
ON THE LOCAL K-ELASTICITIES OF PUISEUX MONOIDS

MARLY GOTTI

Abstract. If M is an atomic monoid and x is a nonzero non-unit element of M ,
then the set of lengths L(x) of x is the set of all possible lengths of factorizations of
x, where the length of a factorization is the number of irreducible factors (counting
repetitions). In a recent paper, F. Gotti and C. O’Neil studied the sets of elastici-
ties R(P ) := {sup L(x)/ inf L(x) : x ∈ P} of Puiseux monoids P . Here we take this
study a step further and explore the local k-elasticities of the same class of monoids.
We find conditions under which Puiseux monoids have all their local elasticities
finite as well as conditions under which they have infinite local k-elasticities for
sufficiently large k. Finally, we focus our study of the k-elasticities on the class of
primary Puiseux monoids, proving that they have finite local k-elasticities if either
they are boundedly generated and do not have any stable atoms or if they do not
contain 0 as a limit point.

1. Introduction

Rings of integers of algebraic number fields are not necessarily factorial. We can
use the class group of a ring of integers R to measure to which extent elements
in R fail to have a unique factorization. In [2], L. Carlitz characterized the half-
factorial rings of integers in terms of their class groups. A friendly survey illustrating
this characterization when R = Z[

√
−5] is provided in [3]. After the publication

of Carlitz’s result, many authors attempted to characterize the class group of a
general ring of integers in terms of further arithmetical properties describing the
non-uniqueness of factorizations in such a ring (Rush [15] was the first to give a
complete characterization).

More generally, the algebraic invariants of several non-factorial Noetherian do-
mains can be used to understand how far are such domains from being factorial.
Because many of the factorization-related questions on integral domains are inde-
pendent of the ring additive structure, in the last few decades the study of the
phenomenon of non-unique factorization has been extended to the setting of atomic
monoids. The monograph [6] by A. Geroldinger and F. Halter-Koch has significantly
influenced the shape of the modern non-unique factorization theory, which considers
not only integral domains but also atomic monoids.
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The purpose of modern non-unique factorization theory is to measure how far an
atomic monoid is from being factorial (or half-factorial). To carry out this mea-
surement, we focus attention on several factorization invariants, which include the
system of sets of lengths, the union of sets of lengths (first introduced in [14]), and
the elasticity. Roughly speaking, the elasticity of an atomic monoid M is given by

ρ(M) = sup{ρ(x) : x ∈M},

where ρ(x) is the quotient of the maximum possible length of factorizations of x by
the minimum possible length of factorizations of x. Our aim in this paper is to study
an N-parametrized local version of the elasticity of Puiseux monoids, which are, up
to isomorphism, the additive submonoids of (Q,+) that are not groups.

This paper is organized as follows. In Section 2, we review notation and introduce
most of the concepts we shall be using later. In Section 3, we begin our exploration
of the local elasticities of atomic Puiseux monoids. In particular, we find conditions
under which Puiseux monoids have all their local elasticities finite as well as condi-
tions under which they have infinite local k-elasticities for sufficiently large k. Lastly,
in Section 4, we target the class of primary Puiseux monoids, proving that they have
finite local elasticities if they do not contain stable atoms or if they do not contain
0 as a limit point.

2. Definitions & Notations

Throughout this paper, we let N denote the set of positive integers, and we set
N0 := N ∪ {0}. For each subset A of Q, we let A• denote A \ {0}. Also, for all
q ∈ Q such that q > 0, we let n(q) and d(q) denote the unique pair of relatively
prime positive integers satisfying that q = n(q)/d(q). In this case, we call n(q) and
d(q) the numerator and denominator of q, respectively. Moreover, for a subset A of
positive rationals, we set

n(A) := {n(a) : a ∈ A} and d(A) := {d(a) : a ∈ A}.

Although most of the definitions given in this section make sense in a much broader
context, for the sake of simplicity we will present them in a particular setting which is
enough for the treatment of Puiseux monoids. Every monoid here is tacitly assumed
to be commutative, cancellative, and reduced (i.e., only the identity is a unit). As
we shall be working in a commutative environment, unless otherwise specified we
will use additive notation. Let M be a monoid.

Definition 2.1. An element a ∈M \{0} is called an atom (i.e., irreducible) provided
that for all x, y ∈M the fact that a = x+ y implies that either x = 0 or y = 0. Let
A(M) denote the set of all atoms of M .
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If A is a subset of M , then the minimal submonoid of M containing A is denoted
by 〈A〉. If M = 〈A〉, then we say that M is generated by A or that A is a generating
set of M . The monoid M is called finitely generated provided that it contains a
finite generating set.

Definition 2.2. If M = 〈A(M)〉, then we call the monoid M atomic.

Clearly, every generating set of an atomic monoid M contains A(M). In addition,
it is not hard to prove that M is atomic if and only if it contains exactly one minimal
generating set, namely A(M); see, for instance, [6, Proposition 1.1.7].

Definition 2.3. A Puiseux monoid is an additive submonoid of (Q,+) consisting
of nonnegative rationals.

As we mentioned in the introduction, each additive submonoid of (Q,+) that is
not a group is isomorphic to a Puiseux monoid [8, Theorem 2.9]. Puiseux monoids
have a fascinating atomic structure. Some of them contain no atoms at all, as it is
the case of 〈1/2n : n ∈ N〉, while there are others whose sets of atoms are dense in
the nonnegative real line [11, Theorem 3.5]. The atomicity of members of the family
of Puiseux monoids has only been recently studied (see [9] and [10]).

There are three classes of Puiseux monoids we shall be studying, namely the
classes of bounded, strongly bounded, and primary Puiseux monoids. Let P be a
Puiseux monoid. We say that P is bounded (respectively, strongly bounded) if it can
be generated by a set A of rational numbers such that A is bounded (respectively,
n(A) is bounded). In addition, P is primary if it can be generated by a subset of
positive rationals whose denominators are pairwise distinct prime numbers.

Bounded and strongly bounded Puiseux monoids are not necessarily atomic; see,
for example, 〈1/2n : n ∈ N〉. However, it is not hard to verify that primary monoids
are always atomic. Indeed, it was proved in [10] that every submonoid of a primary
Puiseux monoid is atomic. The class of atomic Puiseux monoids is plentiful as the
following theorem indicates.

Theorem 2.4. [10, Theorem 3.10] Let P be a Puiseux monoid. If 0 is not a limit
point of P , then P is atomic.

Given a set S, it is not hard to verify that the formal sums of elements of S (up
to permutation) is a monoid, which is called the free commutative monoid on S. For
an atomic monoid M , we let Z(M) denote the free commutative monoid on A(M).
The elements of Z(M) have the form a1 + · · ·+ an for some a1, . . . , an ∈ A(M) and
are called factorizations. It follows immediately that the function φ : Z(M) → M
defined by φ(a1 + · · ·+ an) = a1 + · · ·+ an is a monoid homomorphism.

Definition 2.5. The homomorphism φ given above is called the factorization ho-
momorphism of M .
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If x ∈ M , then the set of factorizations of x, denoted by ZM(x), is defined to be
the preimage of x by φ, i.e.,

ZM(x) = φ−1(x) ⊆ Z(M).

It follows that M is atomic if and only if ZM(x) is nonempty for all x ∈ M . If
z = a1 + · · ·+ an for some a1, . . . , an, then n is called the length of z and is denoted
by |z|. For x ∈M , the set of lengths of x is the set

LM(x) := {|z| : z ∈ ZM(x)}.

We write Z(x) and L(x) for the respective sets ZM(x) and LM(x) when there is no
risk of ambiguity. In addition, the collection of sets

L(M) := {L(x) : x ∈M}

is called the system of sets of lengths of M . Systems of sets of lengths of many
families of atomic monoids have been the focus of a great deal of research during the
last few decades (see, for example, [1, 7, 12]).

We proceed to introduce unions of sets of lengths and local elasticities. Similar to
the system of sets of lengths, the elasticity is another arithmetical invariant used to
measure up to what extent factorizations in monoids (or domains) fail to be unique.
The concept of elasticity was introduced by R. Valenza [13] in the context of algebraic
number theory. The elasticity ρ(M) of an atomic monoid M is given by

ρ(M) = sup{ρ(x) : x ∈M}, where ρ(x) =
sup L(x)

min L(x)
.

For n ∈ N0, we define L−1(n) := {x ∈ M : n ∈ L(x)}. Now, the union of sets of
lengths of M containing n is defined to be

Un(M) = {|z| : z ∈ Z(x) for some x ∈ L−1(n)}.

Definition 2.6. The n-th local elasticity of M is defined by

ρn(M) = supUn(M).

A numerical semigroup is a cofinite additive submonoid of (N0,+). It is well
known that every numerical semigroup is finitely generated and, therefore, atomic
[6, Proposition 2.7.8(4)]. See [5] for an introduction to numerical semigroups. For a
numerical semigroup N with minimal generating set A, it was proved in [4, Section 2]
that the elasticity of N is given by maxA/minA. On the other hand, it is not hard
to verify that Un(N) is bounded and, therefore, every local elasticity of N is finite.
In the next two sections, we will generalize this fact in two different ways to Puiseux
monoids.
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3. The General Case

We begin this section proposing a sufficient condition under which most of the
local elasticities of an atomic Puiseux monoid have infinite cardinality. On the other
hand, we describe a subclass of Puiseux monoids (containing isomorphic copies of
each numerical semigroup) whose local k-elasticities are finite.

If P is a Puiseux monoid, then we say that a0 ∈ A(P ) is stable provided that the
set {a ∈ A(P ) : n(a) = n(a0)} is infinite.

Proposition 3.1. Let P be an atomic Puiseux monoid. If P contains a stable atom,
then ρk(P ) is infinite for all sufficiently large k.

Proof. Suppose that for some m ∈ N the set A := {a ∈ A(P ) : n(a) = m} contains
infinitely many elements. Let {an} be an enumeration of the elements of A. Because
the elements of A have the same numerator, namely m, we can assume that the
sequence {an} is decreasing. Setting d = d(a1), we can easily see that da1 = m =
d(aj)aj for each j ∈ N. Therefore d(aj) ∈ Ud(P ) for each j ∈ N. As d(A) is an infinite
set so is Ud(P ). The fact that |Ud(P )| = ∞ immediately implies that |Uk(P )| = ∞
for all k ≥ d. Hence ρk(P ) = sup Uk(P ) =∞ for every k ≥ d. �

Recall that a Puiseux monoid P is strongly bounded if it can be generated by a
set of rationals A whose numerator set n(A) is bounded. As a direct consequence of
Proposition 3.1 we obtain the following result.

Corollary 3.2. If P is a non-finitely generated strongly bounded atomic Puiseux
monoid, then ρk(P ) is infinite for all k sufficiently large.

In contrast to the previous proposition, the next result gives a condition under
which Puiseux monoids have finite k-elasticity for each k ∈ N.

Proposition 3.3. Let P be a Puiseux monoid that does not contain 0 as a limit
point. If P is bounded, then ρk(P ) <∞ for every k ∈ N.

Proof. Because 0 is not a limit point of P , it follows by Theorem 2.4 that P is atomic
As P is a bounded Puiseux monoid, A(P ) is a bounded set of rational numbers. Take
q,Q ∈ Q such that 0 < q < a < Q for all a ∈ A(P ). Now fix k ∈ N, and suppose
that ` ∈ Uk(P ). Then there exists x ∈ L−1(k) such that ` ∈ L(x). Because x has
a factorization of length k, it follows that x < kQ. Taking a1, . . . , a` ∈ A(P ) such
that x = a1 + · · ·+ a`, we find that

q` < a1 + · · ·+ a` = x < kQ.

Therefore ` < kQ/q. Because neither q nor Q depends on the choice of x, one obtains
that Uk(P ) is bounded from above by kQ/q. Hence ρk(P ) = supUk(P ) is finite, and
the proof follows. �
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With the following two examples, we shall verify that the conditions of containing
a stable atom and not having 0 as a limit point are not superfluous in Proposition 3.1
and Proposition 3.3, respectively.

Example 3.4. Let {pn} be a strictly increasing enumeration of the prime numbers,
and consider the following Puiseux monoid:

P = 〈A〉, where A =

{
pn − 1

pn
: n ∈ N

}
.

As the denominators of elements in A are pairwise distinct primes, it immediately
follows that A(P ) = A. Therefore P is atomic. Clearly, P does not contain stable
atoms. Because A is bounded so is P (as a Puiseux monoid). On the other hand, 0
is not a limit point of P . Thus, it follows by Proposition 3.3 that ρk(P ) is finite for
every k ∈ N. Notice also that

(1) if q ∈ P has at least two factorizations with no atoms in common, then q ∈ N;
(2) by Proposition 3.3, we have both a lower and an upper bound for any

q ∈ L−1(k).

Using the previous two observations, we have created an R-script that generates
the sets Uk for k ∈ {1, . . . , 15}. Each Uk appears as the k-th column in Table 1.

Table 1. Uk for k ∈ {1, . . . , 15}.

https://www.github.com/marlycormar/find_u_k
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Example 3.5. Let {pn} be an enumeration of the prime numbers, and consider the
Puiseux monoid P =

〈
1/pn : n ∈ N

〉
. It is not difficult to argue that P is atomic

with A(P ) = {1/pn : n ∈ N}. As A(P ) is a bounded subset of positive rationals,
the Puiseux monoid P is bounded. Notice, however, that 0 is a limit point of P .
By Proposition 3.1, it follows that the local elasticities ρk(P ) are infinite for all k
sufficiently large.

The condition of boundedness on Proposition 3.3 is also required, as shown by the
following proposition.

Proposition 3.6. There exist infinitely many non-isomorphic Puiseux monoids
without 0 as a limit point that have no finite local elasticities.

Proof. Let P = {Sn : n ∈ N} be a family of disjoint infinite sets of odd prime
numbers. For each set Sn, we will construct an atomic Puiseux monoid Mn. Then
we will show that Mi

∼= Mj implies i = j.
Fix j ∈ N and take p ∈ Sj. To construct the Puiseux monoid Mj, let us inductively

create a sequence {An}n∈N of finite subsets of positive rationals with A1 ( A2 ( · · ·
such that, for each k ∈ N, the following three conditions hold:

(1) d(Ak) consists of odd prime numbers;

(2) d(maxAk) = max d(Ak);

(3) Ak minimally generates the Puiseux monoid Pk = 〈Ak〉.
Take A1 = {1/p}, with p an odd prime number, and assume we have already con-
structed the sets A1, . . . , An for some n ∈ N satisfying our three conditions. To
construct An+1, we take a = maxAn and let

b1 =
n(a)bq/2c

q
and b2 =

n(a)
(
q − bq/2c

)
q

,

where q is an odd prime in Sj satisfying q > max d(An) and q - n(a). Using the fact
that q ≥ 5 and d(a) ≥ 3, one obtains that

b2 > b1 =
bq/2c
q

n(a) >
1

3
n(a) ≥ a.

Now set An+1 = An ∪ {b1, b2}. Notice that b1 + b2 = n(a). Clearly, An ( An+1,
and condition (1) is an immediate consequence of our inductive construction. In
addition,

d(maxAn+1) = d(b2) = q = max d(An+1),

which is condition (2). Therefore it suffices to verify that An+1 minimally generates
Pn+1 = 〈An+1〉. Because both b1 and b2 are greater than every element in An, we
only need to check that b1 /∈ Pn and b2 /∈ 〈An∪{b1}〉. Let d be the product of all the
elements in d(An). Assuming that b1 = a1 + · · · + ar for some a1, . . . , ar ∈ An, and
multiplying both sides of the same equality by qd, we would obtain that q | n(b1),
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which contradicts that q - n(a). Hence b1 /∈ Pn. Similarly, one finds that b2 /∈ Pn.
Suppose, again by contradiction, that b2 ∈ 〈An∪{b1}〉. Then there exist a′1, . . . , a

′
s ∈

An and m ∈ N such that b2 = mb1+a′1+· · ·+a′s. Notice that 2b1 = n(a)(q−1)/q > b2,
which implies that m ≤ 1. As b2 /∈ Pn, it follows that m = 1. Then we can write

n(a)

q
= b2 − b1 =

s∑
i=1

a′i.(3.1)

Once again, we can multiply the extreme parts of the equality (3.1) by q d({a′1, . . . , a′s}),
to obtain that q | n(a), a contradiction. As a result, condition (3) follows.

Now set Mj := ∪n∈NPn. As P1 ( P2 ( . . . , the set Mj is, indeed, a Puiseux
monoid. We can easily see that Mj is generated by the set A := ∪n∈NAn. Let us
verify now that A(Mj) = A. It is clear that A(Mj) ⊆ A. To check the reverse
inclusion, suppose that a ∈ A is the sum of atoms a1, . . . , ar ∈ A(Mj). Take t ∈ N
such that a, a1, . . . , ar ∈ At. Because At minimally generates Pt it follows that r = 1
and a = a1 and, therefore, that a ∈ A(Mj). Hence A(Mj) = A, which implies that
Mj is an atomic monoid.

To disregard 0 as a limit point of Mj, it is enough to observe that minA(Mj) =
1/p. We need to show then that ρk(Mj) = ∞ for k ≥ 2. Set an = maxAn.
When constructing the sequence {An}, we observed that n(an) = bn1 + bn2 , where
{bn1 , bn2} = An+1 \ An. Because n(an) ∈Mj and

bn1 + bn2 = n(an) = d(an)an,

one has that the factorizations z = bn1 + bn2 and z′ = d(an)an are both in Z(n(an)).
Since |z| = 2 and |z′| = d(an) it follows that d(an) ∈ U2(Mj). By condition (2)
above, d(an) = d(maxAn) = max d(An). This implies that the set {d(an) : n ∈ N}
contains infinitely many elements. As {d(an) : n ∈ N} ⊆ U2(Mj), we obtain that
ρ2(Mj) =∞. Hence ρk(Mj) =∞ for all k ≥ 2.

We have just constructed an infinite family F := {Mn : n ∈ N} of atomic Puiseux
monoids with infinite k-elasticities. Let us show now that the monoids in F are
pairwise non-isomorphic. To do this we use the fact that the only homomorphisms
between Puiseux monoids are given by rational multiplication [11, Lemma 3.3]. Take
i, j ∈ N such that Mi

∼= Mj. Then there exists r ∈ Q such that Mi = rMj. Let
m ∈ Mj such that d(m) = p and p - n(r) for some prime p in Sj. Since the element
rm ∈ Mi and p | d(rm), we must have that the prime p belongs to Si. Because the
sets in P are pairwise disjoint, we conclude that i = j. This completes the proof. �

Proposition 3.1 (respectively, Proposition 3.3) establishes sufficient conditions un-
der which a Puiseux monoid has most of its local elasticities infinite (respectively,
finite). In addition, we have verified that such conditions are not necessary. For the
sake of completeness, we now exhibit a Puiseux monoid that does not satisfy the
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conditions of either of the propositions above and has no finite k-elasticity for any
k ≥ 2.

Example 3.7. Consider the Puiseux monoid

P =

〈(
2

3

)n

: n ∈ N
〉
.

It was proved in [10, Theorem 6.2] that P is atomic and A(P ) = {(2/3)n : n ∈ N}.
In addition, it is clear that P is bounded, has 0 as a limit point, and does not contain
any stable atoms. So neither Proposition 3.1 nor Proposition 3.3 applies to P . Now
we argue that ρk(P ) =∞ for each k ∈ N such that k ≥ 2.

Take k ≥ 2 and set x = k 2
3
∈ P . Notice that, by definition, x ∈ L−1(k). We can

conveniently rewrite x as

x =
(
(k − 2) + 2

)2

3
= (k − 2)

2

3
+ 3 ·

(
2

3

)2

,

which reveals that z = (k−2)2
3
+3(2

3
)2 is a factorization of x with |z| = k+1. Taking

k′ = 3 to play the role of k and repeating this process as many times as needed, one
can obtain factorizations of x of lengths as large as one desires. The fact that k was
chosen arbitrarily implies now that ρk(P ) =∞ for each k ≥ 2.

4. The Primary Case

Recall that a Puiseux monoid is said to be primary if it can be generated by
a subset of rational numbers whose denominators are pairwise distinct primes. In
Proposition 3.3, we established a sufficient condition on Puiseux monoids to ensure
that all their local k-elasticities are finite. Here we restrict our study to the case of
primary Puiseux monoids, providing two more sufficient conditions to guarantee the
finiteness of all the local k-elasticities.

Theorem 4.1. For a primary Puiseux monoid P , the following two conditions hold.

(1) If 0 is not a limit point of P , then ρk(P ) <∞ for every k ∈ N.

(2) If P is bounded and has no stable atoms, then ρk(P ) <∞ for every k ∈ N.

Proof. Because every finitely generated Puiseux monoid is isomorphic to a numer-
ical semigroup, and numerical semigroups have finite k-elasticities, we can assume,
without loss of generality, that P is not finitely generated.

To prove condition (1), suppose, by way of contradiction, that ρk(P ) =∞ for some
k ∈ N. Because 0 is not a limit point of P there exists q ∈ Q such that 0 < q < a
for each a ∈ A(P ). Let

` = min{n ∈ N : |Un(P )| =∞}.
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Clearly, ` ≥ 2. Let m = max U`−1(P ). Now take N ∈ N sufficiently large such that,
for each a ∈ A(P ), a > N implies that d(a) > `. As U`(P ) contains infinitely many
elements, there exists k ∈ U`(P ) such that

k > max

{
`

q
N, m+ 1

}
.

In particular, k − 1 is a strict upper bound for U`−1(P ). As k ∈ U`(P ), we can
choose an element x ∈ P such that {k, `} ⊆ L(x). Take A = {a1, . . . , ak} ( A(P )
and B = {b1, . . . , b`} ( A(P ) with

a1 + · · ·+ ak = x = b1 + · · ·+ b`.(4.1)

Observe that the sets A and B must be disjoint, for if a ∈ A ∩ B, canceling a in
(4.1) would yield that {` − 1, k − 1} ⊆ L(x − a), which contradicts that k − 1 is a
strict upper bound for U`−1(P ). Because k > (`/q)N , it follows that

x > kq > `N.

Therefore b := max{b1, . . . , b`} > N , which implies that p = d(b) > `. Since ai 6= b
for each i = 1, . . . , k, it follows that p /∈ d({a1, . . . , ak}). We can assume, without
loss of generality, that there exists j ∈ {1, . . . , `} such that bi 6= b for every i ≤ j
and bj+1 = · · · = b` = b. This allows us to rewrite (4.1) as

(`− j)b =
k∑

i=1

ai −
j∑

i=1

bi.(4.2)

After multiplying 4.2 by p times the product d of all the denominators of the atoms
{a1, . . . , ak, b1, . . . , bj}, we find that p divides d(`−j)b. As gcd(p, d) = 1 and `−j < p,
it follows that p divides n(b), which is a contradiction. Hence we conclude that
ρk(P ) <∞ for every k ∈ N.

Now we argue the second condition. Let {an} be an enumeration of the elements
of A(P ) such that {d(an)} is an increasing sequence. Set pn = d(an). Since P has
no stable atoms, lim n(an) =∞. Let B be an upper bound for A(P ).

Suppose, by way of contradiction, that ρn(P ) =∞ for some n ∈ N. Let k be the
smallest natural number such that |Uk(P )| =∞. Now take ` ∈ Uk(P ) large enough
such that `− 1 > max Uk−1(P ) and for each a ∈ A(P ) satisfying a ≤ Bk/` we have
that n(a) > Bk. Take x ∈ L−1(k) such that a1 + · · ·+ak = x = b1 + · · ·+ b` for some
a1, . . . , ak, b1, . . . , b` ∈ A(P ). Now set b = min{b1, . . . , b`}. Then

b ≤ b1 + · · ·+ b`
`

=
a1 + · · ·+ ak

`
≤ Bk

`
.

Therefore n(b) > Bk. We claim that d(b) /∈ d({a1, . . . , ak}). Suppose by contradic-
tion that this is not the case. Then b = ai for some i ∈ {1, . . . , k}. This implies
that {k − 1, ` − 1} ⊆ L(x − b), contradicting that ` − 1 > max Uk−1(P ). Hence
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d(b) /∈ d({a1, . . . , ak}). Now assume, without loss of generality, that there exists
j ∈ {1, . . . , `} such that bi 6= b for each i ≤ j and bj+1 = · · · = b` = b. Write

(`− j)b =
k∑

i=1

ai −
j∑

i=1

bi.(4.3)

From (4.3) we obtain that p` divides `− j. As a consequence,

Bk ≥
k∑

i=1

ai ≥
`− j
p`

n(b) ≥ n(b) > Bk,

which is a contradiction. Hence ρk(P ) <∞ for every k ∈ N. �

The sufficient conditions in part (1) of Theorem 4.1(1) and the condition of bound-
edness in part (2) of Theorem 4.1 are not necessary, as the following example illus-
trates.

Example 4.2.

(1) Consider the primary Puiseux monoid

P =

〈
n

pn
: n ∈ N

〉
,

where {pn} is the increasing sequence of all prime numbers. Since A(P ) =
{n/pn : n ∈ N}, it follows that P does not contain any stable atom. It is
well known that the sequence {n/pn} converges to 0, which implies that P
is bounded. Hence part (2) of Theorem 4.1 ensures that ρk(P ) < ∞ for all
k ∈ N. Thus, the reverse implication of part (1) in Theorem 4.1 does not
hold.

(2) Consider now the Puiseux monoid

P =

〈
p2n − 1

pn
: n ∈ N

〉
,

where {pn} is any enumeration of the prime numbers. Since 0 is not a limit
point of P , we can apply part (1) of Theorem 4.1 to conclude that ρk(P ) <∞
for all k ∈ N. Notice, however, that P is not bounded. Therefore, the
boundedness in part (2) of Theorem 4.1 is not a necessary condition.
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