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Abstract

A polynomial automorphism of An over a field of characteristic zero
is called co-tame if, together with the affine subgroup, it generates the
entire tame subgroup. We prove some new classes of automorphisms of An,
including 3-triangular automorphisms, are co-tame. Of particular interest,
if n = 3, we show that the statement “Every m-triangular automorphism
is co-tame” is true if and only if m ≤ 3; this improves upon positive results
of Bodnarchuk (for m ≤ 2, in any dimension n) and negative results of
the authors (for m ≥ 6, n = 3). The main technical tool we introduce is
a class of maps we term translation degenerate automorphisms; we show
that all of these are co-tame, a result that may be of independent interest
in the further study of co-tame automorphisms.

1 Introduction

Throughout, we use K to denote a field of characteristic zero, and we denote by
GAn(K) the group of polynomial automorphisms of An

K
. A fundamental question

in affine algebraic geometry is to understand the structure of this group and its
subgroups, most notably the tame subgroup TAn(K), defined as the subgroup
generated by affine and triangular automorphisms. When n = 2, a classical
result of Jung [6] is that every automorphism is tame; however, Shestakov and
Umirbaev [9] showed that this is not true when n = 3.

In this paper, we are interested in the notion of co-tame automorphisms,
first defined in [3]. An automorphism is said to be co-tame if, together with
the affine subgroup Affn(K), it generates the entire tame subgroup. These
automorphisms are particularly interesting when trying to understand the sub-
group lattice of GAn(K), since any intermediate subgroup between Affn(K)
and TAn(K) must contain an automorphism which is not co-tame. In dimen-
sion one, all automorphisms are affine, and hence all automorphisms are trivially
co-tame. In dimension two, the amalgamated free product structure of TA2(K)
provides that no automorphisms are co-tame. However, in dimension three and
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higher, things become more interesting. The first example of a co-tame auto-
morphism for n ≥ 3 was produced by Derksen in 1997 (unpublished), namely
(x1 + x22, x2, . . . , xn) ∈ GAn(K).

In 2002, Bodnarchuk [1] showed that all triangular maps are either affine
or co-tame; further, he showed that all bitriangular maps (those of the form
τ1ατ2, where τ1, τ2 are triangular and α is affine) are also either affine or co-
tame. He also showed [2] that all non-affine parabolic and biparabolic maps
are co-tame (see sections 1.1 and 1.2 for precise definitions, and section 2.1 for
proofs of these results). The first author [3] showed that even certain wild auto-
morphisms, including the famous Nagata map are co-tame. The first example
of an automorphism (in characteristic zero) which is tame but not co-tame was
produced by the authors in [4].

In this paper, we aim to improve upon the results of Bodnarchuk. We say
a (tame) automorphism is m-triangular if it can be written as α0τ1α1 · · · τmαm

where each τi is triangular and each αi is affine. We remark that a m-triangular
map could also be k-triangular for some k 6= m. Bodnarchuk’s results lead us
to ask, for which m are all m-triangular maps either affine or co-tame? While
the aforementioned results of Bodnarchuk give a positive answer for m ≤ 2 in
all dimensions, the example of [4] is a 6-triangular automorphism in dimension
3 that is not co-tame. Our first main result is to improve Bodnarchuk’s positive
result.

Theorem 1. For any n ≥ 3, every 3-triangular map is either affine or co-tame.

In the final section of this paper we improve the result of the authors in [4]
to produce a 4-triangular automorphism that is not co-tame, giving

Theorem 2. If n = 3, the statement “Every m-triangular map is either affine
or co-tame” is true if and only if m ≤ 3.

The basic technique we use to show that a certain class of automorphisms are
co-tame is quite simple. Consider the translation θ = θr,c := (x1, . . . , xr−1, xr +
c, xr+1, . . . , xn) for some c ∈ K; given ϕ ∈ GAn(K), we then consider the map
ϕ̃ = ϕ−1θϕ. By carefully choosing the variable xr, we ensure that ϕ̃ remains
in the desired class of maps (e.g. triangular, parabolic, etc.) and set up an
induction on an appropriately chosen degree of ϕ. It is easy to see that if ϕ̃ is
co-tame, then ϕ must be as well. If we can repeat this process and eventually
produce a known co-tame map (e.g. Derksen’s map, a triangular map, etc.),
then ϕ has to be co-tame.

The key obstacle is that this technique breaks down if ϕ̃ ∈ Affn(K). The
simple approach is to simply choose a different c ∈ K. However, for some maps,
for a fixed index r, every choice of c results in ϕ̃ being affine. We term these
maps translation degenerate in xr , and study them in detail in section 3. In
fact, we show the following, which may be of independent interest.

Theorem 3. Let n ≥ 3 and let ϕ ∈ GAn(K). Fix 1 ≤ r ≤ n, and for c ∈ K, set
θr,c = (x1, . . . , xr−1, xr + c, xr+1, . . . , xn). If ϕ−1θr,cϕ is affine for each c ∈ K,
then ϕ is either affine or co-tame.
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This result allows us to prove in section 2 that various classes of maps,
including 3-triangular maps, are co-tame. We first give proofs of Bodnarchuk’s
results in section 2.1 (including a new proof of the biparabolic case), and prove
Theorem 1 in section 2.2. We also show that any exponential of a multiple of
a triangular derivation is co-tame; this class of maps includes the Nagata map.
We reserve the final section for our construction of a 4-triangular map that is not
co-tame; the reader is advised to familiarize themselves with the notations and
techniques from [4] before reading this section, which can be read independently
of the rest of this paper.

1.1 Polynomial Automorphisms

In this section, n ≥ 1 is an integer and R is an integral domain.

We denote by R∗ the group of units of R and we use R[n] = R[x1, . . . , xn] for
the polynomial ring in n variables. We denote by GAn(R) the group of poly-
nomial automorphisms of SpecR[n] over SpecR. This group is anti-isomorphic
to the group of R-automorphisms of R[n] (some authors define it as such). We
freely abuse this correspondence and, given φ ∈ GAn(R) and P ∈ R[n], we
denote by (P )φ the image of P by the automorphism of R[n] corresponding to
φ. Given φ, ψ ∈ GAn(R) and P ∈ R[n], we thus have the natural composition
(P )(φψ) = ((P )φ)ψ. We refer the reader to [5] for a comprehensive reference
on polynomial automorphisms.

The general automorphism group GAn(R) has several important subgroups;
the following definitions are fairly standard (cf. [11]), but reproduced here for
clarity and the convenience of the reader.

• Affn(R) is the affine subgroup, consisting of all automorphisms whose com-
ponents all have degree one and GLn(R) ⊂ Affn(R) is the linear subgroup,
consisting of affine automorphisms whose components have constant term
equal to zero.

• BAn(R) is the subgroup of (lower) triangular automorphisms; that is,
those of the form

(u1x1 + P1, u2x2 + P2(x1), . . . , unxn + Pn(x1, . . . , xn−1))

for some ui ∈ R∗ and Pi ∈ R[x1, . . . , xi−1].

• TAn(R) = 〈Affn(R),BAn(R)〉 is the tame subgroup. It is a classical
theorem of Jung [6] that TA2(K) = GA2(K), while a very deep result of
Shestakov and Umirbaev [9] is that TA3(K) 6= GA3(K). The so-called
tame generators problem remains open in higher dimensions.

• Sn is the symmetric group on the n symbols x1, . . . , xn. Given two in-
tegers 1 ≤ r, s ≤ n such that r 6= s, we denote by (xr ↔ xs) ∈ Sn the
transposition exchanging xr and xs.
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• Trn,1(R) is the subgroup of translations on the first component, that is
the subgroup of automorphisms of the form θ1,c := (x1 + c, x2, . . . , xn) for
some c ∈ R.

• Trn,r(R) (where 1 ≤ r ≤ n) is the subgroup of translations the r-th
component, that is the subgroup of automorphisms of the form θr,c :=
πθ1,cπ for some c ∈ R where π = (x1 ↔ xr). In particular, Trn,n(R) is the
subgroup of translations on the last component, that is the subgroup of
automorphisms of the form θn,c := (x1, . . . , xn−1, xn + c) for some c ∈ R.

• Trn(R) is the subgroup of all translations, that is the subgroup of auto-
morphisms of the form θ1,c1 · · · θn,cn = (x1 + c1, . . . , xn + cn) for some
c1, . . . , cn ∈ R.

For an R-algebra A, we use LNDRA to denote the set of locally nilpotent
R-derivations of A.

• If D ∈ LNDR A and f ∈ kerD, then fD ∈ LNDR A as well.

• Given D ∈ LNDRR
[n], we denote the exponential of D by exp(D) ∈

GAn(R), given by (xr)(exp(D)) =
∑

i=0
1
i!D

i(xr).

• D ∈ LNDRR
[n] is called triangular if D(xi) ∈ R[i−1]. If D is triangular,

then exp(D) ∈ BAn(R).

1.2 Parabolic Automorphisms

In this section n ≥ 1 is an integer.

Definition 1. The parabolic subgroup of GAn(K) is the normalizer of Trn,n(K)
in GAn(K):

PAn(K) = {φ ∈ GAn(K) |φTrn,n(K) = Trn,n(K)φ}.

The elements of PAn(K) are called parabolic automorphisms.

In order to prove a characterization of parabolic automorphisms in Lemma
5, we make the following definition.

Definition 2. Given 1 ≤ r ≤ n, we denote by ∆r : K[n] → K[n] the finite
partial derivative defined by ∆r(P ) = (P )θr,1 − P for all P ∈ K[n].

The following lemma is classical and easy to prove via Taylor’s theorem
(using that K is a field of characteristic zero).

Lemma 4. Given 1 ≤ r ≤ n, a ∈ K and P ∈ K[n], we have:
1) ∆r(P ) = a⇔ P − axr ∈ K[x1, . . . , xr−1, xr+1, . . . , xn],
2) if degxr

(P ) = d ≥ 1 then

∆r(P ) =
d−1∑

i=0

1

i!

∂iP

∂xir
.

In particular, degxr
(∆r(P )) = d− 1.
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Lemma 5. Let φ ∈ GAn(K) be an automorphism. The three following proper-
ties are equivalent:
(i) φ ∈ PAn(K),
(ii) φTrn,n(K)φ−1 ⊂ Trn,n(K),
(iii) there exist a ∈ K

∗ and P1, . . . , Pn ∈ K
[n−1] such that

φ = (P1, . . . , Pn−1, axn + Pn) = (P1, . . . , Pn−1, xn)(x1, . . . , xn−1, axn + Pn).

Proof.
(i) ⇒ (ii): This is obvious.
(ii) ⇒ (iii): Let φ = (Q1, . . . , Qn) ∈ GAn(K) satisfying (ii). Then there exists
a ∈ K∗ such that φ θn,1 φ

−1 = θn,a. This implies ∆n(Qi) = 0 for all 1 ≤ i ≤ n−1
and ∆n(Qn) = a. We deduce that Q1, . . . , Qn−1, Qn − axn ∈ K[n−1] using
Lemma 4.
(iii) ⇒ (i): If φ is as in (iii) then φ θn,c φ

−1 = θn,ac and φ−1 θn,c φ = θn,c/a for
all c ∈ K and we deduce that φ is a parabolic automorphism.

Remark 1. Lemma 5 implies that PAn(K) is the semi-direct product of the
subgroup

{(P1, . . . , Pn−1, xn) ∈ GAn(K) |P1 . . . , Pn−1 ∈ K
[n−1]},

which we identify with GAn−1(K), and

{(x1, . . . , xn−1, axn + Pn) ∈ GAn(K) | a ∈ K
∗, Pn ∈ K

[n−1]},

which is a subgroup of BAn(K) that we identify with BA1(K
[n−1]).

Remark 2. When 1 ≤ n ≤ 3, we have PAn(K) ⊂ TAn(K). Nevertheless, we
don’t know if all parabolic automorphisms are tame when n ≥ 4.

2 Families of cotame automorphisms

Throughout this section, n ≥ 3 is an integer.

In this section, we prove that various classes of maps are co-tame, including
3-triangular maps in section 2.2. Some of these proofs rely on Theorem 21,
which we prove in section 3.

Definition 3.

1) An automorphism φ ∈ GAn(K) is said to be co-tame if TAn(K) ⊂ 〈f,Affn(K)〉.
2) Given φ, ψ ∈ GAn(K), we write φ ≃ ψ when φ and ψ are affinely equivalent,
i.e., if there exist α1, α2 ∈ Affn(K) such that φ = α1ψα2. It follows immediately
that if φ ≃ ψ, then φ is co-tame if and only if ψ is co-tame.
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2.1 Known results

In this section, we briefly discuss the known results on families of automorphisms
that are co-tame (the reader familiar with this history may skip ahead to section
2.2). The first example of a co-tame automorphism was produced by Derksen
(unpublished, but see [5] Theorem 5.2.1 for a proof).

Theorem 6 (Derksen, 1997). The automorphism (x1+x
2
2, x2, . . . , xn) ∈ BAn(K)

is co-tame.

Subsequently, Bodnarchuk showed that all triangular and parabolic auto-
morphisms are either affine or co-tame; we are unaware of proofs appearing in
English in the literature, so we include proofs of these two statements here.

Theorem 7 (Bodnarchuk, 2002). A triangular automorphism τ ∈ BAn(K) is
either affine or co-tame.

Proof. Note that without loss of generality, we may assume that the affine part
of τ is the identity (because τ is affinely equivalent to an automorphism of this
form). We assume that τ is not affine and we write (xi)τ = xi+Pi(x1, . . . , xi−1)
with Pi ∈ K[i−1] for each 1 ≤ i ≤ n. First, suppose degPr ≥ 2 for some
1 ≤ r ≤ n− 1. Then we consider α = (x1, . . . , xn−1, xn + xr) ∈ Affn(K) and we
observe that τ−1ατ = (x1, . . . , xn−1, xn + Pr).

So we may now assume that τ = (x1, . . . , xn−1, xn+P ) for some P ∈ K[n−1]

with degP ≥ 2 (since τ−1ατ being co-tame implies τ is co-tame). Now, let
1 ≤ s ≤ n − 1 be such that P ∈ K[s] r K[s−1]. We assume s > 1, and
will return to the s = 1 case (i.e., P ∈ K[x1] r K) momentarily. Set δ =
(x1, . . . , xs−1, xs + x1, xs+1, . . . , xn) ∈ Affn(K). Then one easily computes that
δ−1τ−1δτ = (x1, . . . , xn−1, xn+P0) where P0 ∈ K[n−1] with degP0 = degP ≥ 2,
and degxs

P0 < degxs
P . Inducting downwards on degxs

P , we may assume

P ∈ K[s−1] with degP ≥ 2. Inducting downwards on s, we may assume further
that P ∈ K[x1]rK.

Now, let θ = θ1,1 = (x1+1, x2, . . . , xn) ∈ Trn,1(K), and note that θ−1τ−1θτ =
(x1, . . . , xn−1, xn +P0) with P0 = −∆1(P ) ∈ K[x1] and degP0 = degP − 1. In-
ducting downwards again on degP , we may assume degP = 2, in which case
τ is affinely equivalent to Derksen’s map (x1 + x22, x2, . . . , xn), and is therefore
co-tame by Theorem 6.

Theorem 8 (Bodnarchuk, 2002). A parabolic automorphism ψ ∈ PAn(K) is
either affine or co-tame.

Proof. Using Lemma 5, we write ψ = (P1, . . . , Pn−1, axn + Pn) with a ∈ K∗

and P1, . . . , Pn ∈ K[n−1]. If (P1, . . . , Pn−1) ∈ Affn−1(K), then ψ is affinely
equivalent to (x1, . . . , xn−1, axn + Pn) ∈ BAn(K), so ψ is either affine or co-
tame by Theorem 7. Otherwise, there exists 1 ≤ r ≤ n − 1 with deg(Pr) ≥ 2.
We consider α = (x1, . . . , xn−1, xn + axr) ∈ Affn(K) and we have:

ψ−1αψ = (x1, . . . , xn−1, xn + Pr) ∈ BAn(K)rAffn(K).

Again Theorem 7 implies ψ−1αψ and then ψ are co-tame.
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Remark 3. This immediately implies that every automorphism is stably co-tame,
as the addition of a variable makes the map parabolic. The question of stable
co-tameness is more intricate over a field of positive characteristic; see [7].

Bodnarchuk later showed that all biparabolic maps are co-tame; we present
a new proof using the fact that translation degenerate maps (see Definition 5)
are either affine or co-tame (Theorem 21).

Theorem 9 (Bodnarchuk, 2005). Let ψ1, ψ2 ∈ PAn(K) and let α ∈ Affn(K).
Then ψ1αψ2 is either affine or co-tame.

Proof. If ψ1αψ2 is translation degenerate in xn then ψ1αψ2 is either affine or
co-tame by Theorem 21. Suppose ψ1αψ2 is not translation degenerate in xn.
Thus we may choose c ∈ K such that, setting θ = θn,c, (ψ1αψ2)

−1θ(ψ1αψ2) is
not affine. We compute

(ψ1αψ2)
−1θ(ψ1αψ2) = ψ−1

2 α−1θn,c/aαψ2

where a ∈ K∗ is such that (xn)ψ1 − axn ∈ K[n−1]. Note that α−1θn,c/aα ∈

Trn(K), and therefore ψ−1
2 α−1θn,c/aαψ2 ∈ PAn(K). Since it is nonaffine, it

must be co-tame by Theorem 8, and thus ψ1αψ2 is co-tame.

2.2 3-triangular maps are co-tame

In this section we prove Theorem 1. Suppose φ is a 3-triangular map, i.e.,
φ = α0τ1α1τ2α2τ3α3 for some τi ∈ BAn(K), and αi ∈ Affn(K). First, since
Affn(K) = GLn(K) ⋉ Trn(K), it suffices to assume αi ∈ GLn(K). Next, ob-
serve that we can can assume α0 = α3 = id (since φ is affinely equivalent to
α−1
0 φα−1

3 ). If φ is translation degenerate in xn then φ is either affine or co-tame
by Theorem 21, so we suppose φ is not translation degenerate in xn. Thus we
may choose c ∈ K such that, setting θ = θn,c, φ

−1θφ is not affine. Then it
suffices to show φ−1θφ is co-tame; we compute

φ−1θφ = τ−1
3 α−1

2

(
τ−1
2 α−1

1 τ−1
1 θτ1α1τ2

)
α2τ3.

However, note that τ−1
1 θτ1 = θ, and thus α−1

1 τ−1
1 θτ1α1 = α−1

1 θα1 ∈ Trn(K),
which implies τ−1

2

(
α−1
1 τ−1

1 θτ1α1

)
τ2 ∈ BAn(K). Thus, Theorem 1 is a conse-

quence of the following theorem.

Theorem 10. Let ψ ∈ PAn(K), let τ ∈ BAn(K), and let α ∈ GLn(K). Then
ψ−1α−1ταψ is either affine or co-tame.

Before proving this, we require a definition and a lemma that will provide
the crucical inductive step in the proof of Theorem 10.

Definition 4. For 1 ≤ r ≤ n, we define the map dr : BAn(K) → Nn by

dr(τ) =
(
degxr

((x1)τ), . . . , degxr
((xn)τ)

)
.
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We will use er to denote the r-th standard basis vector of Nn, and <lex to
denote the lexicographic ordering on Nn. Note that for any τ ∈ BAn(K), if we
write (xi)τ = uixi + Pi for some ui ∈ K∗ and Pi ∈ K[i−1], then we have

dr(τ) =
(
0, . . . , 0, 1, degxr

(Pr+1), . . . , degxr
(Pn)

)
≥lex er.

Lemma 11. Let τ ∈ BAn(K) and let θ = θr,cr . . . θn,cn = (x1, . . . , xr−1, xr +
cr, , . . . , xn + cn) ∈ Trn(K) for some cr ∈ K∗ and cr+1, . . . , cn ∈ K. Set τ̃ =
τ−1θτ ∈ BAn(K). If dr(τ) >lex er, then dr(τ̃ ) <lex dr(τ).

Proof. Write τ = τ1 · · · τn, where τi = (x1, . . . , xi−1, uixi + Pi, xi+1, . . . , xn) for
some ui ∈ K∗ and Pi ∈ K[i−1] (1 ≤ i ≤ n).

Observe that

τ̃ = τ−1
n · · · τ−1

1 θτ1 · · · τn

= τ−1
n · · · τ−1

r θτr · · · τn.

Write τ̃ = (x1, . . . , xr−1, xr+Qr, . . . , xn+Qn) for some Qi ∈ K[x1, . . . , xi−1].
It is easy to see that, for each r ≤ i ≤ n,

τ−1
i · · · τ−1

r θrτr · · · τi = (x1, . . . , xr−1, xr +Qr, . . . , xi +Qi, xi+1, . . . , xn),

which immediately implies that Qr = u−1
r cr and for r + 1 ≤ i ≤ n,

Qi = Pi(x1, . . . , xi−1)− Pi(x1, . . . , xr−1, xr +Qr, . . . , xi−1 +Qi−1).

Since dr(τ) >lex er, we may let l ≥ r+1 be minimal such that degxr
(Pl) > 0.

Note that this implies Qi ∈ K[x1, . . . , xr−1, xr+1, . . . , xi−1] for r < i < l; then
one easily sees from Taylor’s formula that degxr

(Ql) = degxr
(Pl)− 1, and thus

dr(τ̃ ) <lex dr(τ).

Proof of Theorem 10. Set φ = ψ−1α−1ταψ. Without loss of generality, we may
assume that φ is not translation degenerate. Then there exists c ∈ K such that
(letting θ = θn,c) φ

−1θφ is not affine. Set

θ̃ = αθα−1 and τ̃ = τ−1θ̃τ,

and note θ̃ ∈ Trn(K). In particular, writing

α = (a1,1x1 + · · ·+ a1,nxn, . . . , an,1x1 + · · ·+ an,nxn) ∈ GLn(K),

we have θ̃ = (x1 + a1,nc, . . . , xn + an,nc).
We compute

φ−1θφ = ψ−1α−1τ−1αψθψ−1α−1ταψ

= ψ−1α−1τ−1αθα−1ταψ

= ψ−1α−1τ−1θ̃ταψ

= ψ−1α−1τ̃αψ.
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First, let us suppose that τ̃ ∈ Affn(K). Then α−1τ̃α ∈ Affn(K), in which
case φ−1θφ = ψ−1

(
α−1τ̃α

)
ψ is nonaffine and biparabolic, and thus co-tame by

Theorem 9.
Next, we suppose instead that there exist some 1 ≤ r ≤ n with ar,n 6= 0

and dr(τ) >lex er; we claim that if no such r exists, then τ̃ ∈ Affn(K). Indeed,
write (xi)τ = uixi + Pi for some ui ∈ K and Pi ∈ K[x1, . . . , xi−1] for each
1 ≤ i ≤ n. Then (Pi)θ̃ = Pi for each i, and a simple computation shows
(xi)τ̃ = xi + u−1

i ai,nc for each 1 ≤ i ≤ n, in which case τ̃ ∈ Trn(K).
So we let r be minimal such that ar,n 6= 0 and dr(τ) >lex er. By Lemma

11, we have dr(τ̃ ) <lex dr(τ). We can thus repeat the process until we obtain
dr(τ̃ ) = er, allowing us to induct upwards on r. This process must eventually
terminate by producing either a translation degenerate map (which is co-tame
by Theorem 21), or a map of the form ψ−1ατ̃αψ in which τ̃ is affine, which we
showed above must be co-tame.

2.3 Some results on exponentials

In [3], the first author showed that the Nagata map, shown to be wild by
Shestakov and Umirbaev [9], is co-tame. Since it is well known that the Nagata
map can be given as the exponential of a multiple of triangular locally nilpotent
derivation, we can view the following as a generalization of this result (and also
as a generalization of Bodnarchuk’s result that triangular automorphisms are
co-tame).

Theorem 12. Let D ∈ LNDK K[n] be triangular, and let F ∈ kerD. Then
exp(FD) is either affine or co-tame.

Before proving this, we remark that this is in striking parallel to the well
known result of Smith [10] that all such maps are stably tame.

Theorem 13 (M. Smith). Let D ∈ LNDK K[n] be triangular, and let F ∈ kerD.
Then exp(FD) is stably tame.

In fact, rather than prove Theorem 12, we generalize to the following.

Theorem 14. Let D ∈ LNDK K[n] be triangular and let F ∈ kerD. Let ψ1, ψ2 ∈
PAn(K). Then φ = ψ1 exp(FD)ψ2 is either affine or cotame.

Proof. First, observe that if F ∈ K[n−1], then exp(FD) and then φ is parabolic
and thus either affine or co-tame. We therefore induct downward on degxn

F ;
assume degxn

F > 0. By Theorem 21, we may assume that exp(FD) is not
translation degenerate. Then there exists c ∈ K such that, letting θ = θn,c, we
have θ−1 exp(−FD)θ exp(FD) /∈ Affn(K). But observe that

θ−1 exp(−FD)θ exp(FD) = exp((F − (F )θ)D),

and degxn
(F − (F )θ) < degxn

F by Taylor’s theorem. Finally, compute

θ−1(ψ1 exp(FD)ψ2)
−1θ(ψ1 exp(FD)ψ2) = ψ−1

2

(
θ−1 exp(−FD)θ exp(FD)

)
ψ2

= ψ−1
2 exp ((F − (F )θ)D)ψ2.

Induction completes the proof.
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3 Translation degenerate automorphisms

In this section, n ≥ 3 is an integer.

We now aim to understand the key technical hurdle appearing in the proofs
of the results in the previous section, which we term translation degenerate
automorphisms. The goal of this section is to prove that they, too, are either
affine or co-tame (Theorem 21).

Definition 5. Given 1 ≤ r ≤ n, an automorphism φ ∈ GAn(K) is called
translation degenerate in xr if φ

−1 Trn,r(K)φ ⊂ Affn(K). For the sake of brevity,
we will say φ is translation degenerate if it is translation degenerate in at least
one xr.

Example 1. If φ ∈ PAn(K), then φ is translation degenerate in xn.

Remark 4. Fix 1 ≤ r ≤ n. Let φ ∈ GAn(K) be an automorphism.
a) For all α ∈ Affn(K), φ is translation degenerate in xr if and only if φα is.
b) φ is translation degenerate in xr if and only if πφ is translation degenerate
in x1, where π = (x1 ↔ xr). So we focus on the case r = 1.

Remark 5. Let τ ∈ BA3(K) be a triangular automorphism. If τ is translation
degenerate in x1, then it need not be the case that τ−1 is also translation
degenerate in x1 (as one can see from Example 2 below).

Example 2. Let τ = (x1, x2 − 1
2x

2
1, x3 − x1x2 + 1

3x
3
1) ∈ BA3(K). We have

τ−1 = (x1, x2 +
1
2x

2
1, x3 + x1x2 +

1
6x

3
1). For any c ∈ K∗, one easily computes

τ−1θ1,cτ =

(
x1 + c, x2 + cx1 +

1

2
c2, x3 + cx2 +

1

2
c2x1 +

1

6
c3
)

∈ Aff3(K) and

τθ1,cτ
−1 =

(
x1 + c, x2 − cx1 −

1

2
c2, x3 − cx2 +

1

2
cx21 + c2x1 +

1

3
c3
)

6∈ Aff3(K).

Therefore τ is translation degenerate in x1 but τ−1 is not.

As is often the case, it is useful to think of the group Trn,r(K) in Definition 5
as an element of Affn(K[t]), and specialize by substituting c ∈ K in for t. We
first check that this technique behaves well with respect to our definition.

Lemma 15. Let α ∈ GAn(K[t]). Let αc ∈ GAn(K) denote the image of α under
the specialization map GAn(K[t]) → GAn(K) given by t 7→ c. If αc ∈ Affn(K)
for every c ∈ K, then α ∈ Affn(K[t]).

Proof. For each 1 ≤ i ≤ n, write α(xi) =
∑

v∈Nn ai,v(t)x
v for some ai,v ∈ K[t].

If ai,v(t) is nonzero for some monomial xv of degree greater than 1, we can
choose c ∈ K such that ai,v(c) 6= 0, contradicting that αc ∈ Affn(K). Thus we
must have α ∈ Affn(K[t]).

Corollary 16. Let φ ∈ GAn(K). Then φ is translation degenerate in x1 if and
only if φ−1θ1,tφ ∈ Affn(K[t]).
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Now, we proceed with trying to describe translation degenerate maps in
sufficient detail. Our goal is to prove a factorization theorem, Theorem 20,
which will allow us to prove in Theorem 21 that all translation degenerate maps
are either affine or co-tame. We begin with two lemmas. The first idea is to use
Taylor’s theorem to interpret the assumption φ is translation degenerate in x1
as a differential equation and then solve this equation.

Lemma 17. Let φ ∈ GAn(K) be translation degenerate in x1. Then, writing
φ−1 = (H1, . . . , Hn), there exist ai,j,k, bi,k ∈ K such that

∂kHi

∂xk1
=

n∑

j=1

ai,j,kHj + bi,k

for each 1 ≤ i ≤ n and k ≥ 0. Moreover, letting A = (ai,j,1) ∈ Mn(K) and
B = (bj,1) ∈ Mn,1(K), A is nilpotent; and for each k > 1, we have

ai,j,k = (Ak)i,j

bi,k = (Ak−1B)i,1.

Proof. Write φ−1 = (H1, . . . , Hn), and let θ = θ1,t ∈ Affn(K[t]), so we have

(xi)φ
−1θ = Hi(x1 + t, x2, . . . , xn) =

∑

k=0

tk

k!

∂kHi

∂xk1
.

By Corollary 16, we may write φ−1θ = αφ−1 for some α ∈ Affn(K[t]). For each
1 ≤ i ≤ n, write (xi)α =

∑n
j=1 ai,j(t)xj + bi(t) for some ai,j(t), bi(t) ∈ K[t].

Then we have for each 1 ≤ i ≤ n

∑

k=0

tk

k!

∂kHi

∂xk1
=

n∑

j=1

ai,j(t)Hj + bi(t).

Write ai,j(t) =
∑

k=0 ai,j,k
tk

k! and bi(t) =
∑

k=0 bi,k
tk

k! . Then we see

∑

k=0

tk

k!

∂kHi

∂xk1
=
∑

k=0

tk

k!




n∑

j=1

ai,j,kHj + bi,k



 .

So in particular, we have for each k ≥ 0,

∂kHi

∂xk1
=

n∑

j=1

ai,j,kHj + bi,k.
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We prove the formula for ai,j,k and βi,k by induction on k. We compute

∂kHi

∂xk1
=

∂

∂x1




n∑

j=1

ai,j,k−1Hj + bi,k




=

n∑

j=1

ai,j,k−1

(
n∑

l=1

aj,l,1Hl + bj,1

)

=

n∑

l=1

Hl




n∑

j=1

(Ak−1)i,jaj,l,1


+

n∑

j=1

(Ak−1)i,jbj,1

=

n∑

l=1

Hl(A
k)i,l + (Ak−1B)i,1.

Finally, we observe that this formula immediately implies that A = (ai,j,1) is
nilpotent, as ai,1,k = · · · = ai,n,k = 0 whenever k > degx1

Hi.

Lemma 18. Let φ ∈ GAn(K) be translation degenerate in x1. There exists λ ∈

GLn(K) such that writing (φλ)−1 = (H1, . . . , Hn) and ∂kHi

∂xk
1

=
∑n

j=1 ai,j,kHj +

bi,k as in Lemma 17, we have (ai,j,1) ∈ Mn(K) is a nilpotent lower triangular
Jordan matrix with b1,1 6= 0.

Proof. As in Lemma 17, let θ = θ1,t ∈ Affn(K[t]), and write φ−1θ = αφ−1

for some α ∈ Affn(K[t]). Note that for any λ ∈ GLn(K) we have (φλ)−1θ =
λ−1αλ(φλ)−1 . Thus, simply choose λ ∈ GLn(K) such that λ−1(ai,j,1)λ is in
lower triangular Jordan form.

To see that we can also take b1,1 6= 0, note that by expanding along the
r-th column, we see that the the unital Jacobian determinant J(H1, . . . , Hn) is
contained in the ideal (b1,1, b1,2 + a2,1,1H1, . . . , b1,n + an,n−1,1Hn−1). Choose a

point (c1, . . . , cn) ∈ Kn such that Hi(c1, . . . , cn) = −
b1,i+1

ai+1,i
whenever ai+1,i 6=

0. Going modulo the ideal (x1 − c1, . . . , xn − cn), we have J(H1, . . . , Hn) ∈
(bi0,1, . . . , bik,1) where 1 = i0 < i1 < · · · < ik are the indices of the first row in
each Jordan block (i.e., ai,i−1 = 0). Therefore, not all bij ,1 are zero, so simply
permute the Jordan blocks to obtain b1,1 6= 0.

We next define a special type of translation degenerate automorphism that
appears in our factorization theorem. These can be thought of as a generaliza-
tion of Derksen’s map (see Example 3 below).

Definition 6. A triangular automorphism τ ∈ BAn(K) is said to be in tri-
angular translation degenerate form (TTD form) if there exist b2, . . . , bn ∈ K

(b1 = 1) and d2, . . . , dn ∈ {0, 1} (d1 = 0) such that (x1)τ = x1 and for each
2 ≤ i ≤ n:

(xk)τ = xk +
k−1∑

r=1

(−1)rxr1
r!

(dk−r+1,k xk−r + dk−r+2,k bk−r+1) +
(−1)kd2,kx

k
1

k!
.
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where (for 2 ≤ k, j ≤ n):

dj,k =

k∏

i=j

di =

{
1 if 2 ≤ k < j

dj · · · dk if 2 ≤ j ≤ k
.

Example 3. The triangular automorphism (x1, x2 − 1
2x

2
1, x3, . . . , xn), which is

affinely equivalent to Derksen’s map, is in TTD form with d2 = 1, d3 = · · · =
dn = 0 (d1 = 0), and b2 = · · · = bn = 0 (b1 = 1).

Example 4. The triangular automorphism in Example 2 is in TTD form with
b2 = b3 = 0 (b1 = 1) and d2 = d3 = 1 (d1 = 0).

Remark 6. We make few remarks about this definition:

• Given a triangular automorphism τ ∈ BAn(K) is in TTD we always con-
sider the parameters b2, . . . , bn ∈ K (b1 = 1) and d2, . . . , dn ∈ {0, 1}
(d1 = 0) as in Definition 6 without explicitly mentioning it.

• A triangular automorphism τ ∈ BAn(K) is in TTD form if and only if
there exist b2, . . . , bn ∈ K (b1 = 1) and d2, . . . , dn ∈ {0, 1} (d1 = 0)
such that τ = ν exp(−x1D), where D ∈ LNDK[x1]K

[n] is the triangular
derivation given by D(xk) = dkxk−1 + bk and ν ∈ BAn(K) is given by

(x1)ν = x1 and (xk)ν = xk + (−1)k

k! d2,k x
k
1 for all 2 ≤ k ≤ n.

• Given an integer 1 ≤ k ≤ n and a triangular automorphism τ ∈ BAn(K),
(xk)τ is affine if and only if dk = 0 and in this case (xk)τ = xk − bkx1.
Thus τ is affine if and only if dk = 0 for all 1 ≤ k ≤ n.

• As the name suggests, every triangular automorphism in TTD form is
translation degenerate in x1. We don’t actually require this fact, so we
omit the proof which consists of a straightforward but somewhat tedious
calculation.

Theorem 19. Let φ ∈ GAn(K) be an automorphism such that φ−1 = (H1, . . . , Hn)
and ∂Hi

∂x1
=
∑n

j=1 ai,jHj + bi for some nilpotent lower triangular Jordan matrix
(ai,j) ∈Mn(K) and bi ∈ K with b1 = 1. Then there exists τ ∈ BAn(K) in TTD
form such that τφ−1 = (H1, G2, . . . , Gn) for some Gi ∈ K[x2, . . . , xn].

Proof. We consider φ ∈ GAn(K) as in Theorem 19. We set di = ai,i−1 ∈ {0, 1}
for 2 ≤ i ≤ n and d1 = 0. Then by assumption, we have:

∂

∂x1
Hk = dkHk−1 + bk

for all 1 ≤ k ≤ n. By induction, we deduce

∂

∂x1
(dk−r+1,kHk−r + dk−r+2,kbk−r+1) = dk−r,kHk−r−1 + dk−r+1,kbk−r (1)

for all 1 ≤ k ≤ n and 1 ≤ r ≤ k − 1.
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We remark that the convention d1 = 0 gives ∂
∂x1

H1 = 1. We consider τ ∈
BAn(K) in TTD form with parameters b2, . . . , bn ∈ K (b1 = 1) and d2, . . . , dn ∈
{0, 1} (d1 = 0). For any 1 ≤ k ≤ n, we set Gk = (xk)τφ

−1. Since (x1)τ = x1,
we have (x1)τφ

−1 = H1. For each 2 ≤ k ≤ n, we have:

Gk = Hk +

k−1∑

r=1

(−1)rHr
1

r!
(dk−r+1,kHk−r + dk−r+2,kbk−r+1) +

(−1)kd2,kH
k
1

k!
.

Let 2 ≤ k ≤ n. We compute ∂
∂x1

Gk, first using the derivative of a product and
the formula (1) and then changing the variable r to s = r − 1 in the first sum:

∂Gk

∂x1
= dkHk−1 + bk +

k−1∑

r=1

(−1)rHr−1
1

(r − 1)!
(dk−r+1,kHk−r + dk−r+2,kbk−r+1)+

k−1∑

r=1

(−1)rHr
1

r!
(dk−r,kHk−r−1 + dk−r+1,kbk−r) +

(−1)kd2,kH
k−1
1

(k − 1)!

= dkHk−1 + bk −

k−2∑

s=0

(−1)sHs
1

s!
(dk−s,kHk−s−1 + dk−s+1,kbk−s)+

k−1∑

r=1

(−1)rHr
1

r!
(dk−r,kHk−r−1 + dk−r+1,kbk−r) +

(−1)kd2,kH
k−1
1

(k − 1)!

= dkHk−1 + bk − dkHk−1 − bk +
(−1)k−1d2,kH

k−1
1

(k − 1)!
+

(−1)kd2,kH
k−1
1

(k − 1)!

= 0.

We deduce that Gk ∈ K[x2, . . . , xn].

We are finally ready to fully describe translation degenerate maps.

Theorem 20. Let φ ∈ GAn(K) be translation degenerate. Then there exist
λ ∈ GLn(K), ρ ∈ Sn, τ ∈ BAn(K), and G,G2, . . . , Gn ∈ K[x2, . . . , xn] such
that setting

µ = (x1 +G(x2, . . . , xn), x2, . . . , xn)

γ = (x1, G2(x2, . . . , xn), . . . , Gn(x2, . . . , xn))

we have φ−1 = λτ−1γµρ. Moreover, τ is in TTD form.

Proof. First, note that an appropriate choice of ρ ∈ Sn allows us to assume
without loss of generality that φ is translation degenerate in x1. By Lemma
18, there exists λ ∈ GLn(K) such that (φλ)−1 = (H1, . . . , Hn) and ∂Hi

∂x1
=∑n

j=1 αi,jHj+bi where (ai,j) ∈Mn(K) is a nilpotent Jordan matrix with b1 6= 0.
Moreover, by altering λ by a diagonal matrix, we may assume b1 = 1.

By Theorem 19, there exists τ ∈ BAn(K) in TTD form such that τ(φλ)−1 =
(H1, G2, . . . , Gn) for some Gi ∈ K[x2, . . . , xn].. Note that ∂H1

∂x1
= 1, so H1 =
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x1 + P (x2, . . . , xn). Then letting µ = (x1 + P (x2, . . . , xn), x2, . . . , xn) and γ =
(x1, G2, . . . , Gn) ∈ GAn(K), we have τ(φλ)−1 = γµ, or φ−1 = λτ−1γµ as
required.

With this classification in hand, we can now show that translation degenerate
maps are either affine or co-tame.

Theorem 21. Let φ ∈ GAn(K) be translation degenerate. Then φ is either
affine or co-tame.

Remark 7. The alert reader will note that Theorem 20 shows that every transla-
tion degenerate map is affinely equivalent to a biparabolic automorphism, and
therefore is either affine or co-tame by a result of Bodnarchuk (Theorem 9).
However, by giving a direct proof of Theorem 21 here, we are able to use this
in our new proof of Bodnarchuk’s theorem in section 2.1.

Proof of Theorem 21. By Theorem 20 and an affine equivalence, we may assume
φ−1 = τ−1πψ where τ is in TTD form, π = (x1 ↔ xn) ∈ Sn, and ψ ∈ PAn(K).
Let α = (x1, . . . , xn−1, xn + xn−1) ∈ Affn(K) ∩ BA1(K

[n−1]). Then

φ−1αφ = τ−1πψαψ−1πτ = τ−1πα̃πτ

where α̃ = ψαψ−1 = (x1, . . . , xn−1, xn + (xn−1)ψ
−1) ∈ BA1(K

[n−1]). Since
showing that φ−1αφ is co-tame suffices to show φ is co-tame, we are thus reduced
to showing that maps of the form τ−1πα̃πτ are nonaffine (Lemma 22) and thus
co-tame (Lemma 23).

Lemma 22. Let τ ∈ BAn(K) be a nonaffine triangular automorphism in TTD
form and let µ = (x1 +G, x2, . . . , xn−1, xn + a) for some G ∈ K[x2, . . . , xn]rK

and a ∈ K. Then τ−1µτ is nonaffine.

Proof. Since τθn,a = θn,aτ , we can assume a = 0. For contradiction, we suppose

τ−1µτ is affine. Set G̃ = (G)τ , and note that G̃ must be linear as (x1)τ
−1µτ =

x1 + G̃.
We distinguish two cases: first suppose that d2 = 1, in which case (x2)τ =

x2 − b2x1 − 1
2x

2
1 (we remind the reader the parameters bi and di are from

Definition 6). Then

(x2)τ
−1µτ = x2 + b2G̃+ x1G̃+

1

2
G̃2.

Since we assumed τ−1µτ is affine, we must have G̃ = −2x1 + c for some c ∈ K,
and thus G = (G̃)τ−1 = −2x1 + c, contradicting G ∈ K[x2, . . . , xn].

Now, we suppose instead that d2 = 0. Since τ is nonaffine, we must have
dr = 0 and dr+1 = 1 for some 2 ≤ r ≤ n− 1. Then we have

(xr)τ = xr − brx1

(xr+1)τ = xr+1 − x1(xr + br+1) +
br
2
x21.
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Then

(xr+1)τ
−1µτ =

(
xr+1 + (x1 +G)(xr + br+1) +

br
2
(x1 +G)2

)
τ

= xr+1 + G̃(xr − brx1 + br+1) + brx1G̃+
br
2
G̃2.

Thus we must have br 6= 0 and G̃ = − 2
br
xr + c for some c ∈ K, and thus

G = (G̃)τ−1 = − 2
br
xr − 2x1 + c. Again, this contradicts G ∈ K[x2, . . . , xn],

completing the proof.

Lemma 23. Let τ ∈ BAn(K) be triangular automorphism in TTD form and
let µ = (x1 + G, x2, . . . , xn−1, xn + a) for some G ∈ K[x2, . . . , xn] and a ∈ K.
Then φ = τ−1µτ is either affine or co-tame.

Proof. Since τθn,a = θn,aτ , we can assume a = 0. We first observe that if τ
is affine then φ ≃ µ ≃ πµπ ∈ PAn(K) where π = (x1 ↔ xn); and similarly, if
G ∈ K[x2, . . . , xn−1] then µ ∈ PAn(K) and thus φ ∈ PAn(K). In both cases, φ
is affine or co-tame by Theorem 8.

So we now assume that τ is nonaffine and degxn
G ≥ 1. We prove that φ

is co-tame by induction on degxn
G. If degxn

G ≥ 2 then we set θ = θn,1 and
compute

φ−1θ φ = τ−1µ−1τθτ−1µτ = τ−1µ−1θµτ = τ−1µ̃τ

where µ̃ = µ−1θµ = (x1 + G̃, x2, . . . , xn−1, xn + 1) and G̃ = −∆n(G) ∈
K[x2, . . . , xn], so degxn

G̃ = degxn
G − 1 by Lemma 4. Since φ−1θn,1φ is co-

tame implies φ is co-tame, we may assume we are in one of the subsequent cases
with degxn

G = 1.
Case 1: Suppose G = Pxn + Q for some P,Q ∈ K[x2, . . . , xn−1] with P /∈ K.
As previously, (with again θ = θn,1) we have φ−1θφ = τ−1µ̃τ where µ̃ = (x1 +

G̃, x2, . . . , xn−1, xn + 1), where G̃ = −∆n(G) = −P ∈ K[x2, . . . , xn−1] r K.
Hence µ̃ ∈ PAn(K) and thus φ−1θφ = τ−1µ̃τ ∈ PAn(K). Since τ is nonaffine
and −P 6∈ K, Lemma 22 implies that φ−1θφ = τ−1µ̃τ is nonaffine. Therefore
φ−1θφ and thus φ are co-tame by Theorem 8.
Case 2: Suppose G = cxn + Q for some Q ∈ K[x2, . . . , xn−1] and c ∈ K∗. In
the following three subcases we consider a particular λ ∈ Affn(K) ∩ BAn(K)
and set λ̃ := τλτ−1 ∈ Affn(K). We prove that µ̃ := µ−1λ̃µ ∈ PAn(K) and
thus φ−1λφ = τ−1µ̃τ ∈ PAn(K). We also prove that φ−1λφ 6∈ Affn(K). Using
Theorem 8, we deduce that φ−1λφ and thus φ is co-tame. In the first two
subcases, the choice of λ is easy; however, for the last case we require Lemma 24
stated and proved below.
Case 2.1: Suppose di = 0 (hence (xi)τ = xi − bix1) for some 2 ≤ i ≤ n − 1.
We consider λ = (x1, . . . , xn−1, xn + xi − bix1) ∈ Affn(K) ∩ BAn(K). Then
λ̃ = (x1, . . . , xn−1, xn + xi) and µ̃ = (x1 − cxi, x2, . . . , xn + xi) ∈ PAn(K). To
check that φ−1λφ is nonaffine, note that φ−1λφλ−1 = τ−1(x1−cxi, x2, . . . , xn)τ
which is nonaffine by Lemma 22.
Case 2.2: Suppose d2,n−1 = 1 (equivalently d2 = · · · = dn−1 = 1) and dn = 0
(hence (xn)τ = xn − bnx1). We consider λ = (x1, . . . , xn−1, 2xn − (1c + bn)x1).
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Then λ̃ = (x1, . . . , xn−1, 2xn−
1
cx1), and µ̃ = (2x1+Q, x2, . . . , xn−1, xn−

1
cx1−

1
cQ). Since Q ∈ K[x2, . . . , xn−1], we have µ̃ ∈ PAn(K). Since d2 = 1, to
check that φ−1λφ is nonaffine, we proceed as in the proof of Lemma 22. By
contradiction, we suppose τ−1µ̃τ is affine. We set Q̃ = (Q)τ and note that Q̃
must be linear as (x1)τ

−1µ̃τ = 2x1 + Q̃. We have (x2)τ = x2 − b2x1 − 1
2x

2
1.

Then

(x2)τ
−1µ̃τ = x2 + b2x1 +

3

2
x21 + (2x1 +

b2
2

+ Q̃)Q̃

is affine. Thus Q̃ = −2x1+ c for some c ∈ K, and thus Q = (Q̃)τ−1 = −2x1+ c,
contradicting Q ∈ K[x2, . . . , xn−1].
Case 2.3: Suppose d2,n = 1 (equivalently d2 = · · · = dn = 1). Let a ∈ K∗ be
any non-root of unity, and set g = c−1(a− an) 6= 0. Let λ ∈ Affn(K)∩BAn(K)
be as in Lemma 24, and set λ̃ = τλτ−1. We compute

(x1)µ̃ := (x1)µ
−1λ̃µ = (x1 − cxn −Q) λ̃µ

=

(
ax1 − c

(
anxn + gx1 + (an − an−1)

n−1∑

r=2

wk−rxr

)
− (Q)λ̃

)
µ

=

(
anx1 − c

(
anxn + (an − an−1)

n−1∑

r=2

wk−rxr

)
− (Q)λ̃

)
µ

= an(x1 + cxn +Q)− c

(
anxn + (an − an−1)

n−1∑

r=2

wk−rxr

)
− (Q)λ̃

= anx1 +R,

where R = anQ− c(an − an−1)
∑n−1

r=2 wk−rxr − (Q)λ̃ ∈ K[x2, . . . , xn−1].

Note that, for each 2 ≤ k ≤ n−1, we have (xk)λ̃ ∈ K[x2, . . . , xk], so we have
(xk)µ̃ = (xk)λ̃. We deduce µ̃ ∈ PAn(K) and thus φ−1λσφ = τ−1µ̃τ ∈ PAn(K).
So we are left to check that τ−1µ̃τ is not affine.

First, suppose R /∈ K, in which case (R)τ must have degree at least 2. Since
(x1)τ

−1µ̃τ = ax1 + (R)τ we deduce τ−1µ̃τ is not affine, as required.
We may now assume that R ∈ K. We compute

(x2)τ
−1µ̃τ =

(
x2 +

1

2
x21 + b2x1

)
µ̃τ

=

(
a2x2 + (a2 − 1)b3 +

1

2
(anx1 +R)2 + b2(a

nx1 +R)

)
τ

= a2x2 +
1

2
(a2n − a2)x21 +

(
b2(a

n − a2) + anR
)
x1 + R̃

for some R̃ ∈ K. Since a is not a root of unity, we see τ−1µ̃τ is not affine, as
required.
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Lemma 24. Let τ ∈ BAn(K) be a triangular automorphism in TTD form with
d2,n = 1, and let g ∈ K and a ∈ K∗. There exists λ ∈ Affn(K) ∩ BAn(K) and

w1, . . . , wn−2 ∈ K such that, setting λ̃ = τλτ−1,

(xk)λ̃ =





ax1 k = 1

akxk + (ak − 1)bk+1 + (ak − ak−1)
∑k−1

r=2 wk−rxr 2 ≤ k ≤ n− 1

anxn + gx1 + (an − an−1)
∑n−1

r=2 wn−rxr k = n

.

Moreover, the wj satisfy the recursive definition

wj =

{
−b2 if j = 1

−
∑j−1

i=1 wibj−i+1 if 2 ≤ j ≤ n
. (2)

Proof. Let λ1 ∈ GLn(K) ∩ BAn(K) be given by

(xk)λ1 = xk +
a− 1

a

k−1∑

r=1

wk−rxr

where wj are defined as in (2). The proof is a straightforward but moderately
unpleasant computation; for each 2 ≤ k ≤ n, we have

(xk)τλ1τ
−1 =

(
xk +

k−1∑

i=1

(−1)ixi1
i!

(xk−i + bk−i+1) +
(−1)kxk1

k!

)
λ1τ

−1

(by definition of τ)

=

(
xk +

a− 1

a

k−1∑

r=1

wk−rxr +

k−1∑

i=1

(−1)ixi1
i!

(
xk−i +

a− 1

a

k−i−1∑

s=1

wk−i−sxs + bk−i+1

)

+
(−1)kxk1

k!

)
τ−1

(by definition of λ1)

=

(
xk +

k−1∑

i=1

(−1)ixi1
i!

(xk−i + bk−i+1) +
(−1)kxk1

k!

+
a− 1

a

k−1∑

r=1

wk−rxr +

k−2∑

i=1

(−1)ixi1
i!

(
a− 1

a

k−i−1∑

s=1

wk−i−sxs

))
τ−1

(because the sum
∑k−i−1

s=1 is equal to 0 when i = k − 1)

= xk +
a− 1

a

(
k−1∑

r=1

wk−rxr +

k−2∑

i=1

(−1)i

i!
xi1

k−i−1∑

s=1

wk−i−sxs

)
τ−1
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(by definition of τ)

= xk +
a− 1

a

(
k−1∑

r=1

wk−rxr +

k−1∑

r=2

wk−r

r−1∑

i=1

(−1)i

i!
xi1xr−i

)
τ−1

(in the sum
∑k−i−1

s=1 we changed the variable s to r = s+ i and then permuted

the two sums:
∑k−2

i=1

∑k−1
r=i+1 =

∑k−1
r=2

∑r−1
i=1 )

= xk +
a− 1

a

(
wk−1x1 +

k−1∑

r=2

wk−r

(
xr −

r−1∑

i=1

(−1)ibr−i+1

i!
xi1 −

(−1)r

r!
xr1

))

(we separed the first term of the first sum, factor
∑k−1

r=2 wk−r and then used the
definition of τ)

= xk +
a− 1

a

(
wk−1x1 +

k−1∑

r=2

wk−r

(
xr −

(−1)r

r!
xr1

)
−

k−2∑

i=1

(−1)i

i!
xi1

k−1∑

r=i+1

wk−rbr−i+1

)

(we permuted the two sums:
∑k−1

r=2

∑r−1
i=1 =

∑k−2
i=1

∑k−1
r=i+1, note that this is the

converse as previously)

= xk +
a− 1

a

(
k−1∑

r=2

wk−rxr −
(−1)k−1w1

(k − 1)!
xk−1
1

)
.

(changing the variable r to s = k−r, we have:
∑k−1

r=i+1 wk−rbr−i+1 =
∑k−i−1

s=1 wsbk−i−s+1 =
−wk−i )

Now we set bn+1 = 0 for convenience, and let λ0 ∈ Affn(K) ∩ BAn(K) be
given by

(xk)λ0 =

{
ax1 if k = 1

akxk + (ak − 1)bk+1 if 2 ≤ k ≤ n
.

Then we have (x1)τλ0τ
−1 = ax1 and, for 2 ≤ k ≤ n, we observe

(xk)τ = xk +

k−2∑

i=1

(−1)ixi1
i!

(xk−i + bk−i+1) +
(−1)k−1xk−1

1

(k − 1)!
b2 +

(−1)kxk1
k!

(1 − k)

(we separated the term k − 1 in the sum)

(xk)τλ0 = ak

(
xk +

k−2∑

i=1

(−1)ixi1
i!

(xk−i + bk−i+1) +
(−1)kxk1

k!
(1 − k)

+a−1 (−1)k−1xk−1
1

(k − 1)!
b2

)
+ (ak − 1)bk+1
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(by definition of λ0, two bk−i+1 terms canceled)

(xk)τλ0τ
−1 = ak

(
xk −

a− 1

a

(−1)k−1b2
(k − 1)!

xk−1
1

)
+ (ak − 1)bk+1.

Finally, define λ2 ∈ Affn(K)∩BA1(K) by λ2 = (x1, . . . , xn−1, xn+
g
an x1). Then

since λ2 and τ commute and w1 = −b2, it follows that setting λ = λ0λ1λ2
satisfies the lemma.

4 A 4-triangular automorphism that is not co-

tame

In this section, we improve the authors’ result of [4] to produce an example
of a 4-triangular automorphism that is not co-tame. This section can be read
independently of the previous sections, but the reader will want to be familiar
with the techniques used in [4]; for the sake of brevity, we adopt all the notations
therein for the remainder of this paper, and restrict our attention to n = 3. In
particular, we set β = (x + y2(y + z2)2, y + z2, z) ∈ BA3(K), π = (y, x, z) ∈
Aff3(K) and θN = (πβ)Nπ(πβ)−N . The goal of this section is to prove:

Theorem 25 (cf. [4] Theorem B). The automorphism θ2 is not co-tame.

The idea in [4] is to track the growth of particular sets of polynomials sat-
isfying certain degree constraints after repeated applications of the maps πβ,
πβ−1, and affine maps. The crucial technical theorem is

Theorem 26 ([4] Theorem 3). If N ≥ 3, then the set P∗ is stable under the
action of the automorphisms πβ, πβ−1, and (πβ−1)Nαπ(πβ)N for any α ∈
ArA4.

However, this fails for N = 2. We thus modify the argument by considering
the sets

P∗
4 =

⋃

m≥4,n≥0

P∗
m,n ⊂ P∗ and Q∗

4 =
⋃

m≥4,n≥0

Q∗
m,n ⊂ Q∗.

Note that for all integers m ≥ 1 and n ≥ 0, P∗
m,n ⊂ Q∗

4m,n, so we have P∗ ⊂ Q∗
4.

We prove an analagous theorem that holds for all N ≥ 2.

Theorem 27. If N ≥ 2, then the set Q∗
4 is stable under the action of the

automorphisms πβ, πβ−1 and (πβ−1)Nαπ(πβ)N for any α ∈ ArA4.

Before giving the proof, we note that we immediately obtain the following
corollaries analagous to [4].

Corollary 28 (cf. [4] Corollary 4). Let r ≥ 1 be an integer. Let α0, . . . , αr ∈ A,
and set φ = α0θ2α1 · · · θ2αr. If α1, . . . , αr−1 ∈ ArA4, then there exist α, α′ ∈ A
such that (y)αφα′ ∈ Q∗

4.
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Corollary 29 (cf. [4] Corollary 5). Let φ ∈ 〈A, θ2〉 r A. Then there exist
α, α′ ∈ A such that (y)αφα′ ∈ Q∗

4.

Corollary 30 (cf. [4] Corollary 6). We have: C = A4. In particular, C is a
finite cyclic group of order 1, 2, 3 or 6.

If f ∈ Q∗
4 then ldeg2(f) = (0,m, n) and deg(1,1,1)(f) ≥ 4, so we obtain the

following version of Corollary 7.

Corollary 31 (cf. [4] Corollary 7). Let φ ∈ TA3(K) be a tame automorphism
with deg(1,1,1)((f)φ) ≤ 4 for all f ∈ K[x] with deg(1,1,1)(f) = 1. If φ /∈ A, then
φ 6∈ 〈A, θ2〉. In particular, 〈A, θ2〉 is a proper subgroup of T .

We observe that this, together with Theorem 1, gives Theorem 2.

Corollary 32 (cf. [4] Corollary 8). The group 〈A, θ2〉 is the amalgamated free
product of A and 〈C, θ2〉 along their intersection C.

Remark 8. Using that that C is a finite group, one can easily check that the group
〈A, θN 〉 (for all N ≥ 2) shares with TA2(K) the property of being acylindrically
hyperbolic (see [8] for the definition).

We conclude the paper by proving Theorem 26.

Proof of Theorem 26. If γ ∈ {β, β−1} then (Q∗
4)πγ ⊂ Q∗

4 by Lemma 9 of [4]. If
α ∈ ArA3 then (Q∗

4)(πβ
−1)2αβπβ ⊂ Q∗

4 by Propositions 12, 14 and 15 of [4].
It remains to prove that (Q∗

4)(πβ
−1)2αβπβ ⊂ Q∗

4 in the case α ∈ A3 rA4. In
this case, we can write α = (u8x+cz+d, u2y, uz) for some u ∈ K∗ and c, d ∈ K).
Set γ = β−1πβ−1αβπβ and compute

γ = (z2x+ u2y2(y + z2)2 − (u8y + Z1)
2(u8y + Z2)

2, u8y + Z2, uz)

where Z1 = u8z2 + cz + d and Z2 = (u8 − u2)z2 + cz + d are polynomials in z
of degree ≤ 2. Moreover the degree of Z2 is ≤ 1 when u6 = 1.

We set X = (x)γ, Y = (y)γ, and Z = (z)γ, and examine their degrees.
Expanding X we have:

X = z2x+ u2(1− u30)y4 + 2u2((1 − u24(2u6 − 1))z2 − u22cz − u22d)y3

+(z4 − u16(Z2
1 + 4Z1Z2 + Z2

2 ))y
2 − 2u2(Z1Z

2
2 + Z2

1Z2)y − Z2
1Z

2
2 .

To compute the relevant degrees of X , we must consider 4 individual cases.

Case A Case B(2) Case B(1) Case B(0)
u30 6= 1 u30 = 1 and u6 6= 1 u6 = 1 and c 6= 0 u6 = 1, c = 0 and c 6= 0

In each of these cases, we summarize the relevant degrees of X ,Y , and Z.
In the table, l ∈ {0, 1, 2} distinguishes between cases B(0), B(1), and B(2).
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deg(1,1,0) deg(3,3,1) ldeg2
X (Case A) 4 12 (0, 4, 0)
X (Case B(l)) 3 9 + l (0, 3, l)

Y 1 3 (0, 1, 0)
Z 0 1 (0, 0, 1)

Now, we prove that (Q∗
4)πγ ⊂ Q∗

4 with the same technique as in Lemma 9
of [4]. Let m ≥ 4 and let n ≥ 0 be integers, and let P ∈ Q∗

m,n. For all
v = (i, j, k) ∈ supp (P ), we have i + j ≤ m, 3i + 3j + k ≤ 3m + n and
(xv)πγ = Y iXjZk.

First, in case A we compute

deg(1,1,0)((x
v)πγ) = i+ 4j ≤ 4(i+ j) ≤ 4m,

deg(3,3,1)((x
v)πγ) = 3i+ 12j + k ≤ 9(i+ j) + 3i+ 3j + k

≤ 9m+ 3m+ n = 3(4m) + n,

ldeg2((x
v)πγ) = (0, i+ 4j, k) ≤2 (0, 4m,n).

We check that the last inequality is an equality if and only if (i, j, k) = (0,m, n)
which belongs to supp (P ); thus (Q∗

m,n)πγ ⊂ Q∗
4m,n.

Now in cases B(l) we compute

deg(1,1,0)((x
v)πγ) = i + 3j ≤ 3(i+ j) ≤ 3m,

deg(3,3,1)((x
v)πγ) = 3i+ (9 + l)j + k ≤ (6 + l)(i+ j) + 3i+ 3j + k

≤ (6 + l)m+ 3m+ n = 3(3m) + lm+ n,

ldeg2((x
v)πγ) = (0, i+ 3j, lj + k) ≤2 (0, 3m, lm+ n).

We check that the last inequality is an equality if and only if (i, j, k) = (0,m, n)
which belongs to supp (P ); thus (Q∗

m,n)πγ ⊂ Q∗
3m,lm+n.
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