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Abstract

In this paper, we give a fast algorithm for the computation of the Arf closure of an
algebroid curve with more than one branch, generalizing an algorithm presented by Arslan
and Sahin for the algebroid branch case.
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Introduction
Let R be an algebroid curve, i.e, following Zariski’s terminology, a one-dimensional, reduced,
local ring of the form K[[x1, x2, . . . , xk]]/I , where K is a field, xi are indeterminates and
I = P1 ∩ . . . ∩ Pn, with Pi prime ideals of height k − 1. If K is algebrically closed, these
rings can be obtained as the completion of local rings of algebraic curves at a singular point.
SinceR is reduced, the ideal I can be written as intersection of its minimal primes I =

⋂n
i=0 Pi.

Thus we can consider the inclusion τ : R ↪→ K[[x1, . . . , xk]]/P1 × . . .×K[[x1, . . . , xk]]/Pn.
Furthermore, we will set Ri = K[[x1, . . . , xk]]/Pi for i = 1, . . . n and these rings will be called
algebroid branches. Considering the integral closures in Q(R), we have R ∼= R1 × . . . × Rk

where each Ri is a complete one-dimensional domain, that is a DVR, thus we can associate to
each element x ∈ K[[ti]] a valuation νi(x). Finally, becauseR ⊆ K[[t1]]×K[[t2]]×. . .×K[[tn]],
we can define the valuation of an element y ∈ R, such that τ(y) = (φ1(t1), . . . , φn(tn)), as the
vector ν(y) = (ν1(φ1(t1)), . . . , νn(φn(tn))).
Now let us consider the submonoid ν(R) = {ν(x) : x ∈ R} ⊆ Nn which is a local good
semigroup (cf.[3, pag.11]).
We recall that a good semigroup S is an Arf semigroup if S(α) − α is a semigroup for all
α ∈ S, where S(α) = {β ∈ S : β ≥ α}. Similarly, R is an Arf ring if x−1R(α) is a ring
for all α ∈ ν(R), where R(α) = {r ∈ R : ν(r) ≥ α}. Then it is possible to define the Arf
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closure R∗ of a ring R as the smallest Arf ring containing R (cf.[1, 7, 4, 3]). Given an algebroid
curve R, the semigroup ν(R∗) associated to R∗ is an Arf semigroup (cf.[3, Prop 5.10]). The
study of the Arf closure is motivated by its important role in the definition of the equivalence
of algebroid curves. The equivalence of algebroid curves was defined in [8] as a generalization
of the equivalence of algebroid branches; since two algebroid curves are equivalent if they have
the same Arf closure (cf.[3]), it is interesting to determine the Arf C closure of an algebroid
curve.
In this work, we generalize to the case of algebroid curves the algorithm, presented by Feza
Arslan and Nihl Sahin, for the computation of the Arf closure of an algebroid branch (cf.[2])
In Section 1, we define the multiplicities of the semi-local rings in the Lipman sequence of an
algebroid curve. Then, we see how to associate to an algebroid curve a semigroup and its mul-
tiplicity tree. Furthermore, we introduce the minimal tree of R, isomorphic to the multiplicity
tree of ν(R∗), by associating to each node nji of the multiplicity tree an element of minimal
valuation nji in the corresponding blow up of R. Then we conclude the section by introducing a
recursive method for the computation of the Arf closure of an algebroid curve.
In Section 2, we introduce an algorithm for the computation of the multiplicity tree and the min-
imal tree of an algebroid curve with two branches. This algorithm will return the parametriza-
tions of all rings in the Lipman sequence. Furthermore, we also present a method for computing
the Arf closure of the algebroid curve using the information given by the algorithm (cf. Discus-
sion 2.6).
In Section 3 we see how to generalize the algorithm presented in the previous section to the case
of curves with an arbitrary number of branches.
In Section 4, we give a way to improve the efficiency of our algorithm. In particular, we see that
it is possible to compute the Arf closure of R by applying the algorithm to an algebroid curve
with a simpler parametrization obtained by truncating all the monomials with order bigger than
the conductor of the Arf semigroup ν(R∗) (cf.Theorem 4.1). Thus, in order to determine this
bound, we need a way to estimate the conductor of ν(R∗) directly from the parametrization
of R. We firstly analyze the case of curves with two branches having distinct multiplicity se-
quences along their branches (we can recover the multiplicity sequences by using the algorithm
of Arslan and Sahin on each branch). In this case, it is possible to find a limitation for the con-
ductor by using only the numerical properties given by the multiplicity sequences (cf.Theorem
4.4). Then, we study the case of two-branches algebroid curves with the same multiplicity se-
quence on their branches. In this case, we need to work on the parametrization of R to find a
suitable bound (cf.Lemma 4.6 and Proposition 4.8). We conclude by seeing how it is possible
to use the bound in the two-branches case to compute a bound in the general case (cf.Remark
4.9). In the end, we present an example that illustrates how the computation of the Arf closure
is simplified by the truncation given by the given bound (cf.Example 4.10).
The procedures presented here have been implemented in GAP ([6]).
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1 Preliminaries

1.1 The multiplicity tree of an algebroid curve R
If R is an algebroid curve we can always associate to it a parametrization

x1 = (φ11(t1), . . . , φ1n(tn)), . . . , xk = (φk1(t1), . . . , φkn(tn))

such that
R ∼= K[[(φ11(t1), . . . , φ1n(tn)) , . . . , (φk1(t1), . . . , φkn(tn))]],

cf.[5].
In this paper, we will only consider algebroid curves given through their parametrization.
Since R is a local ring we can define its blow-up as Bl(R) = ∪∞i=0(m

n : mn), where m is its
maximal ideal.
IfR is an algebroid curve with maximal ideal m = (x1, . . . , xk), thenBl(R) = R[x, x1

x
, . . . , xk

x
]

(see [7, Prop 1.1]), where x is an element of R with minimal valuation (this follows from the
fact that R ⊆ R̄ is a finite integral extension on R). In particular if R is parametrized by

x1 = (φ11(t1), . . . , φ1n(tn)), . . . , xk = (φk1(t1), . . . , φkn(tn)),

it is easy to see that

Bl(R) = K
[[
x,

(φ11(t1), . . . , φ1n(tn))

x
, . . . ,

(φk1(t1), . . . , φkn(tn))

x

]]
.

In the following we denote this ring with the symbol [x−1R] (it is the smallest ring containing
x−1R ). If we consider the Lipman sequence

R = R1 ⊆ R2 ⊆ R3 ⊆ . . . ,

where Ri = Bl(Ri−1), since R̄ is a finite R-module, there exists an integer N ∈ N such that
RN = K[[t1]]× . . .×K[[tn]].
We know that the rings Ri are semilocal rings. A semilocal ring S ⊆ K[[t1]] × · · · × K[[tn]],
parametrized by

S = K[[(φ11(t1), . . . , φ1n(tn)) , . . . , (φk1(t1), . . . , φkn(tn))]],

can be always seen as a product of local rings. In other words, there exists a partition P(S) =
{P1, . . . , Pt} of {1, . . . , n}, with

Pi =
{
qi,1, . . . , qi,k(i)

}
,

such that
S = S1 × · · · × St,
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where Si is a local ring contained in K[[tqi,1 ]]× · · · ×K[[tqi,k(i) ]].

We have S =
∏t

i=1 S(Pi), where

S(Pi) = K
[[(

φ1qi,1(tqi,1), . . . , φ1qi,k(i)(tqi,k(i))
)
, . . . ,

(
φkqi,1(tqi,1), . . . , φkqi,k(i)(tqi,k(i))

)]]
.

Now we need to define the multiplicity vector of a semilocal ring S. We have two cases

• S is local.

We define mult(S) = min {ν(s) : s ∈ S}, where ν is the valuation defined in K[[t1]] ×
· · · ×K[[tn]]. It is easy to see that if

S = K[[(φ11(t1), . . . , φ1n(tn)) , . . . , (φk1(t1), . . . , φkn(tn))]],

then

mult(S)[i] = min {ord(φ1i(ti)), . . . , ord(φki(ti))} for all i = 1, . . . , n,

where with mult(S)[i] we mean the i-th component of the n-vector mult(S).

Because the field K is infinite we can always find a linear combination xS of the genera-
tors of S, such that ν(xS) = mult(S). We also set mult∗(S) = {mult(S)}. Note that the
multiplicity of S as local ring is given by the sum of components of mult(S).

• S is not local

Suppose that P(S) = {P1, . . . , Pt}, with

Pi =
{
qi,1, . . . , qi,k(i)

}
,

we have

S =
t∏
i=1

S(Pi),

and we already know how to compute mult(S(Pi)) because S(Pi) is local in K[[tqi,1 ]] ×
· · · ×K[[tqi,k(i) ]].

Then we can define:

mult∗(S) = {lmult(S(Pi)) : i = 1, . . . , t} ,

where lmult(S(Pi)) is an n-vector such that

– lmult(S(Pi))[j] = 0 if j /∈ Pi;
– lmult(S(Pi))[qi,j] = mult(S(Pi))[j], for j = 1, . . . , k(i).
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To each element of mult∗(S) we can associate an element of minimal value in S. If xS(Pi)

is an element of minimal value on S(Pi) we consider the element xiS ∈ S such that

– xiS[j] = 1 if j /∈ Pi;
– xiS[qi,j] = xS(Pi)[j], for j = 1, . . . , k(i).

Thus from the Lipman sequence of blow-ups we can recover the following sequence of
subsets of Nn :

mult∗(R1),mult∗(R2), . . . ,mult∗(RN) = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} .

We define the multiplicity tree associated to the ringR, as the tree T (R) with nodes in∪Ni=0mult∗(Ri)
and such that two nodes v, w are linked if and only if there exists m such that v ∈ mult∗(Rm)
and w ∈ mult∗(Rm+1) (or viceversa) and we have 〈v, w〉 6= 0 (where with 〈v, w〉 we mean the
standard scalar product in Nn). We can also define the minimal tree by assigning to each node
lmult(Rj(Pi)) of the multiplicity tree the corresponding element xRj(Pi) of minimal value.

1.2 The computation of the Arf closure R∗

Now we want to show how the Lipman sequence can be used to compute and to give a presen-
tation for the Arf closure R∗ of R.

Arf, in his work (cf.[1, p.267]), showed that if R is an irriducible algebroid curve of K[[t]]
then

R∗ = K + x ·Bl(R)∗,

where x is a minimal valutation element inR. As a consequence of this fact,R∗ can be presented
as:

R∗ = K + K · x1 + K · x1x2 + . . .+ x1x2 . . . xN−1K[[t]],

where xi is an element of minimal valuation in Ri = Bl(Ri−1) (where R = R1). Now we want
to adapt this computation to an algebroid curve R ⊆ K[[t1]] × · · · × K[[tn]]. We build the Arf
closure by using the following inductive process on the number of branches n.

• Base case: n = 1. It was proved by Arf (cf.[1]).

• Inductive step. We suppose that we are able to solve the problem for m < n and we give
a solution for n.

If R is not local then there exists a partition P(R) = {P1, . . . , Pt}, with

Pi =
{
qi,1, . . . , qi,k(i)

}
,
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such that
R = R1 × · · · ×Rt,

where Ri is a local ring contained in K[[tqi,1 ]]× · · · ×K[[tqi,k(i) ]].

In this case, we have:
R∗ = (R1)∗ × · · · × (Rt)∗,

and, for the inductive step, we can compute each (Ri)∗, since k(i) < n for all i. IfR = R1

is a local ring, using the same idea of Arf (cf.[1, p.267]) it is easy to see that

R∗1 = K(1, . . . , 1) + x1 · (R2)
∗,

where x1 is an element of minimal value in R1 and R2 = Bl(R1) is the blow-up of R1.

If R2 is local we can compute R∗2 in the same way using R3 = Bl(R2) and an element of
minimal value x2 in R2. But we know that there exist an N such that RN is not local (in
fact the blow-up sequence has to stabilize into R = K[[t1]]× · · · ×K[[tn]]) and therefore
we are able to compute R∗N as we have already seen in the non-local case.

Then, if we suppose that N is the first integer such that RN is not local, we have

(R1)
∗ = K(1, . . . , 1) + x1 · (R2)

∗

(R2)
∗ = K(1, . . . , 1) + x2 · (R3)

∗

. . . . . .

(RN−1)
∗ = K(1, . . . , 1) + xN−1 · (RN)∗,

and from this it follows that

(R1)
∗ = K(1, . . . , 1) + Kx1 + Kx1x2 + . . .+ x1 . . . xN−1 · (RN)∗.

where xi is an element of minimal valuation of Ri.

From this procedure we see that it is important to compute the blow-up sequence Ri until
Rm = K[[t1]] × · · · × K[[tn]] to understand how to compute R∗. In the following section, we
will present an algorithm that gives us a way to compute this sequence along its multiplicity
tree starting from a parametrization of the ring R.

1.3 The properties of the multiplicity tree of an Arf good semigroup
We can notice that from the previous construction for the Arf closure R∗, it easily follows that
the multiplicity tree of R defined above is nothing but the multiplicity tree of the Arf good
semigroup ν(R∗) (cf.[1, 7, 4, 3]). Thus, it is useful to recall some properties of this kind of
objects. Given an Arf semigroup S ⊆ Nn, its multiplicity tree is a tree T such that the nodes
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are vector nji ∈ Nn, where with nji we mean that this node is in the i-th branch on the j-th level
(the root of the tree is n1

1 = n1
i for all i because we are in the local case and at level one all the

branches must be glued) and we have

S = {0}
⋃
T ′

∑
nj
i∈T ′

nji

 ,

where T ′ ranges over all finite subtree of T rooted in n1
1.

Furthermore a tree T is a multiplicity tree of an Arf semigroup if and only if its nodes satisfy
the following properties (see. [3, Thm 5.11]).

• there exists L ∈ N such that for m ≥ L, nmi = (0, . . . , 0, 1, 0 . . . , 0) (the nonzero coordi-
nate is in the i-th position) for any i = 1, . . . , n;

• nji [h] = 0 if and only if nji is not in the h-th branch of the tree;

• each nji can be obtained as a sum of nodes in a finite subtree T ′ of T rooted in nji .

Notice that from these properties it follows that we must have multiplicity sequences along each
branch.

Suppose now that E is an ordered collection of n multiplicity sequences (that will be the mul-
tiplicity branches of a multiplicity tree). Since any multiplicity sequence is a nonincreasing
sequence of integers that stabilizes to 1, we can describe them by the vectors

Mi = [Mi[1], . . . ,Mi[li]],

where if Mi 6= [1, 1 . . .], li = max{j : Mi[j] 6= 1} will be said length of i-th sequence. For
Mi = [1, 1, . . .] we will set li = 1 by definition.

Denote by τ(E) the set of all multiplicity trees having the n branches in E.
We give now a way to describe a tree of τ(E). If T ∈ τ(E), it can be represented by an

upper triangular matrix n× n

M(T )E =


0 p1,2 p1,3 . . . p1,n
0 0 p2,3 . . . p2,n
. . . . . . . . . . . . . . .
0 0 0 . . . pn−1,n
0 0 0 . . . 0

 ,

where pi,j is the highest level such that the i-th and the j-th branches are glued in T .
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2 The algorithm in the two-branches case
In this section we give an algorithm for the computation of the Arf closure of an algebroid curve
that has the following parametrization:

R = K[[(φ1(t), ψ1(u)) , . . . , (φn(t), ψn(u))]].

Notice that, in order to lighten the notation, we are focusing on the two-branches case.
However, the algorithm can be easily adapted to the general case with small modifications as
we will see in section 3.

First of all we fix some notations. In the following we will always assume that a parametriza-
tion does not contain an element y = (φ(t), ψ(u)) such that ord(φ(t)) = ord(ψ(u)) = 0 and
with φ(0) = ψ(0). If, in the following constructions, we will produce a parametrization that
contains such an element, we will always convert it to y = y− (φ(0), ψ(0)) (it is possible to do
that because (φ(0), ψ(0)) is a multiple of the unit vector). For each m ≥ 0 we will denote by

Rm = K
[[(

φ
(m)
1 (t), ψ

(m)
1 (u)

)
, . . . ,

(
φ
(m)
n(m)(t), ψ

(m)
n(m)(u)

)]]
,

the parametrization of the m-th blow-up of R (we put by definition R1 = R). Furthermore,
if Rm is local, we denote by mult(Rm) = min {ν(r) : r ∈ Rm}, the multiplicity vector of the
m-th blow-up, where ν is the valutation defined in R. With our notation it is easy to see that we
have

mult(Rm) =
(

min
{

ord(φ
(m)
i (t)), i = 1, . . . , n(m)

}
,min

{
ord(ψ

(m)
i (u)), i = 1, . . . , n(m)

})
.

Finally, always with the assumption that Rm is local, we denote by xRm an element of Rm with
valutation mult(Rm).

Remark 2.1. For the choice of the element xRm we can always consider either one of the(
φ
(m)
i (t), ψ

(m)
i (u)

)
or the sum of two of them. To see it we denote by yi =

(
φ
(m)
i (t), ψ

(m)
i (u)

)
for i = 1, . . . , n(m). If there exists yi in the parametrization such that mult(Rm) = ν(yi) we
can set xRm = yi. Otherwise, for the definition of mult(Rm) there must exist i, j with i 6= j
such that (

ord(φ
(m)
i (t)), ord(ψ

(m)
j (u))

)
= mult(Rm),

then yi + yj is a good choice for xRm (in this case order cancellations cannot happen).

The following lemma will help us to understand when aRm is not local from its parametriza-
tion.

Lemma 2.2. Consider

R = K[[(φ1(t), ψ1(u)) , . . . , (φn(t), ψn(u))]].

We have that
R = K[[φ1(t), . . . , φn(t)]]×K[[ψ1(u), . . . , ψn(u)]]

if and only if at least one of the following two conditions holds:
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• There exists (φi(t), ψi(u)) in the parametrization such that

ord(φi(t)) · ord(ψi(t)) = 0 and ord(φi(t))
2 + ord(ψi(t))

2 6= 0;

• There exists y = (φi(t), ψi(u)) in the parametrization such that

ν(y) = (0, 0) and φi(0) 6= ψi(0).

Proof. (⇐). Let us suppose that the first condition holds. Without loss of generality we can
suppose that the element y = (φ1(t), ψ1(u)) in the parametrization is such that ord(φ1(t)) = 0
and ord(ψ1(u)) 6= 0. Then we have φ1(0) 6= 0. Therefore φ1(t) is invertible in K[[φ1(t)]]
because its inverse is

(φ1(t))
−1 = (φ1(0))−1 ·

+∞∑
i=0

(−1)i
(
φ1(t)− φ1(0)

φ1(0)

)i
.

Thus in K[[y]] ⊆ R there exists an element of the form z = ((φ1(t))
−1, g(u)). Then we have

R 3 y · z = (1, ψ1(u) · g(u)) = (1, h(u)) ,

where ord(h(u)) > 0. But (1, 1) ∈ R so (1, h(u)) − (1, 1) = (0,−1 + h(u)) belongs to R.
Now, h(u) ∈ K[[ψ1(u)]] and therefore −1 + h(u) is invertible in this ring. From this it follows
again that there exist an element of the type (l(t), (−1 + h(u))−1) ∈ R and we have:

R 3 (0,−1 + h(u)) ·
(
l(t), (−1 + h(u))−1

)
= (0, 1)⇒ (1, 1)− (0, 1) = (1, 0) ∈ R.

Finally we obtain that

K[[φ1(t), . . . , φn(t)]]× {0} = (1, 0) ·R ⊆ R,

{0} ×K[[ψ1(u), . . . , ψn(u)]] = (0, 1) ·R ⊆ R,

therefore we have K[[φ1(t), . . . , φn(t)]] × K[[ψ1(u), . . . , ψn(u)]] ⊆ R and because the inverse
containment is trivial we have our thesis. Suppose now that the second condition holds. Let us
consider y = (φi(t), ψi(u)) in the parametrization such that

ν(y) = (0, 0) and φi(0) 6= ψi(0).

Thus if we consider (φi(0), φi(0)) ∈ R we have that y − (φi(0), φi(0)) ∈ R is an element that
fulfills the first condition and we can use the same arguments of the first part of the proof.
(⇒). It is trivial, in fact if we suppose by contradiction that in the parametrization does not
appear elements that fulfill the condition of the theorem then it would easily follow that in R we
cannot find an element (φ(t), ψ(u)) such that φ(t) is invertible and ψ(u) is not invertible and
this is absurd for the hypotheses on R.
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Remark 2.3. If we have a ring S such that

S = K[[φ1(t), . . . , φn(t)]]×K[[ψ1(u), . . . , ψn(u)]],

then S is not local and, following the notations of the first section, we have that

mult∗(S) = {(m1, 0), (0,m2)} ,

where m1 is the multiplicity of the algebroid branch associated to S1 = K[[φ1(t), . . . , φn(t)]]
and m2 is the multiplicity of the algebroid branch associated to S2 = K[[ψ1(u), . . . , ψn(u)]]. It
is easy to show that we have

• m1 = min {ord(φi(t)− φi(0)) : i = 1, . . . , n};

• m2 = min {ord(ψi(u)− ψi(0)) : i = 1, . . . , n}.

Then we can denote by x1S an element of S1 with order m1 and by x2S an element of S2 with
order m2. It is clear that there exist i, j such that x1S = φi(t)− φi(0) and x2S = ψj(u)− ψj(0).

Now we want to develope an algorithm for the computation of the Arf closure R∗ of R.
As we have seen in the previous section, we need to compute the blow-up chain Rm of R in
order to find the multiplicity tree of R∗. In particular we have to find an integer N such that
RN = K[[t]]×K[[u]]. From the properties of the ring of formal power series this is equivalent
to find an N such that RN is not local and such that

mult∗(RN) = {(1, 0), (0, 1)} .

Taking in account the definitions given at the beginning of this section we can consider the
following algorithm.

The algorithm produces the blow-up chain because we know that in the local case we have
Rm =

[
(xRm−1)

−1Rm−1
]

and we have seen in the previous section that a parametrization for
Rm is therefore given by

Rm = K


(
φ
(m−1)
1 (t), ψ

(m−1)
1 (u)

)
xRm−1

, . . . ,

(
φ
(m−1)
n (t), ψ

(m−1)
n (u)

)
xRm−1

, xRm−1

 .
On the other hand, if Rm−1 is not local we have that

Rm−1 = K[[φ
(m−1)
1 (t), . . . , φ

(m−1)
n(m−1)(t)]]×K[[ψ

(m−1)
1 (u), . . . , ψ

(m−1)
n(m−1)(u)]],

therefore in order to find Rm we have to apply the algorithm of Arslan-Sahin to each com-
ponent of the cartesian product finding Rm =

[
(x1Rm−1

)−1R1
m−1
]
×
[
(x2Rm−1

)−1R2
m−1
]

which
can be computed as

Rm = K

[[
φ
(m−1)
1 (t)

x1Rm−1

, . . . ,
φ
(m−1)
n(m−1)(t)

x1Rm−1

, x1Rm−1

]]
×K

[[
ψ

(m−1)
1 (u)

x2Rm−1

, . . . ,
ψ

(m−1)
n(m−1)(u)

x2Rm−1

, x2Rm−1

]]
.
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input : R = K[[(φ1(t), ψ1(u)) , . . . , (φn(t), ψn(u))]]
output: The sequence Rm of blow-ups of R until Rm = K[[t]]×K[[u]]

m←− 1
R1 ←− R
while mult∗(Rm) 6= {(1, 0), (0, 1)} do

if Rm is local then
m←− m+ 1
Rm ←− [(xRm−1)

−1Rm−1]
end
if Rm = R1

m ×R2
m is not local then

m←− m+ 1
Rm ←−

[
(x1Rm−1

)−1R1
m−1
]
×
[
(x2Rm−1

)−1R2
m−1
]

end
end
return R1, R2, . . . , Rm

Algorithm 1:

So, because at each step we know a parametrization for the m-th blow-up we have a way to
compute the m+ 1-th and we can stop when we reach mult∗(Rm) = {(1, 0), (0, 1)}.

Remark 2.4. In the previous algorithm,we divide by an element of minimal valuation, con-

sidering element of the type
(φ(t), ψ(u))

x
. It is convenient to work with such an element as a

fraction (cancelling if possible the common factors between the numerator and the denomina-
tor) . In this way we can still express it by a finite set of information avoiding the problem of
expanding it in power series.

When the algorithm stops, we are able to build the multiplicity tree T of R∗. It will be
a multiplicity tree of an Arf semigroup of N2, therefore it can be represented by a collection
E = {M1,M2} of two multiplicity sequences and an integer p1, where p1 is the highest level
where the two branches of T are still glued. To find p1 we have to check the first m such that,
in our algorithm, we obtain that Rm is not local. Then we have p1 = m− 1.

Furthermore, if R1 = R,R2, . . . , Rm is the output of the algorithm we have that:

M1[i] = mult(Ri)[1] for i = 1, . . . , p1 and M1[i] = (mult∗(Ri)[1])[1] for i = p1 + 1, . . . ,m;

M2[i] = mult(Ri)[2] for i = 1, . . . , p1 and M2[i] = (mult∗(Ri)[2])[2] for i = p1 + 1, . . . ,m.

Remark 2.5. The multiplicity sequences M1 and M2 can be also found by using the algorithm
of Arslan and Sahin to the algebroid branches given by the parametrizations

R1 = K[[φ1(t), . . . , φn(t)]] and R2 = K[[ψ1(u), . . . , ψn(u)]].
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In the following image we have the multiplicity tree and the minimal tree of R∗.

mult(R1)

mult(R2)

mult(Rp1)

mult∗(Rp1+1)[2]

mult∗(Rm)[2]

[0, 1]

mult∗(Rp1+1)[1]

mult∗(Rm)[1]

[1, 0]

xR1

xR2

xRp1

(1, x2Rp1+1
)

(1, x2m)

(1, u)

(x1Rp1+1
, 1)

(x1m, 1)

(t, 1)

Notice that the algorithm computes all the tools needed to construct the previous two trees.

If the tree T of R∗ is represented by the matrix M(T )E =

(
0 p1
0 0

)
with E = {M1,M2}, the

conductor of the associated Arf semigroup is c = (c[1], c[2]) with

c[i] =

max(li,p1)∑
k=1

Mi[k],

where li is the length of the multiplicity sequence Mi.
We have that (tc[1], uc[2]) · (K[t]×K[u]) ⊆ R∗.

Discussion 2.6. Now we want to find a method to compute the Arf closure through a presenta-
tion. In the previous section, we have seen how to construct it recursively. In the two-branches
case we have that:

R∗i = K(1, 1) + xRi
R∗i+1 for i = 1, . . . , p1

R∗p1+1 = (R1
p1+1)

∗ × (R2
p1+1)

∗

R1
i = K[[t]] for i > max{l1, p1}

R2
i = K[[u]] for i > max{l2, p1}

12



and

if max{lj, p1} > p1 (Rj
i )
∗ = K + xjRi

(Rj
i+1)

∗ for i = p1 + 1, . . . ,max(lj, p1); j = 1, 2

If we denote by dj = max(lj, p1), by substituting the expression in the reverse order we have
that:

(R1
d1)
∗ = K+ x1Rd1

K[[t]]; (R2
d2)
∗ = K+ x2Rd2

K[[u]];

(R1
d1−1)

∗ = K+ x1Rd1−1
K+ x1Rd1−1

x1Rd1
K[[t]]; (R2

d2−1)
∗ = K+ x2Rd2−1

K+ x2Rd2−1
x2Rd2

K[[u]];

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

(R1
p1+1)

∗ = K+ x1Rp1+1
K+ x1Rp1+1

x1Rp1+2
K+ . . .+ x1Rp1+1

x1Rp1+2
. . . x1Rd1

K[[t]];

(R2
p1+1)

∗ = K+ x2Rp1+1
K+ x2Rp1+1

x2Rp1+2
K+ . . .+ x2Rp1+1

x2Rp1+2
. . . x2Rd2

K[[u]];

and

R∗p1+1 = (R1
p1+1)

∗ × (R2
p1+1)

∗

R∗p1 = K(1, 1) + xRp1
((R1

p1+1)
∗ × (R2

p1+1)
∗)

. . . . . . . . . . . . . . . . . . . . . . . .

R∗ = K(1, 1) + xR1K+ . . .+ xRp1
xRp1−1 . . . xR1((R

1
p1+1)

∗ × (R2
p1+1)

∗)

Finally, comparing last two relations, we obtain

R∗ = K(1, 1) + xR1K+ . . .+

+ xRp1
xRp1−1 . . . xR1

[
(K+ . . .+ x1Rp1+1

. . . x1Rd1
K[[t]])× (K+ . . .+ x2Rp1+1

. . . x2Rd2
K[[u]])

]
.

Developing the Cartesian product, we find:

R∗ = K(1, 1) + xR1K+ · · ·+ xRp1
. . . xR1K+ xRp1

. . . xR1(1, x
2
Rp1+1

)K+ . . .+

+ xRp1
. . . xR1(1, x

2
Rp1+1

. . . x2Rd2
)(K×K[[u]]) + xRp1

. . . xR1(x
1
Rp1+1

, 1)K+ . . .+

+ xRp1
. . . xR1(x

1
Rp1+1

, x2Rp1+1
. . . x2Rd2

)(K×K[[u]]) + . . .+

+ xRp1
. . . xR1(x

1
Rp1+1

. . . x1Rd1
, 1)(K[[t]]×K) + . . .+ (tc[1], uc[2]) · (K[[t]]×K[[u]]),

because

xRp1
. . . xR1(x

1
Rp1+1

. . . x1Rd1
, x2Rp1+1

. . . x2Rd2
) · (K[[t]]×K[[u]]) = (tc[1], uc[2]) · (K[[t]]×K[[u]]).

Notice that the elements with valuation greater than the conductor can be erased. We observe
that the elements in the expression have all different valuation and each of them has valuation
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corresponding to an element in ν(R) that is not greater than the conductor.
The elements with valuation not smaller than the conductor have to belong to the set (tc[1], y) ·
(K[[t]]×K) with ord(y) < c[2] or (z, uc[2]) · (K×K[[u]]) with ord(z) < c[1].
Each element of the set (tc[1], y) · (K[[t]]×K) can be written as a sum of an element in (0, y)K
and an element of (tc[1], uc[2]) · (K[[t]] × K[[u]]). Similarly each element of the set (z, uc[2]) ·
(K × K[[u]]) can be written as a sum of an element in (z, 0)K and an element of (tc[1], uc[2]) ·
(K[[t]]×K[[u]]).
If we define

Y 0 = {(y, z) ∈ R∗ : v((y, z)) < c}
Y 1 = {(0, y) ∈ R∗ : ord(y) < c[2]}
Y 2 = {(z, 0) ∈ R∗ : ord(z) < c[1]}

Y := Y0 ∪ Y1 ∪ Y2,
we have a presentation of the type

R∗ = K(1, 1) + Ky1 + · · ·+ Kyk + (tc[1], uc[2]) · (K[[t]]×K[[u]]) ,

where the elements yi belong to Y and we have one and only one representative for each valu-
ation not greater than the conductor. Now we will show how to compute these elements from
our algorithm output.

We define small elements of a good semigroup S the elements of the semigroup that are
smaller than or equal to the conductor. Thus from the properties of the multiplicity tree of an
Arf semigroup, it follows that an element v of Small(ν(R∗)) can be obtained as the sum of
the nodes of a subtree of T (R) rooted in mult(R) and contained in the subtree that gives the
conductor.
Then it is easy to find an element y with valuation v. It suffices to consider the corresponding
subtree in the minimal tree of R∗ and multiply all its nodes. We suppose that s1, . . . , sk are the
elements of R∗ such that

{ν(s1), . . . , ν(sk), c} = Small(ν(R∗)),

if we consider the elements s1, . . . , sk, obtained by truncating the monomials of degree bigger
that the corresponding component of the conductor, it is easy to see that they are the elements
yi that we were searching.

Example 2.7. Consider

R = R1 = K[[(t5 + t10, u7), (t8, u11 + u13)]].

We have mult(R1) = (5, 7). We can choose xR1 = (t5 + t10, u7) as an element of minimal
value in R1. Therefore we have

R2 = K
[[
xR1 = (t5 + t10, u7),

(t8, u11 + u13)

xR1

]]
= K

[[
(t5 + t10, u7),

(
t3

1 + t5
, u4 + u6

)]]
.
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R2 is still local and we have mult(R2) = (3, 4). We can choose xR2 =
(

t3

1+t5
, u4 + u6

)
.

Thus we have

R3 = K
[[
xR2 =

(
t3

1 + t5
, u4 + u6

)
,
(t5 + t10, u7)

xR2

]]
=

= K
[[(

t3

1 + t5
, u4 + u6

)
,

(
t2(1 + t5)2,

u3

1 + u2

)]]
.

R3 is still local and we have mult(R3) = (2, 3). We can choose xR3 =
(
t2(1 + t5)2, u3

1+u2

)
.

Thus we have

R4 = K
[[
xR3 =

(
t2(1 + t5)2,

u3

1 + u2

)
,

(
t

(1 + t5)3
, u(1 + u2)2

)]]
.

R4 is still local and we have mult(R4) = (1, 1). We can choose xR4 =
(

t
(1+t5)3

, u(1 + u2)2
)

.
Thus we have

R5 = K
[[
xR4 =

(
t

(1 + t5)3
, u(1 + u2)2

)
,

(
t(1 + t5)5,

u2

(1 + u2)3

)]]
.

R5 is still local and we have mult(R5) = (1, 1). We can choose again xR5 =
(

t
(1+t5)3

, u(1 + u2)2
)

.
Thus we have

R6 = K
[[
xR5 =

(
t

(1 + t5)3
, u(1 + u2)2

)
,

(
(1 + t5)8,

u

(1 + u2)5

)]]
.

This time, for the Lemma 2.2, we have that R6 is not local because we have the element(
(1 + t5)8, u

(1+u2)5

)
with valuation (0, 1). We can write:

R6 = K
[[

t

(1 + t5)3
, (1 + t5)8

]]
×K

[[
u(1 + u2)2,

u

(1 + u2)5

]]
= K[[t]]×K[[u]].

Thus we have mult∗(R6) = {(1, 0), (0, 1)}, and we can stop the algorithm. Then the multiplicity
tree of R∗ and the minimal tree are:
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[5, 7]

[3, 4]

[2, 3]

[1, 1]

[1, 1]

[0, 1][1, 0]

(t5 + t10, u7)

(
t3

1+t5
, u4 + u6

)
(
t2(1 + t5)2, u3

1+u2

)
(

t
(1+t5)3

, u(1 + u2)2
)

(
t

(1+t5)3
, u(1 + u2)2

)
(1, u)(t, 1)

The multiplicity tree T is M(T )E =

(
0 5
0 0

)
where E = {M1 = [5, 3, 2],M2 = [7, 4, 3]}.

We can easily see that conductor c of ν(R∗) is c = (12, 16). We can also compute Small(ν(R∗))
finding that

Small(ν(R∗)) = {(5, 7), (8, 11), (10, 14), (11, 15), (12, 16)} .
Considering the expression of the elements of Small(ν(R∗)) as a sum of nodes in a subtree of
T we can produce the following elements of R∗ as product of the corresponding nodes on the
minimal tree of R∗:{

(t5 + t10, u7), (t8, u11 + u13), (t10(1 + t5)2, u14),

(
t11

1 + t5
, u15(1 + u2)2

)
, (t12, u16)

}
.

Finally we have

R∗ = K(1, 1)+K(t5+t10, u7)+K(t8, u11+u13)+K(t10(1+t5)2, u14)+K
(

t11

1 + t5
, u15(1 + u2)2

)
+

+(t12, u16) (K[[t]]×K[[u]]) = K(1, 1)+K(t5+t10, u7)+K(t8, u11+u13)+K(t10, u14)+K
(
t11, u15

)
+

+(t12, u16) (K[[t]]×K[[u]]) .

Notice that the fact that we know the conductor ofR∗ allows us to simplify some of the elements
corresponding to the small elements by truncating the terms that have order greater than the
conductor.
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3 The algorithm in the general case
In this section we explain how to generalize the algorithm presented in the previous one to
algebroid curve with more than two branches. First of all we fix the notations. We want to find
the Arf closure of the ring R ⊆ K[[t1]]× · · · ×K[[tn]] with the following parametrization

R = R1 = K[[(φ11(t1), . . . , φ1n(tn)) , . . . , (φk1(t1), . . . , φkn(tn))]].

Similarly to the previous section, we will always replace an element of the parametrization
y = (φj1(t1), . . . , φjn(tn)) such that

ord(φji(ti)) = 0 and with φj1(0) = φji(0) for all i = 1, . . . , n,

with the element y = y − φj1(0) · (1, . . . , 1).
To compute the Arf closure R∗ we have to find the sequence of blow-ups Rm of R. We will

give an inductive algorithm for the computation of Rm.
We will denote by

Rm = K
[[(

φ
(m)
11 (t1), . . . , φ

(m)
1n (tn)

)
, . . . ,

(
φ
(m)
k(m)1(t1), . . . , φ

(m)
k(m)n(tn)

)]]
.

If i, j ∈ {1, . . . , n} with i 6= j we denote by πi,j the projection

πi,j : K[[t1]]× · · · ×K[[tn]]→ K[[ti]]×K[[tj]].

We have the following obvious Lemma:

Lemma 3.1. Consider S ⊆ K[[t1]] × · · · × K[[tn]]. We define the equivalence relation ∼ on
{1, . . . , n}, such that i ∼ j if i = j or if πi,j(S) is local in K[[ti]] × K[[tj]]. Then the partition
P(S), defined in the first section, is the partition of {1, . . . , n} into equivalence classes with
respect to ∼.

If
S = K[[(φ11(t1), . . . , φ1n(tn)) , . . . , (φk1(t1), . . . , φkn(tn))]],

then
πi,j(S) = K[[(φ1i(ti), φ1j(tj)) , . . . , (φki(ti), φkj(tj))]];

since in the two branches case we know how to understand if a ring is local from its parametriza-
tion, we have the following algorithm to compute P(S):
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input : S = K[[(φ11(t1), . . . , φ1n(tn)) , . . . , (φk1(t1), . . . , φkn(tn))]]
output: The partition P(S)

N ←− {1, . . . , n}
for i ∈ N do

Pi ←− {i}
for j ∈ N>i do

if πi,j(S) is local then
Pi ←− Pi ∪ {j}
N ←− N \ {j}

end
end

end
return P(S) = {P1, Pi2 , . . . , Pit}

Algorithm 2:

Once we know that P(S) = {P1, . . . , Pt}, with

Pi =
{
qi,1, . . . , qi,k(i)

}
,

we have S =
∏t

i=1 S(Pi), where

S(Pi) = K
[[(

φ1qi,1(tqi,1), . . . , φ1qi,k(i)(tqi,k(i))
)
, . . . ,

(
φkqi,1(tqi,1), . . . , φkqi,k(i)(tqi,k(i))

)]]
.

Now we can give an algorithm for computing the blow-up sequence of R. We will do it by
working on induction on the number n of branches. We need to show a procedure to compute
Rm+1 from Rm.

• Base: n = 2.

For n = 2 we have already seen, in the previous section, how to compute the Rm.

• Inductive step.

We suppose that we are able to solve the problem for rings with less than n branches and
we give a procedure for rings with exactly n branches.

We have two cases:

If Rm is local we denote by xRm an element of Rm such that ν(xRm) = mult(Rm) (we
can find it as a linear combinations of the elements of the parametrization of Rm).

Then we know that
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Rm+1 = K

xRm ,

(
φ
(m)
11 (t1), . . . , φ

(m)
1n (tn)

)
xRm

, . . . ,

(
φ
(m)
k(m)1(t1), . . . , φ

(m)
k(m)n(tn)

)
xRm

 .
If Rm is not local then we have that there exist a partition P(Rm) = {P1, . . . , Pt} such
that

Rm =
t∏
i=1

Rm(Pi).

Notice that the Rm(Pi) can be computed from the parametrization of Rm and they are lo-
cal rings with less then n branches. Then for the inductive step we know how to compute
the blow-up Bl(Rm(Pi)) of Rm(Pi) and we have that:

Rm+1 =
t∏
i=1

Bl(Rm(Pi)).

Remark 3.2. It is clear that, with our definitions, we have

S = K[[t1]]×· · ·×K[[tn]] ⇐⇒ mult∗(S) = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} .

So we have a procedure to find the first N such that RN = K[[t1]]× · · ·×K[[tn]]. From this
procedure we can find the sequence

mult∗(R1),mult∗(R2), . . . ,mult∗(RN),

from which we can build the multiplicity tree of R∗ up to level N . Once we know the mul-
tiplicity tree T and the minimal tree we are able to give an expression for the Arf closure R∗

using the strategy presented in the previous section. In fact we can compute the conductor c of
the semigroup of values of the Arf closure and then use the correspondence between the small
elements of the Arf semigroup ν(R∗) and the elements of R∗ to find {s1, . . . , sl = c} ⊆ R∗

such that:

R∗ = K(1, . . . , 1) + Ks1 + . . .+ Ksl−1 + (t
c[1]
1 , . . . , tc[n]n ) (K[[t1]]× · · · ×K[[tn]]) .

Example 3.3. We want to compute the Arf closure of the following ring

R = R1 = K[[(t5 − t8, u2 + u6, v3, w2 + w9), (t6, u2 + u7 + u10, v7 − v9, w2 + w7)]].

In order to simplify the notation we will set Rj
i = Ri(Pj), xji = xjRi

and we denote by xRj
i

the

element of minimal valuation in the local ring Rj
i .
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It is easy to verify that π1,2(R), π1,3(R) and π1,4(R) are all local. Then for the Lemma 3.1
follows that P(R) = {{1, 2, 3, 4}}, therefore R is local.

We have that mult(R1) = (5, 2, 3, 2). As the minimal element xR1 we can choose xR1 =
(t5 − t8, u2 + u6, v3, w2 + w9).

We have:

R2 = K
[[
xR1 = (t5 − t8, u2 + u6, v3, w2 + w9),

(t6, u2 + u7 + u10, v7 − v9, w2 + w7)

xR1

]]
=

= K
[[

(t5 − t8, u2 + u6, v3, w2 + w9),

(
t

1− t3
,
1 + u5 + u8

1 + u4
, v4 − v6, 1 + w5

1 + w7

)]]
.

Now we can verify that π1,2(R2) is not local, π1,3(R2) is local, π1,4(R2) is not local and
π2,4(R2) is local, therefore P(R2) = {P1 = {1, 3} , P2 = {2, 4}}. We have

R2 = R1
2 ×R2

2,

where

R1
2 = K

[[
(t5 − t8, v3),

(
t

1− t3
, v4 − v6

)]]
,

R2
2 = K

[[
(u2 + u6, w2 + w9),

(
1 + u5 + u8

1 + u4
,
1 + w5

1 + w7

)]]
=

= K
[[

(u2 + u6, w2 + w9),

(
−u4 + u5 + u8

1 + u4
,
w5 − w7

1 + w7

)]]
where, following our conventions on the parametrization, we replace

(
1+u5+u8

1+u4
, 1+w

5

1+w7

)
with(

1+u5+u8

1+u4
, 1+w

5

1+w7

)
− (1, 1) =

(
−u4+u5+u8

1+u4
, w

5−w7

1+w7

)
.

We have mult(R1
2) = (1, 3) and we can choose as element of minimal value the sum xR1

2
of

its two generators

xR1
2

=

(
t+ t5(1− t3)2

1− t3
, v3 + v4 − v6

)
,

while mult(R2
2) = (2, 2) and we can choose as element of minimal value

xR2
2

=
(
u2 + u6, w2 + w9

)
. Then we have mult∗(R2) = {(1, 0, 3, 0), (0, 2, 0, 2)} and we can

proceed with the computation of R3. Thus

R3 = Bl(R1
2)× Bl(R2

2),

so we have to compute Bl(R1
2) and Bl(R2

2).
We have

Bl(R1
2) = K

[[(
φ
(3)
1 (t), ψ

(3)
1 (v)

)
, . . . ,

(
φ
(3)
3 (t), ψ

(3)
3 (v)

)]]
,

where
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•
(
φ
(3)
1 (t), ψ

(3)
1 (v)

)
=

(
t+ t5(1− t3)2

1− t3
, v3 + v4 − v6

)
;

•
(
φ
(3)
2 (t), ψ

(3)
2 (v)

)
=

(
t4(1− t3)2

1 + t4(1− t3)2
,

1

1 + v − v3

)
;

•
(
φ
(3)
3 (t), ψ

(3)
3 (v)

)
=

(
1

1 + t4(1− t3)2
,

v − v3

1 + v − v3

)
.

We notice that the second generator has valuation (4, 0), then Bl(R1
2) is not local in K[[t]] ×

K[[v]]. Furthermore we have, with our notation, that mult∗(Bl(R1
2)) = {(1, 0), (0, 1)}. Then we

have

Bl(R1
2) = K[[t]]×K[[v]].

Now we can compute Bl(R2
2). We have

Bl(R2
2) = K

[[(
u2 + u6, w2 + w9

)
,

(
−u2 + u3 + u6

(1 + u4)2
,
w3 − w5

(1 + w7)2

)]]
.

Then we have that Bl(R2
2) is local in K[[u]]×K[w]] and mult(Bl(R2

2)) = (2, 2). Then P(R3) =
{P1 = {1} , P2 = {3} , P3 = {2, 4}} and

R3 = R1
3 ×R2

3 ×R3
3 = K[[t]]×K[[v]]× Bl(R2

2),

with mult∗(R3) = {(1, 0, 0, 0), (0, 0, 1, 0), (0, 2, 0, 2)}. As a minimal element of R3
3 we can

choose again xR3
3

= (u2 + u6, w2 + w9). Thus

R4 = Bl(K[[t]])× Bl(K[[v]])× Bl(R3
3) = K[[t]]×K[[v]]× Bl(R3

3).

We have:

Bl(R3
3) = K

[[(
u2 + u6, w2 + w9

)
,

(
−1 + u+ u4

(1 + u4)3
,
w − w3

(1 + w7)3

)]]
.

From this it is easy to show that Bl(R3
3) = K[[u]]×K[[w]].

Then P(R4) = {P1 = {1} , P2 = {2} , P3 = {3} , P4 = {4}} and

R4 = K[[t]]×K[[u]]×K[[v]]×K[[w]],

and we have reached the stop condition for our algorithm. We found that N = 4 and

• mult∗(R1) = {(5, 2, 3, 2)} ,

• mult∗(R2) = {(1, 0, 3, 0), (0, 2, 0, 2)} ,
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• mult∗(R3) = {(1, 0, 0, 0), (0, 0, 1, 0), (0, 2, 0, 2)} ,

• mult∗(R4) = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} .

The corresponding minimal elements are:

• xR1 = (t5 − t8, u2 + u6, v3, w2 + w9),

• x12 =
(
t+t5(1−t3)2

1−t3 , 1, v3 + v4 − v6, 1
)

and x22 = (1, u2 + u6, 1, w2 + w9) ;

• x13 = (t, 1, 1, 1), x23 = (1, 1, v, 1) and x33 = (1, u2 + u6, 1, w2 + w9) ;

• x14 = (t, 1, 1, 1), x24 = (1, u, 1, 1), x34 = (1, 1, v, 1) and x44 = (1, 1, 1, w).

Then we have the following trees:

R1

R2
2

R3
3

K[[w]]K[[u]]

R1
2

K[[v]] = R2
3K[[t]] = R1

3

(5, 2, 3, 2)

(0, 2, 0, 2)

(0, 2, 0, 2)

(0, 0, 0, 1)(0, 1, 0, 0)

(1, 0, 3, 0)

(0, 0, 1, 0)(1, 0, 0, 0)

(t5 − t8, u2 + u6, v3, w2 + w9)

(1, u2 + u6, 1, w2 + w9)

(1, u2 + u6, 1, w2 + w9)

(1, 1, 1, w)(1, u, 1, 1)

(
t+t5(1−t3)2

1−t3 , 1, v3 + v4 − v6, 1
)

(1, 1, v, 1)(t, 1, 1, 1)

Then the multiplicity tree T (R) of the Arf semigroup associated to R∗ is the tree described by
the matrix

M(T (R))E =


0 1 2 1
0 0 1 3
0 0 0 1
0 0 0 0

 ,

22



where E = {[5], [2, 2, 2], [3, 3], [2, 2, 2]}.
The conductor of ν(R∗) is c = (6, 6, 6, 6), therefore

(t6, u6, v6, w6) (K[[t]]×K[[u]]×K[[v]]×K[[w]]) ⊆ R∗.

We have that

Small(ν(R∗)) = {(5, 2, 3, 2), (5, 4, 3, 4), (5, 6, 3, 6), (6, 2, 6, 2), (6, 4, 6, 4), c = (6, 6, 6, 6)} .

From the minimal tree we can recover the elements ofR∗ with valuation belonging to Small(ν(R∗)).
We can calculate the Arf closure truncating the terms with degree bigger than the conductor. So
we obtain:{

(t5, u2, v3, w2), (t5, u4, v3, w4), (t5, 0, v3, 0), (0, u2, 0, w2), (0, u4, 0, w4)
}
.

Finally we have

R∗ = K(1, 1, 1, 1) + K(t5, u2, v3, w2) + K(t5, u4, v3, w4) + K(t5, 0, v3, 0)+

+K(0, u2, 0, w2) + K(0, u4, 0, w4) + (t6, u6, v6, w6) (K[[t]]×K[[u]]×K[[v]]×K[[w]]) .

4 A bound for the series
In the previous sections, we have presented an algorithm to compute the Arf closure of an
algebroid curve. Now, we would like to find a bound for the truncation of the series expansion
in the parametrization, in order to improve the speed of the algorithm.
Our strategy is based on the following theorem that generalizes the Arslan-Sahin theorem to the
case of two branches algebroid curves. Thus, in the following, we focus on the two branches
case.
Let us fix some notation. Let R be a two-branches curve with parametrization

R = K[[(φ1(t), ψ1(u)), . . . , (φn(t), ψn(u))]],

we call c = (c[1], c[2]) the conductor of ν(R∗). Furthermore, we denote by φi(t) and ψi(u) the
formal power series obtained from φi(t) and ψi(u) respectively by removing all elements with
order greater than c[1] + 1 and c[2] + 1. Finally, we introduce:

R = K[[(φ1(t), ψ1(u)), . . . , (φn(t), ψn(u))]].

Theorem 4.1. If we apply the algorithm to both R and R̄ we obtain the same multiplicity tree.
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Proof. Let us start writing the representation of an arbitrary element of the parametrization of
R,

(φ
(1)
i (t), ψ

(1)
i (u)) =

 ∑
i≤c[1]+1

ait
i +

∑
i>c[1]+1

ait
i,
∑

i≤c[2]+1

biu
i +

∑
i>c[2]+1

biu
i

 .

We denote by

(χ
(1)
1 (t), χ

(1)
2 (u)) =

 ∑
i>c[1]+1

ait
i,
∑

i>c[2]+1

biu
i


and

k = (k[1], k[2]) = (ord(χ
(1)
1 (t)), ord(χ

(1)
2 (u))) > (c[1] + 1, c[2] + 1).

Now, we want to follow the path of χ(1)
1 (t) and χ(1)

2 (u) in the algorithm in order to observe
that by removing them from parametrization, the result of the algorithm remains unchanged.
We denote with (χ

(i)
1 (t), χ

(i)
2 (u)) the series obtained by (χ

(1)
1 (t), χ

(1)
2 (u)) at i-th step of the

algorithm.
To prove the thesis, it is necessary to prove that (χ

(i)
1 (t), χ

(i)
2 (u)) satisfy the following hy-

pothesis at the i-th step:

i) ord(χ
(i)
1 (t)) > M1[i] and ord(χ

(i)
2 (u)) > M2[i];

ii) neither ord(χ
(i)
1 (t)) nor ord(χ

(i)
2 (u)) are 0.

If i) is true we have that the monomials in (χ
(i)
1 (t), χ

(i)
2 (u)) are not involved in the choice of the

minimal valuation elements at the i-th step. If ii) is true they are not involved in the splits as
consequence of Lemma 2.2.
So, if both hypothesis are true, the monomials in (χ

(i)
1 (t), χ

(i)
2 (u)) are not involved in the i-th

step of the algorithm.
If p1 is the highest level were the branches in R are joined, for all i ≤ p1, we have that:

ν(χ
(i)
1 (t), χ

(i)
2 (u)) ≥ (k[1]−M1[1]− . . .−M1[i− 1], k[2]−M2[1]− . . .−M2[i− 1]) >

> (c[1] + 1−M1[1]− . . .−M1[i− 1], c[2] + 1−M2[1]− . . .−M2[i− 1]) =

=

max(l1,p1)∑
j=1

M1[j] + 1−
i−1∑
j=1

M1[j],

max(l2,p1)∑
j=1

M2[j] + 1−
i−1∑
j=1

M2[j]

 ≥
≥

 i∑
j=1

M1[j] + 1−
i−1∑
j=1

M1[j],
i∑

j=1

M2[j] + 1−
i−1∑
j=1

M2[j]

 =

= (M1[i] + 1,M2[i] + 1) > (M1[i],M2[i]) > (0, 0)

So the hypothesis i) and ii) are satisfied for χ(i)
1 (t), χ

(i)
2 (u) with i ≤ p1. When i > p1 the

algorithm works individually on each branch, therefore is the same as the one presented by
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Arslan-Sahin. Thus, because we have that χ(p1+1)
1 (t) and χ(p1+1)

2 (u) are element with valuation
strictly greater then the conductor of R(p1+1)

1 and R(p1+1)
2 respectively, for the Arslan-Sahin the-

orem (cf.[2, Thm. 2.4]), χ(p1+1)
1 (t), χ

(p1+1)
2 (u) are not involved in the next steps of the algorithm

and this concludes the proof.

Remark 4.2. We want to point out that the previous theorem does not imply that the chains of
blow-ups obtained applying the algorithm onR and R̄ are the same. In general, the parametriza-
tion of each blow-up and the minimal tree are different, but they are equal modulo 〈tc+2, uc+2〉
(when we truncate all the elements of degree greater than c+ 1).

In the previous section, we have computed a presentation of the Arf closure starting by any
minimal tree of the curve and it does not depends on the minimal tree chosen. For this reason
we can enunciate the following obvious corollary.

Corollary 4.3. Using the same notation of previous theorem. R and R have the same Arf
closure.

From the previous Corollary it follows that our new problem is to find a way to estimate
the conductor of ν(R∗) without actually knowing R∗. Now we see how to do that by using the
information given by the starting parametrization of R. Let us start by considering separately
the two branches:

R1 = K[[φ1(t), . . . , φn(t)]] R2 = K[[ψ1(u), . . . , ψn(u)]].

As we saw in the Remark 2.5 , it is possible to apply the Arslan-Sahin’s algorithm in order to
find the multiplicity sequences M1 and M2 of the two branches. M1 and M2 are multiplicity
sequences so they must satisfy the following property:

∀k ≥ 1 there exist s1,k and s2,k ∈ N, such that si,1 ≥ k + 1, si,2 ≥ k + 1 and

M1[k] =

s1,k∑
j=k+1

M1[j], M2[k] =

s2,k∑
j=k+1

M2[j].

If L = max{l1, l2} we can define the following vectors:

S(1) = [s1,1, s1,2, . . . , s1,L], S(2) = [s2,1, s2,2, . . . , s2,L].

Now let us consider the set D(1, 2) = {k : s1,k 6= s2,k} and we suppose that D(1, 2) 6= ∅ (i.e
the two sequences are not equal). In this case we define kE(1, 2) = min{min(s1,k, s2,k) : k ∈
D(1, 2)}. We present the following theorem, that was proved in ([9])

Theorem 4.4. [9, Prop 1.2] If T is the tree of an algebroid two-branches curve with D(1, 2) 6=
∅, then kE(1, 2) + 1 is the lowest level where the two branches are prevented from being glued
in T ; in other words p1 ≤ kE(1, 2).
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Proof. Suppose by contradiction that the first and the second branches are glued at level kE(1, 2)+
1. From the definition of kE(1, 2)+1, there exists k ∈ D(1, 2) such that kE(1, 2) = min{s1,k, s2,k}.
Without loss of generality suppose that min{s1,k, s2,k} = s1,k (where s1,k 6= s2,k).

We have the following nodes in the multiplicity tree

(M1[k],M2[k]), . . . , (M1[kE(1, 2)],M2[kE(1, 2)]), . . . , (M1[kE(1, 2)+1],M2[kE(1, 2)+1]), . . .

We have that kE(1, 2) = s1,k so

M1[k] =

kE(1,2)∑
i=k+1

M1[i]

while kE(1, 2) + 1 = s1,k + 1 ≤ s2,k so

M2[k] =

s2,k∑
i=k+1

M2[i] ≥
kE(1,2)+1∑
i=k+1

M2[i]

These facts easily imply that the node (M1[k],M2[k]) cannot be expressed as a sum of the nodes
of a subtree rooted in it, so we have a contradiction. Two branches are forced to split up only
when we have this kind of problem, so the minimality of kE(1, 2) guarantees that they can be
glued at level kE(1, 2) (and obviously at lower levels).

If we set:
d1 = max{l1, kE(1, 2)}, d2 = max{l2, kE(1, 2)},

we have:

c[1] + 1 =
∑max(l1,p1)

i=1 M1[i] + 1 ≤M1[1] + . . .+M1[d1] + 1,

c[2] + 1 =
∑max(l2,p1)

i=1 M2[i] + 1 ≤M2[1] + . . .+M2[d2] + 1.

So, if we put:

b1 = M1[1] + . . .+M1[d1] + 1,

b2 = M2[1] + . . .+M2[d2] + 1,

as consequence of the Theorem 4.1, we can use the vector bO = (b1, b2) as a bound for the series
expansions in the parametrizations.
We have found a bound when D(1, 2) 6= ∅ by only using the numeric properties of the multi-
plicity sequences. When D(1, 2) = ∅ we cannot make assumptions on the split level by only
using the Mi but we need to work directly on the parametrization in order to find a suitable
bound.

Let us suppose that we have an algebroid curve with two branches and D(1, 2) = ∅. In this
case we will do the following positions in order to simplify the notation. We denote with cr the
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conductor of the branches R1 and R2 (in fact, in this case the two conductors are equal). We
also set l = l1 = l2. Now we define Dis(1, 2) = {i ∈ {1, . . . , n} : ν(φi(t)) 6= ν(ψi(u))} and
we call discrepancies the elements of this set. If Dis(1, 2) 6= ∅, we define also

D = min{min{ν(φi(t)), ν(ψi(u))}, i ∈ Dis(1, 2)}

which is the smallest order that causes a discrepancy.

Example 4.5. Let us consider the algebroid curve:

R = K[[(t3 + t4, u3 + u7), (t8 + t9, u8), (t12 + t15, u13 + u14), (t21, u17 + u19)]].

The multiplicity tree associated to the ring is:

(3, 3)

(3, 3)

(2, 2)

(1, 1)

(1, 1)

(1, 1)

(0, 1)(1, 0)

So we have: D(1, 2) = ∅, Dis(1, 2) = {3, 4} and

D = min{min{12, 13},min{21, 17}} = min{12, 17} = 12.

Lemma 4.6. Let
R = K[[(φ1(t), ψ1(u)), . . . , (φn(t), ψn(u))]]

be an algebroid branch such that

i) M1 = M2 (D(1, 2) = ∅);

ii) Dis(1, 2) 6= ∅.

Then we have max{cr, D} ≥ c[1] = c[2].
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Proof. From the definition of D, it follows that there exists an element of the type (D, x) in
ν(R) ⊆ ν(R∗) with x > D (or equivalently of the type (y,D) with y > D). We know that
there exists an integer k such that

D =
k∑
i=1

M1[i].

Taking in account that the multiplicity tree T (R) has two identical branches, it is easy to un-
derstand that (D, x) ∈ ν(R∗) with x > D implies p1 ≤ k (if we had k < p1 the only possible
element with valuation of the type (D, x) in ν(R∗) would be (D,D)). So we have

c[2] = c[1] =

max(l1,p1)∑
i=1

M1[i] ≤
max(l1,k)∑

i=1

M1[i] = max{cr, D}.

As a consequence of this theorem, we can take bD = (max{cr, D}+ 1,max{cr, D}+ 1) as
a bound for an algebroid curve with D(1, 2) = ∅ and Dis(1, 2) 6= ∅.

Now we only need to understand how to deal with the case of algebroid curves withD(1, 2) =
∅ and Dis(1, 2) = ∅. In this case we have:

i) M1 = M2;

ii) ν(φi(t)) = ν(ψi(u)) ∀i = 1, . . . , n.

Without loss of generality, we can rename the elements of the parametrization in order to
have:

ν(φ1(t), ψ1(u)) ≤ ν(φ2(t), ψ2(u)) ≤ . . . ≤ ν(φn(t), ψn(u)).

Let (φi(t), ψi(u)) be the first element with i > 1 such that at least one of the following holds

• φ1(t) 6= ψ1(t)

• φi(t) 6= ψi(t),

(it must exist an element of this type because otherwise we would not have an algebroid curve).
In this case we can always find a, b, r, s ∈ N, such that

(φ̃(t), ψ̃(u)) = a(φ1(t), ψ1(u))r + b(φi(t), ψi(u))s

with ord(φ̃(t)) > ord(φ1(t)).

Now let us consider

R̃ = K[[(φ̃(t), ψ̃(u)), (φ2(t), ψ2(u)), . . . , (φn(t), ψn(u))]]
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and denote with c̃ the conductor of the R̃ Arf closure.
Since R̃ ⊆ R, we have c ≤ c̃. Now, if R̃ is an algebroid curve where bothD(1, 2) andDis(1, 2)
are not empty we have showed how to compute a bound for R̃ and this is also a bound for R
since c ≤ c̃.
On the contrary, we can apply the same idea starting by R̃ until we found an algebroid curve
with a discrepancy for which we know to compute a bound; we will call this bound bG. We note
that this process necessarily produces a discrepancy since R is an algebroid curve.

Remark 4.7. We observe that it makes sense compute bG even when we have a discrepancy. A
priori we do not know in this case which bound is better between bD and bG, so we will compute
both of them and then we will choose the smaller one.

We will enunciate the following proposition that summarizes what we have seen above.

Proposition 4.8. If R is an algebroid curve and c is the conductor of its Arf closure and we
consider the element

b =


bO if D(1, 2) 6= ∅;
min{bD, bG} if D(1, 2) = ∅ ∧Disc(1, 2) 6= ∅;
bG if D(1, 2) = ∅ ∧Disc(1, 2) = ∅,

we have b ≥ (c[1] + 1, c[2] + 1).

As a consequence of the last proposition and Theorem 4.1, we have that b is a suitable bound
for the algorithm.
Finally we show how the bound found in two-branches case can be used to determine a bound
in the general case.

Remark 4.9. If R is an algebroid curve with n branches, parametrized by

R = K[[(φ11(t1), . . . , φ1n(tn)) , . . . , (φk1(t1), . . . , φkn(tn))]].

We consider
πi,j(R) = K[[(φ1i(ti), φ1j(tj)) , . . . , (φki(ti), φkj(tj))]],

the two-branch curve associated with the branches i and j for i, j = 1, . . . , n, i 6= j. We
call bπij(R) = (bπij(R),i, bπij(R),j) the bound computed for the curve πij(R) where bπij(R),i and
bπij(R),j are the components of the bound related to the branches i and j respectively. If we
consider

b[i] = max{bπi,j(R),i j = 1, . . . , n, j 6= i},

it is easy to observe that b = (b[1], b[2], . . . , b[n]) is a suitable bound for the curve (because the
general algorithm performs simultaneously the two case one on each couple of branches).
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Example 4.10. We want to compute, using the truncation explained in the previous section, the
Arf closure of the ring

R = R1 = K[[(t5 − t8, u2 + u6, v3, w2 + w9), (t6, u2 + u7 + u10, v7 − v9, w2 + w7)]],

that appeared in the Example 3.3.
If we use tha algorithm of Arslan and Sahin to compute the Arf closure of the rings

R1 = K[[t5 − t8, t6]], R2 = K[[u2 + u6, u2 + u7 + u10]],

R3 = K[[v3, v7 − v9]], R4 = K[[w2 + w9, w2 + w7]],

we find that the multiplicity tree T of R∗ belongs to τ(E), where

E = {M1 = [5],M2 = [2, 2, 2],M3 = [3, 3],M4 = [2, 2, 2]} ,

where with τ(E) we indicate the family of all the multiplcity trees having multiplicity branches
in E.

We want compute the bounds bπij(R),i with i, j = 1, 2, 3, 4, i 6= j. Since bπij(R),i = bπji(R),i

for all i, j = 1, 2, 3, 4, i 6= j, we can reduce to compute only bπij(R),i where j > i.
If kE(i, j) 6=∞ we have seen that:

bπij(R),i =

max(li,kE(i,j))∑
k=1

Mi[k]

+ 1 and bπij(R),j =

max(lj ,kE(i,j))∑
k=1

Mj[k]

+ 1.

We have:

• kE(1, 2) = 2⇒

bπ12(R),1 =

max(1,2)=2∑
k=1

M1[k]

+ 1 = 5 + 1 + 1 = 7;

bπ12(R),2 =

max(3,2)=3∑
k=1

M2[k]

+ 1 = 2 + 2 + 2 + 1 = 7.

• kE(1, 3) = 2⇒

bπ13(R),1 =

max(1,2)=2∑
k=1

M1[k]

+ 1 = 5 + 1 + 1 = 7;

bπ13(R),3 =

max(2,2)=2∑
k=1

M3[k]

+ 1 = 3 + 3 + 1 = 7.
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• kE(1, 4) = 2⇒

bπ14(R),1 =

max(1,2)=2∑
k=1

M1[k]

+ 1 = 5 + 1 + 1 = 7;

bπ14(R),4 =

max(3,2)=3∑
k=1

M4[k]

+ 1 = 2 + 2 + 2 + 1 = 7.

• kE(2, 3) = 3⇒

bπ23(R),2 =

max(3,3)=3∑
k=1

M2[k]

+ 1 = 2 + 2 + 2 + 1 = 7;

bπ23(R),3 =

max(2,3)=3∑
k=1

M3[k]

+ 1 = 3 + 3 + 1 + 1 = 8.

• kE(3, 4) = 3⇒

bπ34(R),3 =

max(2,3)=3∑
k=1

M3[k]

+ 1 = 3 + 3 + 1 + 1 = 8;

bπ34(R),4 =

max(3,3)=3∑
k=1

M4[k]

+ 1 = 2 + 2 + 2 + 1 = 7.

We have kE(2, 4) = ∞ because M2 = M4 = [2, 2, 2], then to compute bπ24(R) we need to
work on the parametrization of π2,4(R). We have:

π2,4(R) = K[[(u2 + u6, w2 + w9), (u2 + u7 + u10, w2 + w7)]].

Both the generators of π2,4(R) have valuation (2, 2), therefore we have not discrepancies
between the orders in the initial parametrization. So we have to produce an element of π2,4(R)
with discrepancies by manipulating its generators. It suffices to take the difference between
them, in fact we find:

π2,4(R) 3 (u2 + u6, w2 + w9)− (u2 + u7 + u10, w2 + w7) = (u6 − u7,−w7 + w9),

with ν((u6−u7,−w7+w9)) = (6, 7). Because 6 = min(6, 7) is less or equal than the conductor
of M2 = [2, 2, 2] we can choose bπ24(R) = (6 + 1, 6 + 1) = (7, 7).

Finally, denoting with b[i] the bound on the i-th branch, we have:
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• b[1] = max
{
bπ12(R),1, bπ13(R),1, bπ14(R),1

}
= max {7, 7, 7} = 7;

• b[2] = max
{
bπ12(R),2, bπ23(R),2, bπ24(R),2

}
= max {7, 7, 7} = 7;

• b[3] = max
{
bπ13(R),3, bπ23(R),3, bπ34(R),3

}
= max {7, 8, 8} = 8;

• b[4] = max
{
bπ14(R),4, bπ24(R),4, bπ34(R),4

}
= max {7, 7, 7} = 7.

Then on the i-th branch we can truncate all the terms with degree greater than b[i] obtaining
the new ring:

S = S1 = K[[(t5, u2 + u6, v3, w2), (t6, u2 + u7, v7, w2 + w7)]].

Let us show that S∗ = R∗.
It is easy to verify that π1,2(S), π1,3(S) and π1,4(S) are all local. Then for the Lemma 3.1

follows that P(S) = {{1, 2, 3, 4}}, in other words S is local.
We have that mult(S1) = (5, 2, 3, 2). As the minimal value xS1 we can choose x1 = (t5, u2+

u6, v3, w2).
We have:

S2 = K
[[

(t5, u2 + u6, v3, w2),
(t6, u2 + u7, v7, w2 + w7)

xS1

]]
=

= K
[[

(t5, u2 + u6, v3, w2),

(
t,

1 + u5

1 + u4
, v4, 1 + w5

)]]
.

Now we can verify that π1,2(S2) is not local, π1,3(S2) is local, π1,4(S2) is not local and π2,4(S2)
is local, therefore P(S2) = {P1 = {1, 3} , P2 = {2, 4}}. We have

S2 = S1
2 × S2

2 ,

where
S1
2 = K

[[
(t5, v3),

(
t, v4

)]]
,

S2
2 = K

[[
(u2 + u6, w2),

(
1 + u5

1 + u4
, 1 + w5

)]]
=

= K
[[

(u2 + u6, w2),

(
−u4 + u5

1 + u4
, w5

)]]
.

where, following our conventions on the parametrization, we replace
(

1+u5

1+u4
, 1 + w5

)
with(

1+u5

1+u4
, 1 + w5

)
− (1, 1) =

(
−u4+u5
1+u4

, w5
)

.
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We have mult(S1
2) = (1, 3) and we can choose as element of minimal value the sum xS1

2
of

its two generators
xS1

2
=
(
t+ t5, v3 + v4

)
while mult(S2

2) = (2, 2) and we can choose as its minimal element xS2
2

=
(
u2 + u6, w2

)
. Then

we have mult∗(S2) = {(1, 0, 3, 0), (0, 2, 0, 2)} and we can proceed with the computation of S3.
Thus

S2 = Bl(S1
2)× Bl(S2

2),

so we have to compute Bl(S1
2) and Bl(S2

2).
We have

Bl(S1
2) = K

[[(
φ
(3)
1 (t), ψ

(3)
1 (v)

)
, . . . ,

(
φ
(2)
3 (t), ψ

(2)
3 (v)

)]]
,

where

•
(
φ
(3)
1 (t), ψ

(3)
1 (v)

)
=
(
t+ t5, v3 + v4

)
;

•
(
φ
(3)
2 (t), ψ

(3)
2 (v)

)
=

(
t4

1 + t4
,

1

1 + v

)
;

•
(
φ
(3)
3 (t), ψ

(3)
3 (v)

)
=

(
1

1 + t4
,

v

1 + v

)
.

We notice that the second generator has valuation (4, 0), then Bl(S1
2) is not local in K[[t]] ×

K[[v]]. Furthermore we have, with our notation, that mult∗(Bl(R1
2)) = {(1, 0), (0, 1)}. Then we

have
Bl(S1

2) = K[[t]]×K[[v]].

Now we can compute Bl(S2
2). We have

Bl(S2
2) = K

[[(
u2 + u6, w2

)
,

(
−u2 + u3

(1 + u4)2
, w3

)]]
.

Then we have that Bl(S2
2) is local in K[[u]]×K[w]], and mult(Bl(S2

2)) = (2, 2).
Then P(S3) = {P1 = {1} , P2 = {3} , P3 = {2, 4}} and

S3 = K[[t]]×K[[v]]× S3
3 ,

with mult∗(S3) = {(1, 0, 0, 0), (0, 0, 1, 0), (0, 2, 0, 2)}. As a minimal element of S3
3 we can

choose again xS3
3

= (u2 + u6, w2).
Thus

S4 = Bl(K[[t]])× Bl(K[[v]])× Bl(S3
3) = K[[t]]×K[[v]]× Bl(S3

3).

We have:

Bl(S3
3) = K

[[(
u2 + u6, w2

)
,

(
−1 + u

(1 + u4)3
, w

)]]
.
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From this it is easy to show that Bl(S3
3) = K[[u]]×K[[w]]. Then

S4 = K[[t]]×K[[u]]×K[[v]]×K[[w]],

and we have reached the stop condition for our algorithm.
We found that N = 4 and

• mult∗(S1) = {(5, 2, 3, 2)} ,

• mult∗(S2) = {(1, 0, 3, 0), (0, 2, 0, 2)} ,

• mult∗(S3) = {(1, 0, 0, 0), (0, 0, 1, 0), (0, 2, 0, 2)} ,

• mult∗(S4) = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} .
The corresponding minimal elements are:

• xS1 = (t5, u2 + u6, v3, w2),

• x12 = (t+ t5, 1, v3 + v4, 1) and x22 = (1, u2 + u6, 1, w2) ;

• x13 = (t, 1, 1, 1), x23 = (1, 1, v, 1) and x33 = (1, u2 + u6, 1, w2) ;

• x14 = (t, 1, 1, 1), x24 = (1, u, 1, 1), x34 = (1, 1, v, 1) and x44 = (1, 1, 1, w).

Then we have the following trees:

S1

S2
2

S3
3

K[[w]]K[[u]]

S1
2

K[[v]] = S2
3K[[t]] = S1

3

(5, 2, 3, 2)

(0, 2, 0, 2)

(0, 2, 0, 2)

(0, 0, 0, 1)(0, 1, 0, 0)

(1, 0, 3, 0)

(0, 0, 1, 0)(1, 0, 0, 0)

(t5, u2 + u6, v3, w2)

(1, u2 + u6, 1, w2)

(1, u2 + u6, 1, w2)

(1, 1, 1, w)(1, u, 1, 1)

(t+ t5, 1, v3 + v4, 1)

(1, 1, v, 1)(t, 1, 1, 1)
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The conductor of ν(S∗) is c = (6, 6, 6, 6) If we compare these tree with the tree computed
starting by R in the Example 3.3, we can observe that the tree associated to the ring and the
multiplicity tree are the same, instead the minimal tree are equal module c + 1 = (7, 7, 7, 7).
Then we have M(T (S))E = M(T (R))E .
We have that

Small(ν(S∗)) = Small(ν(R∗)) =

= {(5, 2, 3, 2), (5, 4, 3, 4), (5, 6, 3, 6), (6, 2, 6, 2), (6, 4, 6, 4), c = (6, 6, 6, 6)} .

From the minimal tree we can recover the elements of S∗ with valuation belonging to Small(S(T )).
We can calculate the Arf closure by truncating the terms with degree bigger than the conductor.
They are: {

(t5, u2, v3, w2), (t5, u4, v3, w4), (t5, 0, v3, 0), (0, u2, 0, w2), (0, u4, 0, w4)
}
.

Finally we have

S∗ = R∗ = K(1, 1, 1, 1) + K(t5, u2, v3, w2) + K(t5, u4, v3, w4) + K(t5, 0, v3, 0)+

+K(0, u2, 0, w2) + K(0, u4, 0, w4) + (t6, u6, v6, w6) (K[[t]]×K[[u]]×K[[v]]×K[[w]]) .
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