) < 0, halt andreturn invalid
else ifwy(0) = 0,r = 1 ands > r, setw” = Pinch, (A-tuAlA V)
18: else ifw,(0) = 0 andr > 1, setw” = Pinch, (A 1wsA W,)

elsew,(0) > 0, so setv” = Pinch, (A7 WA A1 AGt Ar2At - - AsAy T W)

if w’ = invalid, halt andreturn invalid
21: else returnw := wyw”

16: If w3(0) < O, thenw is invalid becauss > 2

17: In this caseA; 'wsAgAw, ~ A-waAsw;, sinceAoA (0) = Ag(0). As required, if
w” # invalid, it has length at most(A uAjAV) = (W) — £(wy) + 1 < £(w) —
{(wy) + 2k and contains né 2, ..., At by the properties established finch, .

18: Similarly, in this caseA *wsAw, ~ A-lwsAqw, sinceA (0) = Ag(0), and the

output has the required properties.

19: If wy(0) > 0, thenA'ws Aqws andArwsAs 1 AsAS W, are equivalent by Lemniad
Asv(0)- 1 > 0, and so is in the domain &, the wordAsAglv is valid. And,
asAsA;v(0) = As(v(0) - 1) > 0, we may replace th&s ; by As 2As 1A, to get
another equivalent word. Indeed, we may repeat this prazess< k times, to

yield an equivalent word

AWsA A AT AcAGt - AAG Wy

of length¢(w) — £(w1) + 2(s —r). Applying Pinch, then returns (if valid) an

equivalent word
W= A AAT AAY - AT W

whose length is at mogtw) — £(wy) + 2(s—r) — 2.
20: If the suffix A waAsw;, of wis invalid, therw is invalid.

21: By the above/(w’) < £(w) — £(wg) + 2(S - r), we have thatv’ ~ A-lwsAgw;,
n(w’) = 0 andf(w’) < (A IwsAW,) + 2r = 1+ £(Wp) + 2r. It follows that
W~ wiw” andf(wiw’) = £(wa) + (W) < €(wr) + 1+ (W) + 2r < £(w) + 2K, as

required. Also, again evidently(w’) = n(w) — 1.
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Reduce halts in O(¢(w)***-1) time sincePinch, andPositive do and they are each
called at most once and only on words of length at ndfsj + 2k, and otherwis®educe
scansy and compares non-negative integers that are at knost O

Proof of Theoreni. Here is our algorithmAckermann satisfying the requirements of The-
orem1: it declares, in polynomial time iéi(w), whether or not a worav(Ay, ..., Ay) is
valid, and if so, it gives sgm().

Algorithm 2.9 — Ackermann.
o Inputa wordw.
o Return whethew is valid and if it is, return sgm{(0)).
o Halt in O(£(w)**%) time.
if n(w) > 0, run Reduce successively until
it either returns thatv is invalid,
or it returns somev' ~ w with n(w) = 0
run Positive(w’)

After at mostn(w) < ¢(w) iterations ofReduce, we have a wordv' with n(w’) = 0 such
thatw’(0) = w(0). We then applPositive to w to obtain the result.

The correctness dickermann is immediate from the correctnessRéduce andPositive.

Reduce is called at most(w) times as it decreasegw) by one each time. Each time it
is run, it adds at mostkto the length of the word. So the lengths of the words inputted
into Reduce or Positive are at most(w) + 2ké(w). So, aReduce andPositive runin
O(¢(w)* &1y time in the lengths of their inputAckermann halts inO(¢(w)**¥) time. O

3. EFFICIENT CALCULATION WITH lﬁ-COMPRESSED INTEGERS

3.1. y-functions and y-words. Similarly to Ackermann functions in Sectiéhl, we de-
fine y-functionsby

V1:2-2 n—n-1
Vo Z—>172 n—2n-1

Y —N — -N Vi>3
wi(0) = -1 Nzl
Yizi(n) = Yiviaa(n+1)-1 VYne -N,Vi> 2.

Having entered the= 1 row andn = 0 column as per the definition, a table of values of
¥i(n) can be completed by determining each row from right-toffein the preceding one
using the recurrence relation:

n R} -3 2 -1 0
n-1 .- -5 - 3 2 1|1
2n-1 ... -9 -7 5 -3 1|y

2-3.2" ... 46 -22 -10 -4 -1|ys
: © 0 1-3.2% 95 -5 1|y,

—if—l —1 Ui

The following proposition explains why we defingefunctions with the given domains. It
details the key property @f-functions, which is that they govern whether and how a power
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of t pushes pasing on its right, to leave an element Bi times a new power dfwithout
changing the element @y represented.

Proposition 3.1. Suppose,ri and k are integers such thdt< i < k. Then'ta; € Hits in
Gk if and only if r is in the domain af; and s= ;(r).

Proof. First we prove the ‘if’ direction by inducting on pairs (), ordered lexicographi-
cally. We start with the cases- 1 andi = 2. Asajt € Hy andttat = ay,

ta; = agtt™t e Hit'™! = H,t1®

forall r € Z. And as,axt € Hy andt™tast = a,a; also,

ta, = t'at™"t" = apa)'t’ = apt(agt) " !
forallr € Z. Next the case whemre= 0 and 1< i < k:

ta = a = att™ € Hit™? = HtO),
sinceat € Hy andy;(0) = —1. Finally, induction gives us that
t'a = t"lag gt € Hti (g jt! = Hi -1 = i
foralli > 2 andr <0, as required.
For the ‘only if’ direction suppos€a; € Hit® for somes € Z. Then
tat™ = 67"(g) € Hets'

for somes e Z. Lemma 7.3 in12] tells us that in the caseés= 1, 2 this occurs when € Z,
and in the caseis> 3 it occurs whemr € —N. In other words, it occurs whenis in the
domain ofi;. Now, given that is in the domain of};, we have that a; € H,t*(") from the
calculations earlier in our proof, and sqt” () = H,t®, but this implies thas = y;(r) by
Lemma6.1in12]. O

For example, painful calculation can show that

t?aga; = (agt)(agt)(ast)(agt)(ast)’ € Hat ™,
but Propositior8.1immediately gives:

t‘2a3a1 € Hgtm%(_z) = Hgt_ll.

The following criterion for whether and how a powertgfushes past aar* on its right,
to leave an element ¢y times a new power dfcan be derived from Propositiéhl
Corollary 3.2. Suppose i and k are integers such that i < k. Then ta ! € Hyt" in Gy
if and only if r is in the domain of; and s= ;(r).

Proof. fa ™ € Hyt" if and only ift'a; € Hyt®. m]

The connection betweegifunctions and hydra groups is also apparent in that theyeel
to the functionsg; of [12] by the identityyi(n) = n — ¢;(-n) for all n € —N and all

i > 1. We will not use this fact here, so we omit a proof, excepetpthat the recurrence
¢i+1(n) = giza(n— 1) + gi(gi+2(n— 1)+ n—-1) foralli > 1 andn > 1 of Lemma 3.1in12
translates to the defining recurrencesefunctions.
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Lemma 3.3.

(9) Yo(n) = 2n-1 vYn<0,

(10) 3(n) = 2-3-27" Yn<0,

(11) gi(-1) = -i-1 Vi>1,

(12) Yi(n) = ¢isa(n) Vi>1n<O,
(13) gi(n) > yi(n-1) Vi>1n<0,
(14) n > yi(n) Vi>1n<0,
(15) Gi(m) + ¢i(n) > Yi(m+n) Ynm< -2,i>2,
16) W - = S vizamen

Proof. (9-15) are evident from the manner in which the table of valueg;@f) above is
constructed. Formal induction proofs could be given as fimma2.1

For (16), whenm > n (so thatn| > |m|),

Wsm) —gs(n)] = 327327 2 327327 = 2.3.27

1 O (S _1
5'3'2 -1 = 2(3 2"_2) = 2|ws(n)|,

and wherm < n (so thatn| < |m|), by the preceding

\%

() ~Ys()] = () ~vslml = sl = 3 Wl

using (L3) for the last inequality. So the result holds foe 3. That it also holds for all
i > 3 then follows. We omit the details. O

By (13), y-functions are injective and so have inverges defined on the images ¢f:

Yyt 27 ne—n+1,
Yot 122+15Z ne— (n+1)/2,
Yt rimgy - -N n - y(n).

So, like Ackermann functions, they can specify integerg-wordis a wordf = f,f,_1--- f;
where eacH; € {y;t, y3t, ...} We let

n(f) = #i| 1<i<n, fi =yj" for somej > 2}.

If fi_1---f1(0) is in the domain offj for all 2 < j < n, thenf is valid andrepresentshe
integerf(0). Whenf is non-empty, ranki) denotes the highessuch thai! is a letter
of f. We define an equivalence relatieron words as in Sectioa. 1

Proposition3.1and Corollary3.2 combine to tell us, for example, that:
t7385181 € H2t¢1¢51(73)

if —=3 € Imgy» andy;*(-3) is in the domain ofy;—in other words, ify1y;y3 is valid.

In fact these provisos are mef;,*(-3) = -1 andya(-1) = -2, sot3a’a; € Hyt?
And, given thaHyt" = Hy if and only ifr = 0 by Lemma 6.1 in12], determining whether
t3a;'a; € H, amounts to determining whethggy,'y3(0) = 0. (In fact it equals 2, as
we just saw, sclr3a51a1 ¢ H,.) This suggests thatfeciently testing validity ofy-words
and when valid, determining whetheaword represents zero, will be a step towards a
polynomial time algorithm solving the membership problemHy in Gy. (Hadwlwglt//f
been invalid, we could not have immediately concluded 1hattt3a§1a1 ¢ H, or indeed
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thatt3a;'a; ¢ Uz Hot". We will address this delicate issue in Sectibr) So we will
work towards proving this analogue to Theorgém

Proposition 3.4. There exists an algorith®si that takes as input@-word f = f(y1,...,¥x)
and determines in time @(f)**¥) whether or not f is valid and if so, whethe(0} is pos-
itive, negative or zero.

Expressing the recursion relation in termsyoefvords will be key. So, analogously to
Lemma2.4, we have:

Lemma 3.5. Suppose w arey-words. The following equivalences hold if v is invalid or
if v is valid and satisfies the further conditions indicated:

WiV ~ Uiitinah; 'V v0)<Oandi>2
Uy v o~ ugays Ly tygty V(0) < -landi>1
uyg; v ~ uv W0)>0andi> 1.

3.2. An example. Let

f = y3hua vivauaars)
Here is howPsi checks its validity and determines the signf¢d).

1. First we locate the rightmogt* in f with i > 2, namely thejxgl, and look to
‘cancel’ it with the firsty, to its right. In short, this is possible because

((2x-1)-2-1)/2 = x-1,
allowing us to replace,y5y, with y to give

Ua vals(Wata) Yyt ~ f.

2. Next we identify the new rightmosgt™ with i > 2, namely thepgl and we look
to ‘cancel’ it with theys to its right. To this end we first reduce the rank of the
subword between thegl andys (like CutRank). We check by direct calculation
that

Yrpas(ays) g (0) < -1
(like Positive), so the substitution;yzty, y  forygtis legitimate by Lemma.5
and
Yas o i ey Yyt ~ .
By Lemma3.5, cancelation of they;* with y1, w5 with ¢, and theny;* with
Y3 then gives
Yi(apa)yayit ~ f.

3. This contains n(pgl, e zp;l and direct evaluation from right to left (likositive)

tells us tha1 (y2y3)?w1y;t is valid and represents a negative integer.

3.3. Our algorithm in detail. Fix an integek > 1.

Subroutines oPsi correspond to subroutines bfkermann. \We first have an analogue of
Bounds, to calculate relatively small evaluations of the

Algorithm 3.1 — BoundsIT.

o Inputf e N.

o Return a list of all the (at most (Igd)?) triples of integersr( n, y,(n)) such that > 3,
n< -2, andy,(n)| < ¢.

o Halt in time O(¢).
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With these minor changes, it works exactly liReunds: replaceA; by vi.1, calculate
values ofy, (n) for n < -2, and use the recursive relation fpifunctions. The correctness
argument foBoundsII is virtually identical to that foBounds.

Similarly to Ackermann, Psi works right-to-left through &-word eliminating letterg/;*

for r > 2, which like (theA-! for r > 1) greatly decrease absolute value when evaluating
the integer represented by a validvord. Once all have been eliminated, giving-avord

f with n(f) = 0, a subroutin®ositiveII determines the validity of.

Algorithm 3.2 — PositiveIl.

o Input ay-word f with n(f) = 0.

o Either return thaf isinvalid, or thatf is valid and declare whethd&0) > 0, f(0) = 0,
or f(0) < 0.

o Halt in time O(£(f)3).

PositiveIl can be constructed analogouslyPmsitive with the following changes:

1. The role ofy; corresponds to the role &_;.

2. Unlike Ackermann functiongj; : -N — —N, so appropriate signs and inequali-
ties need to be altered.

3. We still evaluate letter-by-letter. However, in placeusing Bounds to check
whether an evaluation b4 is above some (positive) threshold, we BeandsII
to check thatyk evaluated on a negative number is below some (negativestthre
old.

4. Similarly, the case where a partial letter-by-lettedeston is negative should be
replaced by a case where the partial letter-by-letter e is positive.

ThenPositiveIl can be justified similarly tRositive.

NextBasePinchII processes words of the formlw'll//kv. We make one major change:
we have a stricter bound thBasePinch on the length of the returned word. The
substitution suggested by Lemr8&b requires a substitution of 4 letters for 1 rather than
the 3 for 1 substitution suggested by Lemhd for the Ackermann case. Here and in
PinchII, stricter bounds on the length of the output compensat&élonger substitution
and thus prevent the length of words processed by recurailggoPinchII from growing
too large.

Algorithm 3.3 — BasePinchII.

o Input a wordf =y tuy,v with k > 1, rank() < 1, v ay-word, and;(v) = 0.

o Either returninvalid when f is invalid or return a word” = y!'v ~ f such that(f’) <
(f)—2if uis empty£(f’) < ¢(f) — 4 if r > 2, and otherwisef(f') < ¢(f) - 3.

o Halt in time O(£(f)%).

ConstrucBasePinchII like BasePinch with the following changes:

=

. Replace all called subroutines by thgiwversions.

. Yis1 replacedA foralli > 0.

3. Signs and inequalities are adjusted to reflect that : -N — —N and that
Y1(n) = n—1 (in contrast tody(n) = n+ 1).

4. For the case = 2, wheneve/,v(0) is valid, it is odd (sincey,(n) = 2n — 1)

and hence the parity dfdetermines the parity afy,v(0). For validity, we need

uy1v(0) to be odd, and this is fiicient sincey,*(n) = (n+ 1)/2. Whenl is even,

N
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return the equivalent worfl := w'l/zv. Otherwisef is invalid. The restrictions on
the length of follow directly from the fact thali /2| < |I|- 1 if | = 0. Henceforth,
assume that > 3.

5. The inequality

(M) = 0 (P = S ()

which holds for allr > 3 andm # p takes the place of the analogous inequality
for Ackermann functions:

A~ A > SAM)

which holds for alk > 2 andm # p. Following similar arguments f@asePinch,
we instead need 8 ¢, v(0) > —2|I| to account for the fact that thig are functions
-N — —-N.

6. If the algorithm outputs’ ~ f with f/(0) = ¢ € Z, thenf’ = y}O°v.

Correctness oBasePinchII. The argumentis essentially the same as tha&dsePinch
except that we need to verify the stronger assertiong ). If | = 0, the algorithm elim-
inatesy; andy,, reducing length by 2.

For the casé # 0, consider the following: we claim that
e (n) = (N = 1) > |¥3(0) — ¥a(-1)| = 3.
Explicitly, for r = 3, we have:
Wr(n) —¢r(n—-1) = 3.2"-3.27"D = 3.2">3.20 = 3
because < 0. Forr > 3, assume the result holds for all ranks less thaie have:

Wr(n) - lpr(n - 1)| = Wr—l(lpr(n)) - Wr—l'ﬁr(n - 1)'
> r-1¢pr (N) = Yr-1(Yr (N) — 1) > [3(0) — ¢ra(-1)I

where the final two inequalities follow from the fact thiat ; is non-decreasing and the
inductive hypothesis, respectively.

By extending this argument inductively and using thats non-decreasing:

[ge(N) —yr(N+ M) > 3m.

So, forr > 3 andl # 0 wheref’ = y&"OV(0), we have thai;(c) — ¢ (v(0)) = | implies

that|c — v(0)| < %|I|. In particular, ifl # 0, then|l| > 3. Therefore,
£(f) = lc—v(0)+ £(v) < %|I|+€(v) < lJ=2+4¢(v) = ¢(f)-4

sincell| - 2 > %lll if || > 3. Thus we have verified the assertions concerfftig. O

OneToZeroII is essentially the same @meToZero with Ay replaced byy;.

Algorithm 3.4 — OneToZeroIl.

o Input a valid word word of the fornfi = y;1uy,v with r > 3, u not the empty word, and
n(u) = n(v) = 0 such thatiy,v(0) = —1.

o Return an equivalent word of the forf = ¢} v with ¢(f') < ¢(f) - 3.

o Haltin timeO(£(f)4).
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Proof that((f’) < ¢(f) — 3in OneToZeroII. Now v(0) < 0 sincev(0) is in the domain of
Yr andr > 3. Consider first the cas€0) < —1. First observe that,(x) < x — 3 when

x < -1 andr > 3. Sincen(u) = 0, y;* is the only letter it can contain which decreases
the absolute value a0) is evaluated. So, given that,v(0) = —1, u must containﬁ;l at
least|v(0) — 3| — 1 = |[v(0)| + 2 times. S&(u) > |[v(0)| + 2 and therefore

o(f) = ¢€(f") = 2+ ¢€(u) — v(0) > 4,
and sof(f’) < £(f) — 3 as required.

If v(0) = 0, 0neToZeroIlI returnsf’ = v. Sinceuis not the empty word;(f’) < £(f) — 3
as required. O

PinchII, is an analogue tBinch,. As in the previous situation, the proof is by induction
and usesBasePinchII as its base case. As BasePinchII, there are now stronger
restrictions on the length of a returned equivalent word.

Algorithm 3.5 — PinchII, forr > 2.

o Inputawordf =y ugvwith r > 2, rank() < r — 1, v ay-word, andy(v) = 0.

o Either return thatf is invalid, or return a wordf’ = zp'l'v equivalent tof such that
() < ¢(f) = 2 if uis empty,£(f') < ¢(f) — 4 if r > 2 and rankg) = 1, and otherwise,
o(f) < ¢(f) - 3.

o Haltin O(£(f)* 1) time.

The construction oPinchII, is the same aBinch, except that:

1. We replacé\, by ¢, forr > 0.

2. We replace all called subroutines by thgiword versions.

3. Inline4, whenPositiveIl checks the value afy,v, declare the word invalid if
the result was invalid, positive or 0. Otherwise, @utRankIT, (w) followed by
FinalPinchII, when the result o€utRankII, is not invalid.

Before discussing the correctnessPdhchII,, we construct and analyze its subroutines
CutRankII, andFinalPinchIl,.

Algorithm 3.6 — CutRankII, forr > 2.

o Input ay-word of the formf := yw uy,v with 5(u) = n(v) = 0 and rankif) < r — 1.

o Either declare thaf is invalid, or halt and returnf’ := ylv ~ f, or returnf’ :=
Y7 uyev ~ f where rank(’) < r — 2. In all cases(f") < £(f) and if f := ylv, then
o(f) < ¢(f) - 3.

o Haltin O(£(f)*D) time.

The construction o€utRankII, is the same aGutRank; except that:

1. We replace; by y.1 forr > 0, Ag by (//11. We replace all called subroutines by
theiry-word versions.

2. In line 6, check whetheuy,v(0) = —1. If so, run and return the result of
OneToZeroII(w).

3. Inline11, instead of the substitutiol, = A,_1A A;* which encodes the defining
recursion relation for Ackermann functions, use LemBraand make the sub-
stitutiony;* = yayty Lyt to convertw to gy ty iU e u” Yy v where
n(u) = n(u’) = n(u”) = 0 andu’ has rank strictly less than- 1.
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Correctness o€utRankII, assuming correctness BinchII, ;. Inthe cas®neToZeroII
is used, all claims follow from the specifications of thataithm.

We show¢(f’) < £(f). The only changes fror@utRank, occur in thewhile loop used to
remove successivg,_1. As for CutRank;,, it suffices to check that each iteration of this
loop has output no longer than its input.

CutRankII, returnsf’ = f if u has rank less than— 1, so assume,_; appears iru so
ranku) = r — 1. If uyv(0) = -1, then as we show fa@utRank,, after each iteration of the
loop, there is no increase in length.uf,v(0) # —1, express asy; u'y,_1u"y,v where
n(w) = n(u”) = 0, rank(r) < k-1 and rank(”) < k— 1. Substitutings1y,_1yry7* for y,
adds 3 letters. There is at least one letter betvueépandwr,l, so applyindPinchII, ;
then decreases length by at least 3. Hence whetRankII, does not encounter any
special cases in thehile loop, £(f") < ¢(f).

To adapFinalPinchII, to giveFinalPinch;:

1. In line 3, check whetheuy,v(0) = —1 and, if so, run and return the result of
OneToZeroII(f).
2. Inline24, use Lemma&.5instead of Lemma.4to make the analogous substitu-

tions,y; =yt L ywrt andyy = vyt

Algorithm 3.7 — FinalPinchII, forr > 2.

o Input a word of the formy; *uy, v with n(u) = n(v) = 0 and rank{’) < r — 1.
o Either returninvalid or return an equivalent word of the fom‘iv.

o Haltin O(£(f)*-2) time.

Correctness oFinalPinchII, assuming correctness BinchII,. Consider the special
cases:

e uis the empty word: the argument is similar to the case wheris the empty
word in the main routine.

e uy,Vv(0) = —1 and u is not the empty word: the argument is similar to the case
whereu is the empty word iPinchII,.

e v(0) = 0: substitutingy1y; ¢, Yyt for y;! adds 3 letters. Substituting for
Yr by ¢ _1 results in no increase in length in this case. A€atRankII,, the
substitution fory;* ensures that there is at least one letter betweénandy;_1,
so if PinchII, returns an equivalent word, that word is at least 4 letteostsh
than the input word by the induction hypothesis.

e uy,v(0) < —1 andv(0) < O: substitutingy1y,—1yry;* andyay; Ly Lyt for y,
andy; !, respectively, adds 6 letters. ApplyiRgnchII, ; to

Ui Wy u Y,

whose length is at mog({f) + 6. There are non-trivial letters betweqerfl, Ur-1.
So the equivalent word returned BgnchII, ; is at least three letters shorter.
Therefore, the result is of the form

Y Y '
for somel € Z and has length at mosé(f) + 3. If | = 0, runningBasePinchII

triggers a trivial case wher& = v is returned and(v) < ¢(f) — 3 sinceu is
non-empty. Otherwise, applyirBasePinchII to w;lw'lt//rwllv, if an equivalent
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word of the formy! y;1v is returned, its length is 4 letters shorter than the input
to BasePinchII. Hence we have a word equivalentft@f the form

e
whose length is at mog{f) — 1, and the word is equivalent to:
vV
yielding an equivalent word whose length is at mg(g) — 3. O

Correctness oPinchII, assuming the correctnessRinchII, ;. Correctnesscan be proved
by mimicking our proof of correctness fBinch,. However, the substitutiof, = A,,lA,Agl
for Ackermann functions increases the length of the word Btt2rs, but the substitution
£ = (yayr-1y; w1 h)* increases length by 3 letters, so we will need to accounfuéyre
for this difference.

Whenr = 2, the bound oi(f’) comes directly from the bound fBasePinchII.

Letr > 3. The calls tdPositiveIl in the main routine are on words no longer thian
We also have the special case wharis the empty word, where the algorithm halts and
returnsv which has lengtif(f) — 2. If uyyv(0) = —1 andu is not the empty word, by part
of the justification foBasePinchIT, yV(0) < v(0)— 3. Sincen(u) = 0, the only letter iru
that decreases absolute value when evaludtiyletter-by-letter from right to left ig ;™.

If ugv(0) = -1, theny,v(0) < v(0) — 3 by the specifications @neToZeroII. Sou must
containy;* at leastv(0)| + 2. Therefore, the(y; ug,) > V(0)| + 4. Thusf’ = ¢}V has
£(f’) < ¢(f) — 4 as required. O

Correctness and construction RéduceII are nearly immediate by following those of
Reduce, replacingA; by i1 and changing the subroutines to thevord versions. The
bound¢(f’) < ¢(f) + 3k contrasts with the bounf{w’) < £(w) + 2k of Reduce because
Lemma3.5requires a substitution that results in a gain of 3 lettettserathan the gain of
2 required by Lemma.4.

Algorithm 3.8 — ReduceIl.

o Input ay-word f with n(f) > 0.

o Either declare that is invalid or return an equivalent word of the forfhwith £(f’) <
¢(f) + 3kandn(f’) = n(f) - 1.

o Haltin O(£(f)* 1) time.

Finally, Psi can be constructed similarly tickermann by replacing allA; by i1 and
replacing subroutines by their counterparts. The proofso€orrectness then essentially
follows that ofAckermann. (The special case= 1 is trivial; we distinguish it to make an
estimate at the end of Sectidrbcleaner.)

Algorithm 3.9 — Psi.

o Input ay-word f.

o Either return thaff is invalid, or return that it is valid and declare whetH€®) > O,
f(0)=0, orf(0) < 0.

o Haltin O(£(f)**) time whenk > 1 andO(¢(f)) time whenk = 1.
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4. AN EFFICIENT SOLUTION TO THE MEMBERSHIP PROBLEM FOR HYDRA GROUPS
4.1. Our algorithm in outline. Our aim is to give a polynomial-time algorithMember;
which, given a wordv = w(ay, . . ., W, t) on the generators of the hydra group

Gk = {(a,...,at |t at = 0(&)),

whered(g) = aa-1 for all i > 1 andd(a;) = az, will tell us whether or notv represents an
element ofH, = (ait, ..., at).

The first step is to convert into a normal form: we use the defining relations @y to

collect all thet** at the front, and then we freely reduce, to gi.ewherer is an integer
with |r| < £(w) andv = V(ay, .. ., ay) is reduced. Pushingta! past ang; has the &ect of
applyingé*! to a;, so it follows from the lemma below that

V) < fw)(ew) + 1)<t
and that"v can be produced in tim@(£(w)~).
Lemma4.l. Forallk =1,2,...and all ne Z,

(@) < (nl+1)"
Proof. Forn € N define f(n,k) := £(0"(ax)) andg(n, k) = £(67"(ax)). To establish the
lemma we will show by induction ok that f (n, k) andg(n, k) are each at mosh 1)< 2.
For the cas& = 1, note thatf (n, 1) = g(n, 1) = 1 becausé"(a;) = a; for all n € Z.

For the induction step, considkr> 1. As#"(ax) = 6" 1(6(a)) = 0" (a)0" *(ax_1), we
have

fK) = f(n-1LK+f(n-Lk-1)
FO,K) + F(O,k=1)+ -+ f(N—LKk—1)
1+12 4. 4 k2

(n+ 1)

IA

IA

where the first inequality usd40, k) = £(#°(ax)) = £(ax) = 1 and the induction hypothesis,
and the second that each of the 1 terms in the previous line is at most{ 1)<2.

Next, note that~*(ay) = ad~*(a ;) becausé(ax) = aax-1. So, forallne Z
0@y = "o a) = 0" Daw(El) = 0" Y@ @l

and therefore

(" (@) = 6" V@) + (o @) = (" D@d) + (0" (ex-1).
Soforalln>0

g(n,k) < gin—1,k +g(n k-1)

g0,k +g(L,k—=1)+---+g(n,k—1)
1+12 4.4+ (n+1)<2

(n+1)*

INIAIA

IA

sinceg(0,k) = 1 and 1+ 152 and each of the othar terms in the penultimate line is at
most f1 + 1)<2. O

NextMembery calls a subroutinBushy which ‘pushes’ the power dfback throughv from
the left to the right (the power varying in the process), leguhe prefix to its left as a
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word onayt, ..., akt. The powers of that occur as this proceeds are recordegwords,
as they may be too large to record explicitly in polynomiiadei

Here are some more details on how we ‘push the poweétlofoughv.” We do not try to
progress the power afpast ones! at a time. (There are words representing elements of
Hy for which that is impossible.) Instead, we first considerltmtions of thes, then

the aif}l, and so on. Followingl?], we define thaank-k decomposition of v into pieces
as the (unique) way of expressiu@s a concatenation - - - 7, of the minimal number of
subwords (piece$) 7; of the forma;'ua, ? where rank) < k — 1 ande, e, € {0, 1}. For
example, the rank-5 decomposition of

-1 14 -1
a503a; Aza5a185 A5

(asazag 1)(32)(353185 1)(3185 h.

We use pieces becautse € Hit® for somes € Z if and only if it is possible to advance the
power oft" throughv one piece at a time, leaving behind an elemerpfMore precisely,
t'v e Hit® if and only if there exists a sequence ro, ..., rp, = ssuch that' 7,1 € Hyt"+
(Lemma 6.2 of 12]).

Let fo := y7", sofo(0) = r. Then, for each successiyeve determine, using a subroutine
Piecey, whether or not there existse Z (unique if it exists) such that

th1Or e Hyt"

and if so, it gives a/-word f; such thatf;(0) = r;. Piecex expresses; asa,'ua * where
e, € € {0,1}. It operates in accordance with PropositladOwhich is a technical result
that we call ‘The Piece CriterionPiecey has two subroutines. The fir§tronty, reduces
the problem of whether; exists to determining whether, for a certairword f” , and a
certain rankk piecer] which does not hava,, as its first letter, there exist§ € Z such that
t"On € Hi_1t". Then the secondacky, makes a similar reduction to a situation when
there is nag;;! at the end. It then inductively calPushy ; on the modified piece (which is
now a word of rank less thak) to find ay-word f; representing;, and then modifies/

to getf;. It detects that the fails to exist by recognizing (usir@si) an emergings-word
not being valid, or noticing that; fails to have a sffix or prefix of a particular form.

This inductive construction has base caaesh; andPiece;, which use elementary direct
manipulations.

If ry,...,rp all exist, therPsi determines whether or nd§(0) = 0, and concludes that
does or does not represent an elemertgfaccordingly.

4.2. Examples. The algorithms and subroutines named here are those weomiitizict
in Section4.5.

Example 4.2.Letw = ajastaya,’a;*. Aswe saw in Sectiof.4, w = Uz (azt) (aut) (azt) *uza™*
in Gz which has length 2(3(4) + 3 = 2*” - 3 - 1 as a word on the generatarg, at, ast

of Hz. Here is how our algorithriembery discovers thaw represents an element bi
without working with this prohibitively long word.

1. Convertw to a wordtv representing the same elemeni@f by using thatit =
td(a;) in G3 for all i to shufie thet to the front. This produces

Vv = 0(ag)*0(ar)anay'as" = (asar)*azaia;'a;”.

2. Definefo := y71, to express the powei(0) = 1 of t here.
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The rank-3 decomposition gfinto pieces is:
Vv = (asay)(asay)(asar)(asabaia; ag ) (a5 ) (a5 ") (as"h).

Accordingly, define

. . . . 2,24-1,-1 . . . -1
1 = o = ;13 .= dAgdy, T4 1= agda;d, a3, 5 1= Mg .= M7 .= ag".

A subroutinePush; now aims to findy-words fy, ..., f; such thatti+Ozr;
Hstf©@ fori =1,...,7, by ‘pushing the power dfthrough successive pieces.’
So first a subroutinRieces is called to try to pass°©® throughr;. The subrou-
tine Fronty calls a further subroutinRrefix; to find the longest prefix (if one
exists) ofr; of the forméd'~(ag)a, for somei > 1. Prefix; does so by generating
6°(az)ay, 6*(az)az, and so on, and comparing, until the lengthrefis exceeded.
In this instancePrefix; returnsi = 1. It follows from the Piece Criterion that
toOr; = agt € Hat® = Hat*¥1"©). Accordingly definef; := g1yt

Pieces next looks to pass™® = 0 throughz,. Front, usesPsi to check that

f1(0) = 0 < 0. By the Piece Criterion, it then follows from the fact thiag¢te are

no inverse letters im thattasa, € Ht"2¥:0). So definef, = yoysyryit.

NextPieces tries to pass™© throughrs = asa,. Likewise this is possible as

f,(0) < 0, and it defineds := (Yoy3)?y1y7

Next,Pieces tries to pass$®© through,.

7.1. Front; usesPsi to check thatf3(0) < 0. It follows thatt*©az e Hat?3%s©)
and the problem is reduced (by the Piece Criterion) to finding € Z (if
one exists) such that

t/2"Oa2a2a, a;" € Hat®.
This will represent progress as (unlikg) asa%a*a;* is a piece without an
an at the front.

7.2. Then the subroutinBacks recursively callsPiece; to find thes € Z (if
there is one) such thife*@aZa2as! € HatS. It returnsy, (y1)?yays fs. (We
omit the step®Piece, goes through.Back; then use®si to test whether
fs 1= y3ty5 (W) 2Wdws ts is valid, which it is: we examined it in Sectich2
Also Psi declares thaf,(0) < 0. It follows (using the Piece Criterion) that
tf3(0)7T4 c Hsth(O)_

NextPieces tries to pass™(© throughns. This is done byBacks. By the Piece

Criterion, it sufices to check thafls := (//glf4 is valid, which is done usinBsi.

Piece; likewise passets© throughng giving fs := y;2f4, and thert™© through

7 giving f7 := y33fa.

Finally, letg := f;. We have thatv = tv € H3t9?). So usePsi to check that

g(0) = 0. On success, declare that Hs.

In the example abov&(0) < O for all i—we never looked to push a positive powertof
through a piece. Next we will see an exampl@ehber, handling such a situation.

Example 4.3. Letw = tagayt?a;*a,%a; asttazt. We will show howMembery discovers
thatw € Ha.

1.

Shufle thet*! in wto the front, applying*! to letters they pass, so as to conwert
to the wordt?v representing the same elemen@af wherev = agaaZa;'a;'a’a;".
Letf = zpf so thatf (0) = 2 records the power df

Expresy as its the rank-3 decomposition into pieces: m17, where

. 2,2,-1,-1 _ 241
my = agdsalay ag,  mpi=ajas .

Set fy := f. Pushz now looks for validy-words f; and f, such that™©r,
Hst™(©@ andtf@z, e Hst™©), by twice calling its subroutinRieces.
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Piece; callsFront; to ‘try to movet™© pastr;. As az is the first letter ofry,
Front; callsPsi to determine the sign ofy(0), which is positive. The Piece
Criterion then says that to pagspastag requires thatr; has a prefi¥ —(az)a,
for somei which is ‘approximately’9?(az) = agagal. The subroutin®refix;
looks for this prefix by generatingf(as)a, = agay, then#*(ag)a, = asza3, then
0*(az)ay = agagalaz, and so on, until the length afis exceeded, and comparing
with the start ofr,. Here,aza, andaga,ﬁ are prefixes ofry, but agagalaz is not,
andPrefix; returnsi = 2.

CallPsi to check that is at leastfy(0) = 2.

Intuitively speaking, as this prefagas is ‘approximately’¢®(as), the length of
the ‘correction'a,a;* that has to be made for the discrepancy betwi¢as) and
the prefixagag is minimal compared to the length of the prefix that the powvier o
t advances past. In this instance:

tPry = 0 (ag)aar anay agt = (ast)tana, agt.

and have reduced the problem to pushirplglstalaglagl. The power ot being
advanced through the word is natyand this is recorded by fo, asy fo(0) = 1.
NextPieces calls Backs on inputaia;*a;* andy; f to try to advance past
aaytag’.

First, it searches for as < 0 such thata;a;'a;' € HtS. It calls Pushy, which
calls Piece, to attempt to push throughalagl. Piece, calls ¥ to find out
whethery; w1y f is valid. Itis not, and it follows from the Piece Criterioreth
there is nos < 0 such thatajay'a;® € Ht®.

So, instea®iece; searches for as > 0 such thata;a;*a;! € Ht® or, equiva-
lently, tSagaza;* € Hat.

We check fors = 1, 2, ... whether we can move& pastasazail. Use the same
approach that we used for the prefix in StepFirst try s = 1. Detect the prefix
agap of agazaIl and astaza; = td(ag) = (ast) € Hs, the problem reduces to
determining whethet®a;® € Hat or, equivalentlyta; € Hst®. This shown to
be the case bPush, which finds thatta; = (ait) € Hs and returnayiy, f,
which satisfiesy1y1f(0) = 0, to indicate the cosetist® of Hz. Finally, Backs
checks thaHst? = Hst?+2% by calling psi on yy1¢1 fo(0) = 0, and returns
f1 1= 712 fo (which satisfies;(0) = 1) to indicate thatr; € Hat"©.

(In this instance, we were successful witk: 1, but in general, we may have
to repeat the process far= 2, 3,. ... This does not continue indefinitely: we can
stop whens exceeds the length of of the word inputted iBcks because the
prefixes we check for must be no longer than that word.)

We now seek to pas§©@ throughn, by another call orPieces. Recallr, =
a?azt andf; := y Y2 fo, andfy(0) = 1.

Pieces first callsFronts but the first letter ofr, is notas, soFrontsz does noth-
ing.

Pieces then callsBacks. It first looks fors < 0 such that™©x, € HytS, which it
succeeds in finding as follows.

12.1. Push, tries to pas$"(® throughaZ, which is elementary sinc® commutes
with t: ta? = (ast)(aut)t™* and scPushy, returnsy? f;, representing/s f;(0) =
-1.

12.2. CallPsi to check thatpi fy is valid. Then to paststhroughagl, callPsi to
check thay;'y2 1, is valid. Returnf, := y;%y21, to indicate that"©Or;, €
H3tf2(0).

Member; checks thaf,(0) = 0 and declares that € Hs.
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These examples illustrate the teMembery uses and give a sense of how it works in gen-
eral. But, it is dificult to show that these tests amount to ¢imy conditions under which

a wordt"vis in Ht® for somes € Z. A result we call the ‘Piece Criterion’ is at the heart of
that and presentation and proof of is involved and will ogctiye next two sections.

4.3. Constraining cancellation. This section contains preliminaries toward ProposifidrO
(The Piece Criterion), which will be the subject of the nesdtson.

When discussing words representing elements(af, . . ., ay), we used' (atl), form > 1
andr € Z, to refer to the freely reduced word ag, . . ., an equal tod" (atl). The following
lemma will be useful for calculating with iterations @f

Lemma 4.4. Ifr > 0and m> 1, then
(17) 0 (am) = amf®(@m-1)8"(@m-1)6%(@m-1) - - - 0" *(am-1)

as words. Moreover, if < m, then the final letter of" (ay) is am—r, and if r > m, then
60 "™(ay) = a1, " "™?(ay), ...,0 (am 1) are all syfixes ofd' (ay,).

Ifr < 0and m> 1, then

(18) 0 (am) = amd (@ 1)0 % (At y) - - 6" (@),
as words, and its first letter is;pand its final letter is g}_l.

Proof. For (17), observe that the identityf (a) = 6'~(am)d"*(am-1) and inducting onr
gives that the words are equal in the free group. The word&largical because that on
the right is positive (that is, contains no inverse lettarg) so is freely reduced. if< m,
the same identity shows that the final letterdbfa,,), is the same as that 6f *(am_1),
and so the same as that@®f?(am_»), ..., and o0 " (am_;) = am_r. If, on the other hand,
r > m, then (L7) shows tha#"(am_1) is a sufix of 6" (ay), and therefore, so aké2(am_»),

0 3(am-3), ..., ™ (a).

Lemma 7.1 in 17 tells us that the two words inlg) are freely equal. Induct om as
follows to establish the remaining claims. In the case 2 we have

0'(a) = a0 (ay)o(arh) - ' (arh) = aal,

and the result holds. Fon > 2, the induction hypothesis tells us that the first letteraafie
subword@*'(a,;]{l) is am—» and the final letter isa.r;]{l, and it follows that the word on the
right of (18) is freely reduced. It is then evident that its first letteajsand its final letter

isal,. o

The remainder of this section concerns wongdsxpressed as

w = 6% (31_523)961(31611) Ry SRk (a1€I|:11)

wheree, € {+1}forx=0,...,1 +1, andaf: # ziﬂ and
ex |f Ex = —€Ex+1
(19) 1 =36—1 ifeg=eq1=1

e+l ifeg=6n1=-1

forx=0,....1. Werefertothey, ..., a"" in the subwordg®(a?), 6%(af}), ..., 6% (a")
of w as theprincipal lettersof w.

Lemma 4.5. If w (as above) freely equals the empty word, ther=ag;
forsomed < x < |+ 1.

ande, = —€x1

x+1
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Proof. The point of the hypotheses is thais the word obtained by slfiling all t** right-
wards in
Eo@)? - (@) ifeo=1
{t_eo+l(aiot)60 e (ai|+1t)6n if € = _1»
and then discarding the powertathat emerges on the right.

Now (g, t) - - - (&,,,t)%* = 1 in Hx becausav = 1 in Gy andH N (t) = {1} (Lemma 6.1 in
[12)). The result then follows from the fact thhli is free onayt, . . ., axt (Proposition 4.1
in[12]). O

The following definition and Propositioh 7 concerning it are for analyzing free reduction
of w. They will be used in our proof of Propositigh9, where we will subdivide a word
such asw into subwords of certain types and argue that all free réoluds contained
within them. There are two ideas behind the definitions of¢hiypes. One is that the
rank-1 and rank-2 letters are the most awkward for undedgtgrfree reduction, but in
these subwords such letters amntrolledby being buttressed by higher rank words. The
other idea concerns where new letters appear wheis applied to somaz?!. Itis evident
from the definition o that wheni > 0, the lower rank letters produced by applyiiido

a, or a; appear to the right cd, and to the left of;*. The same is true whén< 0 — see
Lemma 7.1 of 12].

Definition 4.6. We will define variougypesa subword
= 0%(a)- .. 6% (g
z = 6>@&)---04())
of w may take, and will denote the freely reduced formedly Z. To the left, below, are
the conditions that define the types. To the right are fad&béshed in the proposition
that follows: whatz is in cases ii and ii, and prefixes and $iixes it has in caseisiv.

When it appears below,denotes a (possibly empty) subwmed(af:) e gey(af;/) such that
ixo .o .nly < 2.

(i) ep=1, g=-1 7 = gep(aip)ugeq(ai—ql)
ipiq>3, Tpi1,...,igm1 <2 Z=6%"(a) a;ql if >0
€. 8y > 0 =a,——a ' forg;>0

(i) €p.....q=1 z= GEp(fliip)"'Ge“(aliq)
lp > .3, ig>2 . 7 = 6% (aip)eejl(ai;_l)
ij=ij+1lforj=p,...,q-1 =q,——& 7
e <0
(soepi1,...,65 <0 by (19)

(ii_l) €., 6g=—1 7 = gep(ai—pl) .. .geq(a].—ql)
ig>23,ip,>2 zZ= Gep(aip,l)eeq”(ai;l)
ij=iji+1forj=p+1,....0 =a,1 .t
g <0
(soep,...,e4-1 <0 by (19)

(i) p<dq=<q z = 0% (i, )ud (3 ) - 0%(a )
€ = 1, €y,...,€6q = -1 Z = er—l(aip) a]»_ql if €p > 0
ipsiqs...nig >3, =a,——a' fore;>0
ier]_,...,iq/,l <3
ij=lj1+1lforj=q+1,...,q
e >0, gg<0

(soey,...,€-1 < 0by(19)
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(i) p<p <q zZ= Gep(aip)~-~Gep’(a;p,)u99q(31;1)
€., g =—-1 =1 z':aip_ai;l
ip... . ipiq> 3
ij = ij+1+1forj = p,...,p’—l
ep<0, =0
(soeps1, ..., €y < 0by (19)

(v) p<p<d=<q z=6%(a,) 0% (&, Jus™ (1) - 6% (& ")

€ 6p =1, €,...,q=-1 z’:aip ai]l
g siq > 3
ipr+1,...,iq/,1<3

ij = ij+1+lfOI‘j = p,...,p’—l
ij=ij1+1lforj=q+1,...,q
€, <0
(soep1,....,ey <0
andey,...,eq-1 < 0 by (19)
(v Forno O<p <qg <l+1 z= Gep(af;)~-~eeq(af:)
withp<q <q Z=60>Ya,—— ife,=1ip>3ande, >0
ISer’(a]»;)---Heq’(ai;)
one of the above types.

Proposition 4.7. In types i, i, ii*!, iv and v the form of’zis as indicated in Defini-
tion 4.6. In type v, no letter of rani8 or higher in z cancels away on free reduction to
Z.

Proof of Propositiom.7in type i. We have
Z = gep(aip)ugeq(ai;l)
whereip, iq > 3, andey, &5 > 0, andu is a subword ofv of rank at most 2. By definition

(20) u = 0&p+1( _€p+1) LB (af;_—ll)’

p+1

and by Lemmal.5 noay anda;1 can cancel in the process of freely reducing/Ve aim
to show that the first and last letters of the freely reducethfs of z area, and a;ql,

respectively, and that &, > 0, then@ep‘l(ap)ap_l is a prefix ofz. We will also show that

if &g >0, thenaiileeqfl(aigl) is a sufix of Z. This is more than claimed in the proposition,
but having a conclusion that is ‘symmetric’ with respectrieertingz will expedite our
proof.

We organize our proof by cases.

1. Case: u freely equals the empty worih this caseu is empty else Lemma4.5
(applied tou rather than tav) would be contradicted. So= Hep(aip)eeq(aigl) and
by (19), e, = &5. Now 6% (a;,) contains ara; if and only ifi, — 2 < e,, and in that
eventg®r+2(ay) = azai"f"“2 is a sufix of 6%(a;,). Similarly, Geq(a;ql) contains
ana;! if and only ifiq — 2 < ey, and in that ever#®a*?(a,) = al(e“_i“z)agl is a
prefix ofeeq(aigl). If ip — 2 > ey, thenip, > €, and so the final letter & (g ) is
ai,-e,- Likewise, ifiq — 2> e, theng !, is the first letter ob® (a; *).

1.1. Case: cancellation occurs between some lettéts.a., &' when z is freely
reducedtoz If i, — 2 < e, then the finah, in Gep(aip) must cancel with the
firstag" in 6%(aj."). Soiq—2 < ey, and the whole sftix 2,8 """ of 6% (ay,)
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cancels with the whole prefi“'*"?a;? of 6%(a"). But that implies that

ip = iq (sinceey, = €), which is a contradiction. If, on the other hand,
ip— 2> ep, thenig — 2 > g, and the last and first lettesg, ¢, andai‘ql_eq of

6% (a,) andeeq(a;ql), respectively, must be mutual inverses, and so again we
get the contradictior}, = iq.

Case: no cancellation occurs between lettetd, a ., i when z is freely
reduced to Z If i, —2 > g, orig — 2 > €, then the last letter d*(a; ) or

the first letter ofeeq(ai‘ql), respectively, has rank greater than 2 and so is not
cancelled away, and therefafe= z. If i, — 2 < g, andig— 2 < &, then there

is only cancellation between some of tﬂié”“z at the end ob®*(a;,) and
some of thea, *'7"?) at the start ob*(a;,") (butnot all adp # ig). In either
event the first and last letters Bfarea;, anda;ql, respectively. Moreover, if

e >0, then@ep‘l(ap)ap_l is a prefix ofZ asa; -1 has rank at least 2 and so
is not cancelled away. Likewise, & > 0, thenai;fleeqfl(ail) is a suffix of

Z.

2. Case: u does not freely equal the empty word.

2.1

2.2.

Case: no letter §1, ey aifl in z is cancelled away when z is freely reduced
to give z. The first and last letters;, andai*ql, of z are also the first and

last letters o7, becauséy, iq > 3. Here is why the prefig®(a; )aj -1 of
zsurvives inZ whene, > 0. If ip > 4, then its final letter;_; has rank at
least 3 and so is not cancelled away. Suppose therighat3, so that the
prefix

Gep(aip) = Gep(ag) = Gep—l(ag)gep—l(az) — gep—l(ag)azaip—l‘

We must show that tha, of 6%~(ag)a, is not cancelled away whenis

freely reduced t@. Suppose itis cancelled away. Themust have a prefix

freely equal toa;(ep_l)agl (since noay and a;l can cancel whem freely

reduces). But has the form 20), and by a calculation we will see in a

more extended form ir2@), a{ep*zmla,gl freely equals a prefix af for some

integermy. But then—(gp, — 1) = —ep + 2my, contradictingm, being an

integer. Conclude that®(as)a; is a prefix ofz as required. Likewise, if

& > 0, thena; *,6%~(a; ") is a siffix of Z.

Case: some Ietter%, cee aifl in z is cancelled away when z is freely reduced

to give Z. The prefixé®(a,) of zis a positive word and the fix 6% (a].‘ql) is

a negative word since,, eq > 0.

There is argg in 6%(g;,) if and only if e, —ip + 3 > 0. Likewise there is an

aztin Heq(aij) if and only ife; —ig+ 3> 0.

2.2.1.Case: § —ip+3 < 0. The last letter ob*(a;,) (a positive word)
has rank greater than 3 and so must cancek;Soiq + 3 < 0 also, as
otherwiseg® (eg;l) (a negative word) the leftmost Ietteré)ﬁ(ai‘ql) with
rank at least 3 would be aagl, which would block any cancelation of
other lettersaf®, ..., a! in z So, in fact, the last letter @ (a;,) must
cancel with the first letter oﬂeq(ai‘ql), and sou must equal freely the
identity, which is a case addressed above.

2.2.2. Case: g —iqg+ 3 < 0. Likewise, this reduces to the earlier case.
The remaining possibility is:

2.2.3.Case: g —ip+3=>0and g —iq+ 3> 0. So6%(a;,) has stfix

—i ep—ipt+2
6% 3(ag) = agap apay apdl - -aa;”
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andeeq(afl) has prefix
e |q+3(a71) _ (eq iq+2) 71 alzail allagl ailagl

and the subword

(21) 6% %(ag)ue™ (a5t
of zfreely equals the identity. Now has rank at most 2, so
u = a'atala;’ -al'aytalaal - - aaPaal
for someA,u > 0, someé € Z, somefy,...,f; < 0, and some
01.....0, = 0. And because of cancellations that must occur,
fi = —(&-ip+2) 91 = € —iqg+2
f = —(ep—ip+1) 02 = e —ig+1
fi = —(&-ip+3-4) 9 = &—ig+3-u
These cancellations redué®—"»+3(az)ug~(&a*3)(az) to
azay ayay ayal - - ~a2af"_ip+2_ﬂ a aI(eq_i“+2_" Jasl. . aj2a;tarlay? aytagt.
As this freely equals the identity, the exponent sum ofeqi'eis zero,
and so
(22) €—ip+3-1 =¢g—-ig+3—pn
Also, as theai! between the rightmosk and the leftmos&;,* cancel,
(23) € —ip+2+u+é = e—ig+2+ 1L
Together 22) and @3) tell us that¢ = 0. Buttheni = 0oru =0
because of the hypothesiS # & “** in the instance of the;* anda,
(which must be principal letters) imeach side of tha‘i.
Suppose: = 0, which we can do without loss of generality because
what we are setting out to prove is symmetric with respeatieriting
zandZ. Then
(24) u = al(ep ip+2) _1al(ep ip+1) _1 _'ai(ep ip+3-1) 51‘
After u has cancelled int6%(a;,), the wordg®~'»*3(ag)us~e-'a*3)(az)
becomes
(25)  agay @ apal ---aa " Pt L g%t ar ey &y tag !
and, as the powers af; and all must cancel in the middle of this
word,
(26) € —ip—A = eg—iq
There are n@, among the principal letters in (expressed a2()),
and theag1 principal letters are those that occur @4). The final
principal letter. afq " must bea;! as that is the final letter ir2d). The
remaining pr|nC|paI letters arey or a;', and anay principal letter
is never adjacent to aﬂ‘l principal letter. So we can encode the
sequencalEp+1 af“ ' using integersn, ..., m, € Z, as:
AN | QSN g1 GSON) | SO g1 o) | gsonen) 51

[ M| [yl
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But (19) and the hypothesis thg = 1 allow us to determine,. 1, . . ., €3-1
frome, andmy, ..., m,, so as to deduce that

u = almigep—ml(agl)angep—mi—ngrl(ail) . alfmer—ml—-»-—mﬁ/l—l(agl)

—€p+2my

- a —1-ep+my+2my —A+1-p+my+--+my_1+2my __ 1
-1

a'a ata a;t.

Comparing the powers @f; here with those inZ4), we get:

“l+ip= -1 + m + 2m
ip= -2 + m + m + 2y
A=-3+ip=1-2 + m + m + - 4+ M1 + 2my,

which simplifies to
ip+2 -6 = 2lm;  forj=1...,4
2.2.3.1.Casel = 0. This is a case we have previously addressddthe
empty word.

So we can assume that 1, and then the = 1 instance of §0)
tells us thai, is even, and so

ip > 4.
2.2.3.2.Casel = 1. By (26),
€ —ip—1=¢e—ig
Also
z = 6(a,) 6% (&™) - 6l (7)™ (@ )R )
q

I
by (27), and so {9) applied tog® ™ (a;t) andeeq(a;ql) tells us
thatey = e, —my + 1. Butip —2 = 2m, by the j = 1 case of 80),
and so

ip—2
€ = €p— 5 + 1
By (32) and 33),

ip—2
ip+1 =g+ P

— ]_,
and so

ip+6 = 2.
So @1) impliesiq > 5. And we can assume that it is not the case
thate, —ip+3 = eg—ig+3 =0, else 82) would be contradicted.
Soep—ip+3>0o0reg—ig+3>0.Ifegy—ip+3>0,thereare
at least twaag in 6%(a;,) (becauseé, > 4) and hence at least two
a;tin 6% (g Y). Likewise, ifeg—iq +3 > 0, then there are at least
two azt in Geq(a].;l) (becauséy > 4), and so twaag in 6% (ay,).
In either case, using Lemn#a4 to identify the relevant dtix of
6% (a;,) and prefix ofg™ (ai‘ql), there is a subword

gep—ip+2(a3)eep—ip+3(as)ugeq—iq+3(agl)eeq—qurZ(agl)’

of z, which contains exactly twag and twoagl. If (35) freely
reduces to the empty word, then, once the imgeamdagl pair
have cancelled, it reducesa®»?(ag)¢%'a"?(a;'), which must
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therefore also freely reduce to the empty word. But thgr-
ip+2 =€ —iq+ 2, also contradicting26). So @5 must not
freely reduce to the empty word, and its first letter éahand
its last letter (aragl) are not cancelled away. If # 4, then
the required conclusions about the prefix anfliswf z follow
because thez andagl bookending 85) do not cancel away and
cannot cancel with a prefB@p‘l(ap)ap_l or first lettera, or suf-
fix & 1, 6%~4(a ") or final lettera,*, becausé, > 5 andiq > 5. If
ip = 4, theniq = 5 by (34). And by 32), e, = &;. Now, by 27),

u = a1%9ep—m1(a£l)_

Cased > 2. Then @0) in the casg = 2 tells us that, = 4mp -2,
and in particular, # 4 asm, € Z.

At this point we knowi, > 3 (by hypothesis), is even, and is not
4. Soip > 6.

If e, —ip + 3 =0, then there is exactly or& in 6%(a,), specif-

ically its final letter. So the subworbus®a+3(a3t) must freely
—€pt2my 1 _-l-ep+m+2mp

equal the empty word. But = a, aa at by
(28) ando™'a*3(a3t) is a negative word ag, — iq + 3> 0, SO No
cancellation is possible: a contradiction.

So, given that, —ip + 3 > 0, we deduce that, —ip + 2 > 0,
and so (asp, > 6) there are at least two letteag in 6%(a;,).
But then, as above, if36) freely reduces to the empty word,
€ —ip+2=e5—iq+ 2, butthen by23) and thatu = £ = 0,
we find A = 0, which is a case we have already addressed. So
the first and last letters andagl, respectively) of 85) are not
cancelled away, and therefore the first and last lettafsapnd
a,;l, respectively) ofz are also those af, as required. And, as
ip > 6, if &, > 0, then the prefi¥® (g, ) of zsurvives intaz as it
ends with a letter of rank at least 5 which is not cancelledyawa
And likewise, ifiq > 5 andey > 0, then the sffix Geq(ai;l) of z
survives intaz.

Suppose then thaf is 3 or 4 andeg > 0.

The exponent sum of tha, in z between the rightmosis of
¢°(a,) and the leftmosa;* of Geq(a;ql) is zero, so

Applying (19) to the siffix g%~™—-M+1-1(g71) of u (expressed
as per 27)) andeeq(a;ql), we get

€ = €—M—---—M+A4
Adding these two equations together and simplifying yields
—ip = —iq+2/l—m1—---—mﬁ.

The final equation of39) is

A=3+ip =1-A+mM+Mp+---+ Mg +2my.

Summing the preceding two equations and simplifying gives
-4 = —iq + m,.

Butiq is 3 or 4, som, is -1 or 0, But,i, + 2" -6 = 2'm,
by (30), which implies thatm, > 0 becauseé, > 6 and1 > 0—a
contradiction.
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O

Proof of Propositiord.7in type ii. The result will follow from the typéi~* instance of the
proposition, proved below, becausis the inverse of a word of typie?. O

Proof of Propositior4.7in type iit. The hypotheses dictate that in typeljiz has the
form:

z = 0% (a0 () - 08 (&),
whereey — €, = iq — ip. We must show that its freely reduced form is
Z = 6%(ai,1)0% (&)
Well,

(&) = 0% (a )o@

A G i GO [l o)

6% (8,1 )6% (& 6% (8 L) - 67(a.),
and saz andz are freely equal.

Whene, < 0 andip -1 > 1, Lemmad.4tells us that the final letter @ (a; 1) is a;p{z.
And wheneg + 1 < 0 andiq > 1, it tells us that the first letter @f**(a ") is &,-1. Our
hypotheses include theg < 0, which implies thag, < 0 ase, < &y, and thaigq > 1, so in
all cases except wheép = 2 oreg = -1, we learn thar' is freely reduced as required.
Wheni, = 2 andey # -1,

Z = a(a ),
which is freely reduced because the first Ietteﬂ%fl(aigl) isa, — 1. And whengg = -1
andip—1#1,

Z = ™, 1)a,
which is freely reduced because the last lettet®afa; 1) is & ». And wheneq = -1 and
ip-1=1,

Z = &g’

which is freely reduced becaugge> 3.
The first letter ofzis a;,-; by Lemma4.4 applied to#*(a,-1). The final letter ofzis ai;l
because the first letter 61’*1*1(aiq) is &, by the same lemma. O

Proof of Propositiom.7in type iii. We have that
— % (a: r(a1y. .. -1

z = 0%(@,)ue% (g ) - 0%(a,)
whereip,iq,...,iqg = 3,ipi1,....ig-1 < 3,6 > 0,6 < 0 (and soey,...,e-1 < 0 by
(19). Alsoij =ij-1+1forj=q +1,...,0, 80iq = iy + q— 0. Like in typei, we
must show that the first and last letters of the freely reddosd z of zarea;, anda;ql,
respectively, and that &, > 0, theneepfl(aip) is a prefix ofzZ.
Propositiord.7 for typeii, proved above, applied to thefim 6% (ai;,l) - g% (a;ql), tells
us thatz freely equals
(36) 6% (ai,) UO™ (i -1)6% " a T g
and that the new sfix 6% (aq,_1)9%’+q‘q’+1(ai;,1+q_q,) is reduced.
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By hypothesisiq > 3. We again organize our proof by cases.

1. Case: iy > 4. As the sufix 6% (a;q,,1)0%+q’q/+1(ai;}+qfq,) of (36) is freely re-
duced, its first letter i1, which has rank at least 3 by hypothesis and so
cannot cancel any letter i and is positive and so cannot cancel with a letter in
6%(a,). Therefore letters im can only cancel with the®(g;) to its left. So the
final letter ofZ is &, = &*, as required. As rankj < 2 andij > 3, the
first lettera,, of zis also the first letter o, as required. It remains to show that,
assumingg, > 0, the prefixg®~(a;,) of Z is also a prefix ofz. If iy > 3, this is
immediate becaus®,_; has rank at least 3 and so cannot cancelintd i, = 3,
then noa;1 in u cancel withe®(g; ) for otherwise the first equation o29) the
argument from typé would adapt to this setting to give us the contradiction that
ipis even.

2. Case: jy = 3.

2.1. Case: | < 2. This does not occur because, by hypothegis> 3 and
g-q >0.

2.2. Case: | > 4. Suppose, for a contradiction, that the first or last lettez of
cancels away on free reduction, or tiegt> 0 and the prefiﬁep‘l(a;p)aip_l
(which is one letter longer than we need)df(a;,) fails to also be a prefix
of 7.
22.1.Case:g +0—-q +1=0.Here,adqg +q—-q =iq>4,(36)is

6% (ay,) U6 (az)ay .

Then@ep(aip) can contain n@g since there is ntagl to cancel with.
Thereforeg®(a;,) ends with a letter of rank greater than 3 by Len#na
For this reasorny cannot cancel to its left, and §6% (a,) freely equals
the empty word. By Lemm4d.5, u cannot contain a rank 2 subword
that freely equals the empty word, 8e= a’l‘eeq’-l(agl) for someu € Z.
But then by (9) ey-1 = ey — 1, andu = &6% ~}(a;*). Counting the
exponent sum of thai? in ue® (az), we find
H—€ +1+ey =0

Sou = -1, andu must beg®(a;h)6% 1(a;'). But then applying
(19) to 6% (a,)0% (a;1)6% *(ay"), we find thatey -1 =e, + 1> 1,
contradicting the fact thag, < 0.

2.2.2.Case: g +q—0 +1<0. Here, B6) is

6% (a,) ub™ (ap)0™ +q‘q’+1(a{ql).

The first lettera;, -1 of the sufix Geq*q*q'*l(ai;l) has rank at least 3,
and must cancel to the left, but has exponeht Every other letter to
the left with exponent1 has rank at most 2, so this letter cannot be
canceled to its left or right. Thug must end Witr'e;ql and start with
ai, -
If ip > 3 ande, > 0, the letter immediately after the preﬁ%‘l(ap)
of zis &,-1, which is of rank at least 3, so the preﬁs‘e*l(aip) must
be preserved because letters of rank 3 or higher cannotlasdeere
are no letters of rank 3 or higher between and the first lefter (of
rank at least 3) of the $iix Heq*q*q’*l(ai;l).

If i, = 3, itis conceivable that this prefix is partially canceledagw
by some following subword of z of rank 2 or less. We will show this
leads to a contradiction so does not occur. If any lettesSeig; )u of
rank 2 or higher cancel, thes i, + 2 > 0 because otherwigé (a;)
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ends with a letter of rank greater than 3. However, themust have a
prefix that cancels with®'»*2(a,) and s0 {9+ (ay) - - - 6% (a1)6%(a,?)
or g%+ (a;t) - - - 6% (a;1)6%(a;t) for somes. In either case, this sim-
plifies to a*l‘aes(agl) for someu € Z and, by (9), e, — u = €. By
summing the exponents of theg! in ¢%~'»*2(a,) and ina;6%(a,"), we
find that: e, — i, + 2 — e + 1 = 0. But combined withe, — 1 = &,
this tells us that: = (i, — 2)/2, which is not an integer if, = 3. so we
have the required contradiction.

2.3. Case: j = 3. In this instanceq = ¢ becauséy; = 3, and sdq = 3. So

z = 0%(a,)usf (35").

By Lemmad4.4, there is on@gl in 6% (agl), specifically its final letter. Sup-

pose thisa;* cancels with amg (necessarily the rightmost) #f(a; ). Then

the intervening subword (which has rank at most 2) freelyuced to the

empty word.

Now 6% (a;,) contains nae,* because, > 0. The same is true @ (a5%)

by Lemma4.4 and the fact thagy < 0. So, ifu contains arg, it must

cancel with ara;* from u, and scu must contain a subword which starts and

ends with principal letters of rank 2 and which freely equlaésempty word,

violating Lemma4.5. Conclude thati contains nay.

2.3.1.Case: g —ip +2 > 0. The rightmosgg in 6%(a;,)) is the first letter of
the suffix agay6'(ay) - - - 6% ~»*2(ay), so some prefix ofi freely equals
the inverse obu6t(ay) - - - 6% ~v*2(ay). This prefix ofu must be

(37) 6 (7) - 6%(a?)

p+l
for somes. (The prefix does not end in the midst of soﬂ?e(afss),
because it must have final Iettegl.)

Similarly to (27) and @8) in the typei case, we can usd ) to re-
expressd7) as

a‘ix+19es+v1+~-~+v)(—)((azl) . a}zeeswl‘l(agl)a{lees(agl)

= gt Etvtnn) -1 (el glgvi—es g1
= 2

1 2 Ha "
for someswherey := gy, —ip + 2 (so thajy + 1 is the number o, in
a0 (ap) - - - 6%'»*2(ay)) andvy, . .., v, € Z record the number of and
exponents of thet! between the. As this freely equals

(220" (a2)0%(a2) -+~ 6" (a2)) " = aYap'---ap’aytartay eyt

we find that
Vl_es = 0
Vz—(es+vl—1) = -1
Vst = (Bs+Vvi+ - +vy—x) = —x.

It follows that
(38) Vsl = 2es— 20142,

The sufix 6% 'v*2(a,) of 6%(a,) must be the inverse of the prefix
a{*“@eswﬁ'“”f* (a;l) ofu, soaep—ip+2(a2)a;*”aes+V1+"'+VrX(a51) freely
reduces to the empty word. B$9) applied toeep(aip)az*”eeﬁvl*”'*vﬂ ",

ep_VX+l=es+V]_+"'+VX_X.
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By counting theai! in 6%'»*2(az)a) " ¢% "1 (a;t), which freely re-
duces to the empty word, we find
ep - |p + 2+ VX+]_ = ep - VX+1’
so thatv,,1 = (i, — 2)/2. But thenv,,1 > 0, sincei, > 3. Further, we
conclude that fou to even cancel aa, from 6% (), i, must be even.
Soip > 4. Thus after rewriting38) as
1
e = Z—X(yﬁl +201_2)

and using the fact that..; > 0 andy > 1, we conclude thags > 0.
The remainder

I CH RASI G
(wheres = s+ 1) of u cancels with all but the;* of
0% (a3h) = 6% (ap)0% " (ap) - -0 H(a)ag™.
We claim that, similarly toZ7), we can rewrite40) as

aZr Geq/ +n1+n2+n3+ 1 =T (agl) . azz eeq/ +r]1—2(a£l)a7]7-1 eeq/ —l(agl)

1= (& +NM1+N2 N3+ 411 —T) agl . azzf(eq/ +n172)a£1arlir(eq/fl)a£1

wherer is the number ofagl in (40), andny,...,nr € Z record the
number of and the signs of the intervening ten&;). There is no
power ofa; at the righthand end because the first letterdd) (s a,.

The iterates of) are identified by usingl©).

Now compare with41), with which it cancels (to leave onbgl), to

see that = |ey| and

m-(ey —1)+ey
m—(6g +m—2)+ey+1

O=mn—(&g+m+m+ - +n-1-T1)+e+(r—1).

Next we establish by induction that < 0 and

& +m+n2+---+n-1-1 <0
forall 1 < i < r. For the base case; — 1 < 0 because of our
hypothesis thag; < 0, andp, = -1 by the first of the above family
of equations. For the induction step, suppgse..,ni-1 < 0 and
€& +m+n2+---+n-2—(i—1) < 0. The family of equations above
tells us in particular, that

O=ni—-(ey+m+m+-+n1—i)+ey+(i-1)

which rearranges to
(m+n2+--+n1)-2i+1 = n.
So,n; < 0 because kX i andnq,...,n-1 < 0. Moreover,

€ +mtmet o 4niia—i= (g +m+me++ni2—(i-1)+n-1-1<0

becausey +n1+ 12+ -+ ni2— (i — 1) < 0 andp;_1 < 0.
Now

& =+ (€ +m+mt-tno-r)-1
by (19). Conclude thaey < 0.
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But
—  Cp+ €ptly .. pBs(a€s) e (AN ’_ €q/-1
U= 6%(a>) - 0%(a)0™ (&7) - 0% (a7 )

1

and by (9), es andey differ by at most 1. So, as we previously estab-
lished thates > 0, we have a contradiction.
We deduce that naz andagl cancel wherz freely reduces.
Since no letters of rank 3 can cancel,ijf > 4, thenz has a pre-
fix Gerfl(aip), since cancelling any part of this prefix #%(a,) =
% (a;,)0%*(a,-1) requires cancellation ofi ;. Finally consider
the case, = 3. We showed (immediately aboved)) that ifi, is odd,
then no letters of rank 2 can cancel fréfn(a;,). The remainder of
the argument is the same as in the dase 4.

2.3.2.Case: g —ip+ 2 < 0. We havez = 6°(a;,)ud™(a5') whereiq = 3,
g=q,u= eepﬂ(af;’:ll) . .9%’—1(af;’:11), andé®(a;,) ends with a letter of
rank at least 3. Suppose, for a contradiction, some lettdreoprefix
6%(a;,) is cancelled whem is freely reduced t@. No cancellation is
possible betweeéfr(a;)) andu because every letter 6 (a;)) is rank
3 or higher. By the argument used in C&s8.1to show thaey < 0,
we find here thagp,1 < 0, and by the argument there (immediately
after 42)) to show that;, < 0, we find here that,,; = —1. But then
by (19), e, = €1, and soe, < 0, which contradictg, > 0. So the
first lettera, of zis also the first letter of', and the last Ietteag1
of 6% (a3h) is also the last letter af . Moreover, ife, > 0, then the
prefix6®~1(a;,) of ¢%(a ) is also a prefix of. O

Proof of Propositiord.7in type iii 1. Inverting a typeii ~* word gives a typdii word, so
we can apply the typiéi of Propositiord.7 proved above to get the result (as in this case

we are only concerned with the first and last letters and niit svionger prefix). O
Proof of Proposition4.7in type iv. We must show that ifp,...,ip,ig,...,ig = 3 with
ij=ij+1lforj=p,....,p—landij=i1+1forj=q +1,...,0,andep, eq < 0, the

freely reduced fornz’ of

z = 0%(a,) - 0 (a1, U0 (&) - 0()

starts witha;, and ends Witm;l.

By Propositiord.7in typeii*!, proved abovez freely reduces to

(43)

65 (@, )6% (a1 )ub™ (ai,-1)6% " (&]")

where®*(a; )6 (a;p,lfl) ande® (a;q,,l)eeq”(a{]l) are freely reduced.

We again organize our proof by cases.

1. Case: j = iq. Suppose, for a contradiction, ttidoes not start witla, and end
with ai;l. Then the first and last letter must cancel each other sirmeate the
only maximal rank letters (becauge> ip.1 > -+ > iy andig > ig-1 > -+ > ig).
Sozfreely reduces to the empty word, which we will show is implokes

It will be convenient (for Casé.2.1) to assume, q < —1, which we can do
because applying to z gives a typév word of the same form which also freely
reduces to the empty word.

1.1. Case: u is the empty word-his leads to a contradiction because it implies
that the last lettes; 1 of 6%*(a; )6 (a;p/l_l) and the first lettesy,, of
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0% (aiq,,l)eeq”(ai;l) cancel—that isiy = iy, SO6% (a;, )65 (ai*q,l) is a sub-
word of z contrary to the definition of.
1.2. Case: uis not the empty word.
1.2.1.Case: p# p’ and q# . In this casej,,iq > 4 because of our
hypotheses o, ..., iy, iq,...,iq. Since we assumeeh, eq < —1,
the word in @3) has a subword of the form

(44) & 116 (&)U (B, -1)ai,-1,

and no cancellation is possible with the prefixzab its the left or the
sufix to its right. The maximal rank letters it contains are itstfand
last letters, so they must cancel, and therefore

(45) 6% (3} )ub™ (ai,-1)

must freely equal the empty word.

1.2.1.1.Case: jy_1 # 20rig_1 # 2. Theniy_; = ig_1 because otherwise
(45 has a single letter of highest rank which (either ﬁ;rpél
or thea;, ,) and hence cannot freely reduce to the empty word.
However, thera;p,l_1 anda;, , are the letters of highest rank in
(45 and so must cancel. Sinoas the subword separating them,
u must freely reduce to the empty word, which is impossible by
Lemma4.5.

1.2.1.2.Case: -1 = iy-1 = 2. By Lemma4.5, u cannot have any rank-2
subwords that freely reduce to the empty word. Siré® freely
reduces to the empty word amdcontains no rank-2 subwords
that freely reduce to the empty word, y9f u must be

Gep/—l(az)%geq/—l(agl)
for someu € Z. By counting the exponent sum af in (45):

ey —(gp —1)+u+(eg—1)—ey =0,
so thatu = 0, contradicting the fact thatdoes not have consec-
utive principal letters, anda; (by definition of2).
1.2.2. Case: p= p'. In this case, the wordi@) whichzfreely reduces to has
the form

6% (a3, O™ (8, -1)0% " (&)

Recall that the sffix 6% (aiq,,l)eeq”(ai;l) is freely reduced and so its
first lettera;, 1 cannot cancel to its right. So it must cancel to its left,
and therefore eithel, = 3 or it cancels with the termineﬂ,.;{l of
6%(a;,). In the latter case:

S0iq = iy, and saq = g'. Therefore it stfices to analyze the following
two cases.
1.2.2.1.Case: y =3and g . Sinceq # ¢, iq > 3. Soiq > 3 also as
ip = ig. Hence 43) has a subword

(46) 8.1 U6 (a2)ay,-1

whose first Iettera{p{l cannot cancel to the left and whose last
letter a1 cannot cancel to the right. They have rank at least
3, so they must cancel each other. 6 (ay) freely equals the



50 W. DISON, E. EINSTEIN AND T.R. RILEY

empty word. Butu cannot have any rank 2 subwords that freely
equal the empty word by Lemn#a5, so by (9) is

a0% (a5")

for someu € Z. So @6) is

_ 1, § _ —1y_ ,
a 0% & )o (B)ai, 1 = & tyal (ady )t aal a1
By counting the exponent sum af it contains, we find
n—(eg —1)+eq =0
Sou = -1. Now
u = ate (&) = 0% M@y

for somee € Z. So6%(a;,)6%(a; )% ~1(a;) is a prefix ofzand
(19 tellsus thae = gy ande+ 1= ey — 1, and sae, + 2 = €.
Now, asud® (ap) freely equals the empty word amd= p’, (43
freely reduces to

Gep+l(aip)gep/(ai—pi|._l geq+l(a1—ql) — gep(a'p)geq"'l(a]—ql).

So, asip = iqg > 1, we finde, = g5 + 1. Buteg > ey, so this
contradictse, + 2 = ey.
1.2.2.2.Case: g= ¢. Inthisinstance,

z = 6% (a,)ud™(a,)

freely reduces to the identity. Hene@e~%)(z) is a typei
word which also freely reduces to the identity, which is iragie
ble by the type case of Propositios.7 proved above.
1.2.3. Case: g= (. Invertingzreturns us to Cask.2.2above.
2. Case: j, > iq. By Propositio4.7in typeii*!, w freely reduces to a word of the
form:

GEerl(aip)gep/ (ai;l—l)ueeq/ (aq,71)9%+l(ai;1).
Observe thag;, cannot be cancelled becalﬁié does not appear. To can<aill,
sinceiq > 3 andu is rank 2,ai;1 must cancel with a letter to the left of since
it is the only rankq letter appearing to the right of Also, ai;,{l, the final letter

of 6% (&) is an obstruction to cancellirg, with any letter fronﬂep+1(ap) and
a{p,{l and has rank at leagt Thus the only letters of ranlg — 1 in w come from
Hep+1(aip), so every letter of rank, — 1 has exponentl. To canceka{ql with a
letter frome®**(a; ) requires cancelling the rightmaﬂitpl_1 from 6%*1(a; ) which
is impossible.

Similarly, if a;ql cancels with a letter from® (ai‘p,{l), the rightmost letter of

6% (ai‘p,{l), which is ai‘p,{l, must cancel too. By Propositioh7 in type ii*!,
Gep”(aip)aep(ai‘p/_l) is freely reduced, so its rightmoa,l’p/l_1 must cancel to the
right. However,ai‘p/l_1 is the highest rank letter ief°(a; 1) ™!, soey — 1 > iq.
Alsoiy —1<iq becausea;p/l_l can only cancel with ag; ;. We cannot cancel
g, fromé% (g 1 ;) because thea * would be the only other letter of the same

rank. Thus it is impossible to cancmﬂql.
3. Case: j < ig. Invertw and apply the argument from Ca3e O
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Proof of Propositiom.7in type v. We have
z = 6%@") - 6%(a)

and no typa—iv subwordZof w overlaps withz. More precisely, thereisnof p’ < g <

[ + 1 with p < g < g such that® (af;’) 0% (a;q/’) is of typei—iv. The claim is that free
reduction ofzto Z removes no letters of rank 3 or higher. Moreoveg,it= 1,i, > 3 and
ep > 0, thenZ (the reduced form of) has prefiwepfl(aip).

Here is our proof of the first claim. Suppose, for a contragiigtthat some lettea, (not
necessarily principal) iz with @ > 3 ande = +1 cancels with soma;,© to its right whernz
is freely reduced.

Thenz has a subword;,va, which freely equals the empty word. Sinee> 3, we know
thata, comes from someé® (af:) whereip > 3 while a;* comes from someé® (a;q,’)
whereig > 3. Note thatp’ # ' because otherwis# va,“ would be a subword o (&),
which is freely reduced. We may assume thebntains no Ietteag with > 3ands € {+1}
that cancels to its right with aag‘s in v, because otherwise we could replace our original
choice ofaiva, with a shorter subwordg e a;s. So ranky) < 2, andz has a subword

e (9 Sy (95
(47) GACATATERD
whereu is either empty or ranki) < 2.

1. Case: ¢y = landey = —1. In this case, 47) is type eitheri, oriii*, oriv
contrary to the hypothesis thats typev.
2. Case:gy = landey = 1. Fora,“isto cancel, they, at the start ob* (af;’) must

cancel to its left. Ife, > O, then6® (af;’) is a positive word, so the only letters
to the left ofa,, with exponent-1 have lower rank, and such cancellation is not
possible. Ife, < 0, then the last letter & (&) is a;p,lfl, so eitheiiy —1=2or
(uis the empty word andy = iy_1). In the former casex = 3, but themagva,*
cannot freely equal the empty word becaaSe- a, cannot cancel with the first
lettera;, of 6% (a;,). In the latter case: bylQ), ey = €y — 1 < 0, so we have a
typeii subword contained in, contrary to the definition of a typesubword.

3. Case: ey = -1l andey = —1. Invert and apply the previous case to obtain a
contradiction.

4. Case:ey = —landey = 1. In this case47) has subword

& 'ua,

Wherea]‘l does not cancel to the left arag, does not cancel to the right, which
makes a contradiction because these letters both have igimdetthan 2.

So the first claim is proved.

The second claim—i¢, = 1, i, > 3 ande, > 0, thenz has prefixﬁep‘l(aip)—is proved
exactly as per the final paragraph of C&2s2.20f our proof above Propositioh 7 in case
iii . ]

4.4, The Piece Criterion. The Piece Criterionis the main technical result behind the
correctness of our algorithilembery. Before we state it, we establish two preliminary
propositions. The first is used in the proof of the second,thedsecond provides a key
step of our proof of the Piece Criterion. In both we refer t@@duced word h orfat)*?,

., @t)**, which is to say thalh contains no subwordsyt)*(ajt)¥.
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Proposition 4.8. Suppose u= u(ay,...,am-1) is freely reduced and non-empty,
h(at, ..., at) is freely reduced, ;s € Z, and2 < m< k. In G,

(t'amu = ht or t'apual = htS) = the first letter of h igant),
(tuazl = hts or tagua;t =ht) = the final letter of h igant) .

Proof. The second statement follows from the first as can be seenvbitimg both sides
of the equalities and then rearranging so as to interchdmegetes ofr ands.

We will prove the first statement in the casanu = ht® only, as the casBanua;! = ht®
can be proved in essentially the same way.

So assumé anu = hts, and soa,u = t-"htS, in Gy. Consider carrying all thee! in t~"hts
from left to right through the word, with theffiect of applyingg™ to the intervening letters
aiil, and then freely reducing, so as to arrivagt.

We will first argue thah contains no &m,1t)*, ..., (axt)*'. Suppose otherwise. Lebe
maximal such thalh contains angt)**. As carrying all thet*! to the right and cancelling
givesanu, there must be amt)™ in h so that there is aaﬁl to cancel with theaiil in
our (& t)**—this is because applyingf* to at’, ..., a*!, neither creates nor destroys any
a*l. But then ifh is the subword ofi that has first and last (or last and first) letters these
(at)*! and @it)™, thent” ' = t¥ for somer’, s € Z. That then implies thalt' e (t).

But Hy N (t) = {1} by Lemma 6.1 of 12], soh = 1 in Gx. But Hx = F(ast,...,at) by
Proposition 4.1 of12], and so our assumption thiais freely reduced is contradicted.

Next notice that there must be a@f) in h becaus@mu contains aray, and applyings*?

to a{l, ..., al neither creates nor destroys aayf. Suppose, for a contradiction, that the
first (ant) in his not at the front. Expreds asa(ant)8 wherea = a(agt, ..., am-1t) is
non-empty.

We claim that the, of the first @mt) in h must cancel with some subsequagt Suppose
otherwise. We have that

t'htt = tTa(ant)Bt® = vil(ant)sts

for somev = v(ay,...,an-1) and someg € Z. But thenv = 1 as the firsa,, serves as a
barrier to cancelling away when the remainingf are carried to the right: applying*
to ayn only produces new lettees?, ..., a:!l | (see Lemma 7.1 inl2)) to its right, and (by
assumption) it is not cancelled away by a subseqaghtBut thena € (t), leading to a
contradiction as before.

Now, if an, of the first @mt) in h cancel with some subsequent, by the same argument as
earlier, the subword bookended by thatt) and @,t)~* must freely reduce to the empty
word, contradicting the assumption thrweis freely reduced. O

To follow the details of the following proof it will help to va a copy of Definitiort.6 and
Propositiord.7to hand.

Proposition 4.9. Suppose U= u(a,...,an-1) is freely reduced, h= h(ast, ..., at) is
freely reduced,.rs € Z, 3 < m< k, and tanu = ht® or t'ahua,! = htsin Gy. If r > 0, then
6"(am) is a prefix of gu.

Proof. We will prove the case whetéanua,! = ht® in Gy. The proof for the caséanu =
hts is the same.
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Propositior4.8tells us that the first and last letterstoéire @n,t) and @qt) ™1, respectively.
Expressh as @) - - - (&_,,t)9* whereeg = 1, ande, ..., ¢ = £1, andej;; = -1, and
ip =1j+1 =m andiy,...,ije{l,...,m-1}.

If we shuffle all thet*! in t™"htS to the right, then the power dfemerging on the right
cancels away sinde"ht® equalsamua,r andu = u(ay, . . ., am-1) in G, and we get

7= anuat = 09(a0) 6P )P (@)

whereg is, for 0< | < j + 1, the exponent sum of the! in h that precede, in t™"htap,
(which includes theé™* of (a;t)9 if = —1):

r+e+- -+ if g=1
r+l+e+---+¢q-1 Iif g=-1

Also afx #a “forx=0,..., jbecausais freely reduced as aword oaf)*!, ..., (at)*.
So,r is of the form in which it appears in Definitioh6.

We will work right to left througlez choosing subwords, 7, .... until we haver expressed
as a concatenatian- - - 7. Definer; := 7 and definegy to be the maximal length ix
of m; of one of the five types of DefinitioA.6. (Such a sfiix exists if; is non-empty, as
there must be a typesuftix if no other type.) Letr, benr; with the sufix z; removed, and
then define, to be the maximal length fix of 7, of one of the five types of Definitio%.6.
Continue likewise untizis exhausted and we haxe= z7 - - - 27;.

Letn’,z,...,7 denote the freely reduced formsafz, ..., z, respectively. We will use
Propositior4.7to argue thai’ = z ---z,z,. In other words, when freely reducing all
cancellation is within thg—none occurs betweenza; and the neighboring.

Given how Propositiod.7 identifies the first and last letters of eaglwhen of typei-iv,
and given thag # a “* for x = 0,..., ], cancellation betweeg,; andZ is ruled out
except in these four situations:

z is of typeii 1,
Z41 is of typeii,
z is of typev,

Z,1 is of typev.

We will explain why these too do not give rise to cancellatiBrpress;.; andz as:
= @& €a (g - = % (a”) .- 6% (aY
= 6>(@)) - 6%(a)) and 7 = 67(g7) -0 ().
(Sop'=q+1)
Case: 7.1 not type v, ztype iirt. The first letter ofZ is a,-1 by Propositior4.7in type
i1, If z,1 is of typeii, then the final letter of, is a;p,lil_l (remember’ — 1 = g) which
cannot cancel with the; 1 at the start ofz sinceaf;'j andaf;’ are not mutual inverses

andey_1 = 1 andey = —1. If z,4 is of typei, ii %, iii *1, oriv, then the final letter of.1
is a(l which cannot bea;p,l_l as that would contradict the maximality af prepending

Ge'p( ep 1) to z would give a longer typé~! word.
Case: z.1 type ii, z not type v.Similarly, there can be no cancellation betwegn andz.

In the cases wherg is of typei, ii, i *%, or iv appending®( E"“) to z,, would give a
longer typeii word, contradicting the deflnltlon af as a types Word

Case: z,1 not type ii, ztype v.Thenz,1 cannot be of type, elsez,1z would be of type
v contrary to maximality of;. S0z, is of typei, i %, iii ** or iv, and thereforé; > 3 and
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€ = —1, and by Propositiod.7, the final letter ofz , is ai*ql. So if there is cancellation
betweerg , andz, then the first letter of must beg;,. But then, there is a subword

7 = Heq (ai—ql)gep/ (af:,/) - Qem(ale:)

of z,1z such that th@i_ql in Oeq(a].;l) cancels with some;, in Gem(af:) on free reduction
andip,---,im1 < 2—otherwise there would be some intervening letter of ranleast
3 which would have to cancel away on freely reducing this sudvand hence on freely
reducingz, contrary to Propositiod.7in typev.

Supposen, = 1. Then@em(afnf) is &, times a word on lower rank letters. So, as &f[]é

in Geq(a;ql) cancels away when” is freely reducedaf;" = @&,. But then the intervening
subwordg® (af:) ---6%1(af™ ) has rank at most 2 and freely reduces to the empty word,
and so is empty by Lemm&5. Sop’ = mand, asaf;" = @, that contradicts the& = q
instance of™ # a *.

Suppose, on the other harg, = —1. If e, > 0, then@aﬂ(a;ml) contains no positive letters
and so cannot supply a letter to cancel Wa;ql% If ey < 0 andi, = 3, then the only letter
in 6°(a; 1) of rank at least three is a singég", and that cannot cancel Wiﬂ’{ql. If en <0
andin, > 3, then the first letter cﬂa"(af:) is &,-1 (Lemma4.4) and this could only cancel
with the ai*ql were the intervening subwodf> (af;’) . ~9%1(af"":) empty (as before) and
p’ = m=q+1, butin that casg has prefix® (af;’) = Geqﬂ(a].;}rl), violating the definition
of a typev subword becaus@q(ai;l)eeqﬂ(ai;}rl) is type i L.

Case: 7,1 type v, znot type irl. As in the previous case, cannot be of type, soz is
typei, ii, iii *1 oriv andig.1 > 3. The same arguments as the previous case apply to tell us
that cancellation is impossible. The final case conclud#s thve maximality of the typé

ii~1, iii *1 or iv word z being contradicted.

Case: 7,1 type v, ztype ir'l. We have that
Zu = 6%(@7)--6%@7)  and 7 = 6% (a,-0)6% ()

by definition and by Propositiof.7in typei, respectively, andy < 0,iy > 3, andiy > 2.
Moreover, the first letter of is &, -1 by Propositiord.7in typeii. Supposey is 2 or 3.

Thenz,; has siffix Geq(af;) = Geq(ai‘p,{l) or something of rank at most 2 which could be
prepended t@; contradicting its maximality. Suppose, on the other hapd; 3. If there

is cancellation betweej, ; andZz, then a letter of rank at least 3 m ; cancels with the
first lettera; -1 of Z. As in the preceding cases, conclude tq:étmust cancel with the

first letter ofZ, soiq = ip-1 andeg = -1, contradicting maximality of;.

Case: z;1 type ii, z type v.This case is essentially the same as the preceding onewrollo
the steps from the previous case, except instead of apgealmaximality ofz;ll, observe
that the last letter af,,; andz form a typeii subword which is forbidden by the definition
of a typev subword.

Having established that there is no cancellation betwgemndz fori =1,...,1 -1, all
that remains is to argue thatz has prefixd’~*(am), for it will then follow thatanz’ has
the same prefix.

But 7 is typei, iii orvbecausey =r > 0. It has prefiweo(aﬁ’) = 6" (am) andr > 0, so as
ip = m > 3, Proposition4.7 in typesi, iii andy, tells us tha#'(ay) is a prefix ofz, and
hence ofr = au. |
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We are now ready for the Piece Criterion. It concerns onlye#se where the rank (denoted
by m) is at least 3. In the cases = 1 andm = 2 our algorithms are straightforward and
the Piece Criterion is not required to prove correctness.

Proposition 4.10(The Piece Criterion) Suppose n> 3 and r € Z, and suppose =
ariuay? is a freely reduced word such thatuu(ay, . . ., am-1) ander, e € {0, 1}. Define

x = apf(am) forlez,
W 1% ifr >0ande =1
~ |empty word otherwise
r if e =0
0 = ym(r) if g=1landr<0

r-1 if g=21andr>0.

Suppose £ Z. Letn’ be the freely reduced form of kua,2. Consider the following
conditions.

(i) e =0.
(i) e=1landr<O.
(i) e =1,r>0andd *(ay) is a prefix ofr.

(8) e =0and tx ue Hyt®.
(b) e =1,s<0andxue Hgt/n0,
(0 e=1,s>0andx“ux € Hit* ' and6>*(ay') is a syfix of .

We have'tr € Hyt® if and only if (, ii oriii) and £2’ € HytS). Moreover, tr’ € Hit® if and
only if (a, b or c).

Proof. Supposes € Z. First suppose thatz € HtS. Then (, ii oriii) holds because if
e1 = 1 andr > 0, thend'~(ay) is a prefix ofr by Propositiord.9. Sot®x ugy? € Hyts
for the sames € Z.

Next we will prove that'z € HtS is equivalent td®z’ € HytS under the assumption that (
i oriii) holds.

Underi, e; = 0, x is the empty word, and = r. Sot’r’ =t®x “uay = t'uay” = t'x and
the equivalence is immediate.

Underii, e = 1,1 < 0, x is the empty word, and = yn(r). Sot’nr’ = x “ua,? =

t*n(Dug,?, giving the third of the following equivalences. The firsuaglence holds sim-

ply becauser = anua,?. For the second; is in the domain of)y, because < 0, so
t'am € Hyt?n™ by Propositior8.1, and sa*nMa-lt~" e Hy.

t'w e Hyts
& tlanua,? € Hyt®
o tmOya e e Hyts
o n € Hits.
Underiii, g = 1,r > 0,X = X, andé = r — 1. Observe that
tr =t tug? € Hyts o t'r = t'anua;® € Ht®
becausd 1x tazlt™" = t10" (apHt™" = (amt) ™t € Hy.

So, assumingi(ii oriii) holds,t'z € HytS if and only if t°n” € HytS, as required.
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Next we will prove that’s’ € HtS if and only if (a, b or ) holds.

Supposes; = 0. Thent’nr’ = tx “ug,? = t°xu and sot’n’ € Hts is the same as
Conditiona.

Suppose, on the other hand, teat 1. Suppose further that< 0. Propositior8.1tells us
thattSa, € Hit’n(® sinces < 0 and so is in the domain gf,. Sot’n’ = t'x “ua;l € Hyt®
if and only if t'x 1u € Hyt?™(9. Sot’n’ e H,t® is equivalent to Conditiob.

Finally, observe that
trn" = t'x “ug,’ € Hyt®
& txualtS e Hy
& Pxug it S(tamxst ) e Hy
& X ux € Hets?

becausdSanxst Y = ant € H,. Suppose now that > 0. The part of Conditiorc
concerning the diix of x follows from Propositiort.9 (applied toh™). Sot’zn’ € HytS is
equivalent to Conditiomw.

We conclude that = € Ht® implies (, ii, oriii) and @, b, orc). O

4.5. Our algorithm in detail. Here we construdembery, wherek is, as usual, any inte-
ger greater than or equal to 1, and is kept fixdabery inputs a wordv = w(ay, .. ., ax, t)
and declares whether or netrepresents an element f.

Most of the workings oMembery are contained in a subroutiRashy, which inputs a valid
w-word f and a reduced word = V(ay, . . ., &), and declares whether or v e Hyt®

for somes € Z and, if so, returns @-word f’ with s = f’(0). (If such ans exists, it is
unique by Lemma 6.1 inl2].) The key subroutine fdPushy whenk > 2 isPiecex which
handles the special case in whighis a rankm piece. Piecey calls a subroutin®acky,
which in turn calls a subroutinPushy_;. So the construction of these three families of
subroutines is inductive.

Additionally, subroutine®refix,,, andFront,, (where 3< m < k) are used. These do
not require an inductive construction, so we will give therstfiThe designs direfix,,
Front,, (and als®Backy,) are motivated by the Piece Criterion (Propositibh0).

Algorithm 4.1 — Prefix,,, m> 3.

o Input a rankm piecer = amuan,? (S0,U = U(ay, .. ., am-1) is reduced ane; € {0, 1}).
o Return the largest integer- 0 (if any) such tha#'(an) is a prefix ofz.

o Haltin time inO(£(r)?).

construct ¢~*(ay) fori = 1,2,... until £(6'~*(aw)) > £(x), andcompareto x
return the maximumi encountered (if any) such thélt*(a,,) is a prefix ofr

Correctness oPrefix,. As ((6"*(ayn)) > i fori = 1,2,..., the algorithm returns the
appropriate in time O(£(r)?). o

Front,, takes a rankn piecer andy-word f and reduces the task of determining whether
'Oz ¢ HtS to performing a similar determination: specifically whath€©r’ ¢ Ht®
wheref’(0) = 6 andn’ and¢ are as per the Piece Criterion. This will represent progress
becauser’ is a piece of rankn that does not begin withy,, and because we are able to
give good bounds of(n’) and{(f”).
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Algorithm 4.2 — Front,,, m> 3.
o Input a rankm piecer = aguan? with e,e € {0,1}, and a validy-word f =
f(f1,...,¥k)- Letr := £(0).
o Declare whether or noi,(ii oriii) of the Piece Criterion holds. If so, output of the
Criterion and a valids-word f = f'(y1, ..., ¥) such thatf’(0) equalss of the Criterion.
These satisfy(r’) < £(x) andé(f’) < €(f) + 1, andt'z € Hits if and only ift" On’ e H,ts.
o Haltin time O((£(w) + £())k+4).

if e, = 0 (soi holds),output 7’ := uay? andf’ := f, andhalt

run Psi(f) to determine whether or not< 0

3: if & =1 andr < 0 (soii holds),output 7’ := ua? andf’ := ¥ f, andhalt

we now have that; = 1 andr > 0 (soi andii both fail, and it remains to tegt)
6: run Prefix,onnr
if it fails to return an declarethati, ii andiii all fail andhalt
elseit returns some somie
9: run Psi on input(//ilf to check whetheir < r
if i <r,then declarethati, ii andiii all fail
elseiii holds, sareturn the reduced form’ of ¢' (a;})r and f” := y

Correctness ofront,.

2: In was established in Secti@3thatPsi on inputf halts in timeO(£( f)<4).

5. Whetheiiii holds depends on whethér(a,,) is a prefix ofz, so that is what the
remainder of the algorithm examines.

6: Prefix, halts in timeO(¢(r)?).

9: At this point we know that'*(aq) is a prefix ofz, and sa < ¢(x). Therefore,
Z(zﬁilf) < {(r) + €(f), and so, by the bounds established in SecB@Psi halts
in time O((€(xr) + £(f))<+4).

11 Forall 0< p < q, 6°(ay) is a prefix of¢9(ay): after all, forq > 0, 6%(a,) =
#9(am)¥(am-1). So, given that we know at this point thét!(a,,) is a prefix ofr
andr < i, it is the case that'~(ay) is also a prefix ofr. Note thatd' (a; 1) is
6(a;,)uan? of the Criterion wheriii holds.

In lines 1, 3 and1l, the claimed bound(f’) < ¢(f) + 1 is immediate, as i§(z’) < £(n)
in lines1 and3. In line 11, n’ is the reduced form of' (a;})x andé'~*(ay) is a prefix of
m. Now 6" (a;l) = 6" "Ha )6 (a;l) and the length of"~}(ayl) is at least half that of
6" (a;t) (asr > 0), and the last letter af ~*(a;.},) isa.l,. So all of the prefi¥'~*(am) of x
is cancelled away whefi (a;})x is freely reduced to give’, and¢((n’) < £(r), as claimed.

The algorithm halts in timeD((£(x) + £(f))***) by our comments on line§, 6 and 9
and the fact tha#' (a;})x in the final line has length at most(@): after all, 6'(a;l) =
6 (a e (ayh) ande(-(art,)) is at most (0 (ayt)), ande'~1(ayl) is the inverse of
a prefix ofr. O

Next we construcBack,,, Piece,, andPush,,.

For a rankm piecer which does not start with the lettar,, Back,, determines whether
@Oz e Hts for somes € Z, and if so it outputs &-word f’ with f/(0) = s. Initially, it
works similarly toFront,, in that it reduces its task to performing a similar deterrtiora
without the final lette;!. But then it callsPushy, ; to find out whether the exists, and,
if so, to output ay-word f” with f/(0) = s. A crucial feature of this algorithm is that the
lengths of the input data ®ush, ; (specificallyu’ and f) is carefully bounded in terms
of the length of the inputs tBack,,, and so does not blow up course of the induction.
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Algorithm 4.3 — Back,, m > 3.
o Input a rankm piecer = ua,? (Sou = u(ay, ..., am1) is reduced ané, € {0,1}) and a
valid y-word f = f(y1,...,%k). Letr := f(0).
o Declare whether or ndtr € | g7 Hit®. And, if itis, return a validy-word f’ such that
t'Or e Ht" @, ¢(f') < £(f) + 2(m - 1)¢(x) + 1 and rank{’) < maxrank(f), my.
o Haltin time O((£(x) + £(f))2™).

run Pushy, 1(u, f) to test whether or ndtu € | g Hyt®

if it is, let g be the validy-word it outputs such thatu e Ht9©®

3:
if € = O,
if t'u e Hyt99 (so, (a) of the Criterion holds wite= g(0)), return ' := g
6: else declard ' ¢ | gz Hit®
halt

9: we now have thaé, = 1
run Psi(y,lg) to check validity ofiy;g (so whetheg(0) € Imgym)
and, if so, to checky;1g(0) < 0 (so, whetherlf) of the Criterion holds withs =
¥m9(0))

12: if so,halt andreturn ' := y-lg

run Prefixn(r~?) to determine the maximum(if any) such thag; !, -(a;l) is a

suffix of &
15: if there is no such halt anddeclaret'n ¢ | o7 Hit®

for s=1toido

run Pushy, 1 (U, f) whereu’ is the freely reduced word representing;165(ay,)
18: if it outputs ay-wordh, run Psi(zpi*lh) to check ifh(0) = s—1
if sohalt andreturn f’ := y1h

end for
21:

declarethatt’©@w ¢ |, Hyt®

For m > 3, correctness dPushy,1 (as specified below) implies correctnes®atky. The
idea is to employ the Piece Criterion in the instance whege 0, and thereforé = r,
7’ = m and Condition holds. In this circumstance, the Criterion tells us thate Ht®
(that is,t®n” € HitS) if and only if (a, b or ¢) holds.

2: Referring to the specifications ®ush,,_;, we see that(g) < ¢(u) + ¢(f) and
rank@) < maxrank(f), m}.

4-6: Push, 1 in line lines1-2 tests whether or natx <u (that is,t"u) is in gz HktS
and, if so, it identifies the such that®x<1u € HytS. The Piece Criterion then tells
us that the answer to whethér € | o> Hit® is the same, and iffirmative thes
agrees. (This instance of the Criterion has no real conecdisd’ x “u = t'r.
The other two instances that follow are more substantiaiilifollow the same
pattern of reasoning.) By our comment on IRy&(f’) < £(f)+£(u) = €(f)+£(n),
and rankf’) < maxrank(f), m}, as required.

10-12 Again, we refer back to line-2 for whether or not’x €u (that is,t"u) is in
Usyez Hit®. Assuming that it is, in fact, it is iH«t9©, and then Conditiot,
is satisfied if and only ifg(0) = ¥m(s) for somes < 0. And that is checked
in line 10. The Piece Criterion then tells us that the answer to thikdssame
as the answer to wheth&rr € (Jo; Hit®, and, if dfirmative, thes agrees. By
our comment on lin&, £(f') = €(g) + 1 < £(f) + £(u) + 1 = £(f) + £(n) and
rank(f’) < maxrank(f), m}, as required.
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14-20: The aim here is to determine whether Condittdmlds—that is, whether
t'ua,165(am) € Hyts?
anda_! 65 (a;l) is a suiix of x for somes > 0—and, if so, output g-word f’
such thatf’(0) = s. (Thissmust be unique, if it exists, because, by the Criterion,
it is the s such that'z € Hgt%, and we know that is unique.)

The possibilities fors are limited to the range, 1..,i by the sifix condition
and the requirement that> 0, wherei is as found in linel4 and must be at most
{(n). If there is such a dfix a;1,60(a;}) of x, thena !, 65(a;l) is a sufix of
rforallse{l,...,i}. Ifthere is no such 4iix, then Conditiort fails, and, as we
know at this point that Conditiorsandb also fail, we declare in liné5that (by
the Criterion) ' ¢ | sz Hkt®.

For eachsin the range 1..,i, lines16-20 address the question of whether
or nott'ua;l65(am) € Ht> 1. FirstPushy, 1 is called, which can be done because
on freely reducingia;65(ay,), thea-! cancels with they, at the start obS(ay,)
to give a word of rank at mosh — 1. Pushy, ; either tells us thatf ua;165(an) ¢
Usgez Hit®, or it gives ay-word h such that"ua;l65(am) € Het"®. In the latter
casePsi is then used to test whether or ig0) = s— 1.

By the specifications dfushp, 1, £(h) < ¢(f)+2(m-1)¢(u). And, ast = ua;}
has sifix 651(a;l), when we formu’ by freely reducingia;65(an), at least half
of #%(am) = 65 (am)85(am-1) cancels intor. Sof(u’) < £(x), and

() = ¢h)+1 < (f)+2(m-1)W)+1 < £(f)+2(m-1)(n) + 1

as required. Also, it is immediate that ramk(< maxrank(f), m}, as required.
22 At this point, we knowa, b andc fail for all s€ Z, sot' 7 ¢ | sz Hkt®.

Back, runsPushy, 1(u, f) once (with£(u) < £(n)), Psi(yg) at most once (with(g) <
{(n)+{(f)), Prefix,(n~t) at most onceRushy, 1 (U, f) at most < £(x) times (with£(u') <
£()), andPsi(zpi‘lh) at mosti < £(x) times (with 1< s < £(n) andé(h) < €(F) + £(n)).
Other operations such as free reductions of words etc. doamttibute significantly to the
running time. Referring to the specificationsRufshy,,_1, Psi, andPrefix,,, we see that
they (respectively) contribute:

£(m)O((E(r) + £(F))XDHD) 1 e(m)O((e(F) + 26(m)*™) + O(¢(r)?)
= O((£(m) + £(1))™™)
which is the claimed bound on the halting timeBafck,. O

The correctness dPiece,. By applying Propositior8.1 repeatedly, we see thd#Or
Hyts if and only if tV"l‘”Zlf(O)a;Z € HtS, sincey!ys f is valid as the domains af; and
Y, areZ. So, by Corollary3.2, t"Or e Hts if and only if g = y;%! y5 f is valid and
s=u; w5 1(0).

It halts in timeO(£(w) + ¢(f)®) becaus®si halts in timeO(¢(f)°) on inputy,*f by the
bounds established in Secti8r8, given thatf is of rank 2. O

For k > m> 3, correctness aBack, implies correctness dfiecey,. Itfollowsfrom the spec-
ifications of Front,, andBack;,, that they combine in the manner Piece, to declare
whether or not’©r € (o, Hit®, and if it is to return a with the claimed properties.

Using thaté(n’) < ¢(n) and¢(f’) < ¢(f) + 1, we can add the halting-time estimates for
Front,, andBack, to deduce thaRiece, halts in time

O((£(w) + £(Fyymaxkra2mekly — o(p(w) + £())2™). 5
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Algorithm 4.4 — Piecen, k> m> 2.
o Input a rankm piecer and a validy-word f = f(1, ..., ¥).
o Declare whether or nat©r e | g, Hit® and, if it is, return a valig/-word g such that
t'Or e Ht90), rank@) < max{m, rank(f)}, and¢(g) < £(f) + 2(m— 1){(x) + 2.
o Haltin timeO((£(x) + £(f))2™).
ifm=2
mis a;la'la;2 for somel € Z and some, e € {0, 1}
3: setg = y, 2yl ysf

run Psi(g)

if it declares thag is invalid, then declarethatt'©r ¢ | o, Hit®
6: else returng

halt
9:ifm>2

run Frontm(z, f)
if it declares that, ii andiii of the Piece Criterion all fail
12: declarethatt’©@x ¢  Jo» Hct® andhalt
else runBack, on the output#’, f’) of Front,, andreturn the result

Algorithm 4.5 — Push,, k > m> 1.

o Inputareduced word = v(ay, ..., an) and a validy-word f = f(1, ..., ).

o Declare whether or naf©@v e | o, HtS. If it is, return a validy-word g with £(g) <
£(f) + 2me(v), rank@) < max{m, rank(f)} andtf©v e H,t9©,

o Halt time O((£(v) + £(f))2m+1),

if m= 1 (and sov = a| for somel € Z)
declare yesoutput g := z,b'lf andhalt

3:
ifm>1
letzy - - -, be the rankm decomposition o¥ into pieces as per Secti@nl
6: setfg:=f

fori=1top
run Piecem(ri, fi_1)
9: if it declaregi-Oz; ¢ | Jor HitS, declaret'©@w ¢ | Jo, Hit® andhalt
elsesetf; to be its output
end for
12: return g := fp

The correctness #ush;. The casen = 1 is handled in lined—2. The point is that irGy
we havet'@al = (a;t)'t"@- e Ht9© sinceg(0) = ¢/ f = f(0) - I. That it halts within the
time bound is clear. O

For k > m> 2, correctness dPiece, implies correctness dfushy,. This algorithm runs
in accordance with Lemma 6.2 df%] as we described in Sectighl

By the specifications dfiecey,, after theith iteration of thefor loop,
i
o(fi)) < o(f)+ Z(Z(m— Dl(r) +2) < £(f)+2(m—1)6(v) + 2i < £(F) + 2mé(v),
j=1

asi < {(v), and rank{i) < max{m, rank(f)}. In particular, rankg) < max{m, rank(f)}, as
claimed.
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Piecen(n, fi_1) halts in timeO((£(m;) + £(fi_1))*™*) andp < £(r), so for 1<i < p,
(i) + (fiiy) < €0m) + €(ma) + -+ -+ L(mia) + £(F) +1 =1 = O((€(v) + £(f))).
SoPush, halts in timeO((£(v) + £(f))2™+1). |

Correctness oPiece, for 2 < m < k, of Push,, for 1 < m < k, and ofBack,, for3<m<k.
We established the correctnes®agh; andPiece; individually. The implications proved
above give the correctness of the others by induction in tero

Piece, — Push, — Backs; — Piece3 — Pushy; — Back; — ---. O

Finally, we are ready for:

Algorithm 4.6 — Membery, k > 1.
o Inputawordw = w(ay, ..., a,t).
o Declare whether or nat € Hy.
o Halt in time O(£(w)3+¥).
convertw to normal formt"v wherev = v(ay, .. ., &) is reducedr € Z, andt'v = win
Gy, as described at the start of Sectii
setf =y '
3: run Pushy(v, f)
if it outputs a (necessarily valig}word g
then run Psi(g) to test whetheg(0) = 0
6: if so,declarew € H, andhalt
declarew ¢ Hy

Correctness oMember,. The process set out at the start of Sectdiohproduced'v in
time O(£(w)¥). Moreover,£(f) = |r| < £(w) and£(v) < £(w)(£(w) + 1)L,

The algorithm call®ushy(v, f), which halts in time

O((E(V) + E(F)THL) = O((E(w)* + EW)**1) = O(e(w)**4).
It either declares thatv ¢ | o7 Hkt®, and sow ¢ Hy, or it returns a validy-word g such
thatw € Hyt9® and¢(g) < €(f) + 2ke(v) < €(w) + 2ke(w)(£(w) + 1)1 = O(¢(w)). But
thenw € Hy if and only if g(0) = 0 (by Lemma 6.1 0f12]), which is precisely what the

algorithm use®si(g) to check. This call oRsi halts in timeO((£(w)¥)k+4) = O(£(w)K+4)
whenk > 1 and in timeO(£(w)) whenk = 1. So, as ma){k2 + 4k, 3K% + k} = 3k? + k for

all k > 1, Member, halts in timeO(£(w)¥**+¥), as required. o

5. CoNcLUSION

The construction and analysis ¥émbery in the last section solves the membership prob-
lem for Hy in Gy in polynomial time, indeed i|®(n3"2+") time, wheren is the length of the
input word, and so proves Theorén

Here is why a polynomial time (indedd(n®++2) time) solution to the word problem for
I'k follows, giving Theoren?.

Suppose we have a word= X(ay, ..., a, p, t) of lengthn on the generators af;. Recall
thatI'y is the HNN-extension dBy with stable lettepp commuting with all elements d.
Britton’s Lemma (see, for examples,[25, 34]) tells us that ifx = 1 in T, then it has a
subwordp*lwp*! such thatv = w(ay, . . ., a, t) and represents an elementHf.
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There are fewer thamsubwordsp**wp* in x such thawv = w(ay, . . ., ay, t). As discussed
above Membery checks whether suchvae H in time in O(n3k2+k). If none represents an
element ofHy, we conclude thax # 1 in Gy. If, for some such subworg*wp*, we find
w € Hy, then we can remove thgf! and p™ to give a word of lengtm — 2 representing
the same element &y.

This repeats at most/2 times until we have either determined that 1 in 'y, or no
p*! remain. In the latter case, we then have a wordph. .., &, t** of length at most
n, which represents an element of the subgr@upBut Gy is automatic (Theorem 1.3 of
[12]) and so there is an algorithm solving its word problen®im?) time (Theorem 2.3.10

of [13)).

In all, we have calledMember, at mostn?/2 times and an algorithm solving the word
problem inGy once, in every case with input of length at mostt follows that the whole
process can be completed in i@ +k+2),
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