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Abstract. We begin a systematic study of finite semigroups that gen-
erate join irreducible members of the lattice of pseudovarieties of finite
semigroups, which are important for the spectral theory of this lattice.
Finite semigroups S that generate join irreducible pseudovarieties are
characterized as follows: whenever S divides a direct product A×B of
finite semigroups, then S divides either An or Bn for some n ≥ 1. We
present a new operator V 7→ V

bar that preserves the property of join ir-
reducibility, as does the dual operator, and show that iteration of these
operators on any nontrivial join irreducible pseudovariety leads to an
infinite hierarchy of join irreducible pseudovarieties. We also describe
all join irreducible pseudovarieties generated by a semigroup of order up
to five. It turns out that there are 30 such pseudovarieties, and there is
a relatively easy way to remember them. In addition, we survey most
results known about join irreducible pseudovarieties to date and general-
ize a number of results in Sec. 7.3 of [The q-theory of Finite Semigroups,
Springer Monographs in Mathematics (Springer, Berlin, 2009)].
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1. Introduction

In the 1970s, Eilenberg [4] highlighted the importance of PV, the al-
gebraic lattice of all pseudovarieties of finite semigroups, via his research
with Schützenberger, by providing a correspondence between PV and va-
rieties of regular languages. Specifically, they proved that the lattice PV

is isomorphic to the algebraic lattice of varieties of regular languages; see
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the monograph by the second and third authors [23, Introduction] and the
references therein.

The q-theory of finite semigroups focuses on PV, but in a different man-
ner, and can be viewed in analogy with the classical real analysis theory of
continuous and differentiable functions from [0, 1] into [0, 1]. The analogy is
given by replacing [0, 1] with PV, continuous functions with Cnt(PV), and
differentiable functions with GMC(PV); see [23, Chapter 2].

From a number of points of view, PV is an important algebraic lattice
with many interesting properties, and several theories have been developed
for its investigation. For instance, the theorem of Reiterman [21] character-
ized pseudovarieties as exactly the classes defined by pseudoidentities. This
led to the syntactic approach—employed by Almeida in his work and mono-
graph [2]—that has became a fundamental tool in finite semigroup theory.
Some of these results and techniques will be employed in this paper. An-
other important approach is the abstract spectral theory of PV going back
to Stone with lattice theoretic foundations going back to Birkhoff; see [23,
Chapter 7].

Since PV is a lattice, it is natural to investigate its elements that satisfy
important lattice properties. For any element ℓ in a lattice L ,

(1) ℓ is compact if, for any X ⊆ L ,

ℓ ≤
∨

X =⇒ ℓ ≤
∨

F for some finite F ⊆ X ;

(2) ℓ is join irreducible (ji) if, for any X ⊆ L ,

ℓ ≤
∨

X =⇒ ℓ ≤ x for some x ∈ X ;

(3) ℓ is finite join irreducible (fji) if, for any finite F ⊆ L ,

ℓ ≤
∨

F =⇒ ℓ ≤ x for some x ∈ F ;

(4) ℓ is meet irreducible (mi) if, for any set X ⊆ L ,

ℓ ≥
∧

X =⇒ ℓ ≥ x for some x ∈ X ;

(5) ℓ is finite meet irreducible (fmi) if, for any finite F ⊆ L ,

ℓ ≥
∧

F =⇒ ℓ ≥ x for some x ∈ F ;

(6) ℓ is strictly join irreducible (sji) if, for any set X ⊆ L ,

ℓ =
∨

X =⇒ ℓ ∈ X ;

(7) ℓ is strictly finite join irreducible (sfji) if, for any finite F ⊆ L ,

ℓ =
∨

F =⇒ ℓ ∈ F ;

(8) ℓ is strictly meet irreducible (smi) if, for any X ⊆ L ,

ℓ =
∧

X =⇒ ℓ ∈ X ;

(9) ℓ is strictly finite meet irreducible (sfmi) if, for any finite F ⊆ L ,

ℓ =
∧

F =⇒ ℓ ∈ F .
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An algebraic lattice is a complete lattice that is join generated by its compact
elements. The compact elements of PV are the finitely generated pseudo-
varieties. The pseudovariety generated by a finite semigroup S is denoted
by 〈〈S〉〉. It is clear that for any V ∈ PV,

V =
∨

{〈〈S〉〉 | S ∈ V}.

The abstract spectral theory of a lattice is closely connected to the compu-
tation of its maximal distributive image, which is determined by the lattice’s
fji and fmi elements; see [23, Chapter 7] and the references therein. The fji

and fmi elements of PV are thus very important. The ji pseudovarieties are
just the compact fji pseudovarieties, as is easy to see, so we are interested in
finite semigroups that generate pseudovarieties that are fji or equivalently ji.

By abuse of terminology, we say that a finite semigroup S is join irre-
ducible (ji) if the pseudovariety 〈〈S〉〉 is ji; finite semigroups that satisfy the
properties in (3)–(9) are similarly defined. A finite semigroup S is ji if and
only if for all finite semigroups T1 and T2,

S ≺ T1 × T2 =⇒ S ≺ T n
1 or S ≺ T n

2 for some n ≥ 1,

where A ≺ B means that A is a homomorphic image of a subsemigroup
of B, and An = A × A × · · · × A is the direct product of n copies of A.
For finite semigroups, there are several properties stronger than being ji: a
finite semigroup S is ×-prime [2, Section 9.3] if for all finite semigroups T1
and T2,

S ≺ T1 × T2 =⇒ S ≺ T1 or S ≺ T2;

a semigroup S is Kovács–Newman (KN) if whenever f : T ։ S is a surjec-
tive homomorphism where T is a subsemigroup of T1 × T2 for some finite
semigroups T1 and T2, subdirectly embedded, then f factors through one of
the projections. Semigroups that are KN have been completely classified [23,
Section 7.4].

The proper inclusions

{KN semigroups} $ {×-prime semigroups} $ {ji semigroups}

are known to hold. For example, while any simple non-abelian group is KN,
any cyclic group Zp of prime order p is ×-prime but not KN. The well-known
Brandt semigroup B2 of order five is ji but not ×-prime [23, Example 7.4.3].

Since the lattice PV is algebraic, it follows from a well-known theorem
of Birkhoff that its smi elements constitute the unique minimal set of meet
generators [23, Section 7.1]. It easily follows from Reiterman’s theorem [23,
Section 3.2] that each smi pseudovariety is defined by a single pseudoidentity
but not conversely. Now the reverse of the lattice PV is not algebraic but
is locally dually algebraic, so the sji elements of PV constitute the unique
minimal set of join generators for PV [23, Section 7.2]. The sji pseudovarie-
ties are precisely those having a unique proper maximal subpseudovariety.

Every ji pseudovariety is sji, but the converse does not hold, as demon-
strated by several known examples [23, Proposition 7.3.22] and additional
examples in Propositions 3.1 and 6.30. Hence ji pseudovarieties do not join
generate the lattice PV. This prompts the following tantalizing question.

Question 1.1. What do the ji elements in PV join generate?
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It is well known and not difficult to prove that the function

S 7→

{
1 if 〈〈S〉〉 is sji

0 otherwise

on the class of finite semigroups is computable; see, for example, Proposi-
tion 4.1 and its proof. On the other hand, it is unknown if the function

S 7→

{
1 if 〈〈S〉〉 is ji

0 otherwise

on the class of finite semigroups is decidable.

Question 1.2. Is ji decidable, that is, is the above function computable?

If ji is not decidable, then a systematic study of ji semigroups seems
doomed in general. But even if ji is decidable, then it is probably hopeless,
in practice, to find all ji semigroups. In any case, an important step is to
find methods to produce new ji semigroups and methods to identify and
eliminate finite semigroups that are not ji. This paper develops several
new methods. For semigroups of small order, in particular, the (Birkhoff)
equational theory is crucial and is often used.

A pleasant feature of a finite semigroup S being ji is the “five for one
phenomenon” related to the exclusion class Excl(S) of S, the class of all finite
semigroups T for which S /∈ 〈〈T 〉〉. Indeed, a finite semigroup S is ji if and only
if Excl(S) is a pseudovariety [23, Theorem 7.1.2]. In this case, Excl(S) is mi

and so is defined by a single pseudoidentity, and since Excl(S) is also smi, it
has Excl(S) ∨ 〈〈S〉〉 as a unique cover. Further, 〈〈S〉〉 ∩ Excl(S) is the unique
maximal subpseudovariety of 〈〈S〉〉, and so Excl(S) determines 〈〈S〉〉; see [23,
Section 7.1]. For example, the Brandt semigroup B2 is ji, the exclusion class
Excl(B2) coincides with the pseudovariety

DS =
[[
((xy)ω(yx)ω(xy)ω)ω ≈ (xy)ω

]]

of finite semigroups whose J -classes are subsemigroups [23, Example 7.3.4],
and 〈〈B2〉〉 ∩DS = 〈〈B0〉〉 is the unique maximal subpseudovariety of 〈〈B2〉〉,
where B0 is a subsemigroup of B2 of order four [6]; see Subsection 3.4. More
examples of maximal subpseudovarieties can be found in Section 5.

As mentioned earlier, a goal of this paper is to find new ji semigroups.
One approach—and a very important problem in its own right—is to find
new operators on PV that preserve the property of being ji. The following
are some known examples.

Example 1.3. For any semigroup S, the opposite semigroup Sop of S is
obtained by reversing the multiplication on S. Then the dual operator

V 7→ Vop = {Sop | S ∈ V}

on PV preserves the property of being ji.

Example 1.4 (See Lemma 5.2). For any semigroup S, let SI denote the
monoid obtained by adjoining an external identity element I to S, and define

S• =

{
S if S is a monoid,

SI otherwise.
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Then the operator V 7→ V• = {S• | S ∈ V} on PV preserves the property
of being ji.

Example 1.3 is not surprising; in fact, in many investigations, such as
the finite basis problem for small semigroups [14, 30], it is common to iden-
tify Sop with S. The situation for the operatorV 7→ V•, however, can be dif-
ferent because it is possible that no new ji pseudovariety is produced. Indeed,
if a pseudovariety V is generated by some monoid, then V• = V cannot
be a new example of ji pseudovariety. But if V = 〈〈S〉〉 is a ji pseudovariety
that is not generated by any monoid, then V• = 〈〈SI〉〉 is a ji pseudovariety
properly containing V. Note that the operator V 7→ VI = {SI | S ∈ V}
does not preserve the property of being ji. For example, the cyclic group
Zp of any prime order p generates a ji pseudovariety, but the pseudovari-

ety 〈〈Zp〉〉
I = 〈〈ZI

p〉〉 is not ji because 〈〈ZI
p〉〉 = 〈〈Zp〉〉 ∨ 〈〈Sl2〉〉, where Sl2 is the

semilattice of order two.
On the other hand, it is possible for VI to be ji even though V is not ji.

For example, if S = Sl2 × R2, where R2 is the right zero semigroup of
order two, then the pseudovariety 〈〈S〉〉 = 〈〈Sl2〉〉 ∨ 〈〈R2〉〉 is not ji but 〈〈S〉〉

I =
〈〈SlI2 ×RI

2〉〉 = 〈〈RI
2〉〉 is ji [23, Example 7.3.1].

Remark 1.5. It is clear that the operator V 7→ Vop also preserves the
property of being sji, but the operator V 7→ V• does not preserve this
property. For instance, the pseudovariety 〈〈B0〉〉 is sji while 〈〈B0〉〉

• = 〈〈BI
0〉〉

is not sji; see Proposition 3.1.

Given a finite semigroup S, consider the right regular representation
(S•, S) of S acting on S• by right multiplication. Then Sbar is defined
by adding all constant maps on S• to S, where multiplication is composi-
tion with the variable written on the left. Note that if (S, S) is a faithful
transformation semigroup, then we shall see later that the semigroup ob-
tained from S by adjoining the constant mappings on S generates the same
pseudovariety as Sbar and hence we sometimes (abusively) denote this latter
semigroup by Sbar as well. Some small examples of Sbar can be found in
Section 3.

It turns out that the operator V 7→ Vbar = 〈〈Sbar | S ∈ V〉〉 on PV

preserves the property of being ji. This result, the details of which are given
in Subsection 4.3, is important: for any finite nontrivial ji semigroup S, the
pseudovarieties

〈〈Sbar〉〉, 〈〈(Sbar)♭〉〉, 〈〈((Sbar)♭)bar〉〉, 〈〈(((Sbar)♭)bar)♭〉〉, . . . ,

where X♭ = ((Xop)bar)op, constitute an infinite increasing chain of ji pseudo-
varieties (Corollary 4.11) whose complete union is an fji pseudovariety that
is not compact [23, Chapter 7].

Unsurprisingly, irregularities do show up when the operator V 7→ Vbar is
applied. For instance, it is sometimes possible for 〈〈Sbar〉〉 = 〈〈S〉〉, so that no
new ji pseudovariety is obtained. Further, it is possible for 〈〈Sbar〉〉 to be ji

even though 〈〈S〉〉 is not ji. An important class of examples will be given in
Subsection 4.5.

A main result of this paper is the complete classification of all ji pseudo-
varieties generated by a semigroup of order up to five. We want to give the
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reader an easy way to remember their generators. First, we have the three
operators S 7→ Sop, S 7→ S•, and S 7→ Sbar, and their iterations such as
(((Sop)bar)op and (((((Sbar)op)•)bar)op)bar. If we have a list of ji semigroups,
applying the three operators and their iterations give ji semigroups that may
or may not generate new ji pseudovarieties.

A ji pseudovariety V is primitive if V 6= 〈〈S•〉〉 and V 6= 〈〈Sbar〉〉 for any
finite semigroup S that generates a ji proper subpseudovariety of V. Now we
are only interested in knowing the primitive ji pseudovarieties up to isomor-
phism and anti-isomorphism of members since the others can be obtained by
applying the operators. Therefore when describing ji pseudovarieties gener-
ated by a semigroup of order up to five, it suffices to list, up to isomorphism
and anti-isomorphism, only generators of those that are primitive; see Ta-
ble 1. Presentations and multiplication tables of these semigroups can be
found in Section 3. The only new example of a semigroup of order five that
generates a primitive ji pseudovariety is ℓbar3 ; all the other semigroups were
previously known to be ji. Note that ℓbar3 is ji but ℓ3 is not; see Subsection 4.5,
where this example is extended to an infinite family of examples.

n
Semigroups of order n that generate

primitive ji pseudovarieties

2 Z2, N2, L2

3 Z3, N3

4 Z4, N4, A0

5 Z5, N5, A2, B2, ℓ
bar
3

Table 1. Some generators of primitive ji pseudovarieties

The statement of the above result regarding semigroups of order up to five
is straightforward, but its proof is not so; it requires knowledge of subpseu-
dovarieties of pseudovarieties generated by small semigroups [6, 9, 12, 13, 15,
16, 27, 31, 32] and of bases of pseudoidentities for many pseudovarieties of

the form
∨k

i=1〈〈Si〉〉, and advanced algebraic theory of finite semigroups [23].
The following are all other ji semigroups known to us, except for some

well-known results on completely simple semigroups.

1.1. Groups. It is an easy observation that a finite group generates a ji

pseudovariety of semigroups if and only if it generates a ji pseudovariety of
groups; see [23, Chapter 7]. A pseudovariety V of groups is called saturated
if whenever ϕ : G → H is a homomorphism of finite groups with H ∈ V,
there exists a subgroup K ≤ G such that K ∈ V and Kϕ = H. It is
observed in [24, Example 7.6.5] that any pseudovariety of groups closed
under extension is saturated. In particular, for any prime p, the pseudovari-
ety of p-groups is saturated. It is almost immediate from the definition that
if V is a saturated pseudovariety of groups, then a group G ∈ V generates a
ji pseudovariety in the lattice of all semigroup pseudovarieties if and only if it
generates a jimember of the lattice of subpseudovarieties ofV. In particular,
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a p-group G is ji if and only if whenever G divides a direct product A × B
of p-groups, then G divides either An or Bn for some n ≥ 1.

Abelian groups. The following statements on any directly indecomposable
finite abelian group A are equivalent: A is ji, A is ×-prime, and A ∼= Zpn for
some prime p and n ≥ 1. This result follows from the Fundamental Theorem
of Finite Abelian Groups and that Zpn lifts in the sense that whenever Zpn

is a homomorphic image of some semigroup S, then Zpn+r embeds into S
for some r ≥ 0.

Monolithic groups. A finite group G is monolithic if it contains a unique
minimal nontrivial normal subgroupN ; in this case, N is called the monolith
of G, and it is well known that N ∼= Hn for some simple group H and n ≥ 1.

A finite group is monolithic if and only if it is subdirectly indecomposable;
recall that a semigroup S is a subdirect product of S1 and S2, written S ≪
S1 × S2, if S is a subsemigroup of S1 × S2 mapping onto both S1 and S2
via the projections πi. A semigroup S is subdirectly indecomposable (sdi) if
S ≪ S1 × S2 implies that at least one of the projections πi : S ։ Si is an
isomorphism. Therefore when locating ji groups from among finite groups,
it suffices to concentrate on those that are monolithic.

Groups with non-abelian monolith. Kovács and Newman proved that any
monolithic group with non-abelian monolith is KN [23, Section 7.4] and so
also ×-prime and ji. Therefore, all simple non-abelian groups are ji.

Groups with abelian monolith. An abelian monolith N of a finite group G
splits if there exists a subgroup K of G so that N ∩K = {1} and NK = G.
A finite subdirectly indecomposable group with an abelian monolith that
splits is ji; this result is due to G.M. Bergman and its proof is given in
Subsection 4.6. Therefore, the symmetric group Sym3 over three symbols
is ji.

Groups of small order. The ji pseudovarieties generated by a group of order
seven or less are 〈〈Z2〉〉, 〈〈Z3〉〉, 〈〈Z4〉〉, 〈〈Z5〉〉, 〈〈Sym3〉〉, and 〈〈Z7〉〉. Regarding
groups of order eight that generate other ji pseudovarieties, besides Z8, there
are two nontrivial cases: the dihedral groupD4 of the square and the quater-
nion group Q8. Let G ∈ {D4, Q8}. Then forming G × G and dividing out
the two centers identified, (G ×G)/{(1, 1), (a, a)} gives isomorphic groups,
denoted by G ◦ G. Since G ≤ G ◦ G, it follows that 〈〈D4〉〉 = 〈〈Q8〉〉. There-
fore, the groups D4 and Q8 are not ×-prime and so also not KN. However,
the pseudovariety 〈〈D4〉〉 = 〈〈Q8〉〉 is ji; see Subsection 4.7. This result is due
independently to Kearnes [5] and the anonymous reviewer.

Other ji pseudovarieties generated by a group of order up to 11 are 〈〈Z9〉〉,
〈〈D5〉〉, and 〈〈Z11〉〉.

1.2. J -trivial semigroups. Presently, the only ji pseudovarieties of J -
trivial semigroups known in the literature are generated by the following:

• Nn = 〈a | an = 0〉, n ≥ 1;
• Hn = 〈e, f | e2 = e, f2 = f, (ef)n = 0〉, n ≥ 1;
• Kn = 〈e, f | e2 = e, f2 = f, (ef)ne = 0〉, n ≥ 1;
• N I

n, H
I
n, K

I
n, n ≥ 1.
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The pseudoidentity defining the pseudovariety Excl(Nn) is given in Subsec-
tion 5.4, while the pseudovarieties Excl(Hn) and Excl(Kn) are defined by the
pseudoidentities

(xωyω)n+ω ≈ (xωyω)n and (xωyω)n+ωxω ≈ (xωyω)nxω,

respectively [11, Propositions 2.3 and 3.3].

1.3. Commutative semigroups. The pseudovariety Com of finite com-
mutative semigroups can be decomposed as

Com = (Com ∩G) ∨ (Com ∩A),

where G is the pseudovariety of finite groups and A is the pseudovariety of
finite aperiodic semigroups [2, Figure 9.1]. Therefore any ji pseudovariety
of commutative semigroups is contained in either Com ∩G or Com ∩A.
As noted in Subsection 1.1, the ji subpseudovarieties of Com ∩G are each
generated by a cyclic group Zpn of prime power order. As for Com∩A, each
of its finite semigroups satisfies the identity xn+1 ≈ xn for all sufficiently
large n ≥ 1 and so belongs to 〈〈N I

n〉〉; see Proposition 5.10(i). A complete
description of ji subpseudovarieties of Com is thus dependent on the answer
to the following question.

Question 1.6. For each n ≥ 1, what are the ji subpseudovarieties of 〈〈N I
n〉〉?

Presently, the only known examples of ji subpseudovarieties of 〈〈N I
n〉〉 are

〈〈Nk〉〉 and 〈〈N I
k 〉〉, where 1 ≤ k ≤ n.

1.4. Bands. The pseudovariety B of finite bands is fji (Corollary 4.12).
Each proper subpseudovariety of B is compact and a complete description
of the lattice of subpseudovarieties of B is well known; see, for example,
Almeida [2, Section 5.5]. The atoms of this lattice are Sl = 〈〈Sl2〉〉, LZ =
〈〈L2〉〉, and RZ = 〈〈R2〉〉; see Subsection 3.3.

Let LNB = Sl∨LZ. For any pseudovariety V, define the Mal’cev prod-

ucts α̃V = RZ©m V and β̃V = LZ©m V; see Subsection 4.2. Then by [19],
the proper, nontrivial sji pseudovarieties of bands are as follows:

• LZ, RZ, and Sl;

• (α̃β̃)nSl and β̃(α̃β̃)nSl, n ≥ 1, and their duals;

• (β̃α̃)n+1LNB and α̃(β̃α̃)nLNB, n ≥ 0, and their duals.

However, we observe that α̃LNB = α̃LZ. Since S 7→ Sbar preserves join
irreducibility, it follows that the pseudovariety generated by a finite band is
ji if and only if it is sji; see Theorem 4.14. As observed after Question 1.1,
it is decidable if a finite semigroup generates a sji pseudovariety. Therefore,
Question 1.2 is affirmatively answered for bands.

1.5. Kovács–Newman semigroups. All KN semigroups are known [23,
Section 7]. These are semigroups with kernel (minimal two-sided ideal) a
Rees matrix semigroup over a monolithic group with non-abelian monolith
that acts faithfully on the right and left of the kernel.
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1.6. The subdirectly indecomposable viewpoint. Since every finite
semigroup divides (in fact, is a subdirect product of) its sdi homomorphic
images, we can restrict our search for new ji semigroups to sdi semigroups,
just as in the case of groups, when we can restrict our search to monolithic
finite groups.

In more detail, to find the ji pseudovarieties, we clearly need only to find
finite semigroups S such that 〈〈S〉〉 is ji and there exist no semigroups T with
|T | < |S| and 〈〈T 〉〉 = 〈〈S〉〉. Such a semigroup S is called a minimal order
generator for the compact pseudovariety 〈〈S〉〉.

Now the minimal order generators of ji pseudovarieties, in fact of sji pseu-
dovarieties, must be sdi. To see this, suppose that S is any finite semigroup
that is not sdi. Then S ≪ S1×S2×· · ·×Sk for some homomorphic images Sj
of S such that |Sj| < |S|. But since 〈〈S〉〉 = 〈〈S1〉〉∨〈〈S2〉〉∨ · · ·∨ 〈〈Sk〉〉 and 〈〈S〉〉
is sji, it follows that 〈〈S〉〉 = 〈〈Sj〉〉 for some j, whence S is not a minimal
order generator

If a finite semigroup S is ×-prime (e.g. KN), then S is a minimal order
generator and any minimal order generator for 〈〈S〉〉 is isomorphic to S. The
proof is clear. However, minimal order generators for the same ji pseudova-
riety need not be isomorphic; for example, 〈〈Q8〉〉 = 〈〈D4〉〉 is ji and Q8 ≇ D4.

It should be pointed out that a finite semigroup S being sdi does not
imply that the pseudovariety 〈〈S〉〉 is ji or even sji. For example, the Rees
matrix semigroup

S = M 0
(
Z2, {1, 2}, {1, 2};

[
1 0
0 1

])

is sdi, but 〈〈S〉〉 = 〈〈B2〉〉 ∨ 〈〈Z2〉〉 is not sji; see [23, Section 4.7].

1.7. Organization. The article is organized as follows. In Section 2, the
operator V 7→ Vbar is introduced in detail and some related results are
established. In Section 3, some important small semigroups that are required
for this paper are defined. In Section 4, some general results regarding ji

pseudovarieties are established. In Section 5, some explicit pseudovarieties
are shown to be ji, and conditions sufficient for a finite semigroup to generate
one of them are established. In Section 6, some conditions sufficient for a
finite semigroup to generate a non-ji pseudovariety are established. Results
in Sections 4–6 are then employed in Section 7 to prove that among all
pseudovarieties generated by a semigroup of order up to five, only 30 are ji.

2. Augmented semigroups

All semigroups and transformation semigroups, with the exception of free
semigroups and free profinite semigroups, are assumed finite. Notation in
the monograph [23] will often be followed closely.

Let (X,S) be a transformation semigroup where S is a semigroup that

acts faithfully on the right of a set X. Then (X,S) = (X,S ∪X) where X is
the set of constant maps on X. The constant map to a fixed element x ∈ X
is denoted by x. If (X,S) and (Y, T ) are transformation semigroups, then

(X,S) × (Y, T ) = (X × Y, S × T )

with the action (x, y)(s, t) = (xs, yt).
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Refer to Eilenberg [4] for the definition of division ≺ of transformation
semigroups.

Lemma 2.1 (Eilenberg [4, Exercise I.4.1, Propositions I.5.4, and page 20]).
Let (X,S) and (Y, T ) be any transformation semigroups. Then

(i) (X,S) ≺ (Y, T ) implies that (X,S) ≺ (Y, T );
(ii) (X,S) ≺ (Y, T ) implies that S ≺ T ;

(iii) (X,S)× (Y, T ) ≺ (X,S) × (Y, T ).

Lemma 2.1(ii) holds because the mappings involved are total.

Lemma 2.2 (D. Allen; see Eilenberg [4, Proposition I.9.8]). If (X,S) is any
transformation semigroup, then (S•, S) ≺ (X,S)|X|.

Following [23, Chapter 4], write (S•, S) = (S•, Sbar) and call Sbar the
augmentation of S. Note that if (X,S) ≺ (S•, S), then (X,S) ≺ (S•, S) ≺
(X,S)|X| by Lemma 2.2 and hence

(X,S) ≺ (S•, S) ≺ (X,S)
|X|
.

Thus if S′ = S ∪X, then S′ ≺ Sbar ≺ (S′)|X|, yielding the following result.

Corollary 2.3. If (X,S) is a transformation semigroup such that (X,S) ≺
(S•, S), then 〈〈S ∪X〉〉 = 〈〈Sbar〉〉. In particular, if S is any semigroup and J
is any right ideal of S on which it acts faithfully, then 〈〈Sbar〉〉 = 〈〈S ∪ J〉〉.

The following are some elementary properties enjoyed by augmentation.

Proposition 2.4. Let S and T be any finite semigroups. Then

(i) S ≺ T implies that Sbar ≺ T bar;
(ii) (S × T )bar ≺ Sbar × T bar.

Proof. (i) Suppose that S ≺ T , so that (S•, S) ≺ (T •, T ) by Eilenberg [4,
Proposition I.5.8]. Then by Lemma 2.1(i),

(S•, Sbar) = (S•, S) ≺ (T •, T ) = (T •, T bar).

Therefore, Sbar ≺ T bar by Lemma 2.1(ii).
(ii) First note that ((S × T )•, S × T ) ≺ (S• × T •, S × T ). Then

((S × T )•, (S × T )bar)

= ((S × T )•, S × T ) ≺ (S• × T •, S × T ) by Lemma 2.1(i)

= (S•, S)× (T •, T ) ≺ (S•, S)× (T •, T ) by Lemma 2.1(iii)

= (S•, Sbar)× (T •, T bar) = (S• × T •, Sbar × T bar).

Therefore, (S × T )bar ≺ Sbar × T bar by Lemma 2.1(ii). �

In the following, augmentation is viewed as a continuous operator on the
lattice PV of pseudovarieties. An operator is continuous if it preserves order
and directed joins [23]. For any pseudovariety V, define

Vbar = 〈〈Sbar | S ∈ V〉〉.

Recall that RZ = 〈〈R2〉〉 is the pseudovariety of right zero semigroups.
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Proposition 2.5. The operator on PV defined by V 7→ Vbar is continuous,
non-decreasing, and idempotent. Further,

(i) 〈〈S〉〉bar = 〈〈Sbar〉〉 for any finite semigroup S;
(ii) RZ ⊆ Vbar for any nontrivial pseudovariety V.

Consequently, if 〈〈S〉〉 = 〈〈T 〉〉, then 〈〈Sbar〉〉 = 〈〈T bar〉〉.

Proof. Clearly augmentation is order preserving. Let {Vδ | δ ∈ D} be any
directed set of pseudovarieties, so that the complete join V =

∨
δ∈D Vδ is

a union. The inclusion Vbar
δ ⊆ Vbar clearly holds for all δ ∈ D, so that∨

δ∈D Vbar
δ ⊆ Vbar. Conversely, if S ∈ Vbar, say S ≺ T bar

1 × T bar
2 × · · · × T bar

k
for some T1, T2, . . . , Tk ∈ V, then due to directedness, there exists δ ∈ D
with T1, T2, . . . , Tk ∈ Vδ, whence S ∈ Vbar

δ . Therefore, augmentation is
continuous.

Since S ≺ Sbar, it is obvious that augmentation is non-decreasing and
the inclusion Vbar ⊆ (Vbar)bar holds. To establish the reverse inclusion,
it suffices to prove that (Sbar)bar ∈ Vbar for all S ∈ V. But Sbar acts
faithfully on the right of its minimal ideal S• and it contains all the constant

mappings. Thus (S•, Sbar) = (S•, Sbar) and (S•, Sbar) ≺ ((Sbar)•, Sbar). It
follows from Corollary 2.3 that Sbar = Sbar ∪S• generates the same pseudo-
variety as (Sbar)bar. This shows that (Sbar)bar ∈ Vbar, so that augmentation
is idempotent.

It remains to establish parts (i) and (ii).
(i) The inclusion 〈〈Sbar〉〉 ⊆ 〈〈S〉〉bar holds trivially. To establish the reverse

inclusion, suppose that T ∈ 〈〈S〉〉bar, so that T ≺ Ubar for some U ∈ 〈〈S〉〉.
Then U ≺ Sn for some n ≥ 0 and so T ≺ Ubar ≺ (Sn)bar ≺ (Sbar)n by
Proposition 2.4(ii). Therefore, T ∈ 〈〈Sbar〉〉. Consequently, 〈〈Sbar〉〉 = 〈〈S〉〉bar.

(ii) If S is a nontrivial semigroup in V, then the right zero semigroup R2

is a subsemigroup of Sbar, whence RZ ⊆ V. �

Corollary 2.6. Let S be any finite semigroup whose minimal ideal J con-
sists of right zeroes. Suppose that S acts faithfully on the right of J . Then
〈〈S〉〉bar = 〈〈S〉〉.

Proof. By Proposition 2.5, it suffices to prove that 〈〈Sbar〉〉 = 〈〈S〉〉. But since

(J, S) = (J, S), it follows that S = S ∪ J . The desired conclusion then
follows from Corollary 2.3. �

3. Some important semigroups

In this section, semigroups that are required throughout the paper are
introduced. Semigroups are given by their presentations, and whenever
feasible, multiplication tables. In presentations, the symbols e and f are
exclusively reserved for idempotent elements.

3.1. Cyclic groups. The cyclic group of order n ≥ 1 is

Zn = 〈g | gn = 1〉 = {1, g, g2 , . . . , gn−1}.

The augmentation of Z2 = {1, g} is the semigroup Zbar
2 = {1, g, 1, g} given

in Table 2. The semigroup Zbar
2 is isomorphic to the semigroup of transfor-

mations of the set {1, 2}. Information on identities satisfied by the semi-
groups Zn and Zbar

2 is given in Subsections 5.2 and 5.3, respectively.
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3.2. Nilpotent semigroups. The monogenic nilpotent semigroup of order
n ≥ 1 is

Nn = 〈a | an = 0〉 = {0, a, a2, . . . , an−1}.

The augmentation of N2 = {0, a} is the semigroup Nbar
2 = {0, a, a, I} given

in Table 2. Information on identities satisfied by the semigroups Nn, N
I
n,

Nbar
2 , and (Nbar

2 )I is given in Subsections 5.4, 5.5, 5.6, and 5.7, respectively.

Zbar
2 1 g 1 g

1 1 g 1 g

g g 1 1 g

1 1 g 1 g

g g 1 1 g

Nbar
2 0 a a I

0 0 0 a I

a 0 0 a I

a 0 0 a I

I 0 a a I

Table 2. Multiplication tables of Zbar
2 and Nbar

2

3.3. Bands. The smallest nontrivial bands are the semilattice Sl2 = {0, 1}
and the left zero and right zero semigroups of order two:

L2 = 〈e, f | e2 = ef = e, f2 = fe = f〉 = {e, f},

R2 = 〈e, f | e2 = fe = e, f2 = ef = f〉 = {e, f};

see Table 3. Note that Sl2 ∼= N I
1 and Lop

2
∼= R2. It is well known that Sl2

generates the pseudovariety Sl of semilattices, L2 generates the pseudovari-
ety LZ of left zero semigroups, and R2 generates the pseudovariety RZ of
right zero semigroups.

Sl2 0 1

0 0 0

1 0 1

L2 e f

e e e

f f f

R2 e f

e e f

f e f

Table 3. Multiplication tables of Sl2, L2, and R2

The augmentation of L2 is the semigroup Lbar
2 = {e, f, e, f, I} given in Ta-

ble 4. Information on identities satisfied by the semigroups L2, L
I
2, and L

bar
2

is given in Subsections 5.8, 5.9, and 5.10, respectively.

3.4. Completely 0-simple semigroups. The smallest completely 0-simple
semigroups with zero divisors are the idempotent-generated semigroup

A2 = 〈a, e | a2 = 0, aea = a, e2 = eae = e〉 = {0, a, e, ae, ea}

and the Brandt semigroup

B2 = 〈a, b | a2 = b2 = 0, aba = a, bab = b〉 = {0, a, b, ab, ba};

see Table 5. The Rees matrix representations of these semigroups are

A2 = M 0
(
{1}, {1, 2}, {1, 2};

[
1 1
0 1

])

and B2 = M 0
(
{1}, {1, 2}, {1, 2};

[
1 0
0 1

])
.
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Lbar
2 e f e f I

e e e e f I

f f f e f I

e e e e f I

f f f e f I

I e f e f I

Table 4. Multiplication table of Lbar
2

The semigroups A2 and B2 contain subsemigroups isomorphic to

A0 = 〈e, f | e2 = e, f2 = f, ef = 0〉 = {0, e, f, fe}

and B0 = 〈a, e, f | e2 = e, f2 = f, ef = fe = 0, ea = af = a〉 = {0, a, e, f},

respectively; see Table 6. The semigroup

ℓ3 = 〈a, e | ae = 0, ea = a, e2 = e〉 = {0, a, e}

and its augmentation ℓbar3 = {0, a, e, a, e} are given in Table 7. Note that

A0
∼= A2 \ {e}, B0

∼= B2 \ {b}, and ℓ3 ∼= A0 \ {e} ∼= B0 \ {f}.

Information on identities satisfied by the semigroups A0, A
I
0, A2, B2, and ℓ

bar
3

is given in Subsections 5.11, 5.12, 5.13, 5.14, and 5.15, respectively.

A2 0 a ae ea e

0 0 0 0 0 0

a 0 0 0 a ae

ae 0 a ae a ae

ea 0 0 0 ea e

e 0 ea e ea e

B2 0 a ab ba b

0 0 0 0 0 0

a 0 0 0 a ab

ab 0 a ab 0 0

ba 0 0 0 ba b

b 0 ba b 0 0

Table 5. Multiplication tables of A2 and B2

A0 0 fe f e

0 0 0 0 0

fe 0 0 0 fe

f 0 fe f fe

e 0 0 0 e

B0 0 a e f

0 0 0 0 0

a 0 0 0 a

e 0 a e 0

f 0 0 0 f

Table 6. Multiplication tables of A0 and B0

It is shown in Subsection 4.5 that the semigroup ℓ3 belongs to an infinite
class of semigroups S with the property that 〈〈S〉〉 is not ji but 〈〈S〉〉bar is ji.
The semigroup B0 serves as a counterexample to the implications

S is sji =⇒ S is ji and S is sji =⇒ SI is sji
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ℓ3 0 a e

0 0 0 0

a 0 0 0

e 0 a e

ℓbar3 0 a e a e

0 0 0 0 a e

a 0 0 0 a e

e 0 a e a e

a 0 0 0 a e

e 0 a e a e

Table 7. Multiplication tables of ℓ3 and ℓbar3

mentioned in the introduction.

Proposition 3.1. (i) The pseudovariety 〈〈B0〉〉 is sji.
(ii) The pseudovariety 〈〈B0〉〉 is not ji.
(iii) The pseudovariety 〈〈BI

0〉〉 is not sji.

Proof. The pseudovariety 〈〈B0〉〉 is sji since it has a unique maximal proper
subpseudovariety [8, Lemma 5(b)]. The pseudovariety 〈〈BI

0〉〉 is not sji since it
has two maximal proper subpseudovarieties [8, Lemma 6(b)]. In particular,
the pseudovariety 〈〈BI

0〉〉 is not ji, whence the pseudovariety 〈〈B0〉〉 is also not
ji; see Lemma 5.2. �

4. Some general results on join irreducibility

The pseudovariety defined by a class Σ of pseudoidentities is denoted
by [[Σ]], while the pseudovariety generated by a class K of finite semigroups
is denoted by 〈〈K 〉〉. A pseudovariety is compact if it is generated by a single
finite semigroup.

Proposition 4.1. Every compact pseudovariety contains positively and only
finitely many maximal subpseudovarieties.

Proof. Let S = {s1, s2, . . . , sn} be any finite semigroup and let V denote the
variety generated by S. Since the lattice of subvarieties of V is isomorphic to
the lattice of subpseudovarieties of 〈〈S〉〉, it suffices to show that V contains
positively and only finitely many maximal subvarieties. Given any identity
u ≈ v such that S 6|= u ≈ v, there exists some substitution ϕ into S
such that uϕ 6= vϕ. Then ϕ induces a substitution ϕ′ into the set Xn =
{x1, x2, . . . , xn} given by xϕ′ = xi if xϕ = si. Therefore uϕ′ ≈ vϕ′ is an
identity over Xn such that u ≈ v ⊢ uϕ′ ≈ vϕ′ and S 6|= uϕ′ ≈ vϕ′. It
follows that every proper subvariety of V satisfies some identity over Xn.
Modulo the equational theory of the semigroup S, there can only be finitely
many identities over Xn that are violated by S; these identities form a finite
preordered set P under equational deduction ⊢. Each greatest element of
(P,⊢) defines within V a maximal subvariety. �

The exclusion class Excl(S) of a finite semigroup S is the class of all finite
semigroups T for which S /∈ 〈〈T 〉〉. Recall that a finite semigroup S is ji if
and only if Excl(S) is a pseudovariety [23, Theorem 7.1.2].
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In this section, some results on the property of being ji are established.
There are seven subsections. The main result of Subsection 4.1 demonstrates
that many exclusion classes of ji semigroups in this paper are not definable
by a certain type of pseudoidentities. In Subsection 4.2, the notion of a
“large” pseudovariety is introduced. It turns out that the exclusion class
of a ji semigroup that is right letter mapping, left letter mapping, or group
mapping satisfies this largeness condition. In Subsection 4.3, it is shown
that the operator V 7→ Vbar on PV preserves the property of being ji. More
specifically, if u ≈ v is a pseudoidentity that defines the exclusion class
Excl(S) of a ji semigroup S, then it is shown how a pseudoidentity that
defines Excl(Sbar) can be obtained from u ≈ v.

In Subsection 4.4, it is shown that alternately performing the operators
V 7→ Vbar and V 7→ V♭ = 〈〈((Sop)bar)op | S ∈ V〉〉 on a nontrivial pseudo-
variety 〈〈S〉〉 results in an infinite increasing chain of pseudovarieties; if the
semigroup S is ji to begin with, then the pseudovarieties are all ji. In Subsec-
tion 4.5, an infinite class {Ok | k ≥ 2} of finite semigroups is introduced and
shown to satisfy the following property: for each k ≥ 2, the pseudovariety
〈〈Ok〉〉 is not ji, while the pseudovariety 〈〈Ok〉〉

bar is ji.
In Subsection 4.6, a sufficient condition, due to G.M. Bergman, is pre-

sented under which a finite sdi group is ji. In Subsection 4.7, the pseudo-
variety 〈〈Q8〉〉 = 〈〈D4〉〉 is shown to be ji; this result is due independently to
Kearnes [5] and the anonymous reviewer.

4.1. Non-definability by simple pseudoidentities. For this subsection,
the assumption that all semigroups are finite is temporarily abandoned. The

free profinite semigroup on a set A is denoted by Â +. A pseudoidentity

u ≈ v is simple if u and v belong to the smallest subsemigroup F (A ) of Â +

containing A that is closed under product and unary implicit operations;
the latter condition means that {w}+ ⊆ F (A ) for all w ∈ F (A ).

The following theorem was essentially proved by Almeida and Volkov [3],
based on an earlier variant of Rhodes [22].

Theorem 4.2. Suppose that V is any proper pseudovariety of semigroups
containing all semigroups with abelian maximal subgroups. Then V cannot
be defined by simple pseudoidentities.

Proof. Let A be a fixed countably infinite set and for any m,n ≥ 1, let
Bm,n be the variety of semigroups defined by the identity xm ≈ xm+n.
Then the free semigroup B(1,m, n) on one-generator in Bm,n is finite and if

xη ∈ {̂x}+, then there exists an integer nη ≤ m+ n− 1 such that xη = xnη

in B(1,m, n). Thus each implicit operation in F (A ) has a natural interpre-
tation on any semigroup in Bm,n which agrees with its usual interpretation
in finite semigroups (namely interpret wη as wnη for every element w of a
semigroup S ∈ Bm,n).

Suppose that V is defined by a set Σ of simple pseudoidentities. Let W be
the variety of universal algebras defined by Σ in the signature τ consisting
of multiplication and all unary implicit operations and let T be a finite
semigroup. Then there exist m ≥ 6 and n ≥ 1 such that T belongs to Bm,n.
As discussed above, Bm,n can be viewed as a variety in the signature τ such
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that the unary implicit operations have their usual interpretations in all
finite semigroups in Bm,n.

Now McCammond [17] has shown that for each integer k ≥ 1, the semi-
group B(k,m, n) has cyclic maximal subgroups and that there is a system of
cofinite ideals for B(k,m, n) with empty intersection. Therefore, B(k,m, n)
is an infinite subdirect product of finite semigroups with abelian maximal
subgroups. Since W contains all finite semigroups with abelian maximal
subgroups, it follows that B(k,m, n) ∈ W, whence Bm,n ⊆ W. Therefore, T
belongs to W and so satisfies the pseudoidentities Σ. Consequently, T ∈ V

and hence V is the pseudovariety of all finite semigroups. �

In this paper, pseudoidentities involving idempotents from the minimal
ideal of a free profinite semigroup are often used to define the exclusion
pseudovarieties of ji semigroups. Since many of these exclusion pseudovarie-
ties contain all semigroups with abelian maximal subgroups, Theorem 4.2
implies that, in general, simple pseudoidentities cannot be used in their
definition. It is presently unknown if one must use idempotents from the
minimal ideal.

4.2. Large exclusion pseudovarieties. If V and W are pseudovarieties
of semigroups, then their Mal’cev product V©m W is the pseudovariety gen-
erated by all semigroups S with a homomorphism ϕ : S → T such that
T ∈ W and eϕ−1 ∈ V for all idempotents e ∈ T . A remarkable property of
the Mal’cev product is that( ⋂

α∈A

Vα

)
©m W =

⋂

α∈A

(Vα ©m W); (4.1)

see [23] for details.
Let 1 denote the pseudovariety of trivial semigroups. For any ji semi-

group S, we say that Excl(S) is large if

1©m Excl(S) = Excl(S).

If Excl(S) is large and {Vα | α ∈ A} is a collection of pseudovarieties such
that

⋂
α∈A Vα = 1, then it follows from (4.1) and the fact that Excl(S) is

mi that Vα ©m Excl(S) = Excl(S) for some α ∈ A. In particular, either

A©m Excl(S) = Excl(S) or G©m Excl(S) = Excl(S),

where A is the pseudovariety of finite aperiodic semigroups and G is the
pseudovariety of finite groups. For more examples of pseudovarieties with
trivial intersection, see [23].

If S is a finite subdirectly indecomposable semigroup, then S has a unique
0-minimal ideal I (where if S has no zero, then we consider the minimal ideal
as 0-minimal). Moreover, one of the following cases holds:

• I2 = 0 (the null case);
• S acts faithfully on the right of the set of L -classes of I (the left letter
mapping case);

• S acts faithfully on the left of the set of L -classes of I (the right letter
mapping case);

• I contains a nontrivial maximal subgroup and S acts faithfully on both
the left and right of I (the group mapping case).
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In the last three cases we say that S is of semisimple type; see [23, Sec. 4.7].

Theorem 4.3. Let S be any subdirectly indecomposable ji semigroup of semi-
simple type (left letter mapping, right letter mapping, or group mapping).
Then Excl(S) is large.

Proof. Obviously, Excl(S) ⊆ 1©m Excl(S). As Excl(S) is the largest pseu-
dovariety that fails to contain S, it suffices to show that S /∈ 1©m Excl(S).
But [23, Theorem 4.6.50] immediately implies that in any of the three cases,
S ∈ 1©m V if and only if S ∈ V for any pseudovariety V. Thus S /∈
1©m Excl(S) and so 1©m Excl(S) = Excl(S). �

The proof of Theorem 4.3 is in fact valid if S is left letter mapping, right
letter mapping, or group mapping even if it is not sdi.

4.3. Augmentation preserves join irreducibility. In this subsection,
augmentation is shown to preserve join irreducibility. Some special cases
were previously considered in [23, Section 7.3].

Theorem 4.4. The operator V 7→ Vbar preserves the property of being ji.
In particular, if a pseudovariety 〈〈S〉〉 is ji, then the pseudovariety 〈〈Sbar〉〉 is

also ji. Further, if Excl(S) = [[u ≈ v]] where u,v ∈ Â +, then

Excl(Sbar) =
[[
(ezu)ω ≈ (ezv)ω

]]

where z /∈ A and e is an idempotent in the minimal ideal of ̂(A ∪ {z})+.

Proof. First note that since S /∈ Excl(S), there exists some homomorphism

ϕ : Â + → S such that uϕ 6= vϕ. Let 1 denote the identity element of S•,

and extend ϕ to a homomorphism ̂(A ∪ {z})+ → Sbar by sending z to 1.
Then (ezu)ωϕ = uϕ 6= vϕ = (ezv)ωϕ and so Sbar /∈ [[(ezu)ω ≈ (ezv)ω ]].

To complete the proof, it suffices to assume that T /∈ [[(ezu)ω ≈ (ezv)ω ]],
and show that Sbar ∈ 〈〈T 〉〉. Replacing T by a subsemigroup if necessary,
generality is not lost by assuming the existence of a surjective homomor-

phism ψ : ̂(A ∪ {z})+ → T such that (ezu)ωψ 6= (ezv)ωψ. Now the semi-
group T acts on the right of the set B of L -classes of its minimal ideal J ; let
(B,RLM(T )) denote the resulting faithful transformation semigroup. Note

that (B,RLM(T )) = (B,RLM(T )) because if b ∈ B, then any element
of T in the L -class of b acts on B as a constant map to b by the struc-
ture of completely simple semigroups. It follows from Corollary 2.6 that
〈〈RLM(T )〉〉bar = 〈〈RLM(T )〉〉, since the constant mappings form the minimal
ideal of RLM(T ).

Since (ez)ψ is in the minimal ideal J of T , the elements ((ez)ψ)(uψ) and
((ez)ψ)(vψ) are R-equivalent. However, they are not L -equivalent because
otherwise they would be H -equivalent and hence have the same idempotent
power, as J is completely simple. Thus uψ and vψ have distinct images un-
der the quotient map T → RLM(T ). Consequently, there is a homomorphism

ϕ : Â + → RLM(T ) such that uϕ 6= vϕ, that is, RLM(T ) /∈ Excl(S). There-
fore, S ∈ 〈〈RLM(T )〉〉, whence Sbar ∈ 〈〈RLM(T )〉〉bar = 〈〈RLM(T )〉〉 ⊆ 〈〈T 〉〉 as
required. �
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Corollary 4.5. Let (X,S) be any transformation semigroup with (X,S) ≺
(S•, S). Suppose that the pseudovariety 〈〈S〉〉 is ji. Then the pseudovariety
〈〈S ∪X〉〉 is also ji.

Proof. This follows from Corollary 2.3 and Theorem 4.4. �

Note that if S is ji, then Excl(Sbar) will be large by Theorem 4.3 (and the
remark following it).

4.4. Iterating augmentation and its dual to bands. For any semi-
group S, define

S♭ = ((Sop)bar)op.

In other words, S♭ is obtained by considering the left action of S on S• and
adjoining constant maps. For any pseudovariety V, define

V♭ = 〈〈S♭ | S ∈ V〉〉.

By symmetry, V 7→ V♭ is a continuous idempotent operator that preserves
join irreducibility; see [23, Chapter 2]. Define the operators α, β : PV → PV

by αV = Vbar and βV = V♭. The aim of this subsection is to show that for
any nontrivial finite semigroup S, the hierarchy

Vn = (βα)n〈〈S〉〉, n ≥ 0 (4.2)

is strict, as is the dual hierarchy obtained by interchanging the roles of α
and β. An important observation is that βα〈〈S〉〉 is a compact pseudovari-

ety containing Sl2 that is generated by (Sbar)♭, which is left mapping with
respect to its minimal ideal. Thus it suffices to handle the case that Sl ⊆ 〈〈S〉〉
and S is left mapping with respect to its minimal ideal.

Proposition 4.6. For any finite semigroup S,

Sbar ∈ RZ©m (〈〈S〉〉 ∨ Sl) and S♭ ∈ LZ©m (〈〈S〉〉 ∨ Sl).

Proof. Clearly, Sbar/S• divides the semigroup S0 obtained by adjoining an
external zero element 0 to S. Since S• is a right zero semigroup and 〈〈S0〉〉 ⊆
〈〈S〉〉 ∨Sl, the inclusion Sbar ∈ RZ©m (〈〈S〉〉 ∨Sl) holds. The second inclusion
is dual. �

Define the operators α̃, β̃ : PV → PV by α̃V = RZ©m V and β̃V =
LZ©m V. These operators are idempotent. For any finite semigroup S that
contains Sl2 as a subsemigroup, define the hierarchy

Un = (β̃α̃)n〈〈S〉〉, n ≥ 0. (4.3)

Observe that Vn ⊆ Un for all n ≥ 0 as a consequence of Proposition 4.6.

Proposition 4.7. Suppose that S is any nontrivial band that is left mapping
with respect to its minimal ideal and that V is any pseudovariety such that
Sl ⊆ V. Then Sbar ∈ RZ©m V if and only if S ∈ V.

Proof. If S ∈ V, then Sbar ∈ RZ©m V by Proposition 4.6. Conversely, since
Sbar is a band, Sbar ∈ RZ©m V if and only if Sbar ∈ D©m V, where D is
the pseudovariety of semigroups whose idempotents are right zeroes; this
occurs if and only if the quotient of Sbar by the intersection LM of all its left
mapping congruences belongs to V [23, Theorem 4.6.50]. Note that since S
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is a left mapping band with respect to its minimal ideal, its minimal ideal
consists of at least two left zeroes. Therefore, the minimal ideal of Sbar

contains no elements of S. Then Sbar/LM ∼= S0 because Sbar acts trivially
on the left of its minimal ideal and acts as S does on the left of its other
J -classes. Since Sl2 ∈ V by assumption, it follows that Sbar/LM ∈ V if
and only if S ∈ V. �

Corollary 4.8. Suppose that S is any nontrivial band that is left mapping
with respect to its minimal ideal and that V is any pseudovariety such that

Sl ⊆ V. Then (Sbar)♭ ∈ β̃α̃V if and only if S ∈ V.

Proof. Since Sbar is a nontrivial band that is right mapping with respect
to its minimal ideal, the dual of Proposition 4.7 implies that (Sbar)♭ ∈
LZ©m (RZ©m V) if and only if Sbar ∈ RZ©m V. An application of Proposi-

tion 4.7 then yields that (Sbar)♭ ∈ LZ©m (RZ©m V) if and only if S ∈ V. �

The hierarchies (4.2) and (4.3) for the case S = Sl2 are now analyzed.
Recall that B denotes the pseudovariety of finite bands.

Lemma 4.9. Consider the hierarchies (4.2) and (4.3) with S = Sl2. Then

(i) Vn * Un−1 for all n ≥ 1;
(ii) the hierarchies (4.2) and (4.3) are strict ;
(iii)

⋃
n≥0 Un =

⋃
n≥0Vn = B.

Proof. (i) This is established by induction on n. The exclusion V1 * U0

holds since Sbar ∈ V1 while Sbar /∈ Sl = U0 due to R2 ⊆ Sbar. Suppose
that Vn * Un−1 for some n ≥ 2. Note that Vn is generated by a band of

the form T = R♭ and so T is left mapping with respect to its minimal ideal.
Since T /∈ Un−1, it follows from Corollary 4.8 that (T bar)♭ /∈ Un. Therefore,

(T bar)♭ ∈ Vn+1 \Un, whence Vn+1 * Un.
(ii) Since Vn * Un−1 by part (i) and Vn−1 ⊆ Un−1, the hierarchy (4.2)

is strict. Similarly, Vn ⊆ Un and Vn * Un−1 imply that the hierarchy (4.3)
is strict.

(iii) This result holds because the lattice of band pseudovarieties is well
known not to contain any strictly increasing infinite chain of subpseudova-
rieties whose union is not B. �

Theorem 4.10. The hierarchy (4.2) is strict for any nontrivial finite semi-
group S.

Proof. Since the hierarchy stabilizes as soon as two consecutive pseudova-
rieties are identical, replacing S by (Sbar)♭ if necessary, S can be assumed
to contain Sl2 as a subsemigroup. It then follows from Lemma 4.9 that⋃

n≥0Vn contains the pseudovariety B. But since B is not contained in any

compact pseudovariety [25], the union
⋃

n≥0Vn is not compact. Since each
pseudovariety Vn is compact, the hierarchy is strict. �

Corollary 4.11. If 〈〈S〉〉 is ji, then the pseudovarieties

〈〈S〉〉, 〈〈Sbar〉〉, 〈〈(Sbar)♭〉〉, 〈〈((Sbar)♭)bar〉〉, . . .

are ji; these pseudovarieties are all distinct except possibly for 〈〈S〉〉 = 〈〈Sbar〉〉.
A dual result holds when ♭ is first applied before bar.
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Corollary 4.12. The pseudovariety B is fji.

Proof. Since the pseudovariety Sl is ji, each step in the hierarchy (4.2) is
ji with S = Sl2. As the union of a chain of ji pseudovarieties is fji [23,
Lemma 6.1.13], it follows from Lemma 4.9 that B is fji. �

Using the known structure of the lattice of band pseudovarieties [19]
(which coincides with the lattice of all band varieties), we can say more.
Namely, we will show that any sji band is ji. Recall that LNB = Sl ∨ LZ.

Proposition 4.13. The pseudovariety RZ©m LNB is generated by Lbar
2 .

Proof. It follows from Pastijn [19, Figure 3] and the description of the lat-
tice of pseudovarieties of bands (see, for example, Almeida [2, Figure 5.1])
that the pseudovariety 〈〈L2, R

I
2〉〉 =

[[
x2 ≈ x, xyz ≈ xzyz

]]
is the unique

maximal subpseudovariety of RZ©m LNB =
[[
x2 ≈ x, xyz ≈ xzxyz

]]
. It is

then routinely checked that Lbar
2 ∈ RZ©m LNB \ 〈〈L2, R

I
2〉〉. Consequently,

〈〈Lbar
2 〉〉 = RZ©m LNB. �

By Proposition 4.13 and results from Pastijn [19], a description of proper
sji pseudovarieties of bands can be given as follows. Let S = Lbar

2 and

T = R♭
2. Then the proper nontrivial sji pseudovarieties of bands are LZ, RZ,

and those pseudovarieties that can be obtained by applying an alternating

word w(α̃, β̃) over {α̃, β̃} to the pseudovarieties generated by S, T , or Sl2
(where the last letter ofw should be β̃ when starting from 〈〈S〉〉 and should be
α̃ when starting from 〈〈T 〉〉). Further, there are no sji pseudovarieties strictly
in between any successive iterations of these operators. Since αV ≤ α̃V

and βV ≤ β̃V for any pseudovariety V containing Sl, and each successive
iteration of α and β starting from the pseudovariety generated by one of S,
T , or Sl2 (where the rightmost operator applied must be β for S and α
for T ) results in a new ji pseudovariety, it follows that if w(x, y) is any

alternating word over {x, y}, then w(α, β)V = w(α̃, β̃)V whenever V is
one of the pseudovarieties generated by S, T , or Sl2. Consequently, each sji

proper pseudovariety of bands is, in fact, ji by Corollary 4.11. The following
result is thus established.

Theorem 4.14. Any sji band is ji, that is, a proper pseudovariety of bands
is sji if and only if it is ji.

In particular, since sji is a decidable property, ji is also decidable for finite
bands. The answer to Question 1.2 is thus affirmative for bands.

4.5. From non-ji pseudovarieties to ji pseudovarieties. For each k ≥ 2,
define the semigroup

Ok = 〈x, e | xk = xk−1e = 0, ex = x, e2 = e〉.

The main goal of this subsection is to show that the pseudovariety 〈〈Ok〉〉
is not ji whereas the pseudovariety 〈〈Ok〉〉

bar is ji. It is also shown that the
pseudovarieties 〈〈O2〉〉

bar, 〈〈O3〉〉
bar, 〈〈O4〉〉

bar, . . . are all distinct.
It is easily seen that the semigroups O2 and ℓ3 are isomorphic by refer-

ring to their presentations. Since the semigroup ℓbar3 is of order five (Sub-
section 3.4), the ji pseudovariety 〈〈ℓbar3 〉〉 = 〈〈O2〉〉

bar is required later in the
paper (Theorem 5.29).
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Lemma 4.15. For each k ≥ 2, the semigroup Ok consists precisely of the
following 2k − 1 distinct elements:

0, x, x2, . . . , xk−1, e, xe, x2e, . . . , xk−2e. (4.4)

Proof. It is routinely checked that (4.4) are all the elements of Ok. Therefore,
it remains to verify that the elements in (4.4) are distinct. Recall that the
right zero semigroup of order two is R2 = {e, f} and that the monogenic
nilpotent semigroup of order k is

Nk = 〈a | ak = 0〉 = {0, a, a2, . . . , ak−1}.

Consider the subsemigroup T = (N I
k ×R2)\{(I, e)} of N I

k ×R2 and the ideal

J = {(0, e), (0, f), (ak−1 , f)} of T . Define ϕ : {x, e}+ → T/J by xϕ = (a, e)
and eϕ = (I, f). Then

xkϕ = (0, e) ∈ J, (xk−1e)ϕ = (ak−1, f) ∈ J, (ex)ϕ = xϕ, e2ϕ = eϕ.

It follows that ϕ induces a homomorphism Ok 7→ T/J that separates the
elements in (4.4). �

Proposition 4.16. The pseudovariety 〈〈Ok〉〉 is not ji.

Proof. Since Ok ≺ T/J ≺ N I
k × R2 by the proof of Lemma 4.15 (where we

retain the notation of that proof), the inclusion 〈〈Ok〉〉 ⊆ 〈〈N I
k 〉〉 ∨RZ holds.

But 〈〈N I
k 〉〉 consists of commutative semigroups while RZ consists of bands.

Therefore, 〈〈Ok〉〉 * 〈〈N I
k 〉〉 and 〈〈Ok〉〉 * RZ. �

It remains to prove that the pseudovariety 〈〈Ok〉〉
bar is ji.

Lemma 4.17. Suppose that U is any semigroup generated by two elements f
and y such that f2 = f , fy = y, and yk−1 /∈ {yn | n ≥ k}. Then

(i) y, y2, . . . , yk−1 are distinct and not in {yn | n ≥ k};
(ii) f, yf, y2f, . . . , yk−2f are distinct and not in {ymf | m ≥ k − 1};
(iii) yi = yjf implies that either i = j or i, j ≥ k − 1.

Proof. (i) This follows from the structure of monogenic semigroups.
(ii) Suppose that yif = yjf for some i, j ≥ 0. Then yi+1 = yify = yjfy =

yj+1. Therefore, by part (i), either i = j or i, j ≥ k − 1.
(iii) Suppose that yi = yjf for some i ≥ 1 and j ≥ 0. Then yi+1 = yjfy =

yj+1. Therefore, by part (i), either i = j or i, j ≥ k − 1. �

Recall that the inclusion 〈〈Ok〉〉 ⊆ 〈〈N I
k 〉〉∨RZ was established in the proof

of Proposition 4.16; this result is generalized in the following.

Lemma 4.18. Suppose that T is any finite semigroup generated by two
elements d and z such that d2 = d, dz = z, and zk−1 /∈ {zn | n ≥ k}. Then
〈〈Ok〉〉 ⊆ 〈〈T 〉〉 ∨RZ.

Proof. Consider the semigroup T × R2 and its subsemigroup U = 〈y, f〉
generated by y = (z, e) and f = (d, f). Then it is routinely checked that

(a) f2 = f , fy = y,
(b) yn = (zn, e) for all n ≥ 1,
(c) ynf = (znd, f) for all n ≥ 1.

It follows from (b) and the assumption zk−1 /∈ {zn | n ≥ k} that
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(d) yk−1 /∈ {yn | n ≥ k}.

It is clear from (a) that U = {yi, yjf | i ≥ 1, j ≥ 0}. In fact, it follows from
(a)–(d) and Lemma 4.17 that

(e) the elements y, y2, y3, . . . , yk, f, yf, y2f, . . . , yk−1f of U are distinct.

Now it is routinely checked that the set

J = {yn, ymf | n ≥ k, m ≥ k − 1}

is an ideal of U . By (e), the set U \ J consists of the elements

y, y2, y3, . . . , yk−1, f, yf, y2f, . . . , yk−2f.

Therefore, Ok
∼= U/J by Lemma 4.15, whence 〈〈Ok〉〉 ⊆ 〈〈T 〉〉 ∨RZ. �

Theorem 4.19. (i) For each k ≥ 2, the pseudovariety 〈〈Ok〉〉
bar is ji and

Excl(Obar
k ) =

[[
(ec(aωb)k−1)ω ≈ (ec((aωb)k−1)ω+1)ω

]]
, (4.5)

where e is an idempotent in the minimal ideal of ̂{a, b, c}+.
(ii) The pseudovarieties 〈〈O2〉〉

bar, 〈〈O3〉〉
bar, 〈〈O4〉〉

bar, . . . are all distinct.

Proof. (i) Let ϕ denote the substitution into Obar
k given by a 7→ e, b 7→ x, and

c 7→ 1. Then (ec(aωb)k−1)ωϕ = xk−1 and (ec((aωb)k−1)ω+1)ωϕ = xk, and
these are different elements of Obar

k . Therefore, the semigroup Obar
k violates

the pseudoidentity in (4.5).
It remains to assume that a semigroup T violates the pseudoidentity

in (4.5), and then show that Obar
k ∈ 〈〈T 〉〉. Replacing T by a subsemigroup

if necessary, generality is not lost by assuming the existence of a surjective

homomorphism ψ : ̂{a, b, c}+ → T such that

(ec(aωb)k−1)ωψ 6= (ec((aωb)k−1)ω+1)ωψ.

Put f = aωψ and y = (aωb)ψ and note that f2 = f and fy = y.
The semigroup T acts on the right of the set B of L -classes of its

minimal ideal J ; denote the corresponding faithful transformation semi-
group by (B,RLM(T )). Note that (B,RLM(T )) = (B,RLM(T )) because if
b ∈ B, then any element of T in the L -class of b acts on B as a constant
map to b by the structure of completely simple semigroups. Consequently,
〈〈RLM(T )〉〉bar = 〈〈RLM(T )〉〉 by Corollary 2.6 since the constant mappings
form the minimal ideal of RLM(T ).

Since (ec)ψ is in the minimal ideal J of T , it follows that the elements
((ec)ψ)yk−1 and ((ec)ψ)(yk−1)ω+1 are R-equivalent. However, they are not
L -equivalent because otherwise they would be H -equivalent and hence
have the same idempotent power, as J is completely simple. Consequently,
RLM(T ) is nontrivial and so it follows from Proposition 2.5 that 〈〈RLM(T )〉〉 =
〈〈RLM(T )〉〉 ∨ RZ. Also, if z denotes the image of y under the quotient
map T → RLM(T ) and d denotes the image of f under this map, then
d2 = d, dz = z, and zk−1 is not a group element (as zk−1 and (zk−1)ω+1

act differently on the L -class of (ec)ψ). Thus Lemma 4.18 implies that
Ok ∈ 〈〈RLM(T )〉〉 ∨RZ = 〈〈RLM(T )〉〉. Consequently, Obar

k ∈ 〈〈RLM(T )〉〉bar =
〈〈RLM(T )〉〉 ⊆ 〈〈T 〉〉.

(ii) This holds because for each k ≥ 2, the semigroup Obar
k satisfies the

identity xk+1 ≈ xk but violates the identity xk ≈ xk−1. �
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4.6. A sufficient condition for the join irreducibility of groups. Re-
call that a normal subgroup N of a group G splits if there exists a sub-
group K of G so that N ∩K = {1} and NK = G.

Theorem 4.20 (G.M. Bergman, private communication, 2014). Suppose
that G is any finite sdi group with an abelian monolith N that splits. Then G
is ji.

Proof. By assumption, there exists a subgroup K of G with N ∩K = {1}
and NK = G. Seeking a contradiction, suppose there exist finite groups G1

and G2 and some surjective homomorphism f from a subgroup H of G1×G2

onto G such that G /∈ 〈〈G1〉〉 and G /∈ 〈〈G2〉〉. Clearly we can assume that
Hπj = Gj for the projection maps πj : G1 × G2 ։ Gj , that is, H is a
subdirect product of G1 and G2. Further, we may assume that G1, G2,
and H are chosen so that the order of H is minimal.

Let H2 = {h2 ∈ G2 | (1, h2) ∈ H} ∼= ker(π1) ∩ H. If H2 is trivial, then
π1 is injective on H, so that H ∼= G1, whence the contradiction G ≺ G1 is
obtained. Hence H2 is nontrivial. Observe that

(†) if L is a subgroup of H2 such that {1} × L✂H, then L✂G2;

in particular, H2 ✂ G2. Indeed, if ℓ ∈ L and g2 ∈ G2, then choosing any
g1 ∈ G1 with (g1, g2) ∈ H, we have

(1, g2ℓg
−1
2 ) = (g1, g2)(1, ℓ)(g1, g2)

−1 ∈ {1} × L

by normality of {1} × L in H, whence g2ℓg
−1
2 ∈ L.

Suppose that ker(f) has nontrivial intersection with the subgroup {1}×H2

of H, say ker(f)∩ ({1}∩H2) = {1}×L for some L ⊆ G2. Then L is normal
inH2 and so also normal inG2 by (†). By dividingG2 by this intersection, we
could contradictorily decrease the order of H. Therefore, ker(f) intersects
{1} ×H2 trivially.

Similarly, defining H1 = {h1 ∈ G1 | (h1, 1) ∈ H}, we have {1} 6= H1 ✂G1

and ker(f) intersects H1×{1} trivially. Then H1×{1}, {1}×H2, and ker(f)
are all normal in H and have pairwise trivial intersections.

Note that the centralizer of N in G is N . Indeed, since N is the unique
minimal normal subgroup of G, the action of K on N by conjugation is faith-
ful (otherwise, the kernel would be a normal subgroup of G not containing
N). If kn centralizes N with k ∈ K and n ∈ N , then since N is abelian, we
have that k centralizes N and hence k = 1 by the previous observation.

From now on, identify H1 with H1×{1} and H2 with {1}×H2. Then H1

and H2 are normal in H and commute elementwise. We claim now that
H1f = N = H2f . Indeed, since f is injective on each of these subgroups
and these subgroups are normal in H, we conclude that N is contained
in H1f ∩ H2f . Since H1 and H2 commute elementwise, both H1f and
H2f are contained in the centralizer of N , which is N . We conclude that
H1f = N = H2f and f restricts to an isomorphism of H1 and H2 with N .

Let H∗ = Kf−1. Then since N ∩ K = {1}, it follows that H∗ ∩ H1 is
a subgroup of ker(f). But ker(f) ∩ H1 is trivial, so that H∗ ∩ H1 = {1}.
Similarly, H∗ ∩H2 = {1}. Note that H∗H1 and H∗H2 are subgroups of H
because H1 and H2 are normal. Also (H∗H1)f = KN = G = (H∗H2)f
and so by minimality of H, we have H∗H1 = H = H∗H2. In particular,
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G2
∼= Hπ2 = (H∗H1)π2 = H∗π2 and so, since H∗ ∩ H1 = {1}, we deduce

that G2
∼= H∗. Similarly, G1

∼= H∗. Therefore, G ≺ G1 × G1 and so
G ∈ 〈〈G1〉〉, a contradiction. �

4.7. Join irreducibility of the pseudovariety 〈〈D4〉〉 = 〈〈Q8〉〉.

Proposition 4.21. The pseudovariety 〈〈D4〉〉 = 〈〈Q8〉〉 is ji. Further, the
pseudovariety Excl(Q8) is the class of all finite semigroups whose 2-subgroups
are abelian, that is, finite semigroups whose maximal subgroups have abelian
2-Sylow subgroups.

Proof. Since the variety of 2-groups is saturated, it follows that the finite
semigroups whose 2-subgroups are abelian form a pseudovariety. To com-
plete the proof, it suffices to observe that the pseudovariety generated by
any finite non-abelian 2-group contains 〈〈Q8〉〉. A proof can be found in
Almeida [1, Theorem 4.5], based on the classification of finite 2-groups whose
proper subgroups are abelian, going back to Miller and Moreno [18]; we are
indebted to the anonymous reviewer for pointing this out. Kearnes [5] gave
a direct proof that any finite non-abelian 2-group generates a variety con-
taining 〈〈Q8〉〉 via a general description of identity bases for finite nilpotent
groups of class 2. �

Since the group Q8 is 2-generated as a semigroup, the pseudovariety
Excl(Q8) can be defined by a pseudoidentity over two variables [23, Proposi-

tion 7.1.9]. We proceed to describe such a pseudoidentity. Let F̂ = ̂{x, y}+
be the free profinite semigroup over {x, y} and let η be an idempotent in

the minimal ideal of F̂ . Then ηF̂ η is a profinite group and maps onto the
free profinite group on two generators under the natural projection. The
elements x′ = ηxη and y′ = ηyη map onto the free generators and thus

freely topologically generate a free profinite subgroup of F̂ , which is a re-
tract. This observation was first made by Almeida and Volkov [3]. If u(x, y)

and v(x, y) are elements of the free profinite group F̂G({x, y}) over {x, y},

then u(x′, y′),v(x′, y′) ∈ ηF̂ η and it is easy to see that the pseudoidentity
u(x′, y′) ≈ v(x′, y′) defines the pseudovariety of all semigroups whose max-
imal subgroups belong to the pseudovariety defined by u(x, y) ≈ v(x, y);
see [3] for details. Thus, it suffices to find a two-variable group pseudo-
identity u(x, y) ≈ v(x, y) defining the pseudovariety of groups with abelian
2-Sylow subgroups (or, equivalently, 2-subgroups).

Let F̂G2
({x, y}) be the free pro-2 group over {x, y}. We have a natural

continuous surjection π : F̂G({x, y}) → F̂G2
({x, y}). The pseudovariety of

2-groups is saturated and so by Ribes and Zalesskii [24, Proposition 7.6.7],

the group F̂G2
({x, y}) is a projective profinite group. Therefore, there is a

continuous splitting of π, that is, we can findw1(x, y),w2(x, y) ∈ F̂G({x, y})
which freely topologically generate a free pro-2 subgroup with π(w1(x, y)) =
π(x) and π(w2(x, y)) = π(y); in other words, w1(x, y) and w2(x, y) topo-

logically generate a free pro-2 retract of F̂G({x, y}). Then the pseudova-
riety of groups with abelian 2-subgroups is defined by the pseudoidentity
w1(x, y)w2(x, y) ≈ w2(x, y)w1(x, y). Thus the pseudovariety Excl(Q8) is
defined by w1(x

′, y′)w2(x
′, y′) ≈ w2(x

′, y′)w1(x
′, y′), where x′ and y′ are as

given in the previous paragraph.
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5. Join irreducible pseudovarieties

The present section contains 15 subsections. Some background results are
recorded in the first subsection, while the latter 14 subsections are devoted
to the pseudovarieties generated by the following 14 semigroups:

Zpn , Zbar
2 , Nn, N I

n, Nbar
2 , (Nbar

2 )I ,

L2, LI
2, Lbar

2 , A0, AI
0, A2, B2, ℓbar3 .

(5.1)

Each subsection that is concerned with a semigroup S from (5.1) begins with
a theorem that establishes the ji property of 〈〈S〉〉 by exhibiting a pseudo-
identity that defines the pseudovariety Excl(S). A basis ΣS of identities for
the pseudovariety 〈〈S〉〉 and an identity εS that defines its maximal subpseu-
dovariety 〈〈S〉〉 ∩ Excl(S) are then given in a proposition. The pair (ΣS , εS)
can be used to easily test if a finite semigroup generates the ji pseudovariety
〈〈S〉〉. Indeed, for any finite semigroup T ,

T |= ΣS and T 6|= εS ⇐⇒ 〈〈T 〉〉 ⊆ 〈〈S〉〉 and 〈〈T 〉〉 * 〈〈S〉〉 ∩ Excl(S)

⇐⇒ 〈〈T 〉〉 = 〈〈S〉〉.

The pairs (ΣS , εS), where S ranges over the semigroups from (5.1), will be
used in Section 7 to locate all ji pseudovarieties generated by a semigroup
of order up to five.

5.1. Preliminaries. The free semigroup and free monoid over a countably
infinite alphabet A are denoted by A + and A ∗, respectively. Elements
of A are called variables while elements of A ∗ are called words. For any
word w ∈ A +,

• the number of times a variable x occurs in w is denoted by occ(x,w);
• the content of w, denoted by con(w), is the set of variables occurring
in w, that is, con(w) = {x ∈ A | occ(x,w) ≥ 1};

• the initial part of w, denoted by ini(w), is the word obtained by retaining
the first occurrence of each variable in w;

• the final part of w, denoted by fin(w), is the word obtained by retaining
the last occurrence of each variable in w.

Lemma 5.1. Let u ≈ v be any semigroup identity. Then

(i) Zn |= u ≈ v if and only if occ(x,u) ≡ occ(x,v) (mod n) for all x ∈ A ;
(ii) N I

n |= u ≈ v if and only if for all x ∈ A , either occ(x,u) = occ(x,v)
or occ(x,u), occ(x,v) ≥ n;

(iii) LI
2 |= u ≈ v if and only if ini(u) = ini(v);

(iv) RI
2 |= u ≈ v if and only if fin(u) = fin(v).

Proof. These results are well known and easily established. For instance,
parts (i) and (ii) follow from Almeida [2, Lemma 6.1.4] while parts (iii)
and (iv) can be found in Petrich and Reilly [20, Theorem V.1.9, parts (viii)
and (ix)]. �

The local of a pseudovariety V, denoted by LV, is the pseudovariety of
all finite semigroups S such that eSe ∈ V for any idempotent e ∈ S.
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Lemma 5.2 (Almeida [2, Exercise 10.10.1]). Let S be any finite semigroup
that is not a monoid. If the pseudovariety 〈〈S〉〉 is ji, then the pseudovariety
〈〈SI〉〉 is also ji and Excl(SI) = LExcl(S).

5.2. The pseudovariety 〈〈Zn〉〉. For any set π = {p1, p2, p3, . . .} of primes,
let π′ denote the set of primes complementary to π. If p is a prime, then
simply write p′ instead of {p}′. For example, 2′ denotes the set of odd

primes. Retaining the above notation, recall that in {̂x}+, the sequence

x(p1p2···pn)
n!

converges to an element (independent of the enumeration of π),
denoted by xπ

ω
, with the following property: if s is an element of a finite

semigroup S, then sπ
ω
is a generator of the π′-primary component of the

finite cyclic group generated by sω+1. Here we recall that for a finite abelian
group A, the π′-primary component of A is the direct product of the p-Sylow
subgroups of A with p /∈ π. In this case, s(π

′)ω will then be a generator of
the π-primary component of 〈sω+1〉; see [23, Proposition 7.1.16].

Theorem 5.3. For any prime p with n ≥ 1, the pseudovariety 〈〈Zpn〉〉 is ji

and
Excl(Zpn) =

[[
(x(p

′)ω )p
n−1

≈ xω
]]
. (5.2)

Proof. The cyclic group Zpn = 〈g | gp
n

= 1〉 violates the pseudoidentity

in (5.2) because (g(p
′)ω )p

n−1

= gp
n−1

6= 1 = gω. Therefore, if Zpn belongs to
some pseudovariety V, then V violates the pseudoidentity in (5.2).

Conversely, suppose that the pseudoidentity in (5.2) is violated by V,
say it is violated by S ∈ V. Generality is not lost by assuming that S is

generated by an element s such that (s(p
′)ω)p

n−1

6= sω. Replacing s by sω+1,
we may assume that S is, in fact, a cyclic group generated by s such that

(s(p
′)ω )p

n−1

6= 1. But then the p-primary component of S is a cyclic group
of order pm with m ≥ n. Therefore, Zpn divides S, whence Zpn ∈ V. �

Proposition 5.4. Let n ≥ 1.

(i) The identities satisfied by the group Zn are axiomatized by

xy ≈ yx, xny ≈ y.

(ii) The maximal subpseudovarieties of 〈〈Zn〉〉 are precisely 〈〈Zd〉〉, where d
ranges over all maximal proper divisors of n. Consequently, for any
prime p with k ≥ 1, the subpseudovariety of 〈〈Zpk〉〉 defined by

xp
k−1+1 ≈ x

is the unique maximal subpseudovariety of 〈〈Zpk〉〉.

Proof. These results are well known and easily established. For instance,
part (i) follows from Almeida [2, Corollary 6.1.5] while part (ii) follows from
Petrich and Reilly [20, Lemma VIII.6.14]. �

5.3. The pseudovariety 〈〈Zbar
2 〉〉.

Theorem 5.5. The pseudovariety 〈〈Zbar
2 〉〉 is ji and

Excl(Zbar
2 ) =

[[
(eyx(2

′)ω)ω ≈ (eyxω)ω
]]
,

where e is an idempotent in the minimal ideal of ̂{x, y}+.
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Proof. This follows from Theorems 4.4 and 5.3. �

Alternately, Rhodes and Steinberg [23, Example 7.3.20] have shown that

Excl(Zbar
2 ) =

[[
((xωexω)ωx(2

′)ω )ω ≈ (xωexω)ω
]]
,

where e is an idempotent in the minimal ideal of ̂{x, y}+.

Proposition 5.6.

(i) The identities satisfied by the semigroup Zbar
2 are axiomatized by

x3 ≈ x, xyxy ≈ yx2y.

(ii) The subpseudovariety of 〈〈Zbar
2 〉〉 defined by the identity

xyx ≈ yx2

is the unique maximal subpseudovariety of 〈〈Zbar
2 〉〉.

Proof. This follows from the dual of Tishchenko [27, Proposition 3.16], where
the variety generated by (Zbar

2 )op is denoted by W2. �

5.4. The pseudovariety 〈〈Nn〉〉.

Theorem 5.7. For each n ≥ 2, the pseudovariety 〈〈Nn〉〉 is ji and

Excl(Nn) =
[[
xω+n−1 ≈ xn−1

]]
. (5.3)

Proof. The semigroup Nn = 〈a | an = 0〉 violates the pseudoidentity in (5.3)
because aω+n−1 = 0 6= an−1. Therefore, if Nn belongs to some pseudovari-
ety V, then V violates the pseudoidentity in (5.3).

Conversely, suppose that the pseudoidentity in (5.3) is violated by the
pseudovariety V, say it is violated by S ∈ V. Then there exists some a ∈ S
such that aω+n−1 6= an−1. If there exist some i ≤ n− 1 and some j > i such
that ai = aj , then an−1 = an−1−iai = an−1−iaj = an−1aj−i, so that

an−1 = an−1aj−i = an−1a2(j−i) = · · · = an−1aω(j−i) = an−1+ω,

which is a contradiction. Hence the sets {a}, {a2}, . . . , {an−1}, {ai | i ≥ n}
are pairwise disjoint. It follows that J = {ai | i ≥ n} is an ideal of the
monogenic subsemigroup 〈a〉 of S such that 〈a〉/J ∼= Nn. Consequently,
Nn ∈ 〈〈S〉〉 ⊆ V. �

For each nonnegative real number x, let ⌊x⌋ denote the greatest integer
bounded from above by x.

Proposition 5.8. Let n ≥ 2.

(i) The identities satisfied by the semigroup Nn are axiomatized by

xy ≈ yx, xn ≈ y1y2 · · · yn,

xk+1ykz1z2 · · · zn−3k−1 ≈ xkyk+1z1z2 · · · zn−3k−1,

where k = 0, 1, . . . , ⌊(n − 1)/3⌋.
(ii) The subpseudovariety of 〈〈Nn〉〉 defined by the identity

xn ≈ xn−1

is the unique maximal subpseudovariety of 〈〈Nn〉〉.

Proof. (i) This follows from Shevrin and Volkov [26, Proposition 21.3].
(ii) This follows from Theorem 5.7 and part (i). �
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5.5. The pseudovariety 〈〈N I
n〉〉.

Theorem 5.9. For any n ≥ 1, the pseudovariety 〈〈N I
n〉〉 is ji and

Excl(N I
n) = LExcl(Nn) =

[[
hω(xhω)ω+n−1 ≈ hω(xhω)n−1

]]
.

Proof. For n = 1, the result follows from [23, Table 7.2] because N I
1
∼= Sl2.

For n ≥ 2, the result follows from Lemma 5.2 and Theorem 5.7. �

Proposition 5.10. Let n ≥ 1.

(i) The identities satisfied by the semigroup N I
n are axiomatized by

xn+1 ≈ xn, xy ≈ yx.

(ii) The subpseudovariety of 〈〈N I
n〉〉 defined by the identity

xnyn−1 ≈ xn−1yn

is the unique maximal subpseudovariety of 〈〈N I
n〉〉.

Proof. (i) This easily established result is well known; see, for example,
Almeida [2, Corollary 6.1.5].

(ii) This follows from Theorem 5.9 and part (i). �

5.6. The pseudovariety 〈〈Nbar
2 〉〉.

Theorem 5.11. The pseudovariety 〈〈Nbar
2 〉〉 is ji and

Excl(Nbar
2 ) =

[[
(ezxω+1)ω ≈ (ezx)ω

]]
,

where e is an idempotent from the minimal ideal of {̂x, z}+.

Proof. This follows from Theorems 4.4 and 5.7. �

Proposition 5.12.

(i) The identities satisfied by the semigroup Nbar
2 are axiomatized by

xyz ≈ yz.

(ii) The subpseudovariety of 〈〈Nbar
2 〉〉 defined by the identity

xy ≈ y2

is the unique maximal subpseudovariety of 〈〈Nbar
2 〉〉.

Proof. (i) This follows from Tishchenko [27, Corollary 2.5(c) and Proposi-
tion 4.4].

(ii) This follows from Tishchenko [27, Proposition 3.4]. �

5.7. The pseudovariety 〈〈(Nbar
2 )I〉〉.

Theorem 5.13. The pseudovariety 〈〈(Nbar
2 )I〉〉 is ji and

Excl((Nbar
2 )I) = LExcl(Nbar

2 ) = L
[[
(ezxω+1)ω ≈ (ezx)ω

]]
,

where e is an idempotent from the minimal ideal of {̂x, z}+.

Proof. This follows from Lemma 5.2 and Theorem 5.11. �

Proposition 5.14 (Lee and Li [12, Corollary 6.6 and Lemma 6.7]).
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(i) The identities satisfied by the semigroup (Nbar
2 )I are axiomatized by

x3 ≈ x2, x2hx ≈ xhx, xhx2 ≈ hx2,

xyxy ≈ yx2y, xyhxy ≈ yxhxy, xyxty ≈ yx2ty, xyhxty ≈ yxhxty.

(ii) The subpseudovariety of 〈〈(Nbar
2 )I〉〉 defined by the identity

xyxyh2 ≈ x2y2h2

is the unique maximal subpseudovariety of 〈〈(Nbar
2 )I〉〉.

5.8. The pseudovariety 〈〈L2〉〉.

Theorem 5.15. The pseudovariety 〈〈L2〉〉 is ji and

Excl(L2) =
[[
xω(yxω)ω ≈ (yxω)ω

]]
.

Proof. This result is dual to [2, Proposition 10.10.2(b)]. �

Proposition 5.16 (Rhodes and Steinberg [23, Table 7.1]).

(i) The identities satisfied by the semigroup L2 are axiomatized by

xy ≈ x.

(ii) The pseudovariety 〈〈L2〉〉 is an atom in the lattice PV.

5.9. The pseudovariety 〈〈LI
2〉〉.

Theorem 5.17. The pseudovariety 〈〈LI
2〉〉 is ji and

Excl(LI
2) = LExcl(L2) =

[[
hω(xhω)ω(yhω(xhω)ω)ω ≈ hω(yhω(xhω)ω)ω

]]
.

Proof. This follows from Lemma 5.2 and Theorem 5.15. �

Proposition 5.18.

(i) The identities satisfied by the semigroup LI
2 are axiomatized by

x2 ≈ x, xyx ≈ xy.

(ii) The subpseudovariety of 〈〈LI
2〉〉 defined by the identity

xyz ≈ xzy

is the unique maximal subpseudovariety of 〈〈LI
2〉〉.

Proof. This can be found in Almeida [2, Figure 5.1], where the pseudovariety
〈〈LI

2〉〉 is denoted by MK1. �

5.10. The pseudovariety 〈〈Lbar
2 〉〉.

Theorem 5.19. The pseudovariety 〈〈Lbar
2 〉〉 is ji and

Excl(Lbar
2 ) =

[[
(ezxω(yxω)ω)ω ≈ (ez(yxω)ω)ω

]]
,

where e is an idempotent in the minimal ideal of ̂{x, y, z}+.

Proof. This follows from Theorems 4.4 and 5.15. �

Alternately, Rhodes and Steinberg [23, Example 7.3.16] have shown that

Excl(Lbar
2 ) =

[[
((ez)ωxω(yxω)ω)ω ≈ ((ez)ω(yxω)ω)ω

]]
,

where e is an idempotent in the minimal ideal of ̂{x, y, z}+.
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Proposition 5.20.

(i) The identities satisfied by the semigroup Lbar
2 are axiomatized by

x2 ≈ x, xyz ≈ xzxyz.

(ii) The subpseudovariety of 〈〈Lbar
2 〉〉 defined by the identity

xyz ≈ xzyz

is the unique maximal subpseudovariety of 〈〈Lbar
2 〉〉.

Proof. This can be found in Almeida [2, Figure 5.1], where the pseudovariety
〈〈Lbar

2 〉〉 is denoted by [[Rρ
3 = Qρ

3]]B. �

5.11. The pseudovariety 〈〈A0〉〉.

Theorem 5.21 (Lee [11, Proposition 2.3]). The pseudovariety 〈〈A0〉〉 is ji

and
Excl(A0) =

[[
(xωyω)ω+1 ≈ xωyω

]]
.

Proposition 5.22 (Lee [6, Section 4], Lee and Volkov [15, Theorem 4.1]).

(i) The identities satisfied by the semigroup A0 are axiomatized by

x3 ≈ x2, x2yx2 ≈ yxy.

(ii) The subpseudovariety of 〈〈A0〉〉 defined by the identity

x2y2 ≈ y2x2

is the unique maximal subpseudovariety of 〈〈A0〉〉.

5.12. The pseudovariety 〈〈AI
0〉〉.

Theorem 5.23. The pseudovariety 〈〈AI
0〉〉 is ji and

Excl(AI
0) = LExcl(A0) =

[[
hω((xhω)ω(yhω)ω)ω+1 ≈ hω(xhω)ω(yhω)ω

]]
.

Proof. This follows from Lemma 5.2 and Theorem 5.21. �

Proposition 5.24 (Lee [9, Propositions 1.1 and 1.5(ii)]).

(i) The identities satisfied by the semigroup AI
0 are axiomatized by

x3 ≈ x2, x2yx2 ≈ xyx, xyxy ≈ yxyx, xyxzx ≈ xyzx.

(ii) The subpseudovariety of 〈〈AI
0〉〉 defined by the identity

hx2y2h ≈ hy2x2h

is the unique maximal subpseudovariety of 〈〈AI
0〉〉.

5.13. The pseudovariety 〈〈A2〉〉.

Theorem 5.25 (Lee [7]). The pseudovariety 〈〈A2〉〉 is ji and

Excl(A2) =
[[
((xωy)ω(yxω)ω)ω ≈ (xωyxω)ω

]]
.

Proposition 5.26 (Lee [6, Theorem 2.7], Trahtman [31]).

(i) The identities satisfied by the semigroup A2 are axiomatized by

x3 ≈ x2, xyxyx ≈ xyx, xyxzx ≈ xzxyx.

(ii) The subpseudovariety of 〈〈A2〉〉 defined by the identity

x2y2x2 ≈ x2yx2

is the unique maximal subpseudovariety of 〈〈A2〉〉.
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5.14. The pseudovariety 〈〈B2〉〉.

Theorem 5.27 (Rhodes and Steinberg [23, Example 7.3.4]). The pseudo-
variety 〈〈B2〉〉 is ji and

Excl(B2) =
[[
((xy)ω(yx)ω(xy)ω)ω ≈ (xy)ω

]]
.

Proposition 5.28 (Lee [6, Theorem 3.6], Trahtman [29]).

(i) The identities satisfied by the semigroup B2 are axiomatized by

x3 ≈ x2, xyxyx ≈ xyx, x2y2 ≈ y2x2.

(ii) The subpseudovariety of 〈〈B2〉〉 defined by the identity

xy2x ≈ xyx

is the unique maximal subpseudovariety of 〈〈B2〉〉.

5.15. The pseudovariety 〈〈ℓbar3 〉〉.

Theorem 5.29. The pseudovariety 〈〈ℓbar3 〉〉 is ji and

Excl(ℓbar3 ) =
[[
(ezxωy)ω ≈ (ez(xωy)ω+1)ω

]]
,

where e is an idempotent in the minimal ideal of ̂{x, y, z}+.

Proof. This is a special case of Theorem 4.19 since ℓbar3
∼= Obar

2 . �

The remainder of this subsection is devoted to establishing a basis for
the identities satisfied by ℓbar3 . It turns out that it is notationally simpler to
consider the dual semigroup (ℓbar3 )op = {a, b, c, d, e} given in Table 8.

(ℓbar3 )op a b c d e
a a a a a a
b a a b a d
c a a c a e
d d d d d d
e e e e e e

Table 8. Multiplication table of (ℓbar3 )op

Proposition 5.30.

(i) The identities satisfied by the semigroup (ℓbar3 )op are axiomatized by

xy2 ≈ xy, xyz ≈ xyzy. (5.4)

(ii) The subpseudovariety of 〈〈(ℓbar3 )op〉〉 defined by the identity

xyzx ≈ xyxz (5.5)

is the unique maximal subpseudovariety of 〈〈(ℓbar3 )op〉〉.

Remark 5.31. It is routinely shown that the semigroup (ℓbar3 )op satisfies
the identities (5.4) but violates the identity (5.5).

In this subsection, a word w is said to be in canonical form if either

(CF1) w = x0x1 · · · xm or
(CF2) w = x0x1 · · · xk · x0 · xk+1xk+2 · · · xm,
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where x0, x1, . . . , xm are distinct variables with 0 ≤ k ≤ m.

Remark 5.32. Note the extreme cases for the word w in (CF2):

(i) if 0 = k = m, then w = x20;
(ii) if 0 = k < m, then w = x20x1 · · · xm;
(iii) if 0 < k = m, then w = x0x1x2 · · · xmx0.

Lemma 5.33. Given any word w, the identities (5.4) can be used to con-
vert w into some word w′ in canonical form with ini(w) = ini(w′).

Proof. Suppose that ini(w) = x0x1 · · · xm. Then w can be written as

w =

m∏

i=0

(xiwi) = x0w0x1w1 · · · xmwm,

where wi ∈ {x0, x1, . . . , xi}
∗ for all i. The identities (5.4) can be used to

eliminate all occurrences of x1, x2, . . . , xm from each wi, resulting in the
word

w′ =
m∏

i=0

(xix
ei
0 ) = x0x

e0
0 x1x

e1
0 · · · xmx

em
0 ,

where e0, e1, . . . , em ≥ 0. If e0 = e1 = · · · = em = 0, then the word w′ is in
canonical form (CF1) such that ini(w) = ini(w′). If k ≥ 0 is the least index
such that ek ≥ 1, then e0 = e1 = · · · = ek−1 = 0, so that

w′ =

( k−1∏

i=0

xi

)
xkx

ek
0

( m∏

i=k+1

(xix
ei
0 )

)
(5.4)
≈

( k−1∏

i=0

xi

)
xkx0

( m∏

i=k+1

xi

)

︸ ︷︷ ︸
w′′

.

The word w′′ is in canonical form (CF2) with ini(w) = ini(w′′). �

Proof of Proposition 5.30(ii). As observed in Remark 5.31, the semigroup
(ℓbar3 )op violates the identity (5.5). Hence 〈〈(ℓbar3 )op〉〉 ∩ [[(5.5)]] is a proper
subpseudovariety of 〈〈(ℓbar3 )op〉〉. It remains to show that each proper subpseu-
dovariety V of 〈〈(ℓbar3 )op〉〉 satisfies the identity (5.5). Since V 6= 〈〈(ℓbar3 )op〉〉,
there exists an identity u ≈ v of V that is violated by (ℓbar3 )op. Further,
since the identities (5.4) are satisfied by (ℓbar3 )op and so also by V, it follows
from Lemma 5.33 that the words u and v can be chosen to be in canonical
form. There are two cases.
Case 1. ini(u) 6= ini(v). Then by Theorem 5.17, the pseudovariety V satis-
fies the pseudoidentity that defines Excl(LI

2). Since

hω(xhω)ω(yhω(xhω)ω)ω
(5.4)
≈ h2xy and hω(yhω(xhω)ω)ω

(5.4)
≈ h2yx,

the pseudovariety V satisfies the identity α : h2xy ≈ h2yx. Since

xyxz
(5.4)
≈ xy2xz

α
≈ xy2zx

(5.4)
≈ xyzx,

the pseudovariety V satisfies the identity (5.5).
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Case 2. ini(u) = ini(v) and u 6= v. If the words u and v are both of the
form (CF1), then they are contradictorily equal. Hence either u or v is of
the form (CF2). By symmetry, there are two subcases.

2.1. u and v are both of the form (CF2). Then

u = x0x1 · · · xj · x0 · xj+1xj+2 · · · xm

and v = x0x1 · · · xk · x0 · xk+1xk+2 · · · xm,

where 0 ≤ j, k ≤ m. Since j 6= k, it suffices to assume by symmetry
that 0 ≤ j < k ≤ m. Let ϕ denote the substitution given by x0 7→ xy,
xi 7→ y for all i ∈ {1, 2, . . . , j}, and xi 7→ z otherwise. Then

uϕ = x0ϕ · (x1 · · · xj)ϕ · x0ϕ · (xj+1xj+2 · · · xm)ϕ

= xy · yj · xy · zm−j
(5.4)
≈ xyxz and

vϕ = x0ϕ · (x1 · · · xj)ϕ · (xj+1xj+1 · · · xk)ϕ · x0ϕ · (xk+1xj+2 · · · xm)ϕ

= xy · yj · zk−j · xy · zm−k
(5.4)
≈ xyzx.

Therefore, the identity (5.5) is deducible from (5.4) and u ≈ v. The
pseudovariety V thus satisfies the identity (5.5).

2.2. u is of the form (CF1) while v is of the form (CF2). Then

u = x0x1 · · · xm and v = x0x1 · · · xj · x0 · xj+1xj+2 · · · xm.

Since

uxm+1x0 =

u
′

︷ ︸︸ ︷
x0x1 · · · xmxm+1x0

and vxm+1x0
(5.4)
≈ x0x1 · · · xj · x0 · xj+1xj+2 · · · xmxm+1︸ ︷︷ ︸

v′

,

the pseudovariety V satisfies the identity u′ ≈ v′. Now u′ and v′ are
distinct words in canonical form (CF2) such that ini(u′) = ini(v′). Thus
the arguments in Subcase 2.1 can be repeated to show that V satisfies
the identity (5.5). �

Proof of Proposition 5.30(i). As noted in Remark 5.31, the identities (5.4)
are satisfied by the semigroup (ℓbar3 )op. Conversely, suppose that u ≈ v is
any identity satisfied by (ℓbar3 )op. By Lemma 5.33, the identities (5.4) can be
used to convert u and v into words u′ and v′ in canonical form. Since the
subsemigroup {a, c, e} of (ℓbar3 )op and the semigroup LI

2 are isomorphic, it fol-
lows from Lemma 5.1(iii) that ini(u′) = ini(v′). Suppose that u′ 6= v′. Then
by repeating the arguments in Case 2 of the proof of Proposition 5.30(ii),
the identity (5.5) is deducible from (5.4) and u′ ≈ v′. Since the semi-
group (ℓbar3 )op satisfies the identities (5.4) and u′ ≈ v′, it also satisfies (5.5);
but this is impossible by Remark 5.31. Therefore, u′ = v′. Since

u
(5.4)
≈ u′ = v′ (5.4)≈ v,

the identity u ≈ v is deducible from (5.4). �
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6. Non-ji pseudovarieties

This section contains nine subsections, each of which establishes one or
more sufficient conditions for a finite semigroup to generate a non-ji pseu-
dovariety. Each of these sufficient conditions, given as a corollary of some
general result, presents some finite set Σ of identities and some identities
ε1, ε2, . . . , εk with the property that for any finite semigroup S,

S |= Σ and S 6|= εi for all i =⇒ 〈〈S〉〉 is not ji.

In most cases, Σ will be a basis of identities for some join V =
∨k

i=1Vi

of compact pseudovarieties V1,V2, . . . ,Vk that satisfy the pseudoidentities
ε1, ε2, . . . , εk, respectively.

Sufficient conditions developed in this section will be used in Section 7
to locate all non-ji pseudovarieties generated by a semigroup of order up to
five.

6.1. The pseudovariety 〈〈Z3,Z4,Zbar
2 , (Zbar

2 )op, N I
3 〉〉. In this subsection, it

is convenient to write

K = {Z3,Z4,Zbar
2 , (Zbar

2 )op, N I
3 }.

Proposition 6.1 (Lee and Li [13]). The identities satisfied by the semigroup
Z3 × Z4 × Zbar

2 × (Zbar
2 )op ×N I

3 are axiomatized by

x15 ≈ x3, x14hx ≈ x2hx, x13hx2 ≈ xhx2, x13hxtx ≈ xhxtx,

x3hx ≈ xhx3, xhx2tx ≈ x3htx,

xhx2y2ty ≈ xhy2x2ty,

xhykxytxdy ≈ xhykyxtxdy, xhykxytydx ≈ xhykyxtydx.

(6.1)

Corollary 6.2. Suppose that S is any finite semigroup that satisfies the
identities (6.1) but violates all of the identities

x3 ≈ x, xy ≈ yx. (6.2)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈K 〉〉 that is not ji.

Proof. By Proposition 6.1, the inclusion

〈〈S〉〉 ⊆ 〈〈K 〉〉 = 〈〈Zbar
2 , (Zbar

2 )op〉〉 ∨ 〈〈Z3,Z4, N
I
3 〉〉

holds. But the two identities in (6.2) are satisfied by Zbar
2 × (Zbar

2 )op and
Z3 × Z4 × N I

3 , respectively. Therefore, 〈〈S〉〉 * 〈〈Zbar
2 , (Zbar

2 )op〉〉 and 〈〈S〉〉 *
〈〈Z3,Z4, N

I
3 〉〉. �

Corollary 6.3. Suppose that S is any finite semigroup that satisfies the
identities (6.1) but violates all of the identities

xy ≈ yx, xyx2 ≈ xy, x2yx ≈ yx. (6.3)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈K 〉〉 that is not ji.

Proof. By Proposition 6.1, the inclusion

〈〈S〉〉 ⊆ 〈〈K 〉〉 = 〈〈Z3,Z4, N
I
3 〉〉 ∨ 〈〈(Zbar

2 )op〉〉 ∨ 〈〈Zbar
2 〉〉

holds. Since the three identities in (6.3) are satisfied by Z3 × Z4 × N I
3 ,

(Zbar
2 )op, and Zbar

2 , respectively, the exclusions 〈〈S〉〉 * 〈〈Z3,Z4, N
I
3 〉〉, 〈〈S〉〉 *

〈〈(Zbar
2 )op〉〉, and 〈〈S〉〉 * 〈〈Zbar

2 〉〉 follow. �
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Corollary 6.4. Suppose that S is any finite semigroup that satisfies the
identities (6.1) but violates all of the identities

x4 ≈ x3, x4y ≈ y, x3y ≈ y, xyx2 ≈ xy, x2yx ≈ yx. (6.4)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈K 〉〉 that is not ji.

Proof. The inclusion 〈〈S〉〉 ⊆
∨
{〈〈T 〉〉 | T ∈ K } holds by Proposition 6.1.

But the five identities in (6.4) are satisfied by N I
3 , Z4, Z3, (Zbar

2 )op, and
Zbar
2 , respectively. Therefore, 〈〈S〉〉 * 〈〈T 〉〉 for all T ∈ K . �

6.2. The pseudovariety 〈〈Zm, N
I
n , L

I
2, R

I
2, A

I
0〉〉. In this subsection, it is

convenient to write

Tm,n = {Zm, N
I
n, L

I
2, R

I
2, A

I
0}

and Tm,n = Zm ×N I
n × LI

2 ×RI
2 ×AI

0.

Proposition 6.5. Let m ≥ 1 and n ≥ 2. Then the identities satisfied by
the semigroup Tm,n are axiomatized by

xm+n ≈ xn, xm+n−1yx ≈ xn−1yx, x2yx ≈ xyx2, xyxzx ≈ x2yzx.
(6.5)

Remark 6.6. (i) Since N2 is isomorphic to the subsemigroup {0, fe} of
A0, the monoid N I

2 belongs to 〈〈AI
0〉〉. Therefore, 〈〈Tm,1〉〉 = 〈〈Tm,2〉〉.

This is the reason for the assumption n ≥ 2 in Proposition 6.5.
(ii) The basic case (m,n) = (1, 2) for Proposition 6.5 was first established

in Lee [10, Proposition 2.3(i)].

Suppose that a word w can be written in the form

w = w0

r∏

i=1

(xeiwi) = w0x
e1w1x

e2w2 · · · x
erwr,

where x ∈ A , w0,wr ∈ A ∗, and w1,w2, . . . ,wr−1 ∈ A + are such that
x /∈ con(wi) for all i, and e1, e2, . . . , er ∈ {1, 2, 3, . . .}. Then the factors
xe1 , xe2 , . . . , xer are call x-stacks, or simply stacks, of w. The weight of the
x-stack xei is ei.

It is easily shown that the identities (6.5) can be used to convert any word
into a word w such that for each x ∈ A ,

(I) the number of x-stacks in w is at most two;
(II) if w has one x-stack, then its weight is at most m+ n− 1;
(III) if w has two x-stacks, then the weight of the first x-stack is at most

m+ n− 2 while the weight of the second x-stack is one.

In this subsection, a word w that satisfies (I)–(III) is said to be in canonical
form. Note that if w is a word in canonical form, then occ(x,w) ≤ m+n−1
for any x ∈ A .

Lemma 6.7. Let u and v be any words in canonical form such that the
identity u ≈ v is satisfied by the semigroup Tm,n. Then for any x ∈ A ,

(i) occ(x,u) ≡ occ(x,v) (mod m);
(ii) either occ(x,u) = occ(x,v) ≤ n or n < occ(x,u), occ(x,v) ≤ m+n−1.

Proof. This follows from Lemma 5.1 parts (i) and (ii). �
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For any word w and distinct variables x1, x2, . . . , xr, let w{x1,x2,...,xr} de-
note the word obtained from w by retaining only the variables x1, x2, . . . , xr.
Any monoid that satisfies an identity u ≈ v also satisfies u{x1,x2,...,xr} ≈
v{x1,x2,...,xr} for any distinct variables x1, x2, . . . , xr.

Lemma 6.8. Let u and v be any words in canonical form such that the
identity u ≈ v is satisfied by the semigroup Tm,n. Then

(i) for any distinct x, y ∈ A , the identity u{x,y} ≈ v{x,y} cannot be any of

xe1yf1 ≈ xe2yf2xe3 , xe1yf1 ≈ yf2xe2yf3 , xe1yf1 ≈ xe2yf2xe3yf3 , (6.6)

where e1, f1, e2, f2, e3, f3 ≥ 1;
(ii) u has two x-stacks if and only if v has two x-stacks;
(iii) xe is the first x-stack of u if and only if xe is the first x-stack of v.

Proof. (i) The three identities in (6.6) are violated by the semigroups RI
2,

LI
2, and A

I
0, respectively.

(ii) Suppose that u has two x-stacks. Then by (III),

u = u1x
e−1u2xu3

for some u1,u3 ∈ A ∗ and u2 ∈ A + with x /∈ con(u1u2u3) and 2 ≤ e ≤
m + n − 1. Seeking a contradiction, suppose that v has only one x-stack.
Then by (II) and part (i),

v = v1x
fv2

for some v1,v2 ∈ A ∗ with x /∈ con(v1v2) and 1 ≤ f ≤ m + n − 1. Since
the word u2 is nonempty, it contains some y-stack. Since con(u) = con(v)
by Lemma 5.1(ii), it follows that y ∈ con(v1v2). By symmetry, it suf-
fices to assume that y ∈ con(v1), so that ini(v) = · · · y · · · x · · · . Since
ini(u) = ini(v) by Lemma 5.1(iii), it follows that y ∈ con(u1). Hence the
word u contains two y-stacks, the first of which occurs in u1 while the
second occurs in u2. Thus fin(u) = · · · y · · · x · · · . Since fin(u) = fin(v)
by Lemma 5.1(iv), it follows that y /∈ con(v2). Therefore, the identity
u{x,y} ≈ v{x,y} is yrxe−1yx ≈ ysxf for some r, s ≥ 1, but this contradicts
part (i).

(iii) Let xe be a first x-stack of u. By part (ii), there are two cases.
Case 1. u and v each has only one x-stack. Then by (II),

u = u1x
eu2 and v = v1x

fv2

for some u1,u2,v1,v2 ∈ A ∗ with x /∈ con(u1u2v1v2) and 1 ≤ e, f ≤ m +
n − 1. Since e = occ(x,u) and f = occ(x,v), it follows from part (ii) that
either e = f ≤ n or n < e, f ≤ m + n − 1. If n < e, f ≤ m + n − 1, then
e = f by part (i).
Case 2. u and v each has two x-stacks. Then by (III),

u = u1x
e−1u2xu3 and v = v1x

f−1v2xv3

for some u1,u3,v1,v3 ∈ A ∗ and u2,v2 ∈ A + with x /∈ con(u1u2u3v1v2v3)
and 2 ≤ e, f ≤ m+ n− 1. Since e = occ(x,u) and f = occ(x,v), it follows
from the same argument in Case 1 that e = f . �

Lemma 6.9. Let u and v be any words in canonical form such that the
identity u ≈ v is satisfied by the semigroup Tm,n. Then the following are
equivalent :
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(a) u ∈ A ∗xeyfA ∗ where xe and yf are stacks of u;
(b) v ∈ A ∗xeyfA ∗ where xe and yf are stacks of v.

Further, xe is the first x-stack of u if and only if xe is the first x-stack of v,
and yf is the first y-stack of u if and only if yf is the first y-stack of v.

Proof. First, note that ini(u) = ini(v) and fin(u) = fin(v) by Lemma 5.1.
Suppose that (a) holds. Then

u = u1x
eyfu2

for some u1,u2 ∈ A ∗ such that u1 does not end with x while u2 does not
begin with y. There are four cases depending on which of xe and yf are first
stacks in u.
Case 1. xe is the first x-stack in u and yf is the first y-stack in u. Then
clearly x, y /∈ con(u1), so that ini(u) = · · · xy · · · . By Lemma 6.8(iii), xe is
the first x-stack of v and yf is the first y-stack of v. Since ini(v) = ini(u) =
· · · xy · · · ,

v = v1x
ev2y

fv3

for some v1,v2,v3 ∈ A ∗ such that x /∈ con(v1) and y /∈ con(v1v2), and
that any stack of v that occurs in v2 cannot be a first stack. Suppose that
v2 6= ∅. Then the first variable z of v2 constitutes the second z-stack of v.
Hence

v = · · · zr · · ·︸ ︷︷ ︸
v1

xe z · · ·︸ ︷︷ ︸
v2

yfv3,

where zr is the first z-stack of v, and ini(v) = · · · z · · · xy · · · . By Lemma
6.8(ii), the word u contains two z-stacks; by part (iii) of the same lemma, the
first z-stack of u is zr. Since ini(u) = ini(v) = · · · z · · · xy · · · , the z-stack zr

of u occurs in u1:

u = · · · zr · · ·︸ ︷︷ ︸
u1

xeyfu2.

The second z-stack of u occurs in either u1 or u2. There are two subcases.

1.1. The second z-stack of u occurs in u1. Then fin(v) = fin(u) = · · · z · · · x · · · ,
so that v must contain a second x-stack occurring in either v2 or v3.
The identity u{x,z} ≈ v{x,z} is thus z

r+1xe+1 ≈ zrxezx, which is impos-
sible by Lemma 6.8(i).

1.2. The second z-stack of u occurs in u2. Then fin(u) = fin(v) = · · · z · · · y · · · ,
so that u must contain a second y-stack occurring after the second z-
stack:

u = · · · zr · · ·︸ ︷︷ ︸
u1

xeyf · · · z · · · y · · ·︸ ︷︷ ︸
u2

.

The identity u{y,z} ≈ v{y,z} is thus zryfzy ≈ zr+1yf+1, which is impos-
sible by Lemma 6.8(i).

Since both subcases are impossible, v2 = ∅. Hence (b) holds.
Case 2. xe is the first x-stack in u and yf is the second y-stack in u. Then
f = 1 by (III) and

u = · · · yr · · ·︸ ︷︷ ︸
u1

xeyu2,
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where yr is the first y-stack of u. Since ini(v) = ini(u) = · · · y · · · x · · · , it
follows from Lemma 6.8 parts (i) and (iii) that

v = v1y
rv2x

ev3yv4

for some v1,v2,v3,v4 ∈ A ∗, where yr is the first y-stack of v and xe is the
first x-stack of v. Suppose that v3 6= ∅. Then v3 contains some z-stack zs:

v = v1y
rv2x

e · · · zs · · ·︸ ︷︷ ︸
v3

yv4.

There are two subcases depending on whether zs is the first or second z-stack
in v.

2.1. zs is the first z-stack in v. Then ini(u) = ini(v) = · · · y · · · x · · · z · · · , so
that every z of u occurs in u2. Hence u{y,z} ∈ y

r+1{z}+ and

v{y,z} =





yrzsyz if v has a second z-stack occurring in v4,

yrzs+1y if v has a second z-stack occurring in v3,

yrzsy if v has no second z-stack.

But this is impossible by Lemma 6.8(i).
2.2. zs is the second z-stack in v. Then fin(u) = fin(v) = · · · z · · · y · · · , so

that every z of u occurs in u1. Hence u{x,z} ∈ {z}+{x}+ and

v{x,z} ∈

{
{z}+{x}+zs{x}∗ if the first z-stack of v occurs in v1 or v2,

{x}+{z}+{x}∗ if the first z-stack of v occurs in v3.

But this is impossible by Lemma 6.8(i).

Since both subcases are impossible, v3 = ∅. Hence (b) holds.
Case 3. xe is the second x-stack in u and yf is the first y-stack in u. Then
e = 1 by (III) and

u = · · · xr · · ·︸ ︷︷ ︸
u1

xyfu2,

where xr is the first x-stack of u with and y /∈ con(u1) and x /∈ con(u2).
Since ini(v) = ini(u) = · · · x · · · y · · · , it follows from Lemma 6.8 that

v = v1x
rv2xv3y

fv4

for some v1,v2,v3,v4 ∈ A ∗ with x /∈ con(v1v2v3v4) and y /∈ con(v1v2v3).
Suppose that v3 6= ∅. Then v3 contains some z-stack zs:

v = v1x
rv2x · · · zs · · ·︸ ︷︷ ︸

v3

yfv4.

There are two subcases depending on whether or not zs is the first z-stack
of v.

3.1. zs is the first z-stack of v. Since ini(u) = ini(v) = · · · z · · · y · · · , the first
z-stack zs of u occurs in u1. But since fin(u) = fin(v) = · · · x · · · z · · · ,
the word u must contain a second z-stack in u2, whence v must also
contain a second z-stack by Lemma 6.8(ii). Hence v{x,z} = xr+1zs+1

and

u{x,z} =

{
zsxr+1z if zs in u occurs before the first x-stack,

xrzsxz if zs in u occurs between the two x-stacks.
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But this is impossible by Lemma 6.8(i).
3.2. zs is the second z-stack of v. Then the identity u{y,z} ≈ v{y,z} ob-

tained by an argument symmetrical to the one in Subcase 3.1 produces
a similar contradiction.

Since both subcases are impossible, v3 = ∅. Hence (b) holds.
Case 4. xe is the second x-stack in u and yf is the second y-stack in u.
Then (b) holds by an argument symmetrical to Case 1.

Therefore, (b) holds in all four cases. By symmetry, (b) implies (a). �

Proof of Proposition 6.5. It is routinely verified that the semigroup Tm,n

satisfies the identities (6.5). Conversely, suppose that u ≈ v is any identity
satisfied by the semigroup Tm,n. As observed earlier, the identities (6.5) can
be used to convert u and v into words u′ and v′ in canonical form. By
Lemma 6.7 parts (ii) and (iii), the words u′ and v′ share the same set of
stacks. By Lemma 6.9, two stacks are adjacent in u′ if and only if they are
adjacent in v′. Therefore, u′ = v′. Since

u
(6.5)
≈ u′ = v′ (6.5)≈ v,

the identity u ≈ v is deducible from (6.5). �

Corollary 6.10. Suppose that S is any finite semigroup that satisfies the
identities

x11 ≈ x5, x10yx ≈ x4yx, x2yx ≈ xyx2, xyxzx ≈ x2yzx (6.7)

but violates all of the identities

x2 ≈ x, xyxy ≈ yxyx. (6.8)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈T6,5〉〉 that is not ji.

Proof. By Proposition 6.5 with m = 6 and n = 5, the identities satisfied
by T6,5 are axiomatized by (6.7). Hence the inclusion

〈〈S〉〉 ⊆ 〈〈T6,5〉〉 = 〈〈LI
2, R

I
2〉〉 ∨ 〈〈Z6, N

I
5 , A

I
0〉〉

holds. But the two identities in (6.8) are satisfied by LI
2×R

I
2 and Z6×N

I
5 ×

AI
0, respectively. Therefore, 〈〈S〉〉 * 〈〈LI

2, R
I
2〉〉 and 〈〈S〉〉 * 〈〈Z6, N

I
5 , A

I
0〉〉. �

Corollary 6.11. Suppose that S is any finite semigroup that satisfies the
identities (6.7) but violates all of the identities

x6 ≈ x5, x6y ≈ y. (6.9)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈T6,5〉〉 that is not ji.

Proof. The argument in the proof of Corollary 6.10 implies the inclusion

〈〈S〉〉 ⊆ 〈〈T6,5〉〉 = 〈〈N I
5 , L

I
2, R

I
2, A

I
0〉〉 ∨ 〈〈Z6〉〉.

The two identities in (6.9) are satisfied by N I
5 × LI

2 × RI
2 × AI

0 and Z6,
respectively. Therefore, 〈〈S〉〉 * 〈〈N I

5 , L
I
2, R

I
2, A

I
0〉〉 and 〈〈S〉〉 * 〈〈Z6〉〉. �
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6.3. Pseudovarieties of noncommutative nilpotent semigroups.

Proposition 6.12. Any ji pseudovariety of nilpotent semigroups is commu-
tative.

Proof. Let V be any ji pseudovariety of nilpotent semigroups. Then the
inclusion V ⊆ Com∨G holds [2, Figure 9.1]. Since V is ji and V * G, the
inclusion V ⊆ Com follows. �

Corollary 6.13. Suppose that S is any finite semigroup that satisfies the
identity

x6 ≈ y1y2y3y4y5y6

but violates the identity
xy ≈ yx.

Then 〈〈S〉〉 is a pseudovariety of nilpotent semigroups that is not ji.

Proof. By assumption, the semigroup S is nilpotent and noncommutative.
The result then holds by Proposition 6.12. �

6.4. The pseudovariety 〈〈Nn+r, N
I
n〉〉.

Proposition 6.14. Let n, r ≥ 1. Then the identities satisfied by the semi-
group Nn+r ×N I

n are axiomatized by

xy ≈ yx, (6.10a)

xn+1y1y2 · · · yr ≈ xny1y2 · · · xr, (6.10b)

xe11 x
e2
2 · · · xemm ≈ xf11 x

f2
2 · · · xfmm (6.10c)

for all m ≥ 1 and e1, e2, . . . , em, f1, f2, . . . , fm ≥ 1 such that

(a) e = f < n+ r, where e =
∑m

i=1 ei and f =
∑m

i=1 fi;
(b) for each k ∈ {1, 2, . . . ,m}, either

• ek = fk or
• ek, fk ≥ n and e+ ek, f + fk ≥ n+ r.

Proof. It is straightforwardly verified that the semigroup Nn+r×N
I
n satisfies

the identities (6.10). Conversely, let u ≈ v be any identity satisfied by the
semigroup Nn+r × N I

n. In view of Lemma 5.1(ii), the identity (6.10a) can
be used to convert u and v into

u′ = xe11 x
e2
2 · · · xemm and v′ = xf11 x

f2
2 · · · xfmm ,

respectively, where ei = occ(xi,u) and fi = occ(xi,v) are such that either
ei = fi or ei, fi ≥ n. Let e =

∑m
i=1 ei and f =

∑m
i=1 fi. Generality is not

lost by assuming that e ≤ f . There are four cases to consider.
Case 1. n+ r ≤ e ≤ f . Choose any i ∈ {1, 2, . . . ,m}. Suppose that ei 6= fi.
Then as observed earlier, ei, fi ≥ n. Hence

u′ (6.10a)≈ xni

e− n ≥ r variables︷ ︸︸ ︷
xe11 x

e2
2 · · · x

ei−1

i−1 x
ei−n
i x

ei+1

i+1 · · · xemm
(6.10b)
≈ xn+fi

i xe11 x
e2
2 · · · x

ei−1

i−1 x
ei−n
i x

ei+1

i+1 · · · xemm
(6.10a)
≈ xe11 x

e2
2 · · · x

ei−1

i−1 x
ei+fi
i x

ei+1

i+1 · · · xemm .
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Similarly, v′
(6.10)
≈ xf11 x

f2
2 · · · x

fi−1

i−1 x
fi+ei
i x

fi+1

i+1 · · · xfmm . Therefore, the iden-
tities (6.10) can be used to convert u′ into v′. It follows that u ≈ v is
deducible from (6.10).
Case 2. e < n+r ≤ f . Let ϕ : A → Nn+r be the substitution that maps all
variables to a. Then u′ϕ = ae 6= 0 and v′ϕ = af = 0 imply the contradiction
u′ϕ 6= v′ϕ. The present case is thus impossible.
Case 3. e < f < n + r. Then the contradiction u′ϕ = ae 6= af = v′ϕ is
obtained. Hence the present case is impossible.
Case 4. e = f < n + r. Suppose that ek 6= fk for some k so that e + ek 6=
f + fk. Then as observed earlier, ek, fk ≥ n. Let ψ : A → Nn+r be the
substitution that maps xk to a2 and all other variables to a. Then u′ψ = v′ψ
in Nn, where

u′ψ =

( k−1∏

i=1

aei
)
(a2)ek

( m∏

i=k+1

aei
)

= ae+ek

and v′ψ = af+fk similarly. Thus ae+ek = af+fk . But e+ ek 6= f + fk implies
that e+ ek, f + fk ≥ n. Hence the identity u′ ≈ v′ also satisfies (ii) and is
deducible from (6.10c). The identity u ≈ v is thus deducible from (6.10). �

Corollary 6.15. Suppose that S is any finite semigroup that satisfies the
identities

xy ≈ yx, x3y1y2 ≈ x2y1y2 (6.11)

but violates all of the identities

x3 ≈ x2, x2y ≈ xy2. (6.12)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈N4, N
I
2 〉〉 that is not ji.

Proof. By Proposition 6.14 with n = r = 2, the identities satisfied by N4 ×
N I

2 are axiomatized by (6.11). Hence the inclusion

〈〈S〉〉 ⊆ 〈〈N4, N
I
2 〉〉 = 〈〈N4〉〉 ∨ 〈〈N I

2 〉〉

holds. But the two identities in (6.12) are satisfied by N I
2 and N4, respec-

tively. Therefore, 〈〈S〉〉 * 〈〈N4〉〉 and 〈〈S〉〉 * 〈〈N I
2 〉〉. �

Corollary 6.16. Suppose that S is any finite semigroup that satisfies the
identities

xy ≈ yx, x2yz ≈ xy2z, x2y1y2y3y4 ≈ xy1y2y3y4 (6.13)

but violates all of the identities

x2 ≈ x, x5 ≈ y5. (6.14)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈N5, N
I
1 〉〉 that is not ji.

Proof. By Proposition 6.14 with n = 1 and r = 4, the identities satisfied by
N5 ×N I

1 are axiomatized by (6.13). Hence the inclusion

〈〈S〉〉 ⊆ 〈〈N5, N
I
1 〉〉 = 〈〈N5〉〉 ∨ 〈〈N I

1 〉〉

holds. But the two identities in (6.14) are satisfied by N I
1 and N5, respec-

tively. Therefore, 〈〈S〉〉 * 〈〈N5〉〉 and 〈〈S〉〉 * 〈〈N I
1 〉〉. �
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6.5. The pseudovariety 〈〈N I
n , N

bar
2 〉〉. It turns out to be notationally sim-

pler to find a basis of identities for N I
n × (Nbar

2 )op instead of N I
n ×Nbar

2 .

Proposition 6.17. Let n ≥ 2. Then the identities satisfied by the semigroup
N I

n × (Nbar
2 )op are axiomatized by

xn+1 ≈ xn, xyxn ≈ xyxn−1, (6.15a)

xyzt ≈ xytz. (6.15b)

In this subsection, a word of length at least two is said to be in canonical
form if it is either

(CF1) x2 · xezf11 z
f2
2 · · · zfkk or

(CF2) xy · xe1ye2zf11 z
f2
2 · · · zfkk ,

where

(I) x, y, z1, z2, . . . , zk are distinct variables with k ≥ 0;
(II) z1, z2, . . . , zk are in alphabetical order;
(III) e ∈ {0, 1, . . . , n− 2}, ei ∈ {0, 1, . . . , n− 1}, and fi ∈ {1, 2, . . . , n}.

Lemma 6.18. The identities (6.15) can be used to convert any word of
length at least two into a word in canonical form.

Proof. Let w be any word of length at least two. Then w = x2u or w = xyu
for some distinct x, y ∈ A and u ∈ A ∗. The identity (6.15b) can first be
used to rearrange the variables of the suffix u until w becomes a word of the
form (CF1) or (CF2) with (I) and (II) satisfied. The identities (6.15a) can
then be used to reduce the exponents e, ei, fi so that (III) is satisfied. �

Lemma 6.19. The semigroup Nbar
2 satisfies an identity u ≈ v if and only

if the words u and v share the same suffix of length two.

Proof. This is routinely established and its dual result for (Nbar
2 )op was ob-

served by Lee and Li [12, Remark 6.2(i)]. �

Proof of Proposition 6.17. It is easily verified, either directly or by Lem-
mas 5.1(ii) and 6.19, that the identities (6.15) are satisfied by the semigroup
N I

n × (Nbar
2 )op. Hence it remains to show that any identity u ≈ v satisfied

by the semigroup N I
n × (Nbar

2 )op is deducible from the identities (6.15). It
is easily shown that if either u or v is a single variable, then the identity
u ≈ v is trivial by Lemma 5.1(ii) and so is vacuously deducible from the
identities (6.15). Therefore, assume that u and v are words of length at
least two. By Lemma 6.18, the identities (6.15) can be used to convert u

and v into words u′ and v′ in canonical form. By Lemma 6.19, the words u′

and v′ share the same prefix of length two. Therefore, u′ and v′ are both
of the form (CF1) or both of the form (CF2). In any case, it is routinely
verified by Lemma 5.1(ii) that u′ = v′. Since

u
(6.15)
≈ u′ = v′ (6.15)≈ v,

the identity u ≈ v is deducible from (6.15). �

Corollary 6.20. Suppose that S is any finite semigroup that satisfies the
identities

x6 ≈ x5, x5yx ≈ x4yx, xyzt ≈ yxzt (6.16)
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but violates all of the identities

xy ≈ yx, xyz ≈ yz. (6.17)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈N I
5 , N

bar
2 〉〉 that is not ji.

Proof. By Proposition 6.17 with n = 5, the identities satisfied by N I
5 ×N

bar
2

are axiomatized by (6.16). Hence the inclusion

〈〈S〉〉 ⊆ 〈〈N I
5 , N

bar
2 〉〉 = 〈〈N I

5 〉〉 ∨ 〈〈Nbar
2 〉〉

holds. But the two identities in (6.17) are satisfied by N I
5 and Nbar

2 , respec-
tively. Therefore, 〈〈S〉〉 * 〈〈N I

5 〉〉 and 〈〈S〉〉 * 〈〈Nbar
2 〉〉. �

6.6. The pseudovariety 〈〈N I
2 , (L

bar
2 )op〉〉.

Proposition 6.21. The identities satisfied by the semigroup N I
2 × (Lbar

2 )op

are axiomatized by

x3 ≈ x2, x2yx2 ≈ xyx, xhytxy ≈ x2hyty, xhytyx ≈ xhy2tx. (6.18)

Proof. Let T6 = {a, b, c, d, e, f} be the semigroup given in Table 9. The
identities satisfied by T6 are axiomatized by (6.18) [16, Proposition 26.1].
It is easily deduced from the proof of this result that any identity violated
by T6 is also violated by one of the following subsemigroups of T6:

{a, d, e} ∼= LI
2, {a, b, e} ∼= N I

2 , {e, f} ∼= R2,

and 〈c, e, f〉 = {a, c, d, e, f} ∼= (Lbar
2 )op.

Since LI
2, R2 ∈ 〈〈(Lbar

2 )op〉〉, any identity violated by T6 is violated by N I
2

or (Lbar
2 )op. Therefore, the semigroup N I

2 × (Lbar
2 )op does not generate any

proper subpseudovariety of 〈〈T6〉〉, whence 〈〈N I
2 × (Lbar

2 )op〉〉 = 〈〈T6〉〉. �

T6 a b c d e f

a a a a a a a

b a a a a b b

c c c c c c c

d d d d d d d

e a b a d e f

f a b d d e f

Table 9. Multiplication table of T6

Corollary 6.22. Suppose that S is any finite semigroup that satisfies the
identities (6.18) but violates all of the identities

x2 ≈ x, xy ≈ yx. (6.19)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈N I
2 , (L

bar
2 )op〉〉 that is not ji.
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Proof. By Proposition 6.21, the inclusion

〈〈S〉〉 ⊆ 〈〈N I
2 , (L

bar
2 )op〉〉 = 〈〈N I

2 〉〉 ∨ 〈〈(Lbar
2 )op〉〉

holds. But the two identities in (6.19) are satisfied by (Lbar
2 )op and N I

2 ,
respectively. Therefore, 〈〈S〉〉 * 〈〈N I

2 〉〉 and 〈〈S〉〉 * 〈〈(Lbar
2 )op〉〉. �

6.7. The pseudovariety 〈〈LI
2, ℓ3, ℓ

op
3 〉〉.

Proposition 6.23 (Zhang and Luo [32, Proposition 3.2(3) and Figure 5]).
The identities satisfied by the semigroup LI

2 × ℓ3 × ℓop3 are axiomatized by

x3 ≈ x2, xyx ≈ x2y2, xy2z ≈ xyz. (6.20)

Corollary 6.24. Suppose that S is any finite semigroup that satisfies the
identities (6.20) but violates all of the identities

x2y ≈ xy, xy2 ≈ xy. (6.21)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈LI
2, ℓ3, ℓ

op
3 〉〉 that is not ji.

Proof. By Proposition 6.23, the inclusion

〈〈S〉〉 ⊆ 〈〈LI
2, ℓ3, ℓ

op
3 〉〉 = 〈〈LI

2, ℓ3〉〉 ∨ 〈〈ℓop3 〉〉

holds. But the two identities in (6.21) are satisfied by LI
2 × ℓ3 and ℓop3 ,

respectively. Therefore, 〈〈S〉〉 * 〈〈LI
2, ℓ3〉〉 and 〈〈S〉〉 * 〈〈ℓop3 〉〉. �

6.8. The pseudovariety 〈〈A0, ℓ
I
3, (ℓ

op
3 )I〉〉.

Proposition 6.25 (Lee [9, Proposition 2.8]). The identities satisfied by the
semigroup A0 × ℓI3 × (ℓop3 )I are axiomatized by

x3 ≈ x2, x2yx2 ≈ xyx, xyxy ≈ yxyx,

xyxzx ≈ xyzx, xy2z2x ≈ xz2y2x.
(6.22)

Proof. The identities satisfied by the semigroup A0 × BI
0 are axiomatized

by the identities (6.22) [9, Proposition 2.8]. Since 〈〈BI
0〉〉 = 〈〈ℓI3, (ℓ

op
3 )I〉〉 [9,

Figure 4], the result follows. �

Corollary 6.26. Suppose that S is any finite semigroup that satisfies the
identities (6.22) but violates all of the identities

xyx ≈ yxy, xyx ≈ x2y, xyx ≈ yx2. (6.23)

Then 〈〈S〉〉 is a subpseudovariety of 〈〈A0, ℓ
I
3, (ℓ

op
3 )I〉〉 that is not ji.

Proof. By Proposition 6.25, the inclusion

〈〈S〉〉 ⊆ 〈〈A0, ℓ
I
3, (ℓ

op
3 )I〉〉 = 〈〈A0〉〉 ∨ 〈〈ℓI3〉〉 ∨ 〈〈(ℓop3 )I〉〉

holds. But the three identities in (6.23) are satisfied by A0, (ℓ
op
3 )I , and ℓI3,

respectively. Therefore, 〈〈S〉〉 * 〈〈A0〉〉, 〈〈S〉〉 * 〈〈ℓI3〉〉, and 〈〈S〉〉 * 〈〈(ℓop3 )I〉〉. �
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W a b c d e

a a a a d e

b a a b d e

c a a c d e

d a a d d e

e a d a d e

Table 10. Multiplication table of W

6.9. The pseudovariety 〈〈(Nbar
2 )I , Lbar

2 〉〉. The semigroupW = {a, b, c, d, e}
given in Table 10 is required in this subsection.

Proposition 6.27.

(i) The identities satisfied by the semigroup W are axiomatized by

x3 ≈ x2, xyx ≈ y2x. (6.24)

(ii) The subpseudovariety of 〈〈W 〉〉 defined by the identity

x2y2z2 ≈ x2yz2 (6.25)

is the unique maximal proper subpseudovariety of 〈〈W 〉〉.

Remark 6.28. Proposition 6.27(i) was first established in Tishchenko and
Volkov [28, Theorem 2]. But since its proof is not long and an under-
standing of the identities satisfied by W is fundamental to the proof of
Proposition 6.27(ii), it is given below for the sake of completeness.

In this subsection, a word of the form

xe11 x
e2
2 · · · xemm ,

where x1, x2, . . . , xm are distinct variables and e1, e2, . . . , em ∈ {1, 2}, is said
to be in canonical form.

Remark 6.29. It is easily shown that the identities (6.24) can be used to
convert any word into one in canonical form.

Proof of Proposition 6.27. (i) It is routinely shown that the semigroup W
satisfies the identities (6.24). Conversely, suppose that u ≈ v is any identity
satisfied by W . By Remark 6.29, the identities (6.24) can be used to con-
vert u and v into some words u′ and v′ in canonical form. Since the subsemi-
group {a, c, d} of W and the semigroup RI

2 are isomorphic, fin(u′) = fin(v′)
by Lemma 5.1(iv). Hence

u′ = xe11 x
e2
2 · · · xemm and v′ = xf11 x

f2
2 · · · xfmm

for some distinct x1, x2, . . . , xm ∈ A and e1, e2, . . . , em, f1, f2, . . . , fm ∈
{1, 2}. If ek 6= fk, then by making the substitution ϕ given by xk 7→ b,
xi 7→ e for any i < k, and xi 7→ c for any i > k, the contradiction u′ϕ 6= v′ϕ
is obtained. Therefore, ei = fi for all i, so that u′ = v′. Consequently, the
identity u ≈ v is deducible from the identities (6.24).

(ii) The semigroup W violates the identity (6.25) because e2b2c2 6= e2bc2.
Therefore, 〈〈W 〉〉 ∩ [[(6.25)]] is a proper subpseudovariety of 〈〈W 〉〉. It remains



JOIN IRREDUCIBLE SEMIGROUPS 47

to verify that every proper subpseudovariety V of 〈〈W 〉〉 satisfies the iden-
tity (6.25). Since V 6= 〈〈W 〉〉, there exists an identity u ≈ v of V that is
violated by W . Further, since the identities (6.24) are satisfied by V, it
follows from Remark 6.29 that the words u and v can be chosen to be in
canonical form. There are two cases.
Case 1. fin(u) 6= fin(v). Then by Lemma 5.1(iv) and the dual of Theo-
rem 5.17, the pseudovariety V satisfies the pseudoidentity

hω(xhω)ω(yhω(xhω)ω)ω ≈ hω(xhω(yhω)ω)ω.

Since

hω(xhω)ω(yhω(xhω)ω)ω
(6.24)
≈ y2x2h2 and hω(xhω(yhω)ω)ω

(6.24)
≈ x2y2h2,

the pseudovariety V satisfies the identity

x2y2h2 ≈ y2x2h2. (6.26)

Since

x2yz2
(6.24)
≈ x2(x2y)2z2

(6.26)
≈ (x2y)2x2z2

(6.24)
≈ y2x2z2

(6.26)
≈ x2y2z2,

the pseudovariety V satisfies the identity (6.25).
Case 2. fin(u) = fin(v) and u 6= v. Then

u = xe11 x
e2
2 · · · xemm and v = xf11 x

f2
2 · · · xfmm

for some distinct x1, x2, . . . , xm ∈ A and e1, e2, . . . , em, f1, f2, . . . , fm ∈
{1, 2} such that ek 6= fk for some k, say (ek, fk) = (2, 1). Let ϕ denote
the substitution given by xk 7→ y, xi 7→ x2 for any i < k, and xi 7→ z2 for
any i > k. Then

x2(uϕ)z2
(6.24)
≈ x2y2z2 and x2(vϕ)z2

(6.24)
≈ x2yz2,

so that the pseudovariety V satisfies the identity (6.25). �

Proposition 6.30. The pseudovariety 〈〈W 〉〉 is sji but not ji.

Proof. The pseudovariety 〈〈W 〉〉 is sji by Proposition 6.27(ii). To show that
〈〈W 〉〉 is not ji, the semigroups Nbar

2 = {0, a, a, I} and Lbar
2 = {e, f, e, f, I}

from Subsections 3.2 and 3.3 are required. Let T11 denote the subsemigroup
of (Nbar

2 )I × Lbar
2 generated by E = (1, e), X = (a, f), and Y = (I, I). It is

routinely checked that

E2 = E, XE = X, X3 = X2, and EY = XY = Y2 = Y,

so that the semigroup T11 consists of the following 11 elements:

a = E, b = EX, c = EX2, d = X, e = X2, f = Y,

g = YX, h = YX2, i = YE, j = YEX, k = YEX2;

see Table 11. Identifying the elements {b, c, e, h, i, j, k} in T11 results in a
semigroup that is isomorphic to W . Therefore,

〈〈W 〉〉 ⊆ 〈〈T11〉〉 ⊆ 〈〈(Nbar
2 )I〉〉 ∨ 〈〈Lbar

2 〉〉.

But the semigroup W violates the identities

xyx2 ≈ yx2, x2 ≈ x, (6.27)
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and these identities are satisfied by (Nbar
2 )I and Lbar

2 , respectively. Conse-
quently, 〈〈W 〉〉 * 〈〈(Nbar

2 )I〉〉 and 〈〈W 〉〉 * 〈〈Lbar
2 〉〉. �

T11 a b c d e f g h i j k

a a b c b c f g h i j k

b b c c c c f g h i j k

c c c c c c f g h i j k

d d e e e e f g h i j k

e e e e e e f g h i j k

f i j k g h f g h i j k

g g h h h h f g h i j k

h h h h h h f g h i j k

i i j k j k f g h i j k

j j k k k k f g h i j k

k k k k k k f g h i j k

Table 11. Multiplication table of T11

Corollary 6.31. Suppose that S is any finite semigroup that satisfies the
identities (6.24) but violates all the identities in (6.27). Then 〈〈S〉〉 is a
subpseudovariety of 〈〈(Nbar

2 )I , Lbar
2 〉〉 that is not ji.

Proof. The inclusions

〈〈S〉〉 ⊆ 〈〈W 〉〉 ⊆ 〈〈(Nbar
2 )I〉〉 ∨ 〈〈Lbar

2 〉〉

hold by Proposition 6.27(i) and the proof of Proposition 6.30. But the
identities in (6.27) are satisfied by (Nbar

2 )I and Lbar
2 , respectively. Therefore,

〈〈S〉〉 * 〈〈(Nbar
2 )I〉〉 and 〈〈S〉〉 * 〈〈Lbar

2 〉〉. �

7. Pseudovarieties generated by a semigroup of order up to
five

Theorem 7.1. Let S be any nontrivial semigroup of order up to five. Sup-
pose that the pseudovariety 〈〈S〉〉 is ji. Then 〈〈S〉〉 coincides with one of the
following 30 pseudovarieties:

〈〈Z2〉〉, 〈〈Z3〉〉, 〈〈Z4〉〉, 〈〈Z5〉〉, 〈〈Zbar
2 〉〉, 〈〈(Zbar

2 )op〉〉,

〈〈N2〉〉, 〈〈N3〉〉, 〈〈N4〉〉, 〈〈N5〉〉, 〈〈Nbar
2 〉〉, 〈〈(Nbar

2 )op〉〉,

〈〈N I
1 〉〉, 〈〈N I

2 〉〉, 〈〈N I
3 〉〉, 〈〈N I

4 〉〉, 〈〈(Nbar
2 )I〉〉, 〈〈((Nbar

2 )I)op〉〉,

〈〈L2〉〉, 〈〈LI
2〉〉, 〈〈Lbar

2 〉〉, 〈〈Lop
2 〉〉, 〈〈(LI

2)
op〉〉, 〈〈(Lbar

2 )op〉〉,

〈〈A0〉〉, 〈〈AI
0〉〉, 〈〈A2〉〉, 〈〈B2〉〉, 〈〈ℓbar3 〉〉, 〈〈(ℓbar3 )op〉〉.

Proof. The 30 pseudovarieties are ji by results in Sec. 5; see Table 12. Up to
isomorphism and anti-isomorphism, there exist 1308 nontrivial semigroups
of order up to five. With the aid of a computer, it is routinely determined, us-
ing the sufficient conditions given in Subsections 7.1 and 7.2 below, which of



JOIN IRREDUCIBLE SEMIGROUPS 49

these semigroups generate ji pseudovarieties. Specifically, by Conditions A1–
A23 and their dual conditions, 241 of the 1308 semigroups generate the 30
ji pseudovarieties, while by Conditions B1–B13 and their dual conditions,
the remaining 1067 semigroups generate pseudovarieties that are not ji; see
Table 13. The proof of Theorem 7.1 is thus complete. �

Pseudovarieties Join irreducible by

〈〈Z2〉〉, 〈〈Z3〉〉, 〈〈Z4〉〉, 〈〈Z5〉〉 Theorem 5.3

〈〈Zbar
2 〉〉, 〈〈(Zbar

2 )op〉〉 Theorem 5.5

〈〈N2〉〉, 〈〈N3〉〉, 〈〈N4〉〉, 〈〈N5〉〉 Theorem 5.7

〈〈N I
1 〉〉, 〈〈N

I
2 〉〉, 〈〈N

I
3 〉〉, 〈〈N

I
4 〉〉 Theorem 5.9

〈〈Nbar
2 〉〉, 〈〈(Nbar

2 )op〉〉 Theorem 5.11

〈〈(Nbar
2 )I〉〉, 〈〈((Nbar

2 )I)op〉〉 Theorem 5.13

〈〈L2〉〉, 〈〈L
op
2 〉〉 Theorem 5.15

〈〈LI
2〉〉, 〈〈(L

I
2)

op〉〉 Theorem 5.17

〈〈Lbar
2 〉〉, 〈〈(Lbar

2 )op〉〉 Theorem 5.19

〈〈A0〉〉 Theorem 5.21

〈〈AI
0〉〉 Theorem 5.23

〈〈A2〉〉 Theorem 5.25

〈〈B2〉〉 Theorem 5.27

〈〈ℓbar3 〉〉, 〈〈(ℓbar3 )op〉〉 Theorem 5.29

Table 12. Results for join irreducibility of pseudovarieties
in Theorem 7.1

n = 2 n = 3 n = 4 n = 5 2 ≤ n ≤ 5

Number of ji
4 8 33 196 241semigroups of order n

Number of non-ji
0 10 93 964 1067semigroups of order n

Number of
4 18 126 1160 1308semigroups of order n

Table 13. Number of ji semigroups of order up to five
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7.1. Conditions sufficient for join irreducibility. The following con-
ditions and their dual conditions are sufficient for a finite semigroup S to
generate a ji pseudovariety in Theorem 7.1.

Condition A1 (Proposition 5.4). The equality 〈〈S〉〉 = 〈〈Z2〉〉 holds if

• S |= {xy ≈ yx, x2y ≈ y},
• S 6|= x ≈ y.

Condition A2 (Proposition 5.4). The equality 〈〈S〉〉 = 〈〈Z3〉〉 holds if

• S |= {xy ≈ yx, x3y ≈ y},
• S 6|= x ≈ y.

Condition A3 (Proposition 5.4). The equality 〈〈S〉〉 = 〈〈Z4〉〉 holds if

• S |= {xy ≈ yx, x4y ≈ y},
• S 6|= x3 ≈ x.

Condition A4 (Proposition 5.4). The equality 〈〈S〉〉 = 〈〈Z5〉〉 holds if

• S |= {xy ≈ yx, x5y ≈ y},
• S 6|= x ≈ y.

Condition A5 (Proposition 5.6). The equality 〈〈S〉〉 = 〈〈Zbar
2 〉〉 holds if

• S |= {x3 ≈ x, xyxy ≈ yx2y},
• S 6|= xyx ≈ yx2.

Condition A6 (Proposition 5.8). The equality 〈〈S〉〉 = 〈〈N2〉〉 holds if

• S |= x2 ≈ y1y2,
• S 6|= x2 ≈ x.

Condition A7 (Proposition 5.8). The equality 〈〈S〉〉 = 〈〈N3〉〉 holds if

• S |= {xy ≈ yx, x3 ≈ y1y2y3},
• S 6|= x3 ≈ x2.

Condition A8 (Proposition 5.8). The equality 〈〈S〉〉 = 〈〈N4〉〉 holds if

• S |= {xy ≈ yx, x2y ≈ xy2, x4 ≈ y1y2y3y4},
• S 6|= x4 ≈ x3.

Condition A9 (Proposition 5.8). The equality 〈〈S〉〉 = 〈〈N5〉〉 holds if

• S |= {xy ≈ yx, x2yz ≈ xy2z, x5 ≈ y1y2y3y4y5},
• S 6|= x5 ≈ x4.

Condition A10 (Proposition 5.10). The equality 〈〈S〉〉 = 〈〈N I
1 〉〉 holds if

• S |= {x2 ≈ x, xy ≈ yx},
• S 6|= x ≈ y.

Condition A11 (Proposition 5.10). The equality 〈〈S〉〉 = 〈〈N I
2 〉〉 holds if

• S |= {x3 ≈ x2, xy ≈ yx},
• S 6|= x2y ≈ xy2.

Condition A12 (Proposition 5.10). The equality 〈〈S〉〉 = 〈〈N I
3 〉〉 holds if

• S |= {x4 ≈ x3, xy ≈ yx},
• S 6|= x3y2 ≈ x2y3.

Condition A13 (Proposition 5.10). The equality 〈〈S〉〉 = 〈〈N I
4 〉〉 holds if
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• S |= {x5 ≈ x4, xy ≈ yx},
• S 6|= x4y3 ≈ x3y4.

Condition A14 (Proposition 5.12). The equality 〈〈S〉〉 = 〈〈Nbar
2 〉〉 holds if

• S |= xyz ≈ yz,
• S 6|= xy ≈ y2.

Condition A15 (Proposition 5.14). The equality 〈〈S〉〉 = 〈〈(Nbar
2 )I〉〉 holds if

• S |=

{
x3 ≈ x2, x2hx ≈ xhx, xhx2 ≈ hx2, xyxy ≈ yx2y,
xyhxy ≈ yxhxy, xyxty ≈ yx2ty, xyhxty ≈ yxhxty

}
,

• S 6|= xyxyh2 ≈ x2y2h2.

Condition A16 (Proposition 5.16). The equality 〈〈S〉〉 = 〈〈L2〉〉 holds if

• S |= xy ≈ x,
• S 6|= x ≈ y.

Condition A17 (Proposition 5.18). The equality 〈〈S〉〉 = 〈〈LI
2〉〉 holds if

• S |= {x2 ≈ x, xyx ≈ xy},
• S 6|= xyz ≈ xzy.

Condition A18 (Proposition 5.20). The equality 〈〈S〉〉 = 〈〈Lbar
2 〉〉 holds if

• S |= {x2 ≈ x, xyz ≈ xzxyz},
• S 6|= xyz ≈ xzyz.

Condition A19 (Proposition 5.22). The equality 〈〈S〉〉 = 〈〈A0〉〉 holds if

• S |= {x3 ≈ x2, x2yx2 ≈ yxy},
• S 6|= x2y2 ≈ y2x2.

Condition A20 (Proposition 5.24). The equality 〈〈S〉〉 = 〈〈AI
0〉〉 holds if

• S |= {x3 ≈ x2, x2yx2 ≈ xyx, xyxy ≈ yxyx, xyxzx ≈ xyzx},
• S 6|= hx2y2h ≈ hy2x2h.

Condition A21 (Proposition 5.26). The equality 〈〈S〉〉 = 〈〈A2〉〉 holds if

• S |= {x3 ≈ x2, xyxyx ≈ xyx, xyxzx ≈ xzxyx},
• S 6|= x2y2x2 ≈ x2yx2.

Condition A22 (Proposition 5.28). The equality 〈〈S〉〉 = 〈〈B2〉〉 holds if

• S |= {x3 ≈ x2, xyxyx ≈ xyx, x2y2 ≈ y2x2},
• S 6|= xy2x ≈ xyx.

Condition A23 (Proposition 5.30). The equality 〈〈S〉〉 = 〈〈ℓbar3 〉〉 holds if

• S |= {x2y ≈ xy, xyz ≈ yxyz},
• S 6|= xyzx ≈ yxzx.

7.2. Conditions sufficient for non-join irreducibility. The following
conditions and their dual conditions are sufficient for a finite semigroup S
to generate a pseudovariety that is not ji.

Condition B1 (Corollary 6.2). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈Z3,Z4,Zbar

2 , (Zbar
2 )op, N I

3 〉〉 if

• S |=





x15 ≈ x3, x14hx ≈ x2hx, x13hx2 ≈ xhx2, x13hxtx ≈ xhxtx,
x3hx ≈ xhx3, xhx2tx ≈ x3htx, xhx2y2ty ≈ xhy2x2ty,
xhykxytxdy ≈ xhykyxtxdy, xhykxytydx ≈ xhykyxtydx



,
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• S 6|= x3 ≈ x, S 6|= xy ≈ yx.

Condition B2 (Corollary 6.3). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈Z3,Z4,Zbar

2 , (Zbar
2 )op, N I

3 〉〉 if

• S |=





x15 ≈ x3, x14hx ≈ x2hx, x13hx2 ≈ xhx2, x13hxtx ≈ xhxtx,
x3hx ≈ xhx3, xhx2tx ≈ x3htx, xhx2y2ty ≈ xhy2x2ty,
xhykxytxdy ≈ xhykyxtxdy, xhykxytydx ≈ xhykyxtydx



,

• S 6|= xy ≈ yx, S 6|= xyx2 ≈ xy, S 6|= x2yx ≈ yx.

Condition B3 (Corollary 6.4). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈Z3,Z4,Zbar

2 , (Zbar
2 )op, N I

3 〉〉 if

• S |=





x15 ≈ x3, x14hx ≈ x2hx, x13hx2 ≈ xhx2, x13hxtx ≈ xhxtx,
x3hx ≈ xhx3, xhx2tx ≈ x3htx, xhx2y2ty ≈ xhy2x2ty,
xhykxytxdy ≈ xhykyxtxdy, xhykxytydx ≈ xhykyxtydx



,

• S 6|= x4 ≈ x3, S 6|= x4y ≈ y, S 6|= x3y ≈ y, S 6|= xyx2 ≈ xy,
S 6|= x2yx ≈ yx.

Condition B4 (Corollary 6.10). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈Z6, N

I
5 , L

I
2, R

I
2, A

I
0〉〉 if

• S |= {x11 ≈ x5, x10yx ≈ x4yx, x2yx ≈ xyx2, xyxzx ≈ x2yzx},
• S 6|= x2 ≈ x, S 6|= xyxy ≈ yxyx.

Condition B5 (Corollary 6.11). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈Z6, N

I
5 , L

I
2, R

I
2, A

I
0〉〉 if

• S |= {x11 ≈ x5, x10yx ≈ x4yx, x2yx ≈ xyx2, xyxzx ≈ x2yzx},
• S 6|= x6 ≈ x5, S 6|= x6y ≈ y.

Condition B6 (Corollary 6.13). A pseudovariety 〈〈S〉〉 is a non-ji pseudo-
variety of nilpotent semigroups if

• S |= x6 ≈ y1y2y3y4y5y6,
• S 6|= xy ≈ yx.

Condition B7 (Corollary 6.15). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈N4, N

I
2 〉〉 if

• S |= {xy ≈ yx, x3y1y2 ≈ x2y1y2},
• S 6|= x3 ≈ x2, S 6|= x2y ≈ xy2.

Condition B8 (Corollary 6.16). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈N5, N

I
1 〉〉 if

• S |= {xy ≈ yx, x2yz ≈ xy2z, x2y1y2y3y4 ≈ xy1y2y3y4},
• S 6|= x2 ≈ x, S 6|= x5 ≈ y5.

Condition B9 (Corollary 6.20). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈N I

5 , N
bar
2 〉〉 if

• S |= {x6 ≈ x5, x5yx ≈ x4yx, xyzt ≈ yxzt},
• S 6|= xy ≈ yx, S 6|= xyz ≈ yz.

Condition B10 (Corollary 6.22). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈N I

2 , (L
bar
2 )op〉〉 if

• S |= {x3 ≈ x2, x2yx2 ≈ xyx, xhytxy ≈ x2hyty, xhytyx ≈ xhy2tx},
• S 6|= x2 ≈ x, S 6|= xy ≈ yx.
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Condition B11 (Corollary 6.24). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈LI

2, ℓ3, ℓ
op
3 〉〉 if

• S |= {x3 ≈ x2, xyx ≈ x2y2, xy2z ≈ xyz},
• S 6|= x2y ≈ xy, S 6|= xy2 ≈ xy.

Condition B12 (Corollary 6.26). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈A0, ℓ

I
3, (ℓ

op
3 )I〉〉 if

• S |=

{
x3 ≈ x2, x2yx2 ≈ xyx, xyxy ≈ yxyx,
xyxzx ≈ xyzx, xy2z2x ≈ xz2y2x

}
,

• S 6|= xyx ≈ yxy, S 6|= xyx ≈ x2y, S 6|= xyx ≈ yx2.

Condition B13 (Corollary 6.31). A pseudovariety 〈〈S〉〉 is a non-ji subpseu-
dovariety of 〈〈(Nbar

2 )I , Lbar
2 〉〉 if

• S |= {x3 ≈ x2, xyx ≈ y2x},
• S 6|= x2 ≈ x, S 6|= xyx2 ≈ yx2.
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