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A computational approach to the Frobenius—Schur indicators of
finite exceptional groups

Stephen Trefethen and C. Ryan Vinroot

Abstract

We prove that the finite exceptional groups Fy(q), F7(q)ad, and Eg(q) have no irreducible
complex characters with Frobenius—Schur indicator —1, and we list exactly which irreducible
characters of these groups are not real-valued. We also give a complete list of complex irre-
ducible characters of the Ree groups 2F4(g?) which are not real-valued, and we show the only
character of this group which has Frobenius—Schur indicator —1 is the cuspidal unipotent
character yo1 found by M. Geck.
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1 Introduction

Given a finite group GG and its table of complex irreducible characters, it is a natural question
to ask the value of the Frobenius—Schur indicator of each irreducible character of G. That
is, we may ask whether each character is real-valued, and if it is, whether it is afforded by a
representation which is defined over the real numbers. The Frobenius—Schur indicator is given,
for example, in each character table in the Atlas of finite groups [7]. If we have the full character
table of GG, and we know the square of each conjugacy class of G, then the Frobenius—Schur
indicator may be computed directly from its character formula. Without directly applying the
formula, we could also identify which characters of G are not real-valued from its character
table, and if we have proven that certain irreducible characters of G have indicator equal to —1,
we can check if these are the only such characters by counting the involutions in G and using
the Frobenius—Schur involution count. We do exactly this for many finite exceptional groups.
In some cases where the generic character table is not known (for example, Fg(q)), we use
results from the character theory of finite reductive groups to identify precisely those irreducible
characters which are not real-valued, and so we obtain complete results for the Frobenius—Schur
indicators for the characters of these groups.

After preliminary notions and results in Section [2] we give examples of this method for some
small-rank exceptional groups in Section B namely for the groups 3D4(q), 2B2(¢?), 2Ga(q¢?),
and G2(q). We confirm some known results on the Frobenius—Schur indicators in these groups,
which are all 1 or 0 in these cases. We also discuss two related problems for these groups in
Section Bl First is the computation of the Schur index of the irreducible characters of a group;
the index is conjectured to be at most 2 for any finite quasisimple group (see Section 2.1]), and is
known to be 1 for every irreducible character of the exceptional groups just listed. The second
related problem is the determination of the strongly real classes of a group, which are the real
classes which can be inverted by an involution. It is known that every real class is strongly real
for each of the above finite exceptional groups, except for Ga(q) when ¢ is a power of 2 or 3. In
Proposition B1], we confirm this statement for those remaining cases by using the known generic
character table of Ga(q).
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In Section @ we study the exceptional groups Fy(q) and 2Fy(g?). While the full generic
character table of Fy(q) is not yet fully known, the fields of character values and the Schur
indices of unipotent characters of Fy(q) (and all other exceptional groups) have been determined
by Geck [I8] 19, 20]. It turns out that the only characters of Fj(¢q) which are not real-valued
are unipotent, and we show that the other characters all have Frobenius—Schur indicator 1 in
Theorem 1l As a corollary, we check that the Schur index of every character of Fy(q) is at
most 2 in Corollary @Il The generic character table of 2F}(¢?) can be accessed in the package
CHEVIE [21], and much of its character table is available in the literature [25], [33]. With this
information, and the work of Geck on unipotent characters, we compute the Frobenius—Schur
indicators for the characters of 2Fy(¢?) in Theorem In particular we show that the only
character of this group which has indicator equal to —1 is the cuspidal unipotent character found
by Geck [18].

We develop some results in Section [l on the character theory of finite reductive groups
which are applied to extend our method to some exceptional groups of larger rank in Section
[l Lemma [5]] gives some conditions on arbitrary connected reductive groups over finite fields
to ensure all unipotent characters are invariant under any rational outer automorphism. We
combine this with a previous result on the Jordan decomposition of real-valued characters of
certain finite reductive groups [43] to give manageable conditions for an irreducible character to
be real-valued in Lemmal5.2l These results, along with the work of Geck on unipotent characters
and computations of Liibeck [28] 29] allow us to compute the Frobenius—Schur indicators of all
irreducible characters of F7(q)aq and Eg(q) in Theorems and In particular, all real-
valued characters of these groups have indicator 1, and a list of all characters of these groups
which are not real-valued is given, along with their character degrees, in Tables [A.4] and [A.5]

In Section [7], we discuss the remaining cases and what results and information are needed in
order to complete the computations of Frobenius—Schur indicators for these finite exceptional
groups. Finally, all tables of the results from the computations made are given in the Appendix.
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2 Preliminaries

2.1 Frobenius—Schur indicators and Schur indices

If G is a finite group, we denote by Irr(G) the set of irreducible complex characters of G. Given
x € Irr(G), we recall the Frobenius—Schur indicator of x (see [26, Chapter 4]), which we denote
by €(x), may be defined as

|
0 =1 > x(dD).

geG

Then £(x) = 1,—1, or 0, where £(x) = 0 precisely when x is not real-valued. When x is real-
valued, £(x) = 1 precisely when y is afforded by a complex representation which may be defined
over the real numbers, and otherwise £(x) = —1. The Frobenius—Schur involution count is the



equation [26, Corollary 4.6]

> ebox() =#{geG | # =1} (2.1)

x€lrr(G)

Every g € G such that ¢? = 1 is an involution of G, where we include the identity as an involution
for convenience. Note that from (21]), since (x) < 1 for each x € Irr(G), the sum of the degrees
of the real-valued characters y € Irr(G) is always at least the number of involutions, and there
is equality precisely when () = 1 for all real-valued x € Irr(G). This observation is the main
strategy in computing Frobenius—Schur indicators in this paper.

If K is a subfield of C, and x € Irr(G), then let K(x) denote the smallest field containing
K and all of the values of x. The Schur index of x over K, which we denote by mg(x), is
the smallest positive integer m such that my is afforded by a representation defined over K (x)
(see [26, Corollary 10.2]). In particular, if K = R then mg(x) = 1 when ¢(x) =1 or e(x) = 0,
and mg(x) = 2 when €(x) = —1. For the case K = Q, it has been conjectured that if G is a
quasisimple group, then mg(x) < 2 for all x € Irr(G), while it is known that in general mq(x)
might be arbitrarily large for other finite groups, see [48] for example. A relevant result relating
this conjecture to our results in this paper is the Brauer—Speiser Theorem (see [26, p. 171)),
which states that if x € Irr(G) and x is real-valued, then mg(x) < 2.

2.2 Exceptional groups

Here we recall basic facts about finite exceptional groups and finite simple groups of exceptional
type. Let p be a prime, F), a finite field with p elements and F,, a fixed algebraic closure. Let G
be a connected reductive group over E), and let F' be a Steinberg map of G. We consider the
exceptional groups to be the groups of the form G with G a simple algebraic group, and either
the isogeny type of G is one of Ga, Fy, Fs, E7, Eg, or G is either a Steinberg triality group
3D4(q) with ¢ an integer power of p, or a Suzuki group of the form 2By (¢?) where ¢? = 22m+!
and p = 2. In the former case, G" can be one of the groups (see [4, Section 1.19])

G2(9), F1(q), B6(q)ads E6(@)ses 2E6(q)ads 2E6(@)se, B1(q)ads E7(@)se; Es(q)

with ¢ an integer power of p, or a Ree group of the form 2G5(¢?) with ¢ = 3*™*! and p = 3, or
2Fy(¢?) with ¢? = 22+ and p = 2.

We recall that the groups Ga2(q) (unless ¢ = 2), Fy(q), and Eg(q) are finite simple groups,
with the associated algebraic group G having trivial (and so connected) center over Fp. The
derived subgroup, G2(2)’, of G5(2) is simple, and is isomorphic to PSU(3,3). The groups *Dy(q),
2B5(q?), and 2Go(q?) are finite simple groups, and 2F(¢?) is a finite simple group unless ¢* = 2,
in which case the derived subgroup 2F(2)’ of index 2, or the Tits group, is a finite simple group.
The simple algebraic groups of adjoint type have trivial (and so connected) center, but the groups
of simply connected type do not in general. If ¢ #Z 1(mod 3), then Eg(q)aqa = F6(q)sc = Eg(q)
is a finite simple group, and otherwise F(q)aq has the finite simple group Eg(g) as an index 3
subgroup, and Fg(q)sc has an order 3 center Z and Fg(q)sc/Z is isomorphic to the finite simple
group Fg(q). If ¢ # —1(mod 3), then 2Eg(q)aq = 2F¢(q)sc = 2Fs(q) is a finite simple group, and
otherwise 2Fg(q)aq has the finite simple group 2FEg(g) has an index 3 subgroup, and 2Fg(q)sc
has an order 3 center Z with quotient 2Eg(q)sc/Z isomorphic to the finite simple group 2Eg(q).
Finally, if ¢ is even then F7(q)aq = E7(q)se = E7(q) is a finite simple group, while if ¢ is odd
then F7(q)aq has as an index 2 subgroup the finite simple group E7(q), and E7(q)sc has an order
2 center Z with quotient E7(q)sc/Z isomorphic to the finite simple group E7(q).



2.3 Jordan decomposition of characters

Let G be a connected reductive group over F, with Steinberg map F. If we take T to be a
maximal F-stable torus of G, with @ an irreducible character of T, then we denote by RS (6)
the DeligneLusztig generalized character of GI defined by the G¥-conjugacy class of pairs
(T, 0) (see [4, Chapter 7] or [10, Chapter 11]).

The unipotent characters of G are exactly the irreducible characters ¥ of G such that
(1, R§ (1)) # 0 for some F-stable maximal torus T of G, where 1 is the trivial character and (-, -)
denotes the standard inner product on class functions of a finite group. If G is a disconnected
group with connected component G°, then the unipotent characters of G are taken to be the
irreducible constituents of Ind(G(’;) (1), where v varies over all unipotent characters of (G°)¥".

Now let G* be some fixed dual group of G (with respect to some fixed Lie root data for
G), with corresponding dual Steinberg map F™*. By [10, Proposition 13.13], there is a bijection
between G*/""-conjugacy classes of pairs (T*, s) where T* is an F*-stable maximal torus of G*,
and s € T*F" is a semisimple element of G*"", and G*'-conjugacy classes of pairs (T,6) where
6 is an irreducible character of T¥. Given a semisimple G*F"-conjugacy class (s), the rational
Lusztig series E(G, (s)) of G¥' is the collection of irreducible characters x € Irr(GF') such that
(X, R,(E'FF(H» # 0 where the G¥'-class of the pair (T, #) corresponds to the G*/" -class of the pair
(T*, s) for some F*-stable maximal torus T* of G*/". In particular, the collection of unipotent
characters of G is given by the Lusztig series £(G¥, (1)), since the classes of pairs (T, 1) and
(T*,1) correspond when T and T* are dual tori.

For G a connected reductive group, given a semisimple class (s) of G*f" and some fixed
element s from that class, a Jordan decomposition map is a bijection

Js: E(GT (5) — 5(0@*(8)F*, (1)) such that ()@R%(G)) = :l:(Js(X),R.C];E**(s)(I»

for every x € £(GF,(s)), where Cg«(s) is the centralizer, and T* is a maximal F*-stable torus
such that s € T*F". Such a bijection was shown to always exist when Z(G) is connected by
Lusztig [31]. While we do not explicitly need it in this paper, such a map also always exists when
Z(G) is not connected, where if Cg«(s) is disconnected we still let £(Cg+(s)F", (1)) denote its
set of unipotent characters (see [10, Theorem 13.23]). Using the maps Js, we may parameterize
the irreducible characters of G by G*/""-conjugacy classes of pairs (s,1) where 1) is a unipotent
character of Cq=(s)F"", where the class of the pair (s, 1)) corresponding to x € Irr(GT) is called its
Jordan decomposition. The most important property of the Jordan decomposition of characters
that we will need is that if x corresponds to the class of pairs (s,), then the degree of the
character y is given by x(1) = [G*" : Cg«(s)F"],4(1), where the subscript p’ denotes the
prime-to-p part of that centralizer [10, Remark 13.24].

3 Examples and related results

In this section, we consider the Frobenius—Schur indicators of the characters of the groups
3D4(q), 2B2(q?), 2G2(¢?), and G2(q). While these results are known, we give these examples as
motivation for the computational method used for other results in this paper, and to place the
results in the context of other interesting questions.

The group 3D4(q). When ¢ is odd, Barry [2, Step 1] makes exactly the computation which
we carry out for other examples. Namely, it is shown that when ¢ is odd, the group has
q'% + ¢'2 + ¢® + 1 involutions, and that this matches the sum of the character degrees which can



be obtained from [9, Table 4.4]. When ¢ is even, it follows from [47, Section 8] or [1, Section
18] that the number of involutions in 3Dy(q) is ¢'® + ¢'2 — ¢*. It follows from [0, Table 4.4] that
this is also the sum of the character degrees of the group when ¢ is even. Thus e(y) = 1 for all
irreducible characters of 3Dy(g) by the Frobenius—Schur involution count (21I).

The group 2Bs(q?), ¢*> = 2?1, The classes and characters of this group are computed by
Suzuki [44] [45]. Tt follows from [45, Proposition 7] that the number of involutions in 2Bs(q?) is
q® — ¢* + ¢%. From [45, Theorem 13], the two characters labeled as W are not real-valued. The
sum of the degrees of the remaining characters is ¢% — ¢* +¢2, and so () = 1 for all real-valued
irreducible characters of 2By(q¢?) again by (2.1)).

The group 2Ga(q?), ¢* = 3*™*1. Tt follows from [39, Theorem 8.5] and [50, Introduction]
that the number of involutions in 2G5(¢?) is ¢® — ¢® + ¢* + 1. The characters which are not
real-valued are given in the table of Ward [50, p. 87|, labeled as &5, &g, &7, &s, &9, and &19. Their
degrees are given, as are all of the degrees for the irreducible characters of 2?Ga(g?). Taking the
sum of the degrees of the real-valued irreducible characters yields the number of involutions in
the group, and so () = 1 for all real-valued x € Irr(2G2(g?)).

The group Go(q). First, when ¢ is odd it follows from [5 Theorem 4.4 and p. 209] and [T,
Table 2] or from [27, p. 282] that the number of involutions in Ga(q) is ¢ +¢%+¢*+ 1. Tt follows
from [I1, Propositions 2.5 and 2.6] that when ¢ is even the number of involutions in Ga(q) is
¢ +¢% — ¢®. Next, it follows from [I8, Table 1] that the cuspidal unipotent characters Go[f]
and G3[6?] are not real-valued, and from [4, p. 478] we find these characters each have degree
%q(q2 —1)2. We may take the sum of the degrees of all other characters, by using the tables in
[6, 12] for ¢ odd and [14] for ¢ even (or by using [29]), and we find that this matches the number
of involutions. Thus e(x) = 1 for each real-valued irreducible character x of Ga(q).

We mention other relevant results for the groups in the above examples. It is known that
for every G above, every y € Irr(G) satisfies mg(x) = 1. This is proved for G = 2Bs(¢?) or
2G9(¢?) by Gow [24, Theorem 9], for G = 3D4(q) by Barry when ¢ is odd [2] and by Ohmori
when ¢ is even [38, Theorem 3], and for G = G2(q) when ¢ is odd by Ohmori [36] and when ¢
is even by Enomoto and Ohmori [13]. In fact, these results on the Schur index imply that the
Frobenius—Schur indicator is 1 for each irreducible real-valued character of each of these groups.

Recall that an element g of a finite group G is real if ¢ is conjugate to g~! in G, and that the
number of conjugacy classes of real elements in G is equal to the number of real-valued characters
in Irr(G). We may also ask whether every conjugacy class of real elements is necessarily strongly
real for each of the groups G above, where an element (or conjugacy class) g of a group G is
strongly real in G if there exists h € G such that h? = 1 and h~'gh = g~'. For G = 3Dy(q), it is
proved by Vdovin and Gal’t [49, Theorem 1] that all classes of G are strongly real. Suzuki proved
[45 Section 10] that all real classes of the groups 2By (q?) are strongly real. For G' = 2G5 (¢?), we
invoke a result of Gow [23 Corollary 1] which says that if a finite group has an abelian Sylow
2-subgroup, then all of its real elements are strongly real if and only if all real-valued irreducible
characters of the group have Frobenius—Schur indicator 1. The latter holds for these groups
as discussed above, and the Sylow 2-subgroup is abelian by [39, Theorem 8.5], and so all real
classes are strongly real in 2G(q?).

Singh and Thakur [42, Corollary A.1.6] proved that if ¢ is not a power of 2 or 3, then all
real elements of G5(q) are strongly real. We now address the remaining cases.

Proposition 3.1. All real classes of Ga(q) are strongly real.



Proof. As just mentioned, Singh and Thakur prove this statement when ¢ is not a power of 2 or
3. The generic character table for G3(¢q) when ¢ is a power of 2 or 3 is in the package CHEVIE
[21]. We may use the character table to prove the statement by using the following result (see
[B2) p. 125]). If C4, Cq, and C5 are conjugacy classes of the finite group G, then the number
n123 of pairs (g1, g2) such that g1 € C1, g2 € Cs, and the product gy g2 is equal to a fixed element
g3 € Cs is given by

|C1]]Cy| X(C1)x(C2)x(C3)
G| 2 x(1)

These are the class multiplication coefficients, and we must show that for every real class C3 of
G2(q), there are classes C7 and Cy of involutions such that ni93 # 0. This is indeed the case for
G2(q) with ¢ a power of 2 or 3, and our results from the computation are given in Table[Adl O

x€lrr(G)

4 The groups Fy(q) and 2Fy(¢?)

We now consider the finite exceptional group Fy(q). We have the following result, where our
notation for the cuspidal unipotent characters of Fy(q) is that of Lusztig [31].

Theorem 4.1. For every prime power q, the only irreducible characters of Fy(q) which are
not real-valued are the cuspidal unipotent characters Fyli], Fy[—i], F4[f], and F4[0?). All other
irreducible characters x of Fu(q) satisfy e(x) = 1. That is, mr(x) =1 for all x € Irr(Fy(q)).

Proof. When ¢ is odd, the number of involutions in Fy(q) can be computed using [27] or [41],
and is given by

q28+q26+2q24+2q22+2q20_’_2q18+2q16_’_q14_’_q12_’_q8.

When ¢ is even, the number of involutions in Fj(q) may be computed using [40, Corollary 1] or
[1, Section 13], and is given by

A g2 — 0 — gl M0 B

The fact that the four listed cuspidal unipotent characters of Fy(q) are not real-valued (inde-
pendently of ¢) follows from Geck [I8, Table 1], and the degrees of these characters can be found
in the table of Lusztig [31, p. 372]. Taking the sum of all of the character degrees of Fy(q)
using the data in [29], with the result listed in Table [A.2] and subtracting the degrees of the
unipotent characters which are not real-valued, we obtain precisely the numbers of involutions
given above, whether ¢ is even or odd. The result follows. [l

As mentioned in Section 2.1 it has been conjectured that if G is a quasisimple group, then
mg(x) < 2 for all x € Irr(G). As an application of Theorem [A.I] and previous work of Geck
[18, 19], we are able to conclude this statement indeed holds for the case that G = Fy(q).

Corollary 4.1. For every prime power q, and every x € Irr(Fy(q)), we have mg(x) < 2.

Proof. Tt is proved by Geck in [I8, Table 1 and Section 6] and [19, Corollary 3.2] that if x is
one of the cuspidal unipotent characters Fy[i], Fy[—i], Fy[0], or F4[6?%], then mg(x) = 1. By
Theorem [4.1] the rest of the irreducible characters of Fy(q) are real-valued, and so the result
now follows from the Brauer—Speiser Theorem. O



In fact, it follows from the work of Geck [18], [19] that mg(x) = 1 for all unipotent characters
x of Fy(q). We expect this stronger result to hold for all irreducible characters of Fy(q). We also
expect that all real classes of Fy(q) are strongly real, which can be checked for the case Fy(2)
using GAP [I7] as in the proof of Proposition Bl

We now consider the Ree groups 2F;(¢?) with ¢? = 22+, In the following, the notation for
the unipotent characters of 2Fy(q?) is taken from the paper of Malle [33], and the notation for
the non-unipotent characters is that used in the paper of Himstedt and Huang [25].

Theorem 4.2. The only irreducible character of 2Fy(q*) with Frobenius-Schur indicator —1 is
the cuspidal unipotent character x21. The only irreducible characters which are not real-valued
are the unipotent characters xs, Xe¢, X7, X8, X15, X16, X17, and Xis, and the non-unipotent
characters axas(k), axaa(k), axar(k), and gxas(k).

Proof. First, the classes of involutions in the group are given in [40, Corollary 2], and the orders
of their centralizers can be obtained from [40, Theorem 2.1]. Taking the sum of the indices of
these centralizers and adding 1 yields that the total number of involutions in ?Fy(¢?) is given by

g P 2 — O — M0 B

The fact that the cuspidal unipotent character yo; satisfies (x21) = —1 is a result of Geck
[18] Theorem 1.6], also given by Ohmori [38]. That the listed unipotent characters are not real-
valued follows from the work of Malle, where these unipotent characters take non-real values on
the unipotent classes listed as ug in [33, Tabelle 2]. The non-unipotent characters listed take
non-real values, as computed in the paper of Himstedt and Huang [25] Table B.12], on the class
listed as ¢11;. The degrees of these non-unipotent characters are listed in [25, Table A.14].

The sum of all character degrees of 2Fy(¢?) may be computed using the data in [29], and
the result is listed in Table From this, we subtract the degrees of the characters which are
not real-valued, and we subtract twice the degree of the character y9; with Frobenius—Schur
indicator —1. The result is precisely the number of involutions in the group, and so the claim
follows by the Frobenius—Schur involution count. U

We may also consider properties of the conjugacy classes of 2Fy(¢?) by using its generic
character table in CHEVIE. This group has two classes of involutions, which are class type 2 and
class type 8 in CHEVIE. By computing the class multiplication coefficients as in the proof of
Proposition B.I] we find that each of the conjugacy classes labeled as class types 7, 10, 11, and
15 is real but not strongly real. We thank Frank Himstedt for assistance in this calculation.

For the Tits group 2F4(2)’, it can be checked using GAP [I7] that there are 16 real-valued
characters and 6 characters that are not real-valued. All of the real-valued characters have
Frobenius—Schur indicator 1, and each of its real conjugacy classes is strongly real.

5 Automorphisms and unipotent characters

Let G be a connected reductive group over F, and let F be a Steinberg map for G. An
automorphism o of the algebraic group G which commutes with £ is said to be defined over F'.
Then o defines an automorphism of the finite group G¥. We let Out(G, F') denote the collection
of all outer automorphisms of G which are defined over F'.

Lemma 5.1. Let G be a connected reductive group over F,, such that no two simple factors of
G are isogenous, and such that G has no simple factor which is of type Doy. Further, if p =2
assume G has no simple factors of type Cy or Fy, and if p = 3 assume G has no simple factors



of type Gy. Let F be a Steinberg map for G, and o € Out(G, F). If ¢ is a unipotent character
of G, then 7 = 1.

Proof. First consider the case that G is a simple algebraic group with Steinberg map F, and
G is not of type Doy, not of type Cs or Fy if p = 2, and not of type G if p = 3. It follows
from [34, Proposition 3.7], [35, Theorem 2.5], and [46, Lemma 1.64], that ¢ = v for every
unipotent character of G and every o € Out(G, F). If G is simple of adjoint type, suppose
now that o is defined over F' but inner, say defined by € G. Then for every g € G, we
have z(F(g))z~! = F(z)F(g9)F(x)™!, so that 2 'F(z) € Z(G). Since G is of adjoint type,
Z(G) = 1, and it follows that 2 € GF. Thus ¢ = ¢ for every unipotent character 1) of G¥
when o is an automorphism of G defined over F' and G is a simple algebraic group of adjoint
type.

Next assume that G is a connected reductive group of adjoint type, so that G is a direct
product of simple algebraic groups of adjoint type, say G = [[, H;, and suppose o is an au-
tomorphism of G which is defined over F'. We also assume that no two simple factors of G
are isogenous, no simple factor H; is of type Do,, none of type Csy or F} if p = 2, and none of
type G if p = 3. Since o must map simple factors of G to other simple factors, and since no
pair of simple factors is isogenous, each H; must be o-stable. Similarly, the assumption that
no pair of simple factors of G is isogenous implies that each simple factor H; is F-stable. Now
G =TI, HF, and it follows that each HI" is o-stable, and so we may view o restricted to H; as
an automorphism of H; defined over F. Each unipotent character ¢ of G is of the form IL
with 1/; a unipotent character of HY" (by [30, p. 28], for example), and by the simple algebraic
group case of adjoint type we have “1); = 1);. Since 79 = [[, 74;, we have 1) = 1.

Finally we consider the case that G is a connected reductive group with no simple factor of
type Day,, none of type Co or Fy if p = 2, none of type G» if p = 3, no isogenous pair of simple
factors, and o € Out(G, F'). Consider the adjoint quotient map, which is an algebraic surjection
¢ G = G,q with ker(¢) = Z(G). See [22 Section 1.5] for the definition and properties of
the adjoint quotient map. Here G,q is a group of adjoint type, and so is a direct product of
simple algebraic groups of adjoint type, where these simple factors are the adjoint types of the
simple factors of G, and so with corresponding factors isogenous. Thus G,q has no pair of
simple factors which are isogenous, and no simple factor of type Ds,, or of type Co or Fj if
p = 2, or of type G if p = 3, since this holds for G. The adjoint quotient map ¢ also induces a
Steinberg map on G4, which we also call F', which commutes with ¢. We may then define an
automorphism & of G,q, where 6(gg) = ¢(0(g)), where g € G satisfies ¢(g) = go. Note that this
makes & well-defined since Z(G) = ker(¢), and 0(Z(G)) = Z(G). It follows that F' commutes
with ¢ on G,q, that is, & is defined over F' on G,q. From the previous case, if ¢y is a unipotent
character of Gf , then %1y = .

Now consider a unipotent character 1 of G!'. The adjoint quotient map ¢ induces a map
from G to GI| which has image Gy isomorphic to G'/Z(G!). By a result of Lusztig [30]
Proposition 3.15], every unipotent character of G' is obtained by restricting a unipotent of
Gfd to G and factoring through the surjection from G¥. That is, given unipotent 1 of G,
and g € G, there exists a unipotent character vy of Gfd and an element g; of G; such that
¢(9) = g1 and ¥(g) = Yo(g1). Then 7(g) = ¥(0o(9)) = ¢o(d(g1)) = “o(g1) = to(g1), since
1o = 1p. Since Yo(g1) = ¥(g), we now have 71 = 1) as claimed. O

Our main application of Lemma [BE.] will be in combination with the following result from
[43, Theorem 4.1].



Theorem 5.1. Suppose that G is a connected reductive group with connected center and Frobe-
nius map F, and x € Irr(GF) with Jordan decomposition (s,v). Then X has Jordan decompo-
sition (s~1,4). In particular, x is real-valued if and only if s is conjugate to s™' in G*f", and
if h € G*F s such that hsh™' = s71, then ") = 1.

We may now make the following observation, which is crucial in the proof of our main results
in the next section.

Lemma 5.2. Suppose G is a connected reductive group with connected center and Frobenius
map F, and x € Irr(GT) with Jordan decomposition (s,1)). Suppose that s is a real semisimple
element of G*F with centralizer Cg=(s) which has no pair of simple factors which are isogenous,
no simple factor of type Do, , none of type Co or Fy if p = 2, and none of type Go if p = 3.
Then x is real-valued if and only if ¢ is real-valued.

Proof. We have s € G*'" is a semisimple element which is real in G*¥", so let h € G*!" be such
that hsh™! = s~!. Since we assume that the center of G is connected, Cq+(s) is a connected
reductive group. We may then define an automorphism o on the connected reductive group
Cg+(s) by on(a) = hah™!, and if s is not an involution, then o, is an outer automorphism.
Since h € G*", g), commutes with F*, that is, 0, € Out(Cg-«(s), F*). In particular, if Cg«(s)
has no two simple factors which are isogenous, no simple factor of type Do, none of type C5 or
Fy if p = 2, and none of type G if p = 3, then Lemma [5.1] applies to the automorphism o}, and
so 1 is invariant under oj. In this situation (or if s is an involution) it follows from Theorem
B and Lemma [5.1] that y is real-valued if and only if 9 is real-valued. O

6 The groups F;(q).q and Es(q)

In this section we give our main results for the exceptional groups E7(q).q and Eg(q). We
begin by noticing that since —1 is in the Weyl group of type Ery and type Eg, by a result
of Singh and Thakur [42] Theorem 2.3.1] every semisimple element s in each of the groups
G = F7(q)ad, E7(q)se, or Es(q) is real in GF. Tt follows from Theorem [5.1] that for every
irreducible character x of G the characters y and y are in the same Lusztig series £(GF', (s)).
The notation for the relevant unipotent characters of the groups in the results of this section
is slightly adjusted from that of [4, pp. 483-488] for the sake of clarity. For example, instead
of using the notation Fg[#?], ¢ for the unipotent character in the last line of [, p. 483], we will
write Eg[02,¢]. The structure of centralizers of semisimple elements in these results is given as
a product of the simple factor types along with any central torus factor which occurs, where a
polynomial in ¢ denotes a torus of that order. We now give our results for the group E7(q)aq-

Theorem 6.1. Let g be a prime power. The number of irreducible characters of the group
Gl = E7(q)aq which are not real-valued is 2q + 4 if q is even, and 2q + 8 if q is odd. These
characters which are not real-valued are:

e The unipotent characters E;[€], E7[—¢€], Egl0,1], Es[0%,1], Egl0, €], and Eg[6?,€];

e When q is odd, the siz unipotent characters above tensored with the linear character of
order 2 of G';

e A conjugate pair of characters in each of %(q —2) (if q is even) or %(q —3) (if q is odd)
Lusztig series E(GFE, s), where (s) is a semisimple class in G*" such that Cg=«(s)!" is of
type Ee(q)-(q — 1);



e A conjugate pair of characters in each of %q (if q is even) or %(q —1) (if q is odd) Lusztig
series E(GFs), where (s) is a semisimple class in G*" such that Cg«(s)f" is of type
?Eg(q)-(¢ +1).

Moreover, every real-valued irreducible characters of GY' has Frobenius—Schur indicator 1, that
is, mg(x) = 1 for all x € Irr(GF).

Proof. We first explain why the list of characters are not real-valued. It follows from [18, Table
1] that the cuspidal unipotent characters E7[¢] and Er;[—£] of E7(q)aq (or of E7(q)s.) are not
real-valued for any ¢q. The unipotent characters Fg[0, 1], Es[0, €], Eg[0?,1], and Fg[0?, €] are not
cuspidal, and are constituents of a Harish-Chandra series corresponding to a Levi component
which is type Eg(q), parabolically induced from the cuspidal unipotent character Eg[f] of Eg(q)
for the first two cases, and from the cuspidal unipotent character Eg[6?] in the last two cases.
The cuspidal unipotent characters Fg[f] and Fg[#?] are not real-valued again by [I8, Table 1].
It follows from [I8], Proposition 5.6] that the fields of character values of Eg[6,1] and Eg0, €]
are the same as that of Fg[f], and the fields of character values of Eg[62,1] and Eg[62, €] are the
same as that of Fg[#?], and so these unipotent characters of E7(q)aq are not real-valued. When
q is odd, the derived subgroup of G is the simple group E7(q), and is an index 2 subgroup of
G!. Thus G has a linear character A of order 2 when ¢ is odd. Tensoring the six unipotent
characters which are not real-valued of G with \ produces six distinct irreducible characters
which are not unipotent by [10, Proposition 13.30(ii)], and does not change the field of values.
Thus these six characters are also not real-valued when ¢ is odd.

Next, it follows from [8 [I5] that the group G*F" = E7(q)sc has 1(¢ — 2) (if ¢ is even) or
1(q—3) (if ¢ is odd) semisimple classes (s) such that Cg«(s)"" is of type Eg(q).(¢ — 1), and has
gq (if ¢ is even) or (¢ — 1) (if ¢ is odd) semisimple classes (s) such that Cg«(s)" is of type
2F6(q).(¢+1). Since the central torus factor of these centralizers (cyclic of order ¢+ 1) has only
the trivial character as a unipotent character, then as described in the proof of Lemmal5.I]labove,
the centralizer of type Eg(q).(¢ — 1) has unipotent characters with the same character values as
the cuspidal unipotent characters Eg[0] and Eg[62] of the Fg(q) factor. These cuspidal unipotent
characters of Eg(q) are not real-valued by [I8] Table 1], and these are in fact complex conjugates.
Since the semisimple classes (s) are all real, it follows from Lemma that the characters of
E7(q)aq with Jordan decomposition (s, E[f]) or (s, Eg[0?]) are not real-valued, and that these
are conjugate pairs of characters of F7(q)aq by Theorem [5.1I] and there exists one such pair for
each corresponding semisimple class (s) in G*/". By the same argument, the centralizers of
the semisimple classes (s) in G*I" of type 2Eg(q).(¢ + 1) have unipotent characters with the
same character values as the cuspidal unipotent characters 2FEg[f] and 2 Eg[6?] of 2Fg(q), which
are not real-valued by [I8, Table 1] and which are conjugate pairs. Again by Lemma and
Theorem [5.1], the characters of E7(q)aq with Jordan decomposition (s,2FEg[d]) and (s,2Eg[6?])
are not real-valued and are conjugate pairs, as (s) varies over these semisimple classes of G,
This shows that the characters listed are all not real-valued.

We now prove that the remaining irreducible characters of Fr(q)aq are real-valued, and they
all have Frobenius-Schur indicator 1, using the method employed in Sections [B] and @l The
number of involutions in E7(q),q may be computed in the case that ¢ is even using [I], and
in the case that ¢ is odd using any of [27, 8, [I5], and the classification of involutions is also
nicely summarized in [3]. The number of involutions obtained as a polynomial in ¢ is given
in Table [A.3] The total character degree sum for E7(q).q may be computed directly using the
data of Liibeck [29], and the result as a polynomial in ¢ is given in Table [A.2l The degrees of
the characters of E7(q)aq which are not real-valued may be obtained as follows. The degrees of
the unipotent characters (and their tensors with the linear character of order 2) are given in [4
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p. 483] or in [31]. As in Section 23] the degree of any character with Jordan decomposition (s, 1))
is [G* 1 Cg+(s)!"]y¥(1). The degrees 1(1) of the relevant unipotent characters of Fg(g) and
2F¢(q) are given in [4] pp. 480-481]. The resulting degrees of the characters of E7(q)aq which are
not real-valued are given in Table [A.4l Summing these degrees with the number of involutions,
whether ¢ is even or odd, we obtain the total character degree sum, which implies the result by
the Frobenius—Schur involution count. O

The following is our result for the group Fg(q). The strategy used is that in the proof of
Theorem [6.1] although the list of characters which are not real-valued is significantly longer for
Eg(q), and so the description of these characters is given in the proof of Theorem and in
Table

Theorem 6.2. Let q be a prime power. The number of irreducible characters of the group
G = Fg(q) which are not real-valued is 2¢*> + 6q + 20 if q is a power of 2, 2¢> + 6q + 22 if q
is a power of 3, and 2¢> + 6q + 24 otherwise. The description of these characters in terms of
Jordan decomposition is given below and in Table[A. 3. In particular, every real-valued irreducible
character of G has Frobenius—Schur indicator 1, that is, mg(x) = 1 for all x € Irr(GF).

Proof. First, it follows from [I8, Table 1] that the ten cuspidal unipotent characters Eg[6)],
Es[—0], Es[6?%], Es[—602], Es[C], Fs[¢?], Es[¢?], Fs[¢Y], Esli], and Eg[—i] of Eg(q) are not real-
valued for any ¢. The unipotent characters E;[¢, 1], E7[—¢, 1], E7[, €], E7[—&, €], Esl0, ¢1,0),
E6[927¢1,0]7 E6[67 /1,3]7 E6[627¢/1,3]7 E6[97 /1/,3]7 E6[927 /1/,3]7 E6[67¢176]7 E6[627¢1,6]7 E6[67¢271]7
Es[602, ¢2.1], Eol0, 2], and Eg[6?, ¢2 2] are Harish-Chandra induced from the non-real cuspidal
unipotent characters E7[€], Br[—£], Eg[6], and Eg[6?] of the Levi components of types E7(q) and
Eg(q). As argued in the proof of Theorem [6.] it follows from [I8], Proposition 5.6] that these
are not real-valued.

From [8, [16], we see that G*I" = Fg(q) has semisimple classes (s) such that Cg«(s)" is one
of the following types: Er(q).(¢—1), B7(q)-(¢+1), Es(q)-(¢4—1)*, Es(q).(¢>~1), Es(q)-(¢*+q+1),
2Fe(q)-(¢+1)%, 2Es(q).(¢*> — 1), or 2Eg(q).(¢> — g+ 1). The number of classes of each centralizer
type depends on the residue class of ¢ modulo 6, and is provided in [8,[16] or in Liibeck’s data on
centralizers of semisimple elements [28], but can be inferred by dividing entries from the last five
columns of Table [A.5l by 2. In each of these cases, the central torus factor has only the trivial
character as a unipotent character, and therefore, as in the proof of Lemma 5.1, Cg-(s)"" has
unipotent characters that have the same character values as the cuspidal unipotent characters
FE7[€] and E;[—¢€], Eg[0] and Eg[0?], or 2Eg[0] and 2 Eg[0?] of the E7(q), Es(q), or 2Eg(q) factors.
By [18, Table 1], these cuspidal unipotents are not real-valued, and since the semisimple classes
(s) are all real classes, it follows from Lemma that the characters of Eg(q) with Jordan
decomposition (s, E7[€]) or (s, E7[—£]), (s, Egl0?]) or (s, Egl6]), and (s,2Eg[f]) or (s,2Eg[6?])
are not real-valued, and are complex conjugate pairs (respectively) as (s) varies over these
semisimple classes of G*F'".

Next, G*I'" has semisimple classes (s) such that Cg«(s)f" is one of the following types:
Er7(q).A1(q), Ee(q).-A1(q).(¢ — 1), or 2Eg(q).A1(¢).(g + 1). As before, the number of classes of
each centralizer type can be obtained by dividing entries of the last five columns of Table [A.5]
by 2. The central torus factor has only the trivial character as a unipotent character, and in
addition to the trivial character, the A;(q) factor has a unipotent character v of degree ¢ (see [4]
p. 465]). Therefore, as in the proof of Lemma 5.1, Cg«(s)"" has unipotent characters that have
the same character values as E;[¢], Er[—¢], E7[€] ® v, and E7[—¢] @ v, Egl0], Eg[0?], Es[f] @ v,
and Eg[0°%] ® v, or 2Eg[0], 2Es[0?], 2Fs[0] ® v, and 2Eg[0?] ® v, none of which is real-valued.
It follows from Lemma that the characters of Eg(q) with Jordan decomposition (s, E7[¢]),
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(s, E7[=£)), (s, Ex[§]®@v), or (s, Ex[-&]@v), (s, El0)), (s, Esl]), (s, Es[]@v), or (s, Es[0] @v),
or (s,2Eg[0]), (s,2E6[02)), (s,2Es[0]@v), or (s,2Fg[#?*] @ v) are not real-valued, and are complex
conjugate pairs as (s) varies over these semisimple classes of G*F™".

Finally, when ¢ = 1,4 mod 6, G*/"" has a semisimple class (s) such that Cg«(s)"" is of type
Fe(q).A2(q), and when ¢ = 2,5 mod 6, G*f'" has a semisimple class (s) such that Cg=«(s)f"
is of type 2Eg(q).2A2(q). The As(q) factor has unipotent characters of degree 1, q(q + 1),
and ¢, and the 2A5(q) factor has unipotent characters of degree 1, ¢(q — 1), and ¢* (see [4,
p. 465]). Therefore, Cg~(s)"" has unipotent characters that have the same character values as
the cuspidal unipotent characters Fg[f] and Eg[62], or 2Eg[f] and 2Eg[6?], as well as the tensor
product of these characters with the other unipotent characters of As(q) or 2A45(q), each of
which are characters which are not real-valued. As above, the resulting six characters of Eg(q)
(provided g # 3 mod 6) are not real-valued.

To complete the proof, we observe that the sum of the degrees of the aforementioned charac-
ters that are not real-valued, given in the fourth column of Table[A.5] together with the number
of involutions provided in Table [AL3] is equal to the total sum of the degrees of all irreducible
characters of Eg(q), which is given in Table[A.2l From the Frobenius-Schur involution count, it
follows that e(x) = 1 for all real-valued irreducible characters x of Eg(q). The total number of
characters which are not real-valued is obtained by summing the entries in the last five columns
of Table O

7 Remarks on remaining cases

We expect that a statement similar to Theorem [6.1] holds for the simple group E7(q). If E7(q)sc
is distinct from E7(q)aq (when ¢ is odd), then for GF' = E;(q)s., the group G has disconnected
center of order 2, and E;(q) is the quotient of E;(q)sc by its center. Then the results in Theorem
B.I and Lemma are not known to hold in this case, which is one obstruction. As mentioned
in the Remark at the end of [43], we also expect that Theorem [B.I] holds more generally than
when Z(G) is connected, namely it should hold for Lusztig series in cases when Cg=(s) is
connected (while Z(G) is not necessarily connected). However, it seems that also FE7(q)sc has
characters which are not real-valued in Lusztig series in cases when Cg+(s) is disconnected with
two components, but more information on the action on Jordan decomposition in this case is
needed. It appears from numerical investigation that for E7(q)sc with ¢ odd that a real-valued
character has Frobenius—Schur indicator 1 if and only if its central character is trivial. To prove
this, one needs to show that the sum of the degrees of the real-valued irreducible characters of
E7(q)sc is equal to the number of elements which square to the non-trivial central element. Once
this result is proved, it will follow for the simple group E7(q) that every real-valued irreducible
character of Er(q) will have Frobenius—Schur indicator 1, since E7(q) is a quotient of F7(q)sc by
its center. We note that our results for £7(q)aq are not enough to draw these conclusions for the
index 2 simple group Fr(q), since we do not have enough information to rule out the possibility
that an irreducible character of F;(q),q which is not real-valued could restrict to E7(q) to give
a character with a component with Frobenius—Schur indicator —1.

As in the beginning of the previous section, it is helpful that every semisimple class of the
groups F7(q)sc, F7(q)ada, and Fg(q) is real. This is not true in the groups Eg(q)aq, Ee6(q)sc,
2E6(q)ad, or 2E(;(q)sc. So a first necessary step in understanding these cases is to classify the
semisimple classes in these groups which are real. Additionally, it appears that there are some
real semsimple classes (s) of G*f" = Fg(q)sc such that the Lusztig series £(GF', s) has characters
which are not real-valued, while Cg-(s) has a factor of type D4. In particular, as in [46, Lemma
1.64] there are unipotent characters of groups of type Ds, which are not invariant under the
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order 2 graph automorphism. Then our Lemma does not apply, and one needs more specific
information on the action of the inverting element of the real semisimple element s in order to
apply Theorem 5.1l and prove specific characters are not real-valued. Also, in the cases that
Es(q)sc has a center of order 3, there are Lusztig series such that Cg~(s) is disconnected with
3 components. It seems plausible that the fact that the number of components is odd will be
enough for the conclusions of Lemma to still hold. Finally, it has been proved by Ohmori
[37] that the group 2Eg(q) has at least two characters which have Frobenius-Schur indicator —1.
It may be observed by its character table that the group 2FEg(2) has 3 irreducible characters
with this property, and so we must also understand the total number of such characters in the
general case. We hope to address all of these issues in a subsequent paper, and complete the
problem of determining the Frobenius—Schur indicators of all irreducible characters of the finite
exceptional groups.
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A Tables

In Table[AJl we list some class multiplication coefficients for the group G3(q) where g is even or
a power of 3, proving that every real class is strongly real. When ¢ is even, G2(¢q) has two classes
of involutions, labeled as class type 2 and class type 8 in CHEVIE, and two non-real classes, class
type 12 and class type 13. When ¢ is a power of 3, G3(q) has one class of involutions, class type
10, and two non-real classes, class type 8 and class type 9. To compute the class multiplication
coefficient nq93 for the group G, where the conjugacy classes C7, Co, C3 are labeled as class type
i, class type j, class type k in CHEVIE, we use the sequence of commands

> GenCharTab(G);
> ClassMult(g,i,j,k);

As all class multiplication coefficients are positive for all relevant ¢ in the second, third, and
fifth columns, every real element is a product of two involutions when ¢ is even or a power of 3.

Table A.1: Class Multiplication Coefficients of G2(q)

14

Class Triple | ClassMult_G2.01(¢, 5, k) | ClassMult_G2.02(i, j, k) | Class Triple | ClassMult_G2.10(¢, j, k)
(1,7, k) g even, ¢ = 1 mod 3 q even, ¢ = 2 mod 3 (1,7, k) ¢=0mod 3
(3,3,1) ¢ - ¢ ¢ — ¢ (10,10,1) ¢+ +4
(3,3,2) C+d' - -7 R e (10,10,2) ¢ +4q
(2,3,3) C+¢—qg-1 C+e—qg—1 (10,10, 3) ¢ +q*
(3,3,4) 4¢3 — ¢* + 6q 4¢3 — ¢ + 4q (10,10,4) q*
(3,3,5) 203 — ¢° 2¢° — >+ 2 (10,10,5) 243
(2,3,6) ?—q ?+q (10,10, 6) 243
(2,3,7) 2q 2q (10,10,7) 3q°
(3,3,8) 2q2 2¢> (10,10, 10) ¢+ ¢
(3:3,9) q - q ¢+ (10,10,11) ¢ +q
(3,3, 10) @ - @+ ¢ (10, 10, 12) @+
(3,3,11) 3¢° 3¢2 (10,10, 13) 2¢°
(3,3,14) @ — ¢ @ — ¢ (10,10, 14) 2¢°
(3,3,15) q2 —4q qa —q (10,10,15) q3 - q2
(3,3,16) C—¢—q+1 - —q+1 (10,10, 16) @ —q
(2,3,17) g—1 g—1 (10,10,17) @ — ¢
(3,3,18) @ —2q+1 @ —2+1 (10,10, 18) P —q
(3,3,19) @ +q? @+ (10, 10, 19) @+
(3,3,20) P +q @ +q (10, 10, 20) P +q
(3,3,21) C+¢—qg-1 Ct+e¢—qg—1 (10, 10, 21) e+
(2,3,22) q+1 g+1 (10, 10, 22) @ +q
(3,3,23) @ +2q+1 @ +2q+1 (10,10, 23) @ —2q+1
(3,3,24) ¢ -1 ¢ -1 (10, 10, 24) ¢ -1
(3,3,25) -1 ¢ -1 (10,10, 25) ¢ -1
(3,3,26) @ +q+1 @ +q+1 (10, 10, 26) @ +2¢+1
(3,3,27) @ —q+1 @ —q+1 (10, 10, 27) +q+1

(10,10, 28) @ —q+1




In Table[A.2], the sums of the character degrees of the relevant exceptional groups are listed
as polynomials in g. These are all computed directly from the data of Liibeck [29]. While the
lists of character degrees given in [29] for F7(q)a.q depend on ¢ mod 12, and for Eg(q) depend

on ¢ mod 60, the character degree sums depend only on the parity of ¢.

Table A.2: Character Degree Sums

F4(q),qeven q28+q26+q24+q22+ 1q20 §q18 %qlﬁ §q14+2 22 10+2q 7;q6+%q4
F4(q),q0dd 28+q26+2q24+2q22+ 19 20 éq18 5 16+§q14+ 12+ 1 10+dq8 §q6+%q4+1

PRUe?). g = 22

0 —3v2¢° + V2¢" — 2¢° +fq+ \fq

3 q26_,’_\/_q25+q24 \/_q23+q22 \/—q21+ 4 20+3\/—q19
—2¢'8 — /217 + 2416 — 3,/2¢15 — g4 Jr3\/§q13 8 q'2 + V2"

q + q66 4 q64 T q62 + q60 i q58 i %qiﬂ 4q5u + q qul i q
127((])11(17 19 47 + 8q46 55 45 + 14q44 21(]43 + 23(]42 7() 41 + 29q40
q even 131 37 + 4 134 do 4 48(]34

“'47(]2% 135 27 4 411]26 115 25 4 35q24
+13q18 238 17 + 7q16 _ 6q15 + 4q14 _ 2q13 + 2q12

q

16 49 +5q48
1g1 39+37q38

lgl 35_,’_01(]32 02(]31 +51q30 1§0q29
86 25 4 26(]22 _ 24(]21 + 19q20 49q19

11

+103¢%0 — 28042 1 93¢%8 — 92¢%7 + 82¢% — 74q2’ + 70¢** —
+38q20 _ 30q19 +26q18 56 17 4 14q16 40 15 +8q14

q70 +q66 + 2q64 + 3q62 +4q60 T 6q58 1 §q57 4 7q56 _ _q55 T 10q54 T 12q52 8 51

34
E7(q)ada +15(]50 28 4) + 24(]48 38q47 4 31q46 26(]45 + 41(]44 40(]43 + 58q42 50q41
q odd +68q40 _ 70q39 4 81q38 84q37 4 95q36 268 35 4 99q34 3§0q33 4 103q32 _ %q31

58¢% +52¢%% — 50¢*!
8 13+4q12 2q11_%q9+§

" +1

128+q124+q122+q120+q118+q116+ Z 115 Zq113+2 112
q

1798q89+ 6653 88 — 1735 87+ 4236 86 903(]85-‘1- 5373 84

10 4
%225 49+2247q48 ()3328q47+ 13691 46 5416 45+ 8536 44

q
1308(]41 + 1118081 q40 148 39 + 4986(]38 23’52 q37 4 3788 37588 36 _
1457q33 + 4323 32

9352q57 + 31093 56 9184q55 + 14671 54

+2q14 7 13+ 2q11

+108q98 338 97+173q96 _225q95+ 20(6)1 94 2597q93+ 3(3)(1)7 92 12359 9l+49

2 é 111+ 110+3q108
236 107+10(]106 13q105+ 203 104 24q103 176 102 173 101+ 677 100 248 99

34
5q90

1219q83+b541 82

1408q81 4 156 1703q79+ 9158 78 62329q77+ 1 556 76 2200(]75 4 3;881 74
Es(q), 7522 75 +2626q72 83309 71 4 14%69(]70 8660 69 4 15 57q()8 9374 ()7+ 15831 66
q even 3253q65 + 326083 64 3236q63 + 16513 62 _ 1 006 61 + 16474q60 857 59 + 16098 58

3 5
13687 12464
2851q53+ ¢ 2575q51 + 128850
1601q43+ 71578 42
1966 35 | 2861 34
5 =3 =3 ¢+t q
4323 1139 31+303q30 49 29 | 21(1)7(128 4ggq27+ 1401 26
88¢24 — 64q23+50q22 35¢%1 + 277q2o 70q19+ 56,418 7q17+ 73

5.
q 359 q25+
16 3qlo

q128 +q124 +q122 + 2q120 +2q118 +3q116 % 115 +3q114 _ §q113 +

349
423 99 4 189¢%8 — 652 ¢ + 298¢% 10399q95+ 4411 04

2168 91 + 872q90 _ 1031q89 + 11785q88 3951 87 + 7626q86 5110

4 1167q100

q

q odd 18200 q67 + 30966 66 _ 19079 79 q65 + 64433 q64 19 q

. q 3

6589q09 + 322}68 58 6377q)7 + 63393(] 56 1831

16246 g1 + 26119 450 _ 15100 49+4747q48 3§

_3441q43+ 15703 42 $509 41 + 2626140 _ m 39 10 21q38
451085 0%26 B — 34363 33 10083 32—

3 5 St e v
1289 27+ 3511 20

q

1196 18 27q17+ 203 16 40 15+8q14

J’_
q J+ 019 qo4 1721 q
AT 4 4

2624 31+732q30 185% 29+ 5167 28

4q13+2q127(]117%q9+§q7+1

6q112 2q111

+6q110+11q108 532 107+20q106 19q10a+d%§ 104 _ 109 ,103 526 102 2?9 101

508q93 _'_%6347 92

10
85 + 9703 q84

3 5
72184(]83«# 11956 82 2593(]81 + 28 1 80 3139q79+ 17063q78 11%58 77+ 19%96 76
Eg(q), 4167q75 4 44 0)1 q74 14248 q73 + 5002q72 15 821 71 + 27 99q70 16 37q69 4 29382 68

3 o5
2%33 62 19900q61 + 32999 60

q
283587

45 18§)1 g

5842 37+ 8593 36

5 4

U‘
>Q

288q20+228q24 523 25+136q22 3§7 211% 20 iom 19

3 4
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In Table [A.3] we list the number of involutions in each group as a polynomial in q. These
can be computed when ¢ is even using [1], and when ¢ is odd using [27]. These results are also
summarized in [3].

Table A.3: Numbers of Involutions

E7(q)ad, ¢ even 470 1+ ¢% £ % 1 ¢B2 1 ¢ 1 ¢ 1 P — 2
L0 gt g6 M A2 A0 4 032 4 028
E7(q)ad,  0dd | ¢ +¢%° +2¢% + 3¢5 + 4¢%° + 6¢™ + 7¢°° + 10¢°* + 10¢°% + 11¢°° + 12¢™
_|_11q46 + 11q44 + 10q42 +8q40 +7q38 +5q36 +3C]34 +3q32 _|_q30 +q28 +1
Es(q), q even B+ g2 2 0 T8 116 9 T2 | (106 _ T04
— 2% — % —2g92 _ 088 _ 86 _ 9482 _ 4T6 4 T4 | 468 4 62 1 58

B 1+ g2 g2 1 2¢™0 1 24118 134T0 1 34710 1 64712 1 5110
Es(q), q odd +7¢"% + 8¢'%0 +9¢'% + 104" 4 124" + 11¢”® + 14¢” + 13¢™

+14q92 + 14(]90 + 14q88 + 13(]86 + 14(]84 + 11(]82 + 12(]80 + 10q78

_|_9q76 +8q74 _|_7q72 _|_5q70 _|_5q68 +3q66 _|_3q64 +2q62 _|_q60 +q58 +q56 +1

In Tables and [A.5], we list the degrees of the non-real characters of the groups E7(q)aq
and Eg(q). We write these degrees in terms of the cyclotomic polynomials ®,,, defined recursively
by ®; =¢—1 and

o, — -1
P;

i|n,1<i<n

As described in Section [6] these non-real characters y have a Jordan decomposition (s, ), where
1 is a (non-real) character of C.r(s) for some semisimple s € G*I. In the first two columns,
we list these centralizers and the p/-part of their index in G*¥"". The structure of the centralizer
in the first column is given in terms of the types of the simple algebraic group factors, along with
any central torus factor, where a polynomial in ¢ represents a torus of that order. In the third
column, we list the degrees ¥(1), and as x(1) = [G*I" : Cgr+(8)]p(1), we obtain the degrees
x(1) listed in the fourth column. In the remaining columns, we list the number of non-real
characters of each degree, which depends on g¢.

Note that in Table [A.5], while the number of non-real characters of each degree depends on
g mod 6, the total number of non-real characters of Fg(q) depends only on whether ¢ is a power
of 2, a power of 3, or a power of some other prime.

Table A.4: Non-real characters of E7(q)aq

Centralizer Cg. r+ () [G*F* : Cg.r(5)]y | Degree of non-real unipotent in Ci.r+(s) Degree of non-real in E7(q)ad q even | ¢ odd

E7((1> 1 %qllq)[)q)gq)lgq)gfb']fb‘ (I)g(l’z %I]11<I)5q>9(1)12<1>8<1)7(1>§(b§‘1)z 2 4

Eq(q) 1 307 0sD19P5 P14 7 DIDVDT 30 D19 P5 P14 D7 PIDVDT 2 4

Eq(q) 1 3¢50 P51 D7 P14 DT PEPT 205D D519 D7 P14 D3PS DT 2 4
Es(q)-(¢ — 1) P3P P10 P14 P1s 1¢"29DI P35 g 17 P8DIDIP5 D7 PsD10P1alis | ¢—2 | ¢—3
2Ee(q)-(g +1) PID3P5 PPy P 1y 171 P§PIPs D10 10 ISP PIP; D7 PPy P19 P1s q q—1
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Table A.5: Non-real characters of Eg(q)

Centralizer C.r+ (s)

[G*F* : Caur (8)ly

Degree of non-real unipotent in Cq.r+(5)

Eg( ) 1 %qn@z@%@i@g@ﬂﬁgégé%Z@w@20@24
Fs(q) 1 20T PIDIPID; DT P DT, P15 P20 Pas
Es(q) 1 3¢ PIPTPIPZID  DIDT D114 P20 Pas
Fs(q) 1 30 PTPTDI DD DI D14 P15P20 P30
Fs(q) 1 22 OV RSDIPZD; DFDT P14 P15 P20 P30
Es(q) 1 L5050 020, 0307,$12P 14 P Pos
Es(q) 1 %Q}ﬁ1’?4)3@34’%@7@%@%0@14@15@18‘1’20‘1’24
Fs(q) 1 2000 PTDIPIDZD PLDT P12P 14 P15P20 P30
Eg(q) 1 %q16(1)5‘15(Dg@?%@34,%@7@%@9@%2@14@18@24
Eg(q) 1 %qwq)?@g@g@ﬁ@g@7@%@9@%0‘512@14‘1’15@20
Es(q) 1 £ 0T PTDIPZD7 DT P DT P14 P20 P21 P30
FEs(q) 1 10" 0T PEDIDZDID Do DT P14 P15P15P30
FEq(q).A1(q) P30T P5 P PsP10P12P15P20 P24 P30 3¢ PFPIDTP5 D D7 PsP1oP14Pis
Er(q)-A1(q) D302 D5PPgP10D12P15P20P21Pso 30T 059D 1205 D7 DI PID]
Er(q)-Ai(q) D3PI P5 P PsP10P12P15P20 P24 P30 1q 0P D517 P14 DT RIS
Er(q)-A1(q) P3P7P5 P PsP10P12P15P20 P24 P30 1 PIPIDT P D D7 PsP1oP14Pis
Er(q)-A1(q) D30705 PP P10P12P15P20 Pas P30 3G 205D 1P P7 DI PED]
Er(q)-A1(q) D307 D5 PP P10P12P15P20 s P30 3¢ 05 P5 D19 Pr P14 DT DT
E7(q).(¢—1) Dy P3PFP5 P PsP10P12P15P20P2s P30 14 PIPIDT P D D7 PsP1oP14Pis
Er(g)-(g—1) Dy P3P P5 P PsP10P12P15P20P2s P30 301 @5 PP P D7 PIOIPT
Eqr(g).(¢—=1) DyP3PT PP PsP10P12P15P20P2uPso 2" 0055 D19 P P14 PP PT
E7(q)-(¢+1) D1 P3P P5 P PsP10P12P15Po0Pas P30 1¢ PIPTDTP5 D D7 PsP10P14Pis
E7(q)-(¢+1) D1 P3P7P5PcPsP10P12P15P20 P2 P30 3 T 059D 1205 P7 DI P5DT
E?( )-(¢+1) D1 P3P P5 P PsP10P12P15P20Pos P30 3¢ 0P D517 P14 PTPT DS
Es(q)-A2(q) P30T D5 D7D PP P12P14P15P13P20P2uPs0 1" 20P] 0I5 Dy
FEs(q)-A2(q) B30T D5 D57 PP P12P14P15P13P20 P24 Pao 30 PTPI TP Dy
FEg(q).A2(q) PIDID; D27 PP, D19D14P15P15Dop P2y P30 2¢OV P] TP Dy
*Es(q).* Aa(q) PIDOIPIPER PPy P10P12P14P15P20 P24 P30 34 PIPSPI PPy
*Eg(q)-*As(q) PIDPIPIDEP7 PPy P10 P12P14P15P20 P24 P30 1P} PFDT PPy
*Eg(q)-*As(q) P33T DD PP D19P12P14P15P20 P21 P30 2001 P5DT P3P
Es(q).A1(q)-(¢ = 1) P33T D5 P2D7 DD P19 P14 P15 P15 P20 P2 P30 1" PTP]PTP; Dy
Es(q)-A1(q)-(¢ — 1) | 303305050207 PD?P12P14P15P15P20P2uPs0 ;q8¢6¢4¢2¢5‘1’8
*Es(q)-A1(q)-(¢+ 1) PIDIDIDEDP7 PP P19P12P14P15 P20 P2s P30 1 P15 PIPs D1
*Es(q)-A1(q)-(¢+ 1) PIDIDIDEDP7 PP P19P12P14P15 P20 P2s P30 3P PTRSPIDsDy
Es(q)-(¢ — 1) P3PPI D5 P2D7 Py D7 P12 P14 P15 P15 P20 P2 P30 ,q7‘1’6<1’4‘1)2‘1>5‘1’s
Es(q)-(¢* — 1) D1 D33 DID; DD Dy DT D12D14D15P 18P0 P2y P3o 3¢ PTP]DTP; Dy
*Es(q).(¢* — 1) PP D3PI PP D7 P PoP10P12P14P15P20P21P30 14" 2105 Ps Do
*Ee(q)-(¢* —q+1) P1PIDIDIPED P PgP19P10P14P15P20P2u P30 3¢ P15 PIDs D1
Es(q)-(¢> +q+1) PIDIDTD;P2D; D5 DFP12P14P15P13Pa0 P21 P30 1" P9P] TP Dy

*Eg(q).(¢ +1)°

P1PIPIPID P P PP 1o P12P14P15P20P2uPso

14721 05TPg Dy
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Degree of non-real in Eg(q)

q=1mod6

q=2mod 6

q=3mod 6

q=4mod6

q =5 mod 6
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