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Abstract

We solve the following algorithmic problems using TC
0 circuits, or in

logspace and quasilinear time, uniformly in the class of nilpotent groups

with bounded nilpotency class and rank: subgroup conjugacy, computing

the normalizer and isolator of a subgroup, coset intersection, and comput-

ing the torsion subgroup. Additionally, if any input words are provided in

compressed form as straight-line programs or in Mal’cev coordinates the

algorithms run in quartic time.
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1 Introduction

This is the third paper in a series on complexity of algorithmic problems in
finitely generated nilpotent groups. In the first paper [MMNV15], we showed
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that the basic algorithmic problems (normal forms, conjugacy of elements, sub-
group membership, centralizers, presentation of subgroups, etc.) can be solved
by algorithms running in logarithmic space and quasilinear time. Further, if the
problems are considered in ‘compressed’ form with each input word provided as
a straight-line program, we showed that the problems are solvable in polyno-
mial time. The second paper [MW17] pushed the complexity of these problems
lower, showing that they may be solved by TC0 circuits. Here we expand the
list of algorithmic problems for nilpotent groups which may be solved in these
low complexity conditions to include several fundamental problems concerning
subgroups.

Note that in group theory algorithmic problems for subgroups of groups
are usually much harder then the basic algorithmic problems mentioned above.
Nevertheless, we present here algorithms for deciding the conjugacy of two sub-
groups of a finitely generated nilpotent group G, finding the normalizer and
the isolator of a given subgroup of G, finding the torsion subgroup T (G) of G,
and finding the intersection of two cosets of subgroups of G, all of which may
be implemented by TC0 circuits, or run in logarithmic space and quasilinear
time on a (multi-tape) Turing machine. Furthermore, the compressed versions
of these problems are solvable in polynomial (specifically, quartic) time. All
of the algorithms work uniformly over finitely generated nilpotent groups (i.e.
the group may be included in the algorithm’s input), however the complexity
bounds depend on the nilpotency class and the rank (number of generators) of
the presentation. When both are bounded, we solve all the problems uniformly
in TC0 or logspace and quasilinear time.

Algorithmic problems in nilpotent groups have been studied for a long time.
On the one hand, it was shown that many of them are decidable and many
sophisticated decision algorithms were designed (see, for example, the pioneer-
ing paper [KRR+69] by Kargapolov et al. published in 1969 and the books
[Sim94] and [HEO05] for more recent techniques); on the other hand, there are
some which have been known to be undecidable for some time (for instance,
decidability of equations [Rom77]). Recent work by a variety of authors has
introduced a host of decidable/undecidable problems. New undecidable prob-
lems, including the knapsack problem, commutator and rectract problems are
described in [Loh15], [KLZ15], [MT16], and [Rom16], while positive decidabil-
ity results for direct product decompositions and equations in the Heisenberg
group are described in [BMO16] and [DLS15]. Decidability and undecidability
results for equations over random nilpotent groups are also given in [GMO16a]
and [GMO16b].

However, it seems that this paper together with [MMNV15] and [MW17]
present the first thorough attempt to study the complexity of the problems,
beyond the decidable/undecidable dichotomy. In fact, it seems this is currently
the only known large class of non-abelian groups where the major algorithmic
problems are shown to have low space and time complexity. Another large class
of such groups is, perhaps, the class of finitely generated free groups given by
the standard presentations. Even there, if the free groups are given by arbitrary
finite presentations the complexity of the algorithmic problems is still mostly
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unknown.
We have not yet mentioned one of the fundamental algorithmic problems in

nilpotent groups: the isomorphism problem. It is decidable due to the famous
result of Grunewald and Segal [GS80]. Nevertheless, not much is known about
its complexity.

Problem 1. Is the isomorphism problem in finitely generated nilpotent groups
decidable in polynomial time? Exponential time?

2 Background

This section describes, summarizing from [MMNV15] and [MW17], how we will
represent finitely generated nilpotent groups (§2.1) and their subgroups (§2.2),
and gives black-box descriptions of several algorithms that we will be using as
subroutines (§2.4). We also give a brief introduction to the TC0 circuit model
of computation, logspace computations, and the use of compressed words in
algorithmic problems over groups (§2.3).

2.1 Nilpotent presentations

Let G be a finitely generated nilpotent group of nilpotency class c. Then G has
lower central series

G = Γ1 ✄ Γ2 ✄ . . .✄ Γc ✄ Γc+1 = 1

with Γi+1 = [G,Γi] for i > 1. From this series we derive a presentation for G,
as follows.

Each Γi/Γi+1 is a finitely generated abelian group. We select and fix a finite
generating set asi−1+1Γi+1, . . . , asiΓi+1 for Γi/Γi+1 and put

A = {a1, a2, . . . , am}.

For each j = 1, . . . ,m, if si−1 + 1 ≤ j ≤ si, we denote by ej the order of ajΓi+1

in Γi/Γi+1, using ej = ∞ when the order is infinite. Denote

T = {i | ei <∞}.

Provided that each generating set above is chosen to correspond to a primary or
invariant factor decomposition of Γi/Γi+1, every element g ∈ G may be written
uniquely in Mal’cev normal form as

g = aα1
1 aα2

2 · · ·aαm
m (1)

where αi ∈ Z and if i ∈ T then 0 ≤ αi < ei. The set A is called a Mal’cev basis
of G and the integers (α1, . . . , αm) are the Mal’cev coordinates of g.

For each i = 1, . . . ,m, denote Gi = 〈ai, . . . , am〉. An essential fact, which
follows from the definition of the lower central series, is that for any i < j,

[ai, aj ] ∈ Gℓ
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for some ℓ > j. From this it follows that relations of the form

ajai = aiaja
αijℓ

ℓ a
αij(ℓ+1)

ℓ+1 · · · aαijm
m (2)

a−1
j ai = aia

−1
j a

βijℓ

ℓ a
βij(ℓ+1)

ℓ+1 · · · aβijm
m , (3)

with ℓ > j, hold in G. In addition, for each i ∈ T there is a relation of the form

aeii = aµiℓ

ℓ a
µi(ℓ+1)

ℓ+1 · · · aµim
m (4)

where ℓ > j. The set {a1, . . . , am}, viewed as an abstract set of symbols, to-
gether with relators (2)–(4) then form a presentation for G called a nilpotent pre-
sentation. In fact, any presentation of this form defines a nilpotent group. Such
a presentation is called consistent if the order of each ai modulo 〈ai+1, . . . , am〉
is precisely ei. Note that ei = 1 is permitted in a nilpotent presentation.

For low-complexity algorithms, an essential property of nilpotent presenta-
tions is the following (see [MMNV15] Thm. 2.3 and Lem. 2.5): if w is any
word over A±, then the length of the Mal’cev normal form (1) of the element g
corresponding to w in G is bounded by a polynomial function of the length of
w, with the degree of the polynomial depending on the nilpotency class c and
number of generators r of G. This fact plays a crucial role in solving efficiently
the fundamental algorithmic problems in finitely generated nilpotent groups.

2.2 Subgroups

All of our results concern subgroups of finitely generated nilpotent groups. For
every subgroup H ≤ G (all of which are, necessarily, finitely generated), one
may define a unique generating set (h1, . . . , hs) called the full-form sequence for
H . The precise definition was given in [Sim94] (and is reviewed in [MMNV15]),
but we mention here only three facts about (h1, . . . , hs) that we will need.

First, let B be the matrix in which row i is the row vector consisting of the
Mal’cev coordinates of hi. Then B is in row echelon form and does not contain
zero rows. We denote by πi the pivot column of row i of B. Since this column
corresponds to generator aπi

, the Mal’cev normal form of hi begins with aπi
, so

hi ∈ Gπi
= 〈aπi

, . . . , am〉.
Second, the number of generators s is bounded by the length m of the

Mal’cev basis. Third, every element h ∈ H can be uniquely presented in the
form

h = hβ1

1 · · ·hβs
s ,

where βi ∈ Z and 0 ≤ βi < eπi
if πi ∈ T . Hence

H = {hβ1

1 · · ·hβs
s |βi ∈ Z and 0 ≤ βi < eπi

if πi ∈ T }.

2.3 Logspace, TC0, and compressed words

Let A be a finite language. We are interested in both decision and search
problems, and we may regard each such problem as a function f : A∗ → A∗.
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The set A consists of a set of symbols, say x1, . . . , xn, which denote group
generators, and a few extra symbols used to separate different parts of the
input (commas to separate relators etc.). We will be computing f(x) using
logarithmic space or using TC0circuits. We recall both of these notions below.

Logspace. A c-logspace transducer, where c > 0 is a constant, is a multi-tape
Turing machine consisting of the following tapes: an ‘input’ tape which is read-
only, a constant number of read-write ‘work’ tapes, and a write-only ‘output‘
tape. For any input of length L, which is provided on the input tape, the
amount of space the transducer is allowed to use on each work tape is c log(L).
The output of the machine is the content of the output tape. A function f is said
to be logspace computable, or more casually the associated problem is solvable
in logarithmic space, if there exists a constant c and a c-logspace transducer
that produces f(x) on the output tape for any input x appearing on the input
tape.

Though computation on a c-logspace transducer puts a bound only on space
resources, a polynomial time bound of O(Lc) is forced by the fact that the
machine may not enter the same configuration twice (otherwise it will loop
infinitely) and the number of configurations is bounded by a polynomial function
of the input length. The degree c may be very high, and for this reason it is
also desirable to show directly that our algorithms run in low-degree polynomial
time, in particular quasilinear time (i.e. O(L logk(L)) for some constant k).

Most of our algorithms invoke other logspace algorithms as subroutines,
and as such we need to compute compositions f ◦ g of logspace computable
functions. A standard argument shows that f ◦ g is again logspace computable,
but in computing (f ◦ g)(x) in this way, each symbol of g(x) is recomputed each
time it is needed in computation of f , which may give a significant increase in
time complexity. However, if the output g(x) is always of size O(log(L)), one
may simply compute g(x) first, store the output on the work tape, and then
proceed to compute f(g(x)). This is the case in all of our algorithms, so in this
case the time complexity of g is simply added to the overall time complexity.

TC0 circuits. A TC0 circuit with n inputs is a boolean circuit of constant
depth using NOT gates and unbounded fan-in AND, OR, and MAJORITY
gates, such that the total number of gates is bounded by a polynomial function
of n. A MAJORITY gate outputs 1 when more than half of its inputs are 1. A
function f(x) is TC0-computable (more casually, ‘an algorithm is in TC0’) if for
each n there is a TC0 circuit Fn with n inputs which produces f(x) on every
input x of length n. Essential for our purposes is the fact that the composition
of two TC0-computable functions is again TC0-computable.

Since this definition of being computable only asserts that such a family
{Fn}∞n=1 of circuits exists, one normally imposes in addition a uniformity con-
dition stating that each Fn is constructible in some sense. We will only be
concerned here with standard notion of DLOGTIME uniformity, which asserts
that there is a random-access Turing machine which decides in logarithmic time
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whether in circuit Fn the output of gate number i is connected to the input of
gate j, and determines the types of gates i and j. We refer the reader to [Vol99]
for further details on TC0.

To put our results in context, we remind the reader of the following inclusions
of complexity classes:

TC0 ⊆ LOGSPACE ⊆ P ⊆ NP.

It is not known whether any of these inclusions is strict. Though every TC0-
computable function is also logspace-computable and polynomial-time com-
putable, our algorithm descriptions also give direct proofs of membership in
these classes.

Compressed words. We are also interested in algorithms that run efficiently
when the input is given in compressed format. The use of Mal’cev coordinates
provides a natural compression scheme for elements of G: each g ∈ G may be
encoded by a tuple of integers (its Mal’cev coordinates) written in binary. Notice
that if the size m of the Mal’cev basis is bounded, a normal form of length n
may be encoded by O(log n) bits. Since every finitely generated nilpotent group
has a Mal’cev basis, it is natural to consider algorithmic problems in which
input words represented in this compact way. Of course, such ‘compressed
problems’ are, in terms of computational complexity, more difficult than their
uncompressed siblings.

Since we will consider uniform algorithms, in which a finitely generated
nilpotent group G is given by an arbitrary presentation as part of the input,
we also consider two other compression schemes which do not depend on a the
specification of a Mal’cev basis. First, we may simply allow exponents to be
encoded in binary. In this scheme, a word is encoded as a product of tuples
(g,m), representing gm, where g is a group generator or, recursively, a word of
this form, and m is a binary integer. For example, (x4y2)8x−6 is encoded as
(((x, 0100)(y, 0010)), 1000)(x−1, 0110).

Second, we consider straight-line programs, that is, context-free grammars
that generate exactly one string. Formally, a straight-line program or compressed
word over an alphabet A consists of a set {A1, A2, . . . , An} called the non-
terminal symbols and for each non-terminal symbol Ai a production rule either of
the form Ai → AjAk with j, k < i, or of the form Ai → a where a ∈ A∪{ǫ} with
ǫ denoting the empty word. The non-terminal An is termed the root, and one
‘expands’ the compressed word by starting with the one-character word An and
successively replacing any non-terminal with the right side of its production rule
until only symbols from A remain. The number n of non-terminal symbols is the
size of the program. Compression arises since a program of size n may expand
to a word of length 2n−1. We refer the reader to the survey article [Loh12] and
the monograph [Loh14] for further information on compressed words, or to the
introduction of [MMNV15] for some brief remarks.
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2.4 Fundamental algorithms for nilpotent groups

Throughout this paper, we make extensive use of algorithms described in [MMNV15]
and [MW17]. We give below a summary of some of the most heavily-used ones,
and we will use the names listed here, in bold text, to refer to their use.

• Full-form Sequence: Given H ≤ G, compute the full-form generating
sequence for H .

• Membership: Given g ∈ G and H ≤ G, determine if g ∈ H and if so,
compute the unique expression g = hα1

1 · · ·hαs
s where (h1, . . . , hs) is the

full-form sequence for H .

• Subgroup Presentation: Given H ≤ G, compute a consistent nilpotent
presentation for H .

• Conjugacy: Given g, h ∈ G, produce x ∈ G such that gx = h or deter-
mine that no such x exists.

• Centralizer: Given g ∈ G, compute a generating set for the centralizer
of g in G.

• Kernel: Given K ≤ G and φ : K → G1, produce a generating set for the
kernel of φ.

• Preimage: Given K ≤ G, φ : K → G1, and h ∈ G1 guaranteed to be in
φ(K), produce k ∈ K such that φ(k) = h.

We will need some further details regarding the input/output of these algo-
rithms as well as their complexity.

Input. In each algorithm, we fix in advance two integers c and r. The
ambient nilpotent groups G and G1 are part of the input (thus the algorithms
are ‘uniform’) but must be of nilpotency class at most c and be presented using
at most r generators for the complexity bounds given below to be valid. Group
elements are given as words over the generating set(s), subgroups are specified
by finite generating sets, and φ is given by listing the elements φ(k) for each
given generator k of K. The length L of the input is the sum of the lengths of
all relators in G and G1 plus the lengths of all input words.

Output. Each output word is given as a word over the original generating
set except possibly in Full-form sequence and Membership. In these cases,
the algorithm converts to a nilpotent presentation of G, if one is not already
provided, and provides the output words in the new generators (the isomorphism
may also be provided, see Lemma 3 below). In Centralizer and Kernel, if the
original presentation of G is already a nilpotent presentation, one may assume
that the subgroup generating set in the output is the full-form sequence.

In every case, the total length of each output word is bounded by a polyno-
mial function of L and the number of output words is bounded by a constant.
Optionally, the output words may be given by their Mal’cev coordinates.
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Complexity. Each algorithm may be implemented on a logspace transducer,
and if so runs in time quasilinear in L. The proofs are given in [MMNV15].
Alternatively, each problem may be solved using TC0 circuits, as proved in
[MW17].

Compressed inputs. Each algorithm may also be run ‘with compressed in-
puts’. In this case, any input word (including group relators) may be provided
by (binary) Mal’cev coordinates, words with binary exponents, or straight-line
programs, as described in §2.3. We will measure the size of the input in terms
of the number n of input words and the maximum size M of any single input
word (in number of bits or number of non-terminal symbols). The space com-
plexity of each algorithm is then O(M) (it does not depend on n) and the time
complexity is O(nM3). All output is provided in the corresponding compressed
format. Although each input word, in its expanded form, may have length
O(2M ), the polynomial bound for the length of output words implies that each
output word, in expanded form, has length O(2dM ) where d is the degree of the
aformentioned polynomial bound. Since d is constant, the compressed size of
each output remains O(log(2dM )) = O(M).

Remark 2. We place no restriction on the number n of input words. In all
of the algorithms, any variable-sized set of input words (e.g. list of subgroup
generators, group relators) will be fed as input to the matrix reduction algorithm
described in Thm. 3.4 of [MMNV15] and processed in the ‘piecewise’ manner
described there, one word at a time. After this, sets of words usually only appear
as full-form sequences for subgroups, the number of which is always bounded
by a constant. The value n contributes a linear factor to the time complexity
of this algorithm (in both uncompressed and compressed cases), but does not
contribute to the space complexity.

While neither these algorithms nor the ones we describe in this paper require
that the input groups G and G1 be given by a nilpotent presentation, this form
is used internally by all of the algorithms. Converting to such a presentation is
accomplished as follows.

Lemma 3. Let c and r be fixed integers. There is an algorithm that, given a
finitely presented nilpotent group G = 〈X |R〉 of nilpotency class at most c and
with |X | ≤ r, a finite set Y ⊂ G, and a word h over X± guaranteed to be in the
subgroup H = 〈Y 〉, produces

• a consistent nilpotent presentation 〈Y ′ |S〉 for H, in which binary numbers
are used to encode exponents in the relators S,

• a map φ : Y ′ → (Y ±1)∗ which extends to an isomorphism 〈Y ′ |S〉 → H,
and

• a binary integer tuple h′ giving the Mal’cev coordinates of h relative to Y ′.

The algorithm runs in space logarithmic in the input length L and time quasilin-
ear in L, or in TC0, and the (expanded) length of each output word is bounded
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by a polynomial function of L. If compressed inputs are used (in R, Y , or h),
the space requirement is O(M) and the time is O(nM3), where n is the total
number of input words and M bounds the size of any single input word.

Proof. Algorithm. Begin by applying Prop. 5.1 of [MMNV15] (or Lem. 5
of [MW17] in the TC0 case) to compute a consistent nilpotent presentation
G = 〈X ′ |R′〉. Here X ⊂ X ′, the inclusion X →֒ X ′ induces an isomorphism
〈X |R〉 ≃ 〈X ′ |R′〉, and each element of X ′ \X is a commutator in elements of
X . Use Subgroup Presentation to compute a nilpotent presentation 〈Y ′ |S〉
for H . The generating set Y ′ = {h1, . . . , hs} is precisely the full-form sequence
for H . The relators have the form (2)-(4), and we encode the exponents ap-
pearing on the right sides in binary. To obtain φ, note that each element of Y ′

has the form xα1
1 · · ·xαm

m , where X ′ = {x1, . . . , xm}. We replace each xi with
its definition as a commutator of elements of X and encode the exponents αi

using binary numbers. Finally, use Subgroup Membership with input h and
{h1, . . . , hs}, which returns an expression h = hγ1

1 · · ·hγs
s , giving the Mal’cev

coordinates (γ1, . . . , γs).
Complexity. Follows immediately from [MMNV15] and [MW17]. Note that

s is a constant depending on c and r.

We will often use this lemma in the case Y = X to convert from an arbitrary
presentation of G to a nilpotent presentation. In this case, we may assume the
algorithm uses Y ′ = X ′ ⊃ X . We convert all input words into their Mal’cev
coordinates (relative to X ′) at the same time, and perform further computations
directly on the Mal’cev coordinates.

Using binary numbers in the output is necessary in order to obtain quasilin-
ear time, since writing down a word in its expanded form takes as many steps as
the length of the word itself, which in this case is only bounded by a polynomial
function of L.

3 Algorithmic problems

Before presenting the algorithms, let us make a few remarks regarding their
complexity analysis. The analysis of most of the algorthims is similar, so we
present here a general argument and fill in any additional details in the proof
of each algorithm.

First, note that the nilpotency class c and maximum number of generators r
of the input group(s) are constant. All other constants are expressible in terms
of c and r.

At the beginning of each algorithm, we convert to a nilpotent presentation,
if necessary, using Lemma 3. We denote the resulting Mal’cev basis by

{a1, . . . , am}.

Note that m is constant. Word lengths are unchanged during this conversion
(see Lemma 3). We are guaranteed by [MMNV15] Thm. 2.3 that a word of
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length L has a Mal’cev form of length polynomial in L, hence its coordinates
require O(logL) bits to record.

Our algorithms generally consist of a sequence of subroutine calls, using the
algorithms described in §2.4 as well as those described in this section, with some
minor additional processing. The complexity bounds described in §2.4 also apply
to the algorithms we describe in this section, as we will see. In all cases, we
prove that the total number of subroutine calls and the total number of words
that must be stored in memory at any given time is constant. Consequently, the
entire algorithm can, in principle, be expressed as a composition of a constant
number of functions. Each such function is TC0-computable, hence so is the
composition. Note that to ‘store x in memory’ in TC0 terms means to add a
parallel computation branch computing x.

Though it follows immediately that we have logspace solutions to these prob-
lems, we wish to prove that one may in fact run the algorithms on a logspace
transducer in quasilinear time. To do so, we must show that each subroutine
may be run directly ‘in memory’ on the logspace transducer.

This is achieved by invoking each subroutine in its ‘compressed’ form. Ini-
tially, all input words are converted into O(logL)-bit Mal’cev coordinate form.
In this process, any variable-sized set of words (subgroup generators or group
relators) is reduced to a constant-sized set (the full-form sequence). This size is
bounded bym, and we often assume it is preciselym for notational convenience.
Each subroutine is then called with a constant number of O(logL)-bit words. It
will therefore run in space O(logL) and time O(log3 L), and produce a constant
number of O(log n)-bit output words.

For compressed inputs, the argument is similar. As we observed earlier,
the polynomial length bound implies that the compressed size of words re-
mains O(M) throughout the algorithm. Each subroutine therefore has space
complexity O(M) and time complexity O(M3), so the overall space and time
complexities are O(M) and O(nM3).

Finally, let us note that if we have a constant number elements g1, . . . , gt in
Mal’cev form we can, by [MMNV15] Lem. 2.10, compute the Mal’cev form of
the product g1 · · · gt within the space and time bounds specified above, in both
compressed and uncompressed cases. We use this without mention to maintain
elements in coordinate form.

3.1 Subgroup conjugacy and normalizers

In this section we give an algorithm to determine whether or not two subgroups
of a nilpotent group are conjugate and if so to compute a conjugating element.
A natural by-product of this algorithm is the computation of subgroup normal-
izers.

We begin with a preliminary lemma solving the simultaneous conjugacy
problem for tuples of commuting elements. In fact, commutation is not required,
but we will obtain this stronger result (Theorem 7) as a corollary of the more
complicated coset intersection algorithm.
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Lemma 4. Fix positive integers c, r, and l. There is an algorithm that, given
a finitely generated nilpotent group G = 〈X |R〉 of nilpotency class at most c
with |X | ≤ r and two tuples of elements (a1, . . . , al) and (b1, . . . , bl) such that
[ai, aj ] = [bi, bj ] = 1 for all 1 ≤ i, j ≤ l, decides if there exists g ∈ G such that

agi = bi

for all 1 ≤ i ≤ l. The algorithm produces g if one exists, returns a generating
set for the centralizer of {b1, . . . , bl}, and may be run in space logarithmic in the
length L of the input and time quasilinear in L, or in TC0. The length of each
output word is bounded by a polynomial function of L. If compressed inputs are
used, the algorithm uses space O(M) and time O(nM3), where n = |R| and M
bounds the encoded size of each input word.

Proof. Algorithm. If necessary, use Lemma 3 to convert to a nilpotent presen-
tation. Next, we check conjugacy of a1 with b1 using the Conjugacy Algo-

rithm. If they are not conjugate, we may return ‘No’. Otherwise, we obtain
h such that ah1 = b1 and we compute a generating set for CG(b1) using the
Centralizer Algorithm.

If l > 1, we proceed recursively. Notice that g exists if and only if there exists
x ∈ G such that (ahi )

x = bi for i = 1, . . . , l, since we may put x = h−1g. Further,
such x must lie in CG(b1) since b1 = (ah1 )

x = bx1 . Therefore it suffices to call
Lemma 4 recursively with the (commuting) tuples (ah2 , . . . , a

h
l ) and (b2, . . . , bl)

and the subgroup CG(b1) in place of G. Before making the recursive call, we
use Lemma 3 to convert to a nilpotent presentation for CG(b1) and write each
of ahi , bi relative to this presentation.

If we obtain a conjugator x, we may return g = hx, using the map φ provided
by Lemma 3 to write x in the original generators X . In addition, we obtain
a generating set for the centralizer of {b2, . . . , bl} in CG(b1), which is precisely
a generating set for the centralizer of the complete set {b1, . . . , bl} in G. As
above, we must use φ to write these words in generators X . If the recursive call
returns ‘No’, then the tuples are not conjugate.

Complexity. The depth l of the recursion is constant and we need only store
h and the (constant-sized) generating set for the centralizer at each step of the
recursion, hence the general argument given at the beginning of the section
applies.

We now give the algorithm for determining conjugacy of two subgroups.

Theorem 5. Fix integers c and r. There is an algorithm that, given a finitely
presented nilpotent group G = 〈X |R〉 of nilpotency class at most c with |X | ≤ r
and two subgroups H and K, determines if there exists g ∈ G such that

Hg = K

and if so finds such an element g as well as

a generating set for the normalizer NG(K)
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of K. The algorithm runs in space logarithmic in the total length L of the
input and time quasilinear in L, or in TC0, and the length of every output word
is bounded by a polynomial function of L. If compressed inputs are used, the
space complexity is O(M) and the time complexity O(nM3) where n is the total
number of input words and M bounds the encoded size of each input word.

Proof. Algorithm. Begin by converting, if necessary, to a nilpotent presentation
of G using Lemma 3.

The algorithm recurses on the maximum j such that H ∩ Γj 6= 1 and H ∩
Γj+1 = 1. To find j, simply compute the Full-form Sequence for H and
observe that if the last element of the sequence begin with the letter ak then j
is the unique index such that akΓj+1 belongs to the generating set of Γj/Γj+1

(see §2.1). Compute similarly the maximum j′ such that K ∩ Γj′ 6= 1 and
K ∩Γj′+1 = 1. If j 6= j′, then H and K are not conjugate since their conjugacy
would imply conjugacy of H ∩ Γi with K ∩ Γi for all i (since the Γi are normal
subgroups), hence equality of j and j′.

Denote Hj = H ∩ Γj and produce the full-form sequence for this group by
taking the elements of the full-form sequence for H that are in Γj . Proceed
similarly for Kj = K ∩ Γj . Next, we check conjugacy of Hj with Kj.

Conjugacy of Hj with Kj. Let : G → G/Γj+1 be the natural homomor-
phism. By the definition of central series, G acts trivially by conjugation on Γj .
Hence if Hj and Kj are conjugate then Hj = Kj. We first check if Hj = Kj ,
returning ‘No’ if not. To do so, it suffices to compute the Full-form Sequences

for Hj and Kj, and check them for equality.
Let (h1, . . . , hl) be the full-form sequence for Hj , computed above. We now

produce a generating set (k1, . . . , kl) for Kj such that hi = ki for all i, as follows.
Use the Preimage algorithm, with the subgroup Kj, the homomorphism :
Kj → G/Γj+1, and the element hi, to produce each ki. Since Kj ∩ Γj+1 = 1,
(k1, . . . , kl) generates K.

We claim for any x ∈ G, Hx
j = Kj if and only if hxi = ki for i = 1, . . . , l.

Indeed, since the tuples (h1, . . . , hl) and (k1, . . . , kl) are generating sets their
conjugacy implies Hj and Kj are conjugate. Conversely, if Hx

j = Kj then

hxi ∈ Kj for all i. But hxi = hi = ki, and since ¯ is injective on Kj, we have
hxi = ki for all i. Also observe that Hj is abelian, since

[Hj , Hj ] ≤ Hj ∩ Γ2j ≤ Hj ∩ Γj+1 = 1,

and similary for Kj. Hence (h1, . . . , hl) and (k1, . . . , kl) are both tuples of
commuting elements. So to determine conjugacy of Hj with Kj it suffices to
use the algorithm of Lemma 4 to determine conjugacy of (h1, . . . , hl) and
(k1, . . . , kl) and if so find a conjugator x and a generating set Y for CG(Kj).
In fact, CG(Kj) = NG(Kj) since if any element y ∈ G normalizes Kj, then for
each i = 1, . . . , l we have kyi ∈ Kj and hence kyi = ki, arguing as above.

Recursion. If j = 0, then H = Hj and K = Kj and we have already solved
the problem. Otherwise, letting

̂ : NG(Kj) → NG(Kj)/Kj

12



be the canonical homomorphism, we reduce the problem to conjugation of Ĥx

and K̂ in NG(Kj)/Kj , as follows.
An element g such that Hg = K exists if and only if there exists y ∈ G such

that (Hx)y = K. Such an element y must lie in NG(Kj), since

Ky
j = (Hx

j )
y = (H ∩ Γj)

xy = Hxy ∩ Γxy
j = K ∩ Γj = Kj .

Now K ≤ NG(Kj), and H
x ≤ NG(Kj) since

Kj = Hx
j = (H ∩ Γj)

x = Hx ∩ Γj ✂Hx.

Finally, if (Ĥx)ŷ = K̂ for some ŷ ∈ NG(Kj)/Kj, we claim that (Hx)y = K.
Indeed, if k ∈ K then for some h ∈ H and k′ ∈ Kj we have k = y−1hxyk′ =

y−1(hx(k′)y
−1

)y. But y ∈ NG(Kj) and Kj ≤ Hx, so hx(k′)y
−1

∈ Hx and the
inclusion K ⊆ Hx follows. The reverse inclusion is proved similarly.

In order to solve the conjugation problem of Ĥx and K̂ in NG(Kj)/Kj , we
first use Lemma 3, with the generating set Y , to find a nilpotent presenta-
tion for NG(Kj) and to convert the generating sets for Hx, K, and Kj into
coordinate form in this presentation. Add the generators of Kj to this presen-
tation to obtain a presentation for NG(Kj)/Kj, and call Theorem 5 with this

presentation and the subgroups Ĥx and K̂.
It is essential to prove that the value of j decreases in the recursive call.

Letting Nj denote term j of the lower central series of NG(Kj), we have that
Nj ≤ Γj , hence K ∩Nj ≤ K ∩ Γj = Kj, and the intersection is trivial modulo
Kj, hence j must decrease.

The recursive call either proves that Ĥx and K̂ are not conjugate, in which
case H and K are not conjugate, or returns a conjugator yKj and a generating

set Z · Kj for the normalizer of K̂ in NG(Kj)/Kj. Note that y (and each
element of Z) is given as a word over the generating set of NG(Kj) with binary
exponents. We convert back to the generating set X of G using the map φ
provided by Lemma 3. For the conjugator, we return the word g = xy.

For the normalizer, we append to Z a generating set of Kj to obtain a
generating set Z ′ for the normalizer of K in NG(Kj). But this is precisely the
normalizer ofK in G: if Kz = K for some z ∈ G then Kz

j = Kz∩Γz
j = K∩Γj =

Kj and so NG(K) ≤ NG(Kj).
Complexity. The depth of the recursion is bounded by the constant c, and

the number of words to store in memory is constant.

It should be noted that while the algorithm does not compute the normalizer
of K in the event that H and K are not conjugate, one may of course obtain it
by running the algorithm with H = K.

3.2 Coset intersection

We describe an algorithm to compute the intersection of cosets in finitely gen-
erated nilpotent groups, and apply it to solving the simultaneous conjugacy
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problem. Recall that in any group, the intersection g1H ∩ g2K of two cosets is,
if non-empty, a coset of the intersection H ∩K.

Theorem 6. Fix integers c and r. There is an algorithm that, given a finitely
presented nilpotent group G = 〈X |R〉 of nilpotency class at most c with |X | ≤ r,
two subgroups H and K of G, and two elements g1 and g2 of G, determines if
the intersection g1H ∩ g2K is non-empty and if so, produces a generating set
for H ∩K and an element g′ ∈ g1H ∩ g2K, hence

g1H ∩ g2K = g′(H ∩K).

The algorithm runs in space logarithmic in the length L of the input and time
quasilinear in L, or in TC0. If compressed inputs are used, the space complexity
is O(M) and the time complexity O(nM3) where n is the total number of input
words and M bounds the encoded size of each input word.

Proof. Begin by using Lemma 3 to convert to a nilpotent presentation for G,
if necessary. We proceed by induction on the nilpotency class c.

Base case c=1. In this case, G is abelian. First, we will determine if the
intersection is non-empty and if so find g. Writing

g1H ∩ g2K = g2(g
−1
2 g1H ∩K),

it suffices to determine if there exists h ∈ H such that g−1
2 g1h ∈ K. Since G is

abelian, this occurs if and only if g−1
2 g1 ∈ 〈H ∪K〉. We use the Membership

algorithm, with the union of the Full-form sequences of H and K as a
generating set for 〈H ∪K〉, to determine if this is the case, returning ‘No’ if it is
not. Otherwise, we obtain an expression of g−1

2 g1 as a linear combination of the
elements of the full-form sequence for 〈H∪K〉. We can convert to an expression
in terms of the full-form sequences for H and K, thus obtaining an expression
g−1
2 g1 = hk for some elements h ∈ H and k ∈ K, by following the procedure
described in Cor. 3.9 of [MMNV15] (essentially, recording an expression of
each matrix row in terms of the given generators during the matrix reduction
process). This corollary gives only polynomial time, but Thm. 14 of [MW17]
gives the corresponding result for TC0 (hence logspace), though we need the
fact that g−1

2 g1 and the full-form sequences of H and K are stored using only
O(logL) bits. We now set g = g1h

−1 and obtain g1H ∩ g2K = g(H ∩K).
We will now find a generating set for H ∩K. Let {u1, . . . , un} be the gen-

erating set for H and consider the homomorphism φ : Zn → G defined by

φ(α1, . . . , αn) = uα1
1 · · ·uαn

n

and the composition φ′ : Zn → G → G/K. An element uα1
1 · · ·uαn

n of H is
also an element of K if and only if (α1, . . . , αn) is in the kernel of φ′, hence
H ∩ K = φ(kerφ′). To compute the kernel, add the generators of K to the
relators of G to obtain a presentation of G/K, and pass this group together with
φ′ and the standard presentation of Zn to the Kernel algorithm. Applying
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φ to each resulting subgroup generator, we obtain a generating set (in fact, the
full-form sequence) for H ∩K.

Inductive case. Denote by : G → G/Γc the canonical homomorphism.
Invoke Theorem 6 recursively in G/Γc with inputs H, K, g1, and g2. Note
that it suffices to erase all generators of Γc to compute (more formally, one
may use Lemma 3).

If the recursive call determines that g1H∩g2K is empty, then so is g1H∩g2K.
Otherwise, we obtain an element γ ∈ g1H∩g2K and a generating set w1, . . . , wl

of H ∩K, hence
g1H ∩ g2K = γ〈w1, . . . , wl〉.

Denote by Λ (but do not compute) the preimage of H ∩ K under . We will
rewrite the intersection g1H ∩ g2K in the form

g1H ∩ g2K = (g′(Λ ∩H)) ∩ (g′c0(Λ ∩K)) (5)

for certain g′ ∈ G, c0 ∈ Γc defined below. Compute a Preimage x1 of g−1
1 γ in

H and a Preimage x2 of g−1
2 γ in K. Let

g′ = g1x1.

Since g2x2 = γ = g1x1, it follows that (g1x1)
−1g2x2 = c0 ∈ Γc.

To see that (5) holds, let u be an element of the left side. Then u = g1h
and for some h ∈ H and u = γλ for some λ ∈ Λ. Then for some c′ ∈ Γc,
u = g1x1λc

′ hence λc′ ∈ H since x1 ∈ H . Clearly λc′ ∈ Λ, hence u ∈ g′(Λ∩H).
Similarly u ∈ g′c0(Λ∩K). Conversely, any element of the right side has the form
g′h = g1x1h for some h ∈ H hence is in g1H , and has the form g′c0k = g2x2k
for some k ∈ K hence is in g2K.

We will now find the full-form sequences for Λ ∩ H and Λ ∩ K. Apply
the Preimage algorithm to compute for each wi preimages u′i ∈ H and v′i ∈
K. Compute a generating set y′1, . . . , y

′
s′ for H ∩ Γc by finding the Full-form

sequence for H and selecting only those elements that belong to Γc. Similarly,
compute a generating set z′1, . . . , z

′
t′ for K ∩ Γc. We now have

Λ ∩H = 〈u′1, . . . , u
′

l, y
′

1, . . . , y
′

s′〉.

Λ ∩K = 〈v′1, . . . , v
′

l, z
′

1, . . . , z
′

t′〉,

Using the generating sets above, find the Full-form sequence (v1, . . . , vn, z1, . . . , zs)
for Λ ∩K, where z1 denotes the first generator of the sequence that lies in Γc.
Likewise find the Full-form sequence (u1, . . . , un′ , y1, . . . , yt) for Λ ∩H , with
y1 being the first generator in Γc. Since Λ∩H and Λ∩K have the same image
H ∩K under , it follows that n′ = n and for all i = 1, . . . , n that ui = vici for
some ci ∈ Γc. We now have the full-form sequences

Λ ∩H = 〈v1c1, . . . , vncn, y1, . . . , yt〉. (6)

Λ ∩K = 〈v1, . . . , vn, z1, . . . , zs〉, (7)
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The next step produces a generating set of H ∩K and the element g. The
correctness of this step is argued below. Denote C1 = 〈c1, . . . , cn, y1, . . . , yt〉 and
consider the intersection

C1 ∩ (Λ ∩K ∩ Γc)

in the abelian group Γc. Define a homomorphism ψ : Zn+t → Γc by

ψ(α1, . . . , αn, β1, . . . , βt) = cα1
1 · · · cαn

n yβ1

1 · · · yβt

t .

Using the composition ψ′ : Zn+t → Γc → Γc/(Λ∩K ∩Γc), we may then use the
Kernel algorithm, as in the base case, to produce a finitely generated subgroup
P = 〈p1, . . . , pb〉 ≤ Zn+t such that

C1 ∩ Λ ∩K ∩ Γc = ψ(P ).

The sequence (p1, . . . , pb) is the full-form sequence for P , so the corresponding
matrix formed is in row-echelon form. We denote pi = (pi1, . . . , pi(n+t)) for
i = 1, . . . , b. In addition, we use the Membership algorithm, as described in
the base case, to find

c′0 ∈ C1 ∩ c0(Λ ∩K ∩ Γc)

if such an element exists and to write c′0 in the form

c′0 = c
α′

1
1 · · · c

α′

n
n y

β′

1
1 · · · y

β′

t

t .

If c′0 does not exist, we return ‘No’. Otherwise, we define

h = (v1c1)
α′

1 · · · (vncn)
α′

ny
β′

1
1 · · · y

β′

t

t

and return g = g′h. For the generating set of H ∩K, define the function (it is
not, in general, a homomorphism) θ : Zn+t → Λ ∩H by

θ(α1, . . . , αn, β1, . . . , βt) = (v1c1)
α1 · · · (vncn)

αnyβ1

1 · · · yβt

t

and return the Full-form sequence for the subgroup generated by the set

Π = {θ(pi) | 1 ≤ i ≤ b}.

It remains to prove the correctness of the last step. First, we prove that Π
generates H ∩K = (Λ ∩H) ∩ (Λ ∩K). Take any pi = (α1, . . . , αn, β1, . . . , βt).
Then, using the fact that C1 ≤ Γc is in the center of G,

θ(pi) = (v1c1)
α1 · · · (vncn)

αnyβ1

1 · · · yβt

t (8)

= vα1
1 · · · vαn

n cα1
1 · · · cαn

n yβ1

1 · · · yβt

t . (9)

Line (8) gives θ(pi) ∈ Λ ∩H and, since cα1
1 · · · cαn

n yβ1

1 · · · yβt

t = ψ(pi) ∈ ψ(P ) ⊂
Λ ∩K, line (9) gives θ(pi) ∈ Λ ∩K. Hence 〈Π〉 ≤ H ∩K.
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For the opposite inclusion, let (Λ ∩H)i = 〈vici, . . . , vncn, y1, . . . , yt〉 for 1 ≤
i ≤ n and (Λ ∩ H)n+1 = 〈y1, . . . , yt〉. We will prove, by induction on i in the
reverse order n+ 1, . . . , 1, that

(Λ ∩H)i ∩ (Λ ∩K) ≤ 〈Π〉

for all i = n + 1, . . . , 1 (in particular for i = 1). For the base case i =

n + 1, let q ∈ (Λ ∩ H)n+1 ∩ (Λ ∩ K). Then q = c01 · · · c
0
ny

β1

1 · · · yβt

t for some
(0, . . . , 0, β1, . . . , βt) = p. Since q ∈ C1 ∩ Λ ∩ K, we have p ∈ P . Since the
matrix corresponding to P is in row echelon form, we may write p as a linear
combination

p =

b∑

j=k

γjpj

where pj = (0, . . . , 0, pj(n+1), . . . , pj(n+t)) for all j ≥ k. Then

q = (y
pk(n+1)

1 · · · y
pk(n+t)

t )γk · · · (y
pb(n+1)

1 · · · y
pb(n+t)

t )γb

= θ(pk)
γk · · · θ(pb)

γb

hence q ∈ 〈Π〉.
For the inductive case, assume that (Λ ∩ H)i+1 ∩ (Λ ∩K) ≤ 〈Π〉 for some

i+ 1 ≤ n+ 1 and let q ∈ (Λ ∩H)i ∩ (Λ ∩K). Then

q = (v1c1)
0 · · · (vi−1ci−1)

0(vici)
αi · · · (vncn)

αnyβ1

1 · · · yβt

t

for some (0, . . . , 0, αi, . . . , αn, β1, . . . , βt) = p′. Since q ∈ Λ∩K and vαi

i · · · vαn
n ∈

Λ ∩K, it follows, rewriting q as in (9), that cαi

i · · · cαn
n yβ1

1 · · · yβt

t ∈ Λ ∩K and
hence p′ ∈ P . Hence

p =

b∑

j=k′

γ′jpj

for some γ′j and k′ ≥ 1 such that pj = (0, . . . , 0, pji, . . . , pj(n+t)) for all j ≥ k′.
Now consider the element

q′ = qθ(pk′)−γ′

k′ · · · θ(pb)
−γ′

b .

In the word θ(pk′ )−γ′

k′ · · · θ(pb)−γ′

b , the generators v1c1, . . . , vi−1ci−1 do not ap-
pear. Further, the total exponent sum of the generator vici is −αi, while in q
it is αi. Since for any i < l ≤ n and 1 ≤ l′ ≤ t the commutators [vici, vlcl] and
[vici, yl′ ] are elements of (Λ ∩H)i+1 we may collect all occurrences of vici and
eliminate its occurrence in q′. Hence q′ ∈ (Λ ∩H)i+1 ∩ (Λ ∩K). By induction,
q′ ∈ 〈Π〉 hence q ∈ 〈Π〉 as well.

Regarding the intersection being non-empty, observe that by (5),

g1H ∩ g2K 6= ∅ ⇐⇒ (Λ ∩H) ∩ c0(Λ ∩K) 6= ∅.
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Now if g = (v1c1)
α1 · · · (vncn)αnyβ1

1 · · · yβt

t ∈ Λ∩H is also an element of c0(Λ∩K)

then, again rewriting as in (9), cα1
1 · · · cαn

n yβ1

1 · · · yβt

t is an element of C1 which
also lies in c0(Λ∩K ∩Γc) hence c

′
0 exists. Conversely, if c′0 exists, then we have

c′0 = c
α′

1
1 · · · cαn′

n y
β′

1
1 · · · y

β′

t

t = c0z
γ′

1
1 · · · z

γ′

s
s

hence
(v1c1)

α′

1 · · · (vncn)
α′

ny
β′

1
1 · · · y

β′

t

t = c0v
α′

1
1 · · · v

α′

n
n z

γ′

1
1 · · · z

γ′

s
s

is an element of (Λ∩H)∩ c0(Λ∩K), hence this intersection is non-empty. This
proves the correctness of the decision problem.

Finally, we must show that g ∈ g1H ∩ g2K. Since h ∈ Λ ∩ H , we have
g = g′h ∈ g′(Λ∩H). Since c′0 ∈ c0(Λ∩K), we have c′0 = c0k for some k ∈ Λ∩K
hence

g = g′h = g′v
α′

1
1 · · · v

α′

n
n c′0 = g′c0(kv

α1
1 · · · vαn

n )

is an element of g′c0(Λ ∩K), as required.
Complexity. The depth of the recursion is c, which is constant, so the total

number of subroutine calls is constant. The total number of group elements to
record is also constant.

As an application of the intersection algorithm, we may generalize Lemma
4 to solve the simultaneous conjugation problem for tuples in nilpotent groups.

Theorem 7. Fix integers c, r, and l. There is an algorithm that, given a
nilpotent group G = 〈X |R〉 of nilpotency class at most c with |X | ≤ r and two
tuples (a1, . . . , al) and (b1, . . . , bl) of elements of G, computes:

• an element g ∈ G such that

g−1aig = bi

for i = 1, . . . , l

• a generating set for the centralizer CG(b1, . . . , bl), or determines that no
such element g exists.

The algorithm runs in space logarithmic in the size L of the input and time
quasilinear in L, or in TC0, and the length of each output word is bounded by
a polynomial function of L. If compressed inputs are used, the space complexity
is O(M) and the time complexity O(nM3) where n = |R| and M bounds the
encoded size of each input word.

Proof. Algorithm. Begin by applying Lemma 3 to convert to a nilpotent pre-
sentation if necessary. Next, for each i = 1, . . . , l, use the Conjugacy algorithm
to find gi ∈ G such that agii = bi. If any pair is not conjugate, then g does not
exists and we may return ‘No’. We also use the Centralizer algorithm to find,
for each i, a generating set for CG(bi).
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Now for any g ∈ G and any i, the equation

agi = a
gig

−1
i

g

i = b
g
−1
i

g

i

shows that agi = bi if and only if g−1
i g ∈ CG(bi), i.e. g ∈ giCG(bi). Hence the

set of all possible conjugators is precisely the coset intersection
⋂l

i=1 giCG(bi)
which we may compute by iterating Theorem 6. As a by-product, we obtain
a generating set for

l⋂

i=1

CG(bi) = CG(b1, . . . , bl).

Complexity. Since l is fixed, the number of subroutine calls and elements of G
to store is constant.

3.3 Torsion subgroup

In every nilpotent group G the set T consisting of all elements of finite order
forms a subgroup called the torsion subgroup. We give an algorithm to compute,
from a presentation of G, a generating set and presentation for T as well as its
order. We follow an algorithm outlined in [KRR+69].

Theorem 8. Fix positive integers c and r. There is an algorithm that, given
a finitely presented nilpotent group G = 〈X | R〉 of nilpotency class at most c
with |X | ≤ r, produces

• a generating set for the torsion subgroup T of G,

• a presentation for T , and

• the order of T .

The algorithm runs in space logarithmic in the size L of the given presentation
and time quasilinear in L, or in TC0. The length of each output word is bounded
by a polynomial function of L and the number of such words is bounded by a
constant. If compressed inputs are used, the space complexity is O(nM) and the
time complexity is O(nM3), where n = |R| and M bounds the length of each
relator in R.

Proof. Define inductively a sequence T1, T2, . . . of finite normal subgroups of G
as follows. Let T1 = T (Z(G)), which is clearly finite and normal. For i > 1
define the homomorphism φi : G→ G/Ti−1 and set

Ti = φ−1
i (T (Z (G/Ti−1))) .

Since Z(G/Ti−1) is abelian and finitely generated, T (Z(G/Ti−1)) is finite and
hence finiteness of Ti follows from that of Ti−1. Normality of Ti follows from
normality of Ti−1 in G and of T (Z(G/Ti−1)) in G/Ti−1. Since G is Noetherian,
the sequence must stabilize at some Tk. But then T (Z(G/Tk)) is trivial, hence

19



G/Tk is torsion-free (its torsion subgroup must otherwise intersect its center),
hence Tk = T .

Algorithm. We compute the sequence described above. Begin by applying
Lemma 3 to compute a nilpotent presentation G = 〈A |S〉. Since Z(G) is
simply the centralizer of any generating set, we may find the full-form sequence
(h1, . . . , hm) for Z(G) using Theorem 7 with the set A. Since Z(G) is abelian,
its torsion subgroup is generated by the set X1 consisting of elements hi such
that i ∈ T . Note that T is determined by examining the relators of the form
(4) is S.

Now assume, by induction, that we have a generating set Xi for Ti. Use
Theorem 7 with the nilpotent group G/Ti = 〈A |S ∪ Xi〉 and the set A to
find, as described in the base case, the full-form sequence (τ1Ti, . . . , τmTi) for
T (Z(G/Ti)). Then Xi ∪ {τ1, . . . , τm} generates Ti+1, and we compute the the
Full-form sequenceXi+1 of Ti. IfXi+1 = Xi, then Ti+1 = Ti = T . Otherwise,
we proceed with the next step of the induction.

Once we obtain the full-form sequence (t1, . . . , tn) for T , it suffices to run
Subgroup Presentation to give a presentation for T . Denote by π1, . . . , πn
the pivot columns of the matrix associated with (t1, . . . , tn) and by αij the (i, j)-
entry of this matrix. Then every element of T may be expressed uniquely in
the form tβ1

1 · · · tβn
n where 0 ≤ βi < eπi

/αiπi
, and every such expression gives a

different element. Hence the order of T is

|T | =
n∏

i=1

eπi
/αiπi

.

Complexity. First, we will prove that the depth of the recursion is bounded
by c. Let Zi = {h ∈ G | [h, g] ∈ Zi−1 for all g ∈ G} be the ith term of the upper
central series of G, with Z1 = Z(G). We claim that

Ti ⊇ Zi ∩ T

for all i = 1, . . . , c, hence Tc ⊇ G ∩ T so Tc = T and the depth of the recursion
is bounded by c. We proceed by induction. For i = 1 we have T1 = T (Z(G)) =
Z1∩T . Now let g ∈ Zi∩T and consider φi(g) = g. Let h ∈ G/Ti−1 and consider
[g, h] = [g, h]. Since g ∈ T , we have [g, h] = g−1gh ∈ T and since g ∈ Zi, we
have [g, h] ∈ Zi−1. By the inductive assumption, [g, h] ∈ Ti−1 hence [g, h] = 1
hence g ∈ Z(G/Ti−1). Clearly g ∈ T (Z(G/Ti−1)) hence g ∈ Ti, proving the
claim.

Since the depth of the recursion is constant, the total number of subroutine
calls is constant, as is the number of elements kept in memory, since each Xi is
a full-form sequence (hence of bounded length).

In computing the order of T , recall that the numbers ei where i ∈ T , ap-
pear as exponents in the nilpotent presentation computed by Lemma 3. Con-
sequently, each is bounded by a polynomial function of L. Since the length
n of the full-form sequence for T is bounded by a constant, the order of T is
polynomially bounded.
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Corollary 9. If G = 〈X |R〉 is a nilpotent group of nilpotency class c with
|X | ≤ r, then the order of the torsion subgroup of G is bounded by a polynomial
function of the sum of the lengths of the relators R.

3.4 Isolator

Recall that the isolator of H in G is defined by

IsG(H) = {g ∈ G | gn ∈ H for some n 6= 0}

and, in nilpotent groups, forms a subgroup.

Theorem 10. Fix integers c and r. There is an algorithm that, given a finitely
presented nilpotent group G = 〈X |R〉 of nilpotency class at most c with |X | ≤ r,
and a subgroup H ≤ G, computes

a generating set for the isolator IsG(H).

The algorithm runs in space logarithmic in the length L of the input and time
quasilinear in L, or in TC0, and the length of each generator is bounded by a
polynomial function of L. If compressed inputs are used, the space complexity is
O(M) and the time complexity O(nM3) where n is the number of input words
and M bounds the encoded size of each input word.

Proof. Algorithm. First, apply Lemma 3 to convert to a nilpotent presentation
G = 〈a1, . . . , am |S〉.

Let N0 = H and for i > 0 define N i = NG(N
i−1), the normalizer of N i−1

in G. It is proved in [KM79] Thm. 16.2.2 that N c = G. Using Theorem 5, we
compute in turn the full-form generating sequences for each of the subgroups
H,N1, . . . , N c and using the Subgroup Presentation algorthim we compute
a nilpotent presentation

N i = 〈Xi |Ri〉

for each. We now proceed, by induction, to compute for each i = 0, . . . , c a
generating set Yi for IsNi(H). For i = 0, we have IsN0(H) = H and we use the
computed full-form sequence X0 for H . Now assume that we have a generating
set Yi−1 for IsNi−1(H).

The subgroup N i−1 is normal in N i, and we will find the torsion subgroup of
N i/N i−1. Using Lemma 3, write each element of Xi−1 in its Xi-coordinates.
Appending these elements to Ri we obtain a presentation of N i/N i−1, which
we pass to Theorem 8 to obtain a generating set {τ1N i−1, . . . , τmN

i−1} for
the torsion subgroup. Then IsNi(N i−1) is generated by Xi−1 ∪ {τ1, . . . , τr}.
Converting these elements back to generators of G, we then compute the Full-

form sequence Zi for IsNi(N i−1) and, using Lemma 3 the corresponding
nilpotent presentation

IsNi(N i−1) = 〈Zi |Si〉.

We claim that IsNi−1(H) E IsNi(N i−1). Indeed, the property that gn ∈ H
for some n > 0 is unchanged under conjugation, and since N i normalizes N i−1
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all conjugates remain in N i−1. Using Lemma 3, write each element of Yi−1 in
terms of the generators Zi and append these words to Si to obtain a presentation
of IsNi(N i−1)/IsNi−1(H). Now apply Theorem 8 to compute a generating set
{σ1IsNi−1(H), . . . , σrIsNi−1(H)} for the torsion subgroup.

Set Yi = {σ1, . . . , σr} ∪ Yi−1, using the two prior calls to Lemma 3 to write
each σi in generators of G. We claim that Yi generates IsNi(H). Clearly Yi−1 ⊂
IsNi−1(H) ⊂ IsNi(H). For each σi there exists pi > 0 such that σpi

i ∈ IsNi−1(H),
therefore there exists qi > 0 such that σpiqi

i ∈ H . Hence Yi ⊂ IsNi(H). Now if
g ∈ IsNi(H) then gn ∈ H for some n > 0 and g ∈ IsHi

(Hi−1), hence g ·IsHi−1(H)
lies in the torsion subgroup of IsHi

(Hi−1)/IsHi−1(H), and so g is an element of
the subgroup generated by Yi.

Finally, return the Full-form sequence for Yn.
Complexity. Since the number of elements in a full-form sequence is bounded

by m, the total number of elements in the sequences for N i, i = 0, . . . , c, is
constant, as is the number of relators in each Ri and the number of elements
in the generating set for the torsion subgroups. The depth of the recursion is
bounded by c. Hence the total number of elements to store and the number of
subroutine calls is constant.
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