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Explicit solutions of certain orientable quadratic equations in free

groups

D. Gonçalves∗, T. Nasybullov†

Abstract

For g ≥ 1 denote by F2g = 〈x1, y1, . . . , xg, yg〉 the free group on 2g generators and
let Bg = [x1, y1] . . . [xg, yg]. For l, c ≥ 1 and elements w1, . . . , wl ∈ F2g we study orientable
quadratic equations of the form [u1, v1] . . . [uh, vh] = (Bw1

g )c(Bw2

g )c . . . (Bwl

g )c with unknowns
u1, v1, . . . , uh, vh and provide explicit solutions for them for the minimal possible number h.

In the particular case when g = 1, wi = yi−1

1 for i = 1, . . . , l and h the minimal number
which satisfies h ≥ l(c − 1)/2 + 1 we provide two types of solutions depending on the
image of the subgroup H = 〈u1, v1, . . . , uh, vh〉 generated by the solution under the natural
homomorphism p : F2 → F2/[F2, F2]: the first solution, which is called a primitive solution,
satisfies p(H) = F2/[F2, F2], the second solution satisfies p(H) =

〈

p(x1), p(y
l
1)
〉

.

We also provide an explicit solution of the equation [u1, v1] . . . [uk, vk] =
(

B1

)k+l(

B1
y
)k−l

for k > l ≥ 0 in F2, and prove that if l 6= 0, then every solution of this equation is primitive.

As a geometrical consequence, for every solution we obtain a map f : Sh → T from the
orientable surface Sh of genus h to the torus T = S1 which has the minimal number of roots
among all maps from the homotopy class of f . Depending on the number |p(F2) : p(H)|
such maps have fundamentally different geometric properties: in some cases they satisfy the
Wecken property and in other cases not.

Keywords: Orientable quadratic equation, free group, Nielsen root number, Wecken property.

1 Introduction and preliminaries

Let G be a group and S be a symmetric subset of G, i. e. a subset such that 1 /∈ S and S = S−1.
For an element a from 〈S〉 denote by lS(a) the minimal number k such that a is a product of k
elements from S. The number lS(a) is called the length of a with respect to S. The numbers
lS(a) and especially the value sup

(

lS(a) | a ∈ 〈S〉
)

for different sets S in different groups G has
been studied by various authors (see, for example, [22] and references therein).

If S is the set of all nontrivial commutators in G, then lS(a) is called the commutator
length (or the genus) of an element a ∈ [G,G]. The problem of determining the commutator
length of an element a ∈ [G,G] corresponds to the problem of finding the minimal h for which
the equation

[u1, v1] . . . [uh, vh] = a (1)

with unknowns u1, v1, . . . , uh, vh admits a solution in G. Such equation is called an orientable
quadratic equation. The word “quadratic” means that every variable in the left side of the
equation appears exactly twice. The word “orientable” means that every unknown variable x
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Projeto Temático Topologia Algébrica, Geométrica 2016/24707-4.
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appears once in the form x and once in the form x−1. If there exists a variable x in a quadratic
equation which appears twice with exponent 1, then this equation is called non-orientable.

The problem of finding a solution of equation (1) in the free group is closely related with
coincidence theory of maps between orientable surfaces, which includes the case of the study of
roots. See, for example, [8, Fundamental Lemma 1.2] and [3, 5, 12].

Many works concerning the problem of finding solutions of quadratic equations and es-
pecially of equation (1) in different groups have been done from both algebraic and geomet-
ric points of view. For many years great attention was paid to equations in free groups
[3, 5, 7, 8, 12–15, 17–20, 23–25]. The particular case of equation (1) when h = 1 was studied
in [25] (see also [11]). For a given quadratic equation with any number of unknown variables
in any free group with the right-hand side an arbitrary element an algorithm for solving the
problem of the existence of a solution was given by Culler [7] using the surface method and gen-
eralizing the result of Wicks [25]. Based on different techniques, the problem has been studied
by the first named author with coauthors [9–11] for parametric families of quadratic equations
arising from continuous maps between closed surfaces.

The question about the existence of a solution of equation (1) can be solved in many cases.
However, the majority of results are either about non-existence of a solution, or about existence
only and they do not provide an algorithm how to find an explicit solution. The following result
from [12, Proposition 4.2] gives one simple necessary condition for solvability of equation (1)
with the right-hand side of the special form motivated by geometry.

Proposition 1.1. Let w1, . . . , wl be distinct elements of the free group F2g = 〈x1, y1, . . . , xg, yg〉
and let c1, . . . , cl be integers which are all positive or all negative. Denote by Bg =
[x1, y1] . . . [xg, yg]. If the equation

[u1, v1] . . . [uh, vh] =
(

Bw1

g

)c1
(

Bw2

g

)c2
. . .

(

Bwl
g

)cl
(2)

with unknowns u1, v1, . . . , uh, vh is solvable in F2g, then (|c1|+ · · ·+ |cl|)(2g − 1) ≤ 2h− 2 + l.

Here and throughout the paper for elements a, b we denote by ab = bab−1 the conjugate of a by
b, and by [a, b] = aba−1b−1 the commutator of elements a, b.

Orientable quadratic equations with the right-hand side as in (2) (not necessary for c1, . . . , cl
all positive or all negative) are of special interest in geometry. If f : Sh → Sg is a continuous map
between orientable surfaces, then it induces a map f# : π1(Sh) → π1(Sg) between fundamental
groups. Denoting by π1(Sh) = 〈x1, y1, . . . , xh, yh | [x1, y1] . . . [xh, yh] = 1〉 and f#(xi) = ui,
f#(yi) = vi we must have [u1, v1] . . . [uh, vh] = 1 in π1(Sg), i. e. [u1, v1] . . . [uh, vh] must be ex-
pressible as a right-side of (2). So, there is a strong connection between maps between orientable
surfaces and orientable quadratic equations with the right hand side as in (2).

Note that the result of Proposition 1.1 says that if (|c1|+ · · ·+ |cl|)(2g−1) > 2h−2+ l, then
equation (2) does not have a solution independently of elements w1, ..., wl. However there is no
guarantee that a solution exists for (|c1|+ · · ·+ |cl|)(2g−1) ≤ 2h−2+ l. Moreover a solution can
exist for some elements w1, . . . , wl but not for others. For example, if g = 1, l = 2, c1 = c2 = 1,

then h = 1. Using Wicks criterion [25] it is easy to show that the equation [u, v] = B1B
y2
1

1 has no
solutions in F2 = 〈x1, y1〉. However, the equation [u, v] = B1B

y1
1 has a solution u = x1, v = y21.

So, it is reasonable to ask for which integers c1, . . . , cl and elements w1, . . . , wl equation (2) has
a solution, and when it has, provide this solution. Not much is known about this problem.

In the present work we consider equation (2) in the free group F2g with right parts of special
forms and our goal is to provide explicit solutions for them. In turn, for g = 1 this will provide
existence of maps from the orientable surface of genus h into the torus which have some features
about root theory. For some cases we will find two types of solutions depending on the index of
the image of the subgroup H = 〈u1, v1, . . . , uh, vh〉 generated by the solution under the natural
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homomorphism p : F2g → π1(Sg) = F2g/〈Bg〉
F2g in π1(Sg). In order to explain the importance

of the value |π1(Sg) : p(H)| let us recall some facts from Nielsen root theory.
Let f : M1 → M2 be a continuous map between closed manifolds M1, M2 and let c ∈ M2.

Every element from f−1(c) is called a root. The minimal number of roots in the homotopy
class of a map f is the number MR[f ] = ming≃f

(

|g−1(c)|
)

, where ≃ denotes the homotopy
equivalence. This number does not depend on c. Two roots x, y ∈ M1 are said to belong to
the same Nielsen root class if there exists a path γ in M1 connecting x, y such that f(γ) is
contractible. For a map f between two manifolds of the same dimension an index for a Nielsen
root class is defined in [16]. A Nielsen root class is called essential if its index is not equal to
zero. The indices of all essential Nielsen root classes coincide. The Nielsen root number NR[f ]
is the number of essential Nielsen root classes, this number is always finite and it satisfies the
inequality NR[f ] ≤ MR[f ]. If NR[f ] = MR[f ], then f is said to possess the Wecken property.
The map f induces the map f# : π1(M1) → π1(M2) between fundamental groups. Denote by
l(f) = |π1(M2) : f#(π1(M1))| if |π1(M2) : f#(π1(M1))| is finite, and l(f) = 0 otherwise. If
M1 = Sh, M2 = Sg are closed orientable surfaces of genus h, g respectively, then the map f
induces a homomorphism beween second homology groups Z = H2(Sh) → H2(Sg) = Z. This
map acts as a multiplication by some number n. This number is called the degree of f and is
denoted by deg(f). The absolute value |deg(f)| is denoted by A(f). In [3, Theorem 1.1] it is
proved that, if A(f) 6= 0, then

MR[f ] = max
(

l(f), χ(M1) + (1− χ(M2))A(f)
)

NR[f ] = l(f), (3)

where χ denotes the Euler characteristic of the surface.
If u1, v1, . . . , uh, vh is some solution of equation (2), then one can construct a continuous

map f : Sh → Sg which satisfies the following conditions: deg(f) = c1+ · · ·+ cl, |f
−1(y)| = l for

some point y ∈ Sg, the index of every Nielsen root class of f is equal to ci1 + · · ·+ cik for some
indices i1, . . . , ik and if π1(Sh) = 〈x1, y1, . . . , xh, yh | [x1, y1] . . . [xh, yh] = 1〉, then f#(xi) = ui,
f#(yi) = vi. If deg(f) = 0, then NR[f ] = 0 and |p(F2g) : p(H)| can be either finite or infinite. If
deg(f) 6= 0, then |p(F2g) : p(H)| is finite and NR[f ] = |p(F2g) : p(H)|, where p : F2g → π1(Sg)
is a natural homomorphism and H = 〈u1, v1, . . . , uh, vh〉. See details about the construction of
f in [12, Proposition 4.2], here we are going to use only the properties of the constructed map.

The following result gives some information about the index of p(H) in π1(Sg).

Proposition 1.2. Let p : F2g → π1(Sg) be the homomorphism which sends the free generators
of F2g to the canonical system of generators of the fundamental group π1(Sg) of an orientable
surface Sg of genus g. If u1, v1, . . . , uh, vh is a solution of equation (2) with c1+ c2+ ...+ cl 6= 0,
then the index of p

(

〈u1, v1, . . . , uh, vh〉
)

in π1(Sg) is less than or equal to l.

Proof. Let f : Sh → Sg be the described before the proposition map constructed by the solution
u1, v1, . . . , uh, vh. For some point y ∈ Sg the number of elements in the preimage of y under f
is l, therefore MR[f ] ≤ l. Since deg(f) = c1 + · · ·+ cl 6= 0, we have |p(F2g) : p(H)| = NR[f ] ≤
MR[f ] ≤ l. �

In the present paper we will find explicit solutions for particular cases of equation (2) which
are in some sense “critical” from the point of view of Proposition 1.2: the first solution which
is called a primitive solution satisfies the equality p(H) = π1(Sg) (the word “primitive” appears
here naturally from the notion of primitives in free groups [21]), and the second solution satisfies
|π1(Sg) : p(H)| = l.

In Section 2 we study the equation (2) for c1 = c2 = · · · = cl = c and prove that if for
c = 1 this equation has a solution which generates a subgroup H1 of F2g, then for every c it has
a solution which generates a subgroup H2 such that p(H1) = p(H2) (Theorem 2.2). In Section 3
we consider the particular case of this equation in the free group F2 = 〈x, y〉 with the right part
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of the form
(

[x, y]
)c(

[x, y]y
)c

. . .
(

[x, y]y
l−1)c

for integers c, l ≥ 1. We provide an explicit algebraic
algorithm for finding the solution in a minimal subgroup (Corollary 3.2), and an algorithm for
finding a primitive solution (Theorem 3.5) for such equation. In Section 4 we consider equation

(2) in the free group F2 = 〈x, y〉 with the right part of the form
(

[x, y]
)k+l(

[x, y]y
)k−l

for integers
k > l ≥ 0. We construct an explicit primitive solution for such equation (formulas (16), (19)) and
prove that for l 6= 0 every solution of such equation is primitive (Theorem 4.1). Some geometrical
consequences derived from this algebraic results are formulated in Corollaries 3.3, 3.8.

Acknowledment: The first author would like to thank Prof. Richard Weidmann for many
helpful discussions about the subject of the content of this work.

2 The right part has the form
(

Bw1

g

)c(

Bw2

g

)c

. . .
(

Bwl
g

)c

The purpose of this section is to give an explicit solution for equation (2) in the particular case
when c1 = c2 = · · · = cl = c

[u1, v1] . . . [uh, vh] =
(

Bw1

g

)c(

Bg
w2

)c

. . .
(

Bg
wl

)c

(4)

for the minimal integer h which satisfies the inequality h ≥ l(c(2g − 1) − 1)/2 + 1. We can
assume that c > 0 since if c < 0, then denoting by x′i = yg+1−i, y

′
i = xg+1−i for i = 1, . . . , g we

have F2g = 〈x′1, y
′
1, . . . , x

′
g, y

′
g〉, and in these generators equation (4) has the same form where c

is changed by −c. In the case when h < l(c(2g − 1)− 1)/2 + 1 by Proposition 1.1 equation (4)
does not have solutions.

At first, we need the following simple lemma.

Lemma 2.1. The word w = aξ1bξ2c is a product of the commutator [aξ1a
−1, aba−1] and the

element abξ1ξ2c.

Proof. Straightforward calculation. �

The main result of this section is the following theorem.

Theorem 2.2. Let l, c, g ≥ 1 be integers, h be the minimal integer which satisfies the inequality
h ≥ l

(

c(2g− 1)− 1
)

/2+1, w1, . . . , wl be elements of the free group F2g = 〈x1, y1, . . . , xg, yg〉 and
Bg = [x1, y1] . . . [xg, yg]. If for c = 1 the equation

[u1, v1] . . . [uh, vh] =
(

Bw1

g

)c(

Bw2

g

)c

. . .
(

Bwl
g

)c

(5)

has a solution which generates the subgroup H1 of F2g, then for an arbitrary c ≥ 1 it has a
solution (explicitly constructed from the given solution for c = 1) which generates the subgroup
H2 of F2g such that if p : F2g → π1(Sg) is the natural homomorphism, then p(H1) = p(H2).

Proof. We will construct the solution inductively on the variable c. The basis of induction
c = 1 is given as the condition of the theorem. Suppose that the statement is proved for c = n
and let us prove that it holds for c = n+1. We will consider two cases depending on the parity
of l.

Case 1: l is even. Rewrite the right-hand side of equation (5) for c = n+1 in the following
form.

(

Bw1

g

)n+1(
Bw2

g

)n+1
. . .

(

Bwl
g

)n+1
=

(

Bw1

g

)

(

(

Bw1

g

)n(
Bw2

g

)n
. . .

(

Bwl
g

)n
)

(

Bw1

g

)−1

·
(

Bw1

g

)(

Bwl
g

)−n(
B

wl−1
g

)−n
. . .

(

Bw2

g

)−n

·
(

Bw2

g

)n+1(
Bw3

g

)n+1
. . .

(

Bwl
g

)n+1
(6)

4



By the induction hypothesis there exist u1, v1, . . . , uh, vh for h = l
(

n(2g−1)−1
)

/2+1 such
that [u1, v1] . . . [uh, vh] =

(

Bw1
g

)n(
Bw2

g

)n
. . .

(

Bwl
g

)n
and p

(

〈u1, v1, . . . , uh, vh〉
)

= p(H1). So, it is
enough to prove that the product of two last lines of equation (6)

(

Bw1

g

)(

Bwl
g

)−n(
B

wl−1
g

)−n
. . .

(

Bw3

g

)−n(
Bw2

g

)(

Bw3

g

)n+1
. . .

(

Bwl
g

)n+1
(7)

is the product of l
(

(n+1)(2g−1)−1
)

/2+1− l
(

n(2g−1)−1
)

/2−1 = l(2g−1)/2 commutators
of elements images of which under p belong to p(H1). In equation (7) denoting by a = Bw1

g ,

ξ1 =
(

Bwl
g

)−n(
B

wl−1
g

)−n
, b =

(

B
wl−2
g

)−n
. . .

(

Bw3
g

)−n(
Bw2

g

)(

Bw3
g

)n+1
. . .

(

B
wl−2
g

)n+1(
B

wl−1
g

)

,

ξ2 =
(

B
wl−1
g

)n(
Bwl

g

)n
, c =

(

Bwl
g

)

and applying Lemma 2.1 we conclude that expression (7)
is a product of the commutator of elements which belong to the kernel of p times the element

(

Bw1

g

)(

B
wl−2
g

)−n(
B

wl−3
g

)−n
. . .

(

Bw3

g

)−n(
Bw2

g

)(

Bw3

g

)n+1
. . .

(

B
wl−2
g

)n+1(
B

wl−1
g

)(

Bwl
g

)

.

Repeating this idea denoting by ξ1 =
(

B
wl−2
g

)−n(
B

wl−3
g

)−n
, ξ2 =

(

B
wl−3
g

)n(
B

wl−2
g

)n
, we conclude

that expression (7) is a product of two commutators of elements which belong to the kernel of
p times the element

(

Bw1

g

)(

B
wl−4
g

)−n(
B

wl−5
g

)−n
. . .

(

Bw3

g

)−n(
Bw2

g

)(

Bw3

g

)n+1
. . .

(

B
wl−4
g

)n+1(
B

wl−3
g

)

. . .
(

Bwl
g

)

.

Repeating this procedure (l−2)/2 times we conclude that expression (7) is the product of (l−2)/2
commutators of elements which belong to the kernel of p times the element Bw1

g Bw2
g . . . Bwl

g

which (by the induction hypothesis for c = 1) is the product of l(g − 1) + 1 commutators of
elements images of which under p belong to p(H1). Therefore expression (7) is the product of
(l − 2)/2 + l(g − 1) + 1 = l(2g − 1)/2 commutators of elements images of which under p belong
to p(H1).

Case 2: l is odd. Rewrite the right-hand side of equation (5) for c = n+1 in the following
form.
(

Bw1

g

)n+1(
Bg

w2
)n+1

. . .
(

Bwl
g

)n+1
=

=
(

(

Bw1

g

)(

Bg
w2
)

. . .
(

Bwl
g

)

)

·
(

(

Bw2

g

)(

Bg
w3
)

. . .
(

Bwl
g

)

)−1(
(

Bw1

g

)(

Bg
w2
)

. . .
(

Bwl
g

)

)(

(

Bw2

g

)(

Bg
w3
)

. . .
(

Bwl
g

)

)

·
(

(

Bw2

g

)(

Bg
w3
)

. . .
(

Bwl
g

)

)−2(
(

Bw1

g

)n−1(
Bg

w2
)n−1

. . .
(

Bwl
g

)n−1
)(

(

Bw2

g

)(

Bg
w3
)

. . .
(

Bwl
g

)

)2

·
(

Bg
wl
)−1

. . .
(

Bg
w2
)−1(

Bg
wl
)−1

. . .
(

Bg
w2
)−1

·
(

Bg
wl
)−n+1

. . .
(

Bg
w3
)−n+1(

Bg
w2
)2(

Bg
w3
)n+1

. . .
(

Bg
wl
)n+1

(8)

At first, we consider the particular case n+ 1 = 2. In this case equality (8) implies
(

Bw1

g

)2(
Bg

w2
)2

. . .
(

Bwl
g

)2
=

=
(

(

Bw1

g

)(

Bg
w2
)

. . .
(

Bwl
g

)

)

·
(

(

Bw2

g

)(

Bg
w3
)

. . .
(

Bwl
g

)

)−1(
(

Bw1

g

)(

Bg
w2
)

. . .
(

Bwl
g

)

)(

(

Bw2

g

)(

Bg
w3
)

. . .
(

Bwl
g

)

)

·
(

Bg
wl
)−1

. . .
(

Bg
w2
)−1(

Bg
wl
)−1

. . .
(

Bg
w2
)−1

·
(

Bg
w2
)2(

Bg
w3
)2

. . .
(

Bg
wl
)2

(9)

So, if n + 1 = 2, then since by induction hypothesis for c = 1 the product of the first two lines
of equation (9) is a product of 2l(g− 1)+2 commutators, it is enough to prove that the product
of two last lines in (9)

(

Bg
wl
)−1

. . .
(

Bg
w2
)−1(

Bg
wl
)−1

. . .
(

Bg
w3
)−1(

Bg
w2
)(

Bg
w3
)2

. . .
(

Bg
wl
)2

(10)
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is a product of ⌈l
(

2(2g − 1) − 1
)

/2⌉ + 1 − 2l(g − 1) − 2 = (l − 1)/2 commutators. Similarly to

the first case (when l is even) applying Lemma 2.1 to expression (10) for ξ1 =
(

Bw3
)−1(

Bw2
)−1

,
ξ2 =

(

Bw2
)(

Bw3
)

we conclude that (10) is a product of a commutator of elements which belong
to 〈Bg〉

F2g times the same expression without elements Bw2 , Bw3

(

Bg
wl
)−1

. . .
(

Bg
w4
)−1(

Bg
wl
)−1

. . .
(

Bg
w5
)−1(

Bg
w4
)(

Bg
w5
)2

. . .
(

Bg
wl
)2
.

Repeating this procedure (l − 1)/2 times we conclude that expression (10) is a product of
(l − 1)/2 commutators of elements which belong to the kernel of p, i. e. the case n + 1 = 2 is
proved.

For the general case n > 1 by the induction hypothesis for c = 1 the product of the first two
lines of (8) is the product of 2l(g−1)+2 commutators, by the induction hypothesis for c = n−1
the third line of (8) is the product of ⌈l

(

(n − 1)(2g − 1) − 1
)

/2 + 1⌉ commutators of elements
such that their images under p generate H1 (the case n + 1 = 2 was necessary for making this
inductive step). So, it is enough to prove that the product of two last lines in expression (8)

(

Bg
wl
)−1

. . .
(

Bg
w2
)−1(

Bg
wl
)−1

. . .
(

Bg
w2
)−1

·

·
(

Bg
wl
)−n+1

. . .
(

Bg
w3
)−n+1(

Bg
w2
)2(

Bg
w3
)n+1

. . .
(

Bg
wl
)n+1

(11)

is a product of ⌈l
(

(n+1)(2g−1)−1
)

/2+1⌉−⌈l
(

(n−1)(2g−1)−1
)

/2+1⌉−2l(g−1)−2 = l−2
commutators of elements images of which under p belong to p(H1).

If we apply Lemma 2.1 twice to expression (11) for ξ1 =
(

Bw3
g

)−1(
Bw2

g

)−1
, ξ2 =

(

Bw2
g

)(

Bw3
g

)

, then we conclude that expression (11) is a product of two commutators (of el-
ements which belong to the kernel of p) times expression (11) without elements

(

Bw2
g

)

,
(

Bw3
g

)

.
If we repeat this procedure (l − 3)/2 times, we conclude that expression (11) is a product of
2(l − 3)/2 = l − 3 commutators times the expression

(

Bwl
g

)−1(
B

wl−1
g

)−1(
Bwl

g

)−1(
B

wl−1
g

)−1(
Bwl

g

)−n+1(
B

wl−1
g

)2(
Bwl

g

)n+1

which is equal to the commutator
(

Bwl
g

)−1
[

(

B
wl−1
g

)−1(
Bwl

g

)n−1
,
(

Bwl
g

)−n(
B

wl−1
g

)−1
]

(

Bwl
g

)

, i. e.

expression (11) is a product of l − 2 commutators. �

Remark 2.3. We can suppose that if u1, v1, . . . , uh, vh is a solution of equation (5) constructed
in the proof of Theorem 2.2 for an arbitrary c, then u1, v1, . . . , ul(g−1)+1, vl(g−1)+1 is the solution
of equation (5) for c = 1.

Remark 2.4. In particular case when g = 1, l = 1, w1 = 1, c = 2h − 1 the explicit solution of
equation (5) is given in [12, Proposition 4.6].

The following result, which is a consequence of the remark above, is a corollary of Theo-
rem 2.2.

Corollary 2.5. Let G be a group, a, b ∈ G, and n be an integer. Then [a, b]n can be expressed
as the product of at most ⌈(n+ 1)/2⌉ commutators.

Proof. The equation [u, v] = [x, y] has a solution u = x, v = y in F2 = 〈x, y〉. Therefore the
equation [u1, v1] . . . [uh, vh] = [x, y]n has a solution in F2 = 〈x, y〉 for h = ⌈(n+1)/2⌉. Acting on
the equality [u1, v1] . . . [uh, vh] = [x, y]n by the homomorphism ϕ : F2 → G which is induced by
ϕ(x) = a, ϕ(y) = b we get the result. �
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3 The right part has the form
(

[x, y]
)c(

[x, y]y
)c

. . .

(

[x, y]y
l−1
)c

In this section we will consider a particular case of equation (5) in F2 = 〈x, y〉. In this case
p : F2 → π1(S1) = F2/[F2, F2] is the abelianization map. Denote by B = B1 = [x, y]. The
following statement gives a stronger version of Proposition 1.2 for c = g = h = 1.

Proposition 3.1. Let w1, . . . , wl be l distinct elements from F2. If u, v is a solution of the
equation

[u, v] = Bw1 . . . Bwl ,

and p : F2 → F2/[F2, F2] is the natural homomorphism, then |p(F2) : p
(

〈u, v〉
)

| = l.

Proof. By the solution u, v we can construct a map f : T → T such that deg(f) = l 6= 0. Since
deg(f) 6= 0, we have NR[f ] = |p(F2) : p

(

〈u, v〉
)

|. From the other side, since f is a map from
torus to torus, NR[f ] = |deg(f)|. This follows promptly from the main result in [6] once one
can identify the roots of f with the fixed points of the map g given by g(x) = f(x)x, using the
multiplication of the torus. �

The purpose of this section is to give explicit solutions for the particular case of equation (5)

[u1, v1] . . . [uh, vh] =
(

[x, y]
)c(

[x, y]y
)c

. . .
(

[x, y]y
l−1

)c

(12)

in F2 = 〈x, y〉 for the minimal integer h which satisfies the inequality h ≥ l(c − 1)/2 + 1. If
h < l(c− 1)/2 + 1, then by Proposition 1.1 equation (12) does not have solutions.

In contrast to Proposition 3.1, for c > 1 (and therefore h > 1) the index |p(F2) : p(H)|,
where H = 〈u1, v1, . . . , uh, vh〉, can be different. By Proposition 1.2 this index is at most l. We
are going to introduce two types of solution of equation (12): the first solution has the maximal
possible index |p(F2) : p(H)| = l, and the second solution is primitive, i. e. it has a minimal
possible index |p(F2) : p(H)| = 1.

Since for c = 1 equation (12) has a solution u = x, v = yl, the case |p(F2) : p(H)| = l is
easy and it follows from Theorem 2.2 in the following way.

Corollary 3.2. Let c, l ≥ 1 be integers and h be the minimal number which satisfies the inequality
h ≥ l(c− 1)/2 + 1. Then the equation

[u1, v1] . . . [uh, vh] =
(

[x, y]
)c(

[x, y]y
)c

. . .
(

[x, y]y
l−1

)c

with unknowns u1, v1, . . . , uh, vh has an explicit solution in F2 given by recurrence in c which

satisfies the equality p
(

〈

u1, v1, . . . , uh, vh
〉

)

=
〈

p(x), p(yl)
〉

, where p : F2 → F2/[F2, F2] is the

natural homomorphism.

Using equality (3) and construction of the map f (obtained from the solution) described
in Section 1 and in details in [12, Proposition 4.2] we have the following corollary.

Corollary 3.3. Let c > 1, l ≥ 1 be integers and h be a minimal number which satisfies the
inequality h ≥ l(c− 1)/2 + 1. Then there exists a map f : Sh → T with A(f) = lc, MR[f ] = l,
NR[f ] = l and each Nielsen root class has index c. So, the Wecken property holds for f .

Now we are going to construct an explicit primitive solution of equation (12). Results [2,4]
about primitive branching coverings give some evidence that such solutions might exist. At first,
we consider one simple particular case when l = 2, c = 2.

7



Lemma 3.4. The equation

[u1, v1][u2, v2] = [x, y]2([x, y]y)2

has as solution u1 = x, v1 = y3, u2 = y3xy−2x−1y−1xy2x−1y−3, v2 = y2x2y2x−1y−3 which is
primitive.

Proof. Straightforward calculation. �

The general case follows.

Theorem 3.5. Let c > 1, l ≥ 1 be integers and h be a minimal number which satisfies the
inequality h ≥ l(c− 1)/2 + 1. Then the equation

[u1, v1] . . . [uh, vh] =
(

[x, y]
)c(

[x, y]y
)c

. . .
(

[x, y]y
l−1

)c

with unknowns u1, v1, . . . , uh, vh has an explicit primitive solution in F2 given by recurrence in l.

Proof. We will use induction on l. For the basis of induction we consider two cases l = 1
and l = 2. The result for l = 1 follows from Corollary 3.2. If l = 2, then h = c. For c = 2
the result follows from Lemma 3.4. Suppose that we found a solution u1, v1, . . . , uh, vh for an
integer c such that u1, v1, u2, v2 is the solution for c = 2. Denoting by uh+1 =

(

By
)−c

x
(

By
)c
,

vh+1 =
(

By
)−c

y2
(

By
)c

we have [uh+1, vh+1] =
(

By
)−c

[x, y2]
(

By
)c

and therefore

[u1, v1] . . . [uh+1, vh+1] =
(

B
)c(

By
)c(

By
)−c

[x, y2]
(

By
)c

=
(

B
)c+1(

By
)c+1

.

This solution is obviously primitive since p(u1), p(v1), p(u2), p(v2) generate F2/[F2, F2]. The
basis is proved. For the induction step we consider two similar cases depending on the parity
of l.

Case 1: l = 2n is even. In this case h = n(c − 1) + 1. We will construct a primitive
solution which satisfies the condition u1 = x, v1 = yl+1. If l = 2, then the statement follows
from the basis of induction. By the induction hypothesis we have a primitive solution a1 = x,
b1 = yl+1, a2, b2, . . . , ah1

, bh1
of equation (12) for l = 2n, h1 = n(c − 1) + 1. Also by induction

hypothesis we have a primitive solution r1 = x, s1 = y2, r2, s2, . . . , rh2
, vh2

of equation (12) for
l = 2, h2 = c. If we denote by

u1 = x

v1 = y2n+3

uj =
(

By2n+2)−1(
By2n+1)−1

aj
(

By2n+1)(

By2n+2)

j = 2, . . . , h1

vj =
(

By2n+2)−1(
By2n+1)−1

bj
(

By2n+1)(

By2n+2)

j = 2, . . . , h1

uh1+j = y2n+1rj+1y
−(2n+1) j = 1, . . . , h2 − 1

vh1+j = y2n+1sj+1y
−(2n+1) j = 1, . . . , h2 − 1 (13)

and by h = h1 + h2 − 1 = n(c− 1) + 1 + c− 1 = (n+ 1)(c − 1) + 1, then we have

[u1, v1] . . . [uh, vh] =
(

[x, y2n+3]
(

By2n+2)−1(
By2n+1)−1

[a2, b2] . . . [ah1
, bh1

]
)

·
(

(

By2n+1)(

By2n+2)

y2n+1[r2, s2] . . . [rh2
, sh2

]y−(2n+1)
)

=
(

[x, y2n+1][a2, b2] . . . [ah1
, bh1

]
)(

y2n+1BBy[r2, s2] . . . [rh2
, sh2

]y−(2n+1)
)

=
(

(

B
)c(

By
)c

. . .
(

By2n
)c
)(

y2n+1
(

B
)c(

By
)c
y−(2n+1)

)

=
(

B
)c(

By
)c

. . .
(

By2n+2)c
.
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and the statement is proved for l = 2n+ 2. The solution provided in (13) is primitive since the

subgroup p
(

〈

u1, v1, . . . , uh, vh
〉

)

contains p(u1) = p(x) and p(uh1+1) = p(r2) = p(y)−1.

Case 2: l = 2n − 1 is odd. In this case h = ⌈(2n − 1)(c − 1)/2 + 1⌉. Similarly to the first
case, we will show that there exists a primitive solution such that u1 = x, v1 = yl. For l = 1 the
result follows from Corollary 3.2 and Remark 2.3. By induction hypothesis we can suppose that
we have a primitive solution a1 = x, b1 = yl, a2, b2, . . . , ah1

, bh1
of equation (12) for l = 2n − 1

and h1 = ⌈(2n − 1)(c− 1)/2 + 1⌉. Also by induction hypothesis we can suppose that we have a
solution r1 = x, s1 = y2, r2, s2, . . . , rh2

, vh2
of equation (12) for l = 2 and h2 = c. If we denote

by

u1 = x

v1 = y2n+1

uj =
(

By2n
)−1(

By2n−1)−1
aj
(

By2n−1)(

By2n
)

j = 2, . . . , h1

vj =
(

By2n
)−1(

By2n−1)−1
bj
(

By2n−1)(

By2n
)

j = 2, . . . , h1

uh1+j = y2n−1rj+1y
1−2n j = 1, . . . , h2 − 1

vh1+j = y2n−1sj+1y
1−2n j = 1, . . . , h2 − 1 (14)

and by h = h1 +h2− 1 = ⌈(2n− 1)(c− 1)/2+1⌉+ c− 1 = ⌈(2n+1)(c− 1)/2+1⌉, then we have

[u1, v1] . . . [uh, vh] =
(

[x, y2n+1]
(

By2n
)−1(

By2n−1)−1
[a2, b2] . . . [ah1

, bh1
]
)

·
(

(

By2n−1)(

By2n
)

y2n−1[r2, s2] . . . [rh2
, sh2

]y1−2n
)

=
(

[x, y2n−1][a2, b2] . . . [ah1
, bh1

]
)(

y2n−1BBy[r2, s2] . . . [rh2
, sh2

]y1−2n
)

=
(

(

B
)c(

By
)c

. . .
(

By2n−2)c
)(

y2n−1
(

B
)c(

By
)c
y1−2n

)

=
(

B
)c(

By
)c

. . .
(

By2n
)c

and the statement is proved for l = 2n+ 1. The solution provided in (14) is primitive since the

subgroup p
(

〈

u1, v1, . . . , uh, vh
〉

)

contains p(u1) = p(x) and p(uh1+1) = p(r2) = p(y)−1. �

Remark 3.6. If c = 1, then by Proposition 3.1 the result of Theorem 3.5 holds only for l = 1.

Remark 3.7. An old problem in the geometric group theory is the problem of determining the
genus and the number f(g) of Nielsen classes for a given element g ∈ [Fn, Fn] (see [1, Section 3.3]
for the definition of Nielsen classes and [1, Question 3.11] for the related question). If n = 2,

then Corollary 3.2 and Theorem 3.5 guarantee that for g = ([x, y])c([x, y]y)c . . . ([x, y]y
l−1

)c the
number of Nielsen classes is at least 2.

Using equality (3) and construction of the map f (obtained from the solution) described
in Section 1 and in details in [12, Proposition 4.2] we have the following corollary.

Corollary 3.8. Let c > 1, l ≥ 1 be integers and h be a minimal number which satisfies the
inequality h ≥ l(c− 1)/2 + 1. Then there exists a map f : Sh → T with A(f) = lc, MR[f ] = l,
NR[f ] = 1 and the only root class has index lc. So, the Wecken property does not hold for f .

4 The right part has the form
(

[x, y]
)k+l(

[x, y]y
)k−l

The purpose of this section is to give an explicit solution for the equation

[u1, v1] . . . [uh, vh] =
(

[x, y]
)k+l(

[x, y]y
)k−l

(15)
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for h = k. If h < k, then by Proposition 1.1 equation (15) does not have solutions. The main
result of this section is the following theorem

Theorem 4.1. Let k > l ≥ 0 be integers. Then the equation

[u1, v1]...[uh, vh] =
(

[x, y]
)k+l(

[x, y]y
)k−l

with unknowns u1, v1, . . . , uh, vh for h = k has an explicit primitive solution. Moreover, if l 6= 0,
then every solution of this equation is primitive.

Proof. At first, we will prove the moreover part of the theorem. Let u1, v1, . . . , uk, vk be
a solution of equation (15) for l 6= 0 and let H = 〈u1, v1, . . . , uk, vk〉. By Proposition 1.2, the
index |p(F2) : p(H)| is equal to 1 or 2, and we need to prove that this index is equal to 1. By
contrary, suppose that |p(F2) : p(H)| = 2. From equality (3) follows that the map f : Sk → T
(obtained from the solution u1, v1, . . . , uk, vk) described in Section 1 has two essential Nielsen
root classes, one of this classes has the index k+ l and another one has the index k− l. If l 6= 0,
then k − l 6= k + l, but the indices of all essential Nielsen root classes must coincide . We have
a contradiction.

In order to introduce the solution of equation (15) denote by

ri = yxyi−1x−1y−1xy−i+1x−1y−1 i = 1, . . . , l

si = yxyi−1x−1Bl−i+1yBk−ly−ix2y−i+1x−1y−1 i = 1, . . . , l

rl+j = yxy(l+j)x−1y−1xy(−l−j)x−1y−1 j = 1, . . . , k − l − 1

sl+j = yxy(l+j)x−1Bk−l−jy−l−jx2y(−l−j)x−1y−1 j = 1, . . . , k − l − 1

rk = yxy(k+1)x−1y−1

sk = yxy−1x−1yx−1y−1 (16)

and let us, at first, prove some auxiliary equalities involving r1, s1, . . . , rk, sk. Using induction
on the number t = 1, . . . , l let us prove that

[r1, s1] . . . [rt, st] = BlyBk−ly−1Btyt+1Bl−ky−1Bt−1−lxy−t+1x−1y−1 (17)

The basis of induction (t = 1) is proved in the following equality

[r1, s1] = [y−1, yBlyBk−ly−1xy−1]

= y−1yBlyBk−ly−1xy−1yyx−1yBl−ky−1B−ly−1

= BlyBk−ly−1By2Bl−ky−1B−ly−1

The step of induction (omitting some detailed calculations) follows from the following equality

[r1, s1] . . . [rt+1, st+1] =
(

[r1, s1] . . . [rt, st]
)

[rt+1, st+1]

= BlyBk−ly−1Btyt+1Bl−ky−1Bt−1−lxy−t+1x−1y−1

· yxytx−1
[

y−1, Bl−tyBk−ly−t−1x
]

xy−tx−1y−1

= BlyBk−ly−1Bt+1yt+2Bl−ky−1Bt−lxy−tx−1y−1

Similarly to equation (17) using induction on the number t = 1, . . . , k− l− 1 we can prove
the following equality.

[rl+1, sl+1] . . . [rl+t, sl+t] = yxyl+1x−1
(

y−1Bk−l−1y−l−1Btyl+t+1Bl+t−k
)

xy−l−tx−1y−1 (18)
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We will not show the proof of (18) here since it repeats the proof of (17) almost completely.
Multiplying equality (17) for t = l, equality (18) for t = k− l−1 and the value [rk, sk] using

formula (16) after some simple calculations we conclude that [r1, s1] . . . [rk, sk] = Bl
(

By
)k−l

Bk.
From this equality follows that if for i = 1, . . . , k we denote by

uu = BkriB
−k, vi = BksiB

−k, (19)

then [u1, v1] . . . [uk, vk] = Bk+l
(

By
)k−l

, i. e. u1, v1, . . . , uk, vk is the solution of equation (15).
The images of elements u1, v1, . . . , uk, vk under the homomorphism p : F2 → F2/[F2, F2] generate
p(F2) since p(u1) = p(y)−1, p(v1) = p(x). Therefore u1, v1, . . . , uk, vk is a primitive solution of
equation (15). �

Remark 4.2. The same result for k = l follows from Theorem 3.5.
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