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TAMING THE HYDRA:
THE WORD PROBLEM AND EXTREME INTEGER COMPRESSION

W. DISON, E. EINSTEIN AND T.R. RILEY

Abstract. For a finitely presented group, the word problem asks for an algorithm which
declares whether or not words on the generators represent the identity. The Dehn function
is a complexity measure of a direct attack on the word problemby applying the defining re-
lations. Dison & Riley showed that a “hydra phenomenon” gives rise to novel groups with
extremely fast growing (Ackermannian) Dehn functions. Here we show that nevertheless,
there are efficient (polynomial time) solutions to the word problems of these groups. Our
main innovation is a means of computing efficiently with enormous integers which are
represented in compressed forms by strings of Ackermann functions.
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1. Introduction

1.1. Ackermann functions and compressed integers.Ackermann functionsAi : N→ N
are a family of increasingly fast-growing functions beginning A0 : n 7→ n+1, A1 : n 7→ 2n,
and A2 : n 7→ 2n, and with subsequentAi+1 defined recursively so thatAi+1(n + 1) =
AiAi+1(n) andAi+1(0) = 1. (More details follow in Section2.)

Starting with zero and successively applying a few such functions and their inverses can
produce an enormous integer. For example,

A3A0A2
1A0(0) = A3A0A2

1(1) = A3A0A1(2) = A3A0(4) = A3(5) = 265536

because

A3(5) = A5
2A3(0) = A5

2(1) = 22222

= 265536.

In this way Ackermann functions provide highly compact representations for some very
large numbers.

In principle, we could compute with these representations by evaluating the integers they
represent and then using standard integer arithmetic, but this can be monumentally ineffi-
cient because of the sizes of the integers. We will explain how to calculate efficiently in a
rudimentary way with such representations of integers:

Theorem 1. Fix an integer k≥ 0. There is a polynomial-time algorithm, which on input
a word w on A±1

0 , . . . ,A±1
k , declares whether or not w(0) represents an integer, and if so

whether w(0) < 0, w(0) = 0 or w(0) > 0.

(The manner in whichw(0) might fail to represent an integer is that as it is evaluated from
right to left, anA±1

i is applied to an integer outside its domain. Details are in Section 2.1.
In fact our algorithm halts in time bounded above by a polynomial of degree 4+ k—see
Section2.3. We have not attempted to optimize the degrees of the polynomial bounds on
time complexity here or elsewhere in this article.)

1.2. The word problem and Dehn functions. Our interest in Theorem1 originates in
group theory. Elements of a groupΓwith a generating setA can be represented by words—
that is, products of elements ofA and their inverses. To work withΓ, it is useful to have
an algorithm which, on input a word, declares whether that word represents the identity
element inΓ. After all, if we can recognize when a word represents the identity, then we
can recognize when two words represent the the same group element, and thereby begin
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to compute inΓ. The issue of whether there is such an algorithm is known as the word
problemfor (Γ,A) and was first posed by Dehn [9, 10] in 1912. (He did not precisely ask
for an algorithm, of course, rather ‘eine Methode angeben, um mit einer endlichen Anzahl
von Schritten zu entscheiden...’—that is, ‘specify a method to decide in a finite number of
steps....’)

Suppose a groupΓ has a finite presentation

〈 a1, . . . , am | r1, . . . , rn 〉.

TheDehn functionArea :N → N quantifies the difficulty of adirect attackon the word
problem: roughly speaking Area(n) is the minimalN such that if a word of length at most
n represents the identity, then it does so ‘as a consequence of’ at mostN defining relations.

Here is some notation that we will use to make this more precise. Associated to a set
{a1, a2, . . .} (analphabet) is the set of inverse letters

{

a−1
1 , a−1

2 , . . .
}

. The inverse map is the

involution defined on
{

a±1
1 , a±2

1 , . . .
}

that mapsai 7→ a−1
i anda−1

i 7→ ai for all i. Write

w = w(a1, a2, . . .) whenw is a word on the lettersa±1
1 , a±1

2 , . . .. The inverse map extends

to words by sendingw = x1 · · · xs 7→ x−1
s · · · x

−1
1 = w−1 when eachxi ∈

{

a±1
1 , a±1

2 , . . .
}

.
Wordsu andv arecyclic conjugateswhenu = αβ andv = βα for some subwordsα andβ.
Freely reducinga word means removing alla±1

j a∓1
j subwords. ForΓ presented as above,

applying a relationto a wordw = w(a1, . . . , am) means replacing some subwordτ with
another subwordσ such that somecyclic conjugateof τσ−1 is one ofr±1

1 , . . . , r±1
n .

For a wordw representing the identity inΓ, Area(w) is the minimalN ≥ 0 such that there
is a sequence offreely reducedwordsw0, . . . ,wN with w0 the freely reduced form ofw,
andwN is the empty word, such that for alli, wi+1 can be obtained fromwi by applying a
relationand thenfreely reducing. TheDehn functionArea :N→ N is defined by

Area(n) := max{Area(w) | wordsw with ℓ(w) ≤ n andw = 1 in Γ } .

This is one of a number of equivalent definitions of the Dehn function. While a Dehn func-
tion is defined for a particular finite presentation for a group, its growth type—quadratic,
polynomial, exponential etc.—does not depend on this choice. Dehn functions are impor-
tant from a geometric point-of-view and have been studied extensively. There are many
places to find background, for example [4, 5, 6, 10, 15, 16, 30, 31].

If Area(n) is bounded above by a recursive functionf (n), then there is a ‘brute force’
algorithm to solve the word problem: to tell whether or not a given wordw represents the
identity, search through all the possible ways of applying at most f (n) defining relations
and see whether one reducesw to the empty word. (There are finitely presented groups for
which there is no algorithm to solve the word problem [3, 28].) Conversely, when a finitely
presented group admits an algorithm to solve its word problem, Area(n) is bounded above
by a recursive function (in fact Area(n) is a recursive function) [14].

There are finitely presented groups for which an extrinsic algorithm is far more efficient
than this intrinsic brute-force approach. A simple exampleis

Z
2
= 〈 a, b | ab= ba〉

(which has Dehn function Area(n) ≃ n2). Given a word made up of the lettersa±1 andb±1,
the extrinsic approach amounts to searching exhaustively through all the ways of shuffling
lettersa±1 past lettersb±1 to see if there is one which brings eacha±1 together with ana∓1

to be cancelled, and likewise eachb±1 together with ab∓1. It is much more efficient to read
through the word and check that the number ofa is the same as the number ofa−1, and the
number ofb is the same as the number ofb−1.
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There are more dramatic examples where Area(n) is a fast growing recursive function (so
the ‘brute force’ algorithm succeeds but is extremely inefficient), but there are efficient
ways to solve the word problem. Cohen, Madlener & Otto built the first examples. in a
series of papers [7, 8, 26] where Dehn functions were first defined. They designed their
groups in such a way that the ‘intrinsic’ method of solving the word problem involves
running a very slow algorithm which has been suitably ‘embedded’ in the presentation.
But running this algorithm is pointless as it is constructedto halt (eventually) on all inputs
and so presents no obstacle to the word representing the identity. Their examples all admit
algorithms to solve the word problem in running times that are at mostn 7→ exp(ℓ)(n) for
someℓ. But for eachk ∈ N they have examples which have Dehn functions growing like
n 7→ Ak(n). Indeed, better, they have examples with Dehn function growing liken 7→ An(n).

Recently, more extreme examples were constructed by Kharlampovich, Miasnikov & Sapir [20].
By simulating Minsky machines in groups, for every recursive function f : N → N, they
construct a finitely presented group (which also happens to be residually finite and solvable
of class 3) with Dehn function growing faster thanf , but with word problem solvable in
polynomial time.

There are also ‘naturally arising’ groups which have fast growing Dehn function but an
efficient (that is, polynomial-time) solution to the word problem. A first example is

〈 a, b | b−1ab= a2 〉.

Its Dehn function grows exponentially (see, for example, [4]), but the group admits a faith-
ful matrix representation

a 7→

(

1 1
0 1

)

, b 7→

(

1/2 0
0 1

)

,

and so it is possible to check efficiently when a word ona±1 andb±1 represents the identity
by multiplying out the corresponding string of matrices.

A celebrated 1-relator group due to Baumslag [1] provides a more dramatic example:

〈 a, b | (b−1a−1b) a (b−1ab) = a2 〉.

Platonov [29] proved its Dehn function grows liken 7→

⌊log2 n⌋
︷                  ︸︸                  ︷

exp2( exp2 · · · (exp2(1)) · · · ), where
exp2(n) := 2n. (Earlier results in this direction are in [2, 14, 15].) Nevertheless, Miasnikov,
Ushakov & Won [27] solve its word problem in polynomial time. (In unpublishedwork
I. Kapovich and Schupp showed it is solvable in exponential time [33].)

Higman’s group

〈 a, b, c, d | b−1ab= a2, c−1bc= b2, d−1cd= c2, a−1da= d2 〉

from [19] is another example. Diekert, Laun & Ushakov [11] recently gave a polynomial
time algorithm for its word problem and, citing a 2010 lecture of Bridson, claim it too has
Dehn function growing like a tower of exponentials.

The groups we focus on in this article are yet more extreme ‘natural examples’. They arose
in the study ofhydra groupsby Dison & Riley [12] . Let

θ : F(a1, . . . , ak)→ F(a1, . . . , ak)

be the automorphism of the free group of rankk such thatθ(a1) = a1 andθ(ai) = aiai−1 for
i = 2, . . . , k. The family

Gk := 〈 a1, . . . , ak, t | t−1ai t = θ(ai) ∀i > 1 〉,

are calledhydra groups. TakeHNN-extensions

Γk := 〈 a1, . . . , ak, t, p | t−1ait = θ(ai), [p, ait] = 1 ∀i > 1 〉
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of Gk where the stable letterp commutes with all elements of the subgroup

Hk := 〈a1t, . . . , akt〉.

It is shown in [12] that fork = 1, 2, . . ., the subgroupHk is free of rankk andΓk has Dehn
function growing liken 7→ Ak(n). Here we prove that nevertheless:

Theorem 2. For all k, the word problem ofΓk is solvable in polynomial time.

(In fact, our algorithm halts within time bounded above by a polynomial of degree 3k2
+

k+ 2—see Section5.)

1.3. The membership problem and subgroup distortion. Distortion is the root cause of
the Dehn function ofΓk growing liken 7→ Ak(n). The massive gap between Dehn function
and the time-complexity of the word problem forΓk is attributable to a similarly massive
gap between adistortion functionand the time-complexity of amembership problem. Here
are more details.

SupposeH is a subgroup of a groupG andG and H have finite generating setsS and
T, respectively. SoG has aword metric dS(g, h), the length of a shortest word onS±1

representingg−1h, andH has a word metricdT similarly.

Thedistortionof H in G is

DistGH(n) := max{dT(1, g) | g ∈ H with dS(1, g) ≤ n }.

(Distortion is defined here with respect to specificS andT, but their choices do not affect
the qualitative growth of DistG

H(n).) A fast growing distortion function signifies thatH
‘folds back on itself’ dramatically as a metric subspace ofG.

Themembership problemfor H in G is to find an algorithm which, on input of a word on
S±1, declares whether or not it represents an element ofH.

If the word problem ofG is decidable (as it is for allGk, because, for instance, they are
free-by-cyclic) and we have a recursive upper bound on DistG

H(n), then there is a brute-
force solution to the membership problem forH in G. If the input wordw has lengthn,
then search through all words onT±1 of length at most DistG

H(n) for one representing the
same element asw. This is, of course, likely to be extremely inefficient, and especially so
for Hk in Gk as the distortion DistGk

Hk
grows liken 7→ Ak(n). Nevertheless:

Theorem 3. For all k, the membership problem for Hk in Gk is solvable in polynomial
time.

(Our algorithm actually halts within time bounded above by apolynomial of degree 3k2
+

k—see Section5.) We will use this to prove Theorem2.

1.4. The hydra phenomenon.The reasonGk are namedhydra groupsis that the extreme
distortion ofHk in Gk stems from a string-rewriting phenomenon which is a reimagining of
the battle between Hercules and the Lernean Hydra, a mythical beast which grew two new
heads for every one Hercules severed. Think of ahydraas a wordw ona1, a2, a3, . . .. Her-
cules fightsw as follows. He removes its first letter, then the remaining letters regenerate in
that for all i > 1, each remainingai becomesaiai−1 (and each remaininga1 is unchanged).
This repeats. An induction on the highest index present shows that every hydra eventually
becomes the empty word. (Details are in [12].) Hercules is then declared victorious. For
example, the hydraa2a3a1 is annihilated in 5 steps:

a2a3a1 → a3a2a1 → a2a1a1 → a1a1 → a1 → empty word.
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DefineH(w) to be the number of steps required to reduce a hydraw to the trivial word (so
H(a3a3a1) = 5). Then, fork = 1, 2, . . ., define functionsHk : N → N byHk(n) = H(an

k).
It is shown in [12] thatHk andAk grow at the same rate for allk = 1, 2, . . . since the two
families exhibit a similar recursion relation.

Here is an outline of the argument from [12] as to why DistGk
Hk

grows at least as fast as
n 7→ Hk(n) (and so as fast asn 7→ Ak(n)). Whenk ≥ 2 andn ≥ 1, there is a reduced word
uk,n on {a1t, . . . , akt}

±1 of lengthHk(n) representingan
ktHk(n) in Gk on account of the hydra

phenomenon. (For example,u2,3 = (a2t)2(a1t)(a2t)(a1t)3 equalsa3
2t7 in G2 sincea2, a2,

a1, a2, a1, a1, anda1 are theH2(3) = 7 initial letters removed by Hercules as he vanquishes
the hydraa3

2.) This can be used to show that inGk

an
ka2 ta1 a−1

2 a−n
k = uk,n (a2t) (a1t) (a2t)−1 uk,n

−1.

The word on the left is a product of length 2n+ 4 of the generators{a1, . . . , an, t}
±1 of Gk

and that on the right is a product of length 2Hk(n) + 3 of the generators{a1t, . . . , akt}
±1 of

Hk. As Hk is free of rankk and this word is reduced, it is not equal to any shorter word on
these generators.

1.5. The organization of this article and an outline of our strategies. We prove The-
orem 1 in Section2. Here is an outline of the algorithm we construct. Given a word
w(A0, . . . ,Ak) we attempt to pass to successive new wordsw′ that areequivalentto w in that
w′(0) represents an integer if and only ifw(0) does, and when they both do,w(0) = w′(0).
These words are obtained by making substitutions that, for instance, replace a letterAi+1

in w by a subwordAiAi+1A−1
0 (this substitution stems from the recursion defining Acker-

mann functions), or we delete a subwordAi A−1
i or A−1

i Ai . The aim of these changes is to
eliminate all the lettersA−1

1 , . . . ,A−1
k in w, as these present the greatest obstacle to check-

ing whether such a word represents an integer. Once noA−1
1 , . . . ,A−1

k remain inw′, when
calculatingw′(0) letter-by-letter starting from the right, onlyA±1

0 can trigger decreases in
absolute value. So to determine the sign ofw′(0) it suffices to evaluatew′(0) letter-by-letter
from the right, stopping if the integer calculated ever exceeds the length ofw′.

In order to reach such aw′ we ‘cancel’ away lettersA−1
i with someAi somewhere further

to the right in the word. We do this by manipulating suffixes of the formA−1
i uAiv such that

u = u(A0, . . . ,Ai−1). Such suffixes either admit substitutions to make a similar suffix with
theA−1

i andAi eliminated, or they can be recognized not to evaluate to an integer because
u cannot carry the elementAiv(0) ∈ Img Ai to another element of ImgAi since the gaps
between elements of ImgAi are large.

A number of difficulties arise. For instance, there are exceptional cases when replacing
Ai+1 by AiAi+1A−1

0 fails to preserve validity. Another issue is that we must ensure that the
process terminates, and so we may, for example, have to introduce anAi ‘artificially’ to
cancel with someA−1

i .

To show that our algorithm halts in polynomial time, we arguethat the lengths of the
successive words remain bounded by a constant timesℓ(w) (the length ofw), and integer
arithmetic operations performed only ever involve integers of absolute value at most 3ℓ(w).

The group theory in this paper (specifically Theorem3) actually requires a variant of The-
orem1 (specifically, Proposition3.4). Accordingly, in Section3 we introduce a family of
functions which we callψ-functions, which are closely related to Ackermann functions,
and we adapt the earlier results and proofs to these. (We believe Theorem1 is of intrinsic
interest because Ackermann functions are well-known and efficient computation with this
form of highly compressed integers is novel. This is why we donot present Proposition3.4
only.)
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We give a polynomial-time solution to the membership problem for Hk in Gk in Section4.1,
proving Theorem3. Here is an outline of our algorithm. Supposew(a1, . . . , ak, t) is a word
representing an element ofGk. To tell whether or notw represents an element ofHk, first
collect all thet±1 at the front by shuffling them to the left through the word, applyingθ±1

as appropriate to the interveningai so that the element ofGk represented does not change.
The result is a wordtrv where|r | ≤ ℓ(w) andv = v(a1, . . . , ak) has length at most a constant
timesℓ(w)k. Then carry thetr back throughv working from left to right, converting (if
possible) what lies to the left of the power oft to a word on the generatorsa1t, . . . , akt of
Hk. Some examples can be found in Section4.2.

The power oft being carried along will vary as this proceeds and, in fact, can get extremely
large as a result of the hydra phenomenon. So instead of keeping track of the power di-
rectly, we record it as a word onψ-functions. Very roughly speaking, checking whether
this process ever gets stuck (in which casew < Hk) amounts to checking whether an associ-
atedψ-word is valid. If the end of the word is reached, we then have aword ona1t, . . . , akt
times some power oft, where the power is represented by aψ-word. We then determine
whether or notw ∈ Hk by checking whether or not thatψ-word represents 0. Both tasks
can be accomplished suitably efficiently thanks to Proposition3.4.

A complication is that the power oft is not carried through from left to right one letter
at a time. Rather,v is partitioned into subwords which we callpieces. These pieces are
determined by the locations of theak anda−1

k in v. Each contains at most oneak and at
most onea−1

k , and if theak is present in a piece, it is the first letter of that piece, and
it the a−1

k is present, it is the last letter. The power oft is, in fact, carried through one
piece at a time. Whether it can be carried through a pieceaε1

k ua−ε2

k (here,ε1, ε2 ∈ {0, 1}
and u = u(a1, . . . , ak−1) is reduced) depends onu in a manner that can be recursively
analyzed by decomposingu into pieces with respect to the locations of thea±1

k−1 it contains.
The main technical result behind the correctness of our algorithm is the ‘Piece Criterion’
(Proposition4.10), which also serves to determine whether a powertr can pass through a
pieceπ—that is, whethertrπ = σts for someσ ∈ Hk and somes ∈ Z—and, if it can, how
to representsby anψ-word.

Reducing Theorem2 to Theorem3 is relatively straight-forward. It requires little more
than a standard result about HNN-extensions, as we will explain in Section5.

1.6. Comparison with power circuits and straight-line programs. Our methods com-
pare and contrast with those used to solve the word problem for Baumslag’s group in [27]
and Higman’s group in [11], wherepower circuitsare the key tool. Power circuits provide
concise representations of integers. Those of sizen represent (some) integers up to size a
height-n tower of powers of 2. There are efficient algorithms to perform addition, subtrac-
tion, and multiplication and division by 2 with power-circuit representations of integers,
and to declare which of two power circuits represents the larger integer.

We too use concise representations of large integers, but inplace of power circuits we use
strings of Ackermann functions. These have the advantage that they may represent much
larger integers. After all,A3(n) = exp(n−1)

2 (1) already produces a tower of exponents, and
the higher rank Ackermann functions grow far faster. However, we are aware of fewer
efficient algorithms to perform operations with strings of Ackermann functions than are
available for power circuits: we only have Theorem1.

Our methods also bear comparison with the work of Lohrey, Schleimer and their coau-
thors [17, 18, 21, 22, 23, 24, 32] on efficient computation in groups and monoids where
words are given in compressed forms usingstraight-line programsand are compared and
manipulated using polynomial-time algorithms due to Hagenah, Plandowski and Lohrey.
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For instance Schleimer obtained polynomial-time algorithms solving the word problem
for free-by-cyclic groups and automorphism groups of free groups and the membership
problem for the handlebody subgroup of the mapping class group in [32].

2. Efficient calculation with Ackermann-compressed integers

2.1. Preliminaries. Let N = {0, 1, 2, . . .}. Ackermann functions A0,A1 : Z → Z and
Ai : N→ N for i = 2, 3, . . . are defined recursively by

(i) A0(n) = n+ 1 for all n ∈ Z,
(ii) A1(n) = 2n for all n ∈ Z,
(iii) Ai(0) = 1 for all i ≥ 2, and
(iv) Ai+1(n+ 1) = AiAi+1(n) for all n ≥ 0 and alli ≥ 1.

Our choices ofZ as the domains forA0 andA1 and our definition ofA0 represent small
variations on the standard definitions of Ackermann functions, reflecting the definitions
of the functionsψi to come in Section4.1. The following table, showing some values of
Ai(n), can be constructed by first inserting thei = 0, 1 rows and thenn = 0 column, and
then filling in the subsequent rows left-to-right accordingto the recurrence relation.

0 1 2 3 4 · · · n · · ·

A0 1 2 3 4 5 · · · n+ 1 · · ·

A1 0 2 4 6 8 · · · 2n · · ·

A2 1 2 4 8 16 · · · 2n · · ·

A3 1 2 4 16 65536 · · ·

22
...

2




n · · ·

A4 1 2 4 65536
22

...

2




65536 · · ·

...
...

...
...

...
...

For all i ≥ 2 andn ≥ 1, Ai(n) = An
i−1(1) by repeatedly applying (iv) and usingAi(0) = 1.

So for all n ≥ 0, A2(n) = 2n andA3(n) is a n-fold iterated power of 2, in other words, a
tower of powers of 2 of heightn. The recursion (iv) causes the functions’ extraordinarily
fast growth. Indeed, because of the increasing nesting of the recursion, theAi represent the
successive graduations in a hierarchy of all primitive recursive functions due to Grzegor-
czyk.

The functionsAi are all strictly increasing and hence injective (see Lemma2.1). So they
have partial inverses:

(I) A−1
0 : Z→ Z mappingn 7→ n− 1,

(II) A−1
1 : 2Z→ Zmappingn 7→ n/2, and

(III) A−1
i : Img Ai → N for all i > 1.

Parts (1–7 ) of the following lemma are adapted from Lemma 2.1 of [12] with modifications
to account for the fact thatA0 is defined asn 7→ n+ 1 here rather thann 7→ n+ 2. Part (8)
quantifies the spareness of the image ofA2,A3, . . . in a way that will be vital to our proof
of Theorem1 (specifically, in our proof the correctness of the subroutineBasePinch). It
will tell us that if u = u(A1, . . . ,Ak−1) anduAk(n) ∈ ImgAk but uAk(n) , Ak(n), thenℓ(u)
must be relatively large.
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Lemma 2.1.

Ai(1) = 2 ∀i ≥ 0,(1)

Ai(2) = 4 ∀i ≥ 1,(2)

Ai(n) ≤ Ai+1(n) ∀i ≥ 1;n ≥ 0,(3)

Ai(n) < Ai(n+ 1) ∀i, n ≥ 0,(4)

n ≤ Ai(n) ∀i, n ≥ 0,(5)

(with equality in(5) if and only if i= 1 and n= 0)

Ai(n) + Ai(m) ≤ Ai(n+m) ∀i, n,m≥ 1,(6)

Ai(n) +m ≤ Ai(n+m) ∀i, n,m≥ 0,(7)

|Ai(n) − Ai(m)| ≥
1
2

Ai(n) ∀i ≥ 2 and n, m.(8)

Proof. Equations (1) and (2) follow from Ai+1(n+ 1) = AiAi+1(n) by induction oni. It is
easy to check that (3) holds if i = 1 or if n = 0 and that (4) and (5) hold if i = 0, if i = 1
or if n = 0. It is clear (6) holds if i = 1. The inequality (7) holds if i = 0, i = 1 or m = 0.
The inductive arguments for the above inequalities are thenidentical to the corresponding
ones in Lemma 2.1 of [12]. For (8), note that the result is true wheni = 2 asA2(n) = 2n for
all n ∈ N and, given how each of the successive rows is constructed from those preceding
them, it follows that it is true for alli ≥ 2. �

When a wordw = w(A0, . . . ,Ak) is non-empty, we let rank(w) denote the maximumi such
that A±1

i occurs inw andη(w) denote the number ofA−1
1 , . . . ,A−1

k in w. For example, if
w = A−1

4 A3A−1
0 A−1

1 A2, then rank(w) = 4 andη(w) = 2.

As we said in Section1.1, strings of Ackermann functions offer a means of representing
integers. Forx1, . . . , xn ∈ {A±1

0 , . . . ,A±1
k }, we say the wordw = xnxn−1 · · · x1 is valid if

xmxm−1 · · · x1(0) is defined for all 0≤ m ≤ n. That is, if we evaluatew(0) by proceeding
throughw from right to left applying successivexi , we never encounter the problem that
we are trying to applyxi to an integer outside its domain, and sow(0) is a well-defined
integer.

For example,w := A−1
2 A1A1A0 is valid, andw(0) = log2(2 · 2 · (0+ 1)) = 2. ButA2A−1

0 and
A1A−1

1 A0 are not valid becauseA−1
0 (0) = −1 is not inN (the domain ofA2) and because

A0(0) = 1 is not in 2Z (the domain ofA−1
1 ).

Form ∈ Z, thesignof m, denoted sgn(m), is−, 0, or+ depending on whetherm< 0,m= 0,
or m > 0, respectively. So Theorem1 states that there is a polynomial-time algorithm to
test validity ofw(A0, . . . ,Ak) and, when valid, to determine the sign ofw(0).

We sayw(A0, . . . ,Ak) andw′(A0, . . . ,Ak) areequivalentand writew ∼ w′ whenw andw′

are either both invalid, or are both valid andw(0) = w′(0).

2.2. Examples and general strategy.We fix an integerk ≥ 0 throughout the remainder
of this article.

We will motivate and outline our design of our algorithmAckermann by means of some
examples. The details ofAckermann and it subroutines (which we refer to parenthetically
below) follow in Section2.3.

First consider the case where the wordw(A0, . . . ,Ak) in question satisfiesη(w) = 0—that
is, contains noA−1

1 , . . . ,A−1
k . Suchw are not hard to handle because, to check validity of
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w, we only need to make sure that noAi in w with i ≥ 2 takes a negative input whenw(0)
is evaluated. (Suchw are handled by the subroutinePositive.) Here is an example.

Example 2.2. Let w = A−6
0 A1A−1

0 A5A−4
0 A2A1A2A0, which is a word of length 17 with

η(w) = 0. We can evaluate directly working from right to left that, if valid, w(0) =
A−6

0 A1A−1
0 A5(12). At this point we are reluctant to calculateA5(12) as it is enormous, and

instead recognize thatA5(12) is larger thanℓ(w) = 17 (Bounds), which as we will explain
in a moment we can do suitably quickly. We then deduce thatw is valid andw(0) > 0,
becauseA−1

0 are the only letters further to the left which would lower thevalue, were the
evaluation to continue, and there cannot be enough of them toreach 0 or a negative number.

In general, ifη(w) = 0, our algorithm starts evaluatingw(0) working right to left. Let
w j denote the length-j suffix of w. The only letters inw which could decrease absolute
value areA±1

0 , so if |w j(0)| > ℓ(w) for somej andw is valid, then sgn(w j(0)) = sgn(w(0)).
Moreover, if

∣
∣
∣w j(0)

∣
∣
∣ > ℓ(w), then the only wayw fails to be valid is ifw j(0) < 0 and the

prefix of w to the left ofw j contains one ofA2,A3, . . .. So after either exhaustingw or
reaching such aj and then scanning the remaining letters inw, the algorithm can halt and
decide whether or notw(0) is valid, and if so its sign.

This technique adapts to comparew(0) with a constant –

Example 2.3. Takew as in Example2.2. We see thatw(0) > 2 by applying the same
technique to find thatw(0) − 2 = A−2

0 w(0) > 0. Here, the size ofA5(12) still dwarfs
ℓ(A−2

0 w) = 19, so the computation carried out is essentially the same.

So, how do we determine thatA5(12) > 17 or, indeed,A5(12) > 19 for Examples2.2and
2.3? The recursionAi+1(n + 1) = AiAi+1(n) implies that ImgAi ⊆ ImgA2 for all i ≥ 2.
Suppose we wish to know whetherAi(n) is less than some constantc. The casesi = 0, 1
are easy to handle asA0(n) = n+ 1 andA1(n) = 2n for all n. So are the casesn = 0, 1, 2 as
Ai(0) = 1, Ai(1) = 2, andAi(2) = 4 for all i. As for other values ofi andn, the recursion
allows a subroutine (Bounds) to list thei ≥ 2 andn ≥ 3 for whichAi(n) < c.

For instance, to find thei ≥ 2 andn ≥ 0 for whichAi(n) < 17, first calculateA2(n) = 2n for
all n for which A2(n) < 17, filling in the first row of the following table.

n = 0 n = 1 n = 2 n = 3 n = 4
A2 1 2 4 8 16
A3 1 2 4 16
A4 1 2 4

Now fill the table one row at a time. We start withA3(0) = 1 andA3(1) = 2, and then
A3(2) = A2A3(0) = A2(1) = 2. ThenA3(2) = A2A3(1), which is 4 because, as we already
know, A3(1) = 2 andA2(2) = 4. Similarly,A3(3) = 16. AndA3(4) = A2A3(3) = A2(16),
which must be greater than 16 sinceA2(16) is not in the table. We carry out the same
process forA4. We discover thatA4(3) = A3A4(2) = A3(4) is at least 17 sinceA3(4) is not
already in the table. At this point we halt, reasoning thatA j(3) ≥ Ai(3) ≥ 17 for all j > i
(see Lemma2.1).

Ackermann’s strategy, on input a wordw, is to reduce to the caseη(w) = 0 by progressing
through a sequence of equivalent words, facilitated by:

Lemma 2.4. Suppose u= u(A0, . . . ,Ak) and v= v(A0, . . . ,Ak). The following equivalences
hold if v is invalid or if v is valid and satisfies the further conditions indicated:

uAi+1v ∼ uAiAi+1A−1
0 v v(0) > 0 and i≥ 1,

uA−1
i+1v ∼ uA0A−1

i+1A−1
i v v(0) > 1 and i≥ 1,

uA−1
i Aiv ∼ uv v(0) ≥ 0 and i≥ 0.
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Proof. If v is invalid, then any word with suffix v is invalid, souAi+1v ∼ uAiAi+1A−1
0 v and

uA−1
i+1v ∼ uA0A−1

i+1Aiv.

Assumev is valid. If v(0) > 0, thenA−1
0 v(0) ≥ 0 so thatAi+1v andAiAi+1A−1

0 v are valid
words and by the recursion defining the functions,

Ai+1v(0) = AiAi+1(v(0)− 1) = AiAi+1A−1
0 v(0).

ThusuAi+1v ∼ uAiAi+1A−1
0 v since their validity is equivalent to the validity ofu on input

Ai+1v(0).

Supposev(0) > 1. If v(0) = Ai+1(c) for somec ∈ Z, thenc > 0 becausei ≥ 1, so
v(0) = AiAi+1(c− 1). Conversely,v(0) = AiAi+1(c− 1) impliesc ≥ 1. Thus

A0A−1
i+1A−1

i v(0) = c = A−1
i+1v(0),

anduA0A−1
i+1A−1

i v ∼ uA−1
i+1v because their validity is equivalent to validity ofu on input

A−1
i+1v(0).

ThatuA−1
i Aiv ∼ uvunder the given assumptions is apparent because the conditionv(0) ≥ 0

ensuresv(0) is in the domain ofAi , given thati ≥ 2. �

We will frequently make tacit use of this fact, which is immediate from the definitions:

Lemma 2.5. If w(A0, . . . ,Ak) and w′(A0, . . . ,Ak) can be expressed as w= uv and w′ = uv′

for some equivalent suffixes v∼ v′, then w∼ w′

Here is an outline of whatAckermann does on input a valid wordw. A description of
how Ackermann checks the hypotheses of Lemma2.4 and what it does when they fail is
postponed until the end of the outline.

1. Locate the rightmostA−1
r in w for which r ≥ 1. We aim to eliminate this letter, to

get a wordw′ with η(w′) < η(w) andw ∼ w′ by ‘cancelling’ it with anAr that lies
somewhere to its right and with no higher rank letters in between. However there
may be no suchAr , in which case we manufacture one. Accordingly —
1.1. If every letter to the right ofA−1

r is of rank less thanr, then append either
A−1

0 Ar if r > 1 or A1 if r = 1 to create an equivalent word ending inAr .
1.2. Locate the first letterAr ′ that lies to the right of ourA−1

r and hasr ′ ≥ r. If
r ′ > r, substituteAr ′−1Ar ′A−1

0 for thisAr ′ , thenAr ′−2Ar ′−1A−1
0 for the resulting

Ar ′−1, and so on, as per Lemma2.4until we have created anAr (Whole).
Thereby, obtain a word equivalent tow which has suffix s= A−1

r uArv for someu
andv with η(u) = η(v) = 0 and rank(u) < r. (Reduce.)

2. We now invoke a subroutine (Pinchr ) which will either declares (and sow)
invalid, or will converts to an equivalent wordAl

0v for somel ∈ Z.
Suppose first that rank(u) = r − 1 > 0. We will explain how to eliminate

an Ar−1 from u. On repetition, this will give a wordAm
0 A−1

r ũArv ∼ s such that
rank(ũ) ≤ r − 2. (CutRankr .)
2.1. Find the leftmostAr−1 in sand write

s = A−1
r u′Ar−1u′′Arv

where rank(u′) < r − 1 and rank(u′′) ≤ r − 1. SubstituteA0A−1
r A−1

r−1 for A−1
r

as per Lemma2.4to give

A0A−1
r A−1

r−1u′Ar−1u′′Arv ∼ s.

2.2. Apply Pinchr−1 to the suffix A−1
r−1u′Ar−1u′′Arv to give an equivalent word

Al′
0u′′Arv for somel′ ∈ Z. Thereby get

A0A−1
r Al′

0u′′Arv ∼ s.
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2.3. Likewise eliminate anAr−1 from u′′ in A−1
r Al′

0u′′Arv, and so on, until we
arrive at

Am
0 A−1

r ũArv ∼ s

such thatm ∈ Z and rank(˜u) ≤ r − 2.
To reduce the rank of the subword between theA−1

r and theAr further we
manufacture anA−1

r−1 and anAr−1 and then proceed recursively. Accordingly —
2.4. Substitute forA−1

r andAr as per Lemma2.4to get

Am
0 (A0A−1

r A−1
r−1) ũ (Ar−1Ar A

−1
0 ) v ∼ s.

2.5. CallPinchr−1 on the suffix A−1
r−1ũAr−1Ar A−1

0 v to obtain

Am+1
0 A−1

r Al′′
0 ArA

−1
0 v ∼ s

for somel′′ ∈ Z (FinalPinchr ).
3. Eliminate A−1

r and Ar from the suffix A−1
r Al′′

0 Ar A−1
0 v using a method we will

shortly explain via Example2.7 to give an equivalent suffix Al′′′
0 A−1

0 v for some
l′′′ ∈ Z (BasePinch). Thereby, ifw′ is the word obtained fromw by substitut-
ing the suffix beginning with the finalA−1

r with Am+1
0 Al′′′

0 A−1
0 v, thenw ∼ w′ and

η(w′) < η(w), as required.
4. Repeat steps1–3 until we have an equivalent word with noA−1

1 , . . . ,A−1
k .

5. Use the strategy (Positive) from Example2.2above.

To make legitimate substitutions as per Lemma2.4 in Steps1.2, 2.1, and2.4, we have to
examine certain suffixes. In every instance we are:

1. either substitutingAiAi+1A−1
0 for anAi+1, in which case we have to check that the

suffix v (which hasη(v) = 0) after thatAi+1 hasv(0) > 0,
2. or substitutingA0A−1

i+1A−1
i for an A−1

i+1, in which case we have to check that the
suffix v after thatA−1

i+1 (which again hasη(v) = 0) hasv(0) > 1.

So validity of v and the hypothesisv(0) > 0 or v(0) > 1 (and indeed whetherv(0) < 0,
whetherv(0) = 1, or whetherv(0) ≤ 0, which we will soon also need) can be checked in
the manner of Examples2.2and2.3, and ifv is invalid, thenw is invalid.

Suppose, then, we are in Case i,v is valid, butv(0) ≤ 0.

• If i > 0 andv(0) < 0, thenAi+1v, and sow, is invalid.
• If i > 1 andv(0) = 0, thenAi+1v(0) = 1 and so, instead of making the planned

substitution, the suffix Ai+1v can be replaced by the equivalentAiv.
• If i = 1 andv(0) = 0, then we have a suffix A2vwhich we replace by the equivalent

A0A1(v).
• Wheni = 0, no substitution is necessary becauseA−1

1 uA1v is valid if and only if
u(0) is even. If sou = Al

0 for some evenl andA−1
1 uA1v can be replaced by the

equivalentAl/2
0 v.

Suppose, on the other hand, that we are in Case ii,v is valid, butv is valid andv(0) ≤ 1. The
algorithm actually only tries to make substitutions forA−1

i+1 when the input word has suffix
A−1

i+1uAi+1v0 for some subwordsu andv0 such thatη(u) = η(v0) = 0 and rank(u) < i + 1
(andv ≡ uAi+1v0). It proceeds as follows:

• If v(0) = 1 andi > 0, output the equivalentA−v0(0)
0 v0.

• If i = 0 use the fact thatA−1
1 uA1v0 is valid if and only ifu(0) is even. Ifu(0) is

even,u = Al
0 for some even integerl replace the suffix A−1

1 uA1v0 by the equivalent
Al/2

0 v0.
• If v(0) ≤ 0, thenA−1

i+1v is invalid.
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(In Case ii, it is not obvious that outputtingA−v0(0)
0 v0 is better than simply returning the

empty word to represent zero. However, the inductive construction of the algorithm re-
quires that the output word retain a suffix v0.)

Example 2.6. Let w = A0A−1
2 A1A2

0A2A0. A quick direct calculation showsw is valid and
w(0) = 4, but here is how ourAckermann handles it.

1. First aim to eliminate theA−1
2 (the subroutineReduce). Look to the right of the

A−1
2 for the first subsequent letter (if any) of rank at least 2, namely theA2.

2. Try to ‘cancel’ theA−1
2 with theA2 (Pinch2) —

2.1. Reduce the rank of the subwordA1A2
0 betweenA−1

2 andA2 as follows (CutRank2).
2.1.1. Use the technique of Example2.2(Positive) to check that the suffix

A1A2
0A2A0 is valid andA1A2

0A2A0(0) > 1. So, by by Lemma2.4, we
can legitimately substituteA2

0A−1
2 A−1

1 for A−1
2 to obtain

A0A−1
2 A−1

1 A1A2
0A2A0 ∼ w.

2.1.2. Cancel theA−1
1 A1 (strictly speaking, this is done by callingCutRank2

on A−1
2 A−1

1 A1A2
0A2A0, and thenPinch2) to give

A2
0A−1

2 A2
0A2A0 ∼ w.

2.2. Next follow Step2.4 from the outline above. Seek to replace the subword
A−1

2 A2
0A2 by an appropriate power ofA0 (by calling FinalPinch2 on the

suffix s := A−1
2 A2

0A2A0) as follows.
2.2.1. CheckA0(0) , 0 andA2

0A2A0(0) , 1, so we can substituteA0A−1
2 A−1

1
for A−1

2 andA1A2A−1
0 for A2 in s (as per Lemma2.4) to get

A0A−1
2 A−1

1 A2
0A1A2A−1

0 A0 ∼ s.

2.2.2. Convert the subwordA−1
1 A2

0A1 to a power ofA0 (by calling Pinch1

on A−1
1 A2

0A1A2A−1
0 A0, which callsBasePinch1 since the subword be-

tween theA−1
1 and theA1 is a power ofA0). It replacesA−1

1 A2
0A1 by A0

(which is appropriate because (2x+ 2)/2 = x+ 1) to give

s′ := A0A−1
2 A0A2A−1

0 A0 ∼ s.

2.2.3. The exponent sum of theA0 betweenA−1
2 and A2 in s′ is 1. (Were

it non-zero and less than half ofA2A−1
0 A0(0) = 1, thenA2A−1

0 A0(0)
would be too far from another integer in the image ofA2(n) for s′ to be
valid.) But, in this case, we evaluateA−1

2 A0A2A−1
0 A0(0) by computing

that it is 2 directly from right to left, and then evaluatingA−1
2 (2) = 1

(by calling Bounds(2ℓ(w))). So A−1
2 A0A2A−1

0 A0(0) = 1, and we can
conclude that

s′ ∼ A2
0A−1

0 A0.

(Preserving the suffix A−1
0 A0 appears unnecessary here, but it reflects

the recursive design of the algorithm.)
So

w′ := A4
0A−1

0 A0 ∼ w.

3. Now η(w′) = 0. So evaluatew′ from right-to-left in the manner of Example2.2
(Positive) and declare thatw is valid andw(0) > 0.

In our next example, the input word has the formA−1
r uAr ′v with η(u) = η(v) = 0 and

rank(u) < r < r ′. As there is noAr with which we can ‘cancel’ theA−1
r , we manufacture

one by using Lemma2.4 to create anAr to the left of theAr ′ and thereby reduce to a
situation similar to the preceding example. This example also serves to explain how we
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resolve the special caseA−1
r Al

0Arv which is crucial for avoiding explicit computation of
large numbers.

Example 2.7. Setw = A−1
2 A−2

0 A3A100
0 .

1. Identify the rightmostA−1
i with i ≥ 1, namely theA−1

2 . Scanning to the right of
A−1

2 , the firstAi we encounter withi ≥ 2 is theA3. (Sendw to Reduce, which
callsWhole.)

2. Use techniques from Example2.2 (Positive) to check thatA100
0 (0) > 0. So we

can substituteA2A3A−1
0 for A3, as per Lemma2.4, to obtain

w0 := A−1
2 A−2

0 A2A3A−1
0 A100

0 ∼ w.

3. We check we can make substitutions as in Lemma2.4for A−1
2 andA2 to give

w1 := (A0A−1
2 A−1

1 ) A−2
0 (A1A2A−1

0 ) A3A−1
0 A100

0 ∼ w.

(RunCutRank2 onw0 which does nothing as rank(u) < 1, and then start running
FinalPinch2(w0).)

4. We now want to reduce the rank of the subword between theA−1
2 andA2 to zero

(Pinch2), and so we (BasePinch1) process the suffix

A−1
1 A−2

0 A1A2A−1
0 A3A−1

0 A100
0

to replaceA−1
1 A−2

0 A1 by A−1
0 giving

w2 := A0A−1
2 A−1

0 A2A−1
0 A3A−1

0 A100
0 ∼ w

(the equivalence being because (2x− 2)/2 = x− 1).
5. Now the subword ofw2 betweenA−1

2 andA2 has rank 0 (which causesPinch2 to
end and we return toFinalPinch2, which in turn invokesBasePinch2). As A2 is
the functionN → N mappingn 7→ 2n, if Az

0A2A−1
0 A3A−1

0 A100
0 (0) is in the domain

of A−1
2 for somez ∈ Z r {0}, then the large gaps between powers of 2 ensure that

2|z| ≥ A2A−1
0 A3A−1

0 A100
0 (0). In the case ofw2, we havez = −1 and so we see that

w2 is invalid by checking thatA2A−1
0 A3A−1

0 A100
0 (0) > 2. We can do this efficiently

in the manner of Example2.3by noting thatA3A−1
0 A100

0 (0) exceeds the threshold
ℓ(A2A−1

0 A3A−1
0 A100

0 ) + 2 = 106. So we declarew invalid.

A major reasonAckermann halts in polynomial time, is that as it manipulates words, it
does not substantially increase their lengths. One subroutine it employs,Bounds, takes an
integer as its input. All others input a wordw and output an equivalent wordw′ and in every
case but two,ℓ(w′) ≤ ℓ(w). The exceptions are the subroutinesWhole andReduce, where
ℓ(w′) ≤ ℓ(w) + 2k. But they are each called at mostη(w) ≤ ℓ(w) times whenAckermann
is run on inputw, so they do not cause length to blow up. The way this control onlength
is achieved is that while length is increased by making substitutions as per Lemma2.4,
those increases are offset by a process of replacing a suffix of the form A−1

r uArv (with
η(u) = η(v) = 0 and rank(u) < r) by an equivalent suffix of the formAl

0v with |l| ≤ ℓ(u).

The technique of exploiting the large gaps between powers of2 to sidestep direct calcula-
tion applies to all words of the formA−1

r Az
0Arv wherer ≥ 2 andz, 0, after all the gaps in

the range ofAr grow even faster whenr > 2. In Lemma2.1 (8), we showed that ifl ∈ Z
is non-zero andA−1

r Al
0Arv is valid, then 2|l| ≥ Arv(0). This condition can be efficiently

checked ifη(v) = 0. If 2|l| ≥ Arv(0), direct computation of the value ofA−1
r Al

0Arv(0) (using
Bounds(2|l|)) becomes efficient relative toℓ(w) since|l| ≤ ℓ(w).

Our final example is a circumstance where we are unable to makesubstitutions because a
hypothesis of Lemma2.4fails.
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Example 2.8. Let w = A−1
3 A−1

0 A3A0. Direct calculation shows thatw is valid andw(0) = 0,
but here is how our algorithm proceeds.

1. As before, we identify theA−1
3 , the subsequentA3, and the subwordA−1

0 that
separates them. (CallPinch3 on A−1

3 uA3v whereu = A−1
0 andv = A0.)

2. First we check thatA0 is valid andA0(0) ≥ 0 and so is in the domain ofA3.
Then we check thatA−1

0 A3A0 is valid (a necessary condition for validity ofw)
andA−1

0 A3A0(0) ≥ 0 (a necessary condition to be in the domain ofA−1
3 ). (In both

cases we usePositive.)
3. We notice that there are noA±1

1 or A±1
2 betweenA−1

3 andA3 to remove. (Pinch3

runsCutRank3(w), which does not changew.)
4. We seek to substituteA0A−1

3 A−1
2 for A−1

3 and A2A3A−1
0 for A3. (Pinch3 calls

FinalPinch3.) But, by calculating thatA−1
0 A−1

0 A3A0(0) = 0 (which is done by
calling Positive(A−1

0 A−1
0 A3A0)), we discover thatA−1

0 A3A0(0) = 1, violating a
hypothesis of Lemma2.4.

5. Invoke a subroutine (OneToZero) for this special case. We calculate the integer
m= v(0) by testing whetherA−m

0 v(0) = 0 starting withm= 1 and incrementingm
by 1 until we obtain a string equal to zero. In this examplev = A0, and som= 1.
We returnA−m

0 v = A−1
0 A0 whereA−m

0 v(0) = 0 = A−1
r (1) = A−1

r v(0). It would be
simpler to return the empty word, but the recursive structure of Pinch requires
the output of an equivalent word whose suffix is v.

6. η(A−1
0 A0) = 0, so the algorithm explicitly affirms validity, finds the sign ofA−1

0 A0(0),
and returns 0. (Positive.)

2.3. Our algorithm. We continue to have an integerk ≥ 0 fixed and work with words
on the alphabetA±1

0 , . . . ,A±1
k . The polynomial time bounds we establish in this section all

depend onk.

Our first subroutine follows the procedure explained in Section 2.2, so we only sketch it
here.

Algorithm 2.1 — Bounds.
◦ Inputℓ ∈ N (expressed in binary).
◦ Return a list of all the (at most (log2 ℓ)

2) triples of integers (r, n,Ar(n)) such thatr ≥ 2,
n ≥ 3, andAr (n) ≤ ℓ.
◦ Halt in timeO(ℓ).

list all values ofA2(n) = 2n for which 2≤ n ≤ ⌊log2 ℓ⌋

recall (from Lemma2.1) thatAi(2) = 4 for all i ≥ 2
3: use the recursionAi+1(n+1) = AiAi+1(n) to calculate allAr (n) ≤ ℓ for r ≥ 3 andn ≥ 3,

halting whenAr (3) > ℓ

Correctness ofBounds. Bounds generates its list of triples by first listing the at most
⌊log2(ℓ)⌋ triples (2, n,A2(n)) such thatn ≥ 3 andA2(n) = 2n ≤ ℓ, which it can do in
time O((log2 ℓ)

2) sinceℓ is expressed in binary. It then reads through this list and uses the
recurrence relation (and the fact thatA3(2) = 4) to list all the (3, n,A3(n)) for which n ≥ 3
andA3(n) ≤ ℓ. It then uses those to list the (4, n,A4(n)) similarly, and so on. For allr ≥ 3,
Ar (3) = Ar−1(4) ≥ 2Ar−1(3), and soAr (3) ≥ 2r . So the triples (r, n,Ar(n)) outputted by
Bounds all haver ≤ ⌊log2 ℓ⌋. As r increases, there are fewern such thatAr(n) ≤ ℓ. So the
complete listBounds outputs comprises at most (log2 ℓ)

2 triples of binary numbers each
recorded by a binary string of length at most log2 ℓ, and it is generated in timeO(ℓ). �
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PSfrag replacements

input w

Ackermann

Bounds

Bounds

Reduce
Positive

· · ·

· · ·

· · ·

· · ·

declare whether or
not w is valid and, if
so, whetherw(0) < 0,
w(0) = 0, orw(0) > 0

Pinchk Pinchk−1 Pinch2 Pinch1

= BasePinch

CutRankk CutRankk−1 CutRank2

Pinch1

FinalPinchk FinalPinchk−1 FinalPinch2

FinalPinch1

η(w
) ,

0 η(w) = 0

η(w
) =

0

η
(w

) l
ow

er
ed

Figure 1. An outline of the design ofAckermann, indicating which rou-
tines call which other routines. Any routine may declarew invalid and
halt the algorithm. FromReduce, the algorithm progresses toPinchr ,
wherer is the subscript of the rightmost ofA−1

1 , . . . ,A−1
k to remain in

w. The progression through thePinchi , CutRanki , andFinalPinchi

(shown boxed) is involved (and not apparent from the diagram) but ul-
timately decreasesη(w) by one. A further routineOneToZero (which
handles certain special cases) does not appear, but is called by a number
of the routines shown.Positive also serves as a routine, but only its
role in providing the final step in the algorithm is indicatedin the figure.

(In fact,Bounds halts in time polynomial in log2 ℓ, but we are content with theO(ℓ) bound
because other terms will dominate our cost-analyses of the routines that callBounds.)

Remark 2.9. Bounds does not give any (r, n,Ar(n)) for whichAr (n) ≥ ℓ butr ≤ 1 orn ≤ 2.
Nevertheless, such triples require negligible computation to identify. After all,Ar (0) = 1,
Ar (1) = 2 andAr (2) = 4 for all r ≥ 1 andA0(n) = n+ 1 andA1(n) = 2n for all n ∈ Z.

Correctness ofPositive. As w is a word onA±1
0 ,A1, . . . ,Ak (that is,η(w) = 0), decreases

in absolute value only occur in increments of 1 asw(0) is evaluated from right to left. The
domains ofA0, A−1

0 andA1 areZ, and ofA2,A3, . . . areN, sow is invalid only when some
Ai with i ≥ 1 meets a negative input. If the threshold,+n, is exceeded, thenw must be
valid andw(0) > 0, as subsequent letter-by-letter evaluation could never reach a negative
value. If xi ...x1(0) < −n for somei (which is easily tested as it can only first happen when
xi is A−1

0 or A1), thenw is valid if and only if none of the subsequent letters areA2, . . . ,Ak;
moreover, ifw is valid, thenw(0) < 0. If w is exhausted, then the algorithm has fully
calculatedw(0) (and|w(0)| < n) and has confirmedw as valid.

Positive calls Bounds once with inputn = ℓ(w), which produces its list of at most
(log2 n)2 triples in timeO(n). The thresholds employed inPositive ensure that it per-
forms arithmetic operations (adding one, doubling, comparing absolute values) with inte-
gers of absolute value at mostn. Each such operation takes timeO(n2), so they and the
necessary searches of the output ofBounds take timeO(n3). �
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Algorithm 2.2 — Positive.
◦ Input a wordw = xnxn−1 · · · x1 wherex1, . . . , xn ∈

{

A±1
0 ,A1, . . . ,Ak

}

.
◦ Returninvalid whenw is invalid and sgn(w(0)) whenw is valid.
◦ Halt in timeO(ℓ(w)3).

run Bounds(n)
evaluatex1(0), thenx2x1(0), and so on until

3: • eitherw(0) has been evaluated
• or somexi ...x1(0) > n (checked by consulting the output ofBounds(n))
• or somexi ...x1(0) < −n (that is,xi , A±1

0 andxi ...x1(0) < 0)
6: • or somexi ...x1 is found to be invalid (that is,xi , A±1

0 andxi ...x1(0) < 0)
then, respectively,return
• sgn(w(0))

9: • sgn(w(0)) = +
• if xi+1, . . . , xn < {A2, . . . ,Ak}, thensgn(w(0)) = −, elseinvalid
• invalid

Our next subroutine is the rank(u) = 0 case ofPinchr , to come.

Algorithm 2.3 — BasePinch.
◦ Input a wordw = A−1

r uArv with r ≥ 1, u = u(A0), v = v(A0, . . . ,Ak) andη(v) = 0.
◦ Either return thatw is invalid, or return a valid wordw′ = Al′

0v ∼ w such thatℓ(w′) ≤
ℓ(w) − 2.
◦ Halt in timeO(ℓ(w)4).

set l := u(0) (soAl
0 is u with all A±1

0 A∓1
0 subwords removed andA−1

r Al
0Arv ∼ w)

if Positive(Arv) = invalid , halt andreturn invalid
3: if r ≥ 2 andv(0) < 0 (checked usingPositive), halt andreturn invalid

if l = 0, halt andreturn w′ := v
if r = 1, halt andreturn w′ := Al/2

0 v or invalid depending on whetherl is even or odd
6:

we now havel , 0 andr > 1
run Positive(Al

0Arv) to determine ifAl
0Arv(0) ≤ 0 (so outside the domain ofA−1

r )
9: if so,halt andreturn invalid

run Positive(A−2|l|
0 Arv) to determine whetherArv(0) > 2|l|

if so,halt andreturn
12:

we now have that 0≤ v(0) ≤ |l| and 0< Arv(0) ≤ 2|l| andArv(0)+ l ≤ 3|l|
calculatev(0) by runningPositive(A−i

0 v) for i = 0, 1, . . . , |l|
15: run Bounds(3 |l|)

search the output ofBounds(3 |l|) to find Arv(0)
setm := Arv(0)+ l

18: search the output ofBounds(3 |l|) for c with Ar (c) = m (soc = A−1
r Al

0Arv(0) = w(0))
if such ac exists,halt andreturn w′ := Ac−v(0)

0 v
else haltandreturn invalid

Correctness ofBasePinch. The idea is that whenw is valid, eitherl = 0 or the sparseness
of the image ofAr implies thatl is large enough thatw(0) can be calculated efficiently.
Here is why the algorithm runs as claimed.

3: If v(0) < 0, thenw is invalid.
4: If r ≥ 2, thenA−1

r Arv ∼ v by Lemma2.4.
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5: SinceA1 is the functionn 7→ 2n, the parity ofAl
0Arv(0) is the parity ofl when

r = 1, and determines the validity ofw.
8, 10: We knowAl

0Arv andA−2|l|
0 Arv are valid at these points becauseArv is valid.

11: Let q = v(0). For allp , q we have|Ar(q) − Ar (p)| ≥ 1
2Ar (m) by Lemma2.1(8),

and so|Ar (q)−Ar (p)| > |l|. If A−1
r Al

0Arv is valid, then there existsp ∈ N such that
Ar (p) = Al

0Arv(0) = l + Ar (q), but then|Ar(p) − Ar (q)| = |l| for somep , q (since
l , 0), contradicting|Ar(q) − Ar (p)| > l. Thusw is invalid.

13 The reason 0< Arv(0) is thatr > 1 and so ImgAr contains only positive integers.
And Arv(0) ≤ 2 |l| because of lines10 and11. It follows thatv(0) ≤ |l| because
2v(0) = A1v(0) ≤ Arv(0) ≤ 2 |l|. And v(0) ≥ 0 sincev(0) is in the domain ofAr ,
which isN whenr > 1. We haveAl

0Arv(0) ≤ 3|l| here becauseArv(0) ≤ 2 |l| and
soAl

0Arv(0) ≤ l + 2 |l|.
18: If m = Arv(0) + l = Al

0Arv(0) is in the domain ofA−1
r , thenm > 0. And, from

line 13, we knowm ≤ 3 |l|, so this will findc if it exists. If no suchc exists,w is
invalid.

19: Ac−v(0)
0 v(0) = c = A−1

r (l + Arv(0)) = A−1
r Al

0Arv(0).

We must show thatℓ(w′) ≤ ℓ(w) − 2. In the cases of lines4 and5, this is immediate, so
supposer ≥ 2. As for line19, we will show that|c− v(0)| ≤ |l|, from which the result will
immediately follow.

First supposel ≥ 0. By Lemma2.1 and the fact thatv(0) ≥ 0, we haveAr (v(0) + l) ≥
Ar (v(0))+ l. Sov(0)+ l ≥ A−1

r (Arv(0)+ l) = c. Soc − v(0) ≤ l = |l|. And 0 ≤ c − v(0)
becauseAr (c) = Ar (v(0))+ l ≥ Ar (v(0)). So|c− v(0)| ≤ |l|, as required.

Suppose, on the other hand,l < 0. Then

c = A−1
r Al

oArv(0) ≤ A−1
r Arv(0) = v(0)

and so|c− v(0)| = v(0)−c. But then|c− v(0)| ≤ v(0) becausev(0), c ≥ 0. So ifv(0)+ l ≤ 0,
then |c− v(0)| ≤ −l = |l|, as required. Suppose instead thatv(0) + l > 0. We have that
Ar (v(0) + l) ≤ Ar (v(0)) + l becauseAr (p − m) ≤ Ar (p) − m by Lemma2.1 (7) for all
p ≥ m≥ 0. Sov(0)+ l ≤ A−1

r (Ar(v(0))+ l) = c. Sol ≤ c− v(0). Andc− v(0) < 0 because
Ar (c) = Arv(0)+ l < Arv(0). So|c− v(0)| ≤ |l|, again as required.

Next we explain why the integer calculations performed by the algorithm involve integers
of absolute value at most 3ℓ(w). The algorithm callsPositive on words of length at most
3ℓ(w), and so (by the properties ofPositive established), each time it is called,Positive
calculates with integers no larger than 3ℓ(w). On input 3|l| ≤ 3ℓ(w), Bounds calculates
with integers of absolute value at most 3ℓ(w). The only remaining integer manipulations
concernm, l, 2 |l| ,Arv(0), all of which have absolute value at most 3ℓ(w).

Finally, thatBasePinch halts in timeO(ℓ(w)4) is straightforward given the previously
established cubic and linear halting times forPositive andBounds, respectively, and the
following facts. It may add a pair of positive binary numberseach at most 2ℓ(w), may
determine the parity of a number of absolute value at mostℓ(w), and may halve an even
positive number less thanℓ(w). It callsPositive at most|l|+3 ≤ ℓ(w)+3 times, each time
on input a word of length at most 2ℓ(w). It calls Bounds at most once—in that event the
input toBounds is a non-negative integer that is at most 3ℓ(w) and the output ofBounds is
searched at most twice and has sizeO((log2 ℓ(w))2). �
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Algorithm 2.4 — OneToZero.
◦ Input a valid wordw = A−1

r uArv with η(u) = η(v) = 0, u , ǫ, uArv(0) = 1 andr ≥ 2.
◦ Return a wordA−v(0)

0 v ∼ w of length at mostℓ(w) − 2.
◦ Halt in timeO(ℓ(w)4).

run Positive(A−m
0 v) for m= 0, 1, ... until it declares thatA−m

0 v = 0
halt andoutput A−m

0 v

Correctness ofOneToZero.

1: As w is valid,v(0) is in the domain ofAr , which isN asr ≥ 2. Som = v(0) will
eventually be found.

2: w(0) = A−1
r (1) = 0 and soA−m

0 v ∼ w as required, sinceA−m
0 v(0) = 0.

Sinceη(u) = 0, the only letteru may contain which decreases the value in the course of
evaluatinguArv(0) is A−1

0 . So, asuArv(0) = 1 andArv(0) ≥ v(0)+ 1, there must be at least
v(0) lettersA−1

0 in u. Soℓ(u) ≥ v(0). Soℓ(A−v(0)
0 v) ≤ ℓ(w) − 2, as required.

OneToZero callsPositivem= v(0) ≤ ℓ(u) ≤ ℓ(w) times, each time on input of length at
mostℓ(w). So, by the established properties ofPositive, it halts in timeO(ℓ(w)4). �

The inputw to OneToZero necessarily hasw(0) = 0, so it would seem it should just output
the empty word rather thanA−v(0)

0 v. However,OneToZero is used byPinchr , which we
will describe next and whose inductive construction requires the suffix v.

Pinchr for r ≥ 1 is a family of subroutines which we will construct alongside further fam-
ilies CutRankr andFinalPinchr for r ≥ 2. Pinchr−1 is a subroutine ofCutRankr and of
FinalPinchr . CutRankr andFinalPinchr are subroutines ofPinchr . It may appear that
we could discardCutRankr and useFinalPinchr instead, by expandingFinalPinchr to
allow inputs with rank(u) = r −1 and expandingPinchr to allow inputs where rank(u) = r.
But this would cause problems with maintaining the suffix v.

Algorithm 2.5 — Pinchr for r ≥ 1.
◦ Input a wordw = A−1

r uArv with η(u) = η(v) = 0 and rank(u) ≤ r − 1.
◦ Either return thatw is invalid, or return a valid wordw′ = Al′

0v ∼ w such thatℓ(w′) ≤
ℓ(w) − 2.
◦ Halt in O(ℓ(w)4+(r−1)) time.

if r = 1 run BasePinch(w) and thenhalt
run Positive(v) to determine whetherv is invalid orv(0) < 0

3: if sohalt andreturn invalid
run Positive(uArv) to determine whetheruArv is valid oruArv(0) ≤ 0

if sohalt andreturn invalid
6: run CutRankr (w)

it either declaresw invalid, in which casehalt andreturn invalid
or it returns a wordw′ = Ai

0A−1
r u′Arv such that

9: w′ ∼ w, ℓ(w′) ≤ ℓ(w), η(u′) = 0, u′ , ǫ and rank(u′) < r − 1
run FinalPinchr (A−1

r u′Arv)
if it declaresA−1

r u′Arv invalid, halt andreturn invalid
12: elseit outputsAl

0v for somel, in which casesetw′′ := Ai+l
0 v

run Positive(w′′)
if it declaresw′′ invalid, halt andreturn invalid

15: else returnw′′
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Algorithm 2.6 — CutRankr for r ≥ 2.
◦ Input a wordw = A−1

r uArv with η(u) = η(v) = 0 and rank(u) ≤ r − 1.
◦ Either declarew invalid, or returnw′ = Al

0v whereℓ(w′) ≤ ℓ(w) − 2, or returnw′ =
Ai

0A−1
r u′Arv ∼ w where rank(u′) ≤ r − 2, η(u′) = 0, andℓ(w′) ≤ ℓ(w).

◦ Halt in timeO(ℓ(w)4+(r−1)).

set i = 0 and re-expressw asAi
0A−1

r uArv
if v(0) < 0 (checked usingPositive), halt andreturn invalid

3: if u is the empty word,halt andreturn v
while rank(u) = r − 1 do

run Positive(A−1
0 uArv) to test whetheruArv(0) = 1

6: if sohalt andreturn the outputw′ = Al
0v of OneToZero(w)

run Positive(uArv) to test whetheruArv(0) ≤ 0
if so,halt andreturn invalid

9: expressu asu′Ar−1u′′ where rank(u′) < r − 1 (i.e. locate the leftmostAr−1 in u)
increment i by 1
setw := Ai

0A−1
r A−1

r−1u
′Ar−1u′′Arv (i.e. substituteA0A−1

r Ar−1 for A−1
r in w)

12: run Pinchr−1(A−1
r−1u

′Ar−1u′′Arv)
if it returns invalidhalt, return invalid
elselet w0 := As

0u′′Arv be the (valid) word returned
15: setw := Ai

0A−1
r w0

setu := As
0u′′ so thatw = Ai

0A−1
r uArv

end while
18: return w

Correctness ofPinchr−1 implies the correctness ofCutRankr for all r ≥ 2. The idea of
CutRankr is that each pass around the while loop eliminates oneAr−1 from u. So in the
output, rank(u) < r − 1.

2: If r ≥ 2, then the domain ofAr isN, and sow is invalid whenv(0) < 0.
3: Sincev(0) ≥ 0 now, Lemma2.4applies.
6: ℓ(w′) ≤ ℓ(w) − 2 by the specifications ofOneToZero.
8: If uArv(0) ≤ 0, it is outside the domain ofA−1

r (asr ≥ 2), so the algorithm’s input
is invalid.

11: Substituting gives an equivalent word here by Lemma2.4, sinceuArv(0) ≥ 1. At
this point,ℓ(w) is at most 2 more than its initial length.

16: Noww is no longer than it was at the start of thewhile loop becausePinchr−1 (as-
suming it does not halt) trims at least 2 letters, offsetting the gain at line11. The
wordw here at the end of thewhile loop is equivalent to thew at the start because
of our remark on line11 and because we are replacing a suffix A−1

r−1u′Ar−1u′′Arv
by an equivalent word produced byPinchr−1.

18: It follows from our remarks on lines11and16thatℓ(w) here is at most the length
of thew originally inputted.

The while loop is traversed at mostℓ(w) times. Each time,Positive (twice),OneToZero
andPinchr−1 may be called, and by the remarks above, their inputs are always of length
at mostℓ(w). So, as each of these subroutines halt in timeO(ℓ(w)4+(r−2)), CutRankr halts
in O(ℓ(w)4+(r−1)) time. �

Correctness ofPinchr−1 implies correctness ofFinalPinchr for r ≥ 2.

2: If uArv(0) < 1, then it is outside the domain ofA−1
r .

4: uArv is valid if and only ifA−1
0 uArv is valid.

8: In this casev(0) is outside the domain ofAr .
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Algorithm 2.7 — FinalPinchr for r ≥ 2.
◦ Input a wordw = A−1

r uArv with η(u) = η(v) = 0, u , ǫ and rank(u) < r − 1.
◦ Either declarew invalid or return a wordAl

0v ∼ w of length at mostℓ(w) − 2.
◦ Halt in O(ℓ(w)4+(r−2)) time.

run Positive(A−1
0 uArv) = 0 to decide among the following cases

if A−1
0 uArv is invalid oruArv(0) < 1, halt andreturn invalid

3: if uArv(0) = 1, halt andreturn OneToZeror (w)
we now have thatuArv is valid anduArv(0) > 1

6: run Positive(v) to determine whetherv(0) < 0, v(0) = 0, orv(0) > 0

if v(0) < 0, halt andreturn invalid
9:

if v(0) = 0
if r = 2, run BasePinch(A−1

r uArv)
12: if it returnsinvalid , halt and do likewise

else haltand return its resultAl′
0v, which will satisfyℓ(Al′

0v) ≤ ℓ(w) − 2
if r > 2, run Pinchr−1(A−1

r−1uAr−1v)
15: if it returnsinvalid , halt and do likewise

elseit returnsAl
0v for some|l| ≤ ℓ(u)

if l ≤ 0, halt andreturn invalid
18: run BasePinch(A−1

r Al−1
0 Arv)

if it returnsinvalid , halt and do likewise
elseit returnsAl′

0v for some|l′| ≤ |l − 1| = l − 1,
21: in which casehalt andreturn Al′+1

0 v

if v(0) > 0
24: run Pinchr−1(A−1

r−1uAr−1Ar A−1
0 v)

if it returnsinvalid , halt and do likewise
elseit returnsAl

0Ar A−1
0 v for some|l| ≤ ℓ(u)

27: run BasePinch(A−1
r Al

0Ar A−1
0 v)

if it returnsinvalid , halt and do likewise
elseit returnsAl′′

0 A−1
0 v for some|l′′| ≤ |l|,

30: in which casehalt andreturn Al′′
0 v

11: If r = 2, the rank ofu is zero, soBasePinch applies.
13: ℓ(Al′

0v) ≤ ℓ(w) − 2 by properties ofBasePinch.
16: w ∼ A0A−1

r A−1
r−1uAr−1v whenr > 2 andv(0) = 0, becauseArv ∼ Ar−1v and we

can substituteA0A−1
r A−1

r−1 for A−1
r as per Lemma2.4, given thatuArv(0) > 1. So

if A−1
r−1uAr−1v is invalid, then so isw. And if Pinchr−1 gives us thatA−1

r−1uAr−1v ∼
Al

0v, thenw ∼ A0A−1
r Al

0v.
17: If l ≤ 0, thenw is invalid becauseAl

0v(0) ≤ 0 and lies outside of the domain of
A−1

r (sincer ≥ 2).
19: Next, working fromw ∼ A0A−1

r Al
0v established in our comment above on line16,

we get thatw ∼ A0A−1
r Al−1

0 Arv becauseA−1
0 Arv ∼ v, given thatr ≥ 2 andv(0) = 0.

So, if BasePinch tells us thatA−1
r Al−1

0 Arv is invalid, then so isw.
20: |l − 1| = l − 1 here becausel > 0 here.
21: Similarly, if A−1

r Al−1
0 Arv ∼ Al′

0v, thenw ∼ Al′+1
0 v. Now, |l′ + 1| ≤ |l′| + 1 ≤ l by

line 20, and l ≤ ℓ(u) in the caser > 2 of line 16. So ℓ(Al′+1
0 v) ≤ ℓ(w) − 2, as

required.
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23: w ∼ A0A−1
r A−1

r−1uAr−1Ar A−1
0 vbecause Lemma2.4tells us that substitutingAr−1Ar A−1

0
for Ar and A0A−1

r A−1
r−1 for A−1

r in w gives an equivalent word asv(0) > 0 and
uAr−1v(0) > 1. This word is longer thanw by 2.

25: So, if the suffix A−1
r−1uAr−1Ar A−1

0 v is invalid, then so isw.
26: Similarly, if the suffix A−1

r−1uAr−1Ar A−1
0 v ∼ Al

0Ar A−1
0 v, thenw ∼ A0A−1

r Al
0Ar A−1

0 v.
28: If the suffix A−1

r Al
0Ar A−1

0 v is invalid, then so isw.
30: If the suffix A−1

r Al
0Ar A−1

0 v ∼ Al′′
0 A−1

0 v, thenw ∼ A0Al′′
0 A−1

0 v ∼ Al′′
0 v and has length

at mostℓ(w) − 2 since|l′′| ≤ |l| and (from line26) |l| ≤ ℓ(u) (or to put it another
way, we have takenA0A−1

r A−1
r−1uA0A1v (see the comment on line23) which is

four letters longer thanw, andPinchr−1 andBasePinch have each shortened it
by two).

FinalPinchr halts inO(ℓ(w)4+(r−2)) time because it makes at most four calls on subrou-
tines (Positive, OneToZero, Pinchr−1 orBasePinch) and, each time, the subroutine has
input of length at mostℓ(w) + 2 and halts inO(ℓ(w)4+(r−2)) time. �

Correctness ofCutRankr andFinalPinchr implies correctness ofPinchr for r ≥ 2.

3: If v is invalid, then so isw. If v(0) < 0, thenv(0) is outside the domain ofAr (as
r ≥ 2) and sow is invalid.

5: If uArv is invalid, then so isw. If uArv(0) ≤ 0, thenv(0) is outside the domain of
A−1

r (asr ≥ 2) and sow is invalid.
10: ℓ(A−1

r u′Arv) ≤ ℓ(w′) ≤ ℓ(w), the second inequality being by an established prop-
erty ofCutRankr .

11: If the suffix A−1
r u′Arv of w′ is invalid, then so isw′, and hence so isw.

12: w′′ ∼ w because it is obtained by replacing the suffix A−1
r u′Arv of w′ by an equiv-

alent word.
13: η(w′′) = 0, so we can usePositive to determine validity ofw′′. Also, ℓ(w′′) ≤

i+ℓ(Al
0v) ≤ i+ℓ(A−1

r u′Arv)−2 = ℓ(w′)−2 < ℓ(w), the second and final inequalities
follow from established properties ofFinalPinchr andCutRankr , respectively.

ThatPinchr runs inO(ℓ(w)4+(k−1)) time follows directly from the time bounds for the sub-
routinesPositive, CutRankr , BasePinch andFinalPinchr as it calls these at most six
times in total and on each occasion, the input has length at most ℓ(w)—see the comments
above on lines10and13. �

Correctness ofPinchr for r ≥ 1 and ofCutRankr andFinalPinchr for r ≥ 2. For r = 1,
the correctness ofPinch1 follows from that ofBasePinch. As explained above, forr ≥ 2,
the correctness ofCutRankr andFinalPinchr implies that ofPinchr , and the correctness
of Pinchr−1 implies that ofCutRankr andFinalPinchr . So, by induction onr, Pinchr is
correct for allr ≥ 1. �

Correctness ofReduce. The idea is to eliminate the rightmostA−1
r with 1 ≤ r ≤ k from w

by either usingPinchr directly on a suffix of w or by manipulatingw into an equivalent
word with a suffix that can be input intoPinchr .

4: A−1
0 Ar (0) = 0 (sincer ≥ 2), sow2A−1

0 Ar ∼ w2.
6: Al

0 ∼ A−1
r w2A−1

0 Ar and sow′ ∼ w. Evidently,η(w′) = η(w) − 1. And ℓ(w′) =
ℓ(w1) + |l| ≤ ℓ(w1) + ℓ(w2) + 1 = ℓ(w) ≤ ℓ(w) + 2k, as required.

8: A1(0) = 0, sow2A1 ∼ w2.
10: Al

0 ∼ A−1
1 w2A1 ∼ A−1

1 w2 and sow′ ∼ w, as required. Also, evidently,η(w′) =
η(w) − 1, andℓ(w′) ≤ ℓ(w) + 2k, as required.

13: Moreover,η(w3) = η(w4) = 0 becauseη(w2) = 0, as will be required in line15.
15: The length ofw′′ is at mostℓ(w) − ℓ(w1) − 2 by properties ofPinchr .
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Algorithm 2.8 — Reduce.
◦ Input a wordw with η(w) > 0.
◦ Either return thatw is invalid, or return a wordw′ ∼ w with ℓ(w′) ≤ ℓ(w) + 2k and
η(w′) = η(w) − 1.
◦ Halt in O(ℓ(w)4+(k−1)) time.

expressw asw1A−1
r w2 wherer ≥ 1 andη(w2) = 0

(i.e. locate rightmostA−1
1 ,A−1

2 , . . . ,A−1
k in w)

3:

if rank(w2) < r andr ≥ 2, run Pinchr (A−1
r w2A−1

0 Ar )
if it declaresA−1

r w2A−1
0 Ar invalid, halt andreturn invalid

6: elseit returnsAl
0 for some|l| ≤ ℓ(w2) + 1, in which casereturn w′ := w1Al

0

if rank(w2) = 0 andr = 1, run Pinch1(A−1
1 w2A1)

9: if it declaresA−1
1 w2A1 invalid, halt andreturn invalid

elseit returnsAl
0 for some|l| ≤ ℓ(w2), in which casereturn w′ := w1Al

0

12: if rank(w2) ≥ r
expressw2 asw3Asw4 wherer ≤ sand rank(w3) < r
run Positive(w4) to decide among the following cases

15: if r = s= 1, setw′′ = Pinch1(A−1
r w3Asw4)

else ifw4 is invalid orv(0) < 0, halt andreturn invalid
else ifw4(0) = 0, r = 1 ands> r, setw′′ = Pinchr (A−1

r uA0Arv)
18: else ifw4(0) = 0 andr > 1, setw′′ = Pinchr (A−1

r w3Arw4)
elsew4(0) > 0, so setw′′ = Pinchr (A−1

r w3Ar Ar+1A−1
0 Ar+2A−1

0 · · ·AsA−1
0 w4)

if w′′ = invalid , halt andreturn invalid
21: else returnw′ := w1w′′

16: If w3(0) < 0, thenw is invalid becauses≥ 2
17: In this caseA−1

r w3A0Arw4 ∼ A−1
r w3Asw4 sinceA0Ar (0) = As(0). As required, if

w′′ , invalid , it has length at mostℓ(A−1
r uA0Arv) = ℓ(w) − ℓ(w1) + 1 < ℓ(w) −

ℓ(w1)+ 2k and contains noA−1
1 , . . . ,A−1

k by the properties established forPinchr .
18: Similarly, in this caseA−1

r w3Arw4 ∼ A−1
r w3Asw4 sinceAr (0) = As(0), and the

output has the required properties.
19: If w4(0) > 0, thenA−1

r w3Asw4 andA−1
r w3As−1AsA−1

0 w4 are equivalent by Lemma2.4.
As v(0)− 1 ≥ 0, and so is in the domain ofAs, the wordAsA−1

0 v is valid. And,
asAsA−1

0 v(0) = As(v(0)− 1) > 0, we may replace theAs−1 by As−2As−1A−1
0 to get

another equivalent word. Indeed, we may repeat this processs− r ≤ k times, to
yield an equivalent word

A−1
r w3Ar Ar+1A−1

0 Ar+2A−1
0 · · ·AsA

−1
0 w4

of lengthℓ(w) − ℓ(w1) + 2(s − r). Applying Pinchr then returns (if valid) an
equivalent word

w′′ = Al
0 Ar+1A−1

0 Ar+2A−1
0 · · ·AsA

−1
0 w4

whose length is at mostℓ(w) − ℓ(w1) + 2(s− r) − 2.
20: If the suffix A−1

r w3Asw4 of w is invalid, thenw is invalid.
21: By the aboveℓ(w′′) ≤ ℓ(w) − ℓ(w1) + 2(s− r), we have thatw′′ ∼ A−1

r w3Asw4,
η(w′′) = 0 andℓ(w′′) ≤ ℓ(A−1

r w3Asw4) + 2r = 1 + ℓ(w2) + 2r. It follows that
w ∼ w1w′′ andℓ(w1w′′) = ℓ(w1)+ ℓ(w′′) ≤ ℓ(w1)+ 1+ ℓ(w2)+ 2r ≤ ℓ(w)+ 2k, as
required. Also, again evidently,η(w′) = η(w) − 1.
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Reduce halts in O(ℓ(w)4+(k−1)) time sincePinchr andPositive do and they are each
called at most once and only on words of length at mostℓ(w) + 2k, and otherwiseReduce
scansw and compares non-negative integers that are at mostk. �

Proof of Theorem1. Here is our algorithmAckermann satisfying the requirements of The-
orem1: it declares, in polynomial time inℓ(w), whether or not a wordw(A0, . . . ,Ak) is
valid, and if so, it gives sgn(w).

Algorithm 2.9 — Ackermann.
◦ Input a wordw.
◦ Return whetherw is valid and if it is, return sgn(w(0)).
◦ Halt in O(ℓ(w)4+k) time.

if η(w) > 0, run Reduce successively until
it either returns thatw is invalid ,
or it returns somew′ ∼ w with η(w′) = 0

run Positive(w′)

After at mostη(w) ≤ ℓ(w) iterations ofReduce, we have a wordw′ with η(w′) = 0 such
thatw′(0) = w(0). We then applyPositive to w′ to obtain the result.

The correctness ofAckermann is immediate from the correctness ofReduceandPositive.

Reduce is called at mostℓ(w) times as it decreasesη(w) by one each time. Each time it
is run, it adds at most 2k to the length of the word. So the lengths of the words inputted
into Reduce or Positive are at mostℓ(w) + 2kℓ(w). So, asReduce andPositive run in
O(ℓ(w)4+(k−1)) time in the lengths of their inputs,Ackermann halts inO(ℓ(w)4+k) time. �

3. Efficient calculation with ψ-compressed integers

3.1. ψ-functions andψ-words. Similarly to Ackermann functions in Section2.1, we de-
fineψ-functionsby

ψ1 : Z→ Z n 7→ n− 1

ψ2 : Z→ Z n 7→ 2n− 1

ψi : −N→ −N ∀i ≥ 3

ψi(0) := −1 ∀i ≥ 1

ψi+1(n) := ψiψi+1(n+ 1)− 1 ∀n ∈ −N,∀i ≥ 2.

Having entered thei = 1 row andn = 0 column as per the definition, a table of values of
ψi(n) can be completed by determining each row from right-to-left from the preceding one
using the recurrence relation:

· · · n · · · −4 −3 −2 −1 0
· · · n− 1 · · · −5 −4 −3 −2 −1 ψ1

· · · 2n− 1 · · · −9 −7 −5 −3 −1 ψ2

· · · 2− 3 · 2−n · · · −46 −22 −10 −4 −1 ψ3...
... 1− 3 · 295 −95 −5 −1 ψ4...

...
...

...
...

−i − 1 −1 ψi...
...

...

The following proposition explains why we definedψ-functions with the given domains. It
details the key property ofψ-functions, which is that they govern whether and how a power
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of t pushes pastanai on its right, to leave an element ofHk times a new power oft without
changing the element ofGk represented.

Proposition 3.1. Suppose r, i and k are integers such that1 ≤ i ≤ k. Then trai ∈ Hkts in
Gk if and only if r is in the domain ofψi and s= ψi(r).

Proof. First we prove the ‘if’ direction by inducting on pairs (i, r), ordered lexicographi-
cally. We start with the casesi = 1 andi = 2. Asa1t ∈ Hk andt−1a1t = a1,

tra1 = a1t tr−1 ∈ Hkt
r−1
= Hkt

ψ1(r)

for all r ∈ Z. And as,a2t ∈ Hk andt−1a2t = a2a1 also,

tra2 = tra2t
−r tr = a2a−r

1 tr = a2t (a1t)−r t2r−1

for all r ∈ Z. Next the case wherer = 0 and 1≤ i ≤ k:

trai = ai = ai t t−1 ∈ Hkt
−1
= Hkt

ψi (0),

sinceai t ∈ Hk andψi(0) = −1. Finally, induction gives us that

trai = tr+1aiai−1t−1 ∈ Hkt
ψi (r+1)ai−1t−1

= Hkt
ψi−1ψi(r+1)−1

= Hkt
ψi (r)

for all i ≥ 2 andr ≤ 0, as required.

For the ‘only if’ direction supposetrai ∈ Hkts for somes ∈ Z. Then

trai t
−r
= θ−r (ai) ∈ Hkt

s−r

for somes ∈ Z. Lemma 7.3 in [12] tells us that in the casesi = 1, 2 this occurs whenr ∈ Z,
and in the casesi ≥ 3 it occurs whenr ∈ −N. In other words, it occurs whenr is in the
domain ofψi . Now, given thatr is in the domain ofψi , we have thattrai ∈ Hktψi (r) from the
calculations earlier in our proof, and soHktψi (r) = Hkts, but this implies thats = ψi(r) by
Lemma 6.1 in [12]. �

For example, painful calculation can show that

t−2a3a1 = (a3t)(a2t)(a1t)(a2t)(a1t)5t−11 ∈ H3t−11,

but Proposition3.1immediately gives:

t−2a3a1 ∈ H3tψ1ψ3(−2)
= H3t−11.

The following criterion for whether and how a power oft pushes past ana−1
i on its right,

to leave an element ofHk times a new power oft can be derived from Proposition3.1.

Corollary 3.2. Suppose i and k are integers such that1 ≤ i ≤ k. Then tsa−1
i ∈ Hktr in Gk

if and only if r is in the domain ofψi and s= ψi(r).

Proof. tsa−1
i ∈ Hktr if and only if trai ∈ Hkts. �

The connection betweenψ-functions and hydra groups is also apparent in that they relate
to the functionsφi of [12] by the identityψi(n) = n − φi(−n) for all n ∈ −N and all
i ≥ 1. We will not use this fact here, so we omit a proof, except to say that the recurrence
φi+1(n) = φi+1(n− 1)+ φi(φi+1(n− 1)+ n− 1) for all i ≥ 1 andn ≥ 1 of Lemma 3.1 in [12]
translates to the defining recurrence ofψ-functions.
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Lemma 3.3.

ψ2(n) = 2n− 1 ∀n ≤ 0,(9)

ψ3(n) = 2− 3 · 2−n ∀n ≤ 0,(10)

ψi(−1) = −i − 1 ∀i ≥ 1,(11)

ψi(n) ≥ ψi+1(n) ∀i ≥ 1, n ≤ 0,(12)

ψi(n) > ψi(n− 1) ∀i ≥ 1, n ≤ 0,(13)

n > ψi(n) ∀i ≥ 1, n ≤ 0,(14)

ψi(m) + ψi(n) ≥ ψi(m+ n) ∀n,m≤ −2, i ≥ 2,(15)

|ψi(m) − ψi(n)| ≥
1
2
|ψi(n)| ∀i ≥ 3,m, n.(16)

Proof. (9–15) are evident from the manner in which the table of values ofψi(n) above is
constructed. Formal induction proofs could be given as for Lemma2.1.

For (16), whenm> n (so that|n| > |m|),

|ψ3(m) − ψ3(n)| = |3 · 2−m− 3 · 2−n| ≥ |3 · 2−n − 3 · 2−n−1| =
1
2
· 3 · 2−n

≥
1
2
· 3 · 2−n − 1 =

1
2

(3 · 2−n − 2) =
1
2
|ψ3(n)|,

and whenm< n (so that|n| < |m|), by the preceding

|ψ3(m) − ψ3(n)| = |ψ3(n) − ψ3(m)| ≥
1
2
|ψ3(m)| ≥

1
2
|ψ3(n)|,

using (13) for the last inequality. So the result holds fori = 3. That it also holds for all
i > 3 then follows. We omit the details. �

By (13), ψ-functions are injective and so have inversesψ−1
i defined on the images ofψi :

ψ−1
1 : Z→ Z n 7→ n+ 1,
ψ−1

2 : 2Z + 1→ Z n 7→ (n+ 1)/2,
ψ−1

i : Imgψi → −N n 7→ ψ−1
i (n).

So, like Ackermann functions, they can specify integers. Aψ-word is a wordf = fn fn−1 · · · f1
where eachfi ∈ {ψ±1

1 , ψ±1
2 , . . .}. We let

η( f ) := #{i | 1 ≤ i ≤ n, fi = ψ
−1
j for somej ≥ 2}.

If f j−1 · · · f1(0) is in the domain off j for all 2 ≤ j ≤ n, then f is valid andrepresentsthe
integer f (0). When f is non-empty, rank(f ) denotes the highesti such thatψ±1

i is a letter
of f . We define an equivalence relation∼ on words as in Section2.1.

Proposition3.1and Corollary3.2combine to tell us, for example, that:

t−3a−1
2 a1 ∈ H2tψ1ψ

−1
2 (−3)

if −3 ∈ Imgψ2 andψ−1
2 (−3) is in the domain ofψ1—in other words, ifψ1ψ

−1
2 ψ3

1 is valid.
In fact these provisos are met:ψ−1

2 (−3) = −1 andψ1(−1) = −2, so t−3a−1
2 a1 ∈ H2t2.

And, given thatHktr = Hk if and only if r = 0 by Lemma 6.1 in [12], determining whether
t−3a−1

2 a1 ∈ H2 amounts to determining whetherψ1ψ
−1
2 ψ3

1(0) = 0. (In fact it equals 2, as
we just saw, sot−3a−1

2 a1 < H2.) This suggests that efficiently testing validity ofψ-words
and when valid, determining whether aψ-word represents zero, will be a step towards a
polynomial time algorithm solving the membership problem for Hk in Gk. (Hadψ1ψ

−1
2 ψ3

1
been invalid, we could not have immediately concluded that that t−3a−1

2 a1 < H2 or indeed
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that t−3a−1
2 a1 <

⋃

r∈Z H2tr . We will address this delicate issue in Section4.4.) So we will
work towards proving this analogue to Theorem1:

Proposition 3.4. There exists an algorithmPsi that takes as input aψ-word f = f (ψ1, . . . , ψk)
and determines in time O(ℓ( f )4+k) whether or not f is valid and if so, whether f(0) is pos-
itive, negative or zero.

Expressing the recursion relation in terms ofψ-words will be key. So, analogously to
Lemma2.4, we have:

Lemma 3.5. Suppose u, v areψ-words. The following equivalences hold if v is invalid or
if v is valid and satisfies the further conditions indicated:

uψi+1v ∼ uψ1ψiψi+1ψ
−1
1 v v(0) < 0 and i≥ 2

uψ−1
i+1v ∼ uψ1ψ

−1
i+1ψ

−1
i ψ−1

1 v v(0) < −1 and i≥ 1
uψ−1

i ψiv ∼ uv v(0) ≥ 0 and i≥ 1.

3.2. An example. Let

f = ψ−1
3 ψ−1

2 ψ2
1ψ

2
2ψ3(ψ2ψ3)2ψ1ψ

−1
1 .

Here is howPsi checks its validity and determines the sign off (0).

1. First we locate the rightmostψ−1
i in f with i ≥ 2, namely theψ−1

2 , and look to
‘cancel’ it with the firstψ2 to its right. In short, this is possible because

((2x− 1)− 2− 1)/2 = x− 1,

allowing us to replaceψ−1
2 ψ2

1ψ2 with ψ1 to give

ψ−1
3 ψ1ψ2ψ3(ψ2ψ3)2ψ1ψ

−1
1 ∼ f .

2. Next we identify the new rightmostψ−1
i with i ≥ 2, namely theψ−1

3 and we look
to ‘cancel’ it with theψ3 to its right. To this end we first reduce the rank of the
subword between theψ−1

3 andψ3 (like CutRank). We check by direct calculation
that

ψ1ψ2ψ3(ψ2ψ3)2ψ1ψ
−1
1 (0) < −1

(like Positive), so the substitutionψ1ψ
−1
3 ψ−1

2 ψ−1
1 forψ−1

3 is legitimate by Lemma3.5
and

ψ1ψ
−1
3 ψ−1

2 ψ−1
1 ψ1ψ2ψ3(ψ2ψ3)2ψ1ψ

−1
1 ∼ f .

By Lemma3.5, cancelation of theψ−1
1 with ψ1, ψ−1

2 with ψ2, and thenψ−1
3 with

ψ3 then gives
ψ1(ψ2ψ3)2ψ1ψ

−1
1 ∼ f .

3. This contains noψ−1
2 , . . . , ψ−1

k and direct evaluation from right to left (likePositive)
tells us thatψ1(ψ2ψ3)2ψ1ψ

−1
1 is valid and represents a negative integer.

3.3. Our algorithm in detail. Fix an integerk ≥ 1.

Subroutines ofPsi correspond to subroutines ofAckermann. We first have an analogue of
Bounds, to calculate relatively small evaluations of theψk.

Algorithm 3.1 — BoundsII.
◦ Inputℓ ∈ N.
◦ Return a list of all the (at most (log2 ℓ)

2) triples of integers (r, n, ψr(n)) such thatr ≥ 3,
n ≤ −2, and|ψr (n)| ≤ ℓ.
◦ Halt in timeO(ℓ).
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With these minor changes, it works exactly likeBounds: replaceAi by ψi+1, calculate
values ofψr (n) for n ≤ −2, and use the recursive relation forψ-functions. The correctness
argument forBoundsII is virtually identical to that forBounds.

Similarly toAckermann, Psi works right-to-left through aψ-word eliminating lettersψ−1
r

for r ≥ 2, which like (theA−1
r for r ≥ 1) greatly decrease absolute value when evaluating

the integer represented by a validψ-word. Once all have been eliminated, giving aψ-word
f with η( f ) = 0, a subroutinePositiveII determines the validity off .

Algorithm 3.2 — PositiveII.
◦ Input aψ-word f with η( f ) = 0.
◦ Either return thatf is invalid , or that f is valid and declare whetherf (0) > 0, f (0) = 0,
or f (0) < 0.
◦ Halt in timeO(ℓ( f )3).

PositiveII can be constructed analogously toPositive with the following changes:

1. The role ofψi corresponds to the role ofAi−1.
2. Unlike Ackermann functions,ψi : −N → −N, so appropriate signs and inequali-

ties need to be altered.
3. We still evaluate letter-by-letter. However, in place ofusingBounds to check

whether an evaluation byAi is above some (positive) threshold, we useBoundsII
to check thatψk evaluated on a negative number is below some (negative) thresh-
old.

4. Similarly, the case where a partial letter-by-letter evaluation is negative should be
replaced by a case where the partial letter-by-letter evaluation is positive.

ThenPositiveII can be justified similarly toPositive.

Next BasePinchII processes words of the formψ−1
k ψl

1ψkv. We make one major change:
we have a stricter bound thatBasePinch on the length of the returned wordf ′. The
substitution suggested by Lemma3.5 requires a substitution of 4 letters for 1 rather than
the 3 for 1 substitution suggested by Lemma2.4 for the Ackermann case. Here and in
PinchII, stricter bounds on the length of the output compensate for the longer substitution
and thus prevent the length of words processed by recursive calls toPinchII from growing
too large.

Algorithm 3.3 — BasePinchII.
◦ Input a wordf = ψ−1

r uψrv with k ≥ 1, rank(u) ≤ 1, v aψ-word, andη(v) = 0.
◦ Either returninvalid when f is invalid or return a wordf ′ = ψl′

1v ∼ f such thatℓ( f ′) ≤
ℓ( f ) − 2 if u is empty,ℓ( f ′) ≤ ℓ( f ) − 4 if r > 2, and otherwise,ℓ( f ′) ≤ ℓ( f ) − 3.
◦ Halt in timeO(ℓ( f )4).

ConstructBasePinchII like BasePinch with the following changes:

1. Replace all called subroutines by theirψ-versions.
2. ψi+1 replacesAi for all i ≥ 0.
3. Signs and inequalities are adjusted to reflect thatψi+1 : −N → −N and that

ψ1(n) = n− 1 (in contrast toA0(n) = n+ 1).
4. For the caser = 2, wheneverψ2v(0) is valid, it is odd (sinceψ2(n) = 2n − 1)

and hence the parity ofl determines the parity ofuψ2v(0). For validity, we need
uψ1v(0) to be odd, and this is sufficient sinceψ−1

2 (n) = (n+ 1)/2. Whenl is even,
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return the equivalent wordf ′ := ψl/2
1 v. Otherwisef is invalid. The restrictions on

the length ofl follow directly from the fact that|l/2| ≤ |l| − 1 if l = 0. Henceforth,
assume thatr ≥ 3.

5. The inequality

|ψr (m) − ψr (p)| ≥
1
2
|ψr (m)|

which holds for allr ≥ 3 andm , p takes the place of the analogous inequality
for Ackermann functions:

|Ar (p) − Ar (n)| ≥
1
2

Ar (n)

which holds for allr ≥ 2 andm, p. Following similar arguments forBasePinch,
we instead need 0≥ ψrv(0) ≥ −2|l| to account for the fact that theψi are functions
−N→ −N.

6. If the algorithm outputsf ′ ∼ f with f ′(0) = c ∈ Z, then f ′ = ψv(0)−c
1 v.

Correctness ofBasePinchII. The argument is essentially the same as that forBasePinch

except that we need to verify the stronger assertions onℓ( f ′). If l = 0, the algorithm elim-
inatesψ−1

r andψr , reducing length by 2.

For the casel , 0, consider the following: we claim that

|ψr (n) − ψr (n− 1)| ≥ |ψ3(0)− ψ3(−1)| = 3.

Explicitly, for r = 3, we have:

|ψr (n) − ψr (n− 1)| = 3 · 2−n − 3 · 2−(n−1)
= 3 · 2−n ≥ 3 · 20

= 3

becausen ≤ 0. Forr > 3, assume the result holds for all ranks less thanr. We have:

|ψr (n) − ψr (n− 1)| = |ψr−1(ψr (n)) − ψr−1ψr (n− 1)|

≥ |ψr−1ψr (n) − ψr−1(ψr (n) − 1)| ≥ |ψ3(0)− ψ3(−1)|

where the final two inequalities follow from the fact thatψr−1 is non-decreasing and the
inductive hypothesis, respectively.

By extending this argument inductively and using thatψr is non-decreasing:

|ψr (n) − ψr (n+m)| ≥ 3m.

So, forr > 3 andl , 0 where f ′ = ψc−v(0)
0 v(0), we have thatψr (c) − ψr (v(0)) = l implies

that |c− v(0)| ≤ 1
3 |l|. In particular, ifl , 0, then|l| ≥ 3. Therefore,

ℓ( f ′) = |c− v(0)| + ℓ(v) ≤
1
3
|l| + ℓ(v) ≤ |l| − 2+ ℓ(v) = ℓ( f ) − 4

since|l| − 2 ≥ 1
3 |l| if |l| ≥ 3. Thus we have verified the assertions concerningℓ( f ′). �

OneToZeroII is essentially the same asOneToZerowith A0 replaced byψ1.

Algorithm 3.4 — OneToZeroII.
◦ Input a valid word word of the formf = ψ−1

r uψrv with r ≥ 3, u not the empty word, and
η(u) = η(v) = 0 such thatuψrv(0) = −1.
◦ Return an equivalent word of the formf ′ = ψv(0)

1 v with ℓ( f ′) ≤ ℓ( f ) − 3.
◦ Halt in timeO(ℓ( f )4).
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Proof thatℓ( f ′) ≤ ℓ( f ) − 3 in OneToZeroII. Now v(0) ≤ 0 sincev(0) is in the domain of
ψr andr ≥ 3. Consider first the casev(0) ≤ −1. First observe thatψr (x) ≤ x − 3 when
x ≤ −1 andr ≥ 3. Sinceη(u) = 0, ψ−1

1 is the only letter it can contain which decreases
the absolute value asf (0) is evaluated. So, given thatuψrv(0) = −1, u must containψ−1

1 at
least|v(0)− 3| − 1 = |v(0)| + 2 times. Soℓ(u) ≥ |v(0)| + 2 and therefore

ℓ( f ) − ℓ( f ′) = 2+ ℓ(u) − |v(0)| ≥ 4,

and soℓ( f ′) < ℓ( f ) − 3 as required.

If v(0) = 0, OneToZeroII returnsf ′ = v. Sinceu is not the empty word,ℓ( f ′) ≤ ℓ( f ) − 3
as required. �

PinchIIr is an analogue toPinchr. As in the previous situation, the proof is by induction
and usesBasePinchII as its base case. As inBasePinchII, there are now stronger
restrictions on the length of a returned equivalent word.

Algorithm 3.5 — PinchIIr for r ≥ 2.
◦ Input a wordf = ψ−1

r uψrv with r ≥ 2, rank(u) ≤ r − 1, v aψ-word, andη(v) = 0.
◦ Either return thatf is invalid, or return a wordf ′ = ψl′

1v equivalent tof such that
ℓ( f ′) ≤ ℓ( f ) − 2 if u is empty,ℓ( f ′) ≤ ℓ( f ) − 4 if r > 2 and rank(u) = 1, and otherwise,
ℓ( f ′) ≤ ℓ( f ) − 3.
◦ Halt in O(ℓ( f )4+(k−1)) time.

The construction ofPinchIIr is the same asPinchr except that:

1. We replaceAr byψr+1 for r ≥ 0.
2. We replace all called subroutines by theirψ-word versions.
3. In line4, whenPositiveII checks the value ofuψrv, declare the word invalid if

the result was invalid, positive or 0. Otherwise, runCutRankIIr (w) followed by
FinalPinchIIr when the result ofCutRankIIr is not invalid.

Before discussing the correctness ofPinchIIr, we construct and analyze its subroutines
CutRankIIr andFinalPinchIIr .

Algorithm 3.6 — CutRankIIr for r ≥ 2.
◦ Input aψ-word of the formf := ψ−1

r uψrv with η(u) = η(v) = 0 and rank(u) ≤ r − 1.
◦ Either declare thatf is invalid, or halt and returnf ′ := ψl

1v ∼ f , or return f ′ :=
ψ−1

r u′ψrv ∼ f where rank(u′) ≤ r − 2. In all casesℓ( f ′) ≤ ℓ( f ) and if f ′ := ψl
1v, then

ℓ( f ′) ≤ ℓ( f ) − 3.
◦ Halt in O(ℓ( f )4+(k−1)) time.

The construction ofCutRankIIr is the same asCutRankr except that:

1. We replaceAr by ψr+1 for r > 0, A0 by ψ−1
1 . We replace all called subroutines by

theirψ-word versions.
2. In line 6, check whetheruψrv(0) = −1. If so, run and return the result of
OneToZeroII(w).

3. In line11, instead of the substitutionAr = Ar−1Ar A−1
0 which encodes the defining

recursion relation for Ackermann functions, use Lemma3.5 and make the sub-
stitutionψ−1

r = ψ1ψ
−1
r ψ−1

r−1ψ
−1
1 to convertw to ψ1ψ

−1
r ψ−1

r−1ψ
−1
1 u′ψr−1u′′ψrv where

η(u) = η(u′) = η(u′′) = 0 andu′ has rank strictly less thanr − 1.
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Correctness ofCutRankIIr assuming correctness ofPinchIIr−1. In the caseOneToZeroII
is used, all claims follow from the specifications of that algorithm.

We showℓ( f ′) ≤ ℓ( f ). The only changes fromCutRankr occur in thewhile loop used to
remove successiveψr−1. As for CutRankr , it suffices to check that each iteration of this
loop has output no longer than its input.

CutRankIIr returnsf ′ = f if u has rank less thanr − 1, so assumeψr−1 appears inu so
rank(u) = r − 1. If uψrv(0) = −1, then as we show forCutRankr , after each iteration of the
loop, there is no increase in length. Ifuψrv(0) , −1, expressf asψ−1

r u′ψr−1u′′ψrv where
η(u′) = η(u′′) = 0, rank(u′) < k− 1 and rank(u′′) ≤ k− 1. Substitutingψ1ψr−1ψrψ

−1
1 for ψr

adds 3 letters. There is at least one letter betweenψ−1
r−1 andψr−1, so applyingPinchIIr−1

then decreases length by at least 3. Hence whenCutRankIIr does not encounter any
special cases in thewhile loop,ℓ( f ′) ≤ ℓ( f ).

�

To adaptFinalPinchIIr to giveFinalPinchr:

1. In line 3, check whetheruψrv(0) = −1 and, if so, run and return the result of
OneToZeroII( f ).

2. In line24, use Lemma3.5instead of Lemma2.4to make the analogous substitu-
tions,ψ−1

r = ψ1ψ
−1
r ψ−1

r−1ψ
−1
1 andψr = ψ1ψr−1ψrψ

−1
1 .

Algorithm 3.7 — FinalPinchIIr for r ≥ 2.
◦ Input a word of the formψ−1

r uψrv with η(u) = η(v) = 0 and rank(u′) < r − 1.
◦ Either returninvalid or return an equivalent word of the formψl

1v.
◦ Halt in O(ℓ( f )4+(r−2)) time.

Correctness ofFinalPinchIIr assuming correctness ofPinchIIr . Consider the special
cases:

• u is the empty word: the argument is similar to the case whereu is the empty
word in the main routine.
• uψrv(0) = −1 and u is not the empty word: the argument is similar to the case

whereu is the empty word inPinchIIr .
• v(0) = 0: substitutingψ1ψ

−1
r ψ−1

r−1ψ
−1
1 for ψ−1

r adds 3 letters. Substituting for
ψr by ψr−1 results in no increase in length in this case. As inCutRankIIr , the
substitution forψ−1

r ensures that there is at least one letter betweenψ−1
r−1 andψr−1,

so if PinchIIr returns an equivalent word, that word is at least 4 letters shorter
than the input word by the induction hypothesis.
• uψrv(0) < −1 andv(0) < 0: substitutingψ1ψr−1ψrψ

−1
1 andψ1ψ

−1
r ψ−1

r−1ψ
−1
1 for ψr

andψ−1
r , respectively, adds 6 letters. ApplyingPinchIIr−1 to

ψ−1
r−1ψ

−1
1 uψ1ψr−1ψrψ

−1
1 ψ−1

1 v,

whose length is at mostℓ( f ) + 6. There are non-trivial letters betweenψ−1
r−1, ψr−1.

So the equivalent word returned byPinchIIr−1 is at least three letters shorter.
Therefore, the result is of the form

ψ1ψ
−1
r ψl

1ψrψ
−1
1 v

for somel ∈ Z and has length at mostℓ( f ) + 3. If l = 0, runningBasePinchII
triggers a trivial case wheref ′ = v is returned andℓ(v) ≤ ℓ( f ) − 3 sinceu is
non-empty. Otherwise, applyingBasePinchII to ψ−1

r ψl
1ψrψ

−1
1 v, if an equivalent
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word of the formψl′
1ψ
−1
1 v is returned, its length is 4 letters shorter than the input

to BasePinchII. Hence we have a word equivalent tof of the form

ψ1ψ
l′

1ψ
−1
1 v

whose length is at mostℓ( f ) − 1, and the word is equivalent to:

ψl′
1v

yielding an equivalent word whose length is at mostℓ( f ) − 3. �

Correctness ofPinchIIr assuming the correctness ofPinchIIr−1. Correctness can be proved
by mimicking our proof of correctness forPinchr . However, the substitutionAr = Ar−1Ar A−1

0
for Ackermann functions increases the length of the word by 2letters, but the substitution
ψ±1

r = (ψ1ψr−1ψ
−1
r ψ−1

1 )±1 increases length by 3 letters, so we will need to account carefully
for this difference.

Whenr = 2, the bound onℓ( f ′) comes directly from the bound forBasePinchII.

Let r ≥ 3. The calls toPositiveII in the main routine are on words no longer thanf .
We also have the special case whereu is the empty word, where the algorithm halts and
returnsv which has lengthℓ( f ) − 2. If uψkv(0) = −1 andu is not the empty word, by part
of the justification forBasePinchII, ψkv(0) ≤ v(0)−3. Sinceη(u) = 0, the only letter inu
that decreases absolute value when evaluatingf (0) letter-by-letter from right to left isψ−1

1 .
If uψrv(0) = −1, thenψrv(0) ≤ v(0)− 3 by the specifications ofOneToZeroII. Sou must
containψ−1

1 at least|v(0)| + 2. Therefore, theℓ(ψ−1
r uψr ) ≥ |v(0)| + 4. Thus f ′ = ψv(0)

1 v has
ℓ( f ′) ≤ ℓ( f ) − 4 as required. �

Correctness and construction ofReduceII are nearly immediate by following those of
Reduce, replacingAi by ψi+1 and changing the subroutines to theψ-word versions. The
boundℓ( f ′) ≤ ℓ( f ) + 3k contrasts with the boundℓ(w′) ≤ ℓ(w) + 2k of Reduce because
Lemma3.5requires a substitution that results in a gain of 3 letters rather than the gain of
2 required by Lemma2.4.

Algorithm 3.8 — ReduceII.
◦ Input aψ-word f with η( f ) > 0.
◦ Either declare thatf is invalid or return an equivalent word of the formf ′ with ℓ( f ′) ≤
ℓ( f ) + 3k andη( f ′) = η( f ) − 1.
◦ Halt in O(ℓ( f )4+(k−1)) time.

Finally, Psi can be constructed similarly toAckermann by replacing allAi by ψi+1 and
replacing subroutines by their counterparts. The proof of its correctness then essentially
follows that ofAckermann. (The special casek = 1 is trivial; we distinguish it to make an
estimate at the end of Section4.5cleaner.)

Algorithm 3.9 — Psi.
◦ Input aψ-word f .
◦ Either return thatf is invalid, or return that it is valid and declare whetherf (0) > 0,
f (0) = 0, or f (0) < 0.
◦ Halt in O(ℓ( f )4+k) time whenk > 1 andO(ℓ( f )) time whenk = 1.
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4. An efficient solution to the membership problem for hydra groups

4.1. Our algorithm in outline. Our aim is to give a polynomial-time algorithmMemberk

which, given a wordw = w(a1, . . . ,wk, t) on the generators of the hydra group

Gk = 〈a1, . . . , ak, t | t
−1ai t = θ(ai)〉,

whereθ(ai) = aiai−1 for all i > 1 andθ(a1) = a1, will tell us whether or notw represents an
element ofHk = 〈a1t, . . . , akt〉.

The first step is to convertw into a normal form: we use the defining relations forGk to
collect all thet±1 at the front, and then we freely reduce, to givetrv wherer is an integer
with |r | ≤ ℓ(w) andv = v(a1, . . . , am) is reduced. Pushing at±1 past anai has the effect of
applyingθ±1 to ai , so it follows from the lemma below that

ℓ(v) ≤ ℓ(w)(ℓ(w) + 1)k−1

and thattrv can be produced in timeO(ℓ(w)k).

Lemma 4.1. For all k = 1, 2, . . . and all n∈ Z,

ℓ(θn(ak)) ≤ (|n| + 1)k−1.

Proof. For n ∈ N define f (n, k) := ℓ(θn(ak)) andg(n, k) = ℓ(θ−n(ak)). To establish the
lemma we will show by induction onk that f (n, k) andg(n, k) are each at most (n+ 1)k−1.

For the casek = 1, note thatf (n, 1) = g(n, 1) = 1 becauseθn(a1) = a1 for all n ∈ Z.

For the induction step, considerk > 1. As θn(ak) = θn−1(θ(ak)) = θn−1(ak)θn−1(ak−1), we
have

f (n, k) = f (n− 1, k) + f (n− 1, k− 1)

= f (0, k) + f (0, k− 1)+ · · · + f (n− 1, k− 1)

≤ 1+ 1k−2
+ · · · + nk−2

≤ (n+ 1)k−1

where the first inequality usesf (0, k) = ℓ(θ0(ak)) = ℓ(ak) = 1 and the induction hypothesis,
and the second that each of then+ 1 terms in the previous line is at most (n+ 1)k−2.

Next, note thatθ−1(ak) = akθ
−1(a−1

k−1) becauseθ(ak) = akak−1. So, for alln ∈ Z

θ−n(ak) = θ−(n−1)θ−1(ak) = θ−(n−1)(akθ
−1(a−1

k−1)) = θ−(n−1)(ak)θ
−n(a−1

k−1)

and therefore

ℓ(θ−n(ak)) = ℓ(θ−(n−1)(ak)) + ℓ(θ−n(a−1
k−1)) = ℓ(θ−(n−1)(ak)) + ℓ(θ−n(ak−1)).

So for alln > 0

g(n, k) ≤ g(n− 1, k) + g(n, k− 1)

≤ g(0, k) + g(1, k− 1)+ · · · + g(n, k− 1)

≤ 1+ 1k−2
+ · · · + (n+ 1)k−2

≤ (n+ 1)k−1

sinceg(0, k) = 1 and 1+ 1k−2 and each of the othern terms in the penultimate line is at
most (n+ 1)k−2. �

NextMemberk calls a subroutinePushk which ‘pushes’ the power oft back throughv from
the left to the right (the power varying in the process), leaving the prefix to its left as a
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word ona1t, . . . , akt. The powers oft that occur as this proceeds are recorded byψ-words,
as they may be too large to record explicitly in polynomial time.

Here are some more details on how we ‘push the power oft throughv.’ We do not try to
progress the power oft past onea±1

i at a time. (There are words representing elements of
Hk for which that is impossible.) Instead, we first consider thelocations of thea±1

k , then
thea±1

k−1, and so on. Following [12], we define therank-k decomposition of v into pieces
as the (unique) way of expressingv as a concatenationπ1 · · ·πp of the minimal number of
subwords (‘pieces’) πi of the formaǫ1k ua−ǫ2k where rank(u) ≤ k − 1 andǫ1, ǫ2 ∈ {0, 1}. For
example, the rank-5 decomposition of

a5a3a−1
5 a2a5a1a−1

5 a1a
−1
5

is

(a5a3a−1
5 )(a2)(a5a1a−1

5 )(a1a
−1
5 ).

We use pieces becausetrv ∈ Hkts for somes ∈ Z if and only if it is possible to advance the
power oftr throughv one piece at a time, leaving behind an element ofHk. More precisely,
trv ∈ Hkts if and only if there exists a sequencer = r0, . . . , rp = ssuch thattr iπi+1 ∈ Hktr i+1

(Lemma 6.2 of [12]).

Let f0 := ψ−r
1 , so f0(0) = r. Then, for each successivei, we determine, using a subroutine

Piecek, whether or not there existsr i ∈ Z (unique if it exists) such that

t fi−1(0)πi ∈ Hkt
r i

and if so, it gives aψ-word fi such thatfi(0) = r i . Piecek expressesπi asaǫ1k ua−ǫ2k where
ǫ1, ǫ2 ∈ {0, 1}. It operates in accordance with Proposition4.10which is a technical result
that we call ‘The Piece Criterion.’Piecek has two subroutines. The first,Frontk, reduces
the problem of whetherr i exists to determining whether, for a certainψ-word f ′i−1 and a
certain rank-k pieceπ′i which does not haveam as its first letter, there existsr ′i ∈ Z such that
t f ′i−1(0)π′i ∈ Hk−1tr

′
i . Then the second,Backk, makes a similar reduction to a situation when

there is noa−1
m at the end. It then inductively callsPushk−1 on the modified piece (which is

now a word of rank less thank) to find aψ-word f ′i representingr ′i , and then modifiesf ′i
to get fi . It detects that ther i fails to exist by recognizing (usingPsi) an emergingψ-word
not being valid, or noticing thatπi fails to have a suffix or prefix of a particular form.

This inductive construction has base casesPush1 andPiece2, which use elementary direct
manipulations.

If r1, . . . , rp all exist, thenPsi determines whether or notfp(0) = 0, and concludes thatw
does or does not represent an element ofHk, accordingly.

4.2. Examples. The algorithms and subroutines named here are those we will construct
in Section4.5.

Example 4.2.Letw = a4
3a2ta1a−1

2 a−4
3 . As we saw in Section1.4, w = u3,4 (a2t) (a1t) (a2t)−1 u3,4

−1

in G3 which has length 2H3(4)+ 3 = 247 · 3− 1 as a word on the generatorsa1t, a2t, a3t
of H3. Here is how our algorithmMemberk discovers thatw represents an element ofH3

without working with this prohibitively long word.

1. Convertw to a wordtv representing the same element ofG3 by using thatait =
tθ(ai) in G3 for all i to shuffle thet to the front. This produces

v = θ(a3)4θ(a2)a1a
−1
2 a−4

3 = (a3a2)4a2a
2
1a−1

2 a−4
3 .

2. Definef0 := ψ−1
1 , to express the powerf (0) = 1 of t here.
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3. The rank-3 decomposition ofv into pieces is:

v = (a3a2)(a3a2)(a3a2)(a3a
2
2a2

1a−1
2 a−1

3 )(a−1
3 )(a−1

3 )(a−1
3 ).

Accordingly, define

π1 := π2 := π3 := a3a2, π4 := a3a2
2a2

1a−1
2 a−1

3 , π5 := π6 := π7 := a−1
3 .

A subroutinePush3 now aims to findψ-words f1, . . . , f7 such thatt fi−1(0)πi ∈

H3t fi (0) for i = 1, . . . , 7, by ‘pushing the power oft through successive pieces.’
4. So first a subroutinePiece3 is called to try to passt f0(0) throughπ1. The subrou-

tine Frontk calls a further subroutinePrefix3 to find the longest prefix (if one
exists) ofπ1 of the formθi−1(a3)a2 for somei ≥ 1. Prefix3 does so by generating
θ0(a3)a2, θ1(a3)a2, and so on, and comparing, until the length ofπ1 is exceeded.
In this instancePrefix3 returnsi = 1. It follows from the Piece Criterion that
t f0(0)π1 = a3t ∈ H3t0 = H3tψ1ψ

−1
1 (0). Accordingly definef1 := ψ1ψ

−1
1 .

5. Piece3 next looks to passt f1(0)
= t0 throughπ2. Frontk usesPsi to check that

f1(0) = 0 ≤ 0. By the Piece Criterion, it then follows from the fact that there are
no inverse letters inπ2 that ta3a2 ∈ Htψ2ψ3(0). So definef2 := ψ2ψ3ψ1ψ

−1
1 .

6. NextPiece3 tries to passt f2(0) throughπ3 = a3a2. Likewise this is possible as
f2(0) ≤ 0, and it definesf3 := (ψ2ψ3)2ψ1ψ

−1
1 .

7. Next,Piece3 tries to passt f3(0) throughπ4.
7.1. Front3 usesPsi to check thatf3(0) ≤ 0. It follows thatt f3(0)a3 ∈ H3tψ3 f3(0)

and the problem is reduced (by the Piece Criterion) to findingan s ∈ Z (if
one exists) such that

tψ3 f3(0)a2
2a2

1a
−1
2 a−1

3 ∈ H3ts.

This will represent progress as (unlikeπ4) a2
2a

2
1a−1

2 a−1
3 is a piece without an

am at the front.
7.2. Then the subroutineBack3 recursively callsPiece2 to find thes ∈ Z (if

there is one) such thattψ3 f3(0)a2
2a2

1a
−1
2 ∈ H3ts. It returnsψ−1

2 (ψ1)2ψ2
2ψ3 f3. (We

omit the stepsPiece2 goes through.)Back3 then usesPsi to test whether
f4 := ψ−1

3 ψ−1
2 (ψ1)2ψ2

2ψ3 f3 is valid, which it is: we examined it in Section3.2.
Also Psi declares thatf4(0) ≤ 0. It follows (using the Piece Criterion) that
t f3(0)π4 ∈ H3t f4(0).

8. NextPiece3 tries to passt f4(0) throughπ5. This is done byBack3. By the Piece
Criterion, it suffices to check thatf5 := ψ−1

3 f4 is valid, which is done usingPsi.
9. Piece3 likewise passest f5(0) throughπ6 giving f6 := ψ−2

3 f4, and thent f6(0) through
π7 giving f7 := ψ−3

3 f4.
10. Finally, letg := f7. We have thatw = tv ∈ H3tg(0). So usePsi to check that

g(0) = 0. On success, declare thatw ∈ H3.

In the example abovefi(0) ≤ 0 for all i—we never looked to push a positive power oft
through a piece. Next we will see an example ofMemberk handling such a situation.

Example 4.3. Let w = ta3a2t2a−1
1 a−2

2 a−1
3 a2

1t
−1a−1

3 . We will show howMemberk discovers
thatw ∈ H3.

1. Shuffle thet±1 in w to the front, applyingθ±1 to letters they pass, so as to convertw
to the wordt2v representing the same element ofG3, wherev = a3a2

2a
2
1a−1

2 a−1
3 a2

1a
−1
3 .

Let f = ψ−2
1 so thatf (0) = 2 records the power oft.

2. Expressv as its the rank-3 decomposition into pieces:v = π1π2 where

π1 := a3a
2
2a2

1a−1
2 a−1

3 , π2 := a2
1a
−1
3 .

Set f0 := f . Push3 now looks for validψ-words f1 and f2 such thatt f0(0)π1 ∈

H3t f1(0) andt f1(0)π2 ∈ H3t f2(0), by twice calling its subroutinePiece3.
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3. Piece3 callsFront3 to ‘try to movet f0(0) pastπ1.’ As a3 is the first letter ofπ1,
Front3 calls Psi to determine the sign off0(0), which is positive. The Piece
Criterion then says that to passt2 pasta3 requires thatπ1 has a prefixθi−1(a3)a2

for somei which is ‘approximately’θ2(a3) = a3a2
2a1. The subroutinePrefix3

looks for this prefix by generatingθ0(a3)a2 = a3a2, thenθ1(a3)a2 = a3a2
2, then

θ2(a3)a2 = a3a2
2a1a2, and so on, until the length ofπ is exceeded, and comparing

with the start ofπ1. Here,a3a2 anda3a2
2 are prefixes ofπ1, but a3a2

2a1a2 is not,
andPrefix3 returnsi = 2.

4. CallPsi to check thati is at leastf0(0) = 2.
5. Intuitively speaking, as this prefixa3a2

2 is ‘approximately’θ2(a3), the length of
the ‘correction’a1a−1

1 that has to be made for the discrepancy betweenθ2(a3) and
the prefixa3a2

2 is minimal compared to the length of the prefix that the power of
t advances past. In this instance:

t2π1 = t2θ2(a3)a1a
−1
1 a1a−1

2 a−1
3 = (a3t)ta1a−1

2 a−1
3 .

and have reduced the problem to pushingt pasta1a−1
2 a−1

3 . The power oft being
advanced through the word is nowt1, and this is recorded byψ1 f0, asψ1 f0(0) = 1.

6. Next Piece3 calls Back3 on input a1a−1
2 a−1

3 andψ1 f to try to advancet past
a1a−1

2 a−1
3 .

7. First, it searches for ans ≤ 0 such thatta1a−1
2 a−1

3 ∈ Hkts. It calls Push2, which
calls Piece2 to attempt to pusht througha1a−1

2 . Piece2 calls Ψ to find out
whetherψ−1

2 ψ1ψ1 f is valid. It is not, and it follows from the Piece Criterion that
there is nos≤ 0 such thatta1a−1

2 a−1
3 ∈ Hkts.

8. So, insteadPiece3 searches for ans > 0 such thatta1a−1
2 a−1

3 ∈ Hkts or, equiva-
lently, tsa3a2a−1

1 ∈ H3t.
9. We check fors = 1, 2, . . . whether we can movets pasta3a2a−1

1 . Use the same
approach that we used for the prefix in Step5. First try s = 1. Detect the prefix
a3a2 of a3a2a−1

1 and as,ta3a2 = tθ(a3) = (a3t) ∈ H3, the problem reduces to
determining whethert0a−1

1 ∈ H3t or, equivalently,ta1 ∈ H3t0. This shown to
be the case byPush2 which finds thatta1 = (a1t) ∈ H3 and returnsψ1ψ1 f ,
which satisfiesψ1ψ1 f (0) = 0, to indicate the cosetH3t0 of H3. Finally, Back3

checks thatH3t0 = H3tψ1ψ1 f0 by calling psi on ψ0
1ψ1ψ1 f0(0) = 0, and returns

f1 := ψ−1
1 ψ2

1 f0 (which satisfiesf1(0) = 1) to indicate thatπ1 ∈ H3t f1(0).
(In this instance, we were successful withs = 1, but in general, we may have

to repeat the process fors= 2, 3, . . .. This does not continue indefinitely: we can
stop whens exceeds the length of of the word inputted intoBack3 because the
prefixes we check for must be no longer than that word.)

10. We now seek to passt f1(0) throughπ2 by another call onPiece3. Recallπ2 =

a2
1a−1

3 and f1 := ψ−1
1 ψ2

1 f0, and f1(0) = 1.
11. Piece3 first callsFront3 but the first letter ofπ2 is nota3, soFront3 does noth-

ing.
12. Piece3 then callsBack3. It first looks fors≤ 0 such thatt f1(0)π2 ∈ Hkts, which it

succeeds in finding as follows.
12.1. Push2 tries to passt f1(0) througha2

1, which is elementary sincea1 commutes
with t: ta2

1 = (a1t)(a1t)t−1 and soPush2 returnsψ2
1 f1, representingψ2

1 f1(0) =
−1.

12.2. CallPsi to check thatψ2
1 f1 is valid. Then to passt througha−1

3 , call Psi to
check thatψ−1

3 ψ2
1 f1 is valid. Returnf2 := ψ−1

3 ψ2
1 f1 to indicate thatt f1(0)π2 ∈

H3t f2(0).
13. Member3 checks thatf2(0) = 0 and declares thatw ∈ H3.
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These examples illustrate the testsMemberk uses and give a sense of how it works in gen-
eral. But, it is difficult to show that these tests amount to theonly conditions under which
a wordtrv is in Hts for somes ∈ Z. A result we call the ‘Piece Criterion’ is at the heart of
that and presentation and proof of is involved and will occupy the next two sections.

4.3. Constraining cancellation. This section contains preliminaries toward Proposition4.10
(The Piece Criterion), which will be the subject of the next section.

When discussing words representing elements ofF(a1, . . . , am), we useθr (a±1
m ), for m ≥ 1

andr ∈ Z, to refer to the freely reduced word ona1, . . . , am equal toθr (a±1
m ). The following

lemma will be useful for calculating with iterations ofθ.

Lemma 4.4. If r > 0 and m> 1, then

(17) θr (am) = amθ
0(am−1)θ1(am−1)θ2(am−1) · · · θr−1(am−1)

as words. Moreover, if r< m, then the final letter ofθr (am) is am−r , and if r ≥ m, then
θr−m+1(a1) = a1, θr−m+2(a2), . . . ,θr−1(am−1) are all suffixes ofθr (am).

If r < 0 and m> 1, then

(18) θr (am) = amθ
−1(a−1

m−1)θ−2(a−1
m−1) · · · θ

r (a−1
m−1),

as words, and its first letter is am and its final letter is a−1
m−1.

Proof. For (17), observe that the identityθr (am) = θr−1(am)θr−1(am−1) and inducting onr
gives that the words are equal in the free group. The words areidentical because that on
the right is positive (that is, contains no inverse letters)and so is freely reduced. Ifr < m,
the same identity shows that the final letter ofθr (am), is the same as that ofθr−1(am−1),
and so the same as that ofθr−2(am−2), . . . , and ofθr−r (am−r) = am−r . If, on the other hand,
r ≥ m, then (17) shows thatθr−1(am−1) is a suffix of θr (am), and therefore, so areθr−2(am−2),
θr−3(am−3), . . . ,θr−m+1(a1).

Lemma 7.1 in [12] tells us that the two words in (18) are freely equal. Induct onm as
follows to establish the remaining claims. In the casem= 2 we have

θr (a2) = a2θ
−1(a−1

1 )θ−2(a−1
1 ) · · · θr (a−1

1 ) = a2a
r
1,

and the result holds. Form> 2, the induction hypothesis tells us that the first letter of each
subwordθ−i(a−1

m−1) is am−2 and the final letter isa−1
m−1, and it follows that the word on the

right of (18) is freely reduced. It is then evident that its first letter isam and its final letter
is a−1

m−1. �

The remainder of this section concerns wordsw expressed as

w = θe0(aǫ0i0 )θe1(aǫ1i1 ) · · · θel+1(aǫl+1
i l+1

)

whereǫx ∈ {±1} for x = 0, . . . , l + 1, andaǫx
ix
, a−ǫx+1

ix+1
and

(19) ex+1 =






ex if ǫx = −ǫx+1

ex − 1 if ǫx = ǫx+1 = 1

ex + 1 if ǫx = ǫx+1 = −1

for x = 0, . . . , l. We refer to theaǫ0i0 , . . . , a
ǫl+1
i l+1

in the subwordsθe0(aǫ0i0 ), θe1(aǫ1i1 ), . . . ,θel+1(aǫl+1
i l+1

)
of w as theprincipal lettersof w.

Lemma 4.5. If w (as above) freely equals the empty word, then aix = aix+1 andǫix = −ǫx+1

for some0 ≤ x < l + 1.
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Proof. The point of the hypotheses is thatw is the word obtained by shuffling all t±1 right-
wards in 





t−e0(ai0t)
ǫ0 · · · (ai l+1t)

ǫ j+1 if ǫ0 = 1

t−e0+1(ai0t)
ǫ0 · · · (ai l+1t)

ǫn if ǫ0 = −1,

and then discarding the power oft that emerges on the right.

Now (ai0t)
ǫ1 · · · (ai l+1t)

ǫl+1 = 1 in Hk becausew = 1 in Gk andHk ∩ 〈t〉 = {1} (Lemma 6.1 in
[12]). The result then follows from the fact thatHk is free ona1t, . . . , akt (Proposition 4.1
in [12]). �

The following definition and Proposition4.7concerning it are for analyzing free reduction
of w. They will be used in our proof of Proposition4.9, where we will subdivide a word
such asw into subwords of certain types and argue that all free reduction is contained
within them. There are two ideas behind the definitions of these types. One is that the
rank-1 and rank-2 letters are the most awkward for understanding free reduction, but in
these subwords such letters arecontrolledby being buttressed by higher rank words. The
other idea concerns where new letters appear whenθ±1 is applied to somea±1

n . It is evident
from the definition ofθ that wheni ≥ 0, the lower rank letters produced by applyingθi to
an or a−1

n appear to the right ofan and to the left ofa−1
n . The same is true wheni < 0 — see

Lemma 7.1 of [12].

Definition 4.6. We will define varioustypesa subword

z = θep(a
ǫp

ip
) · · · θeq(a

ǫq

iq
)

of w may take, and will denote the freely reduced form ofz by z′. To the left, below, are
the conditions that define the types. To the right are facts established in the proposition
that follows: whatz′ is in cases ii and ii

−1
, and prefixes and suffixes it has in casesi–iv.

When it appears below,u denotes a (possibly empty) subwordθex(aǫx
ix

) · · · θey(aǫyiy ) such that
ix, . . . , iy ≤ 2.

(i) ǫp = 1, ǫq = −1 z = θep(aip)uθ
eq(a−1

iq
)

ip, iq ≥ 3, ip+1, . . . , iq−1 ≤ 2 z′ = θep−1(aip) a−1
iq

if ep > 0
ep, eq ≥ 0 = aip a−1

iq
for ep ≥ 0

(ii ) ǫp, . . . , ǫq = 1 z = θep(aip) · · · θ
eq(aiq)

ip ≥ 3, iq ≥ 2 z′ = θep+1(aip)θ
eq(a−1

iq−1)
i j = i j+1 + 1 for j = p, . . . , q− 1 = aip a−1

iq−1

ep < 0
(soep+1, . . . , eq < 0 by (19))

(ii−1) ǫp, . . . , ǫq = −1 z = θep(a−1
ip

) · · · θeq(a−1
iq

)
iq ≥ 3, ip ≥ 2 z′ = θep(aip−1)θeq+1(a−1

iq
)

i j = i j−1 + 1 for j = p+ 1, . . . , q = aip−1 a−1
iq

eq < 0
(soep, . . . , eq−1 < 0 by (19))

(iii ) p < q′ ≤ q z = θep(aip)uθ
eq′ (a−1

iq′
) · · · θeq(a−1

iq
)

ǫp = 1, ǫq′ , . . . , ǫq = −1 z′ = θep−1(aip) a−1
iq

if ep > 0
ip, iq′ , . . . , iq ≥ 3, = aip a−1

iq
for ep ≥ 0

ip+1, . . . , iq′−1 < 3
i j = i j−1 + 1 for j = q′ + 1, . . . , q
ep ≥ 0, eq < 0
(soeq′ , . . . , eq−1 < 0 by (19))
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(iii −1) p ≤ p′ < q z = θep(aip) · · · θ
ep′ (aip′

)uθeq(a−1
iq

)
ǫp, . . . , ǫp′ = −1, ǫq = 1 z′ = aip a−1

iq
ip, . . . , ip′ , iq ≥ 3
i j = i j+1 + 1 for j = p, . . . , p′ − 1
ep < 0, eq ≥ 0
(soep+1, . . . , ep′ < 0 by (19))

(iv) p ≤ p′ < q′ ≤ q z = θep(aip) · · · θ
ep′ (aip′

)uθeq′ (a−1
iq′

) · · · θeq(a−1
iq

)
ǫp, . . . , ǫp′ = 1, ǫq′ , . . . , ǫq = −1 z′= aip a−1

iq
ip, . . . , ip′ , iq′ , . . . , iq ≥ 3
ip′+1, . . . , iq′−1 < 3
i j = i j+1 + 1 for j = p, . . . , p′ − 1
i j = i j−1 + 1 for j = q′ + 1, . . . , q
ep, eq < 0
(soep+1, . . . , ep′ < 0
andeq′ , . . . , eq−1 < 0 by (19))

(v) For no 0≤ p′ < q′ ≤ l + 1 z = θep(aǫp

ip
) · · · θeq(aǫqiq )

with p ≤ q′ ≤ q z′ = θep−1(aip) if ǫp = 1, ip ≥ 3 andep > 0
is θep′ (a

ǫp′

ip′
) · · · θeq′ (a

ǫq′

iq′
)

one of the above types.

Proposition 4.7. In types i, ii±1, iii ±1, iv and v the form of z′ is as indicated in Defini-
tion 4.6. In type v, no letter of rank3 or higher in z cancels away on free reduction to
z′.

Proof of Proposition4.7in type i. We have

z = θep(aip)uθ
eq(a−1

iq )

whereip, iq ≥ 3, andep, eq ≥ 0, andu is a subword ofw of rank at most 2. By definition

(20) u = θep+1(a
ǫp+1

ip+1
) · · · θeq−1(a

ǫq−1

iq−1
),

and by Lemma4.5, noa2 anda−1
2 can cancel in the process of freely reducingu. We aim

to show that the first and last letters of the freely reduced form z′ of z areaip anda−1
iq

,

respectively, and that ifep > 0, thenθep−1(aip)aip−1 is a prefix ofz′. We will also show that
if eq > 0, thena−1

iq−1θ
eq−1(a−1

iq
) is a suffix of z′. This is more than claimed in the proposition,

but having a conclusion that is ‘symmetric’ with respect to invertingz′ will expedite our
proof.

We organize our proof by cases.

1. Case: u freely equals the empty word.In this caseu is empty else Lemma4.5
(applied tou rather than tow) would be contradicted. Soz= θep(aip)θ

eq(a−1
iq

) and
by (19), ep = eq. Now θep(aip) contains ana2 if and only if ip−2 ≤ ep, and in that

eventθep−ip+2(a2) = a2a
ep−ip+2
1 is a suffix of θep(aip). Similarly, θeq(a−1

iq
) contains

ana−1
2 if and only if iq − 2 ≤ eq, and in that eventθeq−iq+2(a2) = a

−(eq−iq+2)
1 a−1

2 is a
prefix of θeq(a−1

iq
). If ip − 2 > ep, thenip > ep, and so the final letter ofθep(aip) is

aip−ep. Likewise, if iq − 2 > eq, thena−1
iq−eq

is the first letter ofθeq(a−1
iq

).

1.1. Case: cancellation occurs between some letters a±1
2 , . . . , a±1

k when z is freely
reduced to z′. If ip − 2 ≤ ep, then the finala2 in θep(aip) must cancel with the

first a−1
2 in θeq(a−1

iq
). Soiq− 2 ≤ eq, and the whole suffix a2a

ep−ip+2
1 of θep(aip)
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cancels with the whole prefixa−(eq−iq+2)
1 a−1

2 of θeq(a−1
iq

). But that implies that
ip = iq (sinceep = eq), which is a contradiction. If, on the other hand,
ip − 2 > ep, theniq − 2 > eq, and the last and first lettersaip−ep anda−1

iq−eq
of

θep(aip) andθeq(a−1
iq

), respectively, must be mutual inverses, and so again we
get the contradictionip = iq.

1.2. Case: no cancellation occurs between letters a±1
2 , . . . , a±1

k when z is freely
reduced to z′. If ip − 2 > ep or iq − 2 > eq, then the last letter ofθep(aip) or
the first letter ofθeq(a−1

iq
), respectively, has rank greater than 2 and so is not

cancelled away, and thereforez′ = z. If ip−2 ≤ ep andiq−2 ≤ eq, then there

is only cancellation between some of thea
ep−ip+2
1 at the end ofθep(aip) and

some of thea
−(eq−iq+2)
1 at the start ofθeq(a−1

iq
) (but not all asip , iq). In either

event the first and last letters ofz′ areaip anda−1
iq

, respectively. Moreover, if

ep > 0, thenθep−1(aip)aip−1 is a prefix ofz′ asaip−1 has rank at least 2 and so
is not cancelled away. Likewise, ifeq > 0, thena−1

iq−1θ
eq−1(a−1

iq
) is a suffix of

z′.
2. Case: u does not freely equal the empty word.

2.1. Case: no letter a±1
3 , . . . , a±1

k in z is cancelled away when z is freely reduced
to give z′. The first and last letters,aip anda−1

iq
, of z are also the first and

last letters ofz′, becauseip, iq ≥ 3. Here is why the prefixθep−1(aip)aip−1 of
z survives inz′ whenep > 0. If ip ≥ 4, then its final letteraip−1 has rank at
least 3 and so is not cancelled away. Suppose then thatip = 3, so that the
prefix

θep(aip) = θep(a3) = θep−1(a3)θep−1(a2) = θep−1(a3)a2a
ep−1
1 .

We must show that thea2 of θep−1(a3)a2 is not cancelled away whenz is
freely reduced toz′. Suppose it is cancelled away. Thenu must have a prefix
freely equal toa

−(ep−1)
1 a−1

2 (since noa2 anda−1
2 can cancel whenu freely

reduces). Butu has the form (20), and by a calculation we will see in a
more extended form in (28), a

−ep+2m1

1 a−1
2 freely equals a prefix ofu for some

integerm1. But then−(ep − 1) = −ep + 2m1, contradictingm1 being an
integer. Conclude thatθep−1(a3)a2 is a prefix ofz′ as required. Likewise, if
eq > 0, thena−1

iq−1θ
eq−1(a−1

iq
) is a suffix of z′.

2.2. Case: some letter a±1
3 , . . . , a±1

k in z is cancelled away when z is freely reduced
to give z′. The prefixθep(aip) of z is a positive word and the suffix θeq(a−1

iq
) is

a negative word sinceep, eq ≥ 0.
There is ana3 in θep(aip) if and only if ep − ip + 3 ≥ 0. Likewise there is an
a−1

3 in θeq(a−1
iq

) if and only if eq − iq + 3 ≥ 0.
2.2.1. Case: ep − ip + 3 < 0. The last letter ofθep(aip) (a positive word)

has rank greater than 3 and so must cancel. Soeq − iq + 3 < 0 also, as
otherwiseθeq(a−1

iq
) (a negative word) the leftmost letter inθeq(a−1

iq
) with

rank at least 3 would be ana−1
3 , which would block any cancelation of

other lettersa±1
3 , . . . , a±1

k in z. So, in fact, the last letter ofθep(aip) must
cancel with the first letter ofθeq(a−1

iq
), and sou must equal freely the

identity, which is a case addressed above.
2.2.2. Case: eq − iq + 3 < 0. Likewise, this reduces to the earlier case.

The remaining possibility is:
2.2.3. Case: ep − ip + 3 ≥ 0 and eq − iq + 3 ≥ 0. Soθep(aip) has suffix

θep−ip+3(a3) = a3a2 a2a1 a2a2
1 · · ·a2a

ep−ip+2
1
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andθeq(a−1
iq

) has prefix

θeq−iq+3(a−1
3 ) = a

−(eq−iq+2)
1 a−1

2 · · · a
−2
1 a−1

2 a−1
1 a−1

2 a−1
2 a−1

3

and the subword

(21) θep−ip+3(a3)uθeq−iq+3(a−1
3 )

of z freely equals the identity. Nowu has rank at most 2, so

u = af1
1 a−1

2 af2
1 a−1

2 · · ·a
fλ
1 a−1

2 aξ1a2a
gµ
1 · · ·a2ag2

1 a2ag1

1

for someλ, µ ≥ 0, someξ ∈ Z, some f1, . . . , fλ ≤ 0, and some
g1, . . . , gµ ≥ 0. And because of cancellations that must occur,

f1 = −(ep − ip + 2) g1 = eq − iq + 2
f2 = −(ep − ip + 1) g2 = eq − iq + 1

...
...

fλ = −(ep − ip + 3− λ) gµ = eq − iq + 3− µ.

These cancellations reduceθep−ip+3(a3)uθ−(eq−iq+3)(a3) to

a3a2 a2a1 a2a
2
1 · · ·a2a

ep−ip+2−λ
1 aξ1 a

−(eq−iq+2−µ)
1 a−1

2 · · · a
−2
1 a−1

2 a−1
1 a−1

2 a−1
2 a−1

3 .

As this freely equals the identity, the exponent sum of thea±1
2 is zero,

and so

(22) ep − ip + 3− λ = eq − iq + 3− µ.

Also, as thea±1
1 between the rightmosta2 and the leftmosta−1

2 cancel,

(23) ep − ip + 2+ µ + ξ = eq − iq + 2+ λ.

Together (22) and (23) tell us thatξ = 0. But thenλ = 0 or µ = 0
because of the hypothesisaǫx

ix
, a−ǫx+1

ix
in the instance of thea−1

2 anda2

(which must be principal letters) inu each side of theaξ1.
Supposeµ = 0, which we can do without loss of generality because
what we are setting out to prove is symmetric with respect to inverting
zandz′. Then

(24) u = a
−(ep−ip+2)
1 a−1

2 a
−(ep−ip+1)
1 a−1

2 · · ·a
−(ep−ip+3−λ)
1 a−1

2 .

After u has cancelled intoθep(aip), the wordθep−ip+3(a3)uθ−(eq−iq+3)(a3)
becomes

(25) a3a2 a2a1 a2a2
1 · · ·a2a

ep−ip+3−λ−1
1 a

−(eq−iq+2)
1 a−1

2 · · · a
−2
1 a−1

2 a−1
1 a−1

2 a−1
2 a−1

3

and, as the powers ofa1 anda−1
1 must cancel in the middle of this

word,

(26) ep − ip − λ = eq − iq.

There are noa2 among the principal letters inu (expressed as (20)),
and thea−1

2 principal letters are those that occur in (24). The final
principal lettera

ǫq−1

iq−1
must bea−1

2 as that is the final letter in (24). The

remaining principal letters area1 or a−1
1 , and ana1 principal letter

is never adjacent to ana−1
1 principal letter. So we can encode the

sequencea
ǫp+1

ip+1
, . . . , a

ǫq−1

iq−1
using integersm1, . . . ,mλ ∈ Z, as:

asign(m1)
1 , . . . , asign(m1)

1
︸                    ︷︷                    ︸

|m1|

, a−1
2 , asign(m2)

1 , . . . , asign(m2)
1

︸                    ︷︷                    ︸

|m2|

, a−1
2 , . . . , asign(mλ)

1 , . . . , asign(mλ)
1

︸                    ︷︷                    ︸

|mλ |

, a−1
2 .
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But (19) and the hypothesis thatǫp = 1 allow us to determineep+1, . . . , eq−1

from ep andm1, . . . ,mλ, so as to deduce that

u = am1

1 θep−m1(a−1
2 )am2

1 θep−m1−m2+1(a−1
2 ) · · ·amλ

1 θep−m1−···−mλ+λ−1(a−1
2 )(27)

= a
−ep+2m1

1 a−1
2 a
−1−ep+m1+2m2

1 a−1
2 · · ·a

−λ+1−ep+m1+···+mλ−1+2mλ

1 a−1
2 .(28)

Comparing the powers ofa1 here with those in (24), we get:





−2+ ip = 2m1

−1+ ip = −1 + m1 + 2m2

ip = −2 + m1 + m2 + 2m3
...

λ − 3+ ip = 1− λ + m1 + m2 + · · · + mλ−1 + 2mλ,

(29)

which simplifies to

(30) ip + 2 j+1 − 6 = 2 jmj for j = 1, . . . , λ.

2.2.3.1.Caseλ = 0. This is a case we have previously addressed:u is the
empty word.
So we can assume thatλ ≥ 1, and then thej = 1 instance of (30)
tells us thatip is even, and so

(31) ip ≥ 4.

2.2.3.2.Caseλ = 1. By (26),

(32) ep − ip − 1 = eq − iq.

Also

z = θep(aip) θ
ep+1(asign(m1)

1 ) · · · θep+|m1| (asign(m1)
1 )

︸                                    ︷︷                                    ︸

|m1|

θep−m1(a−1
2 )θeq(a−1

iq
)

by (27), and so (19) applied toθep−m1(a−1
2 ) andθeq(a−1

iq
) tells us

thateq = ep−m1+ 1. But ip− 2 = 2m1 by the j = 1 case of (30),
and so

(33) eq = ep −
ip − 2

2
+ 1.

By (32) and (33),

ip + 1 = iq +
ip − 2

2
− 1,

and so

(34) ip + 6 = 2iq.

So (31) implies iq ≥ 5. And we can assume that it is not the case
thatep− ip+3 = eq− iq+3 = 0, else (32) would be contradicted.
Soep − ip + 3 > 0 oreq − iq + 3 > 0. If ep − ip + 3 > 0, there are
at least twoa3 in θep(aip) (becauseip ≥ 4) and hence at least two
a−1

3 in θeq(a−1
iq

). Likewise, ifeq− iq+ 3 > 0, then there are at least

two a−1
3 in θeq(a−1

iq
) (becauseiq ≥ 4), and so twoa3 in θep(aip).

In either case, using Lemma4.4 to identify the relevant suffix of
θep(aip) and prefix ofθeq(a−1

iq
), there is a subword

(35) θep−ip+2(a3)θep−ip+3(a3)uθeq−iq+3(a−1
3 )θeq−iq+2(a−1

3 ),

of z, which contains exactly twoa3 and twoa−1
3 . If (35) freely

reduces to the empty word, then, once the innera3 anda−1
3 pair

have cancelled, it reduces toθep−ip+2(a3)θeq−iq+2(a−1
3 ), which must
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therefore also freely reduce to the empty word. But thenep −

ip + 2 = eq − iq + 2, also contradicting (26). So (35) must not
freely reduce to the empty word, and its first letter (ana3) and
its last letter (ana−1

3 ) are not cancelled away. Ifip , 4, then
the required conclusions about the prefix and suffix of z′ follow
because thea3 anda−1

3 bookending (35) do not cancel away and
cannot cancel with a prefixθep−1(aip)aip−1 or first letterap or suf-
fix a−1

iq−1θ
eq−1(a−1

iq
) or final lettera−1

q , becauseip ≥ 5 andiq ≥ 5. If
ip = 4, theniq = 5 by (34). And by (32), ep = eq. Now, by (27),
u = am1

1 θep−m1(a−1
2 ).

2.2.3.3.Caseλ ≥ 2. Then (30) in the casej = 2 tells us thatip = 4m2−2,
and in particularip , 4 asm2 ∈ Z.
At this point we knowip ≥ 3 (by hypothesis), is even, and is not
4. Soip ≥ 6.
If ep − ip + 3 = 0, then there is exactly onea3 in θep(aip), specif-
ically its final letter. So the subworda3uθeq−iq+3(a−1

3 ) must freely

equal the empty word. Butu = a
−ep+2m1

1 a−1
2 a
−1−ep+m1+2m2

1 a−1
2 by

(28) andθeq−iq+3(a−1
3 ) is a negative word aseq − iq + 3 ≥ 0, so no

cancellation is possible: a contradiction.
So, given thatep − ip + 3 ≥ 0, we deduce thatep − ip + 2 ≥ 0,
and so (asip ≥ 6) there are at least two lettersa3 in θep(aip).
But then, as above, if (35) freely reduces to the empty word,
ep − ip + 2 = eq − iq + 2, but then by (23) and thatµ = ξ = 0,
we findλ = 0, which is a case we have already addressed. So
the first and last letters (a3 anda−1

3 , respectively) of (35) are not
cancelled away, and therefore the first and last letters (aip and
a−1

iq
, respectively) ofz are also those ofz′, as required. And, as

ip ≥ 6, if ep > 0, then the prefixθep(aip) of zsurvives intoz′ as it
ends with a letter of rank at least 5 which is not cancelled away.
And likewise, if iq ≥ 5 andeq > 0, then the suffix θeq(a−1

iq
) of z

survives intoz′.
Suppose then thatiq is 3 or 4 andeq > 0.
The exponent sum of thea2 in z between the rightmosta3 of
θep(aip) and the leftmosta−1

3 of θeq(a−1
iq

) is zero, so

ep − ip + 3 = eq − iq + 3+ λ.

Applying (19) to the suffix θep−m1−···−mλ+λ−1(a−1
2 ) of u (expressed

as per (27)) andθeq(a−1
iq

), we get

eq = ep −m1 − · · · −mλ + λ.

Adding these two equations together and simplifying yields:

−ip = −iq + 2λ −m1 − · · · −mλ.

The final equation of (29) is

λ − 3+ ip = 1− λ +m1 +m2 + · · · +mλ−1 + 2mλ.

Summing the preceding two equations and simplifying gives

−4 = −iq +mλ.

But iq is 3 or 4, somλ is −1 or 0, But,ip + 2λ+1 − 6 = 2λmλ

by (30), which implies thatmλ > 0 becauseip ≥ 6 andλ ≥ 0—a
contradiction.
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�

Proof of Proposition4.7in type ii. The result will follow from the typeii−1 instance of the
proposition, proved below, becausez is the inverse of a word of typeii−1. �

Proof of Proposition4.7in type ii−1. The hypotheses dictate that in type ii−1, z has the
form:

z = θep(a−1
ip

)θep+1(a−1
ip+1) · · · θeq(a−1

iq ),

whereeq − ep = iq − ip. We must show that its freely reduced form is

z′ = θep(aip−1)θeq+1(a−1
iq

).

Well,

θeq+1(a−1
iq ) = θeq(a−1

iq−1)θeq(a−1
iq )

= θeq−1(a−1
iq−2)θeq−1(a−1

iq−1)θeq(a−1
iq )

...

= θep(a−1
ip−1)θep(a−1

ip
)θep+1(a−1

ip+1) · · · θeq(a−1
iq ),

and soz′ andzare freely equal.

Whenep < 0 andip − 1 > 1, Lemma4.4 tells us that the final letter ofθep(aip−1) is a−1
ip−2.

And wheneq + 1 < 0 andiq > 1, it tells us that the first letter ofθeq+1(a−1
iq

) is aiq−1. Our
hypotheses include thateq < 0, which implies thatep < 0 asep < eq, and thatiq > 1, so in
all cases except whenip = 2 oreq = −1, we learn thatz′ is freely reduced as required.

Whenip = 2 andeq , −1,
z′ = a1θ

eq+1(a−1
iq ),

which is freely reduced because the first letter ofθeq+1(a−1
iq

) is aiq − 1. And wheneq = −1
andip − 1 , 1,

z′ = θep(aip−1)a−1
iq ,

which is freely reduced because the last letter ofθep(aip−1) is aip−2. And wheneq = −1 and
ip − 1 = 1,

z′ = a1a−1
iq ,

which is freely reduced becauseiq ≥ 3.

The first letter ofz is aip−1 by Lemma4.4applied toθep(aip−1). The final letter ofz is a−1
iq

because the first letter ofθeq+1(aiq) is aiq by the same lemma. �

Proof of Proposition4.7in type iii. We have that

z = θep(aip)uθ
eq′ (a−1

iq′
) · · · θeq(a−1

iq )

whereip, iq′ , . . . , iq ≥ 3, ip+1, . . . , iq′−1 < 3, ep ≥ 0, eq < 0 (and soeq′ , . . . , eq−1 < 0 by
(19)). Also i j = i j−1 + 1 for j = q′ + 1, . . . , q, so iq = iq′ + q − q′. Like in type i, we
must show that the first and last letters of the freely reducedform z′ of z areaip anda−1

iq
,

respectively, and that ifep > 0, thenθep−1(aip) is a prefix ofz′.

Proposition4.7 for type ii−1, proved above, applied to the suffix θeq′ (a−1
iq′

) · · · θeq(a−1
iq

), tells
us thatz freely equals

θep(aip) uθeq′ (aiq′−1)θeq′+q−q′+1(a−1
iq′+q−q′ )(36)

and that the new suffix θeq′ (aiq′−1)θeq′+q−q′+1(a−1
iq′+q−q′ ) is reduced.
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By hypothesis,iq′ ≥ 3. We again organize our proof by cases.

1. Case: iq′ ≥ 4. As the suffix θeq′ (aiq′−1)θe′q+q−q′+1(a−1
iq′+q−q′ ) of (36) is freely re-

duced, its first letter isaiq′−1, which has rank at least 3 by hypothesis and so
cannot cancel any letter inu, and is positive and so cannot cancel with a letter in
θep(aip). Therefore letters inu can only cancel with theθep(aip) to its left. So the
final letter ofz′ is a−1

iq′+q−q′ = a−1
iq

, as required. As rank(u) ≤ 2 andip ≥ 3, the
first letterap of z is also the first letter ofz′, as required. It remains to show that,
assumingep > 0, the prefixθep−1(aip) of z′ is also a prefix ofz′. If ip > 3, this is
immediate becauseaip−1 has rank at least 3 and so cannot cancel intou. If ip = 3,
then noa±1

2 in u cancel withθep(aip) for otherwise the first equation of (29) the
argument from typei would adapt to this setting to give us the contradiction that
ip is even.

2. Case: iq′ = 3.
2.1. Case: iq ≤ 2. This does not occur because, by hypothesis,iq′ ≥ 3 and

q− q′ ≥ 0.
2.2. Case: iq ≥ 4. Suppose, for a contradiction, that the first or last letter ofz

cancels away on free reduction, or thatep > 0 and the prefixθep−1(aip)aip−1

(which is one letter longer than we need) ofθep(aip) fails to also be a prefix
of z′.
2.2.1. Case: eq′ + q− q′ + 1 = 0. Here, asiq′ + q− q′ = iq ≥ 4, (36) is

θep(aip) uθeq′ (a2)a−1
iq
.

Thenθep(aip) can contain noa3 since there is noa−1
3 to cancel with.

Therefore,θep(aip) ends with a letter of rank greater than 3 by Lemma4.4.
For this reason,u cannot cancel to its left, and souθeq′ (a2) freely equals
the empty word. By Lemma4.5, u cannot contain a rank 2 subword
that freely equals the empty word, sou = aµ1θ

eq′−1(a−1
2 ) for someµ ∈ Z.

But then by (19) eq′−1 = eq′ − 1, andu = aµ1θ
eq′−1(a−1

2 ). Counting the
exponent sum of thea±1

1 in uθeq′ (a2), we find

µ − eq′ + 1+ eq′ = 0.

So µ = −1, andu must beθep+1(a−1
1 )θeq′−1(a−1

2 ). But then applying
(19) to θep(aip)θ

ep+1(a−1
1 )θeq′−1(a−1

2 ), we find thateq′ − 1 = ep + 1 ≥ 1,
contradicting the fact thateq′ < 0.

2.2.2. Case: eq′ + q− q′ + 1 < 0. Here, (36) is

θep(aip) uθeq′ (a2)θeq′+q−q′+1(a−1
iq ).

The first letteraiq−1 of the suffix θeq′+q−q′+1(a−1
iq

) has rank at least 3,
and must cancel to the left, but has exponent+1. Every other letter to
the left with exponent−1 has rank at most 2, so this letter cannot be
canceled to its left or right. Thusz′ must end witha−1

iq
and start with

aip.
If ip > 3 andep > 0, the letter immediately after the prefixθep−1(aip)
of z is aip−1, which is of rank at least 3, so the prefixθep−1(aip) must
be preserved because letters of rank 3 or higher cannot cancel as there
are no letters of rank 3 or higher between and the first letteraiq−1 (of
rank at least 3) of the suffix θeq′+q−q′+1(a−1

iq
).

If ip = 3, it is conceivable that this prefix is partially canceled away
by some following subwordu of zof rank 2 or less. We will show this
leads to a contradiction so does not occur. If any letters inθep(aip)u of
rank 2 or higher cancel, thenep− ip+2 ≥ 0 because otherwiseθep(aip)
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ends with a letter of rank greater than 3. However, thenu must have a
prefix that cancels withθep−ip+2(a2) and so isθep+1(a1) · · · θes−1(a1)θes(a−1

2 )
or θep+1(a−1

1 ) · · · θes−1(a−1
1 )θes(a−1

2 ) for somes. In either case, this sim-
plifies to aµ1θ

es(a−1
2 ) for someµ ∈ Z and, by (19), ep − µ = es. By

summing the exponents of thea±1
1 in θep−ip+2(a2) and inaµ1θ

es(a−1
2 ), we

find that: ep − ip + 2 − es + µ = 0. But combined withep − µ = es,
this tells us thatµ = (ip−2)/2, which is not an integer ifip = 3. so we
have the required contradiction.

2.3. Case: iq = 3. In this instance,q = q′ becauseiq′ = 3, and soiq = 3. So

z = θep(aip)uθ
eq′ (a−1

3 ).

By Lemma4.4, there is onea−1
3 in θeq′ (a−1

3 ), specifically its final letter. Sup-
pose thisa−1

3 cancels with ana3 (necessarily the rightmost) inθep(aip). Then
the intervening subword (which has rank at most 2) freely reduces to the
empty word.
Now θep(aip) contains noa−1

2 becauseep ≥ 0. The same is true ofθeq′ (a−1
3 )

by Lemma4.4 and the fact thateq′ < 0. So, if u contains ana2, it must
cancel with ana−1

2 from u, and sou must contain a subword which starts and
ends with principal letters of rank 2 and which freely equalsthe empty word,
violating Lemma4.5. Conclude thatu contains noa2.
2.3.1. Case: ep − ip + 2 ≥ 0. The rightmosta3 in θep(aip) is the first letter of

the suffix a3a2θ
1(a2) · · · θep−ip+2(a2), so some prefix ofu freely equals

the inverse ofa2θ
1(a2) · · · θep−ip+2(a2). This prefix ofu must be

(37) θep+1(a
ǫp+1

ip+1
) · · · θes(aǫs

is
)

for somes. (The prefix does not end in the midst of someθes(aǫs
is

),
because it must have final lettera−1

2 .)
Similarly to (27) and (28) in the typei case, we can use (19) to re-
express (37) as

a
νχ+1

1 θes+ν1+···+νχ−χ(a−1
2 ) · · ·aν2

1 θ
es+ν1−1(a−1

2 )aν1
1 θ

es(a−1
2 )

= a
νχ+1−(es+ν1+···+νχ−χ)
1 a−1

2 · · ·a
ν2−(es+ν1−1)
1 a−1

2 aν1−es

1 a−1
2

for someswhereχ := ep − ip + 2 (so thatχ + 1 is the number ofa2 in
a2θ

1(a2) · · · θep−ip+2(a2)) andν1, . . . , νχ ∈ Z record the number of and
exponents of thea±1

1 between thea−1
2 . As this freely equals

(a2θ
1(a2)θ

2(a2) · · · θ
χ(a2))−1

= a−χ1 a−1
2 · · ·a

−2
1 a−1

2 a−1
1 a−1

2 a−1
2 ,

we find that

ν1 − es = 0

ν2 − (es+ ν1 − 1) = −1

... =
...

νχ+1 − (es + ν1 + · · · + νχ − χ) = −χ.

It follows that

(38) νχ+1 = 2χes − 2χ+1
+ 2.

The suffix θep−ip+2(a2) of θep(aip) must be the inverse of the prefix
a
νχ+1

1 θes+ν1+···+νχ−χ(a−1
2 ) of u, soθep−ip+2(a2)a

νχ+1

1 θes+ν1+···+νχ−χ(a−1
2 ) freely

reduces to the empty word. By (19) applied toθep(aip)a
νχ+1

1 θes+ν1+···+νχ−χ(a−1
2 ),

ep − νχ+1 = es + ν1 + · · · + νχ − χ.
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By counting thea±1
1 in θep−ip+2(a2)a

νχ+1

1 θep−νχ+1(a−1
2 ), which freely re-

duces to the empty word, we find

ep − ip + 2+ νχ+1 = ep − νχ+1,

so thatνχ+1 = (ip − 2)/2. But thenνχ+1 > 0, sinceip ≥ 3. Further, we
conclude that foru to even cancel ana2 from θep(aip), ip must be even.
So ip ≥ 4. Thus after rewriting (38) as

(39) es =
1
2χ

(νχ+1 + 2χ+1 − 2)

and using the fact thatνχ+1 > 0 andχ ≥ 1, we conclude thates > 0.
The remainder

(40) θes′ (aǫs′

is′
) · · · θeq′−1(a

ǫq′−1

iq′−1
),

(wheres′ = s+ 1) of u cancels with all but thea−1
3 of

(41) θeq′ (a−1
3 ) = θeq′ (a2)θ

eq′+1(a2) · · · θ
−1(a2)a

−1
3 .

We claim that, similarly to (27), we can rewrite (40) as

aηr

1 θ
eq′+η1+η2+η3+···+ηr−1−r (a−1

2 ) · · ·aη2

1 θ
eq′+η1−2(a−1

2 )aη1

1 θ
eq′−1(a−1

2 )

= a
ηr−(eq′+η1+η2+η3+···+ηr−1−r)
1 a−1

2 · · ·a
η2−(eq′+η1−2)
1 a−1

2 a
η1−(eq′−1)
1 a−1

2

wherer is the number ofa−1
2 in (40), andη1, . . . , ηr ∈ Z record the

number of and the signs of the intervening termsθ∗(a∗1). There is no
power ofa1 at the righthand end because the first letter of (41) is a2.
The iterates ofθ are identified by using (19).
Now compare with (41), with which it cancels (to leave onlya−1

3 ), to
see thatr = |eq′ | and

0 = η1 − (eq′ − 1)+ eq′

0 = η2 − (eq′ + η1 − 2)+ eq′ + 1

... =
...

0 = ηr − (eq′ + η1 + η2 + · · · + ηr−1 − r) + eq′ + (r − 1).

Next we establish by induction thatηi < 0 and

(42) eq′ + η1 + η2 + · · · + ηi−1 − i < 0

for all 1 ≤ i ≤ r. For the base case,eq − 1 < 0 because of our
hypothesis thateq < 0, andη1 = −1 by the first of the above family
of equations. For the induction step, supposeη1, . . . , ηi−1 < 0 and
eq′ + η1 + η2 + · · · + ηi−2 − (i − 1) < 0. The family of equations above
tells us in particular, that

0 = ηi − (eq′ + η1 + η2 + · · · + ηi−1 − i) + eq′ + (i − 1)

which rearranges to

(η1 + η2 + · · · + ηi−1) − 2i + 1 = ηi .

So,ηi < 0 because 1≤ i andη1, . . . , ηi−1 < 0. Moreover,

eq′ + η1 + η2 + · · · + ηi−1 − i = (eq′ + η1 + η2 + · · · + ηi−2 − (i − 1))+ ηi−1 − 1 < 0

becauseeq′ + η1 + η2 + · · · + ηi−2 − (i − 1) < 0 andηi−1 < 0.
Now

es′ = ηr + (eq′ + η1 + η2 + · · · + ηr−1 − r) − 1

by (19). Conclude thates′ < 0.
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But

u = θep+1(aǫp+1

ip+1
) · · · θes(aǫs

is
)θes′ (aǫs′

is′
) · · · θeq′−1(a

ǫq′−1

iq′−1
)

and by (19), es andes′ differ by at most 1. So, as we previously estab-
lished thates > 0, we have a contradiction.
We deduce that noa3 anda−1

3 cancel whenz freely reduces.
Since no letters of rank 3 can cancel, ifip ≥ 4, thenz′ has a pre-
fix θep−1(aip), since cancelling any part of this prefix inθep(aip) =
θep−1(aip)θ

ep−1(aip−1) requires cancellation ofaip−1. Finally consider
the caseip = 3. We showed (immediately above (39)) that if ip is odd,
then no letters of rank 2 can cancel fromθep(aip). The remainder of
the argument is the same as in the caseip ≥ 4.

2.3.2. Case: ep − ip + 2 < 0. We havez = θp(aip)uθ
eq(a−1

3 ) whereiq = 3,
q = q′, u = θep+1(aǫp+1

ip+1
) · · · θeq′−1(a

ǫq′−1

iq′−1
), andθep(aip) ends with a letter of

rank at least 3. Suppose, for a contradiction, some letter ofthe prefix
θep(aip) is cancelled whenz is freely reduced toz′. No cancellation is
possible betweenθep(aip) andu because every letter ofθep(aip) is rank
3 or higher. By the argument used in Case2.3.1to show thates′ < 0,
we find here thatep+1 < 0, and by the argument there (immediately
after (42)) to show thatηr < 0, we find here thatǫp+1 = −1. But then
by (19), ep = ep+1, and soep < 0, which contradictsep ≥ 0. So the
first letteraip of z is also the first letter ofz′, and the last lettera−1

3
of θeiq′ (a−1

3 ) is also the last letter ofz′. Moreover, ifep > 0, then the
prefixθep−1(aip) of θep(aip) is also a prefix ofz′. �

Proof of Proposition4.7in type iii−1. Inverting a typeiii −1 word gives a typeiii word, so
we can apply the typeiii of Proposition4.7proved above to get the result (as in this case
we are only concerned with the first and last letters and not with a longer prefix). �

Proof of Proposition4.7in type iv. We must show that ifip, . . . , ip′ , iq′ , . . . , iq ≥ 3 with
i j = i j+1 + 1 for j = p, . . . , p′ − 1 andi j = i j−1 + 1 for j = q′ + 1, . . . , q, andep, eq < 0, the
freely reduced formz′ of

z = θep(aip) · · · θ
ep′ (aip′

)uθeq′ (a−1
iq′

) · · · θeq(a−1
iq

)

starts withaip and ends witha−1
iq

.

By Proposition4.7 in type ii±1, proved above,z freely reduces to

(43) θep+1(aip)θ
ep′ (a−1

ip′−1)uθeq′ (aiq′−1)θeq+1(a−1
iq

)

whereθep+1(aip)θ
ep′ (a−1

ip′−1) andθeq′ (aiq′−1)θeq+1(a−1
iq

) are freely reduced.

We again organize our proof by cases.

1. Case: ip = iq. Suppose, for a contradiction, thatz′ does not start withaip and end
with a−1

iq
. Then the first and last letter must cancel each other since they are the

only maximal rank letters (becauseip > ip+1 > · · · > ip′ andiq > iq−1 > · · · > iq′ ).
Soz freely reduces to the empty word, which we will show is impossible.

It will be convenient (for Case1.2.1) to assumeep, eq < −1, which we can do
because applyingθ−1 to zgives a typeiv word of the same form which also freely
reduces to the empty word.

1.1. Case: u is the empty word.This leads to a contradiction because it implies
that the last letteraip′−1 of θep+1(aip)θ

ep′ (a−1
ip′−1) and the first letteraiq′−1 of
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θeq′ (aiq′−1)θeq+1(a−1
iq

) cancel—that is,ip′ = iq′ , soθep′ (aip′
)θeq′ (a−1

iq′
) is a sub-

word ofzcontrary to the definition ofz.
1.2. Case: u is not the empty word.

1.2.1. Case: p, p′ and q , q′. In this case,ip, iq ≥ 4 because of our
hypotheses onip, . . . , ip′ , iq′ , . . . , iq. Since we assumedep, eq < −1,
the word in (43) has a subword of the form

(44) a−1
ip−1θ

ep′ (a−1
ip′−1)uθeq′ (aiq′−1)aiq−1,

and no cancellation is possible with the prefix ofz to its the left or the
suffix to its right. The maximal rank letters it contains are its first and
last letters, so they must cancel, and therefore

(45) θep′ (a−1
ip′−1)uθeq′ (aiq′−1)

must freely equal the empty word.
1.2.1.1.Case: ip′−1 , 2 or iq′−1 , 2. Thenip′−1 = iq′−1 because otherwise

(45) has a single letter of highest rank which (either thea−1
ip′−1

or theaiq′−1) and hence cannot freely reduce to the empty word.
However, thena−1

ip′−1
andaiq′−1 are the letters of highest rank in

(45) and so must cancel. Sinceu is the subword separating them,
u must freely reduce to the empty word, which is impossible by
Lemma4.5.

1.2.1.2.Case: ip′−1 = iq′−1 = 2. By Lemma4.5, u cannot have any rank-2
subwords that freely reduce to the empty word. Since (45) freely
reduces to the empty word andu contains no rank-2 subwords
that freely reduce to the empty word, by (19) u must be

θep′−1(a2)a
µ

1θ
eq′−1(a−1

2 )

for someµ ∈ Z. By counting the exponent sum ofa1 in (45):

ep′ − (ep′ − 1)+ µ + (eq′ − 1)− eq′ = 0,

so thatµ = 0, contradicting the fact thatu does not have consec-
utive principal lettersa2 anda−1

2 (by definition ofz).
1.2.2. Case: p= p′. In this case, the word (43) whichz freely reduces to has

the form

θep(aip)uθ
eq′ (aiq′−1)θeq+1(a−1

iq ).

Recall that the suffix θeq′ (aiq′−1)θeq+1(a−1
iq

) is freely reduced and so its
first letteraiq′−1 cannot cancel to its right. So it must cancel to its left,
and therefore eitheriq′ = 3 or it cancels with the terminala−1

ip−1 of
θep(aip). In the latter case:

iq − 1 = ip − 1 = iq′ − 1,

soiq = iq′ , and soq = q′. Therefore it suffices to analyze the following
two cases.

1.2.2.1.Case: iq′ = 3 and q, q′. Sinceq , q′, iq > 3. Soiq > 3 also as
ip = iq. Hence (43) has a subword

(46) a−1
ip−1uθeq′ (a2)aiq−1

whose first lettera−1
ip−1 cannot cancel to the left and whose last

letter aiq−1 cannot cancel to the right. They have rank at least
3, so they must cancel each other. Souθeq′ (a2) freely equals the



50 W. DISON, E. EINSTEIN AND T.R. RILEY

empty word. Butu cannot have any rank 2 subwords that freely
equal the empty word by Lemma4.5, so by (19) is

aµ1θ
eq′−1(a−1

2 )

for someµ ∈ Z. So (46) is

a−1
ip−1aµ1θ

eq′−1(a−1
2 )θeq′ (a2)aiq−1 = a−1

ip−1aµ1 (a2a
eq′−1
1 )−1 a2a

eq′

1 aiq−1.

By counting the exponent sum ofa1 it contains, we find

µ − (eq′ − 1)+ eq′ = 0.

Soµ = −1. Now

u = a−1
1 θeq′−1(a−1

2 ) = θe(a−1
1 )θeq′−1(a−1

2 )

for somee ∈ Z. Soθep(aip)θ
e(a−1

1 )θeq′−1(a−1
2 ) is a prefix ofz and

(19) tells us thate= ep ande+ 1 = eq′ − 1, and soep + 2 = eq′ .
Now, asuθeq′ (a2) freely equals the empty word andp = p′, (43)
freely reduces to

θep+1(aip)θ
ep′ (a−1

ip′−1)θeq+1(a−1
iq

) = θep(aip)θ
eq+1(a−1

iq
).

So, asip = iq > 1, we findep = eq + 1. But eq ≥ eq′ , so this
contradictsep + 2 = eq′ .

1.2.2.2.Case: q= q′. In this instance,

z = θep(aip)uθ
eq(aiq)

freely reduces to the identity. Henceθmax(−ep,−eq)(z) is a typei
word which also freely reduces to the identity, which is impossi-
ble by the typei case of Proposition4.7proved above.

1.2.3. Case: q= q′. Invertingz returns us to Case1.2.2above.
2. Case: ip > iq. By Proposition4.7 in type ii±1, w freely reduces to a word of the

form:

θep+1(aip)θ
ep′ (a−1

ip−1)uθeq′ (aiq′−1)θeq+1(a−1
iq

).

Observe thataiq cannot be cancelled becausea−1
iq

does not appear. To cancela−1
iq

,

sinceiq ≥ 3 andu is rank 2,a−1
iq

must cancel with a letter to the left ofu, since

it is the only rankiq letter appearing to the right ofu. Also, a−1
ip′−1, the final letter

of θep′ (aip′
) is an obstruction to cancellingaiq with any letter fromθep+1(aip) and

a−1
ip′−1 and has rank at leastiq. Thus the only letters of rankip − 1 in w come from

θep+1(aip), so every letter of rankip − 1 has exponent−1. To cancela−1
iq

with a

letter fromθep+1(aip) requires cancelling the rightmosta−1
ip−1 from θep+1(aip) which

is impossible.
Similarly, if a−1

iq
cancels with a letter fromθep′ (a−1

ip′−1), the rightmost letter of

θep′ (a−1
ip′−1), which is a−1

ip′−1, must cancel too. By Proposition4.7 in type ii±1,

θep+1(aip)θ
ep(a−1

ip′−1) is freely reduced, so its rightmosta−1
ip′−1 must cancel to the

right. However,a−1
ip′−1 is the highest rank letter inθep(aip−1)−1, so ep′ − 1 ≥ iq.

Also ip′ − 1 ≤ iq becausea−1
ip′−1 can only cancel with anaip′−1. We cannot cancel

a−1
ip′−1 from θep′ (a−1

ip′−1) because thena−1
iq

would be the only other letter of the same

rank. Thus it is impossible to cancela−1
iq

.
3. Case: ip < iq. Invertw and apply the argument from Case2. �
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Proof of Proposition4.7in type v. We have

z = θep(a
ǫp

ip
) · · · θeq(a

ǫq

iq
)

and no typei–iv subwordẑof w overlaps withz. More precisely, there is no 0≤ p′ < q′ ≤
l + 1 with p ≤ q′ ≤ q such thatθep′ (a

ǫp′

ip′
) · · · θeq′ (a

ǫq′

iq′
) is of typei–iv. The claim is that free

reduction ofz to z′ removes no letters of rank 3 or higher. Moreover, ifǫp = 1, ip ≥ 3 and
ep > 0, thenz′ (the reduced form ofz) has prefixθep−1(aip).

Here is our proof of the first claim. Suppose, for a contradiction, that some letteraǫα (not
necessarily principal) inzwith α ≥ 3 andǫ = ±1 cancels with somea−ǫα to its right whenz
is freely reduced.

Thenz has a subwordaǫαva−ǫα which freely equals the empty word. Sinceα ≥ 3, we know
that aα comes from someθep′ (a

ǫp′

ip′
) whereip′ ≥ 3 while a−1

α comes from someθeq′ (a
ǫq′

iq′
)

whereiq′ ≥ 3. Note thatp′ , q′ because otherwiseaǫαva−ǫα would be a subword ofθep′ (aip′
),

which is freely reduced. We may assume thatvcontains no letteraδ
β

with β ≥ 3 andδ ∈ {±1}

that cancels to its right with ana−δ
β

in v, because otherwise we could replace our original
choice ofaǫαva−ǫα with a shorter subwordaδ

β
· · ·a−δ

β
. So rank(v) ≤ 2, andzhas a subword

(47) θep′ (a
ǫp′

ip′
)uθeq′ (a

ǫq′

iq′
)

whereu is either empty or rank(u) ≤ 2.

1. Case: ǫp′ = 1 and ǫq′ = −1. In this case, (47) is type eitheri, or iii ±1, or iv
contrary to the hypothesis thatz is typev.

2. Case:ǫp′ = 1 andǫq′ = 1. Fora−ǫα is to cancel, theaiq′ at the start ofθeq′ (a
ǫq′

iq′
) must

cancel to its left. Ifep ≥ 0, thenθep′ (a
ǫq′

ip′
) is a positive word, so the only letters

to the left ofaiq′ with exponent−1 have lower rank, and such cancellation is not
possible. Ifep < 0, then the last letter ofθep′ (aip′

) is a−1
ip′−1, so eitherip′ − 1 = 2 or

(u is the empty word andiq′ = ip′−1). In the former case:α = 3, but thenaǫαva−ǫα
cannot freely equal the empty word becauseaǫα = aα cannot cancel with the first
letteraiq′ of θeq′ (aiq′ ). In the latter case: by (19), eq′ = ep′ − 1 < 0, so we have a
type ii subword contained inz, contrary to the definition of a typev subword.

3. Case: ǫp′ = −1 and ǫq′ = −1. Invert and apply the previous case to obtain a
contradiction.

4. Case:ǫp′ = −1 andǫq′ = 1. In this case (47) has subword

a−1
ip′

uaiq′

wherea−1
ip′

does not cancel to the left andaiq′ does not cancel to the right, which
makes a contradiction because these letters both have rank higher than 2.

So the first claim is proved.

The second claim—ifǫp = 1, ip ≥ 3 andep > 0, thenz′ has prefixθep−1(aip)—is proved
exactly as per the final paragraph of Case2.2.2of our proof above Proposition4.7 in case
iii . �

4.4. The Piece Criterion. The Piece Criterionis the main technical result behind the
correctness of our algorithmMemberk. Before we state it, we establish two preliminary
propositions. The first is used in the proof of the second, andthe second provides a key
step of our proof of the Piece Criterion. In both we refer to areduced word h on(a1t)±1,
. . . , (akt)±1, which is to say thath contains no subwords (ait)±1(ai t)∓1.
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Proposition 4.8. Suppose u= u(a1, . . . , am−1) is freely reduced and non-empty, h=
h(a1t, . . . , akt) is freely reduced, r, s ∈ Z, and2 ≤ m≤ k. In Gk,

(tramu = hts or tramua−1
m = hts) =⇒ the first letter of h is(amt),

(trua−1
m = hts or tramua−1

m = hts) =⇒ the final letter of h is(amt)−1.

Proof. The second statement follows from the first as can be seen by inverting both sides
of the equalities and then rearranging so as to interchange the roles ofr ands.

We will prove the first statement in the casetramu = hts only, as the casetramua−1
m = hts

can be proved in essentially the same way.

So assumetramu = hts, and soamu = t−rhts, in Gk. Consider carrying all thet±1 in t−rhts

from left to right through the word, with the effect of applyingθ∓1 to the intervening letters
a±1

i , and then freely reducing, so as to arrive atamu.

We will first argue thath contains no (am+1t)±1, . . . , (akt)±1. Suppose otherwise. Leti be
maximal such thath contains an (ai t)±1. As carrying all thet±1 to the right and cancelling
givesamu, there must be an (ai t)∓1 in h so that there is ana∓1

i to cancel with thea±1
i in

our (ai t)±1—this is because applyingθ±1 to a±1
1 , . . . , a±1

i , neither creates nor destroys any
a±1

i . But then ifh′ is the subword ofh that has first and last (or last and first) letters these
(ait)±1 and (ai t)∓1, then tr

′

h′ = ts′ for somer ′, s′ ∈ Z. That then implies thath′ ∈ 〈t〉.
But Hk ∩ 〈t〉 = {1} by Lemma 6.1 of [12], so h = 1 in Gk. But Hk = F(a1t, . . . , akt) by
Proposition 4.1 of [12], and so our assumption thath is freely reduced is contradicted.

Next notice that there must be an (amt) in h becauseamu contains anam and applyingθ±1

to a±1
1 , . . . , a±1

m neither creates nor destroys anya±1
m . Suppose, for a contradiction, that the

first (amt) in h is not at the front. Expressh asα(amt)β whereα = α(a1t, . . . , am−1t) is
non-empty.

We claim that theam of the first (amt) in h must cancel with some subsequenta−1
m . Suppose

otherwise. We have that

t−rhts = t−rα(amt)βts
= vt j(amt)βts

for somev = v(a1, . . . , am−1) and somej ∈ Z. But thenv = 1 as the firstam serves as a
barrier to cancelling awayv when the remainingt±1 are carried to the right: applyingθ±1

to am only produces new lettersa±1
1 , . . . , a±1

m−1 (see Lemma 7.1 in [12]) to its right, and (by
assumption) it is not cancelled away by a subsequenta−1

m . But thenα ∈ 〈t〉, leading to a
contradiction as before.

Now, if am of the first (amt) in h cancel with some subsequenta−1
m , by the same argument as

earlier, the subword bookended by that (amt) and (amt)−1 must freely reduce to the empty
word, contradicting the assumption thath is freely reduced. �

To follow the details of the following proof it will help to have a copy of Definition4.6and
Proposition4.7to hand.

Proposition 4.9. Suppose u= u(a1, . . . , am−1) is freely reduced, h= h(a1t, . . . , akt) is
freely reduced, r, s ∈ Z, 3 ≤ m≤ k, and tramu = hts or tramua−1

m = hts in Gk. If r > 0, then
θr−1(am) is a prefix of amu.

Proof. We will prove the case wheretramua−1
m = hts in Gk. The proof for the casetramu =

hts is the same.



TAMING THE HYDRA 53

Proposition4.8tells us that the first and last letters ofh are (amt) and (amt)−1, respectively.
Expressh as (ai0t)

ǫ0 · · · (ai j+1t)
ǫ j+1 whereǫ0 = 1, andǫ1, . . . , ǫ j = ±1, andǫ j+1 = −1, and

i0 = i j+1 = m, andi1, . . . , i j ∈ {1, . . . ,m− 1}.

If we shuffle all thet±1 in t−rhts to the right, then the power oft emerging on the right
cancels away sincet−rhts equalsamua−1

m andu = u(a1, . . . , am−1) in Gk, and we get

π := amua−1
m = θe0(aǫ0i0 ) · · · θej (a

ǫ j

i j
)θej+1(a

ǫ j+1

i j+1
)

whereel is, for 0≤ l ≤ j + 1, the exponent sum of thet±1 in h that precedeai l in t−rhtsam

(which includes thet−1 of (ai l t)
ǫl if ǫl = −1):

el =






r + ǫ1 + · · · + ǫl−1 if ǫl = 1

r + 1+ ǫ1 + · · · + ǫl−1 if ǫl = −1.

Also aǫx
ix
, a−ǫx+1

ix+1
for x = 0, . . . , j becauseh is freely reduced as a word on (a1t)±1, . . . , (akt)±1.

So,π is of the form in which it appears in Definition4.6.

We will work right to left throughzchoosing subwordsz1, z2, .... until we haveπ expressed
as a concatenationzl · · ·z2z1. Defineπ1 := π and definez1 to be the maximal length suffix
of π1 of one of the five types of Definition4.6. (Such a suffix exists ifπ1 is non-empty, as
there must be a typev suffix if no other type.) Letπ2 beπ1 with the suffix z1 removed, and
then definez2 to be the maximal length suffix of π2 of one of the five types of Definition4.6.
Continue likewise untilz is exhausted and we haveπ = zl · · · z2z1.

Let π′, z′1, . . . , z
′
l denote the freely reduced forms ofπ, z1, . . . , zl , respectively. We will use

Proposition4.7 to argue thatπ′ = z′l · · · z
′
2z′1. In other words, when freely reducingπ, all

cancellation is within thezi—none occurs between azi+1 and the neighboringzi .

Given how Proposition4.7 identifies the first and last letters of eachz′i when of typei–iv,
and given thataǫx

ix
, a−ǫx+1

ix+1
for x = 0, . . . , j, cancellation betweenz′i+1 andz′i is ruled out

except in these four situations:

• zi is of typeii−1,
• zi+1 is of typeii ,
• zi is of typev,
• zi+1 is of typev.

We will explain why these too do not give rise to cancellation. Expresszi+1 andzi as:

zi+1 = θep(aǫp

ip
) · · · θeq(aǫqiq ) and zi = θep′ (a

ǫp′

ip′
) · · · θeq′ (a

ǫq′

iq′
).

(So p′ = q+ 1.)

Case: zi+1 not type v, zi type ii−1. The first letter ofz′i is aip′−1 by Proposition4.7 in type
ii−1. If zi+1 is of typeii , then the final letter ofz′i+1 is a−1

ip′−1−1 (rememberp′ − 1 = q) which

cannot cancel with theaip′−1 at the start ofz′i sincea
ǫp′−1

ip′−1
anda

ǫp′

ip′
are not mutual inverses

andǫp′−1 = 1 andǫp′ = −1. If zi+1 is of typei, ii−1, iii ±1, or iv, then the final letter ofzi+1

is a−1
ip′−1

which cannot bea−1
ip′−1 as that would contradict the maximality ofzi : prepending

θe′p(a
ǫp′−1

ip′−1
) to zi would give a longer typeii−1 word.

Case: zi+1 type ii, zi not type v.Similarly, there can be no cancellation betweenz′i+1 andz′i .
In the cases wherezi is of typei, ii , iii ±1, or iv appendingθep+1(a

ǫp+1

ip+1
) to zi+1 would give a

longer typeii word, contradicting the definition ofzi as a typev word.

Case: zi+1 not type ii, zi type v.Thenzi+1 cannot be of typev, elsezi+1zi would be of type
v contrary to maximality ofzi . Sozi+1 is of typei, ii−1, iii ±1 or iv, and thereforeiq ≥ 3 and
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ǫq = −1, and by Proposition4.7, the final letter ofz′i+1 is a−1
iq

. So if there is cancellation
betweenz′i+1 andz′i , then the first letter ofz′i must beaiq. But then, there is a subword

π′′ := θeq(a−1
iq )θep′ (a

ǫp′

ip′
) · · · θem(aǫmim )

of zi+1zi such that thea−1
iq

in θeq(a−1
iq

) cancels with someaiq in θem(aǫmim ) on free reduction
and ip′ , · · · , im−1 ≤ 2—otherwise there would be some intervening letter of rank at least
3 which would have to cancel away on freely reducing this subword and hence on freely
reducingzi , contrary to Proposition4.7in typev.

Supposeǫm = 1. Thenθem(aǫmim ) is aim times a word on lower rank letters. So, as thea−1
iq

in θeq(a−1
iq

) cancels away whenπ′′ is freely reduced,aǫmim = aiq. But then the intervening

subwordθep′ (a
ǫp′

ip′
) · · · θem−1(aǫm−1

im−1
) has rank at most 2 and freely reduces to the empty word,

and so is empty by Lemma4.5. So p′ = m and, asaǫmim = aiq, that contradicts thex = q
instance ofaǫx

ix
, a−ǫx+1

ix+1
.

Suppose, on the other hand,ǫm = −1. If em ≥ 0, thenθem(a−1
im

) contains no positive letters
and so cannot supply a letter to cancel witha−1

iq
. If em < 0 andim = 3, then the only letter

in θem(a−1
im

) of rank at least three is a singlea−1
3 , and that cannot cancel witha−1

iq
. If em < 0

andim > 3, then the first letter ofθem(aǫmim ) is aim−1 (Lemma4.4) and this could only cancel

with the a−1
iq

were the intervening subwordθep′ (a
ǫp′

ip′
) · · · θem−1(aǫm−1

im−1
) empty (as before) and

p′ = m= q+ 1, but in that casezi has prefixθep′ (a
ǫp′

ip′
) = θeq+1(a−1

iq+1), violating the definition

of a typev subword becauseθeq(a−1
iq

)θeq+1(a−1
iq+1) is type ii−1.

Case: zi+1 type v, zi not type ii−1. As in the previous case,zi cannot be of typev, sozi is
type i, ii , iii ±1 or iv andiq+1 ≥ 3. The same arguments as the previous case apply to tell us
that cancellation is impossible. The final case concludes with the maximality of the typei,
ii−1, iii ±1 or iv wordzi being contradicted.

Case: zi+1 type v, zi type ii−1. We have that

zi+1 = θep(aǫp

ip
) · · · θeq(aǫqiq ) and z′i = θep′ (aip′−1)θeq′+1(a−1

iq′
)

by definition and by Proposition4.7in typei, respectively, andeq′ < 0, iq′ ≥ 3, andip′ ≥ 2.
Moreover, the first letter ofz′i is aip′−1 by Proposition4.7 in type ii . Supposeip′ is 2 or 3.
Thenzi+1 has suffix θeq(a

ǫq

iq
) = θeq(a−1

ip′−1) or something of rank at most 2 which could be
prepended tozi contradicting its maximality. Suppose, on the other hand,ip′ > 3. If there
is cancellation betweenz′i+1 andz′i , then a letter of rank at least 3 inzi+1 cancels with the
first letteraip′−1 of z′i . As in the preceding cases, conclude thata

ǫq

iq
must cancel with the

first letter ofz′i , soiq = ip−1 andǫq = −1, contradicting maximality ofzi .

Case: zi+1 type ii, zi type v.This case is essentially the same as the preceding one. Follow
the steps from the previous case, except instead of appealing to maximality ofz−1

i+1, observe
that the last letter ofzi+1 andzi form a typeii subword which is forbidden by the definition
of a typev subword.

Having established that there is no cancellation betweenz′i+1 andz′i for i = 1, . . . , l − 1, all
that remains is to argue thatamz′l has prefixθr−1(am), for it will then follow that amπ

′ has
the same prefix.

But zl is typei, iii or v becausee0 = r > 0. It has prefixθe0(aǫ0i0 ) = θr (am) andr > 0, so as
i0 = m ≥ 3, Proposition4.7 in typesi, iii andv, tells us thatθr−1(am) is a prefix ofz′l , and
hence ofπ = amu. �
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We are now ready for the Piece Criterion. It concerns only thecase where the rank (denoted
by m) is at least 3. In the casesm = 1 andm = 2 our algorithms are straightforward and
the Piece Criterion is not required to prove correctness.

Proposition 4.10 (The Piece Criterion). Suppose m≥ 3 and r ∈ Z, and supposeπ =
aǫ1mua−ǫ2m is a freely reduced word such that u= u(a1, . . . , am−1) andǫ1, ǫ2 ∈ {0, 1}. Define

xl := a−1
m θl(am) for l ∈ Z,

x :=






xr if r > 0 andǫ1 = 1

empty word otherwise,

δ :=






r if ǫ1 = 0

ψm(r) if ǫ1 = 1 and r ≤ 0

r − 1 if ǫ1 = 1 and r> 0.

Suppose s∈ Z. Let π′ be the freely reduced form of x−ǫ1ua−ǫ2m . Consider the following
conditions.

(i) ǫ1 = 0.
(ii ) ǫ1 = 1 and r≤ 0.
(iii ) ǫ1 = 1, r > 0 andθr−1(am) is a prefix ofπ.

(a) ǫ2 = 0 and tδx−ǫ1u ∈ Hkts.
(b) ǫ2 = 1, s≤ 0 and tδx−ǫ1u ∈ Hktψm(s).
(c) ǫ2 = 1, s> 0 and tδx−ǫ1uxs ∈ Hkts−1 andθs−1(a−1

m ) is a suffix ofπ.

We have trπ ∈ Hkts if and only if ((i, ii or iii ) and tδπ′ ∈ Hkts). Moreover, tδπ′ ∈ Hkts if and
only if (a, b or c).

Proof. Supposes ∈ Z. First suppose thattrπ ∈ Hts. Then (i, ii or iii ) holds because if
ǫ1 = 1 andr > 0, thenθr−1(am) is a prefix ofπ by Proposition4.9. So tδx−ǫ1ua−ǫ2m ∈ Hkts

for the sames ∈ Z.

Next we will prove thattrπ ∈ Hts is equivalent totδπ′ ∈ Hkts under the assumption that (i,
ii or iii ) holds.

Underi, ǫ1 = 0, x is the empty word, andδ = r. Sotδπ′ =tδx−ǫ1ua−ǫ2m = trua−ǫ2m = trπ and
the equivalence is immediate.

Under ii , ǫ1 = 1, r ≤ 0, x is the empty word, andδ = ψm(r). So tδπ′ = tδx−ǫ1ua−ǫ2m =

tψm(r)ua−ǫ2m , giving the third of the following equivalences. The first equivalence holds sim-
ply becauseπ = amua−ǫ2m . For the second,r is in the domain ofψm becauser ≤ 0, so
tram ∈ Hktψm(r) by Proposition3.1, and sotψm(r)a−1

m t−r ∈ Hk.

trπ ∈ Hkt
s

⇔ tramua−ǫ2m ∈ Hkt
s

⇔ tψm(r)ua−ǫ2m ∈ Hkt
s

⇔ tδπ′ ∈ Hkt
s.

Underiii , ǫ1 = 1, r > 0, x = xr , andδ = r − 1. Observe that

tδπ′ = tr−1x−1
r ua−ǫ2m ∈ Hkt

s ⇔ trπ = tramua−ǫ2m ∈ Hkt
s

becausetr−1x−1
r a−1

m t−r
= tr−1θr (a−1

m )t−r
= (amt)−1 ∈ Hk.

So, assuming (i, ii or iii ) holds,trπ ∈ Hkts if and only if tδπ′ ∈ Hkts, as required.
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Next we will prove thattδπ′ ∈ Hkts if and only if (a, b or c) holds.

Supposeǫ2 = 0. Thentδπ′ = tδx−ǫ1ua−ǫ2m = tδx−ǫ1u and sotδπ′ ∈ Hkts is the same as
Conditiona.

Suppose, on the other hand, thatǫ2 = 1. Suppose further thats≤ 0. Proposition3.1tells us
that tsam ∈ Hktψm(s) sinces≤ 0 and so is in the domain ofψm. Sotδπ′ = tδx−ǫ1ua−1

m ∈ Hkts

if and only if tδx−ǫ1u ∈ Hktψm(s). Sotδπ′ ∈ Hkts is equivalent to Conditionb.

Finally, observe that

tδπ′ = tδx−ǫ1ua−1
m ∈ Hkt

s

⇔ tδx−ǫ1ua−1
m t−s ∈ Hk

⇔ tδx−ǫ1ua−1
m t−s(tsamxst

−(s−1)) ∈ Hk

⇔ tδx−ǫ1uxs ∈ Hkt
s−1

becausetsamxst−(s−1)
= amt ∈ Hk. Suppose now thats > 0. The part of Conditionc

concerning the suffix of π follows from Proposition4.9(applied toh−1). Sotδπ′ ∈ Hkts is
equivalent to Conditionc.

We conclude thattrπ ∈ Hts implies (i, ii , or iii ) and (a, b, or c). �

4.5. Our algorithm in detail. Here we constructMemberk, wherek is, as usual, any inte-
ger greater than or equal to 1, and is kept fixed.Memberk inputs a wordw = w(a1, . . . , ak, t)
and declares whether or notw represents an element ofHk.

Most of the workings ofMemberk are contained in a subroutinePushk, which inputs a valid
ψ-word f and a reduced wordv = v(a1, . . . , ak), and declares whether or nott f (0)v ∈ Hkts

for somes ∈ Z and, if so, returns aψ-word f ′ with s = f ′(0). (If such ans exists, it is
unique by Lemma 6.1 in [12].) The key subroutine forPushk whenk ≥ 2 isPiecek which
handles the special case in whichw is a rank-m piece. Piecek calls a subroutineBackk,
which in turn calls a subroutinePushk−1. So the construction of these three families of
subroutines is inductive.

Additionally, subroutinesPrefixm, andFrontm (where 3≤ m ≤ k) are used. These do
not require an inductive construction, so we will give them first. The designs ofPrefixm,
Frontm (and alsoBackm) are motivated by the Piece Criterion (Proposition4.10).

Algorithm 4.1 — Prefixm, m≥ 3.
◦ Input a rank-mpieceπ = amua−ǫ2m (so,u = u(a1, . . . , am−1) is reduced andǫ2 ∈ {0, 1}).
◦ Return the largest integeri > 0 (if any) such thatθi−1(am) is a prefix ofπ.
◦ Halt in time inO(ℓ(π)2).

construct θi−1(am) for i = 1, 2, . . . until ℓ(θi−1(am)) > ℓ(π), andcompareto π
return the maximumi encountered (if any) such thatθi−1(am) is a prefix ofπ

Correctness ofPrefixm. As ℓ(θi−1(am)) ≥ i for i = 1, 2, . . ., the algorithm returns the
appropriatei in timeO(ℓ(π)2). �

Frontm takes a rank-mpieceπ andψ-word f and reduces the task of determining whether
t f (0)π ∈ Hts to performing a similar determination: specifically whether t f ′(0)π′ ∈ Hts

where f ′(0) = δ andπ′ andδ are as per the Piece Criterion. This will represent progress
becauseπ′ is a piece of rank-m that does not begin witham, and because we are able to
give good bounds onℓ(π′) andℓ( f ′).
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Algorithm 4.2 — Frontm, m≥ 3.
◦ Input a rank-m pieceπ = aǫ1mua−ǫ2m with ǫ1, ǫ2 ∈ {0, 1}, and a validψ-word f =
f (ψ1, . . . , ψk). Let r := f (0).
◦ Declare whether or not (i, ii or iii ) of the Piece Criterion holds. If so, outputπ′ of the
Criterion and a validψ-word f ′ = f ′(ψ1, . . . , ψk) such thatf ′(0) equalsδ of the Criterion.
These satisfyℓ(π′) ≤ ℓ(π) andℓ( f ′) ≤ ℓ( f )+ 1, andtrπ ∈ Hkts if and only if t f ′(0)π′ ∈ Hkts.
◦ Halt in timeO((ℓ(w) + ℓ( f ))k+4).

if ǫ1 = 0 (soi holds),output π′ := ua−ǫ2m and f ′ := f , andhalt
run Psi( f ) to determine whether or notr ≤ 0

3: if ǫ1 = 1 andr ≤ 0 (soii holds),output π′ := ua−ǫ2m and f ′ := ψm f , andhalt

we now have thatǫ1 = 1 andr > 0 (soi andii both fail, and it remains to testiii )
6: run Prefixm onπ

if it fails to return ani declarethat i, ii andiii all fail andhalt
elseit returns some somei

9: run Psi on inputψi
1 f to check whetheri < r

if i < r, then declarethat i, ii andiii all fail
elseiii holds, soreturn the reduced formπ′ of θr (a−1

m )π and f ′ := ψ1 f

Correctness ofFrontm.

2: In was established in Section3.3thatPsi on input f halts in timeO(ℓ( f )k+4).
5: Whetheriii holds depends on whetherθr−1(am) is a prefix ofπ, so that is what the

remainder of the algorithm examines.
6: Prefixm halts in timeO(ℓ(π)2).
9: At this point we know thatθi−1(am) is a prefix ofπ, and soi ≤ ℓ(π). Therefore,

ℓ(ψi
1 f ) ≤ ℓ(π) + ℓ( f ), and so, by the bounds established in Section3.3, Psi halts

in time O((ℓ(π) + ℓ( f ))k+4).
11: For all 0 ≤ p ≤ q, θp(am) is a prefix ofθq(am): after all, forq ≥ 0, θq+1(am) =

θq(am)θq(am−1). So, given that we know at this point thatθi−1(am) is a prefix ofπ
andr ≤ i, it is the case thatθr−1(am) is also a prefix ofπ. Note thatθr (a−1

m )π is
θr−1(a−1

m−1)ua−ǫ2m of the Criterion wheniii holds.

In lines1, 3 and11, the claimed boundℓ( f ′) ≤ ℓ( f ) + 1 is immediate, as isℓ(π′) ≤ ℓ(π)
in lines1 and3. In line 11, π′ is the reduced form ofθr (a−1

m )π andθr−1(am) is a prefix of
π. Now θr (a−1

m ) = θr−1(a−1
m−1)θ

r−1(a−1
m ) and the length ofθr−1(a−1

m ) is at least half that of
θr (a−1

m ) (asr > 0), and the last letter ofθr−1(a−1
m−1) is a−1

m−1. So all of the prefixθr−1(am) of π
is cancelled away whenθr (a−1

m )π is freely reduced to giveπ′, andℓ(π′) ≤ ℓ(π), as claimed.

The algorithm halts in timeO((ℓ(π) + ℓ( f ))k+4) by our comments on lines5, 6 and 9
and the fact thatθr (a−1

m )π in the final line has length at most 3ℓ(π): after all, θr (a−1
m ) =

θr−1(a−1
m−1)θ

r−1(a−1
m ) andℓ(θr−1(a−1

m−1)) is at mostℓ(θr−1(a−1
m )), andθr−1(a−1

m ) is the inverse of
a prefix ofπ. �

Next we constructBackm, Piecem andPushm.

For a rank-m pieceπ which does not start with the letteram, Backm determines whether
t f (0)π ∈ Hts for somes ∈ Z, and if so it outputs aψ-word f ′ with f ′(0) = s. Initially, it
works similarly toFrontm in that it reduces its task to performing a similar determination
without the final lettera−1

m . But then it callsPushm−1 to find out whether thes exists, and,
if so, to output aψ-word f ′ with f ′(0) = s. A crucial feature of this algorithm is that the
lengths of the input data toPushm−1 (specificallyu′ and f ) is carefully bounded in terms
of the length of the inputs toBackm, and so does not blow up course of the induction.
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Algorithm 4.3 — Backm, m≥ 3.
◦ Input a rank-mpieceπ = ua−ǫ2m (sou = u(a1, . . . , am−1) is reduced andǫ2 ∈ {0, 1}) and a
valid ψ-word f = f (ψ1, . . . , ψk). Let r := f (0).
◦ Declare whether or nottrπ ∈

⋃

s∈Z Hkts. And, if it is, return a validψ-word f ′ such that
t f (0)π ∈ Hkt f ′(0), ℓ( f ′) ≤ ℓ( f ) + 2(m− 1)ℓ(π) + 1 and rank(f ′) ≤ max{rank(f ),m}.
◦ Halt in timeO((ℓ(π) + ℓ( f ))2m+k).

run Pushm−1(u, f ) to test whether or nottru ∈
⋃

s∈Z Hkts

if it is, let g be the validψ-word it outputs such thattru ∈ Hktg(0)

3:

if ǫ2 = 0,
if tru ∈ Hktg(0) (so, (a) of the Criterion holds withs= g(0)), return f ′ := g

6: else declaretrπ <
⋃

s∈Z Hkts

halt

9: we now have thatǫ2 = 1
run Psi(ψ−1

m g) to check validity ofψ−1
m g (so whetherg(0) ∈ Imgψm)

and, if so, to checkψ−1
m g(0) ≤ 0 (so, whether (b) of the Criterion holds withs =

ψ−1
m g(0))

12: if so,halt andreturn f ′ := ψ−1
m g

run Prefixm(π−1) to determine the maximumi (if any) such thata−1
m−1θ

i−1(a−1
m ) is a

suffix of π
15: if there is no suchi halt anddeclaretrπ <

⋃

s∈Z Hkts

for s= 1 to i do
run Pushm−1(u′, f ) whereu′ is the freely reduced word representingua−1

m θs(am)
18: if it outputs aψ-wordh, run Psi(ψs−1

1 h) to check ifh(0) = s− 1
if sohalt andreturn f ′ := ψ1h

end for
21:

declarethatt f (0)w <
⋃

s∈Z Hkts

For m≥ 3, correctness ofPushm−1 (as specified below) implies correctness ofBackm. The
idea is to employ the Piece Criterion in the instance whenǫ1 = 0, and thereforeδ = r,
π′ = π and Conditioni holds. In this circumstance, the Criterion tells us thattrπ ∈ Hkts

(that is,tδπ′ ∈ Hkts) if and only if (a, b or c) holds.

2: Referring to the specifications ofPushm−1, we see thatℓ(g) ≤ ℓ(u) + ℓ( f ) and
rank(g) ≤ max{rank(f ),m}.

4–6: Pushm−1 in line lines1–2 tests whether or nottδx−ǫ1u (that is,tru) is in
⋃

s∈Z Hkts

and, if so, it identifies thessuch thattδx−ǫ1u ∈ Hkts. The Piece Criterion then tells
us that the answer to whethertrπ ∈

⋃

s∈Z Hkts is the same, and if affirmative thes
agrees. (This instance of the Criterion has no real content becausetδx−ǫ1u = trπ.
The other two instances that follow are more substantial butwill follow the same
pattern of reasoning.) By our comment on line2, ℓ( f ′) ≤ ℓ( f )+ℓ(u) = ℓ( f )+ℓ(π),
and rank(f ′) ≤ max{rank(f ),m}, as required.

10–12: Again, we refer back to lines1–2 for whether or nottδx−ǫ1u (that is, tru) is in
⋃

s0∈Z
Hkts0. Assuming that it is, in fact, it is inHktg(0), and then Conditionb,

is satisfied if and only ifg(0) = ψm(s) for somes ≤ 0. And that is checked
in line 10. The Piece Criterion then tells us that the answer to this is the same
as the answer to whethertrπ ∈

⋃

s∈Z Hkts, and, if affirmative, thes agrees. By
our comment on line2, ℓ( f ′) = ℓ(g) + 1 ≤ ℓ( f ) + ℓ(u) + 1 = ℓ( f ) + ℓ(π) and
rank(f ′) ≤ max{rank(f ),m}, as required.
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14–20: The aim here is to determine whether Conditionc holds—that is, whether

trua−1
m θs(am) ∈ Hkt

s−1

anda−1
m−1θ

s−1(a−1
m ) is a suffix of π for somes> 0—and, if so, output aψ-word f ′

such thatf ′(0) = s. (Thissmust be unique, if it exists, because, by the Criterion,
it is thes such thattrπ ∈ Hkts, and we know that is unique.)

The possibilities fors are limited to the range 1, . . . , i by the suffix condition
and the requirement thats> 0, wherei is as found in line14and must be at most
ℓ(π). If there is such a suffix a−1

m−1θ
i−1(a−1

m ) of π, thena−1
m−1θ

s−1(a−1
m ) is a suffix of

π for all s ∈ {1, . . . , i}. If there is no such suffix, then Conditionc fails, and, as we
know at this point that Conditionsa andb also fail, we declare in line15 that (by
the Criterion),trπ <

⋃

s∈Z Hkts.
For eachs in the range 1, . . . , i, lines16–20 address the question of whether

or nottrua−1
m θs(am) ∈ Hkts−1. FirstPushm−1 is called, which can be done because

on freely reducingua−1
m θs(am), thea−1

m cancels with theam at the start ofθs(am)
to give a word of rank at mostm− 1. Pushm−1 either tells us thattrua−1

m θs(am) <
⋃

s′∈Z Hkts′ , or it gives aψ-word h such thattrua−1
m θs(am) ∈ Hkth(0). In the latter

case,Psi is then used to test whether or noth(0) = s− 1.
By the specifications ofPushm−1, ℓ(h) ≤ ℓ( f )+2(m−1)ℓ(u′). And, asπ = ua−1

m
has suffix θs−1(a−1

m ), when we formu′ by freely reducingua−1
m θs(am), at least half

of θs(am) = θs−1(am)θs−1(am−1) cancels intoπ. Soℓ(u′) ≤ ℓ(π), and

ℓ( f ′) = ℓ(h) + 1 ≤ ℓ( f ) + 2(m− 1)ℓ(u′) + 1 ≤ ℓ( f ) + 2(m− 1)ℓ(π) + 1

as required. Also, it is immediate that rank(f ′) ≤ max{rank(f ),m}, as required.
22: At this point, we knowa, b andc fail for all s ∈ Z, sotrπ <

⋃

s∈Z Hkts.

Backm runsPushm−1(u, f ) once (withℓ(u) ≤ ℓ(π)), Psi(ψ−1
m g) at most once (withℓ(g) ≤

ℓ(π)+ℓ( f )),Prefixm(π−1) at most once,Pushm−1(u′, f ) at mosti ≤ ℓ(π) times (withℓ(u′) <
ℓ(π)), andPsi(ψs−1

1 h) at mosti ≤ ℓ(π) times (with 1≤ s ≤ ℓ(π) andℓ(h) < ℓ( f ) + ℓ(π)).
Other operations such as free reductions of words etc. do notcontribute significantly to the
running time. Referring to the specifications ofPushm−1, Psi, andPrefixm, we see that
they (respectively) contribute:

ℓ(π)O((ℓ(π)+ ℓ( f ))2(m−1)+k+1) + ℓ(π)O((ℓ( f ) + 2ℓ(π))4+k) +O(ℓ(π)2)

= O((ℓ(π) + ℓ( f ))2m+k)

which is the claimed bound on the halting time ofBackm. �

The correctness ofPiece2. By applying Proposition3.1 repeatedly, we see thatt f (0)π ∈

Hkts if and only if tψ
l
1ψ

ǫ1
2 f (0)a−ǫ22 ∈ Hkts, sinceψl

1ψ
ǫ1
2 f is valid as the domains ofψ1 and

ψ2 areZ. So, by Corollary3.2, t f (0)π ∈ Hkts if and only if g = ψ−1
2 ψl

1ψ
ǫ1
2 f is valid and

s= ψ−1
2 ψl

1ψ
ǫ1
2 f (0).

It halts in timeO(ℓ(w) + ℓ( f )6) becausePsi halts in timeO(ℓ( f )6) on inputψ−1
2 f by the

bounds established in Section3.3, given thatf is of rank 2. �

For k ≥ m≥ 3, correctness ofBackm implies correctness ofPiecem. It follows from the spec-
ifications ofFrontm andBackm, that they combine in the manner ofPiecem to declare
whether or nott f (0)π ∈

⋃

s∈Z Hkts, and if it is to return ag with the claimed properties.

Using thatℓ(π′) ≤ ℓ(π) andℓ( f ′) ≤ ℓ( f ) + 1, we can add the halting-time estimates for
Frontm andBackm, to deduce thatPiecem halts in time

O((ℓ(w) + ℓ( f ))max{k+4,2m+k}) = O((ℓ(w) + ℓ( f ))2m+k). �
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Algorithm 4.4 — Piecem, k ≥ m≥ 2.
◦ Input a rank-mpieceπ and a validψ-word f = f (ψ1, . . . , ψk).
◦ Declare whether or nott f (0)π ∈

⋃

s∈Z Hkts and, if it is, return a validψ-word g such that
t f (0)π ∈ Hktg(0), rank(g) ≤ max{m, rank(f )}, andℓ(g) ≤ ℓ( f ) + 2(m− 1)ℓ(π) + 2.
◦ Halt in timeO((ℓ(π) + ℓ( f ))2m+k).

if m= 2
π is aǫ12 al

1a
−ǫ2
2 for somel ∈ Z and someǫ1, ǫ2 ∈ {0, 1}

3: setg = ψ−ǫ22 ψl
1ψ

ǫ1
2 f

run Psi(g)
if it declares thatg is invalid,then declarethat t f (0)π <

⋃

s∈Z Hkts

6: else returng
halt

9: if m> 2
run Frontm(π, f )
if it declares thati, ii andiii of the Piece Criterion all fail

12: declarethatt f (0)π <
⋃

s∈Z Hkts andhalt
else runBackm on the output (π′, f ′) of Frontm andreturn the result

Algorithm 4.5 — Pushm, k ≥ m≥ 1.
◦ Input a reduced wordv = v(a1, . . . , am) and a validψ-word f = f (ψ1, . . . , ψk).
◦ Declare whether or nott f (0)v ∈

⋃

s∈Z Hkts. If it is, return a validψ-word g with ℓ(g) ≤
ℓ( f ) + 2mℓ(v), rank(g) ≤ max{m, rank(f )} andt f (0)v ∈ Hktg(0).
◦ Halt timeO((ℓ(v) + ℓ( f ))2m+k+1).

if m= 1 (and sov = al
1 for somel ∈ Z)

declare yes, output g := ψl
1 f andhalt

3:

if m> 1
let π1 · · · πp be the rank-mdecomposition ofv into pieces as per Section4.1

6: set f0 := f
for i = 1 to p

run Piecem(πi , fi−1)
9: if it declarest fi−1(0)πi <

⋃

s∈Z Hkts, declaret f (0)w <
⋃

s∈Z Hkts andhalt
elseset fi to be its output

end for
12: return g := fp

The correctness ofPush1. The casem = 1 is handled in lines1–2. The point is that inGk

we havet f (0)al
1 = (a1t)l t f (0)−l ∈ Hktg(0) sinceg(0) = ψl

1 f = f (0)− l. That it halts within the
time bound is clear. �

For k ≥ m≥ 2, correctness ofPiecem implies correctness ofPushm. This algorithm runs
in accordance with Lemma 6.2 of [12] as we described in Section4.1.

By the specifications ofPiecem, after theith iteration of thefor loop,

ℓ( fi) ≤ ℓ( f ) +
i∑

j=1

(2(m− 1)ℓ(π j) + 2) ≤ ℓ( f ) + 2(m− 1)ℓ(v) + 2i ≤ ℓ( f ) + 2mℓ(v),

asi ≤ ℓ(v), and rank(fi) ≤ max{m, rank(f )}. In particular, rank(g) ≤ max{m, rank(f )}, as
claimed.
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Piecem(πi, fi−1) halts in timeO((ℓ(πi) + ℓ( fi−1))2m+k) andp ≤ ℓ(π), so for 1≤ i ≤ p ,

ℓ(πi) + ℓ( fi−1) ≤ ℓ(πi) + ℓ(π1) + · · · + ℓ(πi−1) + ℓ( f ) + i − 1 = O((ℓ(v) + ℓ( f ))).

SoPushm halts in timeO((ℓ(v) + ℓ( f ))2m+k+1). �

Correctness ofPiecem for 2 ≤ m≤ k, ofPushm for 1 ≤ m≤ k, and ofBackm for 3 ≤ m≤ k.
We established the correctness ofPush1 andPiece2 individually. The implications proved
above give the correctness of the others by induction in the order:

Piece2 =⇒ Push2 =⇒ Back3 =⇒ Piece3 =⇒ Push3 =⇒ Back4 =⇒ · · · . �

Finally, we are ready for:

Algorithm 4.6 — Memberk, k ≥ 1.
◦ Input a wordw = w(a1, . . . , ak, t).
◦ Declare whether or notw ∈ Hk.
◦ Halt in timeO(ℓ(w)3k2

+k).

convertw to normal formtrv wherev = v(a1, . . . , ak) is reduced,r ∈ Z, andtrv = w in
Gk, as described at the start of Section4.1
set f = ψ−r

1
3: run Pushk(v, f )

if it outputs a (necessarily valid)ψ-wordg
then run Psi(g) to test whetherg(0) = 0

6: if so,declarew ∈ Hk andhalt
declarew < Hk

Correctness ofMemberk. The process set out at the start of Section4.1 producestrv in
timeO(ℓ(w)k). Moreover,ℓ( f ) = |r | ≤ ℓ(w) andℓ(v) ≤ ℓ(w)(ℓ(w) + 1)k−1.

The algorithm callsPushk(v, f ), which halts in time

O((ℓ(v) + ℓ( f ))2k+k+1) = O((ℓ(w)k
+ ℓ(w))2k+k+1) = O(ℓ(w)3k2

+k).

It either declares thattrv <
⋃

s∈Z Hkts, and sow < Hk, or it returns a validψ-word g such
thatw ∈ Hktg(0) andℓ(g) ≤ ℓ( f ) + 2kℓ(v) ≤ ℓ(w) + 2kℓ(w)(ℓ(w) + 1)k−1

= O(ℓ(w)k). But
thenw ∈ Hk if and only if g(0) = 0 (by Lemma 6.1 of [12]), which is precisely what the
algorithm usesPsi(g) to check. This call onPsi halts in timeO((ℓ(w)k)k+4) = O(ℓ(w)k2

+4k)
whenk > 1 and in timeO(ℓ(w)) whenk = 1. So, as max

{

k2
+ 4k, 3k2

+ k
}

= 3k2
+ k for

all k > 1, Memberk halts in timeO(ℓ(w)3k2
+k), as required. �

5. Conclusion

The construction and analysis ofMemberk in the last section solves the membership prob-
lem for Hk in Gk in polynomial time, indeed inO(n3k2

+k) time, wheren is the length of the
input word, and so proves Theorem3.

Here is why a polynomial time (indeedO(n3k2
+k+2) time) solution to the word problem for

Γk follows, giving Theorem2.

Suppose we have a wordx = x(a1, . . . , ak, p, t) of lengthn on the generators ofΓk. Recall
thatΓk is the HNN-extension ofGk with stable letterp commuting with all elements ofHk.
Britton’s Lemma (see, for example, [6, 25, 34]) tells us that ifx = 1 in Γk, then it has a
subwordp±1wp∓1 such thatw = w(a1, . . . , ak, t) and represents an element ofHk.
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There are fewer thann subwordsp±1wp∓1 in x such thatw = w(a1, . . . , ak, t). As discussed
above,Memberk checks whether such aw ∈ Hk in time in O(n3k2

+k). If none represents an
element ofHk, we conclude thatx , 1 in Gk. If, for some such subwordp±1wp∓1, we find
w ∈ Hk, then we can remove thep±1 andp∓1 to give a word of lengthn− 2 representing
the same element ofGk.

This repeats at mostn/2 times until we have either determined thatx , 1 in Γk, or no
p±1 remain. In the latter case, we then have a word ona±1

1 , . . . , a±1
k , t±1 of length at most

n, which represents an element of the subgroupGk. But Gk is automatic (Theorem 1.3 of
[12]) and so there is an algorithm solving its word problem inO(n2) time (Theorem 2.3.10
of [13]).

In all, we have calledMemberk at mostn2/2 times and an algorithm solving the word
problem inGk once, in every case with input of length at mostn. It follows that the whole
process can be completed in timeO(n3k2

+k+2).
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