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ABSTRACT. We give an algorithm to determine whether Wilf’s conjecture holds for all nu-
merical semigroups with a given multiplicity m, and use it to prove Wilf’s conjecture holds
whenever m≤ 18. Our algorithm utilizes techniques from polyhedral geometry, and includes
a parallelizable algorithm for enumerating the faces of any polyhedral cone up to orbits of an
automorphism group. We also introduce a new method of verifying Wilf’s conjecture via a
combinatorially-flavored game played on the elements of a certain finite poset.

1. INTRODUCTION

In what follows, let Z≥0 denote the set of non-negative integers.
A numerical semigroup S is a subset of Z≥0 containing 0 that is closed under addition and

has finite complement in Z≥0 (this last condition is equivalent to requiring that the greatest
common divisor of its elements is 1). Forty years ago [20], Wilf conjectured that every
numerical semigroup S satisfies an inequality involving the following basic quantities:
• the conductor of S, denoted c(s), which is the smallest integer c such that c+Z≥0 ⊂ S

(this is guaranteed to exist since S has finite complement in Z≥0);
• the number n(S) of elements of S less than c(S) (called sporatic elements); and
• the embedding dimension of S, denoted e(S), which equals the number of positive

elements of S that cannot be written as a sum of two positive elements of S (called the
atoms or primitive elements of S).

One can think of Wilf’s conjecture, stated below, as a bound on the “density” of the spo-
ratic elements in terms of the number of primitive elements. The problem has attracted the
attention of many researchers, in part because of how easy it is to state. Despite substantial
progress, much of which has been made in this century, Wilf’s conjecture remains open.

Conjecture 1.1 (Wilf). For any numerical semigroup S,

c(S)≤ e(S)n(S).

The original aim of this project was to develop a computational method for verifying
Wilf’s conjecture for all numerical semigroups S with fixed m(S) = min(S \ {0}), called
the multiplicity of S (note there are infinitely many numerical semigroups with each fixed
multiplcity m(S) ≥ 2). Our results, however, have more far-reaching consequences than
merely verifying the conjecture in some new cases: we provide new tools from polyhedral
geometry and enumerative combinatorics with which to approach the conjecture.
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2 BRUNS, GARCÍA-SÁNCHEZ, O’NEILL, AND WILBURNE

Our main tool is the Kunz polyhedron Pm, introduced independently in [14] and [16],
whose integer points are in one to one correspondence with numerical semigroups with mul-
tiplicity m(S) = m (the coordinates of these points are known as the Kunz coordinates of
the semigroup). The points in the interior of Pm translate to a class of numerical semigroups
for which Wilf’s conjecture is known to hold [16], namely those with maximal embedding
dimension. For each face F of Pm, we reduce the task of checking Wilf’s conjecture for all
Kunz coordinates in the interior of F to the problem of determining if a certain set of lin-
ear inequalities has integer solutions. The primary computational hurdle in verifying Wilf’s
conjecture for a given multiplicity m then becomes enumerating the faces of the Kunz poly-
hedron, which for m(S)≥ 13 is a challenging computation.

The primary contributions of this manuscript are as follows.

• We present an algorithm for enumerating the faces of any polyhedral cone under the
action of an automorphism group. The details of our algorithm, including its imple-
mentation in the software package Normaliz [3], can be found in Section 5. Although
this work is motivated by the computation of the Kunz polyhedron, our algorithm, as
well as its implementation in Normaliz, is not limited to this case.
• We prove that in the interior of any face of the Kunz polyhedron, the Kunz coordinates

of all numerical semigroups violating Wilf’s conjecture are determined by a system of
linear inequalities (Section 4). Through a series of reductions, several of which result
from special cases in which Wilf’s conjecture is known to hold, we verify that Wilf’s
conjecture holds for all numerical semigroups S with multiplicity m(S)≤ 18.
• We demonstrate that the unbounded faces of the Kunz polyhedron containing integer

points are indexed by a family of finite partially ordered sets, called Apéry posets
(Section 3), and introduce a combinatorial game played on the elements of a given
Apéry poset whose outcome yields a method of checking if all numerical semigroups
with Kunz coordinates interior to the corresponding face satisfy Wilf’s conjecture.
Section 6 contains a description of the game, along with several examples of its use.

Prior to this work, Wilf’s conjecture was known to hold for m(S) ≤ 10 by assembling
several special cases. At a talk in the summer of 2017, Eliahou [9] claimed to have a proof
using graph theoretical methods that every numerical semigroup with m(S) ≤ 12 satisfies
Wilf’s conjecture, though this work has yet to appear in the literature.

2. NUMERICAL SEMIGROUPS AND WILF’S CONJECTURE

We say that a numerical semigroup is Wilf if it satisfies Wilf’s conjecture. In this section,
we introduce some additional concepts from the numerical semigroups literature, and survey
some recent progress on Wilf’s conjecture. We direct the interested reader to [4] for an
exhaustive overview of the partial results obtained to date.

Fix a numerical semigroup S⊂ Z≥0. A gap of S is a nonnegative integer outside of S, and
the largest gap of S, denoted F(S), is known as its Frobenius number. In particular, we have
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c(S) = F(S)+ 1. We denote by G(S) the set of gaps of S; its cardinality g(S) = |G(S)| is
called the genus of S. A generating set of a numerical semigroup S is a subset A⊂ S with

S = 〈A〉= {a1 + · · ·+ak : k ∈ Z≥0,a1, . . . ,ak ∈ A},

and every numerical semigroup S admits a unique generating set A (S) that is minimal with
respect to containment. The elements of A (S) are the atoms of S (and as such are sometimes
also called the minimal generators of S), and e(S) = |A (S)|.

The Apéry set of an element n ∈ S is the set

Ap(S;n) = {s ∈ S : s−n /∈ S}.

It is well known that Ap(S;n) has precisely n elements, each of which is distinct modulo n.
More precisely, Ap(S;n) = {0,a1, . . . ,an−1}, where ai = min{m ∈ S : m≡ i mod n}.

An integer f is said to be a pseudo-Frobenius number of S if f /∈ S but f +A (S) ⊂ S.
In particular, F(S) is a pseudo-Frobenius number of S. The cardinality of the set PF(S)
of pseudo-Frobenius numbers of S is the (Cohen-Macaulay) type of S and denoted t(S).
According to [11, Theorem 20], for any numerical semigroup S,

(2.1) c(S)≤ (t(S)+1)n(S).

This implies that if e(S)> t(S), then S is Wilf. This has the following consequences.

• If t(S) = 1, then S is Wilf. Numerical semigroup with t(S) = 1 are called symmetric,
and include all numerical semigroups with e(S) = 2 (see [11, 17]).
• If S is irreducible (that is, if S cannot be expressed as the intersection of two numerical

semigroups properly containing it), then S is Wilf. Indeed, in this case, if F(S) is odd,
then one can show t(S) = 1, so S is symmetric and thus Wilf. On the other hand, if S
is irreducible and F(S) is even (we say S is pseudo-symmetric in this case), then one
can show t(S) = 2 and e(S)≥ 3. In either case, S is Wilf by (2.1).
• Any numerical semigroup with e(S) = 3 has t(S)≤ 2, and thus is Wilf [17, Chapter 1].
• If e(S) = m(S), then S is Wilf, since e(S)≤m(S) and t(S)≤m(S)−1 hold for every

numerical semigroup (see, for instance, [17, Chapter 1]). Such numerical semigroups
are called maximal embedding dimension due in part to the first inequality.

Separately, Wilf’s conjecture has been proved in numerous special cases [1, 7, 8, 10],
for instance, when c(S) ≤ 3m(S), or c(S) ≤ 21, or g(S) = (F(S)+ t(S))/2. Of particular
relevance to the results in this manuscript is [12], wherein Fromentin and Hivert prove via
computation that every numerical semigroup S with g(S)≤ 60 is Wilf. The key is that there
are only finitely many numerical semigroups of a given genus. The repository

https://github.com/hivert/NumericMonoid

contains the number of numerical semigroups with each genus up to 70, though Wilf’s con-
jecture has not been verified for the computed semigroups with genus above 60.

https://github.com/hivert/NumericMonoid
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3. THE KUNZ POLYHEDRON AND RELATED POLYHEDRA

In this section, we introduce the Kunz polyhedron, as well as two (new) closely related
polyhedra, one of which is a pointed cone Cm. The main results are Theorem 3.10, which
gives a combinatorial interpretation of the faces of Cm, and Corollary 3.11, which is a key
ingredient to Algorithm 4.1 in verifying Wilf’s conjecture for fixed multiplicity.

Throughout the remainder of the paper, we will use basic terminology and facts from
convex geometry, which we briefly summarize here. For more extensive treatments we refer
the reader to Bruns and Gubeladze [2] or Ziegler [22].

An affine half-space of Rn is a subset {x ∈Rn : λ (x)≥ α} for some linear form λ ∈ (Rn)∗

and some α ∈R. The half-space is linear if α = 0, and rational if α and the coefficients of λ

can be chosen in Q. A polyhedron is the intersection of finitely many affine half-spaces. We
denote by P◦ the topological interior of P. A polytope is a bounded polyhedron, whereas a
(polyhedral) cone is the intersection of finitely many linear half-spaces. A cone C is pointed
if x,−x ∈C implies x = 0. A support(ing) hyperplane of a polyhedron P is a hyperplane H
such that P is contained in one of the two closed half-spaces into which Rn is decomposed
by H. A face of P is a subset F = P∩H where H is a support hyperplane. The polyhedron P
itself is considered an improper face. The dimension of F is the dimension of its affine hull,
and a face of dimension k is called a k-face. A facet is a face F such that dimF = dimP−1,
and a vertex is a face of dimension 0. Faces of polyhedra, polytopes and cones are themselves
polyhedra, polytopes, and cones, respectively. The extreme rays of a cone are its 1-faces. It
is important to note that every proper face of a polyhedron is the intersection of the facets in
which it is contained; in particular, a polyhedron has only finitely many faces.

An affine half-space {x ∈ Rn : λ (x) ≥ α} is rational if the coefficients of λ and α can
be chosen in Q. A rational polyhedron is the intersection of rational half-spaces. Faces of
rational polyhedra are rational.

The H-representation of a polyhedron P is an expression of P as an intersection of half-
spaces. A cone C can equivalently be represented as {α1v1 + · · ·+αmvm : α1, . . . ,αn ∈ R+}
for some v1, . . . ,vm ∈ Rn, and by Minkowski’s theorem, a polytope P is the convex hull of
its vertices; these expressions constitute the V -representations of their respective polyhedra.
Any nonempty polyhedron P equals the Minkowski sum of some polytope Q and a cone C,
i.e., P = {x+ y : x ∈ Q,y ∈C}. The cone C is unique, and called the recession cone of P.

Definition 3.1. Fix a numerical semigroup S⊂Z≥0, and let m=m(S) denote its multiplicity.
Writing Ap(S;m) = {0,a1, . . . ,am−1} so that each ai = kim+ i for some positive integer ki,
we call (k1, . . . ,km−1) the Kunz coordinates of S. It can be shown (see [16]) that an integer
vector (x1, . . . ,xm−1) are the Kunz coordinates of a numerical semigroup with multiplicity m
if and only if

xi ≥ 1 for 1≤ i≤ m−1,
xi + x j ≥ xi+ j for 1≤ i≤ j ≤ m−1 with i+ j < m, and

xi + x j +1≥ xi+ j for 1≤ i≤ j ≤ m−1 with i+ j > m,
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where the subscript of xi+ j is interpreted modulo m. In the remainder of the paper, whenever
we write a variable xi, we regard i as a nonzero element of the cyclic group Z/(m).

The polyhedron defined by the above inequalities is called the Kunz polyhedron associated
to m, which we will denote by Pm. Numerical semigroups with multiplicity m are in natural
bijection with the integer points of Pm. Thus, we will sometimes identify a numerical semi-
group with its Kunz coordinates, and by abuse of language, we will for instance say that S
lies in the interior of Pm or is contained in a certain face of Pm.

The following result is a well known fact that follows from Selmer’s equalities, and implies
that numerical semigroups with multiplicity m and genus g are in bijection with the integer
points in the intersection of the polyhedron Pm and the hyperplane x1 + · · ·+ xm−1 = g.

Lemma 3.2. Fix a numerical semigroup S with multiplicity m. We have

g(S) = x1 + · · ·+ xm−1 and F(S) = max{mxi + i−m : 1≤ i≤ m−1},
where (x1, . . . ,xm−1) denote the Kunz coordinates of S.

Proof. By Selmer’s equalities [19] (or, more directly, by counting the number of gaps in each
equivalence class modulo m), the genus of S equals

1
m ∑

w∈Ap(S;m)

w− m−1
2

=
m−1

∑
i=1

xi,

and F(S) = maxAp(S;m)−m by [17, Proposition 2.12]. �

We are now ready to introduce the Kunz cone.

Definition 3.3. Fix an integer m≥ 3. The relaxed Kunz polyhedron is the set P′m of rational
points (x1, . . . ,xm−1) ∈ Rm−1 satisfying

xi + x j ≥ xi+ j 1≤ i≤ j ≤ m−1, i+ j < m
xi + x j +1≥ xi+ j 1≤ i≤ j ≤ m−1, i+ j > m.

The Kunz cone is the set Cm of points (x1, . . . ,xm−1) ∈ Rm−1 satisfying

xi + x j ≥ xi+ j 1≤ i≤ j ≤ m−1, i+ j 6= m.

Proposition 3.4 presents several basic properties of P′m and Cm, and their precise relation to
the Kunz polyhedron Pm. In particular, as a consequence of Proposition 3.4, Cm is a pointed
cone and a translation of P′m.

Proposition 3.4. For each m≥ 3 the following hold:
(a) the Kunz cone Cm is contained in the positive orthant Rm−1

+ ;
(b) the relaxed Kunz polyhedron P′m has unique vertex

v = (−1/m,−2/m, . . . ,−(m−1)/m),

and one has x ∈ P′m if and only if x− v ∈Cm; and
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(c) Cm is the recession cone of Pm and a translation of P′m.

Proof. Assume that xk < 0 for some k. Let n be the order of k in Z/(m). Using the inequali-
ties of the Kunz cone, one sees immediately that x j < 0 for all j = 1, . . . ,n−1. If n > 2 we
can write 1≡ 2+(k−1) mod m, and use the inequality x2 + xn−1 ≥ x1 to obtain the contra-
diction x1 < x1. If n = 2, or, equivalently, k = m/2, then we get the contradiction x1 < x1
since xk+1 ≤ x1 + xm < x1 and x1 ≤ xk+1 + xk. This proves the first claim.

Next one readily checks that v satsifies every defining inequality of P′m with equality. It
follows immediately that P′m = {v}+Cm and that v is the only vertex of P′m.

If a nonempty polyhedron is defined by a system of inequalities, then the recession cone is
defined by the associated homogeneous system. Since Cm ⊂ Rm−1

+ it is indeed the recession
cone of P′m and Pm. �

Remark 3.5. Proposition 3.4 also appeared in [14, Proposition 1.1], though we have in-
cluded the proof for the reader’s convenience. In the same manuscript, Kunz shows that the
defining inequalities of the Kunz cone are irreduandant [14, Proposition 1.2].

We now provide a characterization of the faces of the relaxed Kunz polyhedron that con-
tain numerical semigroups.

Definition 3.6. A poset P = (Z/(m) \ {0},�) is an m-Kunz poset if for distinct i, j ∈ P,
we have i� j implies j− i� j.

Definition 3.7. Fix a numerical semigroup S with multiplicity m, and write

Ap(S;m) = {0,a1, . . . ,am−1}
so that ai ≡ i mod m for each i. The Apéry poset of S is a poset

P(S) = (Z/(m)\{0},�)
defined by i � j whenever a j − ai ∈ S. Said another way, P(S) is the divisibility poset
of S restricted to the nonzero elements of Ap(S;m) wherein each element is labeled with its
equivalence class modulo m.

Example 3.8. Let S = 〈6,9,20〉. The Hasse diagram of P(S) is depicted in Figure 1a.
Each minimal element of P(S) represents one of the minimal generators of S aside from 6.
Moreover, in this depiction, each cover relation corresponds to adding some minimal element
of P(S) (indeed, each “up-right” edge corresponds to adding 2, and each “up-left” edge
corresponds to adding 3).

Lemma 3.9. The Apéry poset of any multiplicity m numerical semigroup S is m-Kunz.

Proof. Write Ap(S;m) = {0,a1, . . . ,am−1} with ai ≡ i mod m for each i. If i � j in P(S),
then a j − ai ∈ S. This means a j − ai ∈ Ap(S;m), as otherwise a j − ai−m ∈ S and thus
a j /∈ Ap(S;m). Since a j− ai ≡ j− i mod m, we must have a j− ai = a j−i, so we conclude
a j−a j−i = ai ∈ S and thus j− i� j. �
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(a) (b)
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FIGURE 1. Sample m-Kunz posets from Examples 3.8 and 3.13.

Theorem 3.10. Two numerical semigroups S and T with multiplicity m lie on the interior of
the same face of P′m if and only if P(S) = P(T ).

Proof. Fix a face F and a numerical semigroup S ∈ F◦. Each defining inequality of Pm
holds with either equality or strict inequality for every point in F◦. Moreover, xi+x j = xi+ j,
with i+ j < m, holds for the Kunz coordinates of S if and only if i � i+ j in P(S), and
analogously xi + x j = xi+ j− 1, with i+ j > m, holds for the Kunz coordinates of S if and
only if i � i+ j. As such, the relations in P(S) are determined by the defining equations
and strict inequalities of F◦. �

The following result, which Kunz also observed in [14, Section 2], relates the embedding
dimensions of all numerical semigroups in the interior of the given face, and forms the crux
of Algorithm 4.1.

Corollary 3.11. Fix a face F ⊂ P′m. For any numerical semigroups S,T ∈ F◦, e(S) = e(T )
and t(S) = t(T ). More specifically, e(S)− 1 and t(S) count variables not appearing on the
right and left hand sides of any defining equations of F, respectively.

Proof. Fix a face F ⊂ P′m and a numerical semigroup S ∈ F◦. By the proof of Theorem 3.10,
a given defining inequality xi + x j ≥ xi+ j, with i+ j < m holds with equality for F if and
only if i � i+ j in P(S) (and similarly for i+ j > m). As such, i is minimal (respectively
maximal) in P(S) if and only if xi does not appear on the right (respectively left) hand side
of any defining equalities of F◦.

Now, [17, Proposition 2.20] implies the type of S coincides with the cardinality of the set
of maximal elements in P(S). It also follows easily that if a is an atom of S other than the
multiplicity of S, then a ∈ Ap(S;m) and a mod m is a minimal nonzero element of P(S).
This completes the proof. �

Notation 3.12. In view of Theorem 3.10 and Corollary 3.11, for each face F ⊂P′m containing
a numerical semigroup, we write e(F), t(F), and P(F) for embedding dimension, type, and
Apéry poset of any numerical semigroup in F◦.

Example 3.13. Some m-Kunz posets are not the Apéry poset of any numerical semigroup.
For example, no numerical semigroup S with multiplcity m= 4 can have an Apéry poset with
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Hasse diagram in Figure 1b, as the relations imply its Apéry set Ap(S;m) = {0,a1,a2,a3}
satisfies 2a1 = a2 = 2a3. Despite this, P′m has a face corresponding to this m-Kunz poset
under the correspondence in the proof of Theorem 3.10 (a ray with recession cone (1,2,1)).
This ray simply does not contain any integer points.

On the other hand, some faces of P′m contain no points with all positive entries (and
thus also contain no numerical semigroups). For instance, in the ray of P′6 in the direc-
tion (1,0,1,0,1), the second and fourth entries of every point are negative. This face does
not naturally correspond to an m-Kunz poset via the proof of Theorem 3.10.

Lastly, some m-Kunz posets do not correspond to faces of P′m. For example, a face corre-
sponding to the poset in Figure 1c would lie in exactly two facets of P8, namely those with
defining equations x1 + x5 = x6 and x3 + x7 = x2. However, this implies

2x6+2(x2+1)= 2(x1+x5)+2(x3+x7)= 2x1+2x3+2x5+2x7≥ x2+x6+(x2+1)+(x6+1),

so their intersection is also contained in the facets with defining equations 2x1 = x2, 2x3 = x6,
2x5 = x2, and 2x7 = x6.

In view of Example 3.13, we pose the following.

Problem 3.14. Extend Theorem 3.10 to characterize all faces of P′m (or, equivalently, of Cm).

4. VERIFYING WILF’S CONJECTURE FOR FIXED MULTIPLICITY

In this section, we provide an algorithm for determining whether Wilf’s conjecture holds
for every numerical semigroup with fixed multiplicity m. The key to our algorithm is using
Lemma 3.2 and Corollary 3.11 to reduce Wilf’s conjecture to checking for integer points in
a finite list of rational polyhedra.

Fix a face F ⊂P′m and a numerical semigroup S with Kunz coordinates (x1, . . . ,xm−1)∈F◦.
Using the fact that c(S) = F(S)+ 1 and n(S) = F(S)+ 1− g(S), Wilf’s conjecture can be
reformulated as

F(S)+1≤ e(S)(F(S)+1−g(S)).
Let f ∈ [1,m−1] so that mx f + f is maximal, that is,

(4.1) mxi + i≤ mx f + f for every i 6= f .

By Corollary 3.11 every numerical semigroup in F◦ has identical embedding dimension e,
so using Lemma 3.2, we may rewrite Wilf’s inequality as

(4.2) mx f + f −m+1≤ e(mx f + f −m− (x1 + · · ·+ xm−1)+1).

We conclude that a face F has a numerical semigroup in its interior that violates Wilf’s
conjecture if and only if, for some f ≤ m− 1 that is maximal in P(F), F has an integer
point satisfying inequalities (4.1) and the negation of (4.2). This yields Algorithm 4.1.

Algorithm 4.1. Verify whether Wilf’s conjecture holds for multiplicity m.
function VERIFYWILFSCONJECTURE(m)

for all F face of P′m do
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R← defining equalities and strict inequalities of F
for all f = 1, . . . ,m−1 with f maximal in P(F) do

R f ← inequalities (4.1) and the negation of (4.2)
if region bounded by R and R f contains a positive integer point then

return False
end if

end for
end for
return True

end function

Example 4.2. Let F ⊂ P′6 denote the face containing S = 〈6,9,20〉 from Example 3.8, whose
Apéry poset is depicted in Figure 1a. Since e(F) = 3, and f = 1 is the only maximal element,
by Algorithm 4.1 we must check whether the system

x1− x2 ≥ 1
x1− x3 ≥ 1
x1− x4 ≥ 1
x1− x5 ≥ 1

2x2− x4 = 0
x2 + x3− x5 = 0
−x1 + x2 + x5 =−1
−x1 + x3 + x4 =−1

−x2 +2x4 ≥ 0
−x4 +2x5 ≥ 0

−x2 + x3 + x5 ≥ 0
−x3 + x4 + x5 ≥ 0

2x1− x2 ≥ 1
x1 + x2− x3 ≥ 1
x1 + x3− x4 ≥ 1
x1 + x4− x5 ≥ 1

−11x1 +3x2 +3x3 +3x4 +3x5 ≥−6

has any positive integer solutions. More specifically, the inqualities in the first column come
from (4.1), the equalities in the second column are the defining hyperplanes of F , the remain-
ing two columns are the remaining inequalities in Definition 3.1, and the final inequality is
the negation of (4.2). Some of the above inequalities have also been simplified using the fact
that each xi is an integer. Since f = 1 is the unique maximal element of P(F), the infeasi-
bility of this system implies F contains no non-Wilf numerical semigroups.

Implementation. The following refinements in Algorithm 4.1 result in significant reduc-
tions in runtime and memory.
• By (2.1), every numerical semigroup S satisfies the inequality

F(S)+1≤ (t(S)+1)(F(S)−g(S)+1),

so if e(S) > t(S) then S is Wilf. As such, we can use Corollary 3.11 to eliminate
certain faces of P′m, namely those satisfying e(F)< t(F)+1.
• It is also known that if S has “high embedding dimension”, that is, if 2e(S) ≥ m(S),

then S is Wilf, as proved by Sammartano [18]. As such, any faces F satisfying the
2e(F)≥m can be eliminated. Additionally, for any two faces F,F ′ ⊂ P′m with F ⊂ F ′,
we have e(F)≤ e(F ′), so unlike the above item, once a face is encountered satisfying
this inequality, every face containing it can be safely skipped.
• Prior to checking for integer points in a region R, we first check whether or not R

is feasibile (that is, whether R is a nonempty subset of Qm−1). As it turns out, each
region checked in Algorithm 4.1 for m≤ 18 is infeasible.
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We refer to any face that cannot be skipped based on the considerations in the first two bullet
points as a bad face.

The above simplifications allowed Algorithm 4.1 to complete for m ≤ 18 using the soft-
ware package Normaliz [3] to (i) compute the face lattice of P′m (using the method developed
in Section 5) and (ii) subsequently enumerate the integer points in each region. In addition
to the reductions above, a custom build of Normaliz uses the automorphism group of the
Kunz cone to simplify the face lattice computation, as well as automatically checking the
feasibility of bad faces. Our custom build can be downloaded from the following page.

https://github.com/Normaliz/Normaliz/tree/wilf

The repository contains input files for 11 ≤ m ≤ 19. See the file ReadmeWilf for more
information on its usage.

The output of our implementation of Algorithm 4.1 yields Theorem 4.3.

Theorem 4.3. For each m≤ 18, every region tested in Algorithm 4.1 is empty. In particular,
every numerical semigroup S with m(S)≤ 18 is Wilf.

As noted above, each region tested in Algorithm 4.1 for m≤ 87 is in fact empty. With this
in mind, we state the following conjecture, which implies Wilf’s conjecture.

Conjecture 4.4. For each m≥ 3, every region considered in Algorithm 4.1 is empty.

As a consequence of Theorem 4.3, we get the following result for numerical semigroups
with high embedding dimension.

Corollary 4.5. If S is a numerical semigroup with m(S)− e(S)≤ 9, then S is Wilf.

Proof. We are done by Theorem 4.3 if m(S) ≤ 18. If m(S) ≥ 19, then m(S)−9 ≥ m(S)/2.
Hence, by hypothesis, e(S)≥m(S)−9≥m(S)/2, and thus S is Wilf in light of [18]. �

If we copy the same argument used by Delgado in [4, Remark 3.20], together with the
claims given in [9], then we can go a bit further, though we still do not have access to proofs
of the results in [9].

Corollary 4.6. If S is a numerical semigroup with m(S)− e(S)≤ 12, then S is Wilf.

Proof. If m(S)≤ 18, then we are done by Theorem 4.3. If m(S)≥ 19, then

3e(S)≥ 3(m(S)−12) = 3m(S)−36≥m(S),

and we are done by [9]. This completes the proof. �

Note that both results, as mentioned in [4], improve [6, Thoerem 4.9].

Remark 4.7. The following are known about numerical semigroups S in which Wilf’s in-
equality c(S)≤ e(S)n(S) holds with equality:
(1) if e(S) = 2, then equality holds; and
(2) if e(S) = m(S), then equality holds if and only if x1 = · · ·= xm−1.
See [4, Section 2.3]. Using the computation of the face lattice discussed in Section 5, we
have verified that no additional cases of equality occur for m(S)≤ 15.

https://github.com/Normaliz/Normaliz/tree/wilf
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5. THE COMPUTATION OF THE FACE LATTICE

In this section, we present an algorithm for computing the face lattice of a polyhedron
(Algorithm 5.4) up to orbits under the action of a group of automorphisms, currently im-
plemented in the version of Normaliz [3] that was dveloped for the application to the Wilf
conjecture. (We include a remark on the automorphism free version at the end of this sec-
tion.) As many other computations, it is done on the cone over the polyhedron, and therefore
it is enough to consider cones C ⊂ Rd in the face lattice algorithm. Replacing Rd with the
subspace RC, we can assume C is full-dimensional in Rd , and since the face lattice remains
unchanged modulo the maximal linear subspace of C, we can further assume C is pointed.
Normaliz handles these steps in preparatory coordinate transformations.

Remark 5.1. If a finite group of automorphisms of C is given, one can often speed up the
algorithm significantly by computing only the orbits of the face lattice F (C). Moreover,
storing only one face per orbit saves a considerable amount of memory. If all faces are
needed, the orbits can be easily expanded at the end. In our computation of the face lattices
of Kunz cones, this is a crucial observation.

Suppose C =Cm is the Kunz cone from Definition 3.3. The set of inequalities

xi + x j−i ≥ x j for i, j ∈ Z/(m)\{0}
defining C is stable under the multiplicative action of the group (Z/(m))∗ of units modulo m
on the coordinates of the ambient space. Therefore, the cone and its set of integer points are
stable under the action of (Z/(m))∗, so this group action permutes the faces of C. Fortunately,
the subset of “bad” faces determined by Corollary 3.11 (see the discussion in Section 4) is
stable as well. Therefore it is enough to compute the orbits of the (Z/(m))∗-action and
select the “bad” orbits. However, the action of (Z/(m))∗ does not carry over to the Kunz
polyhedron, so the orbits must be expanded before testing for the existence of integer points
in the critical area determined by Algorithm 4.1.

Remark 5.2. In view of the potentially large size of the computation, the choice of data
structure is crucial. A facet H of C is given by a linear form defining the hyperplane that cuts
H out from C. Faces F have two natural representations: (i) the set E(F) of extreme rays
passing through F , and (ii) the set H(F) of facets containing F . Each uniquely defines F .
For faster computation, it is desirable to store both representations of F . Since the number of
facets of F is moderate (at least for the Kunz cone), while the number of extreme rays of C
reaches formidable values (see Table 1), we choose representation by H(F), recomputing
E(F) whenever it is needed. Storing E(F) is forbidding — already for m = 16, more than
1 TB of RAM would be needed. Both representations are realized as bit vectors. Fortunately,
the computation of E(F) for a face F from a representation of F as an intersection of facets
takes relatively little time; see Remark 5.5(c).

We say that a face F of a cone C is cosimplicial if it is contained in exactly c facets,
where c = codimF = dimC−dimF is the codimension of F . To motivate this terminology,
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consider the dual cone

C∗ = {λ ∈ (Rd)∗ : λ (x)≥ 0 for all x ∈C}
of C and dual face

F∗C = {λ ∈C∗ : λ (x) = 0 for all x ∈ F}
of F (see [2, Section 1B] for a discussion of duality). One has codimF = dimF∗C , and the
linear forms defining the facets of C containing F generate the extremal rays of F∗C . As such,
F is cosimplicial if and only if F∗C is simplicial. It follows that any face G containing a
cosimplicial face F is cosimplicial as well. One can say that cosimplicial faces are “well-
behaved” in the face lattice computation, as is illuminated by the following proposition.

As we assume that C is full-dimensional, the linear forms defining the facets of C are
uniquely determined up to scaling by positive factors. As such, we can consider the facets
as elements of the dual space (Rd)∗ so long as scaling factors can be neglected.

Proposition 5.3. A face F of C is cosimplicial if and only if it is not the intersection of less
than c = codimF facets.

Proof. By duality, the proposition is equivalent to the assertion that a cone D of dimension
c is simplicial if and only if every set S ⊂ E(D) of cardinality less than c is contained in a
proper face of D.

If D is simplicial, the latter is obviously true, and only the converse needs an argument.
Suppose that D is nonsimplicial. We triangulate D using only its extreme rays as rays in the
triangulation. Since D is not simplicial, there are at least two dimension c simplices in the
triangulation whose intersection is a facet G of both of them. This means D is its only face
containing the c−1 extreme rays of G. �

We now outline the contents of Algorithm 5.4. The computation of the face lattice is based
on some preparatory steps, starting from the definition of a cone C by its facets.
(1) Compute E(C) by the existing vertex enumeration algorithm.
(2) For each facet H of C, compute E(H).
(3) Compute the set S of cosimplicial extreme rays.
(4) For each x ∈ (Z/(m))∗, compute the permutation of H(C) induced by x.
The last step allows us to compute the orbit of an arbitrary face by applying the permuta-
tions to the facets in H(F) (currently, this is only implemented in the specialized version of
Normaliz for Kunz cones). The set S allows us to recognize some cosimplicial faces F by
checking whether E(F)∩S 6= /0.

The representation of a non-cosimplicial face as an intersection of facets is never unique
(indeed, this follows immediately from Proposition 5.3). For checking whether a given face
(or orbit) has already been found, we use four ordered sets of faces:
(1) the set F of faces, each computed in the second to last round of the while loop or earlier;
(2) the set W of faces found in the previous round and to be processed in the current round;
(3) the set N of faces produced by the current round; and
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(4) the set E of intersections G = F ∩H for a fixed face F and H ∈H(C).
A face F in F , W or N is represented by H(F), whereas each face G in the short list E is
represented by E(G). Lists of bit vectors are ordered lexicographically (based on fixed (but
arbitrary) orderings of H(C) and E(C)) so a list of size n can be searched in O(logn) steps.

Algorithm 5.4. Compute the orbits of the face lattice of a cone C.
function FACELATTICE(C)

F ← /0, W ←{C}, c← 0, N ← /0
while W 6= /0 do

c← c+1
for all F ∈W do

E(F) =
⋂

H∈H(F)E(H)
E ← /0
for all H ∈H(C) with H /∈H(F) do

E ← E ∪{F ∩H}
end for
for all G ∈Max⊂E do

compute H(G)
N ←N ∪{minorbit(G)}

end for
end for
F ←F ∪W , W ←N , N ← /0

end while
return F

end function

The set Max⊂E is the set of the elements of E that are maximal with respect to inclusion.
Evidently these are the facets of F , and this proves the correctness of the algorithm: for every
computed face F of C, the facets of F are also computed, and no proper subset F of the full
face lattice contains C and is closed under taking facets of F ∈F . Each orbit representative
G′ ∈ orbit(G) is chosen so that H(G′) is lexicographically minimal.

Remark 5.5. Before we refine Algorithm 5.4, we make several comments.
(a) The number c, in addition to counting rounds of execution in the while loop, equals

the codimension of the faces produced in the current round, as follows immediately
by induction on c: if the face F has codimension c, then the facets of F each have
codimension c+1. (This property will be somewhat relaxed below.)

(b) The outer for loop is parallelized in Normaliz using OpenMP [15], a standard shared
memory parallelization library. All threads must access the bit vectors E(H) and the list
N , but N must be protected against simultaneous access since it is potentially changed
by at least one thread. Nevertheless, parallelization with 16 threads is very reasonable;
for m = 14, an efficiency of≈ 45% per thread is reached. For comparison, with 8 threads
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the efficiency is ≈ 70%, and with 4 threads it is ≈ 77%. (Note that such measurements
depend heavily on the workload of the machine).

(c) A profiler run for m= 14 shows that the computation of E(F) for faces F uses only≈ 6%
of the execution time for the face lattice. The most time consuming task is lexicographic
comparison of bit vectors at about 40%, followed by some system routines. The inclusion
check takes ≈ 4% .

(d) For a given F , it is extremely common to have F ∩H = F ∩H ′ for facets H 6= H ′ of C.
Therefore, it is useful to produce the set E first; we obtain each intersection only once
and can select the facets of F by testing inclusion.

(e) Algorithm 5.4 is designed for cones with small or at most moderate numbers of facets.
Via dualization, it can also be effectively applied to cones with a small or moderate
number of extreme rays (though this is not yet implemented in Normaliz).

(f) Although we speak of the “face lattice” throughout, Algorithm 5.4 does not compute
the lattice structure. Indeed, this would be impossible given the order of magnitude of
the number of faces of the Kunz cone. The standard version of Normaliz writes an
output file in which each face F is represented by a 0-1-vector representing the facets
that contain F , together with the codimension of F . The lattice structure can be easily
derived from this data.

An obvious weakness of Algorithm 5.4 is that it ignores the commutativity of the intersec-
tion F1∩F2. Utilizing this fact should enable one to reduce the number of pairs (F,H) that
must be touched by the algorithm. To some extent this is achieved by using the following
proposition.

Proposition 5.6. For cosimplicial faces F =H1∩·· ·∩Hc, H1, . . . ,Hc ∈H(C), H1 < · · ·<Hc,
it is sufficient to run the loop “for all H ∈H(C) with H /∈H(F)” over those facets satisfying
H > Hc, and to simultaneously replace Max⊂E with the subset {G ∈ E : G is a facet of F}.
Proof. Suppose F is a face that has already been computed up to orbit. We must show that all
facets G of F are computed up to orbit as well. Since all facets of C are evidently computed
up to orbit, we can assume codimF ≥ 1. Set E = H1∩·· ·∩Hc−1 and H = Hc.

We have codimG = codimF + 1 = codimE + 2. By the “diamond property” of the face
lattice [22, Theorem 2.7(c)], there exists exactly one more face F ′ strictly between E and G,
which must be a facet of E as well, meaning F ′ = E ∩H ′ for some H ′ ∈ H(C). It follows
that F ∩H ′ = F ′∩H = F ∩F ′ = G. The situation is depicted by Figure 2.

If H ′ > H, then G = F ∩H ′ is computed since H ′ is not excluded by the condition in the
proposition. In the case H > H ′, however, we must be careful, since F ′ has been computed
only up to orbit. Let π be the automorphism that maps F ′ to the minimal face in its orbit. If F ′

is not cosimplicial, then π(F ′∩H) = π(F ′)∩π(H) is computed since there is no restriction
on the facets with which π(F ′) is matched.

If F ′ is cosimplicial (necessarily of codimension c), then H(π(F ′)) ≤ H(F ′) since we
choose the lexicographically smallest face in the orbit. Moreover, H(F ′)<H(F), since

maxH(F ′) = max(Hc−1,H ′)< H = maxH(F).



WILF’S CONJECTURE IN FIXED MULTIPLICITY 15

�
�
�@

@
@

@
@
@�

�
�

E

G

F ′ F

H ′ H

H H ′

FIGURE 2. The diamond property in the proof of Proposition 5.6.

As such, we can assume π(F ′)∩π(H) is computed up to orbit by induction on the lexico-
graphical order. It follows that F ∩H is computed up to (the same) orbit, as desired. �

The inequality H(F ′) < H(F) in the proof cannot be guaranteed (and rightfully is not
used) if F ′ is not cosimplicial. In the computation of orbits the main problem is to find
invariants of the faces that behave equivariantly under the action of the automorphism group,
or can at least be controlled with reasonable effort. In the computation of the Wilf cone,
Proposition 5.6 is already quite helpful because the number of cosimplicial faces (and their
orbits) is rather high. When m = 14, for instance, the Kunz cone has 2,643,996 cosimplicial
orbits out of 3,506,961.

The algorithm computes faces of codimension c in round c and not earlier (or later). There
is, however, a catch in using Proposition 5.6: one cannot select the facets of F in Max⊂E
by checking inclusions unless all intersections F ∩H with H ∈ H(C) have been computed.
In the Wilf version we proceed with Max⊂E and allow the computation of a codimension c
face F prior to round c. In order to avoid the re-computation of an orbit we look up W ∪F
before F is added to N .

Table 1 contains data on the Kunz cones and their face lattices. The increase in computa-
tion time with m is not only due to the larger and larger face lattices, but also to the significant
increase in the number of extreme rays. We have computed their number for m = 19,20 and
21 to give a glimpse of the complexity one expects therein, let alone for higher values of m.

Table 2 gives execution times of the steps in the verification of Wilf’s conjecture, and
approximate values of the peak RAM usage. The times listed for “bad faces” include the final
transformations and the output times. All runs were done with a parallelization of 32 threads
on a Dell R640 system with two IntelTM XeonTM Gold 6152 (a total of 44 cores) and 1 TB of
RAM. These times can vary quite a bit with the workload of the system. The table indicates
that both computation time and RAM usage are limiting factors in the computations.

Remark 5.7. An automorphism free version of the face lattice computation was released in
Normaliz 3.7.0. Version 3.8.0 will contain a substantially improved algorithm, which
we forgo discussing at this point since (i) it does not contribute to the Wilf computations,
and (ii) an algorithm by Kliem and Stump [13] posted to arXiv.org after the first version
of our paper appears to be faster than Normaliz 3.8.0. The Kliem and Stump algorithm
differs greatly from ours, e.g., by using a depth first search in the recursion and a faster
implementation of bit vectors.
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m # inequ # extr rays # orbits # bad orbits # faces # bad faces
7 18 30 71 0 400 0
8 24 47 379 0 1,348 0
9 32 122 1,104 9 6,508 54

10 40 225 6,711 19 26,682 74
11 50 812 15,622 178 155,944 1,765
12 60 1,864 169,607 714 669,794 2,791
13 72 7,005 365,881 4,338 4,389,234 52,035
14 84 15,585 3,506,961 15,251 21,038,016 91,394
15 98 67,262 17,217,534 180,464 137,672,474 1,441,273
16 112 184,025 94,059,396 399,380 751,497,188 3,184,022
17 128 851,890 333,901,498 3,186,147 5,342,388,604 50,977,648
18 144 2,158,379 4,712,588,473 17,345,725 28,275,375,292 104,071,319
19 162 11,665,781 ?? ?? ?? ??
20 180 34,966,501 ?? ?? ?? ??
21 200 169,543,084 ?? ?? ?? ??

TABLE 1. Combinatorial data of Kunz cones

m preparation face lattice bad faces total time ≈ RAM
11 — — — 0.7 s 6 MB
12 — — — 2.0 s 35 MB
13 1 s 2 s 16 s 19 s 80 MB
14 3 s 20 s 37 s 1:0 m 603 MB
15 15 s 3:335 m 14 m 17:59 m 2.6 GB
16 59 s 54:39 m 36 m 1:30 h 12 GB
17 6:05 m 19:35 h 16:55 h 36:36 h 48 GB
18 19:19 m 27:13 d 1:16 d 29:05 d 720 GB

TABLE 2. Normaliz execution data in verifying Wilf’s conjecture.

6. WILF’S CONJECTURE AS A COMBINATORIAL GAME

The defining inequalities of any face in which Conjecture 4.4 holds can be combined
to yield Wilf’s inequality. We introduce a “combinatorial game” of sorts (Definition 6.2),
played with the facet description of each face (or, equivalently, the associated Kunz poset),
the successful completion of which implies Wilf’s conjecture holds for all numerical semi-
groups in that face (Theorem 6.5).
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Remark 6.1. Using the Wilf game in the pursuit of Wilf’s conjecture has several potential
advantages. Some of the special classes of numerical semigroups for which Wilf’s conjecture
is known to hold have well-understood Apéry posets (for instance, those in Corollary 6.6).
The Wilf game provides a streamlined avenue for proving Wilf’s conjecture in such cases,
as the game only depends on the Apéry posets of the underlying semigroup. Additionally,
any counterexample to Wilf’s conjecture must lie in a face for which the Wilf game is un-
winnable, so one method of searching for such examples is by first locating such a poset.
Note that, using the machinery in Section 4, once an unwinnable poset is located, Normaliz
can be used to either locate an integer point whose corresponding numerical semigroup vio-
lates Wilf’s conjecture, or verify computationally that none exist in the corresponding face.

Definition 6.2. Fix an m-Kunz poset P and a maximal element f ∈ P, and let e− 1 denote
the number of minimal elements of P. We define the Wilf game of P, played on the set of all
formal expressions ∑i∈P aixi in variables x1, . . . ,xm−1 with ai ∈ Z≥0. A Wilf move on a given
expression is a replacement of the form

xi + xk−i→ xk

for some i,k ∈ P with i≺ k. The score of a Wilf move xi + x j→ xk equals the sum of:

(i) the net change in the number of summands “to the right” of f (that is, variables whose
index is greater than f ), that is, the sum of
• −1 if i > f ,
• −1 if j > f , and
• +1 if k > f ;

(ii) +1 if k < i (equivalently, if k < j); and
(iii) +2 if it is not one of the first m− e moves performed.

A sequence of at least m− e Wilf moves starting on the expression ex1 + · · ·+ exm−1 with
initial score m−1− f (that is, the number of distinct variables “to the right” of f ) is said to
win the Wilf game if the net score is non-negative.

Example 6.3. Let S = 〈3,5,7〉, whose Apéry poset P(S) has two elements, both of which
are maximal. As such, there are no available Wilf moves. However, m(S)− e(S) = 0, so the
game is won with zero moves, as the initial score is either 3− 1− 1 or 3− 1− 2, both of
which are nonnegative.

Notice that the same behavior occurs for every maximal embedding dimension numerical
semigroup S, since in this case P(S) consists of e(S)−1 incomparable elements (each both
maximal and minimal). The Wilf game is won with zero moves for each maximal element,
the net score being m−1− f ≥ 0 for every f ∈ (Z/(m))∗.
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Example 6.4. Let us return to the numerical semigroup S = 〈6,9,20〉 from Example 3.8
(here, m = 6, e = 3, and f = 1). The Wilf game on P can be won with the sequence

3x1 +3x2 +3x3 +3x4 +3x5 → 4x1 +2x2 +3x3 +3x4 +2x5
→ 5x1 + x2 +3x3 +3x4 + x5
→ 6x1 + 3x3 +3x4
→ 7x1 + 2x3 +2x4
→ 8x1 + x3 + x4
→ 9x1

of 2 distinct Wilf moves (x2+x5→ x1 and x3+x4→ x1) each applied 3 times. The net score
is computed as follows:

(i) −12 points, since each Wilf move results in 2 less summands to the right of f = 1;
(ii) +6 points, since each move results in a variable with smaller index; and

(iii) +4 points for the extra 2 moves beyond the initial m− e = 4.

The net score is thus (m−1− f )−12+6+4 = 2. Had each Wilf move been performed only
twice, the net score would be 0, still enough to win the Wilf game. Since S is symmetric,
f is the unique maximal element of the Apéry poset, and the strategy employed above (move
everything directly to x f ) is precisely the one used in the proof of Corollary 6.6(a).

Theorem 6.5. Fix a face F ⊂ Pm with corresponding Kunz poset P, and let e = e(F). If, for
each maximal element f , P has a winning sequence of moves, then Conjecture 4.4 (and thus
Wilf’s conjecture) holds for every numerical semigroup in F◦.

Proof. Fix a positive integer vector (x1, . . . ,xm−1) ∈ F◦ corresponding to the Kunz coordi-
nates of some numerical semigroup S, and let f ∈ P so that mx f + f = F(S). Rearranging the
inquality (4.2), we must show

ex1 + · · ·+ exm−1−m(e−1)x f +(e−1)(m−1− f )≤ 0.

Each Wilf move on ex1 + · · ·+ exm−1 corresponds to an equality of the form

xi + x j = xi+ j or xi + x j = xi+ j−m−1

satisfied by all points in F◦. Let a1x1 + · · ·+am−1xm−1 denote the final expression resulting
from some winning sequence of Wilf moves on P, let s3 denote the number of Wilf moves
used beyond the first m−e, let s2 denote the number of Wilf moves of the latter form above,
and let s1 = a f+1 + · · ·+am−1, so that the net score is

s1− (e−1)(m−1− f )+ s2 +2s3 ≥ 0.
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Using the fact that xi ≤ x f for i≤ f and xi ≤ x f −1 for i > f , we obtain

ex1 + · · ·+ exm−1−m(e−1)x f =−s2 +a1x1 + · · ·+am−1xm−1−m(e−1)x f
≤−s1− s2 +(a1 + · · ·+am−1)x f −m(e−1)x f
=−s1− s2 +(a1 + · · ·+am−1−m(e−1))x f
=−s1− s2 +(e(m−1)− (m− e)− s3−m(e−1))x f
=−s1− s2− s3x f
≤−s1− s2−2s3
≤−(e−1)(m−1− f ),

from which the desired inequality immediately follows. �

To demonstrate the utility of Theorem 6.5, we rederive some known results.

Corollary 6.6. The Wilf game is winnable on the Apery poset of a semigroup S if
(a) S is symmetric or
(b) S has maximal embedding dimension.

Proof. Let P denote the Apéry poset of S, and let m, e, and f be defined as before. If S is
symmetric, then t(S) = 1, so f is the unique maximal element of P. As such, performing the
move xi + x f−i → x f for each i 6= f yields a sequence of m− 2 moves. Since i < f if and
only if f − i < f , each such move scores 0 (if i < f ) or −1 (if i > f ). Combined with the
starting score of m−1− f and any additional points earned for extra moves, this yields a net
non-negative score, thereby winning the Wilf game.

The maximal embedding dimension case has been already treated in Example 6.3. �
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