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SOLUTIONS TO TWISTED WORD EQUATIONS AND

EQUATIONS IN VIRTUALLY FREE GROUPS

VOLKER DIEKERT AND MURRAY ELDER

Abstract. It is well known that the problem solving equations in virtually
free groups can be reduced to the problem of solving twisted word equations
with regular constraints over free monoids with involution. In this paper we

prove that the set of all solutions of a twisted word equation is an EDT0L
language whose specification can be computed in PSPACE. Within the same
complexity bound we can decide whether the solution set is empty, finite, or
infinite.

In the second part of the paper we apply the results for twisted equations
to obtain in PSPACE an EDT0L description of the solution set of equations
with rational constraints for finitely generated virtually free groups in stan-
dard normal forms with respect to a natural set of generators. If the rational
constraints are given by a homomorphism into a fixed (or “small enough”)
finite monoid, then our algorithms can be implemented in NSPACE(n2 log n),
that is, in quasi-quadratic nondeterministic space.

Our results generalize the work by Lohrey and Sénizergues (ICALP 2006)
and Dahmani and Guirardel (J. of Topology 2010) with respect to both com-
plexity and expressive power. Neither paper gave any concrete complexity
bound and the results in these papers are stated for subsets of solutions only,
whereas our results concern all solutions.

2010 Mathematics Subject Classification: 03D05, 20F65, 20F70, 68Q25, 68Q45.
Keywords: Equation in a virtually free group, twisted equation, EDT0L lan-
guage, PSPACE.

Introduction

For a given semigroup S the decision problem WordEquation is the following:
on input two words U and V in variables together with letters from a generating set
Σ ⊆ S, decide whether or not there exists a substitution σ of variables by elements
in S which yields a true identity σ(U) = σ(V ) in S. Here, σ is extended by σ(s) = s
for all s ∈ Σ.

In a seminal paper [36] Makanin showed that WordEquation is decidable for
free semigroups. The first complexity estimation of the problem was a tower of
several exponential functions, but this dropped down to PSPACE by Plandowski
[43] using compression. The insight that long solutions of word equations can be
efficiently compressed is due to [44] which also led to the still standing conjecture
that WordEquation is NP-complete for free semigroups (and free groups). Until
2013 the known decidability proofs for solving word equations were long and tech-
nical with an accompanied reputation for being difficult. This changed drastically
when Jeż applied his recompression technique: he presented an NSPACE(n logn)
algorithm to solve word equations [26]1. Actually his method achieves more: it
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1In [27] Jeż improved the complexity to NSPACE(n).
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describes all solutions, copes with rational constraints (which is essential in appli-
cations), it extends to free groups, and to free monoids with involution [11]. Refining
Jeż’s method, Ciobanu and the present authors showed that the full solution set of a
given word equation over a free monoid with involution with rational constraints is
EDT0L [5]. As a consequence, the same is true in free monoids without involution
and for free groups where the constraints are used to ensure that solutions are given
by reduced words. Previously this was only known for quadratic word equations
[17]. EDT0L languages are defined by a certain type of Lindenmayer system. There
is a vast literature on Lindenmayer systems, see [49], but all we need here is that
an EDT0L language is specified by a nondeterministic finite automaton accepting
endomorphisms over a free monoid and by some initial word. Applying the set of
accepted endomorphisms to the initial word yields the language.

The original motivation for [5] was to prove that the full solution set in reduced
words of equations in free groups is an indexed language, a problem which was open
at that time [18, 25]. However, the result in [5] is stronger since EDT0L forms a
strict subclass of indexed languages [15].

Transfer results as in [22, 5] from words to free groups have a long history. In
the 1980s Makanin showed that the existential and positive theories of free groups
are decidable [37]. In 1987 Razborov gave a description of all solutions for an
equation in a free group via “Makanin-Razborov” diagrams [45, 46] which formed
a cornerstone in the work of Kharlampovich/Myasnikov [30] and Sela [51] on the
positive solution of Tarski’s conjectures about the elementary theory in free groups.

The motivation for the present paper is along this line. We show that given a
finitely generated virtually free group G there is an NSPACE(n2 logn) algorithm
which produces for a given equation with (small) rational constraints an effective
description of an EDT0L language which describes the solution set in standard
normal forms over a natural set of generators. Moreover, the same complexity is
enough to decide whether the solution set is empty, finite or infinite. No PSPACE

algorithm, in fact no concrete complexity bound was known for deciding emptiness
before.

In this paper, we define an NSPACE(s(n)) algorithm to be a partially defined
single-valued function f computed by a nondeterministic Turing machine consisting
of three tapes: a one-way-read-only input tape, a two-way-read-write work tape,
and a one-way-write-only output tape. If the length of the word written on the input
tape is n, the work tape is restricted to having length s(n). If the machine halts on
input w at some point, then the contents w′ on the output tape satisfies w′ = f(w).
In general such a device might specify a partially defined multi-valued function,
where several outputs are possible from the same input. However, in our case,
we require that the output is unique. The domain of the partially defined func-
tion f computed by the machine is the halting set of the machine, and for each
w in the domain there is a single output f(w). This is the standard definition
of a nondeterministic transducer which computes partially defined single-valued
function. For nondeterministic polynomial time, formal definitions go back to [4];
see also [52, 53]. It is clear that this formalism applies to other nondeterministic
complexity classes as well. Every NSPACE(s(n)) transducer can be simulated by a
deterministic transducer using at most working space s(n)2 (Savitch’s Theorem),
and also by a deterministic Turing machine which uses a time bound in 2O(s(n)),
see [42] for more details. Thus, every PSPACE algorithm can be implemented such
that it runs in deterministic singly exponential time 2poly(n).

Several remarks are in order here, which point to some additional difficulties
in our framework. First, in general virtually free groups have torsion, which is a
serious obstacle to applying the known techniques. The reason to study virtually
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free groups is motivated by the ubiquitous presence of word hyperbolic groups [20].
Solving equations in torsion-free hyperbolic groups reduces to solving equations
in free groups [48], but solving equations in word hyperbolic groups with torsion
reduces to solving equations in virtually free groups which in turn reduces to solv-
ing twisted word equations with rational constraints [7]. The question of whether
solving twisted word equations is decidable was asked by Makanin ([38] Problem
10.26(b)). It was solved in [7], thereby showing that the set of solvable equations
over a f.g. virtually free group is decidable. This result was also independently
shown by Lohrey and Sénizergues [35]. (Actually, [35] proves a more general trans-
fer result.) What is in common: both papers are based on [10] and use explicitly
([35] only implicitly due to [10]) the so-called “exponent of periodicity”. Because of
this neither paper describes all solutions, nor gives any concrete complexity bounds.

The result for virtually free groups is obtained by a reduction to the problem
to describe the solution sets of twisted word equations with regular constraints,
following standard techniques. So, the main new contribution is our approach to
solving twisted word equations. We follow the approach in [5] to define a sound
and complete algorithm to produce an NFA A describing all solutions, however in
the setting of twisted equations the technical details are quite far from previous
methods. For example, for readers familiar with previous methods, in twisted
equations it does not make sense to “uncross” pairs ab where a, b are different letters
because once all pairs ab are uncrossed the twisting may produce new crossing pairs
ba, uncrossing them leads to new crossing pairs ab etc. Thus, our underlying method
is quite different from the original recompression due to Jeż.

The class of f.g. virtually free groups appears in many different ways. For exam-
ple, a fundamental theorem of Muller and Schupp (relying originally on [14]) says
that a f.g. group is virtually free if and only if it is context-free [40]. This means
that, given any set of monoid generatorsA, the set of words w ∈ A∗ which represent
1 ∈ V forms a context-free language. Other characterizations include: (1) funda-
mental groups of finite graphs of finite groups [29], (2) f.g. groups having a Cayley
graph with finite treewidth [32], (3) universal groups of finite pregroups [47], (4)
groups having a finite presentation by some geodesic string rewriting system [19],
and (5) f.g. groups having a Cayley graph with decidable monadic second-order
theory [32]. Proofs for the most important equivalences are in [13]. The transfor-
mations are effective. For example, starting from a context-free grammar for the
word problem, we can construct a representation as a fundamental group of finite
graphs of finite groups. However, the finite graphs of finite groups can be much
larger than the size of the context-free grammar: the result in [54] showed a prim-
itive recursive bound on the blow-up. It was only very recently that Sénizergues
and Weiß showed in [56] that the blow-up can be bounded by a doubly exponential
function.

What we use here is another characterization which is proved in [13, Sec. 2.4.5].
It follows rather easily from Bass-Serre theory [57] and the representation of a
f.g. virtually free group as a fundamental group of finite graphs of finite groups.
The characterization says that a f.g. group G is virtually free if and only if it has an
effective embedding into a semi-direct product of a free group F with basis E+ by
a finite group H which acts by permutations on the symmetric set E = E+ ∪E−1

+ .
(The precise statement is in Proposition 14.7.) Taking this characterization as a
black box, no knowledge in Bass-Serre theory is required to understand our results.

An extended abstract of a preliminary version of this paper was presented at the
conference ICALP 2017, Warsaw (Poland), 10-14 July 2017 [9]. Ciobanu and the
second author have now extended the results of the present paper to show solutions
to equations in any hyperbolic group are EDT0L with description in PSPACE [6].
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1. Organization of the paper

1.1. The overall structure. The paper has two main and separate parts. In a
first part we deal the following algorithmic problem. The input is a system S of
twisted word equations with regular constraints over a free monoid (with involution)
A∗. The “twist” comes from a finite group H acting on A∗. We present a PSPACE

algorithm which constructs an NFA AS which gives a description of the set of all so-
lutions as an EDT0L language. Structural properties of the NFA AS tell us whether
the set of all solutions is empty, finite, or infinite. Precise complexity bounds are dis-
cussed in Section 4.2, and under certain assumptions on the size of the regular con-
straints, we prove the entire algorithm can be done in NSPACE(|H |n2 log |A| log n)
where n denotes the input size of S, and when |A| and |H | are constants, this
becomes quasi-quadratic nondeterministic space NSPACE(n2 logn).

In a second part we apply our results on twisted word equations to the existential
theory of equations with rational constraints over finitely generated virtually free
groups. From the algorithmic viewpoint we deal with a non-uniform complexity
where the virtually free group G is not part of the input. (This allows us to assume
that G is embedded into a semi-direct product of a free group F by a finite group
H , where the rank of F and the size of H are constants.) The input is a Boolean
formula Φ in free variables over equations and rational constraints for the solution
specified by NFAs which accepts subsets of G. The output is a specification of the
set of all solutions in standard normal forms for Φ as an EDT0L language. The
proof is a reduction to the setting in the first part. The result is in the same overall
complexity as in the first part when taking into account that H , F and A are not
part of the input.

In the final section we perform this reduction explicitly for the special linear
group SL(2,Z) (without relying on any knowledge of Bass-Serre theory) starting
with the well-known classical fact that SL(2,Z) can be embedded in semi-direct
product of a free group of rank 2 (its commutator subgroup) by the finite cyclic
group Z/12Z. A priori, there could be an exponential blow-up in the complexity
due to fact that we use matrices and not a word representation when describing
equations over SL(2,Z). However, there is no such blow-up thanks to work of
Gurevich and Schupp [21].

1.2. Technical details. We assume that the reader is familiar with some basic
facts in combinatorics on words, formal languages and finite automata, and com-
plexity theory. Apart from that (and the promise that a finitely generated (f.g. for
short) virtually free group admits an embedding into a certain semi-direct product
of a free group F by a finite group H) the paper is self-contained. In principle,
it is not necessary that the reader has ever heard of Makanin, word equations, or
any method to solve them before. The paper uses various technical tools where
the authors would have preferred to give references in the literature rather than
lengthy and somewhat pedestrian constructions, but failed to find the appropriate
references.

The heart of the paper is Jeż’s compression method in the framework of twisted
equations: Section 10 and Section 11. The adaption to the twisted setting is far
from trivial and quite different from the original method in [26] or its extension to
free groups as in [11] or [5]. Therefore to understand Sections 10 and 11 is the most
demanding part when reading the paper.

Many of the technicalities surrounding NSPACE complexity can be overlooked if
the reader is happy enough to replace the explicit complexity bounds by PSPACE.
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2. Preliminaries

We use standard notation. If A and B are sets, then A ⊆ B means set inclusion,
while A  B means A ⊆ B ∧ A 6= B. By A \ B we denote the set of a ∈ A which
are not in B. By BA we mean the set of mappings from A to B, and 2A denotes
the power set of A, that is, 2A = {B | B ⊆ A}. We also view 2A as a commutative
and idempotent monoid.
B = ({0, 1},max, ·, 0, 1), denotes the Boolean semi-ring, N (resp. Z) denotes the

semi-ring of natural numbers, (resp. the ring of integers). N is also the free monoid
and Z is the free group in one generator.

Monoids (resp. groups) will typically be denoted by M and N (resp. by G and
H). If the focus is on finite monoids (resp. finite groups), then we use the notation
N (resp. H). With a few exceptions (like N or Z) we denote the identity element in
monoids by 1. A zero in a monoid M is an element 0 ∈ M such that 0x = x0 = 0
for all x ∈ M . If a zero exists, it is unique. Nontrivial groups cannot have a zero.

Let M be a monoid and u, v ∈ M . We say that u is a factor of v if we can write
v = xuy for some x, y ∈ M . If we can write v = uy (resp. v = xu), then we say
that u is a prefix (resp. suffix) of v. If u is a prefix of v, then we also write u 6 v.

2.1. Complexity. The O-notation and complexity classes like P, NP, NSPACE(s(n)),
PSPACE are defined as in standard textbooks ([24, 42]), see also page 2. We use
a convention that log(m) = max{1, log2(m)}. Throughout we use the well-known
fact due to Immerman-Szelepcsényi that NSPACE(s(n)) is closed under comple-
mentation. Note that any statement about complexity depends on how the input
is given. A statement like “factorization is not known to be in P” makes sense
only if the encoding of the problem and a notion of input size has been defined. If
integers are encoded in unary, then, trivially, “factorization is in P” is true. Typi-
cally, inputs have various parameters. If certain parameters of the input are fixed,
then with respect to the input size these parameters behave as constants. Still,
for many problems P it is more accurate to use parametrized inputs, where the
input size is tuple of non-negative numbers: ‖P‖ = (p1, . . . , pk) with k > 1. If
P is such a problem, then with respect to polynomial resource bounds we view P
as a one-parameter problem of input size n = 1 + p1 + · · · + pk. The notation is
robust: every polynomial in (1 + p1)ℓ · · · (1 + pk)

ℓ is also a polynomial in n for all
ℓ > 1. Throughout, we take care to define our input sizes (of systems of equations,
or Boolean formulae, with regular constraints) in a natural way.

2.2. Sets and monoids with involution. An involution of a set is a bijection
x 7→ x such that x = x for all x in the set. The identity map is an involution. A
monoid with involution additionally has to satisfy xy = y x. This implies 1 = 1 and
0 = 0 (in case there is a zero). If G is a group, then it is a monoid with involution
by taking g = g−1 for all g ∈ G. By default, we choose g to be g−1 in groups.

A morphism between sets with involution is a mapping respecting the involution.
A morphism between monoids with involution is a homomorphism ϕ : M → M ′

such that ϕ(x) = ϕ(x). Note that every group homomorphism is a morphism of
monoids with involution. The set of automorphisms on a set (or monoid) M forms
the group Aut(M). For ∆ ⊆ M ∩M ′ we say that ϕ : M → M ′ is a ∆-morphism if
ϕ(x) = x for all x ∈ ∆.

2.3. Group actions and H-monoids. Recall that a groupH acts on a set Σ (with
involution) via a homomorphism ψ : H → Aut(Σ). That is, ψ defines a permutation
x 7→ g·xwith 1·x = x, f ·(g·x) = (fg)·x (and f ·x = f · x) for all f, g ∈ H and x ∈ Σ.
Thus, every g ∈ H defines a permutation of Σ (which respects the involution). The
stabilizer of x ∈ Σ is the subgroup Hx = {g ∈ H | g · x = x}. Frequently, we also
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write g(x) as a synonym for g · x. If H acts on a monoid M , then we additionally
demand that every element of H acts as an automorphism: g(xy) = g(x)g(y). If M

is equipped with an involution, then we have g(xy) = g(y)g(x) = g(y) g(x). In the
following we say that M is an H-monoid if it is a monoid with involution on which
H acts. A morphism between H-monoids M and M ′ is given by an H-compatible
morphism which is a homomorphism ϕ : M → M ′ respecting for all g ∈ H and
x ∈ M the action g · ϕ(x) = ϕ(g · x), and the involution, ϕ(x) = ϕ(x).

2.4. Free monoids with involution and an H-action. By an alphabet we mean
a finite set Σ with involution. (Since the identity is an involution of Σ this covers
the case of monoids without a predefined involution.) The elements of Σ are called
letters (or symbols). By Σ∗ (by Σ+ resp.) we denote the free monoid (free semigroup
resp.) over Σ. The elements of a free monoid are called words. The empty word in a
free monoid is also denoted by 1 as in other monoids. We have Σ+ = Σ∗ \ {1}. The
involution extends to Σ∗: for a word w = a1 · · · am with ai ∈ Σ we let w = am · · · a1.
The monoid Σ∗ is called the free monoid with involution over Σ. If a = a for all
a ∈ Σ then w is simply the word w read from right-to-left. The length of word w
is denoted by |w|, and |w|a counts how often a letter a appears in w.

If a group H acts on Σ, then g ∈ H acts on w = a1 · · · am with ai ∈ Σ by

g(w) = g(a1) · · · g(am).

A letter a ∈ Σ is H-visible in w if g(a) is a factor of w for some g ∈ H .
Sometimes it is useful to view a word of w = a1 · · · am with ai ∈ Σ as a labeled

linear order as follows. We let {1, . . . ,m} be set of positions; and we label a position
1 6 p 6 m with the letter w[p] = ap. For 1 6 i, j 6 m we denote by [i, j] the interval
{i, . . . , j}. The labels of the interval define a factor

w[i, j] = ai · · · aj .

An occurrence of a factor u in w is an interval [i, j] such that u = w[i, j]. Typically,
a factor has several occurrences. For a position 1 6 p 6 |w| we define its dual
position p by p = m + 1 − p. The notion of duality extends to intervals [i, j] with

1 6 i, j 6 |w| by [i, j] = [j, i]. Thus, the set of intervals is a set with involution.
A word w such that w = w is called self-involuting, and for such w we have

w[i, j] = w[j, i].

2.5. Automata, rational and recognizable subsets in a monoid. For no-
tation and results in the this subsection we refer to the classical textbook [16].
A regular language in finitely generated free monoids can be defined via a non-
deterministic finite automaton or via recognizability using a homomorphism to a
finite monoid, to mention just two possible definitions. We need the corresponding
notions subsets for other monoids, too.

Let M be any monoid (not necessarily equipped with an involution). A nonde-
terministic automaton over M is a directed arc-labeled graph A denoted as a tuple
A = (Q,M, δ,I ,F ). The vertices of A form the set Q of states, with subsets I

of initial and F final states. We write A = ∅ if there are no states. The arcs
are called transitions and they are labeled with elements of the monoid M . We
represent the set of transitions δ as a subset of Q×M ×Q. A transition labeled by

1 ∈ M is called an ε-transition. In pictures we draw a transition (p, h, q) as p
h

−→ q.
We say that m ∈ M is accepted by the automaton A if there exists a path from
some initial to some final state such that multiplying the labels together yields m.
This defines the accepted language L(A) = {m ∈ M | m is accepted by A}.

Often we specify M together with a set Σ of generators or, more generally,
together with homomorphism π from the free monoid Σ∗ to M . In that case, we
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may denote A alternatively as A = (Q,Σ, δ,I ,F ) where δ ⊆ Q × Σ∗ × Q. This
allows two natural interpretations of L(A): first as the set of words L(A) ⊆ Σ∗

obtained by reading A as a shorthand for (Q,Σ∗, δ,I ,F ); second as L(A) ⊆ M
by identifying L(A) ⊆ Σ∗ with π(L(A)). If the distinction is crucial, we write L(A)
and π(L(A)). However, sometimes a sloppy notation L(A) ⊆ M is used. There
will be however no risk of confusion.

A subautomaton A′ of A = (Q,M,I ,F ) is an automaton A′ = (Q′,M,I ′,F ′)
such that Q′ ⊆ Q, δ′ ⊆ δ, I ′ ⊆ I , and F ′ ⊆ F .

An automaton is called trim if every state is on some path from an initial to a
final state. For a trim automaton A we have L(A) 6= ∅ if and only if A 6= ∅. Clearly,
every automaton A contains a trim subautomaton A′ such that L(A′) = L(A).

If the set of transitions is finite, then we call A a nondeterministic finite automa-
ton (or NFA for short). A subset L ⊆ M is called rational if L is accepted by some
NFA over M .

A subset L ⊆ M is called recognizable if there is a homomorphism h : M → N to
a finite monoid N such that h−1(h(L)) = L. In case that M is a finitely generated
free monoid, the notion of rational and recognizable subsets coincide; so these
subsets are also called regular. It follows rather easily that a monoid M is finitely
generated if and only if all recognizable subsets are rational [39]. Finite subsets
are always rational, but finite subsets in a group are recognizable if and only if the
group is finite.

2.6. From NFAs to Boolean matrices. Nondeterministic finite automata en-
code regular languages in a concise and natural way. It is convenient to work in an
algebraic framework with recognizing morphisms, too. Let us recall a well-known
and classical construction.

Let A = (Q,Σ, δ,I ,F ) be any NFA with m states. Then we can assume that
Q = {1, . . . ,m}, and we represent transitions as a mapping to Boolean m × m
matrices as follows. For each letter a ∈ Σ we define a matrix µA(a) ∈ Bm×m by

(1) (µA(a))s,t = 1 ⇐⇒ a ∈ L(Q,Σ, δ, {s} , {t}).

We obtain a homomorphism µA : Σ∗ → Bm×m such that for all w ∈ Σ∗ we have

w ∈ L(A) ⇐⇒ µA(w) ∈ µA(L(A) ⇐⇒ ∃s ∈ I ∃t ∈ F : (µA(w))s,t = 1).

Example 2.1. Let Σ be an alphabet (with involution) and H 6 Aut(Σ) be a sub-
group of automorphisms. The set R of words having a factor ee for some e ∈ Σ
is regular and R is invariant under the action of H. Let F = Σ∗ \ R be the com-
plement: it is the set of reduced words. The set F is in canonical bijection with
the group Σ∗/ {ee = 1 | e ∈ Σ}. The language R is accepted by an NFA (actually a
DFA) with 1 + |Σ| states. Hence, Bm×m recognizes them where m = 1 + |Σ|.

The size of Bm×m is 2m
2

, but there is a much smaller monoid N which recognizes
R =

⋃
{Σ∗eeΣ∗ | e ∈ Σ} and hence F, too. The elements of N are 1, 0, and the

pairs (a, b) in Σ × Σ. The elements 1 and 0 act as the neutral element and a zero,
respectively. The multiplication for the other elements is given by (a, b) · (c, d) =

(a, d) if b 6= c and (a, b) · (c, d) = 0, otherwise. The involution is given by (a, b) =
(b, a). In effect, N “remembers” the first and last letters of elements in F. A pair
(a, b) switches to 0 once a factor ee is recorded.

It is an H-monoid by the natural action of H induced by the action of H on Σ.
Consider the morphism of H-monoids µ : Σ∗ → N which is defined by µ(a) = (a, a).
Then we have R = µ−1(0) and F = µ−1(N \ {0}). The size of N is therefore

2+|Σ|2−|Σ|. Therefore each element in N can be specified by at most 1+log2(1+|Σ|)
bits.
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3. Regular languages in presence of an involution and an H-action

The application of this section is stated precisely in Proposition 3.2. We give a
construction which allows us to handle regular constraints for twisted word equa-
tions using morphisms to finite H-monoids.

We proceed in two steps. The first step forces homomorphisms to respect the
involution. This part is from the arXiv version of [5] which was inspired by [10].
We repeat that construction. Let N be any monoid. We define its dual monoid
Nop to use the same set Nop = N , but Nop is equipped with a new multiplication
x ◦ y = yx. In order to indicate whether we view an element in the monoid N
or Nop, we use a flag: for x ∈ N we write xop to indicate the same element in
Nop. Thus, we can suppress the symbol ◦ and we simply write xopyop = (yx)op.
The notation is intended to mimic transposition in matrix calculus, where the dual
operation is just the transpose. Similarly, we write 1 instead of 1op which is true
for the identity matrix as well. The direct product N × Nop becomes a monoid
with involution by letting (x, yop) = (y, xop). Indeed,

(x1, y
op
1 ) · (x2, y

op
2 ) = (y2y1, (x1x2)op) = (x2, y

op
2 ) · (x1, y

op
1 ).

The following observations are immediate.

• If N is finite then N ×Nop is finite, too.
• We can embedN intoN×Nop by a homomorphism ι : N → N×Nop defined

by ι(x) = (x, 1). Note that if η : N ×Nop → N denotes the projection onto
the first component, then ηι = idN .

• If M is a monoid with involution and ρ : M → N is a homomorphism of
monoids, then we can lift ρ uniquely to a morphism ϕop : M → N ×Nop of
monoids with involution such that we have ρ = ηϕop. Indeed, it is sufficient
and necessary to define ϕop(x) = (ρ(x), ρ(x)op).

Example 3.1 ([10]). Let M = Bn×n. Then M ×Mop is a submonoid of the set of
2n× 2n-Boolean matrices:

Bn×n × (Bn×n)op =
{(

P 0
0 QT

) ∣∣∣ P,Q ∈ Bn×n
}

with
(
P 0
0 QT

)
=

(
Q 0

0 PT

)
.

In the line above PT and QT are the transposed matrices.

Now, we switch to the new part of our construction. For readers familiar with
wreath products it might be helpful to say that the following is a wreath product
construction. Let N be a monoid with involution. Consider the direct product NH ,
which is the set of maps from H to N . We denote the elements of NH by tuples
(ng)g with the interpretation that g ∈ H is mapped to ng ∈ N . It is a monoid

by pointwise multiplication with involution (ng)g = (ng)g. The monoid N embeds
into NH by sending n to the constant map (n)g. We let act H on NH by

f · (ng)g = (ngf )g.

Now, let M be an H-monoid with involution and let ψ : M → N be a morphism of

monoids with involution, then we extend it to ψ̃ : M → NH by

ψ̃(x) = (ψ(gx))g .

The homomorphism ψ̃ respects the involution since

ψ̃(x) = (ψ(gx))g = (ψ(gx))g ;

and it respects the action of H since

ψ̃(fx) = (ψ(gfx))g = f · ψ̃(x).
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M

(N ×Nop)H

N ×Nop

N

ϕ̃

ϕop

η1

η
ϕ

Figure 1. A lifting of a homomorphism ϕ to an H-compatible
morphism ϕ̃.

Moreover, ψ factorizes though ψ̃ because ψ̃(x) = (ψ(gx))g implies ψ = η1ψ̃ where
η1((ng)g) = n1.

If we start with a homomorphism ϕ from an H-monoid with involution M to a
monoid N without involution, then ψ means the morphism ϕop : M → N × Nop;
and ϕ̃ is a shorthand for ϕ̃op. Thus, the constructions above yield the commutative
diagram as in Figure 1. In that figure ϕ = ηη1ϕ̃ is a homomorphism, ϕop = η1ϕ̃ is
a morphism of monoids with involution, and ϕ̃ is an H-compatible morphism. As a
direct consequence we obtain the following proposition. Recall that an H-monoid
is, by definition, a monoid with involution.

Proposition 3.2. Let H be a finite group that acts on a finite alphabet A; and
hence via a length and involution preserving action on A∗. Then all recognizable
subsets of A∗ can be recognized by some H-compatible morphism to a finite H-
monoid. More precisely, let ϕ : A∗ → N be a homomorphism to a finite monoid;

and L = ϕ−1(F ) for some F ⊆ N . Then we have L = ϕ̃−1(F̃ ) where F̃ = η̃−1(F )
and η̃ = ηη1.

3.1. Stabilizers. Let H be a finite group acting on an alphabet A via a homo-
morphism ψ : H → Aut(A). We assume that H is given by its multiplication table.
The table can be stored with O(|H |2 log |H |) bits. We also need a way to represent
the action of H and the stabilizer subgroups of H . The action is recorded by writ-
ing down for each f ∈ H the element ψ(f) as a permutation of A. To do this, we
write ψ(f) as a set of pairs ψ(f) = {(a, f(a)) | a ∈ A}. Thus, the action of H on
A can be stored with O(|H | |A| log |A|) bits.

For a word w ∈ A∗ we denote by Hw its stabilizer :

Hw = {f ∈ H | f(w) = w} .

stabilizer are subgroups; and the set of subgroups of the form Hw form a commu-
tative monoid ST(H) where the operation is intersection, the identity element is
H , and the involution is the identity. Indeed, we have

Huv = {g ∈ H | g(uv) = g(u)g(v) = uv} = Hu ∩Hv,

Hu = {g ∈ H | g(u) = g(u) = u} = Hu

and

Hg(u) = {f ∈ H | f(g(u)) = g(u)} = {f ∈ H | g−1(f(g(u))) = u} = g−1Hug

for all u, v ∈ A∗, g ∈ H . In particular, H acts on ST(H) by conjugation, and
ST(H) is therefore an H-monoid. Let SG(H) denote the set of all subgroups of H ,
then ν(u) = Hu yields a canonical surjective morphism

ν : A∗ → ST(H) = {Hw ∈ SG(H) | w ∈ A∗} .
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A basic test is to answer “f ∈ Hw?”. This is easy: for w = a1 · · · am with ai ∈ A
we check one after another that f(ai) = ai for 1 6 i 6 |w|. This enables an efficient
test to decide whether or not Hu ⊆ Hv. For each f ∈ H one after another we test
whether f ∈ Hu implies f ∈ Hv. In particular, we can answer “Hu = Hv?”.

Lemma 3.3. We have ST(H) = {Hw | w ∈ A∗ ∧ |w| 6 log2 |H |} .

Proof. For each w ∈ A∗ and b ∈ A we either have Hw = Hwb or |Hw| > 2|Hwb|
because Hwb = Hw ∩ Hb. So, if they are not equal, then their intersection is a
subgroup which has index at least 2 in Hw. �

The idea is therefore to use words of length at most log2 |H | to represent stabi-
lizers and to perform the calculations for stabilizers on these words. The represen-
tation is not unique, but this does not matter for our application.

A main task is to compute a word w of length at most log2 |H | such that Hw =
Hu ∩ Hv (when u and v satisfy |u|, |v| 6 log2 |H |). This can be done efficiently
according to the following lemma.

Lemma 3.4. Every element in the commutative monoid ST(H) of stabilizers can be
represented by a word in A∗ of length at most log |H |, thus with at most O(log |H | ·
log |A|) bits. Using this representation, multiplication (that is, intersection) and
computing the H-action (that is, conjugation), can be done in space O(log |H | ·
log |A|).

Proof. Let uv = a1 · · · am. We have to compute a word w of length at most log2 |H |
such that Hw = Ha1···am

.
We run a loop for i = 1 to m. At each step we have computed a word ui−1

such that Hui−1
= Ha1···ai−1

with the invariant 2|ui−1||Hui−1
| 6 |H | (initially we

let u0 = 1). There are exactly three mutually disjoint cases.

(1) If Hui−1
⊆ Hai

then we let ui = ui−1.
(2) If Hai

 Hui−1
, then we let ui = ai.

(3) If Hai
and Hui−1

are incomparable with respect to containment, then we
let ui = ui−1ai.

Each case keeps the invariant because, by induction, 2|ui||Hui
| 6 |H |. �

Remark 3.5. The reader can easily check that our computation of a word w with
Hw = Ha1···am

yields a word w of pairwise different letters. So, we could actually
put a bound |w| 6 min {log2 |H |, |A|} on its length.

3.2. H-N-monoids. In the following H denotes a finite group and N denotes a
finite H-monoid. Let M be a set (resp. be a monoid) with involution and

µ : M → N

be a morphism. We say M (together with µ) is an H-N -alphabet (resp. an H-N -
monoid) if H acts on M such that µ(g · x) = g · µ(x). For example, the identity
map on N makes N itself to an H-N -monoid.

A morphism between H-N -monoids is an H-compatible morphism ϕ : M ′ → M
such that µϕ = µ′. Thus, if M is an H-N -monoid and M ′ is a monoid with
involution where H acts, then every H-compatible morphism ϕ : M ′ → M turns
M ′ into an H-N -monoid where µ′ is uniquely defined by the equation µϕ = µ′.
The use of H-N -monoids is natural in our setting: the H-action is due to a group
action on letters, and the finite monoid N is used for the specification of rational
constraints. It is clear that the specification of constraints has to be compatible
with the group action.



SOLUTIONS TO TWISTED WORD EQUATIONS 11

3.3. Free H-N-monoids and types. LetB and Y be two disjointH-N -alphabets.
We call B the alphabet of constants and Y the set of twisted variables. The free
monoid with involution (B∪Y)∗ becomes an H-N -monoid where µ : (B∪Y)∗ → N
is induced by B ∪ Y.

x1 · · ·xm = xm · · ·x1,

g · (x1 · · ·xm) = g · (x1) · · · g · (xm).

By θ ⊆ (B ∪ Y)∗ × (B ∪ Y)∗ we denote a finite homogeneous relation. Here as
usual, a relation is called homogeneous if (x, y) ∈ θ implies |x| = |y|. If (x, y) ∈ θ
then we also say that (x, y) is a defining relation because the algebraic object we
are interested in is the quotient monoid

(B ∪ Y)∗/ {x = y | (x, y) ∈ θ} .

We need more structure of this quotient monoid; in particular, µ : (B ∪ Y)∗ → N
should induce a morphism of H-N -monoids. Actually we wish more, therefore we
impose the following technical restrictions on θ; and then we call θ a type (and for
a variable X we also define the type of X denoted θ(X) below).

(1) (x, y) ∈ θ implies µ(x) = µ(y), (y, x) ∈ θ, and (f(x), f(y)) ∈ θ for all
f ∈ H , even if these relations are not listed in the specification of θ.

(2) If a (twisted) variable X appears in θ (that is |xy|X > 1 for some (x, y) ∈ θ),
then we call X typed. For a typed variable X we require that there is
a unique primitive word2 p ∈ B∗ such that (Xp, pX) ∈ θ. We define
θ(X) = p, and say that θ(X) is the type of X .

(3) For (x, y) ∈ θ we allow exactly three possibilities:
(i) (x, y) = (ab, ca) with a, b, c ∈ B.
(ii) (x, y) = (X θ(X), θ(X)X) for variables X .
(iii) (x, y) = (Xa, aY ) where a ∈ B and X,Y are typed variables such that

X 6= Y .

It is convenient to choose a subset X ⊆ Y which is closed under the involution
such that every Y ∈ Y has the form Y = f(X) for some X ∈ X and f ∈ H . In the
following, by a variable we typically mean X ∈ X and thus, every twisted variable
Y ∈ Y can be written as f · X for some f ∈ H and X ∈ X . We assume X 6= X
for all variables. Having chosen θ and X we denote by M(B,X , θ, µ) the following
quotient monoid (and an H-N -monoid with type θ):

M(B,X , θ, µ) = (B ∪ Y)∗/ {x = y | (x, y) ∈ θ} .

Point (1) from above makes sure that one can extend the involution, the morphism
µ and the action of H to the quotient M(B,X , θ, µ). The homogeneity condition
for θ makes it possible to solve the uniform word problem in M(B,X , θ, µ) in
nondeterministic quasi-linear space:

Lemma 3.6. There is an NSPACE(n logn) algorithm which performs the following
task. The input is an alphabet B, a homogeneous relation θ ⊆ B∗ × B∗, and two
words u, v ∈ B∗ such that

|uv| + |B| +
∑

(x,y)∈θ

|xy| 6 n.

The output is “yes” if u = v in the quotient monoid B∗/ {x = y | (x, y) ∈ θ} and
“no” otherwise.

2Recall that p is primitive if and only if it cannot be written as p = re with e > 2.
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Proof. If u = v in B∗/ {x = y | (x, y) ∈ θ}, then nondeterministically we can apply
rewriting rules from θ (which preserve length) to u until we see u = v in the free
monoid B∗. We get the “no” answer because NSPACE(n logn) is closed under
complementation by the theorem of Immerman-Szelepcsényi, see for example [42].

�

Using Lemma 3.6 we represent elements in M(B,X , θ, µ) by words over (B∪Y)∗.
For θ = ∅ we obtain (B ∪ Y)∗ = M(B,X , ∅, µ). By M(B, θ, µ) we denote the H-
N -monoid submonoid with type θ which is generated by B. In particular, B∗ =
M(B, ∅, µ). If θ ∩ B∗ × B∗ = ∅, then M(B, ∅, µ) = B∗ is a free submonoid of
M(B,X , θ, µ). If H acts without fixed points on Y, then we identify Y = H × X
and the action becomes g · (f,X) = (gf,X). Later we will write typed variables
using a special bracket notation [X, p]. For complexity issues we will only allow θ

which satisfy |θ| ∈ O(|H | ‖S‖2) where ‖S‖ is specified in Equation (2) below.

3.4. EDT0L languages and relations. The acronym EDT0L refers to Extended,
Deterministic, Table, 0 interaction, and Lindenmayer. See the handbook [50] for
the many results about L-systems. Let A be an alphabet. A subset L in a k-fold
direct product A∗ × · · · ×A∗ is called a EDT0L relation if there is some (extended)
alphabet C with d1, . . . , dk ∈ C such that A ⊆ C and a rational set R ⊆ End(C∗)
of endomorphisms over C∗ such that

L = {(h(d1), . . . , h(dk)) | h ∈ R} .

The classical situation refers to k = 1. In that case we speak about an EDT0L
language; and our definition uses a characterization of EDT0L languages due to
[1]. The connection is as follows. Let $ be a symbol which is not in A and L ⊆
A∗ × · · · × A∗ be a EDT0L relation, then {w1$w2 · · · $wk | (w1, . . . , wk) ∈ L} is
an EDT0L language in the usual sense over the alphabet A ∪ {$}. It should also
be noted that the class of EDT0L languages coincides with the class of HDT0L
languages ([50, Thm. 2.6]).

We say L is an effective EDT0L relation if there is an effective description of
an NFA A with transitions labeled by “deterministic tables” of pairs (c, uc) ∈
C × C∗ (encoding the endomorphism which maps c to uc (and c to uc))

3 and
letters d1, . . . , dk ∈ C such that (w1, . . . , wk) ∈ L if and only if there is some
h ∈ L(A) ⊆ End(C∗) such that (w1, . . . , wk) = (h(d1), . . . , h(dk)).

4. Twisted word equations

4.1. The initial setting. We begin with a nonempty alphabet of constants A,
and a list of 2k variables V0 (as always, both with involution) and a finite group H
where H acts on A via a homomorphism ψ : H → Aut(A). In particular, |ψ(H)| 6
|A|! 6 |A||A|. As above, H acts on H × V0 by f · (g,X) = (fg,X). For w ∈ A∗

and f ∈ H we also use the notation f(w) = (f, w). Hence, we may represent
elements in (A∪ (H × V0))∗ by words in (H × (A∗ ∪ V0))∗. We abbreviate (1, x) as
x for x ∈ A∗ ∪ V0. By µ0 : A∗ → N we mean a homomorphism which respects the
involution and the action of H . Thus A∗ is, via µ0, an H-N -monoid. Assume that

µ0 has been extended to a mapping µ0 : A∗ ∪ V0 → N such that µ0(X) = µ0(X),
then µ0 extends to a morphism µ0 : (A ∪ (H × V0))∗ → N of H-N -monoids by
µ0(f,X) = f · µ0(X). Initially we work over free monoids.

Definition 4.1. A system S of twisted word equations with regular constraints
over A and V0 is given by the following data:

3Without restriction we can assume each transition is labeled by an endomorphism which
changes at most one pair of letters c, c.
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• A list of 2k variables such that V0 =
{
X1, X1, . . . , Xk, Xk

}
.

• The set of twisted variables becomes Y = H × V0.
• A set of pairs {(Ui, Vi) | 1 6 i 6 s} where Ui, Vi ∈ (A ∪ Y)∗ .
• A morphism µ0 : (A ∪ Y)∗ → N of H-monoids, with N finite.

A solution of S is a morphism of sets with involution σ : V0 → A∗ which is
(uniquely) extended to an A-morphism of H-N -monoids σ : (A ∪ Y)∗ → A∗ such
that

• σ(Ui) = σ(Vi) for all pairs (Ui, Vi).
• µ0σ(X) = µ0(X) for all variables. Hence, µ0σ = µ0.

As usual, a pair (Ui, Vi) representing a twisted equation is simply written as
Ui = Vi.

Example 4.2. Let A = {a, a, b, b},V0 = {X,X, Y, Y , Z, Z}, f, g ∈ H defined by
f(a) = b, g(a) = a, g(b) = b, U1 = (f,X)a(g, Y ), V1 = Z, U2 = (f, Y )b, V2 =
ab(g,X), U3 = Xa, V3 = b(f,X) and (for simplicity) µ0(x) = 1 for all x ∈ A∪ V0.
A pictorial representation of the example is shown in Figure 2. The reader is invited
to verify that one possible solution is σ(X) = bab, σ(Y ) = baab, σ(Z) = abaabaab,
and a second solution is σ(X) = b, σ(Y ) = ba, σ(Z) = aaab.

X a Y

Z

↓ g↓ f

Y b

a b X

↓ f

↑ g

X a

b X

↑ f

Figure 2. Pictorial representation of Example 4.2.

If σ is a solution of S we also say that σ solves S. For
{
X1, X1, . . . , Xk, Xk

}
the

full solution set Sol(S) of S is defined as

Sol(S) = {(σ(X1), . . . , σ(Xk)) ∈ A∗ × · · · ×A∗ | σ solves S} .

4.2. The main result on twisted word equations. Our main result shows that
Sol(S) is an EDT0L language, for which we can compute an effective description in
polynomial space. In order to measure complexities accurately, we need a precise
notion of input size. Let S be a system of twisted word equations with regular
constraints over A and V0 according to Definition 4.1.

We define the size of S using two parameters ‖S‖ and m(S). Thus, the size is the
pair (‖S‖ ,m(S)). The first parameter ‖S‖ ignores the size of the finite monoid N .
It is the main parameter as we don’t want that the complexity due to constraints
dominates the overall complexity. The second parameter measures separately the
number of additional bits for handling the constraints. We begin by defining ‖S‖.
Let

(2) ‖S‖ = |H | + |A| + k + s+
∑

16i6s

|UiVi| .

Recall that 2k is the number of variables, s is the number of equations Ui = Vi,
and H denotes a finite group acting on A and hence on A∗, too. We are interested
in a situation only where A 6= ∅ and ‖S‖ > 4.
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The finite monoid N is also part of the input. We measure the size relative
to ‖S‖. Let N be any finite H-monoid and mS(N) ∈ N be a number such that
elements of N can be encoded by a number of bits which is at most

(3) mS(N)(2 + log |A|) · log ‖S‖ .

Moreover, using this specification, monoid computations, like computing the invo-
lution, the multiplication of two elements, and the action by H , can be performed
on a Turing machine in space mS(N) ‖S‖ log ‖S‖. We let

(4) m(S) = mS(N) where N is the monoid which appears in S

There are examples where the monoid N (which appears in S) is polynomially
bounded in ‖S‖ and still m(S) ∈ O(1). However, if m(S) becomes a polynomial in
‖S‖, then we need to consider m(S) separately for a finer analysis below PSPACE.

An H-monoid N is called small with respect to S if mS(N) ∈ O(1). The finite
monoid recognizing reduced words (those without factors aa for a ∈ A) is small with
respect to S, see Example 2.1. Being small is no restriction for the computability
of the representation of the full solution set as an EDT0L relation – we can always
add trivial equations until N becomes small with respect to S. Another example
of a small monoid is the finite monoid ST(H) of stabilizers. Its size depends on A
and H , but still it is small due to Lemma 3.4.

Now, during the process we might wish to use direct products of (small) monoids.
For that the parameter mS behaves nicely:

mS(N1 ×N2) 6 mS(N1) +mS(N2).

Indeed, given (n1, n2) ∈ N1 × N2 we can use the first mS(N1) bits to encode n1

and the last mS(N2) bits to encode n2. The operations on N1 × N2 can be done
component wise. In particular, a direct product of small monoids remains small.

We are ready to state our main result which gives PSPACE as an upper bound
for the complexity and a quasi-quadratic space bound if N is small.

Theorem 4.3. There is an NSPACE(|H | · ‖S‖2 ·m(S) · log |A| · log ‖S‖) algorithm
which performs the following task. It takes as input a system of twisted word equa-
tions S with regular constraints. The system use a set of constants A, a set of
variables V0 =

{
X1, X1, . . . , Xk, Xk

}
, and the regular constraint is given by a mor-

phism µ0 : A ∪ V0 → N . The output is:

• an extended alphabet C of size O(|H |2 ‖S‖2);
• distinguished letters di ∈ C for each variable Xi;
• a trim NFA AS accepting a rational set of A-morphisms L(AS) ⊆ End(C∗)

such that

(5) Sol(S) = {(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗ | h ∈ L(AS)} .

The algorithm stores intermediate equations with a length bound in O(|H | ‖S‖2
).

Moreover, Sol(S) = ∅ if and only if AS = ∅; and |Sol(S)| < ∞ if and only if AS

doesn’t contain any directed cycle.

Let us comment on the rather complicated space bound

|H | · ‖S‖2 ·m(S) · log |A| · log ‖S‖

which appears in the statement of the theorem. First, since |H | 6 ‖S‖ and |C| ∈

O(|H |2 ‖S‖2
), we can encode all letters by O(log ‖S‖) bits. Second, the µ-value for

the constraints changes dynamically: it is a priori not fixed for the extended alpha-
bet C. So, it is enough to store the µ-value for each symbol which appears in inter-

mediate equations. The length bound on intermediate equations is in O(|H | ‖S‖2
).

Each µ-value is an element in N , which requires, by definition, m(S)·log |A|·log ‖S‖
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bits for the encoding. Together, we need O(|H | · ‖S‖2 ·m(S) · log |A| · log ‖S‖) bits
to encode intermediate equations,

Corollary 4.4. Let S be a system of twisted word equations with regular constraints
in variables

{
X1, X1, . . . , Xk, Xk

}
. Then Sol(S) ⊆ A∗ × · · · × A∗ is an effective

EDT0L relation.

Proof. This is a formal consequence of Theorem 4.3. �

Sections 5 through 12 are devoted to the proof of Theorem 4.3. The theorem
implies that we can decide in PSPACE (hence, in deterministic singly exponential
time) whether S is solvable and whether or not there are only finitely many solu-
tions. The decision problem of whether a word equation with regular constraints
has a solution is known to be PSPACE-hard by [31] because the intersection problem
of regular languages is a special case. In our setting, if the finite monoid N is small,
then the best known lower bound to date is NP-hardness: it is the lower bound for
deciding whether or not a linear Diophantine system over N has a solution [24].

5. Preparation

We begin the proof of Theorem 4.3 with some technical preparations. Sec-
tions 5.1–5.3 concern some reductions, and could easily be skipped in a first reading
of the paper. These sections yield a reduction to the situation as stated in begin-
ning of Section 5.4. We invite the reader to jump directly to Section 5.4 and to
read the parts in between only when necessary.

5.1. Reducing to faithful actions. Recall that the action of H on A is given by
a homomorphism ψ : H → Aut(A). We don’t require that ψ is injective because
in some natural examples this is not the case, see Section 15. On the other hand
it is enough to prove Theorem 4.3 in the case where H is actually a subgroup of
Aut(A). Let us show how the reduction works. The principal idea is to replace H
by H/K where K = ker(ψ) is the kernel of ψ.

If M is any H-monoid, then the action of H induces an action of H/K on M
only if for all f ∈ K and all m ∈ M we have f(m) = m. In this case M becomes an
H/K monoid: the action g ·K(m) = g(m) is well-defined for all g ·K ∈ H/K. By
definition of K, the free monoid A∗ is therefore an H/K-monoid. Inspecting the
statement in Theorem 4.3, there are two problems: the induced action of K on the
finite monoid is not trivial, in general. Moreover, the group acts H freely on the
set of variables H × X0, so there is no induced action of H/K on this set unless K
is trivial. We address and solve both problems.

Let us begin with the H-monoid N , then it has a largest H-invariant submonoid
N ′ where K acts trivially. It is the submonoid of K-invariant elements:

N ′ = {m ∈ N | ∀f ∈ K : f(m) = m} .

The image µ0(A∗) is a submonoid of N ′, since for all f ∈ K and all w ∈ A∗ we have
f(µ0(w)) = µ0(f(w)) = µ0(w). However, the statement in Theorem 4.3 doesn’t
require that µ0(X) takes values in N ′. Let us show that S is not solvable if there
is some variable X such that µ0(X) /∈ N ′. Indeed, assume the contrary that there
is a solution σ : X0 → A∗ such that µ0(X) /∈ N ′. Then there is some f ∈ K such
that

µ0(X) 6= f(µ0(X)) = f(µ0σ(X)) = µ0(f(σ(X))) = µ0σ(X) = µ0(X),

which is a contradiction. We have f(σ(X)) = σ(X) because K acts trivially on A∗.
Thus, as a first procedure in the proof of Theorem 4.3 we check that µ0(X) ∈ N ′

for all X ∈ X0 (and therefore µ0(f,X) ∈ N ′ for all (f,X) ∈ H × X0). The test
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runs over all f ∈ H and for each f checks the following implication:

(6) (∀a ∈ A : f(a) = a) =⇒ f(µ0(X)) = µ0(X).

If the check is positive then µ0(X) ∈ N ′ for all X ∈ X0. If the check fails then we
output that S is not solvable by defining AS = ∅. We can perform the test within
our given space bound by definition of m(S).

After the test, we may assume that µ0 maps A∪ (H × X0) to N ′, and we replace
N by N ′. We can use the same bit encoding for elements in N ′ as we did for N , but
if we have to guess an element in N ′, we perform the test (6). Thus, the parameter
m(Φ) is still valid.

In the second step we replace each variable (f,X) ∈ H × X0 by a fresh variable
(f · K,X) ∈ (H/K) × X0. Again, this doesn’t change Sol(S) since for every H-
compatible morphism σ : H × X0 → A∗ and all f ∈ K we have

σ(f,X) = f(σ(1, X)) = f(σ(X)) = σ(X) and µ0(f,X) = f(µ0(X)) = µ0(X).

We are done. We have shown the following statement.

Lemma 5.1. It is enough to prove Theorem 4.3 under the additional assumption
that ψ is injective. This means we can assume that H is a subgroup of Aut(A).

5.2. Making the finite monoid N larger. The aim in this section is to replace
N by a larger monoid, which additionally encodes information about stabilizers for
all x ∈ A ∪ X0. Up to a constant factor we don’t change m(S).

Let ST(H) be the monoid of stabilizers, see Section 3.1. We define a morphism
µ1 : A∪X0 → N×ST(H) which maps a letter a ∈ A to (µ0(a), Ha) and each variable
X to some (µ0(X), Hu) where u ∈ A∗ is any word of length at most log2 |H | by
guessing u. The H-action on N × ST(H) is inherited from the action on N and the
action on ST(H) by conjugation. Moreover, guessing is equivalent to taking the
union over finitely many cases, see (7). The union will give the same solutions we
had before, and it will not introduce any new solutions.

The projection to the first component turns N × ST(H) into an H-N -monoid.
Using µ1 we achieve the following:

• for all x ∈ (A ∪ X0)∗, µ1(x) ∈ N × ST(H) is a pair where the second
component is Hx which is represented by a word u ∈ A∗ of length at most
log |H | such that Hx = Hu.

The switch to µ1 has a price. By defining µ1(X) we restrict the set of possible
solutions. The value µ1(X) = (µ0(X), Hu) fixes the stabilizer Hσ(X) for a solution
σ to be the subgroup Hu. The number of choices (= nondeterministic guesses) to
extend µ0 to µ1 is bounded by

(|ST(H)|)k 6 |A||X0| log |H|
.(7)

These choices result in a splitting the original system into that many subsystems.
Splitting is fortunately no problem since EDT0L languages are closed under finite
union by taking the unions of the corresponding NFAs.

At the end of this we rename N × ST(H) as N and µ1 as µ0 : A ∪ X0 → N .

5.3. Introducing a zero to N and a marker symbol to A. In the following
it is convenient to have a special symbol #, but we want to make sure no variable
uses it, so we add 0 to our constraint monoid. We next embed our current N into
N ∪{0} where 0 is a fresh symbol not included in N and 0 acts as a zero in N ∪{0}.
We turn it into an H-monoid by defining f(0) = 0 for all f ∈ H .

The monoid N is an H-submonoid of N ∪{0} and, by a slight abuse of language,
we denote by µ0 the induced mapping to the larger monoid N ∪ {0} as well:xt

µ0 : A ∪ (H × X0)
µ0

−→ N →֒ N ∪ {0} .
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Without restriction (by adjusting constants if necessary) we may assume that N ∪
{0} doesn’t change the parameter m(S). Using N∪{0} instead of N doesn’t change
Sol(S) because µ0(A ∪ (H × X0)) ⊆ N . Phrased differently, without restriction N
has a zero 0; and µ0(A ∪ (H × X0)) ⊆ N \ {0}.

At this point we to add the special symbol # to A. We let µ0(#) = 0, # = #
and f(#) = # for all f ∈ H . So, from now on we assume that # ∈ A. Since we
did not change µ0(X) for any variable X we are sure that for every solution σ to
S and every variable X we have |σ(X)|# = 0: the marker cannot appear in any
solution.

5.4. Triangular systems. Due to the preceding subsections we henceforth make
the following assumptions:

• H is a subgroup of Aut(A).
• There is some # ∈ A with # = # and f(#) = # for all f ∈ H .
• The H-monoid N contains a zero 0 and for all x ∈ A ∪ X0 we have

µ0(x) = 0 ⇐⇒ x = #.

• µ0(x) is a pair where the second component is the stabilizer Hx which is
represented by a word u ∈ A∗ of length at most log |H | such that Hx = Hu

for all x ∈ (A∪ X0)∗. Since Hx = Hu and u is in A∗ we have for all f ∈ H :

f ∈ Hx ⇐⇒ f(u) = u.(8)

Definition 5.2. A twisted word equation U = V is called triangular if U contains
at most two variables and V at most one variable.

Following well-known methods (see for example [8]) we enlarge the set of variables
X0 to a larger set X ⊃ X0 (using at most 2 ‖S‖ more variables) such that every
equation becomes triangular in a more specific form: every equation has the form
either Z = 1 or U = Z where |U | = 2 and in both cases Z is a variable.

It therefore is enough to show Theorem 4.3 in the case where each each equation
Ui = Vi equals (f, x)(g, y) = (h, Z) where x, y ∈ A ∪ X and Z ∈ X . Moreover,
since (f, x)(g, y) = (h, Z) is equivalent to (h−1f, x)(h−1g, y) = Z we can restrict
ourselves to the case that each Ui = Vi is of the form (f, x)(g, y) = Z. Due to
additional variables, we work over a set of variables

X =
{
X1, X1, . . . , Xk, Xk, Xk+1, Xk+1, . . . , Xk′ , Xk′

}

where k 6 k′ 6 2 ‖S‖ and the first 2k variables belong to the original system.
Hence, the starting point is a system of equations (f, x)(g, y) = Z. The number

of these triangular equations is at most 2 ‖S‖, so we can ignore this blow-up. During
the process we need a more general form, nontrivial triangular equations appear
as u(f, x)w(g, y)v = u′Zv′ where u,w, v, u′, v′ are words over constants. Whenever
such an equation with |u| = |u′| = |v| = |v′| appears, then necessarily u = u′

and v = v′; otherwise the equation is “unsolvable”. That is, in a nondeterministic
implementation of our process, this branch never leads to an accepting state. In an
implementation of the algorithm we would reject the branch immediately.

Finally, it is somewhat convenient to assume |A| + |X | 6 |UV |. We may achieve
this for example by adding some dummy equations, and then ‖S‖ ∈ O(|H |+ |UV |).

5.5. Fixing more notation. During the process we enlarge the sets of constants
and variables. We begin with two disjoint infinite alphabets with involutionC and Ω
and Σ = C∪Ω. All constants are drawn from C and all variables are drawn from Ω.
We never write down all elements from C or Ω, just certain subsets which are needed
in a specific situation. Later we will choose Σ such that |Σ| ∈ O(|H |2 ‖S‖2), but
initially for our infinite automata T and F we do not impose any size restrictions.

Throughout we use following conventions and notation.
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• There are 2k distinguished letters
{
d1, d1, . . . , dk, dk

}
which appear in The-

orem 4.3.
• # ∈ A ⊆ B = B = {f(b) | b ∈ B} ⊆ C.
• B ∩

{
d1, d1, . . . , dk, dk

}
= ∅ unless we are at a final state (to be defined

below, see Section 7.1.2).
• Y = Y = {f(X) | X ∈ X , f ∈ H} ⊆ Ω, and X 6= X for all X ∈ Ω. If H

acts freely on Y, then we write Y = H × X , too. We view X ⊆ Y.
• The action of H and the involution on Σ extend those on A ∪ Y.
• µ : (B ∪ Y)∗ → N satisfies µ(a) = µ0(a) for a ∈ A.
• a, b, c, [p], [r, s, λ], . . . refer to letters in C.
• u, v, w, . . . refer to words in C∗.
• X,Y, Z, [X, p], . . . refer to variables in Ω.
• x, y, z, . . . refer to words in Σ∗.

These conventions hold everywhere unless explicitly stated otherwise. They also
apply to primed symbols such as B′, X ′ etc. Throughout we also use the following.

Remark 5.3. If we know µ(x) ∈ N for any x ∈ (B∪Y)∗, then we also know, by the
representation of the second component in µ(x), a word u ∈ A∗ of length at most
log |H | such that Hx = Hu. This enables for all f ∈ H an efficient test to check
whether f(x) = x, see (8) above. Moreover, if we have z = xy with x, y, z ∈ (B∪Y)∗

and we have to calculate µ(z) as the product µ(x)µ(y), then we need to find a word
w ∈ A∗ of length at most log |H | such that Hz = Hx ∪Hy = Hw. We may assume
that Hx and Hy are already given as Hx = Hu and Hy = Hv where uv ∈ A∗ of
length at most 2 log |H |. In order to compute w we run the algorithm from the proof
of Lemma 3.4.

5.6. The initial word equation Winit. For technical reasons we encode the initial
(triangular) system {(Ui, Vi) | 1 6 i 6 s} of twisted equations in variables X where
{Xi | 1 6 i 6 |X |/2} ⊆ X = X as a single word. Let U = U1#U2 · · · #Us and
V = V1#V2 · · · #Vs.

The initial equation Winit ∈ (A ∪ (H × X ))∗ is defined as:

(9) Winit = #X1 · · · #X|X |/2#U##V#X|X |/2# · · ·X1#.

In particular, each X ∈ X appears in Winit. Here:

X0 =
{
X1, X1, . . . , Xk, Xk

}
and

X =
{
X1, X1, . . . , Xk, Xk, Xk+1, Xk+1, . . . , X|X |/2, X|X |/2

}

Note that σ(W ) = σ(W ) if and only if σ(Ui) = σ(Vi) for all i.

5.7. Fixing the parameters n, ε, and δ. Having defined Winit we fix the follow-
ing parameters n, ε, δ ∈ N by

(10) n = |Winit|, ε = 30n, and δ = |H | ε = 30|H |n.

By our assumptions this implies n > |A| + |X |. We have ‖S‖ ∈ |H | + Θ(n).
Moreover, since n ∈ O(‖S‖), we have δ ∈ O(|H | ‖S‖) and ε ∈ O(‖S‖). As a
consequence:

(11) O(δn) ⊆ O(|H | ‖S‖2
).

Note that the right-hand side in (11) coincides with the space bound we allow to
store intermediate equations according to Theorem 4.3.
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5.8. Extended equations and their solutions. The NFA over the monoid End(C∗)
we will construct uses extended equations as states. The overall strategy is to re-
move variables from the equation until no variables remain. During the process
we will enter a phase called δ-periodic compression repeatedly (which is the ana-
logue of “block compression” for solving word equations in free groups). During
each call of δ-periodic compression, each variable may create temporarily two new
variables which will vanish before the end of that call. So at most 3 |H |n variables
are needed, including these additional (temporary) variables.

Definition 5.4. An extended equation is a tuple E = (W,B,X , θ, µ), where A ⊆ B
and M(B,X , θ, µ) is an H-N -monoid with type θ. Moreover, we require:

(1) W ∈ M(B,X , θ, µ) which can be written as a word in the form:

W = #x1# · · · #x|X |/2#u1 · · · #us# #vs# · · · v1#x|X |/2# · · ·x1#

with xi, uj, vk ∈ (B ∪ Y)∗ and µ(xi) 6= 0, µ(uj) 6= 0, µ(vk) 6= 0.
(2) Given W as above we call ui = vi a local equation.
(3) |W |# = |Winit|#.
(4) For every X ∈ X there exists some f ∈ H such that f(X) appears in W .
(5) We say E is a standard state if first, θ = ∅, and second, all local equations

are triangular.
(6) If E = (W,B,X , ∅, µ) is a standard state, then X ⊆ X . Moreover,

∑

Y ∈Y

|W |Y 6
∑

Y ∈X

|Winit|Y .

(7) If E = (W,B,X , θ, µ) is any state, then
∑

X∈X |W |X 6 3n. (Thus, we can
bound Ω by |Ω| 6 3|H |n right away.)

(8) If variables X,Y are typed with X 6= Y and (Xa, aY ) ∈ θ, then we have
θ(X)a = aθ(Y ) in the submonoid M(B, θ, µ) generated by B.

Recall (Section 3.3) that if a variable X is typed, then there is a primitive word
p = θ(X) such that (Xp, pX) ∈ θ.

Definition 5.5. Let E = (W,B,X , θ, µ) be an extended equation.

• A solution is a B-morphism σ : M(B,X , θ, µ) → M(B, θ, µ) such that:
– σ(W ) = σ(W ).
– σ(X) ∈ p∗, whenever X is typed and p = θ(X).

• An entire solution is a pair (α, σ) where α : M(B, θ, µ) → M(A, ∅, µ0) is
an A-morphism and σ is a solution.

6. Twisted conjugacy and δ-periodic words

A key step in proving Theorem 4.3 is to solve a particular kind of a twisted equa-
tion: conjugacy. Let x, y, z ∈ A∗. An easy exercise in combinatorics on words [23]
yields:

(12) zy = xz ⇐⇒ ∃r, s ∈ A∗ ∃e ∈ N : x = rs ∧ y = sr ∧ z = (rs)er.

This fact is crucial in Makanin’s classical approach [36] to solve (untwisted) word
equations. Here, we need a variant of (12) in the twisted environment. We say
that words x, y ∈ A∗ are twisted conjugate if there are f, g, h ∈ H and z ∈ A∗ such
that zg(y) = h(x)f(z). We also say that |x| = |y| is the offset of the conjugacy. A
twisted conjugacy equation is a (non-triangular) twisted equation of the form

(13) Z (g, Y ) = (h,X) (f, Z).



20 VOLKER DIEKERT AND MURRAY ELDER

Proposition 6.1. Let σ be a solution of the twisted equation (13) such that the
offset |σ(X)| satisfies 1 6 |σ(X)| < |σ(Z)|. Then there are words r ∈ A+, s ∈ A∗

and e, j ∈ N with 0 6 j < |H | such that |rs| = σ(X) and

(14) σ(Z) = ((rs)f(rs) · · · f |H|−1(rs))e f0(rs) · · · f j−1(rs)f j(r).

Z

Z

Y

X

↑ h ↑ f

↓ 1 ↓ g

Y

h(v)

v

u f(u) f2(u)

u f(u) f2(u)

fj (r)

fj−1(u) fj (r)

Figure 3. Twisted conjugacy

Proof. Let v = σ(X) and u = h(v). Since 1 6 |σ(X)| < |σ(Z)| the word u is a
proper nonempty prefix of σ(Z). If 2 |u| 6 |σ(Z)|, then uf(u) is a prefix of σ(Z),
and so on. Thus, σ(Z) is a prefix of a word uf(u)f2(u) · · · fk(u) for some k ∈ N.
Next, observe that f |H|(u) = f0(u) = u for every word u ∈ A∗. Thus,

σ(Z) = [uf(u)f2(u) · · · f |H|−1(u)]euf(u) · · · f j−1(u)f j(r)

where 0 6 j < |H |, u = rs and the |r| suffix of Z is where the pattern runs out, as
illustrated in Figure 3. We then have σ(Y ) = g−1f j(sf(r)). Hence, the nonempty
word u and the length |σ(Z)| define a unique factorization u = rs, integers 0 6 e
and 0 6 j < |H | such that σ(Z) has the desired form above. �

A word p is called primitive if it cannot be written as p = re with e > 2. In
particular, the empty word 1 is not primitive. It is well known (and easy to see)
that a nonempty word p is if and only if p2 cannot be written as p2 = xpy with
x 6= 1 and y 6= 1.

Let w, p ∈ A+ be nonempty words. We say that w has period |p| if w is a
prefix of p|w|. In other words, if w = a1 · · ·an with a ∈ A, then ai = ai+|p| for all
1 6 i 6 n− |p|. A word may have several periods, for example w = aabaabaa has
periods 3, 6, 7, 8. If |p| is the least period of w, then |p| 6 |w| and we can choose p
to be primitive such that p 6 w. For example, aab 6 aabaabaa is a primitive prefix
and |aab| = 3.

Corollary 6.2. Let ε ∈ N, f, g, h ∈ H, and x, y, z ∈ A∗ be words with 1 6 |x| 6 ε
and |z| > |H | ε. If we have zg(y) = h(x)f(z), then z has a period of at most |H | ε.

Moreover, let z = αwβ be any factorization with |w| = |x|. Then every letter b
occurring in z satisfies b = f(a) for some f ∈ H and some letter a occurring in w.

Proof. By Proposition 6.1 we have

z = ((rs)f(rs) · · · f |H|−1(rs))e f0(rs) · · · f j−1(rs)f j(r)

where |f i(rs)| = |x| 6 ε for all i > 0. Hence, z has a period

|(rs)f(rs) · · · f |H|−1(rs)| 6 |H | ε.
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For the second claim, if z = αwβ with |w| = |x| = |rs| then w is a factor
of f i(rs)f i+1(rs) for some i > 0. If we write rs = a1 . . . a|x|, then any letter b

in z satisfies b = f j(aℓ). Let ι ∈ {i, i + 1} so that f ι(aℓ) is a letter in w, then
b = f j(aℓ) = f j(f−ι(f ι(aℓ))) = f j−ι(a) for some j > 0. �

Definition 6.3. We say that a word w is δ-periodic if it has some period of length
at most δ. A δ-periodic word w is called long δ-periodic if |w| > 3δ, and very long
δ-periodic if |w| > 10δ.

For example, aabaaabaaab is 4-periodic but not long 4-periodic. An important
property of δ-periodic words is the following.

Lemma 6.4. Let w be a δ-periodic word and w = per = qfs such that p, q are
primitive |p| 6 |q| 6 δ, 1 6= r 6 p, 1 6= s 6 q, and |w| > 2δ. Then p = q, e = f > 1,
and r = s.

Proof. The assertion is clear for |p| = |q|. Hence we may assume that p is a proper
prefix of q. Since q 6 w we conclude q 6 pδ. Since |w| > 2δ, and |p| 6 |q| 6 δ
we see pq 6 w 6 q|w|. Thus q occurs as a factor inside qq: we have pqs = qq for
some s. Since 1 6 |p| < |q|, this contradicts the primitivity of q. �

Let u be a prefix (resp. factor, resp. suffix) of some nonempty word w. We say
that u is a maximal δ-periodic prefix (resp. factor, resp. suffix) in w if we cannot
extend the occurrence of the factor u inside w by any letter to the right or left, to
see a δ-periodic word.

7. The ambient infinite automaton T

The states of the NFA AS (we are aiming for in Theorem 4.3) are extended
equations and transitions are certain labeled arcs between states which modify the
extended equations. Before we construct AS let us define an infinite automaton T .
It will contain AS as a finite subautomaton. We show that T is sound: this means
in the notation of Theorem 4.3

(15) {(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗ | h ∈ L(T )} ⊆ Sol(S).

This implies that all subautomata of T are sound, too. The set of states in T is
the set of extended equations according to Definition 5.4, see Section 7.1. There
are two kinds of transitions: a substitution transition transforms the variables; a
compression transition affects the constants, but not the variables, see Section 7.2.

If (W,B,X , θ, µ)
h

−→ (W ′, B′,X ′, θ′, µ′) is a transition, then its label h is a
morphism h : M(B′,X ′, θ′, µ′) → M(B,X , θ, µ) (in the opposite direction of the
arc) which is specified by a mapping h : ∆ → B∗ where ∆ ⊆ B′ is some subset
(possibly empty) of constants with ∆ ∩ A = ∅. We assume that such a map h
extends to a A ∪ X ′-morphism h : M(B′,X ′, θ′, µ′) → M(B,X , θ, µ) by leaving all

letters in (B′ ∪ X ′) \
{
f(d)

∣∣ d ∈ ∆ ∪ ∆, f ∈ H
}

invariant. Since h(∆) ⊆ B′∗, the
restriction of h also defines a morphism h : M(B′, θ′, µ′) → M(B, θ, µ). Note that
we use the same letter h for both morphisms. There will be no risk of confusion.

Since B′ ⊆ C, the morphism h also induces an endomorphism of C∗ which
respects the involution assuming h(c) = c for all c ∈ C \ B′. However, outside B′

neither the action of H nor the value of µ is defined, so C∗ is not an H-N -monoid.
It is simply a free monoid with involution, and we can read the label always as an
endomorphism of the free monoid with involution C∗.

New constants appear only by compression. If a word w is replaced a letter
c by specifying h(c) = w, then we will automatically set µ(c) = µ(w), h(c) = w,
h(f(c)) = f(h(c)), and hence: f(c) = c ⇐⇒ f(w) = w for all f ∈ H . By definition
of N , the second component in µ(w) is a word u ∈ A∗ of length at most log |H |



22 VOLKER DIEKERT AND MURRAY ELDER

such that the stabilizer Hw satisfies Hc = Hw = Hu. In particular, we have an
efficient test whether f(c) = c for all f ∈ H : we just check that f(a) = a for all
letters a which appear in the word u. The crucial observation is that whenever

(Ws, Bs,Xs, θs, µs)
hs+1

−→ · · ·
ht−→ (Wt, Bt,Xt, θt, µt)

is a labeled path and w ∈ B∗
t is word, then h = hs+1 · · ·ht can be viewed either

as a morphism h : M(Bt, θt, µt) → M(Bs, θs, µs) or as an endomorphism of C∗. If
we have w ∈ B∗

t , then h defines a word h(w) ∈ B∗
s and the corresponding element

h(w) ∈ M(Bs, θs, µs). By ε we denote the identity endomorphism on C∗. Then

ε appears as the label of transitions (W,B,X , θ, µ)
ε

−→ (W ′, B′,X ′, θ′, µ′) where
h : M(B′, θ′, µ′) → M(B, θ, µ) is a morphism with h(a) = a for all a ∈ B′. For
example, the label ε might appear when B′ ⊆ B or θ′ ⊆ θ, etc.

7.1. States. We define the states of the T as the set of extended equations accord-
ing to Definition 5.4. Thus, every state E is of the form E = (W,B,X , θ, µ).

7.1.1. Initial state. The initial state is Einit = (Winit, A,X , ∅, µ0).

7.1.2. Final states. A state (W,B, ∅, ∅, µ) is final if

(1) W = W and uses no variables.
(2) The word W has a prefix of the form #d1# · · · #dk# where di are the

distinguished letters mentioned in Theorem 4.3.

7.2. Transitions. We denote a transition as as E
h

−→ E′ and for both kinds,
substitutions and compressions, we put some additional length restrictions on h.
For example, we allow h(c) = 1 for a letter c only if E′ is a final state. Thus
labels on paths not ending in a final state are never length decreasing morphisms.
Moreover, we require that h(c) is not too long. If h is specified by a set ∆′, then we
require

∑
c∈∆′ |h(c)| < |W | where E = (W,B,X , θ, µ). These length restrictions

are not used in the proof of the soundness result Proposition 7.5. We need them
when proving completeness for a finite subautomaton of T .

7.2.1. Substitution transitions.

Definition 7.1. A substitution transition is denoted as

(W,B,X , θ, µ)
h

−→ (τ(W ), B′,X ′, θ′, µ′).

We must have B ⊆ B′ and we require that the transition is defined by a B-morphism
τ : M(B,X , θ, µ) → M(B′,X ′, θ′, µ′) and a B-morphism h : M(B′,X ′, θ′, µ′) →
M(B,X , θ, µ) such that |h(b)| = 1 for all b ∈ B′. In particular, h is length preserv-
ing.

In the case that some variable is typed in the source node (W,B,X , θ, µ), that is
θ 6= ∅, then we add the following restrictions:

• X ′ ⊆ X . (Thus, for θ 6= ∅ the set of variables cannot increase.)
• If X ∈ X ′, then θ(X) = θ′(X). In particular, θ(X) is defined if and only

if θ′(X) is defined.
• If θ(X) is not defined, then τ(X) = X.
• If θ(X) is defined, then τ(X) ∈ θ(X)∗ ∪ θ(X)∗ X θ(X)∗.

We say that a substitution transition is special if B = B′. This implies that the
label h is is the identity on M(B, θ, µ); and therefore the label will be h = ε = idC∗ .
Later it would be enough to only consider special substitution transitions. However
this would not simplify the following proof.
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Lemma 7.2. Let E = (W,B,X , θ, µ)
h

−→ (τ(W ), B′,X ′, θ′, µ′) = E′ be a sub-
stitution transition. If σ′ solves E′ then σ = hσ′τ solves E. In particular, if
α : M(B, θ, µ) → M(A, ∅, µ0) is an A-morphism, then (α, σ) and (αh, σ′) are entire
solutions with ασ(W ) = αhσ′(W ′).

Proof. Recall by Definition 5.5 to prove σ = hσ′τ solvesE we must show two things:
σ(W ) = σ(W ) and whenever X is typed and p = θ(X) we must have σ(X) ∈ p∗.

We begin by checking that θ 6= ∅ implies hσ′τ(X) ∈ θ(X)∗ for all typed variables.
Consider a typed variable X ∈ X . The first case is: τ(X) ∈ θ(X)∗Xθ(X)∗. Hence
X ∈ X ′. By definition, θ′(X) is defined and θ(X) = θ′(X) = p ∈ B∗. Then
τ(X) ∈ p∗Xp∗, too. Hence, σ′τ(X) ∈ p∗ because every solution σ′ has to satisfy
σ′(X) ∈ p∗. Since p ∈ B∗ and h is a B-morphism we have h(p) = p. Therefore
hσ′τ(X) ∈ θ(X)∗ in the first case. The second case is τ(X) ∈ p∗ where p = θ(X) ∈
B∗. Again, we can conclude hσ′τ(X) ∈ p∗. Thus, in both cases: whenever X ∈ X
is typed, then hσ′τ(X) ∈ θ(X)∗.

Since h, σ′, and τ are B-morphisms, so is their composition hσ′τ . Since σ′ is
a solution of W ′ = τ(W ), we have σ′(W ′) = σ′(W ′). Hence, σ′τ(W ) = σ′τ(W )

since τ(W ) = τ(W ) because τ respects the involution. It follows that hσ′τ(W ) =
hσ′τ(W ), so σ(W ) = σ(W ). Thus, hσ′τ is a solution at E. As a consequence,
(α, hσ′τ) and (αh, σ′) are both entire solutions because h is a B-morphism and
A ⊆ B.

M(B′,X ′, θ′, µ′)M(B,X , θ, µ)

M(B′, θ′, µ′)M(B, θ, µ)

τ

σ′σ

h

�

7.2.2. Compression transitions. Compressions are defined only if X = X ′. They
leave the variables invariant, but we encounter both situations B ⊆ B′ or B′ ⊆ B.
However, in case that θ 6= ∅ the situation is more subtle than for substitutions, and
we need again technical restrictions in order to guarantee soundness.

Definition 7.3. A compression transition

(W,B,X , θ, µ)
h

−→ (W ′, B′,X , θ′, µ′)

is defined in T if h : M(B′,X , θ′, µ′) → M(B,X , θ, µ) is an (A∪X )-morphism such
that the following conditions hold.

• We have W = h(W ′)
• h(b′) can be written as a word in B∗ for every b′ ∈ B′ and |h(c)| > 1 for

all c ∈ B′ unless E′ = (W ′, B′,X , θ′, µ′) is a final state.
• h is specified by a mapping h : ∆′ → B∗ with ∆′ ⊆ B′ such that

∑

c∈∆′

|h(c)| < |W |.

• A variable X is typed using θ′ if and only if it is typed using θ.
• There is some e > 1 such that for all typed variables we have

h(θ′(X)) = θ(X)e.

Note that for a given (A∪X )-morphism h : M(B′,X , θ′, µ′) → M(B,X , θ, µ) the
conditions to be a compression transition are effective.
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Lemma 7.4. Let E = (h(W ′), B,X , θ, µ)
h

−→ (W ′, B′,X , θ′, µ′) = E′ be a com-
pression and σ′ be a solution at E′. Then there exists a B-morphism

σ : M(B,X , θ, µ) → M(B, θ, µ)

such that hσ′(X) = σ(X) for all X ∈ X . The B-morphism σ satisfies the following
conditions. If α : M(B, θ, µ) → M(A, ∅, µ0) is an A-morphism, then first, (α, σ) is
an entire solution at E and second, (αh, σ′) is an entire solution at E′. Moreover,
ασ(W ) = αhσ′(W ′).

Proof. Define σ(X) = hσ′(X) for all variables and σ(b) = b for all b ∈ B. This
defines a B-morphism σ : M(B,X , ∅, µ) → M(B, θ, µ) since M(B,X , ∅, µ) is a free
monoid. (There is no type yet on the left.) Let us show first that (x, y) ∈ θ implies
σ(x) = σ(y) in the monoid M(B,X , θ, µ). That is, σ induces a B-morphism (which
we also denote by σ) σ : M(B,X , θ, µ) → M(B, θ, µ).

For (x, y) ∈ θ with x, y ∈ B∗ the assertion σ(x) = σ(y) is trivial because σ
leaves B∗ invariant. Thus, it is enough to consider a defining relation of the form
(Xp, pX) ∈ θ where p = θ(X) ∈ B∗. Because of Definition 7.3 we know that
X is typed on the right hand side M(B′,X , θ′, µ′), too. Let q = θ′(X) ∈ B′∗.
Thus, h(q) = pe for some e > 1 according to the last condition in Definition 7.3.
Since σ′(X) = qℓ for some ℓ > 0, we conclude hσ′(X) = peℓ. Hence, whenever
(Xq, qX) ∈ θ′, then hσ′(Xp) = p1+eℓ = hσ′(pX) in M(B, θ, µ) since (Xp, pX) ∈ θ.

So far we have shown that σ is a well-defined morphism such that σ(X) =
hσ′(X). This implies σ(h(X)) = hσ′(X) for all variables. For a constant b ∈ B we
have σ(h(b)) = h(b) = h(σ′(b)). Hence σh = hσ′ and this means that the diagram
in Figure 4 commutes. The morphism h : M(B′, θ′, µ′) → M(B, θ, µ) in Figure 4

M(B′,X , θ′, µ′)M(B,X , θ, µ)

M(B′, θ′, µ′)M(B, θ, µ)

h

σ′σ

h

Figure 4. hσ = σ′h.

denotes the restriction of the morphism h : M(B′,X ′, θ′, µ′) → M(B,X , θ, µ), too.
Let W = h(W ′) and hence, W = h(W ′). In order to see that (α, σ) is an entire
solution at E we use σh = hσ′ and we content ourselves to consider the following
line of equations:

σ(W ) = σh(W ′) = hσ′(W ′) = hσ′(W ′) = σh(W ′) = σ(W ).

In particular, ασ(W ) = ασh(W ′) = αhσ′(W ′). It is also clear that (αh, σ′) is an
entire solution at E′ since h leaves A invariant. �

Proposition 7.5. Let E0
h1−→ · · ·

ht−→ Et be a path in T of length t, where E0 =
(Winit, A,X , ∅, µ0) is an initial and Et = (W,B, ∅, ∅, µ) is a final state. Then E0

has an entire solution (idA∗ , σ) with σ(Winit) = h1 · · ·ht(W ). In particular, for
X ∈ X we have σ(X) = h1 · · ·ht(dX); and T is sound in the sense of (15).

Proof. Since Et is final, it has a unique solution σt = idB∗ . By the lemmas above,
we obtain a solution σ at E0 such that idA∗σ(Winit) = idA∗h1 · · ·htidB∗(W ). Hence,
(idA∗ , σ) is an entire solution as desired. �
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8. The intermediate automaton F

Proposition 7.5 states that the large automaton T is sound. This property cannot
be destroyed by removing states or transitions. That is, every subautomaton of T
is sound, too. We define a subautomaton F of T as follows. All extended equations
E are states of F , so the state set is the same infinite set as for T . However, for
transitions we are more restrictive. To define transitions, let us first define a weight
for equations and states. The definition is tailored that all compression transitions
and certain substitution transitions reduce the weight of the state.

Definition 8.1. Let E = (W,B,X , θ, µ) be an extended equation where (as usual)
W ∈ (A∪ Y)∗ is represented as a word. The weight of the equation ‖W‖ is defined
by

(16) ‖W‖ =

{
|W | + 30δ

∑
Y ∈Y |W |Y if E is not final,

0 otherwise, that is: E is final.

The weight of the state ‖E‖ is a pair of natural numbers ‖E‖ = (‖W‖ , |B|).

For ℓ ∈ N we order tuples in Nℓ lexicographically. For example (0, 42) < (1, 0),
but (1, 0, 42) > (0, 10, 100); and we use the fact that there are no infinite descending

chains in Nℓ. Consider any transition E
h

−→ E′ in T . Then we always have
|E| < |E′| unless the transition is a substitution transition where at least one
variable that appears in W pops out a constant.

Remark 8.2. The definition of ‖W‖ is invariant under the word representation of
W . This follows because

∑
Y ∈Y |x|Y =

∑
Y ∈Y |y|Y for all (x, y) ∈ θ. Second, the

advantage to use the weight ‖W‖ in ‖E‖ (instead of using the more straightforward
choice of (|W | , |B|) for ‖E‖) is that following a substitution transition, which does
nothing but replace variables X by σ(X) for |σ(X)| 6 30δ, leads to a state of smaller
weight.

A transition (W,B,X , θ, µ)
h

−→ (W ′, B′,X ′, θ′, µ′) in T belongs to F if and only
if the following properties are satisfied.

• If (W,B,X , θ, µ)
h

−→ (W ′, B′,X ′, θ′, µ′) is a substitution transition, then
W ′ = τ(W ), B = B′, and h = ε.

• If E = (W,B,X , θ, µ)
h

−→ (W ′, B′,X ′, θ′, µ′) = E′ is a compression transi-
tion, then W = h(W ′) and ‖E′‖ < ‖E‖.

The focus for the remaining part of the proof is on completeness. A subautoma-
ton A of T is called complete if it holds:

(17) Sol(S) ⊆ {(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗ | h ∈ L(A)} .

Since every subautomaton of T is also sound in the sense (15) we see that every
complete subautomaton is sound and complete.

Proposition 8.3. Let A be a trim, finite subautomaton of F . If A 6= ∅, then S
has at least one solution. If A contains a directed cycle, then S has infinitely many
solutions. Moreover, if A is complete, then the converse of both assertions is true.

Proof. If A 6= ∅, then S has at least one solution by Proposition 7.5. Now assume
that A contains a directed cycle. By hypothesis A is trim. Hence, there is an
accepting path with a directed cycle and this cycle doesn’t involve any final state

as final states are without outgoing arcs. Let Es
hs−→ · · ·

ht−→ Et = Es be this
cycle. Without restriction we have t > s and ‖Es‖ = ‖Es+1‖ because Nℓ admits no

infinite strictly descending chains. This means Es
ε

−→ Es+1 must be a substitution
transition which is defined by some τ with |τ(X)|a > 1 for some X where X appears
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in the equation belonging to Es and a is a constant. Hence, on some accepting path
we can pop out an arbitrary number of letters of X . Since on paths from an initial
state to Es the labels are non-erasing endomorphisms, we see that we can make
σ(X) ∈ A∗ at the initial state Einit larger and larger. Thus, there are infinitely
many solutions. The converse, under the assumption that (17) holds, is trivial. �

9. Towards completeness

During the completeness proof we always work with a state E = (W,B,X , θ, µ)
and a given entire solution (α, σ). Starting at a triple (E,α, σ) whereE is a standard
state, we describe a deterministic process which yields a path (h1, . . . , ht) inside the
(infinite) automaton F from E to some final state Et = (Wt, Bt, ∅, ∅, µt) so that
ασ(W ) = h1 · · ·ht(Wt). Thus, F is complete. The crucial property is that we are
able to control the lengths of all intermediate equations Wi for 1 6 s 6 t by

(18) |Ws| 6 |Ws| + O(δn).

We make sure that whenever we see an intermediate state Es where θs 6= ∅, then
θs has a special structure. Moreover, when we follow a compression transition then
we make sure the soundness condition holds for the corresponding label according
Definition 7.3.

We then can deduce Theorem 4.3 because for defining the complete NFA AS

mentioned in the theorem it is enough to consider the starting point

E = Einit = (Winit, A,X , ∅, µ0).

Since |Winit| 6 n we can ensure AS is finite by allowing extended equations in AS

only if the corresponding equation satisfies a concrete length bound in O(δn) =
O(|H |n2). Moreover, we impose that AS is trim. We will come back later to these
issues. For the moment we work in the infinite automaton F and there is no length
bound for the equation W .

9.1. Dummy variables denoting the empty word. In the following it is con-
venient to have the following notation at our disposal. We introduce purely formal
symbols of the form (f,D) where f ∈ H and D is called dummy variable, but the
symbol (f,D) is just another explicit notation for the empty word 1. The dummy
variable D is never listed in Y. Its only purpose is that we have a unified notation
for local equations (and avoid case distinctions). Since (f,D) = 1 every morphism
maps (f,D) to 1. The advantage is that with the help of a dummy variable, we
may, whenever convenient, assume that every local equation has the form

u(f,X)w(g, Y )v = uZv.

Here X,Y, Z are (perhaps dummy) variables and u, v, w are words over constants.

9.2. The weight of entire solution and the forward property. We need a
termination condition for the following compression procedure. Therefore we define
a weight ‖E,α, σ‖ ∈ N3 for the triple (E,α, σ) where E = (W,B,X , θ, µ) is a state
with an entire solution (α, σ) by

‖E,α, σ‖ =

{(∑
X∈X |ασ(X)|, ‖W‖ , |B|

)
if E is not final,

(0, 0, 0) otherwise.

At non-final states the weights ‖W‖ = |W | + 30δ
∑

Y ∈Y |W |Y and ‖E‖ =
(‖E‖ , |B|) were defined in Equation (16). Thus, actually for all states, we can
write ‖E,α, σ‖ as a pair

‖E,α, σ‖ = (
∑

X∈X

|ασ(X)|, ‖E‖).
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Being at (E,α, σ) we say that a transition E
h

−→ E′ = (W ′, B′,X ′, θ′, µ′) sat-
isfies the forward property if E′ has an entire solution (αh, σ′) such that first
‖E′, αh, σ′‖ < ‖E,α, σ‖ and second, αhσ′(W ′) = ασ(W ).

Following a transition E
h

−→ E′ which satisfies the forward property means that
we switch from (E,α, σ) to (E′, αh, σ′) = (E′, α′, σ′). Typically after each such step
we rename the tuple (W ′, B′,X ′, θ′, µ′, α′, σ′) as (W,B,X , θ, µ, α, σ). Since using a
transition satisfying the forward property reduces the weight ‖E,α, σ‖, there are
no infinite paths of transitions where all transitions on the path satisfy the forward
property.

9.3. Meta rules. Let E = (W,B,X , θ, µ) be a state with an entire solution (α, σ).
We apply the following meta rules whenever possible.

9.3.1. Remove variables with short solutions. If |σ(Y )| 6 30δ for some variable

Y ∈ Y such that |W |Y > 1, then follow a substitution transition E
ε

−→ E′ which is
defined by a B-morphism τ such that τ(Z) = σ(Z) if |σ(Z)| 6 30δ and τ(Z) = Z
otherwise. The state E′ = (τ(W ), B,X ′, θ′, µ′) uses the same set of constants, but
we have X ′  X . We also have θ′ ⊆ θ and µ′ is the restriction of µ. (Thus,
according to our convention we can also write E′ = (τ(W ), B,X ′, θ, µ).) Let σ′ be
the restriction of σ, then (α, σ′) is an entire solution at E′ and we have αεσ(W ) =
ασ′τ(W ). Moreover, ‖W ′‖ < ‖W‖. Hence, ‖E′‖ < ‖E‖ and the transition reduces
the weight of the state.

As a consequence, whenever we are at a state E = (W,B,X , θ, µ) with an entire
solution (α, σ), then we assume |σ(Y )| > 30δ for all Y ∈ Y where |W |Y > 1.

9.3.2. Remove useless constants. We say that a letter a ∈ B \A is useless (with re-
spect to σ) if |σ(W )|f ·a = 0 for all f ∈ H . Note that a letter a ∈ A is never useless.
If B contains a useless letter a, then define B′ = B \ {f · a | f ∈ H}. The inclusion
of B′ into B defines canonical embeddings M(B′,X , θ, µ) → M(B,X , θ, µ) and
M(B′, θ, µ) → M(B, θ, µ) such that W ∈ M(B′,X , θ, µ) and σ(W ) ∈ M(B′, θ, µ).
The state E′ = (W,B′,X , θ, µ) has an entire solution (α, σ′) where σ′ is the restric-
tion of σ. Moreover, ‖E′‖ < ‖E‖. Hence, we can follow the compression transition

E
ε

−→ (W,B′,X , θ, µ) which satisfies the forward property.
As a consequence, whenever we are at a state E = (W,B,X , θ, µ) with an entire

solution (α, σ), then we assume that B doesn’t contain any useless letters.

Remark 9.1. We may have that B \A contains letters that are not H-visible, but
a solution σ uses them. Removing useless letters does not remove such letters.

9.3.3. Moving to a final state. Let E = (W,B, ∅, ∅, µ) be a standard state without
any variables and with an entire solution (α, σ). Then σ = idB is the identity on
M(B, ∅, ∅, µ) = M(B, ∅, µ) and we have W = W . If E is final, there is nothing to
do. Hence, we assume that E is not final. Since W = W , Definition 5.4 tells us

W = #x1# · · · #xk#u##u#xk# · · · #x1#.

Hence we can enlarge B to a set B′ which contains all distinguished di for 1 6 i 6 k.
(By our convention none of the di belongs to B because the state E is not final.) We
define a B-morphism h : M(B′, ∅, µ) → M(B, ∅, µ) by letting h(di) = xi. Moreover,
we let

W ′ = #d1# · · · #dk#u##u#dk# · · · #d1#.

We have no variables and W ′ = W ′. Hence E′ = (W ′, B′, ∅, ∅, µ′) is final. The
entire solution at E′ is (αh, idB) and we have αh(W ′) = α(W ) since none of the
di belong to B. Since ‖E,α, idB‖ > (0, 0, 0) = ‖E′, αh, idB‖ the compression

transition E
h

−→ E′ satisfies the forward property. Hence, we are done.
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As a consequence, whenever we are at a standard state E = (W,B,X , ∅, µ) with
an entire solution (α, σ), then we assume that X 6= ∅. Moreover according to the
other meta rules we have |σ(X)| > 30δ for all X ∈ X and every constant b ∈ B is
H-visible in W .

10. Compression round: the first phase

We perform the compression in rounds. Each round has two phases. The first
phase is called δ-periodic compression, the second one is called pair compression.
During δ-periodic compression we perform all meta rules whenever possible. Recall
how meta rules decrease the weight (‖W‖ , |B|) at states: removing a variable makes
‖W‖ smaller, removing useless letters doesn’t change ‖W‖, but it makes B smaller.
Moving to a final state decreases the weight of the state down to (0, 0) (which
was the exceptional weight at final states) . None of these rules increases the sum∑

X∈X |ασ(X)|. Therefore all meta rules satisfy the forward property according to
Section 9.2.

10.1. A simple, but useful, estimation. During the rounds the length oscillates
but it can be bounded by some function in O(δn). In order to obtain such a bound
we will later apply the following fact twice with different parameters.

Lemma 10.1. Let 0 6 q < 1 and c > 1 for some real constants q, c, and let
s : N → N be a function with s(0) 6 c

1−q δn and which satisfies a bound

s(t+ 1) 6 q s(t) + cδn

for all t ∈ N. Then s(t) 6 c
1−q · δn for all t ∈ N.

Proof. The statement is true for t = 0. Assuming it is true for t > 0 then

(19) s(t+ 1) 6 qs(t) + cδn 6 q
c

1 − q
δn+ cδn =

c

1 − q
· δn.

�

In O-notation (19) reads as: if s(0) > 0 and s(t + 1) ∈ qs(t) + O(δn), then
s(t) ∈ O(δn) for all t.

10.2. Alphabet reduction at standard states. During our procedures we in-
troduce more and more letters, so the set B grows, and removing useless letters is
not enough to keep the size of B in O(|H | · |W |).

The following procedure which we call alphabet reduction is not a meta rule
(which we may apply whenever possible). If we call the procedure we explicitly say
so. When we call it we wish that B \A contains only H-visible letters in W .

We begin at a standard state E = (W,B,X , ∅, µ) with an entire solution (α, σ)
where there is some letter b ∈ B which is not H-visible. Hence |W |f ·b = 0 for all
f ∈ H . Removing useless letters is a meta rule. Hence, we may assume without
restriction that all letters are useful and therefore we may assume |σ(X)|b > 1 for
some variable. (That is, we are in the situation of Remark 9.1.) Define

B′ = A ∪
{
a ∈ B

∣∣ ∃f ∈ H : |W |f(a) > 1
}
.

Then we have W ∈ M(B′,X , ∅, µ). The procedure will takes us (via a compression
transition defined by the inclusion B′ ⊆ B) to the state E′ = (W,B′,X , ∅, µ). Since
b ∈ B \B′ we have |B′| < |B| and therefore ‖E′‖ < ‖E‖, too.

It is here where the notion of entire solution becomes important. We have
α : M(B, ∅, µ) → M(A, ∅, µ0), so we can define a B′-morphism β : M(B, ∅, µ) →
M(A, ∅, µ0) by β(b) = α(b) for b ∈ B \B′. Since M(B, ∅, µ) = B∗ is a free monoid,
we don’t have to worry to check defining relations. Moreover, σ′ = βσ is solution at
E′ = (W,B′,X , ∅, µ′). Thus, we can switch from (E,α, σ) to (E,α, σ′) = (E,α, βσ)
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via the compression transition (W,B,X , ∅, µ)
ε

−→ (W,B′,X , ∅, µ). Since α is an A-
morphism we obtain α = αβ. Hence, ασ(W ) = αβσ(W ) = αεσ′(W ) as desired.

As a consequence, whenever we perform an alphabet reduction, then we arrive
at a standard state E = (W,B,X , ∅, µ) with an entire solution (α, σ) such that
every letter in B \ A is H-visible in W . This means that after alphabet reduction
the size of B is at most |H | · (|A| + |W |).

10.3. Mapping the positions from σ(W ) to W . Let E = (W,B,X , ∅, µ) be
a state with an empty type θ and let σ : M(B,X , ∅, µ) → M(B, ∅, µ) be any B-
morphism. Recall that {1, . . . ,m} (resp. {1, . . . , ℓ}) denotes the set of positions of
σ(W ) (resp. W ). Then σ induces a mapping πσ from {1, . . . ,m} to {1, . . . , ℓ} as
follows. We define πσ from left-to-right. We let πσ(1) = 1. The first position in
σ(W ) is labeled with # and so is the first position in W . No other position than 1
is mapped to 1. We shall keep the invariant that σ(W [1,m′]) = W [1, ℓ′] if m′ is the
largest position which is mapped to ℓ′. In particular, we have σ(W [m′ + 1,m]) =
W [ℓ′ + 1, ℓ].

Now assume πσ(i) is already defined for all 1 6 i 6 m′ and m′ 6 m. If m′ = m
we are done. Otherwise we have m′ < m and we consider πσ(m′) = ℓ′. By the
invariant we know ℓ′ < ℓ. We look at the label of the position ℓ′ +1. It is labeled by
a letter in W and there are two cases. In the first case the label is a constant b ∈ B.
In this case we let πσ(m′ + 1) = ℓ′ + 1. In the second case the label is of the form Y
with Y ∈ Y. In that case we map all positions in the interval [m′ + 1,m′ + |σ(Y )| ]
to the single position ℓ′ + 1.

Note that πσ : {1, . . . ,m} → {1, . . . , ℓ} enjoys the following properties. If ℓ is a
position of W which is labeled by a constant b ∈ B, then πσ

−1(ℓ) is a single position
in σ(W ) which is labeled by b, too. If ℓ is a position of W which is labeled by a
variable Y ∈ Y, then πσ

−1(ℓ) is a interval of length |σ(Y )| in σ(W ). The label of
that interval is just σ(Y ).

Definition 10.2. We say that a position m′ of σ(W ) is visible (in W ) if πσ(m′)
is a constant. Otherwise it is called invisible. An interval [i, j] of positions of
σ(W ) is visible (in W ) (resp. invisible) if all positions in that interval are visible
(resp. invisible) positions. If [i, j] contains an invisible position, but |πσ[i, j]| > 2,
then we say that the interval [i, j] is crossing.

10.4. The start of a compression round. Each compression round starts at a
standard state Er = (Wr , Br,Xr, ∅, µr) with an entire solution (αr, σr). We may
assume that no meta rule is applicable. The very first step is now an alphabet
reduction. For simplicity, we denote the state again by Er = (Wr , Br,Xr, ∅, µr)
and we have |Br| 6 |H | · |Wr |.

10.5. δ-periodic compression. For convenience we rename the tuple

(Er ,Wr, Br,Xr, µr, αr, σr) = (E,W,B,X , µ, α, σ).

At this point we know that no meta rule applies to E and that |B| 6 |H | · |W |.
Let us consider all very long maximal δ-periodic factors w of σ(W ) which have

a maximal occurrence with at least one visible position. (By maximal occurrence
we mean that w is not a factor of a longer δ-periodic word at that occurrence.) We
assume that at least one such occurrence exists, otherwise we skip the main body
of the δ-periodic compression and proceed directly to the end: Section 10.6.

We write w = uperv with |u| = |v| = 3δ, p is primitive of length at most δ and
r is a nonempty prefix of p. (Recall very long means |w| > 10δ so |per| > 4δ.) By
Lemma 6.4, we can encode the factor uperv uniquely by writing the triple (p, r, e).
Let us call u and v the borders of the very long maximal δ-periodic factor uperv.
Consider different occurrences uperv and u′p′e′

r′v′ of very long maximal δ-periodic
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factors in σ(W ). If the occurrences overlap, then this overlap takes place in the
borders only, because otherwise the occurrence of the factor was not maximal.

It follows that the number of occurrences very long maximal δ-periodic factors
with at least one visible position is less than |W |. Thus we find some minimal index
set Λ of size |Λ| < |W | such that

FΛ = {uλp
eλ

λ rλvλ | λ ∈ Λ}

is exactly the set of very long maximal δ-periodic factors of σ(W ) which have a
maximal occurrence with at least one visible position.

The idea is that at the end we arrive at a state with a solution where all these
occurrences are replaced by u[r, s, λ]v where [r, s, λ] is the notation for a fresh letter
such that p = rs, r 6= 1, and λ ∈ Λ. We also color certain positions in W and σ(W ).
At the end of the process a position will be green if and only if it is labeled by some
new letter [r, s, λ].

Note that λ is just a formal symbol: we need at most O(|W |) bits to encode it.
We also define a set of primitive words

PΛ = {pλ | uλp
eλ

λ rλvλ ∈ FΛ} .

We have

1 6 |PΛ| 6 |FΛ| = |Λ|.

Next we consider fresh variables which are denoted as [X, f(sr)] where X ∈ X ⊆
X , f ∈ H and for certain pλ ∈ PΛ and then for all rs = pλ. These new variables
will later be typed. We define the action of H by g · [X, p] = [X, g(p)] and the

involution by [X, p] = [X, p]. The idea is σ([X, p]) ∈ p∗; and thus, σ([X, p]) ∈ p∗ and
σ((f, [X, p])) ∈ f(p)∗. Note that (f, [X, p]) = (g, [X, p]) if and only if g−1f(p) = p
and hence g−1f ∈ Hp is in the known stabilizer of p.

The following routine introduces these new variables using substitution transi-
tions. Recall that defining τ(X) = w substitutes (f,X) by f(w) and simultaneously

(f,X) by f(w) = f(w) for all f ∈ H .

begin procedure (insert new variables)
Initialize a set of fresh variables by Xnew = ∅ and put E = (W,B,X ∪ Xnew, ∅, µ).
forall X ∈ X do

(Note this means we do the process once for X and once for X.)

(1) Apply all meta rules whenever possible; in particular, |σ(Y )| > 30δ for all
variables.

(2) Let qdq′ be the longest suffix of σ(X) such that q is primitive, |q| 6 δ, and
q′ is a prefix of q. If

∣∣qdq′
∣∣ 6 3δ, then do nothing.

(3) If
∣∣qdq′

∣∣ > 3δ, then define words p, p′, and e > 0 by qdq′ = upep′ with
|u| = 3δ, |p| = |q|, and 1 6= p′ 6 p. (Note that p is primitive: we have
p = q2q1 for some factorization q = q1q2.) We enlarge Xnew by a fresh
variables [X, sr] for all factorizations p = rs. Moreover, if we enlarge Xnew

by some [X, p], then we also include [X, f(p)] and [X, f(p)] for all f ∈ H .
We can write σ(X) = xupep′ with |xu| > 3δ. Follow a substitution

transitionE
ε

−→ E′ = (τ(W ), B,X ∪Xnew, ∅, µ′) which is defined by τ(X) =
X [X, p]p′ and define an entire solution at E′ by (α, σ′) where σ′(X) = xu
and σ′[X, p] = pe. The transition satisfies the forward property. (Due to
the meta rules it can happen that X becomes smaller and/or that Xnew is
not enlarged at all.)

(4) Rename E′, τ(W ), µ′, σ′ as E,W, µ, σ.

endforall

endprocedure
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The number of new variables [X, p] ∈ Xnew is bounded by O(|H | δn) because
|X | 6 n. The factor δ comes in because we consider all cyclic permutations sr of
p = rs. The factor |H | comes in because we close under H-action. On the other
hand we don’t need to list [X, f(p)] in Xnew for 1 6= f ∈ H if [X, p] is already listed.
Thus, a list of O(δn) new variables suffices to specify the full set Xnew (which is

closed under the action of H and involution. Note that [X, p] = [X, p] 6= [X, p]. So
we keep the invariant that variables are not self-involuting.

From now on until the end of δ-periodic compression we only remove variables.
So, if Y ′ = H · X ′ is the full set of variables we meet during the whole procedure,
then we have:

(20) |X ′| ∈ O(δn).

Before the procedure we had Y = H × X and X ⊆ X , and
∑

Y ∈Y |W |Y 6 n
as required for a standard state. The corresponding set after the procedure is
Ynew = Xnew ∪ H × X . We have to check that

∑
Y ∈Ynew

|W |Y 6 3n (because

otherwise it is not an extended equation as per Definition 5.4). This bound is
immediate.

In the case Xnew = ∅ we are still at a standard state and
∑

Y ∈Ynew
|W |Y 6 n. For

Xnew 6= ∅ we are not at a standard state because Ynew is not contained in H × X .
Since for (W,B,X ∪Xnew, ∅, µ) the type θ is empty, we map the positions of σ(W )

to the positions W as explained above in Section 10.3. Consider any occurrence of
a very long δ-periodic factor w = upep′v in σ(W ) which is maximal and where at
least one position is visible and where |u| = |v| = 3δ. Consider the occurrence of
all very long maximal δ-periodic factors w′ where w′ ∈ {g · w, g · w | g ∈ H}. Each
factor w′ can be written as w′ = u′w′′v′ where |u′| = |v′| = 3δ.

For all maximal occurrences of these factors w′ let us color the inner positions
belonging to w′′ green. Then only green positions are mapped to a variable [X, q] ∈
Xnew. It is also clear that we we can write q = sr for some factorization p = rs.
Let us transport the green color to the corresponding positions in W . Then for all
positions in W which are labeled by a variable it holds that the position is green if
and only if it is new variable. Note that green positions in σ(W ) are separated by
words of length at least 3δ.

In the next procedure we will introduce a type θ which consists of defining
relations of the form [X, aq]a = a[X, qa], but it will be enough to apply such a rule
where both positions in W are green. Hence, the color of the positions will not be
altered under this restriction. In order to define θ we use Xnew 6= ∅, otherwise we
skip the next procedure.

begin procedure (introduce a type θ)

(1) Define the type θ by {([X, as]a, a[X, sa]) | a ∈ B ∧ [X, as] ∈ Xnew}∪{([X, p]p, p[X, p]) | [X, p] ∈ Xnew} .
Note that [X, p]p = p[X, p] is actually a consequence of the other relations
in θ. We include it order to satisfy the definition of type in Section 3.3, that
if a variable (in this case [X, p]) appears in a type then there is a unique
primitive word p with which it commutes.

(2) Choose any [X, p] ∈ Xnew and write σ([X, p]) = pe. (Note that we have
e > 10 in this case, since a meta rule would remove the variable if it has a
solution shorter than 30δ). Define a morphism τ : M(B,X ∪ Xnew, ∅, µ) →
M(B,X ∪ Xnew, θ, µ) by τ [X, p] = [X, p]p5. The morphism is well-defined
since [X, q]q = q[X, q] in M(B,X ∪ Xnew, θ, µ) for all [X, q] ∈ Xnew.

(3) Follow the corresponding substitution transition

(W,B,X ∪ Xnew, ∅, µ)
ε

−→ (τ(W ), B,X ∪ Xnew, θ, µ
′).
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The transition satisfies the forward property with the entire solution (α, σ′)
where σ′[X, p] = pe−5. Apply all meta rules. (After that we may have θ = ∅
again.)

(4) Rename (τ(W ), µ′, σ′) as (W,µ, σ).

endprocedure

Using the relations from θ we can move the Xnew variables around over green
positions. Thus, we can choose a word representation for W ∈ M(B,X ∪Xnew, θ, µ)
as W ∈ (B ∪ Y ∪ Xnew)∗ such that every maximal green interval [i, j] of positions
in W is labeled by a word of the form

W [i, j] = [X1, rs] · · · [Xg, rs](rs) · · · (rs)(rsr) [Xg+1 , sr] · · · [Xd, sr](21)

= [X1, rs] · · · [Xd, rs](rs) · · · (rs)(rsr)(22)

= (rsr)(sr) · · · (sr)[X1, sr] · · · [Xd, sr].(23)

In the following we simply say that W [i, j] is a maximal green factor when we
actually refer to the label W [i, j] of a maximal green interval [i, j] of positions.
We can choose 0 6 d 6 2 because in a standard state all local equations are
triangular, but this is not essential. Without restriction we have r 6= 1 and that
(rs) · · · (rs)(rsr) = (rs)er satisfies e > 1. This is clear if d = 0. For d > 1 it is
enough to substitute [X1, rs] by [X1, rs]rs. For each 1 6 i 6 d there is ei ∈ N such
that σ[Xi, rs] = (rs)ei and therefore:

σ(W [i, j]) = (rs)e+e1+···+ed r = r(sr)e+e1+···+ed .(24)

σ(W [i, j]) = (r s)e+e1+···+ed r = r(s r)e+e1+···+ed .(25)

At this point we will change θ to θ′ (defined below) since the defining relations
[X, aq]a = a[X, qa] with a ∈ B will be of no use anymore. The idea is to replace
the factors rs, sr, and rsr by fresh letters denoted by [rs], [sr], and [r, s, λ]. The
λ is used to encode the sum e+ e1 + · · · + ed. We will make the assumption r 6= 1,
then [rs], [sr], and [r, s, λ] are three different letters for s 6= 1, and there is no letter
[1, pλ, λ], only [pλ, 1, λ]. For the maximal green factor W [i, j] we intend to define a
word W ′[i, j] and a type θ′ such that

W ′[i, j] = [X1, rs] · · · [Xg, rs] [rs] · · · [rs] [r, s, λ] [Xg+1 , sr] · · · [Xd, sr](26)

= [rs] · · · [rs] [X1, rs] · · · [Xg, rs] [r, s, λ] [Xg+1, sr] · · · [Xd, sr](27)

= [X1, rs] · · · [Xg, rs] [r, s, λ] [Xg+1, sr] · · · [Xd, sr] [sr] · · · [sr].(28)

More precisely, for each uλp
eλ

λ rλvλ ∈ Fλ we associate a new letter [rλ, sλ, λ] with
µ′([rλ, sλ, λ]) = µ(rλ, sλrλ), and [q] for every typed variable [X, q] with µ′[q] = µ(q).
Recall our notation that uλp

eλ

λ rλvλ is a very long δ-periodic word, |uλ| = |vλ| = 3δ,
p is primitive, and r 6= 1. It is important that [r, s, λ] is visible, whenever at least
one the green positions is visible. This why in the different word representations
(26)–(28) for the same W ′[i, j] the [r, s, λ] always sits between the variables.

By introducing (if necessary) more fresh letters we close the set of fresh letters
under involution and H-action. We let:

[rλ, sλ, λ] = [rλ, sλ, λ] and [q] = [q].(29)

g · [rλ, sλ, λ] = [g · rλ, g · sλ, λ] and g · [q] = [g · q] for g ∈ H .(30)

The set of these new letters is denoted by Bnew. The number of new letters can be
bounded by:

|Bnew| ∈ O(|H | · (|W | + δn)).

Let B′ = B ∪ Bnew. Next, we define the new type θ′. For each typed variable
[X, q] there is exactly one commutation rule: [X, q]q = q[X, q]. The other defining
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relations say that [rλsλ] and [sλrλ] are “conjugate” due to the letter [rλ, sλ, λ].
Making this formal we specify θ′ by:

θ′ = {([X, q][q], [q][X, q]) | [X, q] ∈ Xnew}(31)

∪ {[r, s, λ][sr], [rs]([r, s, λ] | [r, s, λ] ∈ Bnew} .(32)

Note that the defining relations in θ′ are designed that (26)–(28) hold.
We can now define the rest of the δ-periodic compression procedure. It is the

analogue to Jeż’s “block compression” as described in [11]. During the process sets
of positions for W and σ(W ) change, but our process makes clear that we can
always transport the green color: no change involves an interval which has both
colored and uncolored positions. We perform the following steps.

begin procedure (remove very long δ-periodic factors with a visible position)

(1) Define the element W ′ ∈ M(B′,X ∪Xnew, θ
′, µ′) by replacing maximal green

factors in W just we as have done for W [i, j] in Equation (21) in order to
produce W ′[i, j] in Equation (26). Doing this everywhere defines W ′ in a
word representation as W ′ ∈ (B′ ∪ Y ∪ Xnew)∗.

(2) Define a B ∪ X ∪ Xnew-morphism

h1 : M(B′,X ∪ Xnew, θ
′, µ′) → M(B,X ∪ Xnew, θ, µ)

by h[r, s, λ] = rsr and h[q] = q. We have W = h1(W ′) and we obtain a
compression transition satisfying the forward property

E = (W,B,X ∪ Xnew, θ, µ)
h1−→ (W ′, B′,X ∪ Xnew, θ

′, µ′) = E′.

Note that ‖E′‖ < ‖E‖ since ‖W ′‖ < ‖W‖ due to the fact that (by our
assumption) at least one green interval exists with a visible position exists;
and therefore some new letter [r, s, λ] is visible in W ′ (which represents the
word rsr of length at least 2). The new entire solution at E′ is (α′, σ′) =
(αh1, σ

′) where σ′(X) = X for X ∈ X and σ′[X, p] = [p]e if σ([X, p]) = pe.
We apply the meta rules and then we rename E′,W ′, α′, σ′ as E,W,α′, σ′

but we keep the notation for B′, X , Xnew, θ′, and µ′ (although B′, Xnew,
and θ′ may become smaller by the meta rules and µ′ changes).

(3) while there is letter [p] ∈ Bnew do

(a) If Xnew 6= ∅, then choose some [X, p] ∈ Xnew. Use a substitution
transition defined by τ [X, p] = [X, p][p]2 to make sure that σ([X, p]) is
shorter than at the beginning of the loop and that we don’t run out of
letters [p] as long as there are typed variables. The invariant is that
as long as Xnew 6= ∅ there is some letter [p] visible.

(b) Use transitions of the form [X, p] 7→ [X, p][p] in order to keep the
invariant that σ([X, p]) = [p]e where e is even. Moreover, due the meta
rules we maintain |σ([X, p])| > 30δ. At some point |σ([X, p])| might
be too short, then we remove [X, p] from Xnew. We also maintain the
invariant that |σ([X, p])| = |σ([X, q])| = |σ([X, q])| for all p, q and X ∈
X . Thus, if we remove one [X, p], then all other typed variables using
the symbol X are removed simultaneously and θ′ becomes smaller,
too.

(c) If there is a maximal green factor

W [i, j] = [X1, p] · · · [Xg, p][p]
e[r, s, λ] [Xg+1, q] · · · [Xd, q](33)

where d > 0 and e is odd, then define an endomorphism

hλ : M(B′,X ∪ Xnew, θ
′, µ′) → M(B′,X ∪ Xnew, θ

′, µ′)
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by hλ([r, s, λ]) = [p][r, s, λ]. Thus, we can write

W ′[i, j] = hλ([X1, p · · · [Xm, p][p]
e−1[r, s, λ] [Xm+1, q] · · · [Xℓ, q]).(34)

This defines a new equation W ′ and a B′-morphism σ′ such that
h(W ′) = W and σhλ(W ′) = σ′(W ). Hence, there is a compression
transition satisfying the forward property

E = (W,B,X ∪ Xnew, θ, µ)
hλ−→ (W ′, B′,X ∪ Xnew, θ

′, µ′) = E′.

As above, ‖E′‖ < ‖E‖ since ‖W ′‖ < ‖W‖. The new entire solution
at E′ is (α′, σ′) = (αh2, σ

′). We apply the meta rules and then we
rename E′,W ′, α′, σ′ as E,W,α′, σ′ .

(d) Due to the previous steps: whenever we see a maximal green factor

[X1, p] · · · [Xg, p][p]
e[r, s, λ] [Xg+1, q] · · · [Xd, q],

then σ[Xi, p] ∈ ([p][p])∗ for 1 6 i 6 d and e is even. Define an
endomorphism

h3 : M(B′,X ∪ Xnew, θ
′, µ′) → M(B′,X ∪ Xnew, θ

′, µ′)

by h3([p]) = [p]2 for all [p] which appear in Bnew. Thus, we can write

W ′[i, j] = h3([X1, p] · · · [Xm, p][p]
e/2[r, s, λ] [Xm+1, q] · · · [Xℓ, q]).(35)

This defines a new equation W ′ and a B′-morphism σ′ such that
h(W ′) = W and σh(W ′) = σ′(W ). Hence, there is a compression
transition satisfying the forward property

E = (W,B,X ∪ Xnew, θ, µ)
h

−→ (W ′, B′,X ∪ Xnew, θ
′, µ′) = E′.

As above, ‖E′‖ < ‖E‖ since ‖W ′‖ < ‖W‖. The new entire solution at
E′ is (α′, σ′) = (αh, σ′). We apply the meta rules and then we rename
E′,W ′, α′, σ′ as E,W,α′, σ′ .

endwhile

endprocedure

It is clear that the procedure terminates in some standard state. Let us denote
that state and its entire solution as:

(36) Es = (Ws, Bs,Xs, ∅, µs) and (αs, σs).

We began the routine at Er. During the procedure we see symbols [X, p], [rs] and
[r, s, λ], and the length of the equation W grows as we pop out letters in the suffix
and prefix of each variable. At the end all the new variables disappeared, either by
the meta rules or when maximal green factors are compressed into a single letter
[r, s, λ]. The only new letters in Bs are of the form [rλ, sλ, λ] and there are not
more than |H | · |Wr| of them.

The following proposition summarizes all the changes that happen in the proce-
dure.

Proposition 10.3. Let Er = (Wr , Br,Xr, ∅, µr) be the state where we started δ-
periodic-compression with an entire solution (αr, σr). Let Es = (Ws, Bs,Xs, ∅, µs)
denote the standard state with the entire solution (αs, σs) where we finish δ-periodic
compression and let (W,B′,X ′, θ, µ) be any state which we have seen (with the full
set of variables Y ′ = H · X ′) on the path from Er to Es during the procedure.

Then we have the following.

(1) Bs = B ∪ {[rλ, sλ, λ] | λ ∈ Λ} for some B ⊆ Br.
(2) |Bs| 6 |H | · (|Wr| + |Ws|).
(3) |B′| ∈ |H | · (|Wr| + O(δn)).
(4) ‖Ws‖ 6 ‖Wr‖ + 14δn 6 ‖Wr‖ + 20δn.
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(5) ‖W‖ ∈ ‖Wr‖ + O(δn) ⊆ |Wr | + O(δn).
(6) Xs ⊆ Xr ⊆ X .
(7) |X ′| ∈ O(δn).
(8) For each X ∈ Xs the word σs(X) does not start or end with a very long

δ-periodic word.

Proof. We justify each item as follows.

(1) Meta rules may remove some (useless) letters from the initial alphabet Br,
so we have B ⊆ Br, and the only new constants that survive at the end are
of the form {[rλ, sλ, λ] | λ ∈ Λ}.

(2) Bs consists of letters in H · Br and those from H · {[rλ, sλ, λ] | λ ∈ Λ}.
Since we applied alphabet reduction at the beginning, |Br| 6 H · |Wr|, and
since the letters [rλ, sλ, λ] cannot be eliminated by any compression during
the procedure, their number is bounded by H · |Ws|. The only other new
constants added during the procedure are of the form [p] but these are all
eliminated by compression, so do not appear in Bs by the meta rule.

(3) Again we have |Br| 6 H · |Wr|. During the procedure we add letters [rs]
and [r, s, λ]. For each variable X ∈ X we add some [rs] and [r, s, λ], then
we need to multiply by δ since we have all cyclic permutations of these and
|rs| 6 δ. Since the are at most n variables this gives O(δn) new constants,
so applying the action we get the bound of H · O(δn) new constants.

(4) We first pop out τ(X) = X [X, p]p′ because we had σ(X) = xqdq′ = xupep′

with |qdq′| > 3δ. (If |qdq′| < 3δ we do nothing.) After applying τ we have
σ(X) = xu and σ([X, p]) = pe. If it is the case that |pep′| < 7δ then later
we do not apply any compression to [X, p] since it is not part of a very long
factor, instead we simply pop it out. This contributes at most 14δn in the
worst case that this happens in the suffix of every X ∈ X .

If |pep′| > 7δ then together with u this gives a factor of length at least
10δ, so [X, p] is part of a very long δ-periodic word so it is compressed down
to a single letter. Thus 7δ is the most added at either end of any variable by
the procedure. This gives 14δn. We give the larger bound 20δn to simplify
later calculations only.

(5) Since ‖W‖ 6 |W |+90δn ∈ |W |+O(δn) at every state in T , it is enough to
show ‖W‖ ∈ ‖Wr‖ + O(δn). However this only requires the estimation in
Section 10.1. By that estimation we content ourselves to define a function
s : N → N with s(0) 6 cδn and which satisfies for all t a bound

s(t+ 1) 6 q s(t) + cδn

for some q < 1 and c > 1. To see where the q comes from in our application,
choose s(0) to be number of letters [p] at the state where they first appear.
Each time we pass through a transition defined by h([p]) = [p][p] we half
the number of these letters; and this shows that we can define q = 1/2.
Between these steps where we halve the number of [p]’s we create at most
cδn new ones with c ∈ O(1).

(6) During the procedure we add new variables [X, p] but these are eliminated
by the compression. Since we apply meta rules we may also remove variables
X ∈ Xr. Thus Xs ⊆ Xr ⊆ X .

(7) This is justified above at Equation (20).
(8) Consider any σs(X) with X ∈ Xs. If for that X , the word σ(X) at the

beginning at the procedure “insert new variables” had a δ-periodic suffix
of length more than 3δ, then, due to the splitting of variables, the length
of the maximal δ-periodic suffix in σs(X) is exactly 3δ. Hence, there is no
very long δ-periodic suffix. In the other case the suffix of length 3δ in σ(X)
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and σs(X) coincide. Thus, in this case the length of the maximal δ-periodic
suffix in σs(X) is at most 3δ. Since X ∈ X implies X ∈ X the same is true
for the prefix of each variable.

The proposition is therefore shown. �

10.6. The end of the δ-periodic compression. Recall that we started a com-
pression round at a standard state Er with an equation |Wr|; and we end standard
state Es with an equation |Ws|. (Possibly r = s.) If, due the meta rules, Es is
final, we are done. Hence, we continue under the assumption that Es is not a final
state.

11. Pair compression

We enter the second phase of the compression round with “pair compression”
directly after the end of δ-periodic compression. We enter the pair compression pro-
cedure at a standard state Es which is not final and with an entire solution (αs, σs).
If Er and (αr, σr) denote the situation where we began the current compression
round (where we began δ-periodic compression), then Proposition 10.3 tells us:

(37) ‖Ws‖ 6 ‖Wr‖ + 20δn.

During the pair compression all states are standard states. No type is needed.
Phrased differently, we have θ = ∅, there are no typed variables and hence, all
variables belong to X . Thus, the number of positions labeled with twisted variables
is at most n, as it is required for standard states.

Our goal in this section is to compress pairs ab 6 Ws of constants into single
letters without causing any conflict due to overlap with other pairs or variables
that are connected via twisted equations. In particular, compressing a pair linked
to a δ-periodic factor might cause problems, so we wish to avoid compressing those
pairs. This leads us to define the following.

Definition 11.1. Let E = (W,B,X , ∅, µ) be a standard state with a solution σ.
We say that (E, σ) satisfies the shrinking pair condition if there is no X ∈ X such
the word σ(X) starts with a very long δ-periodic word4.

Note this is the situation we find ourselves in at the conclusion of the δ-periodic
compression procedure: Es = (Ws, Bs,Xs, ∅, µs) with its solution σs satisfies Def-
inition 11.1. The shrinking pair condition is a necessary condition when proving
Lemma 11.3 below. That technical lemma is one of the key steps.

11.1. Positions revisited. Consider any standard state E = (W,B,X , ∅, µ) to-
gether with a entire solution (α, σ). We introduce a precise notion of equivalence
≡ between positions (and intervals) of σ(W ), which we introduce now. The idea is
that whenever we modify a solution σ at a position i, then we must modify σ at all
equivalent positions j ≡ i in order to keep the property of being a solution. More-
over, ≡ should be the finest equivalence relation with that property. For example,
when we compress a factor ab where a, b are letters, then we want to compress only
certain occurrences of f(ab), f(ba) (where f ∈ H) and not all of them.

As explained in Section 10.3 there is a canonical mapping from the set [1, |σ(W )|]
to the set of positions in W . By λ(i) we denote the label of a position i in σ(W ).

Recall also the notion of duality: if [l, r] is an interval in [1, |σ(W )|], then [ℓ, r] =
[r, ℓ] denotes the dual interval, where i = |σ(W )| + 1 − i for all 1 6 i 6 |σ(W )|.
According to the definition of standard states, the set of twisted variables which
appear in W can be written as Y = (H × X ) and we have X ⊆ X . It is convenient

4Recall that a word w is very long δ-periodic if and only if |w| > 10δ and w is a prefix of some

word p|w| where |p| 6 δ, see Definition 6.3.
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to fix a subinterval I(X) of [1, |σ(W )|] for each X ∈ X such that I(X) = I(X)
as follows. Consider

{
X,X

}
⊆ X , then without restriction we have X = Xi for

some unique 1 6 i 6 |X |/2 (and hence X = Xi). Choose for I(X) the left-most
maximal interval [ℓX , rX ] in σ(W ) which is mapped to a position labeled by Xi. In

particular, rX − ℓX + 1 = |σ(X |. We let I(X) = I(X). By the specific structure of

W being an extended equation, we see that I(X) is the right-most maximal interval
in σ(W ) which is mapped to a position labeled by Xi. To have a notation we let
2m = |σ(W )| and

I(X ) =
⋃

{I(X) | X ∈ X } ,(38)

I(B) =
{
i ∈ [1, 2m]

∣∣ i or i is mapped to a position labeled by a constant
}
.(39)

Note that I(X ) and I(B) are disjoint sets of positions: if i ∈ I(X ), then there is
some X such that i is mapped to a position labeled by X and i is mapped to a posi-
tion labeled by X. The next idea is to identify positions in σ(W ) based on the fact
that we can write W in the form W = #U# #V# such that σ(W ) = σ(W ) ⇐⇒
σ(U) = σ(V ). In pictures we intend to place the positions of σ(U) and σ(V ) on top
of each other. The intuition is clear: we have [1, 2m] =

{
1, . . . ,m, m, . . . , 1

}
. The

positions of #V# cover m, . . . , 1. Hence, we can think that #V# = #V# uses the
same set of positions as #U#, namely the set {1, . . . ,m}. Thus, every i ∈ [1, 2m]
has always two interpretations: for i 6 m as a position either in #U# or in #V#,
for m < i the situation is dual. Let us make this intuition formal.

The mapping from [1, 2m] to the positions of W induces a relation

 ⊆ [1, 2m] × (I(X ) ∪ I(B)).

We define  inductively. If i is mapped to a position in W which labeled by a
constant, then we have i ∈ I(B) and we let i  i and i  i. In the other case i
is mapped to a position labeled by Y = (f,X) for some f ∈ H and X ∈ X . Let ℓ
the leftmost position in [1, 2m] which is mapped to the same position as i. Then
we can write i = ℓ+ k and we find j = ℓX + k. In this case we let i j and i j.
Note that this implies λ(i) = f(λ(j)). The position j belongs to I(X).

Up to duality, there are three cases:

(1) i ∈ I(B) and i ∈ I(B). Then there is only one j such that i j.
(2) i ∈ I(B) and i /∈ I(B). Then we have i  i ∈ I(B) and i  j ∈ I(X ).

Since I(X ) ∩ I(B) = ∅, we have i 6= j.

(3) i /∈ I(B) and i /∈ I(B). Then i  j and i  k with
{
j, j, k, k

}
⊆ I(X ).

Hence, there there are at most two j, k ∈ I(X ) such that i j and i  k.

Let us explain the meaning of this “ ” relation by considering a local equation
u(f,X)w(g, Y )v = uZv. In W this local equation corresponds to some factorization

W = u1#u(f,X)w(g, Y )v#u2 u2 # vZu#u1.

Let ℓ = |σ(u1#)| + 1 and r = |σ(XwY v| − 1. Then the interval σ(W )[ℓ, r] is
labeled by uσ(f,X)w(g, Y )v; and, since σ is a solution, we have uσ(f,X)w(g, Y )v =
uσ(Z)v. For each i ∈ [ℓ, r] we have i j where either i = j or j ∈ I(X) ∪ I(Y ). If

j ∈ I(X)∪I(Y ), then i k ∈ I(Z) and therefore i k ∈ I(Z), too. The positions
of u,w, v are visible in W , but with respect to W this true only for the positions of
u and v. For the positions of u and v the relation  is the identity. The relations
are depicted in Figure 5: the relation is given by the positions in the middle row
to the top and bottom row. Let j  i denote i  j. If j  i  k, then we write
j ∼ k.

Consider any i ∈ [1, 2m] and j, k ∈ I(X ) ∪ I(B) such that j  i  k. (The
interesting case is j 6= k.) Hence, we have j ∼ k and in the pictures we put
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the positions j and k on top of each other. Figure 5 gives an example, where
32 ∼ 10, . . . , 35 ∼ 13, 98 ∼ 14, 99 ∼ 15, and 45 ∼ 16, . . . , 42 ∼ 19.

a a

I(X)

a b

I(Y )

b b

aa b b

I(Z)

32 33 34 35 45 44 43 42

92 93 94 95 96 97 98 99 100 101 102 103 104 105

10 11 12 13 14 15 16 17 18 19

Figure 5. A local equation bb(f,X)ab(g, Y )aa = bbZaa. The
left side occupies positions 92, . . . , 105 and dual of the right side
(i.e. b bZ aa) positions 105, . . . , 92. Moreover, σ(W )[92, 93] = aa,
σ(W )[98, 99] = ab, and σ(W )[104, 105] = bb.

Since i j ⇐⇒ i j we have

(40) j ∼ k ⇐⇒ j ∼ k.

Moreover, j ∼ k implies that there are f, g ∈ H such that f(λ(j)) = λ(i) = g(λ(k)).
Thus, j ∼ k ensures λ(j) ∈ H · λ(k).

We have I(X )∪I(B) ⊆ [1, 2m] and ∼ ⊆ [1, 2m]× [1, 2m] is a symmetric relation.
It is also reflexive on I(X ) ∪ I(B) × I(X ) ∪ I(B).

By ≈ we denote the reflexive and transitive closure of ∼. However, the relation
≈ is too fine, in general. Since i ∼ j implies λ(i) ∈ H · λ(j), we cannot expect

that i ≈ i, because λ(i) = λ(i) is typically not in H · λ(j). Clearly, if we intend to
change the label at position i from, say, a to c, then we must change the label at
position i from a to c.

In the following, we write i ↔ j if j = i and we define ≡ to be the equivalence
relation over [1, 2m] which is generated by ∼ ∪ ↔. We have ≈⊆≡, but we have
just seen that these relations are different, in general. Since i ∼ j ⇐⇒ i ∼ j by
Equivalence (40), we have

i ↔ i ∼ j ⇐⇒ i ∼ j ↔ j.

Hence,

(41) i ≡ j ⇐⇒ either i ≈ j or i ≈ j.

We extend the notation above to intervals. Let i, j be positions in σ(W ) such
that i  j, and let p ∈ N. Assume (by symmetry) that we have i  j ∈ I(X)
due to mapping the position i of σ(W ) to a position q in W which is labeled by a
twisted variable (f,X). If the position i+ p is also mapped to the same position q,
then all positions in the interval [i, i+ p] are mapped to q. We then write

[i, i+ p] [j, j + p].

As above we now define the relation ∼ on intervals. Again, we let ≈ be the generated
equivalence relation, now on intervals. Finally, we relate an interval [l, r] with

1 6 l 6 r 6 2m to the interval [r, l] via

[l, r] ↔ [l, r] = [r, l].

Thus, we also extend ≡ to the equivalence relation on intervals which is generated
by ∼ and ↔. Having this, the general form of (41) becomes

(42) [i, i+ p] ≡ [j, j + p] ⇐⇒ [i, i+ p] ≈ [j, j + p] ∨ [i, i+ p] ≈ [j + p, j].
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In the following we say that two positions (or intervals) are equivalent if they are
related by ≡.

Lemma 11.2. Let t > 1 and σ be a solution at a standard state E = (W,B,X , ∅, µ)
such that |σ(X)| > 2t for all X ∈ X . For each X ∈ X write σ(X) = uxv with
|u| = |v| = t. Let E′ = (W ′, B,X ′, ∅, µ′) and σ′ denote state and solution which
we obtain by following a substitution transition defined by τ(X) = uXv for all X.
Let I ′(X ′) be the set of positions according to Equation (38) and ≈′ the equivalence
relation on intervals with respect to σ′. Let i and j positions in I ′(X ′) such that
i ≈′ j, then we have [i − t, i+ t] ≈ [j − t, j + t] with respect to E and σ.

Proof. Let X ∈ X ′. Then X ∈ X and if I(X) = [ℓX , rX ], then the corresponding
interval I ′(X) with respect to σ′ is I ′(X) = [ℓX + t, rX − t]. Thus, if i ≈′ j with
i ∈ I ′(X) and j ∈ I ′(Y ), then we obtain a “domino tower” as depicted in Figure 6.
The intervals with respect to I ′(X ′) are the white blocks and i and j are arranged
such that i sits along a vertical column above j. We obtain the corresponding
tower with respect to I(X ) by adding the grey borders of length p at each side
in order to switch from I ′(Z) to I(Z). Thus, i ≈ j with respect to W ′ implies
[i− t, i+ t] ≈ [j − t, j + t]. �

X

Y

i

j

tt

t

Figure 6. Example illustrating Lemma 11.2.

The distance d(i, j) between positions of σ(W ) is denoted as usual: d(i, j) =
|j − i|. We continue with the same the notation as in Lemma 11.2. We apply the
lemma with t = 10 |H | ε. Recall that we fixed the parameters such that ε = 30n
and δ = |H | ε. Hence, t = 10δ.

Lemma 11.3. Let t = 10δ and suppose that E = (W,B,X , ∅, µ) satisfies the
shrinking pair condition (Definition 11.1) with respect to σ. Let Z ∈ X ′ be a variable
with I ′(Z) = [l, r] (and hence, I(Z) = [l− 10δ, r+ 10δ]); and let l 6 i < j 6 r such
that i ≈′ j with respect to σ′. Then we have d(i, j) > ε.

Proof. According to Lemma 11.2 we have [i−t, i+t] ≈ [j−t, j+t] with respect to σ.
Next, we choose k ∈ N as large as possible so that [i−k, i+t] is a subinterval of I(Z)
and [i−k, i+t] ≈ [j−k, j+t] with respect to σ. By induction on the number of steps
using the relation ∼, this implies that there is some interval [ℓ, ℓ + t+ k] ⊆ I(X ′)
such that both, first

[j − k, j + t] ≈ [i− k, i+ t] ≈ [ℓ, ℓ+ t+ k]

and second, ℓ is the first position in I(X ′), see Figure 7. Assume, by contradiction,
d(i, j) 6 ε. Then, σ(W )[i−k, i+t] and σ(W )[j−k, j+t] are twisted conjugate with
a positive offset d(i, j) which is at most ε. This implies that σ(W )[i − k, i+ t] is a
very long δ-periodic word by Corollary 6.2. Therefore, the prefix σ(W )[ℓ, ℓ+ t+ k]
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of σ(X ′) is a very long δ-periodic word. This contradicts the hypothesis that E
satisfies the shrinking pair condition. �

Z

Z

X ′ℓ

i

i j

j

j − k ≈ ℓ = first position in I(X′)

Figure 7. Illustration for the proof of Lemma 11.3.

11.2. Red positions. We use the notation of Section 11.1. Let [l, r] be a maximal
interval in σ(W ) which is mapped to a position in W which is labeled by some
(f,X) where f ∈ H and X ∈ X . Thus, the factor σ(W )[l, r] is equal to the word
σ(X). The positions l and r at the borders of [l, r] play a special role because if
there is a factor ab = σ(W )[l − 1, l], then we cannot compress ab because ab is
“crossing”: compressing ab might be “dangerous”. In order to signal “danger” we
color the first and the last position in each interval I(X) red. Moreover, whenever
i ≡ j holds in σ(W ), then color j red, too. For example, if we have a situation
as depicted in Figure 8, then the red color at the last position of I(X) and the
red color at the first position of I(Z) yields two red columns. Note that the first
red position in I(X) and the last red position in in I(X) are equivalent: these are
dual positions. For convenience, we also color all positions in σ(W ) red which are
labeled by the marker symbol #. If the label of i is #, then i ≡ j ⇐⇒ j ∈

{
i, i

}
.

Since i ≡ i for all positions, it follows that there are at most n pairwise different
equivalence classes of red positions. This counting will be used later.

X

Y

Z

i

j

(red) (red)

Figure 8. Red positions induced by the red borders in I(X) and I(Z).

Consider an interval of length two I = [i, i + 1] without red position. The idea
is to compress I into a single position. The problem is overlapping: we might have
[i− 1, i] ≡ [i, i+ 1] or [i, i+ 1] ≡ [i+ 1, i+ 2]. Note that [i− 1, i] ≡ [i, i+ 1] implies
i − 1 ≡ i or i − 1 ≡ i + 1. Similarly, [i, i + 1] ≡ [i + 1, i + 2] implies i ≡ i + 1 or
i ≡ i+ 2. Therefore, we start with intervals of length 4 where all four positions are
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inequivalent: This enables us to compress the middle interval of length 2. We shall
use the following lemma.

Lemma 11.4. Let [i − 1, i, i+ 1, i + 2] be an interval of length 4 without any red
position and where the positions are pairwise inequivalent. Consider [i, i + 1] ≡
[j, j + 1] ≡ [k, k + 1]. Then there are two cases:

(1) [j, j + 1] ∩ [k, k + 1] = ∅,

(2) k = j and [j, j + 1] 6≈ [k + 1, k].

Proof. Notice that each of the intervals [i−1, i, i+1, i+2], [j−1, j, j+1, j+2], [k−
1, k, k+1, k+2] is without red positions. We may assume that [j, j+1]∩[k, k+1] 6= ∅
because otherwise we are done.

First, let j = k. By contradiction assume [j, j + 1] ≈ [k + 1, k]. Then j + 1 ≈
k ↔ k which implies k = j ≡ j + 1. Since [i, i+ 1] ≡ [j, j + 1] we obtain i ≡ i + 1.
This was excluded.

In the second case we have j 6= k. Let us show that j 6= k and [j, j+1]∩[k, k+1] 6=
∅ leads again to a contradiction. Since j 6= k we cannot have [j, j + 1] = [k, k + 1].
Hence j + 1 = k or k + 1 = j. By symmetry in j and k, we may assume j + 1 = k.

We cannot have [j, j+1] ≈ [k, k+1] because then j ≡ k, but k = j+1, and hence,
j ≡ j + 1. This is impossible. Thus, [j, j + 1] ≈ [k + 1, k] and j ≡ k + 1 = j + 2.
We remember j ≡ j + 2. If [i, i + 1] ≈ [j, j + 1], then (as no position is red)
[i, i + 1, i + 2] ≈ [j, j + 1, j + 2] implies i ≈ i + 2. This is impossible. Hence, the
last option is [j − 1, j] ≈ [i, i + 1] and [j − 2, j − 1, j] ≈ [i − 1, i, i+ 1]. However,
j ≡ j + 2 implies j ≡ j − 2. We have again a contradiction as i− 1 6≡ i+ 1. �

Example 11.5 indicates why the assertion in Lemma 11.4 only holds in the middle
interval [i, i+ 1] of [i− 1, i, i+ 1, i+ 2], in general.

Example 11.5. We don’t exclude that H acts with involution. Thus, there might
be an a ∈ B and f ∈ H such that f(a) = a. Consider the equation X = (f,X) with

the solution σ(X) = dcbabcd and where f(x) = x for x = b, c, d. Then we have

σ(X) = dcbabcd = f(σ(X)).

The positions of σ(X) can be identified with {1, . . . , 7} with i ≡ 8−i for all positions
1 6 i 6 7. Since positions 3 and 5 are equivalent, the interval [2, 5] contains equiv-
alent positions. The four positions in the interval [1, 4] are pairwise inequivalent.
However, [3, 4] intersects with [4, 5] = [4, 3]. Thus, later on we cannot compress the
interval [3, 4] corresponding to the pair ba. On the other hand, there is no obstacle
to compress the interval [2, 3] which is labeled by cb.

Lemma 11.6. Let σ be a solution at a standard state E = (W,B,X , ∅, µ) and
I = [p, p+ 9] be an interval of length 10 in σ(W ) without any red position such that
i ≈ j implies i = j for all i, j ∈ I. Then I contains a subinterval Q of length 4
where all positions are pairwise inequivalent.

Proof. For simplicity of notation let I = [1, 10]. If all positions in [4, 5, 6, 7] are
pairwise inequivalent, we are done. In particular, there are 1 6 i < j 6 10 such
that i ≡ j. Since, i 6≈ j this implies i ≈ j by (41). This in turn means that we
cannot have i ≡ j ≡ k where 1 6 i < j < k 6 10 because this would lead to i ≈ k
via i ≈ j ≈ k. We say that j is the partner of i if i 6= j but i ≡ j. We conclude
that every i ∈ I has at most one partner.

We know 4 + i ≡ 4 + j for some 0 6 i < j 6 3. Hence 4 + i ≈ 4 + j. Let
1 6 k 6 3. Since I is without red positions, this implies

4 + i− k ≈ 4 + j − k = 4 + j + k ↔ 4 + j + k ≡ 4 + i− k.
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This means that every position q ∈ Q = {4 + i− 3, 4 + i− 2, 4 + i− 1, 4 + i} has
one partner in P = {4 + j + 3, 4 + j + 2, 4 + j + 1, 4 + j}. Since Q ∩ P = ∅ and
Q ∪ P ⊆ I, we are done: in Q all four positions are pairwise inequivalent. �

Definition 11.7. We say that an interval I = [i, i + 1] in σ(W ) is good if the
following conditions hold.

• Neither i nor i+ 1 is red.
• The positions i and i+ 1 are visible,
• Whenever [i, i+ 1] ≡ J ≡ K, then either J = K or J ∩K = ∅.

Remark 11.8. The definition of a good interval I = [i, i + 1] excludes i ≈ i + 1.
Indeed, since neither i nor i+1 is red, i ≈ i+1 implies [i−1, i, i+1] ≈ [i, i+1, i+2],
hence an overlap [i, i+ 1] ≈ [i+ 1, i+ 2]. However, I ≈ [i + 1, i] is allowed. Hence,
it may happen that i ≡ i + 1. If such an I is labeled with ab, then there is some
f ∈ H with f(ab) = ba. Hence, f(a) = b and f(b) = a. We deduce that we obtain
a consistent labeling for

I = [i, i+ 1] ≈ [i+ 1, i] ↔ [i, i+ 1].

Thus, we may compress [i, i + 1] into a single position with label c and therefore,
due to I ≈ [i+ 1, i], we must also compress [i + 1, i] into a single position with label
f(c); and due to [i + 1, i] ↔ [i, i + 1], we have to compress [i+ 1, i] into a single

position with label c. But this is fine, we have h(c) = ab, h(c) = b a, and f(c) = c.

11.3. The procedure. Recall that we have fixed δ = |H | ε and ε = 30n. Thus,
δ ∈ O(|H |n) and ε ∈ O(n). We start at a standard state E = (W,B,X , ∅, µ)
together with an entire solution (α, σ) where none of the meta rules apply. In
particular, |σ(X)| > 30δ and X ⊆ X with Y = H × X . Hence, by definition:

∑

Y ∈Y

|W |Y 6
∑

Y ∈X

|Winit|Y 6 n.

All local equations have the form u(f,X)w(g, Y )v = uZv. (As before dummy
variables are allowed.) We define the equivalence relations ≈ and ≡ over the set
of positions of σ(W ) as defined in Section 11.1. Let E be a standard state with
equation W and entire solution (α, σ). Once, we found a good interval I in σ(W ),
we may call the following procedure for that interval.

begin procedure (compress a good interval I)

(1) Let a, b ∈ B and let ab be the label of the good interval I = [i, i+1]. Choose
a fresh letter c with stabilizer Hc = Ha∩Hb; and define a B-morphism from
B′ = B ∪ {f(c), f(c) | f ∈ H} to B2 by h(c) = ab. Whenever [i, i + 1] ≈
[j, j + 1], then the label of [j, j + 1] is f(ab) for some f ∈ H . Replace each
of the intervals [j, j + 1] (resp. [j + 1, j]) by a single new position and label
this position with f(c) (resp. f(c)). (There is no conflict in this relabeling,
see Remark 11.8.) Since there is no red position in [j, j + 1] and [j − 1, j],
none of the intervals [j, j+ 1] or [j − 1, j] is “crossing”. So, this gives a new
but shorter equation W ′. We have h(W ′) = W and new solution σ′ such
that hσ′(W ′) = σ(W ).

(2) Follow the corresponding compression transition

E = (W,B,X , ∅, µ)
h

−→ (W ′, B′,X , ∅, µ′) = E′.

We have a new state E′ with an entire solution (α′, σ′) = (αh, σ′). There
is also new numbering for the positions, but the red positions can still be
identified.
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endprocedure

We are now ready to define the procedure “pair compression” which uses “com-
press a good interval” as a subroutine.

begin procedure (pair compression)

(1) For every X ∈ X write σ(X) = uxv with |u| = |v| = 10δ. Follow a
substitution transition x

E = (W,B,X , ∅, µ)
ε

−→ (W ′, B,X , ∅, µ′) = E′

defined by the substitution τ(X) = uXv and W ′ = τ(W ). This transition
satisfies the forward property with the new entire solution (α, σ′) where
σ′(X) = x for all X ∈ X . Recall that σ(W ) = σ′(W ′).

After the preceding step, define the intervals I ′(X) with respect to σ′ as
done in Section 11.1. Use the red color for the first and the last position in
each I ′(X). Color in red all equivalent positions in σ′(W ′) of red positions
with respect to ≡′, too. See Section 11.2.

(2) Rename E′,W ′, µ′, σ′,≈′,≡′ as E,W, µ, σ,≈,≡.
(3) Define the alphabet Bold = B. During the following loop we keep the

invariant Bold ⊆ B.
(4) while σ(W ) contains a good interval I = [i, i+ 1] with a label in B2

old

do

(a) Choose any good interval I in σ(W ).
(b) Run the procedure “compress I”.
(c) Rename E′, B′,W ′, µ′, α′, σ′,≈′,≡′ as E,B,W, µ, α, σ,≈,≡ and trans-

fer the induced coloring of red positions.
endwhile

(5) Perform an alphabet reduction at the standard state E.
(6) Rename E,B,X ,W, µ, α, σ as Er′ , Br′ ,Xr′ ,Wr′ , µr′ , αr′ , σr′ .

endprocedure

Remark 11.9. The procedure “pair compression” may not actually succeed in com-
pressing any pair. Its first step always “pops out” letters to make the equation longer
(by 20δ). After that if no pair is compressed, the procedure leaves the equation longer
than before it was called. This is intentional: if the equation becomes long enough,
then one of δ-periodic- or pair compression is guaranteed to reduce the equation size
by a positive fraction.

11.4. The end of pair compression ends the compression round. We began
the compression round at a standard state Er = (Wr , Br,Xr, ∅, µr) with an entire
solution (αr, σr). We ended the δ-periodic compression either by entering a final
state or, in the other case, at a standard state Es = (Ws, Bs,Xs, ∅, µs) with an
entire solution (αs, σs) such that

(43) ‖Es, αs, σs‖ 6 ‖Er, αr, σr‖ and ‖Ws‖ 6 ‖Wr‖ + 20δn.

We started the pair compression at the standard state Es = (Ws, Bs,Xs, ∅, µs) with
the entire solution (αs, σs). Compression took place only for good intervals which
where labeled by words ab with a, b ∈ Bold = Bs. Each compression reduced the
length of the equation because a good interval consists of two visible positions.
Thus, at most |Ws| compressions were possible; and this shows that we did not
introduce more than |H | · |Ws| ∈ |H | · |Wr| + O(δn) fresh letters. Thus, every
alphabet B of constants we met during the entire round satisfied

(44) |B| ∈ |H | · |Wr| + O(δn).
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Now, let Er′ = (Wr′ , Br′ ,Xr′ , ∅, µr′) denote the standard state with the entire
solution (αr′ , σr′) where we end the procedure “pair compression”. In the very first
step of the procedure we followed a substitution transition. This is enough to infer

(45) ‖Er′ , αr′ , σr′‖ < ‖Es, αs, σs‖ 6 ‖Er, αr, σr‖ .

Proposition 11.10. Let Er = (Wr, Br,Xr, ∅, µr) be a standard state with an entire
solution (αr, σr) at the start of a compression round and Er′ = (Wr′ , Br′ ,Xr′ , ∅, µr′)
be the standard state where we end the round with the entire solution (αr′ , σr′).
Then we have

‖Wr′‖ 6
29 ‖Wr‖

30
+ O(δn).

Moreover, if W is any equation which we see on the path from Es to Er′ , then we
have ‖W‖ 6 ‖Wr‖ + O(δn).

Proof. Each compression round has two phases. The δ-periodic compression stops
at a standard state Es = (Ws, Bs,Xs, ∅, µs) with an entire solution (αs, σs). By
Proposition 10.3 ‖Ws‖ 6 ‖Wr‖ + 20δn and all intermediate equations W satisfy
‖W‖ 6 ‖Wr‖ + O(δn).

Now, let W be any equation being on the path from Es to Er′ . The additional
length for W is due to the first step in pair compression when we substitute vari-
able X by uXXvX with |uX | = |vX | = 10δn. This shows ‖W‖ 6 ‖Wr‖ + 40δn.
Moreover, ‖Wr′‖ ∈ |Wr| + O(δn) and |Ws| 6 ‖Ws‖.

Thus, by Lemma 10.1 it suffices to prove

(46) |Wr′ | 6
29 |Ws|

30
+ O(δn).

Let us have a closer look at a local equation u(f,X)w(g, Y )v = uZv in Ws. (We
allow dummy variables). In particular, we can think that Ws begins with a prefix
U#u1Z1v1# and ends with a suffix #v1Z1v1#U . Having this, the word Ws is cov-
ered by factors #u(f,X)w(g, Y )v# and #vZu#. In the first steps of pair compres-
sion we follow substitution transitions and a factor #u(f,X)w(g, Y )v# becomes
#uf(uX)(f,X)f(vX)wg(uY )(g, Y )g(vY )v# and #vZu# becomes #v vZZuZ u#.

Pair compression compresses all factors uf(uX), g(vY )v, v vZ and uZ u into single
letters. This bounds the total increase by the first substitution transitions by 2n.

We don’t have such a simple bound for the factors f(vX)wg(uY ) because the
corresponding positions in σ(Ws) interact with the positions in I(Z). Let [ℓ, r]
be the interval in [1, |σ(Ws)| − 1] corresponding to f(vX)wg(uY ). Let us cut the
interval in [ℓ, r] into a disjoint union of intervals, each of them having exact length
ε = 30n. If a position belongs to any of these intervals of length ε = 30n, then we
mark the position. Thus, at least |w| − ε positions in the interval [ℓ, r] belonging
to f(vX)wg(uY ) are marked by these intervals. (We have no better bound since
X and Y might be dummy variables.) Removing if necessary at most n of these
intervals we may assume that their total number is ℓn with ℓ > 0. The crucial
observation is that we have

(47) | |Ws| − ℓεn| ∈ O(δn).

Each interval of length ε is split in 3n intervals of length 10. By Lemma 11.3 an
interval of length ε can have at most 2n red positions. Thus, in each interval of
length ε there are at least n intervals of length 10 without any red position. By
Lemma 11.6 each such interval [i, i + 9] contains an interval of length 4 where all
positions are inequivalent. By Lemma 11.4 we can compress at least one interval in
that interval of length 10. (Note that Lemma 11.4 provides us with a compression
inside [i+1, i+8]. This means, the compression is guaranteed even if we compressed
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before an interval [i− 1, i] or [i+ 9, i+ 10].) This means that the length of ε = 30n
is reduced to at most ε = 29n during compression. Hence,

(48) |Wr′ | ∈
29

30
ℓεn+ O(δn).

Due to (47) we conclude |Wr′ | ∈ |Ws| + O(δn). This shows (46) and hence, the
assertion of the proposition. �

Remark 11.11. Proposition 11.10 tells us that there is a constant κ1 ∈ N such

that ‖Wr′‖ 6 29‖Wr‖
30 +κ1δn. We content ourselves with a generous bound by letting

κ1 = 97. This bound suffices and it is an overestimation, as it can seen by the
preceding proof and by reversing the O-notation into concrete constants. The value
κ1 = 97 was chosen such that the later constant κ in Corollary 12.1 is divisible by
100. Thus, we can conclude Wr′ and for every equation W we see on the path from
Er to Er′ the following upper bounds.

(1) If ‖Wr‖ > 30κ1δn, then ‖Wr′‖ < ‖Wr‖ and ‖W‖ < ‖Wr‖ + 40δn.
(2) If ‖Wr‖ 6 30κ1δn, then ‖W‖ 6 ‖Wr‖ + 40δn 6 2960δn.

These estimations are used in next section.

12. Putting it all together: the overall compression method

Now we explain what we do if we start the first compression round at the ini-
tial state Einit with a given initial entire solution (idA∗ , σinit). We begin a first
compression round r with r = 0 and E0 = Einit with a given initial entire solu-
tion (α0, σ0) = (idA∗ , σinit). We end the round after one phase each of δ-periodic
compression and pair compression with a standard state E1 and an entire solution
(α1, σ1) such that ‖E1, α1, σ1‖ < ‖E0, α0, σ0‖. We repeat this process by starting
the next round r+1 with Er and (αr , σr) and ending the round in Er′ and (αr′ , σr′).
For simplicity of notation we write r + 1 = r′. Thus,

Er′ = Er+1 = (Wr+1, Br+1,Xr+1, ∅, µr+1) and (αr′ , σr′) = (αr+1, σr+1).

We conclude

(49) ‖Er+1, αr+1, σr+1‖ < ‖Er, αr, σr‖ .

By (49) the process terminates: there exists some round t > 0 and during that
round we reach a final state Efin without variables and with an entire solution
(αfin, idC). Hence, the entire process defines a path in F which is labeled by some
h1 · · ·ht ∈ End(C∗) such that h1 · · ·ht(Wfin) = Winit. We have |Winit| = n and

therefore ‖Winit‖ 6 30κ1δn. (Note that for large n → ∞ the ratio ‖Winit‖
30κ1δn

tends

to 0. For large n the initial size ‖Winit‖ is much, much smaller than 30κ1δn. By
Remark 11.11, for all rounds r with 0 6 r 6 t we can state:

‖Wr‖ 6 30κ1δn+ 40δn 6 2960δn.(50)

We also need an estimation for the maximal weight of an equation in the middle of
each round. Proposition 11.10 says we have to add at most 40δn with respect to
the starting point of a round. Thus, the conclusion of (50) is therefore: whenever
we see an equation E = (W,B,X , θ, µ) on the path from Einit to Efin we have

‖W‖ 6 2960δn+ 40δn 6 3000δn.(51)

Corollary 12.1. Let κ = 3000 and let B the subautomaton of F which is defined
defined as follows. The states of B are the extended equations (W,B,X , θ, µ) where

‖W‖ 6 κδn.
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Then B is a finite and complete subautomaton of F . Let AS be the trimmed sub-
automaton of B, then the NFA AS accepts a rational set of A-morphisms L(AS) ⊆
End(C∗) satisfying the following conditions from Theorem 4.3

(52) Sol(S) = {(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗ | h ∈ L(AS)} .

Moreover, Sol(S) = ∅ if and only if L(AS) = ∅; and |Sol(S)| < ∞ if and only if
AS doesn’t contain any directed cycle.

Proof. The automaton B is finite because first, the number of states is finite and

second, if E is any state in B, then there are only finitely many E
h

−→ E′ transitions
in F where E′ ∈ B. Thus, the out-degree is finite for every state in B. Since B is
finite, AS is finite, too. The NFAs AS and B are both sound by Proposition 7.5.
They are complete, this follows from Proposition 7.5, since κ = 3000 is large enough
by (51). This shows

Sol(S) = {(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗ | h ∈ L(AS)} .

Finally, Proposition 8.3 implies that Sol(S) = ∅ if and only if L(AS) = ∅ and that
|Sol(S)| < ∞ if and only if AS doesn’t contain any directed cycle. �

12.1. The NSPACE algorithm to compute the trim NFA AS . The method is
standard and is essentially the same as in [26, 11, 5]. Therefore we give a rough
sketch only. The key is the upper bound in Corollary 12.1: it is enough to consider
states (W,B,X , θ, µ) where ‖W‖ 6 3000δn ∈ O(|H | · n2). This implies that the
maximal length of an equation and the maximal number of H-visible letters is in

O(|H | · n2) ⊆ O(|H | ‖S‖2
). This in turn gives the upper bound O(|H |2‖S‖2

) on
the alphabet C. It is also clear that we need at most O(‖S‖) variables. To each
symbol we have to attach its µ-value in the finite monoid N .

By Section 4.2 storing a µ-value costs m(S) bits by (4). As a consequence we

can specify a state E (and therefore a transition E
h

−→ E′) in AS with O(|H | ·

‖S‖2 · log |A| ·m(S) · log ‖S‖) bits.

Our algorithm must output all transitions E
h

−→ E′ which belong to AS . Hence,

we consider all candidates E
h

−→ E′ based on the upper bound of bits for their
specification one after another in some order, say in some lexicographical order. The
algorithm has to decide if it outputs the transition or whether it moves to the next

candidate. Thus, when considering whether or not E
h

−→ E′ belongs to AS , then
the algorithm guesses a path of transitions from an initial state to the state E and a
path of transitions from E′ to a final state. If the guess is successful, then it outputs

E
h

−→ E′ and it moves to the next candidate. If unsuccessful, then we apply again

the theorem of Immerman-Szelepcsényi: NSPACE(|H | ‖S‖2
log |A|m(S) log ‖S‖) is

closed under complementation. Hence, the algorithm “knows” whether or not E
h

−→
E′ belongs to AS before moving to the next candidate.

The proof of Theorem 4.3 is complete, and the first part of the paper is finished.

13. Part 2: The existential theory with rational constraints for

virtually free groups

It was shown in [7, 35] that the existential theory with rational constraints in
f.g. virtually free groups is decidable. Our main result (Theorem 14.2) provides an
effective EDT0L description for the full set of satisfying assignments to a Boolean
formula in free variables over equations and rational constraints. In order to make
our statement precise we need some preparation.



SOLUTIONS TO TWISTED WORD EQUATIONS 47

13.1. NFAs revisited. Let M and M ′ be finitely generated monoids. In the
application M and M ′ are fixed and not part of the input. Therefore we can define
the size of an NFA over M (resp. M ′) which is, up to a constant, independent of
the generating set.

We begin by choosing any finite generating set Σ ⊆ M . Then we specify an
NFA for M as tuple A = (Q,Σ, δ,I ,F ) where the set of transitions δ is finite and
satisfies δ ⊆ Q× Σ∗ ×Q. Having this, a natural definition for the input size of A is

(53) ‖A‖in,Σ = |Q| + |δ| +
∑

(p,u,q)∈δ

|u| .

The transitions in ϕ(A) might be labeled by words of length greater than 1. How-
ever, this can be “repaired” easily by replacing a transition (p, b0 · · · bk, q) with
bi ∈ Γ and k > 0 by a sequence of transitions

(p, b0, p1), . . . , (pk−1, bk−1, pk), (pk, bk, q)

were p1, . . . , pk−1 are fresh states. The input size of the new automaton is at most
twice as large as before. The exact size of an NFA A is of not important. We let

‖A‖in = Θ(‖A‖in,Σ).(54)

This is well-defined, since if we move to another finite generating set Σ′ for M ,
then we see ‖A‖in,Σ′ ∈ O(‖A‖in,Σ). Thus, it is convenient to denote A simply as

A = (Q,M, δ,I ,F ) because then the interpretation L(A) ⊆ M is encoded in the
syntax. Still, we can use ‖A‖in up to multiplicative constants.

Let ϕ : M → M ′ be a homomorphism to a monoid with a finite generating set Σ′,
then the NFA ϕ(A) is defined as (Q,M,ϕ(δ),I ,F ) where ϕ(p, a, q) = (p, ϕ(a), q).
For s, t ∈ Q let L(A, s, t) = L(A,M, δ, {s} , {t}). If |ϕ(a)| ∈ O(1) for all a ∈ Σ,
then there is a result which is again independent of the choice of Σ and Σ′:. We
have

‖ϕ(A)‖in ∈ Θ(‖A‖in) and ∀s, t ∈ Q : ϕ(L(A, s, t)) = L(ϕ(A), s, t)).(55)

13.2. Exponential expressions. The ideas and results in this section are not new.
The notion of exponential expression was proposed, for example, by Plandowski
in [43]. For the application to SL(2,Z) exponential expressions are crucial to
show a complexity within PSPACE. Intuitively it is more natural to represent
strings by allowing exponents. For example, if u is a word, then it is more nat-
ural to write u100 rather than in plain form by repeating u a hundred times
uuuuuuuuuuuuuuuuuuuuu · · · .

Exponential expressions (and plain exponential expressions) over an alphabet Σ
and their sizes are defined inductively as follows.

(1) Every word w ∈ Σ∗ is a plain exponential expression of size ‖w‖ = |w|.
(2) Every plain exponential expression is an exponential expression.
(3) If E,E′ are exponential expressions, then the concatenation EE′ is an

exponential expression of size ‖EE′‖ = ‖E‖ + ‖E′‖. If E,E′ are plain,
then EE′ is plain, too.

(4) If E is an exponential expression and k ∈ N, then Ek is an exponential
expression of size

∥∥Ek
∥∥ = 1 + ‖E‖ + log k.

Since Σ is equipped with an involution, we define for all k ∈ Z the expression E−k

as a synonym for E
k
; and we let E0 denote the empty word 1. The size of the

expression E0 is still ‖E‖ + 1.
In the following we allow that an equation appearing in a Boolean formula Φ is

written as E = E′ where E and E′ are exponential expressions. We view E and E′

as words Σ∗ which have a special encoding in a compact form.
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13.3. The existential theory with constraints and expressions. As above
M denotes a finitely generated monoid with involution. We let Σ ⊆ M be any
finite symmetric set of generators: that is, a ∈ Σ =⇒ a ∈ Σ. Let π : Σ∗ → M be
the canonical morphism which is induced by the inclusion Σ ⊆ M . By Ω we denote
a countable set of variables such that M ∩ Ω = ∅. Without restriction we assume
that Ω is a set with involution and X 6= X for all X ∈ Ω. As usual, we let g = g−1

for group elements.
The existential theory ofM with rational constraints and exponential expressions

is defined with the help of Boolean formulae in free variables from Ω. As we did
in Section 4.2, we obtain more accurate (and therefore better) complexity results if
we define the size of a Boolean formula Φ as a pair (‖Φ‖eq , ‖Φ‖rat). The parameter

‖Φ‖eq behaves as if all NFAs defining the rational constraints were of constant size.
Thus, essentially, it adds up the sizes of the equations of the exponential expressions
defining the equations. This is reflected by the index “eq”. The parameter ‖Φ‖rat

adds up the input sizes for the NFAs which define the rational constraints. This is
reflected by the index “rat”.

The formal definitions are as follows. Here we assume that every constraint
X ∈ L with L ∈ Rat(M) is given as X ∈ πL(A) (resp. X ∈ L(A)) where A is an
NFA as in Section 13.1. Exponential expressions were defined in Section 13.2.

(1) Every atomic formula is Boolean formula. The atomic formulae are:
• The constant ⊥ (meaning “false”)

‖⊥‖eq = ‖⊥‖rat = 1.

• Exponential expressions E = E′ over (Σ ∪ Ω)∗.
‖E = E′‖eq = 1 + ‖E‖eq + ‖E′‖eq and ‖E = E′‖rat = 0.

• Constraints X ∈ L(A).
‖X ∈ L(A)‖eq = 1 and ‖X ∈ L(A)‖rat = ‖A‖in.

(2) If Φ,Ψ are Boolean formulae, then so are (Φ ∨ Ψ), (Φ ∧ Ψ), and (¬Φ), but
we omit brackets when possible.
‖Φ ∨ Ψ‖⋆ = ‖Φ ∧ Ψ‖⋆ = ‖Φ‖⋆+‖Ψ‖⋆, and ‖¬Φ‖⋆ = ‖Φ‖⋆ for ⋆ ∈ {eq, rat}.

Let Φ be a Boolean formula and σ : Ω → M be a morphism (that is, a mapping
respecting the involution). Then the truth value σ(Φ) is defined in the obvious
way. If there exists some σ with σ(Φ) = true, then we say that Φ is satisfiable.
We also say that σ is a solution if σ(Φ) = true because it solves the satisfiability
problem. So, we do not distinguish between satisfying assignments and solutions.
The existential (first-order) theory with rational constraints refers to the set of
satisfiable Boolean formulae

∃FOTh(M,Rat) = {Φ | ∃ σ : Ω → M such that σ(Φ) = true} .

We are not only interested to decide ∃FOTh(M,Rat), what we aim for is an
algorithm which produces on input a Boolean formula Φ an effective description
of the full solution set Sol(Φ,M). To define it properly we let XΦ be the set of
variables X such that X or X appears in Φ. We let

(56) Sol(Φ,M) = {σ : XΦ → M | σ(Φ) = true} .

Note that σ : Ω → M satisfies Φ if and only if its restriction to XΦ satisfies Φ. It
is also clear that every morphism σ : XΦ → M satisfying Φ can be extended to a
morphism σ : Ω → M satisfying Φ. If the context of M is clear, we abbreviate
Sol(Φ) = Sol(Φ,M). Once we have chosen a presentation π : S → M where S is
finite and π is onto, then we typically represent elements of M by words over S and
a morphism σ : Ω → M is defined via a mapping σ : Ω → S∗. Moreover, without
restriction Ω comes with a linear order. If {X1, . . . , Xk} is the subset of the first k
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variables with Xi 6 Xj for all i 6 j, then we let

(57) SolS,k(Φ) = {(σ(X1), . . . , σ(Xk)) ∈ S∗ × · · · × S∗ | ∃σ : πσ(Φ) = true} .

Clearly, to decide ∃FOTh(M,Rat) is the same as to decide on input Φ whether
or not Sol(Φ) is empty. Moreover, Sol(Φ) = ∅ ⇐⇒ SolS,0(Φ) = ∅. Note that
either SolS,0 = ∅ or SolS,0 = {∅}. We will see that SolS,k(Φ) is an effective EDT0L
relation for every k if M is a f.g. virtually free group.

When proving this result for virtually free groups we make various transforma-
tions on NFAs (which up to a constant factor don’t change ‖A‖in) before, eventually,
we switch to Boolean matrices.

13.4. Removing exponential expressions in Φ. Exponential expressions in
Boolean formulae as in (56) are used because they may reduce the size of Φ signif-
icantly. On the other hand, with the help of more variables we can transform Φ
into a new formula Ψ where all equations are written in plain form as U = V . The
transformation is not expensive; and it doesn’t change the full solution set:

Proposition 13.1. There is a deterministic algorithm working in linear space
which takes as input a Boolean formula Φ using exponential expressions.

The output is a formula Ψ having the following properties.

(1) Equations in Ψ appear in plain form as U = V . Hence, ‖UV ‖ = |UV |.
(2) ‖Ψ‖eq ∈ O(‖Φ‖eq).

(3) ‖Ψ‖rat = ‖Φ‖rat.
(4) XΦ ⊆ XΨ.
(5) The restriction (σ : XΨ → M) 7→ (σ : XΦ → M) induces a bijection

Sol(Ψ) = Sol(Φ).

Proof. The method is standard: replace all exponential expressions by straight-line
programs (SLPs), see for example [33, 34]. More precisely, as soon as an exponential
expression E = T 0 with e = 0 appears, replace the expression E by the empty word
1. If an exponential expression T 1 appears in Φ, then replace every occurrence of T 1

simply by T . If an exponential expression E = T e with e > 2 appears in Φ, then
define a fresh variable [T, e]. (This implicitly means to introduce [T, e] = [T , e],
too. We don’t repeat this anymore.) Whenever a variable [T, ℓ] is introduced
where ℓ > 2, then we introduce another fresh variable [T, ⌊ℓ/2⌋], too. In particular,
[T, e] and [T, 1] are introduced (but the condition ℓ > 2 makes sure that [T, 0] is
never introduced). The total number of fresh variables [T, ℓ] introduced that way
is bounded by 2(1 + log e) ∈ O(log e).

After that step, replace all occurrences of E by [T, e], if E was defined by E = T e

in Φ; and for each fresh [T, ℓ] with ℓ > 2 introduce a new plain equation

[T, ℓ] =

{
[T, ⌊ℓ/2⌋ ] [T, ⌊ℓ/2⌋ ] if ℓ is even,

[T, ⌊ℓ/2⌋ ] [T, ⌊ℓ/2⌋ ] [T, 1] otherwise.

Moreover, introduce a single equation [T, 1] = T. The effect is that each occurrence
of E = T e, having size ‖E‖ + ‖T ‖ + 2 + log(1 + e), is removed. The gain of
‖T ‖ + log e is mitigated by O(log e) new equations of constant size and one more
equation [T, 1] = T of size ‖T ‖ + 2.

After that step replace Φ by the conjunction of Φ with the conjunction of the new
equations. Continue until all equations are written in plain form. This defines the
formula Ψ. Note that is not necessary to add any constraint on the fresh variables
[T, ℓ]. Therefore, ‖Ψ‖rat = ‖Φ‖rat. The proposition follows. �
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14. Virtually free groups

We restrict ourselves to the non-uniform complexity where the given virtually
free group is not part of the input. The restriction allows us to ignore the way a
virtually free group is given to us. For example whether the group is given by a
context-free grammar for the word problem or whether it is given as a fundamental
group of a finite graph of finite groups may result in uniform complexities which
differ exponentially. We refer the interested reader to the arXiv version of [56] for
more details. See also Remark 14.8.

In the following G denotes a fixed finitely generated virtually free group. Thus,
there is a finitely generated free subgroup F such that H = G/F is finite. Replacing
F by the normal subgroup

⋂ {
gFg−1

∣∣ g ∈ G
}

(which is of finite index in G) we
can assume without restriction that F is normal and that H is a finite group. That
is, we start with some surjective homomorphism γ : G → H where H is finite and
the kernel ker(γ) is a f.g. free group. This yields a short exact sequence:

(58) 1 → F
ι

−→ G
γ

−→ H → 1.

Choosing a generating set for F and a set of coset representatives from H , we obtain
a generating set for G. We need generating sets which are closed under involution,
so we are more specific. We use the following definition.

Definition 14.1. Let G be given as in Equation (58). We say that a subset S of
G is a standard generating set for G if the following conditions are satisfied.

• S can be written as a union A+ ∪A− ∪H+ ∪H− ⊆ G.
• A+ is a basis for F , that is F = F (A+).
• a ∈ A+ ⇐⇒ a−1 ∈ A− for all a ∈ A = A+ ∪A−.
• γ induces a bijection between H ′ = H+ ∪ {1} and H.
• H− =

{
h ∈ G

∣∣ h−1 ∈ H+

}
.

Every standard generating set is closed under the involution with b = b−1 ∈ G.
The three set A+, A−, and H ′ are pairwise disjoint subsets of G. There is a bijection
between H+ and H−, but perhaps H+ ∩H− 6= ∅.

Let πS : S∗ → G denote the canonical projection. We say that ŵ ∈ S∗ is in
standard normal form if we can write ŵ = uh where u ∈ A∗ is a freely reduced
word (that is without factors aa) and h ∈ H ′. By snfS(G) we denote the set of
standard normal forms. For every w ∈ S∗ there is a unique snfS(w) ∈ snfS(G)
such that w = snfS(w) in G. The set of freely reduced words over A becomes
A∗ ∩ snfS(G); and we let snfA(G) = A∗ ∩ snfS(G). Hence,

(59) snfA(G) = {snfS(w) | w ∈ A∗} = {w ∈ A∗ | w is freely reduced} .

Theorem 14.2. Let G be a finitely generated virtually free group. Then with
respect to any short exact sequence as in (58) there is a standard generating set S

and an NSPACE(‖Φ‖2
eq (‖Φ‖2

rat +log ‖Φ‖eq)) algorithm which performs the following

task. It takes as input a Boolean formula Φ (according to Section 13.3) with XΦ ={
X1, X1, . . . , Xk, Xk

}
such that Xi is the ith variable in some fixed chosen linear

order on Ω. The output is an extended alphabet C of size O(‖Φ‖2
eq), letters di ∈ C

for all 1 6 i 6 k, and a trim NFA AΦ accepting a rational set of S-morphisms over
C∗ such that the EDT0L relation

{(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗ | h ∈ L(AΦ)}

is equal to the full solution set in standard normal forms

SolS,k(Φ) =
{

(σ(X1), . . . , σ(Xk)) ∈ snfS(G)k
∣∣ πSσ(Φ) = true

}
.

Moreover, Sol(Φ) = ∅ if and only if L(AΦ) = ∅; and |Sol(Φ)| < ∞ if and only if
AΦ doesn’t contain any directed cycle.
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Remark 14.3. In a simplified analysis using a single parameter, the natural choice
is to define ‖Φ‖ = ‖Φ‖eq + ‖Φ‖rat. This yields

(60) NSPACE(‖Φ‖2
eq (‖Φ‖2

rat + log ‖Φ‖eq)) ⊆ NSPACE(‖Φ‖4
) ⊆ PSPACE.

If ‖Φ‖rat ∈ O(
√

log ‖Φ‖eq), then we have

(61) NSPACE(‖Φ‖2
eq (‖Φ‖2

rat + log ‖Φ‖eq)) ⊆ NSPACE(‖Φ‖2
log ‖Φ‖).

Remark 14.4. Let us comment why we consider only a subset of the first k vari-
ables of X+ rather than all variables. The reason is that during the proof we manip-
ulate Φ in various ways including some which introduce fresh variables. But these
new variables are just auxiliary symbols, and we make sure that they don’t enlarge
the full solution set. If we introduce fresh variables, then we put them in the linear
order behind the first k variables. Therefore, there is no risk to denote Sol(Φ) as
SolS,k(Φ).

14.1. Proof of Theorem 14.2, Phase 1. Using Proposition 13.1 we may assume
that all equations in Φ are written in plain form as U = V where U, V ∈ (S ∪ X )∗.
In the following we introduce many fresh variables into X . The enlarged set is
still called X . Moreover, we choose a subset of positive variables X+ such that
{X1, . . . , Xk} ⊆ X+, X = X+ ∪

{
X

∣∣ X ∈ X+

}
, and X ∈ X+ ⇐⇒ X /∈ X+.

Having this, we push all negations to the atomic formulae using De Morgan’s
law. This increase the size at most by the number of atomic formulae. For each
inequality ¬(U = V ) we introduce a fresh variable X and then we replace ¬(U = V )
by the conjunction U = VX∧¬(X ∈ {1}). This increases the size by the number of
inequalities since the singleton {1} is accepted by a two-state NFA. Thus, without
restriction Φ doesn’t contain any negation and only three types of atomic formulae:

U = V, X ∈ πS(L(A)), and X /∈ πS(L(A)) where U, V ∈ S∗ and X ∈ X+.

Here, denotes an NFA of the form A = (Q,S, δ,I ,F ) with δ ⊆ Q × S × Q. We
may assume because for every NFA A there is another NFA A of the same size

such that L(A) = L(A) (the complement of L(A)). We also write X ∈ L(A) or
X /∈ L(A) because S ⊆ G and therefore we can view L(A) directly as a rational
subset of G.

Lemma 14.5. Let γ : G → H be as above. In particular, F = γ−1(H) is free and
H is finite. It is enough to prove Theorem 14.2 under the following assumptions
about the input formula Φ.

• Φ implies
∧

{X ∈ F | X ∈ X+} . (Note that the syntax X ∈ F makes sense
since the f.g. free group F is a rational subset in G.)

• If an NFA A appears in Φ, then L(A) ⊆ F where A is an NFA over G
and the transitions are labeled with an arbitrary, but fixed, finite set of
generators of G.

• Φ is a conjunction where each atomic formula is either an equation in plain
form U = V with UV ∈ (S ∪ X )∗ or X ∈ L(A) or X /∈ L(A).

Remark 14.6. Assume that Φ satisfies the assumptions of Lemma 14.5. Then
Theorem 14.2 implies that there is standard set of generators S containing a basis
A+ of F such that

SolS,k(Φ) =
{

(σ(X1), . . . , σ(Xk)) ∈ snfA(G)k
∣∣ πSσ(Φ) = true

}
.

In particular, the full solution set SolS,k(Φ) is an EDT0L relation over freely reduced
words of A.
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The proof of Lemma 14.5 is based on two closure properties: 1. finite unions
of EDT0L (resp. rational) languages in a monoid M are EDT0L (resp. rational);
and 2. if L ⊆ M is an EDT0L (resp. rational) language and m ∈ M , then Lm is
EDT0L (resp. rational). The analogous statements hold for EDT0L relations.

Proof of Lemma 14.5. The difficult part is to show the first and third item because
we have to respect the given space bounds. The second item is very easy to show,
and we prove it “on the fly” when showing the first item.

Let Φ be any input formula for Theorem 14.2. We wish to add the constraint
X ∈ F for all variables. This requires the introduction of fresh variables. More
precisely, for each X ∈ X+ and g ∈ H ′ we introduce a new variable Xg with

Xg = Xg; and we construct an NFA Ag such that L(Ag) = L(A)g for each A. The
NFA Ag is obtained by adding a single new final state and new transitions from the
former final states to the new single one, all of them are labeled by the letter g. The
size of Ag increases by a constant. Moreover, each function η : X+ → H defines a

new formula Φ′
η over the variablesXη(X) as follows: every occurrence of X (resp. X)

inside an equation is replaced by Xgg (resp. gXg) where g = η(X). The length of
each equation is at most doubled. Every constraint X ∈ L(A) (resp. X /∈ L(A)) is
replaced by the Xg ∈ L(Ag) (resp. Xg /∈ L(Ag)). Recall that L(Ag) = L(A)g. Let
Φ′
η denote the result of that transformation. Then we let

(62) Φη = Φ′
η ∧

∧ {
Xη(X) ∈ F

∣∣ X ∈ X+

}
.

Note that a constraint Xg ∈ F is the same as γ(Xg) = 1. Therefore we can use
H as a recognizing finite monoid for all Xg. Since H is of constant size, the size

of Φη is in O(‖Φ‖eq , ‖Φ‖rat). All variables in Φη are of the form Xη(X) or Xη(X).
The old variables X ∈ X are still present but not used in any Φη. Therefore, inside
each Φη we rename all Xη(X) by X . After that the variables Xg are superfluous:
we remove them from X . Thus, each Φη uses the same set of V+ as Φ did.

Each formula Φη is written again in disjunctive normal form Φη =
∨

{Φη,j | j ∈ Iη}
where each index set Iη has again (at most) exponential in the size of Φ.

Having this, we see that Φ is equivalent to the following disjunction

Φ̃ =
∨ {

Φη,j
∣∣ η ∈ HX+ ∧ j ∈ Iη

}
.(63)

Note that Φ and Φ̃ use the same set X+ of positive variables. It is also clear how

to transform a solution σ for Φ into a solution σ̃ for Φ̃ and vice versa: if σ solves
Φ, then σ̃(Xg) = σ(X)g solves Φ̃ and if σ̃ solves Φ̃, then σ(X) = σ̃(Xg)g solves Φ.

Since |H | is a constant it is easy to see that the number of disjunctions in
Equation (63) is (at most) exponential in the size of Φ. But it can also happen that

the size of Φ̃ is exponential in the size of Φ, so in general we have no way to store

Φ̃ within the given space bound. What we do instead is to construct NFAs Aη,j

for each Φη,j , one after another, such that L(Aη,j) defines the EDT0L relation of
the full solution set for Φη,j .

More precisely, suppose we have shown Theorem 14.2 for each Φη,j which is
a conjunction of constraints and equations. Then indeed, for all (η, j), one af-
ter another, we can output some NFA Aη,j where the transitions are labeled by
endomorphisms over (the same) extended alphabet C such that

(64) SolS,k(Φη,j) = {(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗ | h ∈ L(Aη,j)} .

We can also assume that all these NFAs use exactly the same set of distinguished
letters {d1, . . . , dk}. As an output of the overall algorithm we obtain the disjoint
union over all these NFAs Aη,j . Without restriction H ′ ∪H− ⊆ C, but the elements

of H ′ ∪H− are not used in any NFA so far. Moreover, for each di, di we may assume
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that there are letters ci, ci, again still not used by any Aη,j . We add one more new
state and connect this new state with all final states in Aη,j via a single transition
labeled by the endomorphism h ∈ End(C∗) which is defined by h(ci) = dig where di
corresponds to the variable Xi ∈ X+ and g = η(Xi) ∈ H ′. The new state becomes
the single final state of the “union” automaton.

We conclude that it is enough to show Theorem 14.2 for each Φη,j . Since Φη,j
satisfies properties as required by Lemma 14.5, the lemma follows. �

14.2. Proof of Theorem 14.2, Phase 2.

Embedding into a semi-direct product. Let E be a finite set with involution.
Then F(E) denotes the group F(E) = E∗/ {ee = 1 | e ∈ E}. If the involution on E
is without fixed points, then we can write E = E+ ∪E− such that e ∈ E+ ⇐⇒ e ∈
E−; and the inclusion E+ into E induces an isomorphism between the free group
F (E+) with basis E+ and F(E). The group F(E) is called specular in [3], which
means it is the free product of a free group with groups of order two.

In the following we use that G is the fundamental group of a finite graph of
finite groups [29], which enables us to reduce questions about equations with ra-
tional constraints in G to questions about twisted word equations with rational
constraints.

Suppose that the group H acts on E via a morphism H → Aut(E). Thus, for

(f, e) ∈ H × E we have f(e) ∈ E and f(e) = f(e). We have Aut(E) = Aut(E∗) ⊆
Aut(F(E)) and the action of H on E∗ and F(E) defines two different (but related)
semi-direct products E∗⋊H and F(E)⋊H . The elements of E∗⋊H (resp. F(E)⋊H)
are the pairs (u, f) ∈ E∗ ×H (resp. F(E) ×H) and the multiplication is defined by

(u, f) · (v, g) = (uf(v), fg).

The semi-direct product E∗ ⋊H is a monoid with involution by

(u, f) = (f−1(u), f−1).

It is also clear that (u, f)
−1

= (f−1(u−1), f−1) in the group F(E)⋊H .
The free monoid E∗ embeds into E∗⋊H via e 7→ (e, 1) and the group H embeds

into E∗ ⋊H via f 7→ (1, f). Having this, we obtain:

F(E)⋊H = (E∗/ {ee = 1 | e ∈ E})⋊H

= E∗ ×H/ {(e, 1)(e, 1) = (1, 1) | e ∈ E} .

Since we identify E with E × {1} and H with {1} ×H , we can write:

∀a ∈ E, g ∈ H : gag = (1, g)(a, 1)(1, g) = (g(a), 1) = g(a).(65)

Thus, gxg = g(x) for g ∈ H , x ∈ E∗, and x ∈ F(E). Let Γ = E ∪ H and
H ∩E∗ = {1}. Thus, 1 the identity element in H is identified with the empty word
in E∗. It also appears as a letter in Γ. The interpretation e ∈ E as (e, 1) and f ∈ H
as (1, f) yields canonical surjective morphisms

πΓ : Γ∗ → E∗ ⋊H → F(E)⋊H.(66)

Our proof of Theorem 14.2 relies on Proposition 14.7.

Proposition 14.7 ([13], Sec. 2.4.5). Let G be a finitely generated virtually free
group and γ : G → H be a homomorphism onto a finite group H such that the
kernel F = ker(γ) is free. Then G embeds into a semi-direct product of the form
F(E)⋊H; and we can construct an injective homomorphism ϕ : G → F(E)⋊H and
a partition E = A ∪ T into two subalphabets such that F = {x ∈ G | ϕ(x) ∈ F(E)}
is isomorphic to F(A). Moreover, using that isomorphism, we can embed F(A) into
G such that ϕ(a) ∈ T ∗aT ∗ such that ϕ(a) is freely reduced in E∗. The embedding
of G into F(E)⋊H is also depicted in Figure 9.
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1 F(A) G H 1

1 F(E) F(E)⋊H H 1

γ

ϕA ϕ idH

Figure 9. Embedding of G with E = A ∪ T and ϕA(a) = ϕ(a) ∈ T ∗aT ∗.

Proof. The first assertion is the nontrivial direction in [13, Cor. 2.4.23]. The corol-
lary says that F = {x ∈ G | ϕ(x) ∈ F(E)} is a free factor of F(E). This means that
F(E) is a free product of F(A) with F(T ). The additional property ϕ(a) ∈ T ∗AT ∗

for all a ∈ A is a special case of [13, Prop. 2.4.22]. �

Remark 14.8. As we deal here with non-uniform complexity, we content ourselves
to know that the embedding ϕ : G → F(E) ⋊ H can be effectively computed and
therefore we can treat |E| as a constant. But in fact the proof of Lemma 30 in the
arXiv version of [56] shows

(67) |E| 6 (|A| + 2 |H |) · |H | .

Thus, if G is given to us as the fundamental group of a finite graph of finite groups,
then the interested reader could derive uniform complexity bounds from the material
presented here.

Corollary 14.9. We use the same notation as in Proposition 14.7. Define a mor-
phism ψ from F(E) onto F(A) by ψ(a) = a and ψ(t) = 1 for a ∈ A and t ∈ E \A.
Then ψ maps freely reduced words ŵ ∈ ϕ(A∗) to freely reduced words in A∗.

Proof. The subgroup ϕ(F(A)) of F(E) is generated by words of the form ϕ(v) where
v ∈ A∗ is freely reduced over A. Thus, we can write every element in w ∈ ϕ(F(A))
as a word

w = ϕ(a1) · · ·ϕ(am) ∈ T ∗a1T
∗ · · ·T ∗amT

∗

such that ai 6= ai+1 for 1 6 i < m. Now, every freely reduced word ŵ can be
obtained from some word w as above by cancellation of factors ee. Since ai 6= ai+1

for 1 6 i < m, we obtain

ŵ ∈ ϕ(a1) · · ·ϕ(am) ∈ T ∗a1T
∗ · · ·T ∗amT

∗.

In particular, ψ(ŵ) = a1 · · · am, and a1 · · ·am is freely reduced by definition. �

Remark 14.10. Let us give a few more comments how Proposition 14.7 and Corol-
lary 14.9 are shown in [13]. Since G is a fundamental group of a finite graph of
finite groups, it acts on its Bass-Serre tree T without edge inversion [57]. As the
notation suggests, T is indeed a tree: a connected acyclic undirected graph. The
same is true for the free subgroup F = ker(γ) of G: it acts on T as a graph auto-
morphism without edge inversion. It follows that F has trivial intersection with all
vertex groups because the vertex groups are finite and embed into G, see again [57].
So, if the intersection was not trivial, the G would have a finite nontrivial subgroup,
but free groups are torsion free. Thus, F acts on G without vertex stabilizers and
without without edge inversion.

Now, let G be the quotient graph G = F \ T . The finite group H acts on G: it
permutes the edges and vertices of G by respecting the incidence relation. Moreover,
F appears as the fundamental group of the finite and connected simplicial graph G.
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This can be viewed as the main structure theorem about groups acting on trees, [57,
Thm. 13]. That is, we can write F = π1(G). The point is that we always have two
views on fundamental groups of a simplicial graph. The first view is to choose a base
point ⋆ and we write π1(G) = π1(G, ⋆) where π1(G, ⋆) is a set of paths from ⋆ to ⋆.
The second view is to choose a spanning tree T of G and we realize π1(G) as π1(G) =
π1(G, T ). That is π1(G) = π1(G, T ) = F(E)/ {t = 1 | t ∈ T }. The isomorphism
between π1(G, ⋆) and π1(G, T ) is induced by the inclusion of π1(G, ⋆) into F(E)
followed by the projection F(E) onto the quotient π1(G, T ) = F(E)/ {t = 1 | t ∈ T }.

Let E be the set of edges in G. It is (in the sense of [57]) a finite alphabet: a
finite set with involution without fixed points. Thus, we can view E as a disjoint
union E+ ∪ E− with e ∈ E+ ⇐⇒ e ∈ E−. As a set we identify F(E) = F (E+) =
E∗/ {ee = 1 | e ∈ E} with the regular set of reduced words in E∗. Recall that a word
is reduced if and only if no factor ee for e ∈ E appears. Since H acts on the graph
G, each g ∈ H acts on E∗ via a length preserving automorphism which respects the
involution. Hence, w is reduced if and only if g(w) is reduced.

14.3. Proof of Theorem 14.2, Phase 3.

Transformation of Φ to Ψ. Let Φ be the input formula for showing Theorem 14.2.
By Lemma 14.5 we may assume that Φ = Φη,j where Φη,j appears in Equation (63).
Thus, Φ is given as a single conjunction of a special form where every variable is
bounded by a constraint X ∈ F(A). It follows that the choice of H ′ for the standard
generating set doesn’t effect SolS,k(Φ) from this point on. Therefore, we can write

(68) πASolA,k(Φ) = πASolS,k(Φ) = πSSolS,k(Φ)

Next, we use the embedding of G into the semi-direct product F(E) ⋊H as given
by Proposition 14.7 and Figure 9. We are going to transform Φ into a formula Ψ
over F(E) ⋊H such that the inclusion of G into the semi-direct product defines a
bijection between Sol(Φ) and Sol(Ψ).

We construct Ψ according to the following steps.

(1) We extend the embedding ϕ : G → F(E)⋊H to an embedding ϕ⋆ idX : G⋆
X ∗ → (F(E) ⋊ H) ⋆ X ∗ and we replace every equation U = V in Φ by
ϕ⋆ idX (U) = ϕ⋆ idX (V ). Identifying E, H , and X with subsets of (F(E)⋊
H)⋆X ∗, we see that E∪H∪X generates the group (F(E)⋊H)⋆X ∗. Hence,
every equation ϕ ⋆ idX (U) = ϕ ⋆ idX (V ) can be written as a plain equation
over the alphabet E ∪H ∪ X . As we have defined Γ = E× {1}∪ {1}×H =
E ∪H , we have E ∪H ∪ X = Γ ∪ X .

(2) We replace every A which appears in Φ by A1 = ϕ(A). That is L(A1) =
ϕ(L(A)). By assumption we have L(A1) ⊆ F(E). Hence, L(A1) is a
rational subset of the free group F(E).

Note that ‖A1‖ ∈ O(‖A‖). Without restriction, we may assume that
the transitions in A1 are labeled by elements from Γ. The property ‖A1‖ ∈
O(‖A‖) is not effected by that assumption. Let Ψ1 be the intermediate
formula. It is clear that ϕ induces a bijection between Sol(Φ) and Sol(Ψ1).

(3) We transform each A1 appearing in Ψ1 into an NFA B such that first,
L(A1) = L(B) ⊆ F(E) and second, the transitions B use labels from E∪{1},
and third ‖L(B)‖ ∈ O(‖L(A1)‖). This well known by [55, 58], but not
completely obvious. In Lemma 14.11 we give a slightly simplified proof for
the special situation of semi-direct products.

Let Ψ be the corresponding formula. Since L(A1) = L(B), we have
Sol(Ψ) = Sol(Ψ1).

The construction of Ψ is finished. We have

(69) ϕ(Sol(Φ)) = Sol(Ψ) and (‖Ψ‖eq , ‖Ψ‖rat) ∈ O(‖Φ‖eq , ‖Φ‖rat).
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Lemma 14.11 ([55, 58]). Let A = (Q,Γ, δ,I ,F ) be an NFA with the property
L(A) ⊆ F(E). Then there is an NFA B such that L(A) = L(B) where the transi-
tions B use labels from E ∪ {1}, and ‖L(B)‖in ∈ O(‖L(A)‖in).

Proof. In the beginning we let δ be any finite subset of Q×Γ∗ ×Q. By Section 13.1
and perhaps by doubling the size of A, we may assume that δ ⊆ Q× (Γ ∪ {1}) ×Q.
Since Γ = E ∪H and 1 ∈ H we may assume that δ ⊆ Q×H(E ∪ {1}) ×Q. Thus,
the label of every transition is either an element from H or from E ∪ {1} or a
product ha where h ∈ H and a ∈ E. Moreover, we may assume that A is trim. In
particular, if we reach a state p when reading a word u from an initial state, then
there is a word v such that uv ∈ L(A). Now, L(A) ⊆ F(E). We let γ(p) = γ(u).

This is well-defined as γ(u)γ(v)
−1

= 1.
For every state p with γ(p) = g we introduce exactly one more state [p, g] and

transitions p
g

−→ [p, g] and [p, g]
g

−→ p. This does not change the language accepted,

and the NFA is still trim with γ([p, g]) = 1. For each outgoing transition p
ha

−→ q
with h ∈ H and a ∈ E ∪ {1} we have γ(q) = f = gh; and there is some b ∈ E ∪ {1}

such that bf = fa in G and hence, we add a transition [p, g]
b

−→ [q, f ] as depicted
in Figure 10.

p q

[p, g] [q, f ]

ha

b

g f

Figure 10. The equations bf = af and f = gh imply gbf = ha.

This doesn’t change the language accepted as gbf = ha in G. The larger NFA
still accepts L, but the crucial point is that for h1a1 · · ·hkak ∈ L(A) we can accept
the same element in G by reading just labels from E ∪ {1}. This is easy to see
by induction on k. Now, we remove all original states (they are no longer needed)
and make [p, 1] initial (resp. final) if and only if p was initial (resp. final), to obtain
the NFA B. By construction, we have ‖B‖in,Γ 6 2 ‖A‖in,Γ. This implies ‖B‖in ∈

O(‖A‖in). Recall that ‖A‖in is well-defined up to a multiplicative constant only by
Equation (54). This makes ‖A‖in independent of the choice of a finite generating
set. �

14.4. Proof of Theorem 14.2, Phase 4.

From Ψ to ΨBen: applying the techniques of Benois. The transformation
in this subsection doesn’t effect the equations in Ψ. We only change the NFAs B
such that they accept with every word w ∈ E∗ also the word ŵ which is obtained
by canceling all factors ee. Nevertheless the rational subset πE(L(B)) ⊆ F(E) will
not change. The techniques for the transformation is well known by the work of
Michèle Benois [2]. Therefore we call the new formula ΨBen. We will see that
πE(SolE,k(Ψ)) = πE(SolE,k(ΨBen)). For convenience of the reader, we explain the
transformation in detail. We use notation from string rewriting.

For u, v ∈ E∗ we write u ⇒ v if u = pq and v = peeq for some p, q ∈ E∗ and

e ∈ E. By
∗

⇒ we mean the reflexive and transitive closure of ⇒. Clearly, u
∗

⇒ v

implies πE(u) = πE(v). Moreover, πE(u) = πE(v) implies u
∗

⇒ w
∗

⇐ v for some

w ∈ E∗.
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By F we denote the set of freely reduced words over E; and we identify F(E)
with the regular set F ⊆ E∗. These a words without any factor ee where e ∈ E or,

equivalently, the set of words u such that u
∗

⇒ v implies u = v. The identification

as sets is possible because πE yields a bijection from F onto F(E).
The formula Ψ uses NFAs B where the transitions are labeled by letters from E or

by the empty word 1, see Section 14.3. The interpretation so far is that L(B) denotes
a rational subset in F(E). Now, we switch the viewpoint: L(B) denotes a regular
subset in E∗; and we replace all constraints X ∈ πEL(B) (resp. X /∈ πEL(B)) by
X ∈ L(B) (resp. X /∈ L(B)). This is nothing but a change of notation, so we
call the new formula still Ψ. However, we now on we consider the full solution
set SolE,k(Ψ) as a relation over E∗. Thus, a solution σ is given as a morphism
σ : X → E∗. Recall that the “actual” solution over the group F(E)⋊H is therefore
given by πEσ : X → F(E).

Lemma 14.12 ([2]). Let B = (Q,E, δ; I ,F ) an NFA which appears in Ψ. Thus,
δ ⊆ Q × (E ∪ {1}) × Q and L(B) ⊆ E∗. Then we can transform B into an NFA
B′ = (Q′, E, δ′; I ′,F ′) such that |Q′| = |Q|, δ′ ⊆ Q′ × (E ∪ {1}) ×Q′, and

(70) πE(L(B′) ∩ F) = πE(L(B′)) = πE(L(B)).

Proof. Let B = (Q,E, δ,I ,F ) an NFA over E∗ where δ ⊆ Q× (E ∪ {1}) ×Q. We
run the following while-loop.

While there there are a letter e ∈ E and states s, t ∈ Q such that (s, 1, t) /∈ δ
but ee ∈ L(B, s, t) enlarge δ by the ε-transition (s, 1, t).

The while-loop terminates after at most |Q|2 rounds with the desired NFA B′.
The number of states is same as before.

The inclusion L(B′) ⊆
{
v ∈ E∗

∣∣∣ u ∗
⇒ v ∧ u ∈ L(B)

}
is trivial. The converse

follows by induction on the length of u. Moreover, for each u ∈ E∗ there is a

(unique) û ∈ F such that u
∗

⇒ û ∈ F. This shows (70) and hence the lemma. �

Let us define a new formula ΨBen in two steps:

(1) Every constraint X ∈ πE(L(B)) (resp. X /∈ πE(L(B)) is replaced by X ∈
L(B′) (resp. X /∈ L(B′) where B′ is the NFA constructed in Lemma 14.12.
Let Ψ be the new formula.

(2) Define ΨBen by

(71) ΨBen = Ψ ∧
∧

{X ∈ F | X ∈ X } .

Lemma 14.13. Let Φ satisfy the properties in Lemma 14.5. Then the embed-
ding ϕ : G → F(E) ⋊ H induces a bijection between πA(SolA,k(Φ)) ⊆ F(A)k and
πE(SolE,k(ΨBen)) ⊆ F(E)k. Moreover, (‖ΨBen‖eq , ‖ΨBen‖rat) ∈ O(‖Φ‖eq , ‖Φ‖rat).

Proof. The proof is immediate by (69), (70), and the construction of ΨBen which
makes sure that all variables satisfy the constraint X ∈ F. Thus a constraint
X ∈ L(B′) is equivalent to a constraint X ∈ L(B′) ∩ F and a constraint X /∈ L(B′)
is equivalent to a constraint X ∈ F \ L(B′). �

14.5. Proof of Theorem 14.2, Phase 5.

Switching from NFAs to finite monoids: From ΨBen to Ψmon. The goal is
to reduce the proof Theorem 14.2 to Theorem 4.3. This requires that we represent
regular constraints by recognizing morphisms. In the following a guess means to
run deterministically over all possibilities. That is, there is deterministic transducer
which respects the space bound in Theorem 14.2 and produces all possible outputs
one after another. The corresponding EDT0L relations are calculated separately
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and then everything is put together as we did when we split Φ̃ into formulae Φη,j
in Equation (63).

Let L(B1), . . . , L(Bℓ) be the list of NFAs which appear in ΨBen. We have ℓ > 1
and without restriction L(Bℓ) = F. According to Example 2.1 there is a morphism

µℓ : E∗ → Nℓ to an H-monoidNℓ of size 2+|E|2−|E| such that u ∈ F ⇐⇒ µℓ(u) ∈
Fℓ where Fℓ = µℓ(F). Since |E| ∈ O(1), the monoid Nℓ is of constant size. For the
other constraints we cannot expect such a small recognizing monoid, and we use
Boolean matrices instead. For 1 6 i < ℓ let qi be the number of states of the NFA
Bi. According to Section 2.6 and Example 3.1 in Section 3 we find for each 1 6 i < ℓ
a morphism to a morphism µi : E

∗ → Ni to a monoid with involution Ni of size

4q
2
i such that u ∈ L(Bi) ⇐⇒ µℓ(u) ∈ Fi where Fi = µi(F \ L(Bi)) for a negative

constraint and Fi = µi(L(Bi)) for a positive constraint. Recall that the monoid
Ni is a submonoid of B2n×2n. Let N be the direct product N0 = N1 × · · · × Nℓ.
Let πi : N0 → Ni the canonical projection, Then we obtain a single morphism
µ : E∗ → N0 such that µi = πiµ for all 1 6 i < ℓ.

Now, for each X ∈ X we guess a value ν(X) ∈ N0. Each time we make a guess
ν(X) ∈ N0 we check that it is consistent with the constraints. Thus, for each
0 6 i 6 ℓ and each X ∈ X we do the following. If there there a positive constraint
X ∈ Bi, then we check πiν(X) ∈ µi(L(Bi)). If there is a negative constraint X /∈ Bi,
then we check πiν(X) /∈ µi(L(Bi)). If the guess is not consistent, then the guess is
not successful and the corresponding output is empty.

For a consistent guess ν we define the following formula

(72) Ψmon,ν =
∧

{Uj = Vj | j ∈ J} ∧
∧

{X = ν(X) | X ∈ X } .

Here, {Uj = Vj | j ∈ J} is the set of equations which appear in the conjunction
ΨBen. By a slight abuse of language we call a conjunction as in Equation (72) still
a Boolean formula. It is clear what we mean by a solution of Ψmon, it is given by
morphism σ : X → E∗ such that

(1) πEσ(Uj) = πEσ(Vj) ∈ F(E) for all j ∈ J .
(2) µσ(X) = ν(X) for all X ∈ X .

For an inconsistent guess we let Ψmon,ν = ⊥. Using this interpretation we have

(73) SolE,k(ΨBen) =
⋃ {

SolE,k(Ψmon,ν)
∣∣ ν ∈ NX

0

}
.

The size of the finite monoidN0 is in 2O(‖Φ‖2
rat

). Thus, in general we cannot store the
disjunction over all guesses in PSPACE. So, we produce the required NFAs for each
Ψmon,ν again one after another. We are approaching our goal prove Theorem 14.2.
For that we use the following proposition.

Proposition 14.14. Let Φ satisfy all conditions in Lemma 14.5. Then there is an
NSPACE(‖Φ‖2

eq (‖Φ‖2
rat + log ‖Φ‖eq)) algorithm which performs the following task.

It takes as input a Boolean formula

(74) Ψmon =
∧

{Uj = Vj | j ∈ J} ∧
∧

{X = ν(X) | X ∈ X }

which appears as Ψmon,ν in (72), The output is an extended alphabet C of size

O(‖Φ‖2), letters di ∈ C for all 1 6 i 6 k, and a trim NFA AΨmon
accepting a

rational set of S-morphisms over C∗ such that the EDT0L relation

{(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗ | h ∈ L(AΨmon
)}

is equal to the full solution set in freely reduced words

SolE,k(Ψmon) =
{

(σ(X1), . . . , σ(Xk)) ∈ Fk
∣∣ πAσ(Ψmon) = true

}
.

Moreover, SolE,k(Ψmon) = ∅ if and only if L(AΨmon
) = ∅; and |SolE,k(Ψmon)| < ∞

if and only if AΨmon
doesn’t contain any directed cycle.
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14.6. Proof of Proposition 14.14. In the proof of Proposition 14.14 we wish to
apply Theorem 4.3. In order to do so, we define another parameter m(Φ) by the
following equation.

(75) m(Φ) · log(‖Φ‖eq) = ‖Φ‖2
rat .

Recall that log(m) > 1 by the definition in Section 2.1. Therefore we have:

(76) NSPACE(‖Φ‖2
eq (‖Φ‖2

rat + log ‖Φ‖eq)) = NSPACE(‖Φ‖2
eq m(Φ) log ‖Φ‖eq).

Hence, for the proof we can use the space bound NSPACE(‖Φ‖2
eq m(Φ) log ‖Φ‖eq)

which is in the form we need for Theorem 4.3.

14.6.1. From Ψmon to the system SΦ. Let Ψmon be written as in (74). Then we
define S′ to be the following system of equations (without any constraint)

S′ =
∧

{Uj = Vj | j ∈ J} .

Recall that we have defined morphisms µ : E∗ → N0 and ν : X → N0. We join µ
and ν to a morphism µ0 : (E ∪ X )∗ → N0 by letting µ0(e) = µ(e) for e ∈ E and
µ0(X) = ν(X) for X ∈ X .

The group H acts on E, but neither on X nor on N0. Therefore we perform two
steps. First, we embed the set of variables X into a larger set of twisted variables

Y = H × X .

In order to have an embedding we identify Z ∈ X with (1, Z) ∈ Y.
The group H acts freely without fixed points on Y by g · (f,X) = (fg,X) and

(f,X) = (f,X). In this way every morphism σ : X → E∗ extends uniquely to an
H-compatible morphism σ : Y∗ → E∗.

Second, we embed N0 into a larger H-monoid N as constructed in Section 3.2.
Moreover, using the universal property of the H-monoid N , we extend µ0 : (E ∪
X )∗ → N0 uniquely to a morphism µN : (E∪Y)∗ → N of H-monoids by µN (f, Z) =
f(µ0(Z)). Twisted variable of the form (f, Z) appear in S′ only if f = 1, but
formally the set of variables is now Y = H × X and for each variable Y ∈ Y the
value µN (Y ) ∈ N is defined. The morphism µN is respects the involution and the
action of H , so does every solution σ : Y∗ → E∗.

We define the system SΦ by the system S′ with the set of variables Y and where
for each Y ∈ Y there is a constraint µN (Y ) ∈ N .

14.6.2. Triangulation: From SΦ to Stri. The “problem” with the system SΦ is that
equations U = V are written as words U, V ∈ (Γ∪Y)∗ where Γ = E∪H ⊆ F(E)⋊H .
In a twisted word equation the U and V should be words over E ∪ Y.

Now, let W ∈ (Γ ∪ Y)∗ be any word. We intend to move letters g ∈ H to the
right. If W contains a factor fg with f, g ∈ H , then we replace fg by the letter
h if fg = h in H . Whenever we see a letter h = 1 ∈ H , then we remove it. If
W contains a factor ga where a ∈ E and g ∈ H , then we replace it by bg where
b ∈ E corresponds to the letter gag ∈ E according to (65). Since b is letter g moves
to the right without increasing the length of W . The last rule is that we replace
every factor g(f, Y ) with Y ∈ X and g ∈ H ′ by (gf, Y )g. Again, g moves to the
right without increasing the length. Thanks to this rule twisted variables other
than (1, Z) appear in the equations. Thus, every U = V with U, V ∈ (Γ ∪ Y)∗ can
be written as U ′f = V ′g such that U ′V ′ ∈ (E ∪ Y)∗, f, g ∈ H , and |U ′V ′| 6 |UV |.

Moreover, if σ : Y → E∗ is any morphism, then σ(U) = σ(U ′)f and σ(U) =
σ(U ′)g. Since σ(U ′) ∈ E∗ and σ(V ′) ∈ E∗, we have πEσ(U) = πEσ(V ) only if
f = g. Thus, whenever we find f 6= g, then we can stop: there is no solution. On
the other hand, for f = g we have πEσ(U) = πEσ(V ) ⇐⇒ πEσ(U ′) = πEσ(V ′).
Hence, we can replace the equation U = V by U ′ = V ′ and U ′ = V ′ is a twisted
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word equation over E in twisted variables Y = H × X and with regular constraints
defined by an compatible morphism Y → N .

Using standard techniques as described in Section 5.4 we can assume without
restriction that all equations are in triangular form. The number of fresh (twisted)
variables and the increase of the length over all equations is thereby bounded by
O(‖Φ‖eq). The set of variables is still called X and the set twisted variables is
still called Y = H × X . Thus after the modifications above and triangulation we
obtain the system of twisted word equation with regular constraints Stri. We have
ϕ(SolA,k(Φ)) = SolE,k(Stri) and all equations SolE,k(Stri) have the form

(77) (1, Z) = f(x)g(y)

where Z ∈ X is a variable, f, g ∈ H , and x, y ∈ E ∪ Y. For example, we could
have x = e ∈ E and y = (h, Y ) ∈ Y. Then the equation becomes (1, Z) =
f(e)g((h, Y )) = e′(gh, Y ). The triangular form is convenient to achieve the property
that solutions are in freely reduced words.

14.6.3. From Stri to Sfin: solutions in freely reduced words. This subsection mimics
[10] in the context of virtually free groups. Sfin will be the “final” system in the
sequence of transformations. Recall that F ⊆ E∗ denotes the regular subset of
freely reduced words. Clearly, if puq ∈ F and f ∈ H , then f(u) ∈ F, too. Another
crucial observation is that for all freely reduced words x, y, z ∈ F and f, g ∈ H we
have z = f(x)g(y) in F(E) if and only if there are freely reduced words p, q, r such
that

z = pr ∧ x = f−1(p)q ∧ y = (g−1f)(q)g−1(r).

According to (77) every equation in the triangular system Stri has the form (1, Z) =
f(x)g(y). For each such equation and each h ∈ H we introduce six fresh twisted
variables

(h, P ), (h, P ), (h,Q), (h,Q), (h,R), (h,R)

After that we replace the equation (1, Z) = f(x)g(y) by the conjunction of three
new equations:

(78) (1, Z) = (1, P )(1, R) ∧ x = (f, P )(1, Q) ∧ y = (g−1f,Q) (g−1, R).

For simplicity, the new set of twisted variables is still called Y = H × X .
We obtain a system Sfin, and this finishes the construction of the new for-

mula Sfin. Let σ : X → E∗ be any compatible morphism such that πEσ(1, Z) =
πEσ(f(x)g(y)). Then we there is some σ′ : X → F such that first, πEσ = πEσ

′,
and second σ′ solves the three equation in (78) in freely reduced words. That is
σ′ solves the three equation under the constraint (h, Y ) ∈ F for all (h, Y ). For the
other direction: if πEσ solves the three equations in F(E) without any constraint on
twisted variables, then there is some σ′ : X → F such that πEσ

′ solves the equation
(1, Z) = f(x)g(y) in F(E). The remaining problem is that our formalism asks to
define values µN for each new variables. (That is 2/3 of all variables). The only
way to do so in the given space bound is to guess the correct value. We can write
the equations appearing in Sfin as a system

(79)
∧

{xj = (fj , Pj)(gj , Rj) | j ∈ J}

where xj ∈ E∪X and µN (xj) is already fixed. We can read this system as a system
of equations over the finite monoid NM . To check whether such systems have a
solution is actually PSPACE hard, however we don’t need PSPACE-hardness. It is
enough that within our space bound we can output by guessing-and-checking all
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possibilities to assign µN values to each of the fresh twisted variables. Such an
assignment is again a tuple ν ∈ NX

M . Formally we can write a Sfin as a disjunction

(80) Sfin =
∨ {

Sfin,ν

∣∣ ν ∈ NX
M

}
.

Some of the systems Sfin,ν can be empty. If all are empty, then we can stop: Sfin is
not solvable.

Lemma 14.15. Let Φ satisfy all conditions in Lemma 14.5. Then there is an
NSPACE(‖Φ‖2

eq (‖Φ‖2
rat + log ‖Φ‖eq)) algorithm which performs the following task.

It takes as input a Boolean formula non-empty system Sfin,ν from the disjunction
in Equation (80).

The output is an extended alphabet C of size O(‖Φ‖2
eq) with E ⊆ C, letters di ∈ C

for all 1 6 i 6 k, and a trim NFA ASfin,ν
accepting a rational set of E-morphisms

over C∗ such that the EDT0L relation
{

(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗
∣∣ h ∈ L(ASfin,ν

)
}

is equal to the full solution set in freely reduced words

SolE,k(Sfin,ν) =
{

(σ(X1), . . . , σ(Xk)) ∈ Fk
∣∣ πEσ solves Sfin,ν

}
.

Moreover, SolE,k(Sfin,ν) = ∅ if and only if L(ASfin,ν
) = ∅; and |SolE,k(Sfin,ν)| < ∞

if and only if ASfin,ν
doesn’t contain any directed cycle.

Proof. The existence of the NFA ASfin,ν
with the desired properties is a formal

consequence of Theorem 4.3. For the complexity issues we need an estimation of
mASfin,ν

(NM ). It is however clear from the construction that we havemASfin,ν
(NM ) ∈

O(m(Φ)) where mASfin,ν
(NM ) was defined in Equation (4) and m(Φ) was defined

in Equation (75).

NSPACE(‖Φ‖2
eq (‖Φ‖2

rat +log ‖Φ‖eq)) = NSPACE(‖Φ‖2
eqm(Φ) log ‖Φ‖eq) is due to

Equation (76). Thus the complexity follows again by Theorem 4.3. �

We did various modifications to the input formula Φ to arrive at a system Sfin,ν

mentioned Lemma 14.15. Each step on the way from Φ to Sfin,ν involved a splitting
or guessing, which are realized by transducers respecting the space bound. In order
to define the NFA AΨmon

which is needed for Proposition 14.14, we put all the
pieces together. Thus, Proposition 14.14 is shown.

Corollary 14.16. Let G be a finitely generated virtually free group given by a
short exact sequence as in (58) and let ϕ : G → F(E)⋊H the embedding of G into
a semi-direct product as in Figure 9.

Then there is an NSPACE(‖Φ‖2
eq (‖Φ‖2

rat + log ‖Φ‖eq)) algorithm which performs
the following task. It takes as input a Boolean formula Φ. The output is an extended

alphabet C of size O(‖Φ‖2
eq) with E ⊆ C, letters di ∈ C for all 1 6 i 6 k, and a trim

NFA AE,Φ accepting a rational set of E-morphisms over C∗. The corresponding
EDT0L relation

R(AE,Φ) = {(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗ | h ∈ L(AE,Φ)}

satisfies the following properties.

(1) We have R(AE,Φ) ⊆ Fk. Thus, each for each h ∈ L(AE,Φ) and 1 6 i 6 k
the word h(di) is freely reduced.

(2) We have ϕ(SolA,k(Φ)) = R(AE,Φ).

Proof. As above we can use the same techniques of splitting and guessing based on
(69), (71), and (73). Hence it is possible to construct the NFA AE,Φ by putting
exponentially many NFAs of the form AΨmon

provided by Proposition 14.14. Again
we may use a transducer which satisfies the required space bound since all pieces
can be constructed one after another. �
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A∗ T ∗AT ∗ A∗

F(A) F(E) F(A)

ϕ ψ

ϕ ψ

πA πE πA

Figure 11. ψϕ = idA and ψ maps freely reduced words to freely
reduced words by Corollary 14.9.

14.7. Proof of Theorem 14.2. From the NFA AE,Φ back to Φ. We have A ⊆
E and in Section 14.2 we defined an A-morphism ψ : E∗ → A∗ by ψ(t) = 1 for all
t ∈ E\A. Since ϕ(a) ∈ T ∗aT ∗ we see ψϕ(a) = a for all a ∈ A. See the commutative
diagram in Figure 11. Therefore, the second statement in Corollary 14.16 yields

SolA,k(Φ) = ψ(R(AE,Φ)).

The first statement says that R(AE,Φ) is an EDT0L relation in freely reduced
words over E; and Corollary 14.9 asserts that ψ maps freely reduced words to
freely reduced words over A. Using one state more than the NFA AE,Φ (actually a
new initial state) and a transition labeled by ψ from the old initial state to the new
one, we obtain the desired NFA AΦ. Hence, we can realize SolA,k(Φ) as an effective
EDT0L relation in freely reduced words over A. Thus, the projection πA : A∗ →
F(A) yields a bijection between SolA,k(Φ) and the full solution set πA(SolA,k(Φ)) ⊆
F(A)k. This concludes the proof of Theorem 14.2.

15. SL(2,Z)

We apply in this section our results to the perhaps most prominent example of
a (non-free) virtually free group: the special linear group SL(2,Z) of 2 × 2 matrices
over Z. It is well known (and easy to show) that SL(2,Z) is the amalgamated
product SL(2,Z) = Z/4Z ⋆Z/2Z Z/6Z. Possible generators are the matrices ρ =(

0 −1
1 1

)
and τ =

(
0 1

−1 0

)
of orders 6 and 4 respectively. We have ρ3 = τ2 =

(
−1 0
0 −1

)
.

We also denote the matrices
(

−1 0
0 −1

)
and ( 1 0

0 1 ) as −1 and 1 respectively.
When working with equations over SL(2,Z) it is more natural that the constants

are matrices (with entries written as binary numbers) rather than words over a
finite generating set. Moreover, in an equation there is no reason to see a factor of
two matrices

(
a b
c d

) (
a′ b′

c′ d′

)
because we would multiply the matrices together. For

a matrix M =
(
a b
c d

)
in SL(2,Z) we let ‖M‖1 = max {|a| + |c|, |b| + |d|}; and we

define its binary size

‖M‖bin = log ‖M‖1 .

Note that ‖M‖1 is the usual matrix one-norm of the matrix ( a cb d ). We use the
notion of binary size to define the size of equations and Boolean formulae where
constants are matrices. The only difference is that the size of a constant M in
SL(2,Z) is not 1 as for a finite generating set, but ‖M‖bin. We leave it to the
reader to define the size of a Boolean formula accordingly. To have a notation for
Boolean formulae Φ as well, we denote the new size by ‖Φ‖bin.

The aim of this section is to prove the following result.

Corollary 15.1. There exists a standard generating set S for SL(2,Z) of 21 letters,

and an NSPACE(m(Φ) ‖Φ‖2
bin log ‖Φ‖bin) algorithm which performs the following

task. It takes as input a Boolean formula Φ where the constants are matrices over
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SL(2,Z) (counted in their binary size) and in variables from X = X+ ∪X− such that
X ∈ X+ ⇐⇒ X ∈ X− and X+ = {X1, . . . , Xk}, where each variable has size 1 for

simplicity. The output is an extended alphabet C of size O(‖Φ‖2
bin), letters di ∈ C

for all 1 6 i 6 k, and a trim NFA AΦ accepting a rational set of A-morphisms over
C∗ such that the EDT0L relation

{(h(d1), . . . , h(dk)) ∈ C∗ × · · · × C∗ | h ∈ L(AΦ)}

is equal to the full solution set in standard normal form as given in Equation (57)

SolS,k(Φ) =
{

(σ(X1), . . . , σ(Xk)) ∈ snfS(G)k
∣∣ πσ(Φ) = true

}
.

Moreover, Sol(Φ) = ∅ if and only if L(A) = ∅; and |Sol(Φ)| < ∞ if and only if A
doesn’t contain any directed cycle.

The proof of Corollary 15.1 covers the rest of the section. In a first part, we
make the reduction to the framework of Theorem 14.2 fully explicit. The main
message is that a few elementary facts about SL(2,Z) are enough to understand
Theorem 14.2 without any reference to Bass-Serre theory [57] or the resulting black
box Proposition 14.7. In fact, what we use about SL(2,Z) predates the invention
of Bass-Serre theory by far. For that we reformulate Theorem 14.2 for SL(2,Z) in
Corollary 15.1. The point is that we view Corollary 15.1 directly as a corollary to
Theorem 4.3.

In the second part we show that working with matrices doesn’t increase the com-
plexity. To see the difference, let w ∈

{
ρ, ρ−1, τ, τ−1

}∗
be a word in the (symmetric)

set of natural generators with n = |w|ρ±1 = |w|ρ + |w|ρ−1 , and let
(
a b
c d

)
denote

its image in SL(2,Z), then a straightforward calculation shows
∥∥(

a b
c d

)∥∥
1
6 Fn+2,

where Fn+2 is the (n+ 2)nd Fibonacci number. In particular,
∥∥(

a b
c d

)∥∥
bin
6 |w|ρ±1 6 |w|.

This means that working with matrices and their binary size doesn’t increase the
input size with respect to the reduced word lengths over

{
ρ, ρ−1, τ, τ−1

}∗
. How-

ever, an exponential gap between
∥∥(

a b
c d

)∥∥
bin

and |w|ρ±1 is possible. For example,

we have (τρ)n = ( 1 n
0 1 ) and ‖( 1 n

0 1 )‖bin = log(n + 1). It is easy to see that (τρ)n

is the shortest word in
{
ρ, ρ−1, τ, τ−1

}∗
which represents the matrix ( 1 n

0 1 ). Thus,
the matrix representation of (shortest) words can lead to an exponential compres-
sion. However, in [21] Gurevich and Schupp give an exponential representation
of a matrix M in SL(2,Z) by words over {ρ, τ}∗ where the bit complexity of the
exponential representation is linear in ‖M‖bin. (In an exponential representation
exponents over factors are written in binary.) In order to prove the lemma of
Gurevich and Schupp we use the matrices L = ( 1 0

1 1 ) = τρ2 and U = ( 1 1
0 1 ) = τρ.

15.1. Explicit embedding of SL(2,Z) into a semi-direct product. There is a
natural action of SL(2,Z) on the complete bipartite graph K3,2 which is depicted in
Figure 12. We give an orientation to the set of undirected edges in K3,2 according to
that picture5. Denoting the set of directed edges {a, . . . , f}, we obtain an alphabet
E =

{
a, a, . . . , f, f

}
. As usual, an undirected edge is two-element set {y, y}.)

The action of SL(2,Z) on the bipartite graph K3,2 is as follows. The generator
τ stabilizes the vertices Pα and we let τRβ = Rτβ (with Rτ2 = R1). The generator
ρ stabilizes the vertices Rβ and we let ρPα = Pρβ (with Pρ3 = P1).

Let us define a surjective homomorphism γ : SL(2,Z) → Z/12Z by γ by r = 2 =
γ(ρ) and t = 3 = γ(τ). (It is known that the kernel of γ is the commutator subgroup

5Actually, K3,2 is the quotient graph of the Bass-Serre tree for SL(2,Z) modulo the action by

that group. Figure 12 appears in [13] as well as some subsequent calculations.
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P1=⋆

Pρ

Pρ2

R1

Rτ

a

b

c

d

fe

Figure 12. The complete bipartite graph K3,2 with a directed
spanning tree {a, b, d, e} and set of directed chords c and f

of SL(2,Z); we’ll come back to this in a minute.) An easy reflection shows that the
action on on K3,2 of SL(2,Z) factorizes through γ: indeed, Z/6Z = Z/3Z × Z/2Z
is quotient of the amalgamated product Z/3Z ⋆Z/2Z Z/4Z. The action induces an
action of Z/12Z on the edge set E which respects the involution. For example:
τ(c) = d, ρ(c) = d, and ρ(c) = f etc. Therefore, the homomorphism H → Aut(E)
yields a semi-direct product F(E)⋊H . Note that the action of H = Z/12Z on E is
not faithful, the number 6 mod 12 (= r3 = t2) acts as the identity. This immediately
implies that τρτρ2, and τρ2τρ are in the commutator subgroup SL(2,Z)′.

A well-known classical result of Newman states that the kernel of γ : SL(2,Z) →
Z/12Z is the commutator subgroup SL(2,Z)′ and that SL(2,Z)′ is a free group
of rank 2 with basis

{
τρτρ2, τρ2τρ

}
, [41, Lem. 1]. This is rather easy to see. A

straightforward calculation shows that [τ, ρ] = τρτρ2, [τ, ρ2] = τρ2τρ and that the
subgroup generated by

{
τρτρ2, τρ2τρ

}
is closed under conjugation. Thus, SL(2,Z)′

is generated by τρτρ2 and τρ2τρ. In particular, let F (c, f) denote the free group of
rank 2 with basis {c, f}. Then ψ(c) = τρτρ2 and ψ(f) = τρ2τρ defines a surjective
homomorphism

ψ : F (c, f) → SL(2,Z)′.

For the result of Newman it remains to show that SL(2,Z)′ is freely generated by
these two elements. We will do so by showing that SL(2,Z)′ is the fundamental
group of the graph Γ = K3,2. Simultaneously, we will derive the desired result that
SL(2,Z) embeds into the semi-direct product F(E)⋊H where H = Z/12Z.

We choose ⋆ = P1 as a base point in Γ. Then the fundamental group π1(Γ, ⋆)
(which is, by definition, a subgroup in F(E) = F (a, b, c, d, e, f)) can be identified
with the free group F (c, f). This identification is due to the fact that c, f are the
chords for the chosen spanning (directed) tree T = {a, b, d, e}. Indeed, a standard
exercise shows that the isomorphism ϕ1 : F (c, f) → π1(Γ, ⋆) is given by

ϕ1(c) = acdb and ϕ1(f) = afeb.

(To see this, say for c, just follow the shortest path in T from ⋆ to the source of
c, traverse the chord c and choose the shortest path in T back to ⋆.) We have
π1(Γ, ⋆) 6 F(E) and a canonical projection τ : F(E) → F (c, f) which maps the
edges of T to 1. Thus, τϕ1 is the identity on F (c, f).

Finally, guided by τ(P1) = P1 and ρ(P1) = Pρ we define a homomorphism
ϕ : SL(2,Z) → F(E)⋊H where

ϕ(τ) = (1, t) and ϕ(ρ) = (bd, r).

The homomorphism ϕ is well-defined since

ϕ(τ2) = (1, t2) = (1, r3) = ϕ(ρ3) and (1, t2)2 = (1, 1).
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1 F (c, f) SL(2,Z) Z/12Z 1

1 F(E) F(E)⋊ Z/12Z Z/12Z 1

ψ

incl. ϕ idZ/12Z

Figure 13. Embedding of SL(2,Z) into a semi-direct product.

Another direct calculation shows

ϕψ(c) = ϕ(τρτρ2) = (ϕ1(c), 1) and ϕψ(f) = ϕ(τρ2τρ) = (ϕ1(f), 1).

Thus, the identity idF (c,e) factorizes as follows:

idF (c,e) : F (c, e)
ψ

−→ SL(2,Z)′ ϕ
−→ F(E) × {1} = F(E)

τ
−→ F (c, e).

As a consequence, the surjection ψ is injective, and we obtain a commutative
diagram Figure 13. The diagram implies that ϕ : SL(2,Z) → F(E)⋊H is injective
and that ϕ induces an isomorphism between SL(2,Z)′ and π1(Γ, ⋆).

Since ϕ(SL(2,Z)) is a finitely generated subgroup, it is a rational subset in
F(E)⋊H . Hence, we can reduce the question about solving equations in SL(2,Z)
to twisted word equations over F(E)6. However, Theorem 4.3 is more ambitious
than for example [7]. In order to apply Theorem 4.3 we need in particular an
explicit construction of a set of standard generators. We obtain such a set S by
defining S = A+ ∪ A− ∪ H+ ∪ H− where A+ = {c, f} =

{
τρτρ2, τρ2τρ

}
and

H+ =
{
ρ1, . . . , ρ5, τ, ρ1τ, . . . , ρ5τ

}
. We have H+ ∩ H− =

{
ρ1, . . . , ρ5

}
and ρ3

becomes a self-involuting letter in S.

Remark 15.2. Let h = ρ1τ , h′ = ρ1, and g = ρ2τ be letters in H+. Then the
element hh′ ∈ S∗ has length 2. The corresponding element in standard normal form
is cfg ∈ A∗H+ which has length 3. This yields a concrete example showing that
the standard normal forms are not geodesic in general.

What remains to show for the proof of Corollary 15.1 is to show that the com-
plexity is not worse than NSPACE(‖Φ‖2

binm(Φ) log ‖Φ‖bin). This is done next.

15.2. Euclidean matrix calculation. We have L−1 = ρτ =
(

1 0
−1 1

)
and hence,

U−1L = ρ. Since ρ, τ generate SL(2,Z) as a monoid, we see that L,U generate
SL(2,Z) as a group. It is therefore clear that every matrix in SL(2,Z) can be written

as a word in
{
L,L−1, U, U−1

}∗
, but of course the representation is not unique as

for example (U−1L)6 = 1.
Let a0, a1 ∈ N with a0 > a1 > 0. Using the extended Euclidean algorithm

for computing the gcd(a0, a1) we define natural numbers ki for 0 6 i < g and ai
0 6 i 6 g + 1 with

a0 > a1 > · · · > ag−1 > ag = gcd(a0, a1) > ag+1 = 0

such that for i > 0 we have

(81) 0 6 ai+2 = ai − kiai+1 < ai+1.

The sequence finishes with some 1 6 g ∈ O(log |a0|) such that kg−1ag = ag−1

and ag = gcd(a0, a1). The last value is therefore indeed ag+1 = 0. We say that

6So far this is very close, if not identical, to the approach in [7].
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(k0, . . . , kg−1) is the gcd-sequence defined by a0, a1. Note that (k0, . . . , kg−1) to-
gether with ag uniquely define (a0, . . . , ag). Note also that ki > 1 for 0 6 i < g − 1
and kg−1 = ag−1 > 2.

By SL(2,N) we mean the following submonoid of SL(2,Z):

SL(2,N) =
{(

a b
c d

) ∣∣ a, b, c, d ∈ N ∧ ad− bc = 1
}
.

It is a well-known classical fact and not difficult to see that SL(2,N) is a free monoid
with unique basis {U,L}, see for example [12, Chap. 8.12] or [28] for an application
to fast randomized pattern matching. The following quantitative lemma belongs
probably to folklore. It can be easily derived from [21], but for lack of a reference
for the precise statement we give a proof.

Lemma 15.3. Let M = ( a0 a1
c0 c1

) ∈ SL(2,N) with a0 > a1 > 0 and let (k0, . . . , kg−1)
be the gcd-sequence defined by a0, a1. Then there is a (unique) cg ∈ N such that
following assertions hold.

(1) 0 < k0 · · · kg−1 · min {1, cg} < a0 + c0 = ‖M‖1.
(2) If g is even, then

M = LcgUkg−1Lkg−2 · · ·Uk1Lk0 .

(3) If g is odd, then cg > 0 and

M = Lcg−1ULkg−1 · · ·Uk1Lk0 .

Proof. For the following we don’t need the uniqueness of cg. It follows from the
fact that {L,U} forms a basis for the free monoid SL(2,N), which in turn follows
easily from the present proof. We leave this part to the interested reader.

Consider a matrix M1 = M = ( a0 a1
c0 c1

) ∈ SL(2,N) with a0 > a1 > 0. Note that
this implies gcd(a0, a1) = 1. Moreover, c0 > c1 > 0 because a0c1 = a1c0 + 1. (The
case c0 = c1 is possible only for M =

(
a0 a0−1
1 1

)
.) Let us treat the case a1 = 1 as a

special case first. That is: M =
(
k0 1
c0 c1

)
. We obtain k0 = a0 and

M = Lc1−1ULa0−1.

Moreover, c0 = k0c1 − 1. Since a0 > 2 we have 1 6 c0 < k0c1 < a0 + c0.
For the rest of the proof we may assume g > 2. We let (k0, . . . , kg−1) (and

(a0, . . . , ag−1, 1)) be the gcd-sequences defined by a0, a1. Next, we define matrices
Mi for 1 6 i 6 g according to the following rules.

(1) If 1 6 i < g and i is odd and Mi =
( ai−1 ai
ci−1 ci

)
is defined, then we let

Mi+1 = MiL
−ki−1 =

( ai+1 ai
ci+1 ci

)
.

(2) If 1 6 i < g and i is even and Mi =
( ai ai−1
ci ci−1

)
is defined, then we let

Mi+1 = MiU
−ki−1 =

( ai ai+1
ci ci+1

)
.

It follows by induction that Mi ∈ SL(2,N) for all 1 6 i 6 g. Having this we can
deduce, again by induction, for all 1 6 i 6 g:

0 < ki−1ai 6 ai−1(82)

0 < k0 · · ·ki−1ai 6 a0(83)

The situation for the ci is slightly different. For for all 1 6 i 6 g − 1

0 < ki−1ci 6 ci−1(84)

0 < k0 · · · ki−1ci 6 c0(85)

0 6 k0 · · · kg−2 · max {cg−1, kg−1cg − 1} 6 c0(86)

To see (86) we observe that 1 6 cg−1 = kg−1cg ± 1. Hence, we can use (85) to
conclude (86). Considering i = g − 1 shows the first claim in the lemma, because
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(86) implies k0 · · ·kg−1cg 6 c0 + k0 · · ·kg−2 and k0 · · · kg−2 < k0 · · · kg−1 6 a0 by
kg−1 > 2 and (83).

For the last matrix is Mg and depending on whether g is odd or even, we have
two options. If g is even we let D = L and D = U otherwise. We obtain:

M1 · L−k0U−k1 · · ·D−kg−2 = Mg =

{( ag ag−1
cg cg−1

)
=

(
1 kg−1

cg cg−1

)
if g is even;( ag−1 ag

cg−1 cg

)
=

(
kg−1 1
cg−1 cg

)
if g is odd.

(87)

First case. Let g be even, hence Mg =
(

1 kg−1

cg cg−1

)
. Then we have

MgU
−kg−1L−cg = ( 1 0

0 1 ) .

It is possible that cg = 0 in the line above.

Second case. Let g be odd, hence Mg =
(
kg−1 1
cg−1 cg

)
. Then we have

MgL
1−kg−1U−1L1−cg = ( 1 0

0 1 ) .

Note that for g odd, we have cg > cg > 0 and kg−1 = ag−1 > ag = 1. Using (87)
and a case distinction (whether or not g is even) yields the result. �

Proposition 15.4 (Gurevich and Schupp [21]). Let M =
(
a b
c d

)
∈ SL(2,Z) and

m = max {|a| , |b| , |c| , |d|}. Then there are words u, v ∈ {ρ, τ}∗
and positive integers

e0, . . . , eℓ with 0 6 ℓ ∈ O(logm) such that

|uv| ∈ O(1),

0 < e0 · · · eℓ < 2m

M = uLe0Ue1 · · ·Leg−2Ueℓ−1Leℓv.

Proof. As a preamble let us note that we will be able to enforce e0 6= 0 6= eℓ because
L−1 = ρτ is a short word over ρ and τ .

The assertion is trivial for m = 1. Hence we assume m > 2. Using short words
u′, v′ ∈ {ρ, τ}∗

, we obtain a matrix

M ′ = u′Mv′ = ( a0 a1
c0 c1

)

with m = a0 > a1 > 0 and c0 > c1 > 0. Since m > 2 it is enough to see that we
can choose u′ = τ2+e0Ue1τe2 and v′ = τe3Ue4 where the exponents ej are in {0, 1}.
We have M ′ ∈ SL(2,N) and therefore the result follows from Lemma 15.3. �

Proof of Corollary 15.1. Proposition 15.4 shows that the size of the exponential
expression

uLe0Ue1 · · ·Leg−2Ueℓ−1Leℓv

is linear in ‖M‖bin. Thus, we can apply Corollary 14.16 based on the explicit
embedding of SL(2,Z) into the semi-direct product as depicted in Figure 13.
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