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ABSTRACT. All subalgebras, idempotents, left(right) ideals and left quasi-units of two-dimensional
algebras are described. Classification of algebras with given number of subalgebras, left(right) ideals
are provided. In particular, a list of isomorphism classes of all simple two-dimensional algebras is
given. In the study of ideals and subalgebras the number of them depend on roots of certain system
of polynomials at structure constants of the algebra. We also give explicit forms of the polynomials.
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1. INTRODUCTION

It is noticed that well known classification theorems of algebras, for example Lie, associative, Jordan and
etc, in fixed n-dimensional case cover only small parts of all n-dimensional algebras. In fact, the part out of
the consideration is much bigger and it is a dense in Zariski topology subset of the set of all n-dimensional
algebras. Therefore, instead of the classification of some classes of algebras one can try to classify all algebras in
fixed dimensions. Such an attempt has been made in [21] for all two-dimensional algebras over an infinite field
F. Here the author used basis (coordinate) free, invariant approach. Unlike to the case of [2I] in [I] we have
given a coordinate based classification of such algebras over any field F, where quadratic and cubic polynomials
have a root. The case F = R has been considered in [I0]. The paper [I9] contains another coordinate based
approach to the classification problem of two-dimensional algebras. The main advantage of the approach,
proposed in [9] and applied in [, is the fact that it reduces the classification and some other problems of finite-
dimensional algebras to the investigation of a system of equations. Particularly, in two-dimensional case the
problems are written as systems of equations for the twelve classes of canonical representatives of all nontrivial
two-dimensional algebras found in [I]. By the use of the results of [I] one can classify, up to isomorphism, nearly
any class of two-dimensional algebras. Particularly, the approach has been used in [2, 3] to get the classification
of some classes of two-dimensional algebras which were unknown before. In [4] it was used for the description
of automorphism groups and derivation algebras of all two-dimensional algebras.

Note that in two-dimensional case the number of classes of canonical representatives is small. However,
increasing the dimension of the algebra produces a large number of such isomorphism classes, calculations show
that even in three dimensional algebras case the corresponding number is expected to be about one thousand
.

The present work grew out of an attempt to respond a comment made by a reviewer of our paper. The
reviewer drown our attention to the importance of the description of all subalgebras, idempotents, left(right)
ideals and quasi-units of two-dimensional algebras through those twelve classes of canonical representatives in
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[1]. Recall that we consider only nontrivial two-dimensional algebras and by a subalgebra (left(right) ideal)
we mean nontrivial, that is one dimensional, subalgebra (respectively, left(right) ideal). It is shown that every
such an algebra may have only one, two, three or infinitely many subalgebras and may have zero, one, two
or infinitely many ideals. We provide a classification for each class of algebras with n different subalgebras
(left(right) ideals), where n = 1,2,3, 00 (respectively, n = 0,1,2,00) and subsequently, give a classification
of two-dimensional simple algebras. Another result of the paper is the descriptions of idempotents and left
quasi-units of two-dimensional algebras.

Here we cite only some of the papers related to the classification problem of all two-dimensional algebras
[5L 6l 7, 8] [12] T3] 15 [16], 17, 22]. There are many others dealing with some particular cases of the problem.

The paper is organized as follows. Section 2 contains preliminary results, Section 3 deals with subalgebras
and in Section 4 we list idempotents of two-dimensional algebras. In Sections 5, 6 and 7 we study the left, right
and two-sided ideals of two-dimensional algebras, respectively. The left quasiunits are considered in Section 8.
The results of the paper we tabulate in Section 9.

Throughout the paper F stands for any field over that every quadratic and cubic polynomial has a root in
F, in particular, F may be any algebraically closed field.

2. PRELIMINARIES
Further we need the following simple result on roots of a polynomial p(y) = ay® + by? + cy + d over a field F.

Proposition 2.1.
e Let Char(F) # 2,3.
* If a #0 the polynomial p(y) has only
* one root if and only if b* — 3ac = 0 and bc — 9ad = 0;
* it has only two different roots if and only if b> — 3ac # 0 and

, <_b+\/m>p (—b— V2= —3ac>

- )

3a 3a

* it has three different roots if and only if

(—b—i— Vb2 — 3ac> (—b— Vb2 — 3ac>
P 34 p # 0.

3a

* If a =0 the polynomial p(y) has
* no root if and only if b=c =0 and d # 0;
* it has only one root if and only if b # 0 and ¢ — 4bd =0 or b= 0 and c # 0;
* has only two different roots if and only if b # 0 and c* — 4bd # 0;
* 1t has infinitely many different roots if and only if b=c=d = 0.
e Let Char(F) = 2.
If @ # 0 the polynomial p(y) has

*

* one root if and only if ad — bc = 0 and ac — b* = 0;
* it has only two different roots if and only if ad — bc = 0 and ac — b # 0;
x it has three different roots if and only if ad — bc # 0.
*x If a =0 the polynomial p(y)
* has no root if and only if b=c =10 and d # 0;
* it has only one root if and only if b # 0 and ¢ =0 or b =0 and c # 0;
x 1t has only two different roots if and only if b # 0 and ¢ # 0;
x 1t has infinitely many different roots if and only if b=c=d = 0.
e Let Char(F) = 3.
If a # 0 the polynomial p(y) has

*

* one root if and only if b = c = 0;
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x it has only two different roots if and only if b # 0 and p (%) =0;

x it has three different roots if and only if b # 0 and p (%) #0o0orb=0 and c#0.
*x If a =0 the polynomial p(y)

* has no root if and only if b=c=0 and d # 0;

* it has only one root if and only if b # 0 and ¢ —bd =0 or b =0 and c # 0;

* it has only two different roots if and only if b# 0 and ¢* — bd # 0;

x 1t has infinitely many different roots if and only if b=c=d = 0.

Proof. The proofs can be derived from the following facts.
o If Char(F) # 2,3 under a # 0 we have

3ay + b 6ac — 2b> 9ad — be Y
p(y) = =gV W) + =gy + —g— P'(y) =" (y) + by +cand p"(y) = 6ay +20;

e Char(F) =2.1If a # 0 then one has

p) = (v +2) 0+

e Char(F) =3.1f b # 0 then

a b% + ac (2% + ac c
ply) = — (—y2+ y+ ( ))p’(y)+p(—), p'(y) = 2by + c and p"(y) = 2b.

ad — be

— Py = ay® + c and p” (y) = 0;

b b2 b3 b

The case a = 0 is immediate. O

Let A be a two-dimensional algebra over F and {ej, es} be its basis and

A= (5] Qo (3 Qg4
Bi B2 B3 Ba
be the matrix of structure constants (MSC) of A in {eq,es} arranged as

erer = arer + Piea, erex = ager + faea, ezer = azer + [B3ez, exex = ager + Byea.

Further it is assumed that a basis e = {e1, e2} is fixed and we do not distinguish between A and its MSC A.

In the paper we make use the following results and notations from [IJ.

Any nontrivial two-dimensional algebra over F is isomorphic to only one of the following algebras given by
their MSC:

In Char(F) # 2,3 case:

e Ai(c) = < Zi _ajl _aa21++11 _0422 , where ¢ = (a1, ag, a4, £1) € F4,

.AQ(C)_<C[3¥1 502 1—Oa1 (1)>2<—a[;1 502 1—Oa1 é)’WhereC_(al’ﬂl’ﬁz)ng’
s (41 ) e e

o Ayc) = < Cz)l 502 1 _Oal 8 ) , where ¢ = (a1, 32) € F?,

o As(c) = < 011 2a10— : 1—Oal 8 ) , where ¢ = ay € F,

* Aol0) = < gi 1—0041 —(;1 (1) ) - < —aﬁll 1—0041 —?11 (1) )’ where ¢ = (a1, 1) € %,
.A7(C):<ﬁ01 1 (1) _01>,Wherec=ﬁlelﬁ‘,
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[ o 0 0 O B
.Ag(C)—( 0 1-a —a 0),wherec-a1€F,
Lo o0 o 01 1 0 01 1 0
'9(1§—§0’1O 000 -1) =100 -1)
0 0 0 O
A = .
12 < 1000 )
In Char(F) = 2 case:
a1 (6%} 042+1 (6%}
e Aj5(c) ( 5 —ar —ait1 —as ), where ¢ = (a1, ag, aq, f1) € F4,
a; 0 0 1
A = h = F3
L4 2,2(C) Bl ﬂQ 1—041 0 , where € (alaﬁhB?) S B
d A3-,2(C) = oz)l [312 1—1041 (1) ) ’ where ¢ = (alvﬁQ) € ]an
o Ayp(c) = 0;)1 502 1 _Oal 8 ) , where ¢ = (a1, 2) € F?,
0 0 0

1 1-a O),WhereCZaleF,

0 0 1

1-— 1 — Q7 0

[ ]
h S
[=2]
o
©
|
= R
=

) , where ¢ = (a1, 31) € F?,

[ ]
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o
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o
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b
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o
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In Char(F) = 3 case:

[e%1 [ as + 1 oy
B1 —a1 —ar+1 —a

a1 0 0 1 e %1 0 0 1
= , where ¢ = (o, 81, B2) € F3,
B P2 1—a 0) <_51 Bs 1— O) (a1, B1, B2)

, where ¢ = (a1, a2, a4, 1) € F4,

[ )
b
fl
w
—~
Q
S~—
|
VR

0 1 1 0
B B2 1 —1
a; 0 0 0

[
[
.A4,3<c>:( AL
[
[
[

, where ¢ = (B, f2) € F?,

) , where ¢ = (a1, B2) € F?,

o 0 0 0
1 —1—0[1 1—0[1 0

), where c = a1 € F,

Bi 1—a1 —ay O

0 11 0
Bi 1 0 —1

-8 1—a1 —oq O

),Wherec:ﬁleF,
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o Ags(c) = al 1 —Oal _O 0 , where c = a; € F,
o dog— 0 1 1 _ 0 1 1 0 7
1 0 0 0 0 0 -1
1 0 O 0 0 0 O
*Aus={ —1 10 ) A2l 0 0 0

3. SUBALGEBRAS

Any nontrivial subalgebra of a two-dimensional algebra A is one dimensional, it is generated by a nonzero
element u = uje; + uzes € A such that u? = \u for some A\ € F. If u; = 0 then, due to Fu = Fku for any
k # 0, u can be represented as u = eq, if u; # 0 then u can be represented as u = e + ypes.

Let polynomial p4(y) stand for

pa(y) = yPau + y*(az + as — Ba) + y(ar — B2 — Bs) — fu.

Proposition 3.1. The set of all nontrivial subalgebras of A is given as follows

o {F(e1 +yoe2) 1 yo € F, pa(yo) =0} if g # 0;
o {F(e1 +yoe2) :yo €F, pa(yo) =0} U{Fea} if oy = 0.

Proof. Due to u-v = eA(u ® v), where u = eu,v = ev in terms of A and u the equality u? = A\u is written

(3.1) A(u ® u) — du = 0.

Assuming u = ze; + yes = e ( * ) and applying BI) we obtain the system of equations:
Y

—2A 4+ 2%0q + zyos + 2yas + y2ays =0,

—yA+ 221 + 2yPo + xyBs + y* B = 0.

If £ = 0 then one can put ¥y = 1 and therefore in a4 # 0 case it has no solution, whereas if ay = 0 then

(3.2)

0
u = 1 is a solution and therefore there is at least one nontrivial subalgebra Fe,.

If x # 0 one can assume z = 1 and the system ([B.2)) becomes equivalent to
pa(y) = yPou +y* (a2 + a3 — Ba) + y(ar — B2 — B3) — f1 = 0.
Therefore, each root yo of pa(y) provides the corresponding subalgebra F(e; + ypea). O
So the following result holds true.

Corollary 3.2. Any two-dimensional algebra may have only one, two, three or infinitely many nontrivial
subalgebras. In the case of infinitely many subalgebras every 1-dimensional subspace is a subalgebra.

Note that Proposition 3] also is true for any two-dimensional algebra over a field F.
In this section we describe all nontrivial subalgebras of the classes of canonical representatives of two-
dimensional algebras given in Section

Theorem 3.3. Let Char(F) # 2,3. Two-dimensional algebras over F with respect to the number of non-trivial
subalgebras are distributed as follows.

o Any two-dimensional algebra with only one subalgebm is isomorphic to one of the following algebras

* Al(al,ag,a4,ﬂl), where ay 0, oy = (3a92011) + 3, B = %HP,
*A( , 061) where By # 0;

* Ag(al,O,Qal —1);

x As(aq);

* Ag(% 0);
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* Ag,’
* A12.
o Any two-dimensional algebra with two subalgebras is zsomorphic to one of the following algebras
* Ai(a, az, aq, B1), where ay # 0, ay # (MQQOZI) + 5, s (Y-1)pa, (Y1) = 0, and
—(Baz +1) — /(Baz + 1)2 — ay(3a; — 1)

y-1= 3(14 ’

—(Bay+ 1)+ /Baz + 1)2 — as(3a; — 1)
Y+1 = 3 :
y
* Aj(ar,a2,0,51), where ag # — (3a1 —1)2 4+ 4(az + 1)y = 0;
* A1(a1, —3,0,B1), where ay # 3;

* Ag(ai, B, B2), where fo # 2a1 — 1, pa,(y—2)pa, (y+2) =0,

3(1 + /82 - 20&1) 3(1 + ﬂQ - 20&1)
3 ) Y+2 = 3 5

Y—2 =

2
x Ag(—25 8,);
x Ayg(ar, f2), where By # 200 — 1;
x Ag(aq, B1), where a; # %, Py (Y—6)pag (y16) = O,

3(1 -3 —/3(1 =3
y76:7( 3 ),y+6:—(3 );
* A7(_%);
* As(ar), where ay # %;
* AIO-

o Any two-dimensional algebra with three subalgebras is isomorphic to one of the following algebras
Al(al, a2, 04, B1), where aupa, (y—1)pa, (y41) # 0;

Aj(an,az,0,81), where (3az +1)((3a; — 1)% +4(ag + 1)p1) # 0;

Ag(a, B, B2), where pa,(Y—2)pa, (y+2) # 0;

A3(B1, B2), where (B2 +1)% + 12831 # 0;

Ag(a1, B1), where pag(y—6)pas(y+6) # 0

A7(B1), where 1281 +1 # 0;

* ¥ X X X X

* Aqq.
o Any two-dimensional algebra with infinitely many subalgebras is isomorphic to one of the following
algebras
k Al(
* A4(
x Ag(

3707 O)’
041 — 1),

wl= QO wir

1,
)-
o] Qo ag + 1 oy
B —a1 —a1+1 —a

Proof. In A = Ay(aq, 9, ay, 1) = < ) case one has

pa(y) =pa, () = auy® + (Baz + 1)y* + (Bay — L)y — Bi.

Therefore, due to Propositions 2T and B] to know the number of nontrivial subalgebras one should study the
number of roots of p4(y). In ay # 0 case the algebra A (a1, ae, g, 51) has only one nontrivial subalgebra if and

only if

3a4(3a; — 1) — (3az + 1) = 0 and (3o + 1)(3cy — 1) + 98104 = 0,
ie., ap = % + 3,[31 7(320#21)3, the algebra Aj (a1, g, oy, f1) has only two nontrivial subalgebras if and
only if

Ba4(3a; —1) — (Bag +1)2 £ 0
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and one of
—(Baz +1) + /(B +1)2 — as(3aq — 1) —(Baz +1) — /(Baz +1)2 — au(3cy — 1)
pa, 3a, y PA 3a4

is zero, and finally, the algebra A;(aq, s, a4, 81) has only three nontrivial subalgebras if and only if none of

<—(3042 + 1) + \/(30[2 + 1)2 — 044(3041 — 1)) <—(3042 + 1) - \/(3012 + 1)2 — 014(3041 - 1))
pa, y PA

3ay 30

is zero.
Similarly, in ay = 0 case the algebra A; (a1, as,0, 81) has only one nontrivial subalgebra if and only if

3a; —1=3as+1=0and 3 #0,

it has two nontrivial subalgebras if and only if

3as+1#0,(3a1 — 1) +4(az + 1)1 =0
or

3as+1=0and 3a; — 1 #0,

it has three nontrivial subalgebras if and only if

Bag +1#0,(3ar — 1) +4(az + 1)1 # 0
and it has infinitely many nontrivial 1-dimensional subalgebras if and only if

3as+1=3a1 — 1= =0.

InAg(al,ﬁhB?):(ﬁl Br —ar+1 0

a0 0 1>casea4=17é0and

pas(y) = ¥* + (201 — B2 — 1)y — B1.
Therefore, the algebra As(aq, 1, 82) has only one nontrivial subalgebra if and only if
20[1—52—1:0311(151:0,

it has two nontrivial subalgebras if and only if

2@1—52—17&0and0neopr2< 3(1+ﬁ2—2a1)>, pA2<_ 3(1+ﬁ2—2a1)>

3 3

is zero, it has three nontrivial subalgebras if and only if none of

< 3(1+/32—2a1)> (- 3(1+ﬁ2—2a1)>
pAg 3 y pAQ 3

0 1 1 0
B B2 1 -1

is zero.

In A3(f1,52) = <

) case ay = 0, and one has

pa,(y) = 3y* — y(1+ B2) — Bu.
Therefore, A3(31,82) has only two nontrivial subalgebras if and only if
(B2 +1)* +128, =0,
it has three nontrivial subalgebras if and only if

(B2 +1)% + 1261 # 0.

7
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(5] 0 0

IDA4(041752)—< 0 B —a1+1 0

) case ay = 0, and we have

pas(y) = (201 = B2 — 1)y.
Therefore, A4(a, f2) has only two nontrivial subalgebras if and only if
201 — B2 =1 #0,
it has infinitely many nontrivial subalgebras if and only if
200 — B2 —1=0.

(651 0 0
1 200—-1 —an+1 0
nontrivial subalgebra, namely, Fes.

(651 0 0
B —ar+1 —on

For As(ay) = ) case ag = 0 and pa,(y) = —1. Therefore, it has only one

For Ag(a1, f1) = (1) ) case oy = 1 # 0 and

Pas(y) = y* + (a1 — Ly — b1
Therefore, Ag(a, $1) has only one nontrivial subalgebra if and only if
3y —1=0and 8; =0,

it has two nontrivial subalgebras if and only if

3(1-3 —v3(1 -3
3a; — 1 # 0 and one of pa, (%) » PAg <%>

is zero, it has three nontrivial subalgebras if and only if none of

( 30—3aﬂ> (- 3u—3ag>
] G T Rl G .

01 ) case ag = 0 and

is zero.

ForA7(ﬂ1)—< von

/1 1 0
pa-(y) =3y* —y — B1.
Therefore, A7(S81) has only two nontrivial subalgebras if and only if
1+128 =0,
it has three nontrivial subalgebras if and only if
141258, #0.

In Ag(al) = < 061 0 0

1o —ay 8 ) case ag = 0 and

Pas(y) = B — 1)y
Therefore, Ag(ay) has only two nontrivial subalgebras if and only if
3a; — 1 #£0,

it has infinitely many nontrivial subalgebras if and only if

3a; —1=0.

= W=

For Ag = _01 8 ) we have oy = 0 and pa,(y) = —1 # 0. The algebra Ag has only one nontrivial
3

win O

subalgebra, namely, Fes.
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For Aig = < 8 (1) (1) _01 > one has ay = 0 and all nontrivial subalgebras are Fes and Fe;.

01 1 0
1 0 0 -1

€9 €9
Fes, F<el—— and Fle +—= ).
) mas (e 5)

) we have pa,,(y) = —1 # 0 and A;»2 has only one nontrivial subalgebra, namely,

The algebra Ay = < ) has only three nontrivial subalgebras

00 0 0
FOFA12:<1 00 0
Feg. O

We present the corresponding results in Char(F) = 2 and Char(F) = 3 cases as follows.

Theorem 3.4. Let Char(F) = 2. Two-dimensional algebras over F with respect to the number of their subalge-
bras are given as follows.

o Any two-dimensional algebra over F with only one subalgebra is isomorphic to one of the following
algebras
% Ao al,ag,a4,ﬁ1) where ag(a; +1) + (a2 +1)2 =0, (a2 +1)3+ B1a3 =0 and ay # 0;
0 , B1), where B1 # 0;

1)

* ¥ X ¥ X X

o Any two-dimensional algebra over F with two subalgebras is isomorphic to one of the following algebras

x Aq (0, o, a4, B1), where (ag +1)3 + B1a3 = 0 and ay(as(ar + 1) + (g +1)?) #0;
x A1 2(1, 9,0, 1), where ag # 1;

x Ay 2(a1,1,0,81), where ag # 1,

x Az o(aq,0,B2), where By # 1;

x Aso(aq, )

x Ay o(an,B2), where Bg # 1;

* Ago(ar,0), where ag # 1;

x A72(1);

x Ago(aq), where ay # 1;

* Ajg,2.

o Any two-dimensional algebra over F with three subalgebras is isomorphic to one of the following algebras
* Ajg(ar, oo, a4, B1), where ag(asfr + (a1 + 1)(az + 1)) #0;
Ar2(ar, a2,0,81), where (ag + 1)(az + 1) #0;
Az 2(ay 51,[32) where 31 # 0;
2(ou, B2), where By # 1;
Ag 2(a17ﬁ1) where B1 # 0;
Az o(a1), where an # 1;
* A11,2-

* %k ¥ X ¥
§2>
w
o

o Any two-dimensional algebra over F with infinitely many subalgebras is isomorphic to one of the fol-
lowing algebras
x A1 2(1,1,0,0);
* Ago(aq,1);
* Ago(1).
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aq
Proof. Proof. For A9 =
f f 1.2 < ﬁl —a; —a1+1 —«

a9 ag + 1 oy
we have
2

PasL(y) = aay® + (02 + 1)y + (a1 — 1)y — fi.
In oy # 0 case the algebra Aj o(avy, a2, aq, B1) has only

e one nontrivial subalgebra if and only if ay(a; — 1) — (e +1)2 = 0 and (az + 1)* — f1a2 = 0.
e two nontrivial subalgebras if and only if asf81 — (7 — 1)(2 + 1) = 0 and non of ay(a; — 1) — (2 +
1)? ,auff — (q — 1)? is zero.
e three nontrivial subalgebras if and only ayf; — (o — 1)(ag + 1) # 0.
In ay = 0. The subalgebras are F(ez) and F(e1 + yoe2), where g is any root of the polynomial pa, ,(y) =
y2(az + 1) +y(as — 1) — Bi.

Therefore the algebra A; 2(aq, 2,0, 81) has only
e one nontrivial subalgebra if and only if a;y — 1 =as +1 =0 and 5 # 0.
e two nontrivial subalgebras if and only if as +1#0 ,(a1 —1) =0,0or s + 1 =0 and a3 — 1 # 0.
e three nontrivial subalgebras if and only if ap +1#0,(ag — 1) # 0.
e infinitely many nontrivial 1-dimensional subalgebras if and only if e +1=a; —1 =1 =0.

0 0 1
For Ay = o1 ) case ay # 0 then the nontrivial subalgebras are F(e; + yoe2), where

pr B2 —ar+1 0
Yo is the roots of the polynomial

Pay, (y) = y3 =+ (ﬂQ - l)y - B
Therefore the algebra As o(a1, 1, 82) has only

e one nontrivial subalgebra if and only if 85 — 1 =0 and 5, = 0.

e two nontrivial subalgebras if and only if 2 — 1 # 0 and 1 = 0.
e three nontrivial subalgebras if and only if 5, # 0.

a1 1 0

0 B 1—a; -1
The subalgebras are F(es) and F(eq 4 yoez), where yo is the roots of the polynomial:

y? —y(1+4 B2) = 0.

For Az o = case ay = 0.

Therefore As (o1, f2) has only

e two nontrivial subalgebras if and only if (52 + 1) = 0.
e three nontrivial subalgebras if and only if (82 + 1) # 0.

a; 0 0 0
0 [‘32 —a1+1 0
The subalgebras are F(es) and F(eq + yoez), where yo is the roots of the polynomial

y(B2 — 1) =0.

For Aso = case ay = 0.

Therefore A4 2(cv1, f2) has only
e two nontrivial subalgebras if and only if 8o — 1 # 0.
e infinitely many nontrivial subalgebras if and only if G2 — 1 = 0.
(5] 0 O
1 1 —a1+1 0
PAs.,(y) # 0 then F(ez) is only the nontrivial subalgebra of Asz(a1).

For A5, = case ag = 0.
5,
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(5] O 0
S —a1+1 —a; O
The subalgebras are F(e; + yoea), where yg is the roots of the polynomial:

¥ +ylar —1)— B =0.

For Ag o = , case ay # 0.

Therefore Ag2(cv1, 51) has only
e one nontrivial subalgebra if and only if «; —1 =0 and 5, = 0.
e two nontrivial subalgebras if and only if oy — 1 # 0 and 5, = 0.
e three nontrivial subalgebras if and only if 5, # 0.

(5] 1 1
For A7 5 = .
or Ar 2 0 loa; —a; -1 case

The subalgebras are F(ez)) and F(ey + yoez), where yo is the roots of the polynomial:

y> +ylar — 1) =0.
Therefore A7 2(81) has only
e two nontrivial subalgebras if and only if (a; — 1) = 0.

e three nontrivial subalgebras if and only if (ay — 1) # 0.

(5] 0 O
For Ag o = .
or Ag 2 0 l-a; —a; 0 case

The subalgebras are F(ez) and F(ey + yoez), where yg is the roots of the polynomial:

ylag — 1) = 0.
Therefore Ag2(cv1) has only

e two nontrivial subalgebras if and only if vy — 1 # 0.
e infinitely nontrivial subalgebras if and only if a; — 1 = 0.

1 0 0 O
For Ay = 101 0 ) , case.
DAy, (y) # 0 then Ag o has only one nontrivial subalgebra F(es).
1 1
For A2 = 8 0 0 _01 , case.

The subalgebras are F(es) and F(eq).

1 1 1
0o -1 -1 -1
The subalgebras are F(ez) and F(ey + yoez), where yp is the roots of the polynomial:

For Ay 2 = , case.

v +y=0.
Then Ay 2 has three nontrivial subalgebras

F(eQ) 7F(el) 7F(el + y0€2)

For A1272 =

case.

0 0 0 0
1000
DA (y) 7# 0 then Ao o has only one nontrivial subalgebra, namely, F(es).

Theorem 3.5. Let Char(F) = 3. Two-dimensional algebras over F are described as follows.

e Any two-dimensional algebra over F with only one subalgebra is isomorphic to one of the following

algebras

11
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Az z(ai, B1,2a1 — 1);
A3)3(ﬁ1, —1), where ﬁl 75 0,’
As z(on);
Ag3;
A3;
* A1273.
o Any two-dimensional algebra over F with two subalgebras is isomorphic to one of the following algebras

* K X X X

* A1)3(a1, g, g, —Og — 1),’
* ABﬁg(ﬁl,ﬁQ), where ﬂg }é —1,
x Ay (o, B2), where 2aq — P2 — 1 # 0,
* A73(81);
* Ag)3(a1).
o Any two-dimensional algebra over F with three subalgebras is isomorphic to one of the following algebras
x Ay g(an, e, a4, 1), where ag(B1 + g + 1) #0;
x Ay g(ar,00,0,01), where f1 # —1;
* A2)3(a1,ﬁ1,62), where 61 75 2(11 — 1,'
* Agz(a, B1).
e Any two-dimensional algebra over F with infinitely many subalgebras is isomorphic to one of the fol-
lowing algebras

k Agﬁg(o, —1),’
* A4)3(a1, 2(11 — 1),’
* A1073.

1
Proof. For Ay z(an, s, aq, 1) = ( ;1 02 02 ++1 a; ) case
1 a1 —og —Qg

Pass(y) = aay’ + 4> —y — B
If oy # 0, the algebra A; 3(a1, a2, a4, 1) has only

e two nontrivial subalgebras if and only if ay + 81 +1 = 0.
e three nontrivial subalgebras if and only if ay + 51 + 1 # 0.

If ay = 0, the subalgebras are F(e2) and F(e1 +yoez), where yg is a root of the polynomial pa, ,(y) = y*—y— 1.

Therefore the algebra A; 3(ay, az,0,51) has only

e two nontrivial subalgebras if and only if 51 +1 = 0.
e three nontrivial subalgebras if and only if 5; + 1 # 0.

@ 0 0 1
For Ay 3(ai, 1, B2) = ( ﬂi Ba —a1+1 0 ) case

PAay s (y) = y3 =+ (20&1 — B2 — 1)y - B
Therefore the algebra As 3(a1, 51, 82) has only

e one nontrivial subalgebra if and only if 2a; — 82 — 1 = 0.
e three nontrivial subalgebras 2ac; — 82 — 1 # 0.
0 1 1 0

For A3 3(B1,82) = 5 B 1 1 case ay = 0.

The subalgebras are F(es) and F(eq + yoez), where yo is the roots of the polynomial:

—y(1+B2) =1 =0.
Therefore As 3(581, f2) has only
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e one nontrivial subalgebra if and only if 83 +1 =0, 1 # 0.
e two nontrivial subalgebras if and only if 82 + 1 £ 0.
e infinitely nontrivial subalgebras if and only if 5o +1 = 5, = 0.

0 B —a1+1 0
The subalgebras are F(ez) and F(e; + yoez), where yo is the roots of the polynomial

Y201 — 2 — 1) = 0.

0 0 0
For Ay 3(aq, B2) = a1 ) case ay = 0.

Therefore Ay 3(ov1, f2) has only

e two nontrivial subalgebras if and only if 2aq — 2 — 1 # 0.
e infinitely nontrivial subalgebras if and only if 2a; — 2 — 1 = 0.

o 0 0
For As 3(aq) = ! %01 —1 —art1 0 case ayg = 0.

1
PAs.5(y) # 0 then F(ez) is only the nontrivial subalgebra of As 3(a1).

(&3] 0 0
b1 —a1+1 —a; O
The subalgebras are F(e; + yoes), where yg is the roots of the polynomial:

For Ag3(an, 1) = case ay # 0.

v —y—PB1=0.

Therefore Ag (a1, £1) has only three nontrivial subalgebras.

For A7 3(61) = ( ;1 1 (1) _01 ) case.
The subalgebras are F(es) and F(eq 4 yoez), where yo is the roots of the polynomial:

—y—p1=0.

Therefore A7 3(51) has only two nontrivial subalgebras F(es) and F(e; + yoez).

0 0 0
For Ags(an) = Oé)l | N case.
—a1 —o

The subalgebras are only F(ez2) and F(eq).

For Ay 3 = (1) (1) (1) _01 case.

DAy (y) # 0 then Ag 3 has only one nontrivial subalgebra F(es).

11
For A3 = 8 0 0 _01 case.

PAsos(y) =0 for any y then A3 has infinitely many nontrivial subalgebras.

1
For Ay; 3 = 1 _01 _01 8 case.

DAy 5(y) # 0 then Ayy 3 has only one nontrivial subalgebra F(es).
0 0 0 0

For Az 3 = 100 0 case.

PAus(y) # 0 then Ao 3 has only one nontrivial subalgebra F(es).

13
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4. THE IDEMPOTENTS
In this section we describe the idempotent elements of two-dimensional algebras over F (for assumptions on
the field F see Section 1). Recall that a nonzero element v of an algebra A is an idempotent if
(4.1) v =v.

Let A be a two-dimensional algebra. If v = yey then () is equivalent to u? = %u, where u = es and if

v = ze; + yea,  # 0 then ([EI) is equivalent to u? = %u, where u = e; + £e. Due to the discussion made at

the begining of Section [ here we are interested in nonzero u € A with u? = \u, A\ # 0.

Let Id(A) stand for the set of all idempotents of the algebra A with MSC A = ;1 ;2 gg 24 ) and
1 P2 f3 Pa

Aa(y) = auy® + (a2 + a3)y + .

Proposition 4.1.
o Ifay #0 orag =0 and B4 =0 then

Id(A) = {u:
o I[fas=0 and B4 # 0 then

Id(A) = {u = @(61 +yoe2): yo €F, palyo) =0, Aa(yo) # O} U {éeg}.

Proof. Indeed, if aq # 0 then the first equation of ([B:2)) implies A = auyg + (a2 + a3)yo + a1, where yq is a root
of

/\Agyo) (e1 +yoe2) : yo €F, palyo) =0, Aa(yo) # 0} :

pa(Yy) = yias + v (a2 + az — Ba) + y(aq — Ba — B3) — Pi.

Therefore, in this case we have

1
Id(A) = {u = ——(e1 +yoe2) : yo € F,pa(yo) = 0, \a(v0) # 0}-
Aa(yo)
Let us consider ay = 0. Then one has e = f4e2 and the element I@—1462 is idempotent provided that £4 # 0.

Moreover, in this case each root yg of pa(y) generates an idempotent m(el +yoez), whenever Ay (yo) #0. O

Due to Proposition L T]and space reasons we abstain from writing the conditions for A, A, Ag in Char(F) #
2,3 (A12,A22, Ago in Char(F) = 2 and Ay 3, A2 3, Agz in Char(F) = 3) case to have no idempotent, one
idempotent, two, three and infinitely many idempotents. For the rest the final result we give as follows.
Theorem 4.2.

o Let Char(F) # 2,3. Then

« TA(AL(0, B)) = Td(As(ar)) = Td(As(0)) = Td(Ag) = Id(Ays) = 0
x Id(A3(0,—1)) = {—ea};
x ITd(As(0,82)) = {—62, mel + %62}, where By # —1
e LA (P P2)) = {_627 52“*\/(;2“)2”5161 + 76 ﬁ2+1+\/(;2+1)2+26161 e
where B1 # 0
x Id(A4(aq, B2)) = {a—lel}, where ay # 0, By # 2a7 — 1
x Td(Ag(a,201 — 1)) = {0%161 +tes: teE IF} , where a; # 0
* Id(A7(0)) = {—e2,3e1 + 3e2},
x Id(A7(B1)) = { —ea, ﬁ\/%el + Les, Hli\/%el + %62} , where B # 0
x Td(As(aq)) = {O%el} , where aq(3c; — 1) # 0
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*IdAg(%) ={3e1 +tes: t €F},
* Id(Alo) { 62},
* Id(All)* {—62,@614—%62, —@614—%62}.

e Let Char(F) = 2. Then
« Td(Ag2(0,82)) = Id(As 2(a)) = Id(As2(0)) = Id(Ag2) = [d(A122) = 0;
x ITd(As2(0,82)) = {ez2};
* Id(As2(0n,1)) = {es, O%el} where o # 0;
* Id(Asz2(on, f2)) = {e2, 0%617 a%(@l + (B2 + 1)e2)} where B2 # 1,1 # 0;
# Td(Asa(an, ) = {er}if a1 £0,6: # 1
* ITd(Ag2(0n,1)) = {a—lel +tes: t e F}, where ay # 0;
* Id(A72(0)) = {—e2};
Id(A72(1)) = {e1, —e2};
* Id(A72(on)) = a%el, a%el + 1;‘1’1 62} , where ay # 0, 1;
x Td(Ag () = a%e } , where oy # 0, 1;
* Id(Ago(1)) = {e1 +tea: t € F};
x Id(A102) = {e2};
x ITd(A11,2) = {e1, —e1 + ez, —ea}.
e Let Char(F) = 3. Then
« Td(A43(0,B2)) = Id(As 3(a1)) = Id(As 3(0)) = Id(A11,3) = Id(A12,3)
« Id(As3(0,82)) = {—ea}, where By # —1;
* 1d(As3(Br, B2)) = {14562 e1 — ey, 62}, where By # 0;
* Id(As3(0,-1)) = {tel + 262, —eg it € IE‘} ;
x Td(Ay (0, B2)) = {O%el} , where oy # 0, Ba # 2aq — 1;
x Td(Ags(on, 201 — 1)) = {a%el +tes: t e F}, where ay # 0;
* Id(A73(0)) = {—e2};
x Id(Az73(01)) = %61 e, —62} , where B1 # 0
x Td(Agz(aq)) = alle , where a; # 0
* Id(Ag3) = {—e2};
x ITd(Ap3) = {te1 —ea: t € F}

5. LEFT IDEALS

A one-dimensional subspace Fu of an algebra A is a left ideal if

(5.1) v-u=\(V)u

-0

15

for all v € A, where \;(v) € F. In terms of the matrix of structure constants A of a two-dimensional algebra A

due to v-u=eA(v ® u), where u = eu, v = ev the equation (&) is equivalent to

(5.2) Al @ u) — N(v)u = 0.

Let A be a two-dimensional algebra with MSC A = ( arodzods o ), U= < v ), and v = ( i ) Then
Y

B B2 B3 Ba
applying (5.2]) we obtain the system of equations

—xz\(s,t) + szar + syas + txas + tyays =0,

5.3
(5:3) —yNi(s,t) + sxfy + syPe +taPs +tyBs =0.
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If x = 0 then due to y # 0 the system (5.3]) becomes
sag +tay =0,

=Ni(s,t) +sB2+t8s =0.
Evidently, in ag = a4 = 0 case Fes is a left ideal of A. If x # 0 then one can assume that x = 1. The
first equation of (B3] implies \;(s,t) = s(a1 + yas) + t(as + yay) and therefore, its second equation yields
s(B1 +y(Ba — 1) — y?az) +t(Bs + y(Bs — a3) — y?as) = 0. So we get the system of equations
ha(y) = y?as+ylas —Ba) — B3 =0
laa(y) = y?as +y(ar — f2) = f1 =0

and any solution yg of (B4l provides the left ideal F(e; + yoez). Hence, we need to study the existence of the
solutions of (&.4).

(5.4)

Proposition 5.1. Let Char(F) # 2.

o The system (B.4) has no solution if and only if one of the following holds
*ag=az—fBs=0 and B3 # 0;
oy =0, 03— P1#0 and azf3 + B3(ar — B2)(az — 1) — Bi(az — Ba)® # 0;
¥y #0, (a3 — fa)? +4asfz = 0 and az(az — fa)* — 2aa(ar — B2)(as — Ba) — 4f103 # 0;
g #0, (a3 — fa)? +4asfls # 0, as(ar — f2) — as(az — 1) # 0 and
ha (et ) # O
as # 0, (a3 — B4)? +4asB3 # 0, au(ar — B2) — az(az — B4) =0 and auB — azfs # 0;
Foaop=a3—Ps=PF3=az=a;—P2=0 and B; #0.
o The system ([B.4) has an unique solution if and only if one of the following holds
*ay =0, a3 — Ba #0 and 283 + B3(aq — Ba2)(as — Ba) — Pr(as — Ba)? = 0;
* oy #0, (a3 — Ba)* +4asfs = 0 and ao(as — Ba)? — 2a4(ar — B2)(as — Ba) — 4B1ai = 0;
g #0, (a3 — fa)? +4asfls # 0, as(ar — f2) — as(az — fa) # 0 and
ha (el ) = 0

ag(o1—B2)—az(az—PF4a)

*

*

a3 — f1 =y = f3 = (a1 — f2)* + 4azf = 0 and oz # 0;
faz-Pi=ay=PF3=az=0and a1 — B2 #0.

o The system (B4) has two different solutions if and only if one of the following holds
*ag #0, (a3 — Ba)* + 4aufBs # 0 and au(on — Ba) — ol — B1) = aufi — azfs = 0;
*az—Br=as=P3=0and as #0, (a1 — B2)* + dazB1 # 0.

o The system [&4) has infinitely many solutions if and only if
fa-fe=ar =P =a3— Py =as=p3=0.

Proof. The systems of equations (5.4 has no solution, one solution, two solutions and infinitely many solutions
is the same for the polynomials I 4(y) and l24(y) to have no common root, one common root, two common
roots and infinitely many common roots. In this study there is a “symmetricity” with respect to l14(y) and
loa(y). To avoid repetitions we give the conditions with respect to one of them (in our case it is l14(y)) the
other conditions will come out verifying for I3 4(y) and l24(y) to have no common root, one common root, two
common roots and infinitely many common roots. By the way, we keep this strategy further in Propositions
62 and [6.2 as well (the later two cases the conditions are given with respect to r14(y)).

The polynomial 11 4(y) has no root if and only if oy = a3 — 84 = 0 and 35 # 0. Therefore, in this case the
system of equations (B.4]) is inconsistent.

Let l14(y) have only one root. The polynomial l;4(y) has only one root yo if and only if ay = 0 and
az— P4 #0or ag # 0 and (a3 — f4)% +4ayB3 = 0. In the first case we have yg = Bs _ Then Yo satisfies (.4)

az—fa
if B3 4 B3(c1 — B2)(az — Ba) — Bi(az — B14)* = 0 and in the case a3 + B3 (a1 — B2)(az — 1) — Pz — Ba)* # 0
the system has no solution. In the second case yg = —o‘;;f“, it satisfies ([0.4)) if

as(as — Ba)? — 2au(ar — B2)(az — B1) —4B1ai =0
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and in the case az(az — £1)? — 2a4(ar — B2)(az — B1) — 43102 # 0 the system has no solution.
Let 11 4(y) have two different roots. The polynomial I14(y) has two roots if and only if oy # 0 and (a3 —
B1)? + 4 B3 # 0. Therefore, due to

Q2 ag(ar — B2) — az(az — Bs a1 — a2
oay) = 221, 4(y) + SO - 0slaa )
o] o] o]
one has the options: under ay(ay — f2) — az(as — S4) # 0 the system of equations (4] has only one solution,
namely yo = aafr—c2fs if Iya( aafr—cofs ) = 0 and the system of equations (4] has no

ag(ar—PB2)—az(az—pPa)’ as(ar—Pz)—az(as—pa)
solution if llA(a4<af%€3:3§?§3754>) £ 0. If ay(ag — fB2) — aa(ag — B4) = 0 then (E4) has no solution in the case
ayff1 — azf3 # 0 and the system has two different solutions if ayf8; — asff3 = 0.

Let 11 4(y) have infinitely many roots. The polynomial /1 (y) has infinitely many roots if and only if ag — 84 =
a4 = B3 = 0 and therefore, the system has no solution in ay = a3 — 2 = 0 and 1 # 0 case, it has only one
solution in ag = 0, a1 — B2 # 0 and ag # 0, (a1 — B2)? +4asB1 = 0 cases, it has two different solutions in ag # 0,
(a1 — B2)? + 4azf # 0 case, it has infinitely many solutions in a3 — 4 =ays = B3 =a1 — B =g = 1 =0
case. [l

In Char(F) = 2 we make use the following proposition.

Proposition 5.2.

o The system (B4) has no solution if and only if one of the following holds
x aq = a3 — P4 =0 and B3 # 0;
x ay =0, a3 — B4 #0 and 283 + Ps(cr — Ba2)(as — Ba) — Br(as — Ba)* # 0;
* ay #0, a3 — B4 =0 and o363 + Psau(ar — B2)? — Biod # 0;
* ag #0, a3 — B4 #0, au(aq — f2) — aa(ag — Ba) # 0 and l14 (a4(alf‘%§3:z§?§3,ﬁ4)> #0;
* aq #0, a3 — 1 #0, as(ar — B2) —az(az — B1) = 0 and asfr — azfs # 0;
¥ ag=a3—fBa=F3=az=0a— P2 =0 and 31 # 0.
o The system [&4) has unique solution if and only if one of the following holds
* ay =0, a3 — B4 #0 and @283 + B3(cr — Ba2)(as — 1) — Pr(az — B4)* =0
x ag #0, az — Bs =0 and a363 + Bzas(ar — B2)? — BZai =0
* ay #0, a3 — Pa #0, au(an — B2) —az(az — B1) #0 and li1a (M(aﬁ%iﬁ:zi?;rm))) =0
* a3 — Py =as=P3=a1—P2=0and az #0
x a3 — e =g =P3=0azy=0 and ay — B2 # 0.
o The system (B.4) has two different solutions if and only if one of the following holds
* ag #0, a3 — B4 #0 and as(ar — B2) — az(az — f4) = auffy — azfls =0
¥ a3 —PBa=as=03=0and az #0, a; — B2 #0.
o The system [&4) has infinitely many solutions if and only if
* a1 —fr=az=pB1=a3—Bs=0as=P3=0.

Proof. 11(y) has no root case. The polynomial /;(y) has no root if and only if
ay = ag — B4 =0 and B3 # 0. Therefore ([B4]) has no root in this case.

I1(y) has only one root case. The polynomial [1 (y) has only one root yo if and only if gy = 0 and a3 — 4 # 0
or ay # 0 and ag — 84 = 0. In the first case yo = af—fm, it satisfies (5.4) if a233 + Bs(a1 — B2)(az — By) —
Bi(az — B4)? = 0 and in a3 + B3(c1 — B2)(as — Ba) — B1(as — Ba)? # 0 case the system has no solution. In
the second case yg = \/g—T it satisfies (B4 if

47
a363 + Bzas(ar — B2)? — Biai =0

and in
a383 + Bsau(ar — B2)? — Biai #0

case the system has no solution.
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l1(y) has two different roots case. The polynomial /1 (y) has two roots if and only if oy # 0 and a3 — 84 # 0

Therefore due to
ag(on — f2) — az(as — ﬂ4)y oy — afis

o%1 Qy

«
la(y) = —h(y) +

ay
if as(ar — B2) — as(as — B4) # 0 the system (54]) has only one solution, namely yo = m(aﬁjaﬁgl):gz(ﬁgg_m), if

ll(m(alfﬁ;:g;?grm)) =0, if ll(%(alf‘}ﬁ;:gifgs_m)) # 0 then the system has no solution. If ay(a; — f2) —

as(ag — f4) = 0 then ([B4]) has no solution in ayf; — asfBs # 0 case, and in g8 — a3 = 0 case the system

has two different solutions.
{1 (y) has infinitely roots. The polynomial /; (y) has infinitely many roots if and only if g — 84 = a4 = 5 =0

and therefore the system has no solution in as = a1 — B2 = 0 and 7 # 0 case, it has only one solution in
as =0, a1 — P2 # 0 and as # 0, a; — B2 = 0 cases, it has two different solutions in as # 0, a3 — B2 # 0 case, it
has infinitely many solutions in

az—fr=u=0=a1—fPr=az =531 =0
case. O

We summarize the results on left ideals in Tables [Tl and 2] (See Section APPENDIX).

6. RIGHT IDEALS
Recall that a one-dimensional subspace Fu, where 0 # u € A, is a right ideal of an algebra A if
(6.1) u-v=J>(WVu
for all v € A, where A\.(v) € F. In two-dimensional case due to u-v = eA(u ® v), where u = eu, v = ev we get
(6.2) Alv®@u) — A\ (v)u = 0.

Let A= [ @1 @2 9 @ , U= * ,and v = * ). Then the equation (6.2]) is written as a system
B B2 Bz Pa Yy t

of equations as follows

—x A\ (8,1) + sxag + xtag + ysas + tyay =0,
—YAr(s,t) + sxf1 +xtfo +ysPs +tyfs = 0.

Let us consider two cases again. Let @ = 0. Then due to y # 0 the system (63)) has the form

(6.3)

sag +tay =0,
_)\T(Sa t) + Sﬂ3 =+ tﬂ4 =0.
Therefore, only in a3 = a4 = 0 case Fegy is a right ideal of A. If x # 0 then one can assume that x = 1.
The first equation of ([G3]) implies \,(s,t) = s(a1 + yasz) + t(a2 + yay) and therefore, its second equation gives
s(B1 +y(Bs — a1) — y2az) +t(Bs + y(B2 — az) — y?ay) = 0. Hence, we get the system of equations
ra(y) = yPau +y(az — 1) — B2 =0
r2a(y) = y*as +y(ar — f3) — 1 =0

and any its solution yo generates a right ideal in the form F(e; + yoes).

(6.4)

Further we make use the following two propositions

Proposition 6.1. Let Char(F) # 2.

o The system ([64) has no solution if and only if
x g =g — F4=0and By £0
* ay =0, g — B4 #0 and asf3 + oy — Bs)(az — 1) — Br(aa — Ba)* # 0
* ag #0, (g — B4)? +dayfa = 0 and az(az — B1)? — 2a4(ar — B3) (g — B4) — 4103 # 0
* g #0, (g — Ba)? +4aufs # 0, as(ar — Bs) — as(az — Ba) # 0 and
ra (et ) # 0
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* oy 70, (g — Ba)? +4aufs # 0, au(ar — B3) — ag(az — 1) =0 and asf — azfz # 0
g =g — Py =pPa=az3=a;— 3=0 and B #0.
o The system ([G4) has unique solution if and only if
* ay =0, g — B4 #0 and asf3 + oy — Bs)(az — 1) — Br(aa — B4)> =0
* g #0, (ag — B4)* +4auf2 = 0 and az(as — fa)* — 20u(ar — B3)(az — B1) — 4105 =0
¥ ag #0, (o — B4)? +4daufe # 0, as(a — PB3) — az(as — B4) # 0 and

r1A

asffi—asfBs )) -0

as(a1—PBs)—as(az—Ba
* ag— P =as= P2 = (a1 — f3)* +4a3f1 = 0 and az # 0
¥ ag—fr=as=Fr=az3=0and a; — B3 #0
o The system ([G4]) has two different solutions if and only if
* ay #0, (ag — B4)? +4oufs # 0 and ag(on — Bs) — as(ae — fa) = aufr — a3 =0
¥ ag—fr=as=P02=0and a3 #0, (a1 — f3)* +4asf1 # 0.
o The system ([64) has infinitely many solutions if and only if
* a1 —f3=az=pF1=a2—B1=0as=P2=0.

Proof. Let r14(y) have no root. The polynomial 71 4(y) has no root if and only if ay = as — 84 = 0 and 32 # 0.
Therefore, ([6.4]) has no root in this case.
Let r14(y) have only one root. The polynomial 714 (y) has only one root yg if and only if s = 0 and

azs — B4 # 0 or ag # 0 and (g — B4)? + dayfs = 0. In the first case yo = affm, it satisfies ([G4]) if
azf3 + Ba(ay — B3)(ag — B1) — Bi(az — B4)? = 0. In the second case yo = —%7454 and it satisfies (G4 if

az(az — Ba)? — 2au(ar — B3) (a2 — Ba) — 4B1ai =0

Let r14(y) have two different roots. The polynomial r14(y) has two roots if and only if ay # 0 and (ag —
B4)? + 4 B2 # 0. Therefore, due to

’I“QA(y) = %TIA(?J) n CY4(CY1 - ﬁB) - a3(a2 - ﬁ4)y B asfr — asfs
(6%} oy o
if ay(oy — B3) — az(as — B4) # 0 the system (6.4) has only one solution, namely yo = adaﬁ%il):gz(ﬁozzrm)’ if

1A (m(alijf;):gz?;z_m)) =0. If ay(ag — B3) — az(ag — B4) = 0 then ([G4]) has no solution in ayfB1 — azfBy # 0
case, and in ayfB; — asf2 = 0 case the system has two different solutions.

Let m14(y) have infinitely many roots. The polynomial r14(y) has infinitely many roots if and only if
ag — PB4 = ay = P2 = 0 and therefore, the system has no solution in a3 = a3 — 5 = 0 and 51 # 0 case, it has
only one solution in az = 0, a3 — 83 # 0 and agz # 0, (a1 — B3)% +4a3B1 = 0 cases, it has two different solutions
in az # 0, (a1 — B3)? + 4azp1 # 0 case, it has infinitely many solutions in

ay—fy=u=Pr=a1—Ps=az3=H3 =0
case. O

Proposition 6.2. Let Char(F) = 2.
o The system ([6.4) has no solution if and only if one of the following holds
*ag=ay—f4=0 and B2 #0;
*ag=0, 02— B4 #0 and azf3 + fa(r — B3)(aa — 1) — Bi(az — Ba)® # 0;
oy #0, a2 — fa =0 and 385 + Brau(on — B3) — fiag # 0;
Fag#0, 00— Ba#0, as(ar — B3) —az(az — 1) #0 and r1a ( R ) #0;

as(o1—PBs)—az(a2—pBa)
*oag#0, a2 —Ba #0, aulon — f3) — az(ag — Ba) =0 and oy — azfz # 0;
Fag=ay—Pa=Pr=az3=0o1 — 3 =0 and 31 # 0.
o The system ([G4) has unique solution if and only if one of the following holds
*ag =0, g — Bs #0 and a3f3 + 2 — Bs)(az — 1) — Bi(aa — B4)> =0
g #0, g — B4 =0 and o365 + frou(ar — fB3)? — fiag =0
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* (e 7] # O, g — ﬂ4 }é O, 044(041 - ﬂg) - 043(042 - ﬂ4) }é 0 and T1A (014(0¢1(i46€,1):32€§2—34))) =0
Fayg—fr=as=fr=a1—P3=0and az #0
*oag—Py=as=Pr=0a3=0 and oy — B3 # 0.

o The system ([6.4) has two different solutions if and only if one of the following holds
oy #0, ap — B4 #0 and ag(oq — PB3) — ag(ag — f4) = asfi —azfe =0
Fag—fy=as=pF2=0and a3 #0, a; — B3 #0.

o The system (@A) has infinitely many solutions if and only if
Ta-fPy=az ==~ Py =4 =2 =0.

Proof. 11(y) has no root case. The polynomial 1 (y) has no root if and only if
ay = ag — B4 =0 and By # 0. Therefore ([G.4]) has no root in this case.

I1(y) has only one root case. The polynomial /1 (y) has only one root yo if and only if gy = 0 and e — B4 # 0
or ay # 0 and ap — B4 = 0. In the first case yo = affm, it satisfies ([G4) if a3B3 + B2(a1 — B3)(az — By) —
Bi(az — B4)? = 0 and in azfB3 + B2(c1 — B3)(az — Ba) — B1(aa — Ba)? # 0 case the system has no solution. In
the second case yg = \/E it satisfies (G4 if

oy’

33 + Baou(ar — B5)? — Biaf =0
and in
a363 + Baaa(ar — B3)? — Biai #0

case the system has no solution.
l1(y) has two different roots case. The polynomial /1 (y) has two roots if and only if oy # 0 and e — 84 # 0

Therefore due to

ag(ar — Bs) —as(as — Ba)  auPr —azB
oy Q4 Y Qg4

if as(ar — B3) — ag(ag — B4) # 0 the system ([64]) has only one solution, namely yo = a4(a1g%633:22(6;2_ﬂ4), if

ll(m(al%ﬁ%:zgﬁr&)) =0, if ll(m(aﬁ%i;:zg?;rﬁ@) # 0 then the system has no solution. If ay(a; — f3) —
ag(as — B4) = 0 then ([G4) has no solution in ayf; — agfe # 0 case, and in ayf; — aszfa = 0 case the system

has two different solutions.

{1 (y) has infinitely roots. The polynomial /1 (y) has infinitely many roots if and only if g — 84 = ay = 2 =0

and therefore the system has no solution in a3 = a3 — 85 = 0 and 51 # 0 case, it has only one solution in
a3 =0, a; — B3 # 0 and az # 0, a; — B3 = 0 cases, it has two different solutions in ag # 0, a3 — B3 # 0 case, it
has infinitely many solutions in

ar—By=ou=Pr=a1—Bz=a3=0 =0
case. O

The results on right ideals are given in Tables Bl and A (see APPENDIX).

7. TWO-SIDED IDEALS
A one-dimensional subspace Fu, where 0 # u € A is a two-sided ideal of an algebra A if
v-u=XN(V)u, u-v=\(v)uforalveA.
If A a two-dimensional with a basis e = {e1, €2} then by using
u-v=eA(u®v),
where u = eu, v = ev, we come to

Alv@u) — N(w)u=0, Alu®@v) — A\ (v)u =0
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and it yields the system of equations

—x N\ (s,t) + szxar + syas + txas + tyay
—yAi(s,t) + szB + syPa + txfs + tyPs
—xAr (8, 1) + szaq + xtas + ysas + tyay
—yAr(s,t) + szB1 + 2tB2 + ysPs + typa

I
oo oo

)

where u = | * ) , U= ( j ) . If x = 0 then due to y # 0 the subspace Fes is a two-sided ideal if and only if
Y
=0

x # 0 then one can assume that © = 1 and the system (Z.I)) is equivalent to

haly) =y*as + y(as — ﬂ4) ﬁ3 = 0
laa(y) = y?ag + y(oa — f2) — =0
ra(y) = y?as +ylas — ﬁ4) = 0
roa(y) = yPas +y(ar — B3) — ﬁl = 0.

The subtraction the first equation from the third yields y(as — as) — B3 + f2 = 0 and therefore, one easily
gets the following result.

Proposition 7.1. The algebra A is simple, i.e., it has no nontrivial two-sided ideal, only in the following cases:

1. BQ }éﬂg and (6D) 2043#0.
2. ﬂg#ﬂg andOQ:Oég:O, O[47£0.
3. ag # as and at least one of

(Bs — B2)?az + (B3 — B2) (g — az2) (a1 — B2) — (g — a2)? B,
(Bs — B2)?au + (B3 — Ba2)(as — az)(az — Ba) — (a3 — a2)?Bs

18 not zero.
Moreover,
* in g = az = aq = 0 case Fey is a two-sided ideal of A,
% in ag # ag case F(eq + 52 232 e2) is a two-sided ideal if and only if
(B3 — Ba)?a2 + (B3 — B2)(as — az)(a1 — fB2) — (as — a2)? S
= (B3 — B2)%cs + (B3 — B2) (a3 — az) (a3 — Bs) — (a3 — a2)?fBs = 0.

x If B3 = B2, a3 = ag then A is a commutative algebra and every left (right) ideal is two-sided.

This proposition implies that for any nontrivial two-dimensional algebra only the following options occur:

e 1o two-sided ideal;
e only one two-sided ideal;
e two two-sided ideals.

Now we review the algebras from the list of isomorphism classes in Section 2 for the number of two-sided ideals.

e Char(F) # 2,3.

Let us consider A;. The case as = a3 = a4 = 0 is impossible. Note that for A; one has a3 — as =
B3 — B2 = 1 and therefore, only in ay = —2as — a1, 1 = as + 27 case A; has only one two-sided ideal
F(el + 62).

In A5 case we have ag — as = 0 and therefore, if B3 = 1 — 7 then in As every left ideal is two-sided.
In other cases A, has no two-sided ideal.

If B2 = 1 then every left ideal is two-sided of A3. Otherwise, it has no two-sided ideal.

If B2 =1 — «y then every left ideal is two-sided for A4. Otherwise, A4 has only one two-sided ideal.

If o = % then every left ideal is two-sided for As. Otherwise, As has only one two-sided ideal. As
for Ag, A7 and Aj; they do not have two-sided ideals. The algebras Ag, Ag, A1p and Ajs have only
one two-sided ideal.
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e Char(F) = 2.

In A2 case as = a3 = oy = 0 is impossible. Here we have a3z — ag = 3 — B2 = 1 and therefore,
only in ay = a1, f1 = g case A 2 has one two-sided ideal F(eq + e3).

In A5 9 case one has as — ap = 0 and therefore, if S =1 —ay then Aj 5 every left ideal is two-sided.
In the other cases Ay 2 has no two-sided ideal.

If a1 =1, B2 = 0 then every left ideal of As 9 is two-sided. Otherwise it has no two-sided ideal.

If B2 =1 — a; then every left ideal is two-sided for A4 5. Otherwise has only one two-sided ideal.

If ay = 0 then every left ideal is two-sided for As 2. Otherwise As 2 has only one two-sided ideal.
The algebras Ag o, A72 A11,2 and Ajz2 have no two-sided ideal. The algebras Ago, Ag o and Ajg 2
have one two-sided ideal.

e Char(F) = 3.
Aq3: In this case ag = a3 = a4 = 0 is impossible and a3 — as = 3 — 2 = 1 and therefore only in
ay = —aq — 22, f1 = a2 + 2a case A; 2 has only one two-sided ideal F(eq + e2).

In Ay 9 case az — az = 0 and therefore if B = 1 —  then Ag 3 every left ideal is two-sided. In other
cases Ap 3 has no two-sided ideal.

If B2 =1 then every left ideal is two-sided for A3 3. Otherwise it has no two-sided ideal.

If B2 =1 — a; then every left ideal is two-sided for A4 3. Otherwise has only one two-sided ideal.

As 3 has only one two-sided ideal. Ag 3 has no two-sided ideal. A7 3 has no two-sided ideal. Ag 3
has one two-sided ideal. Ag 3 has one two-sided ideal. Ao 3 has one two-sided ideal. A;; o has one
two-sided ideal and A2 2 has one two-sided ideal.

The results on two-sided ideals are given in Tables Bl and [f (see APPENDIX).
Note that the second (together with the first) columns of these tables present classification of all simple
two-dimensional algebras.

8. LEFT QUASIUNITS

This section deals with left quasiunits of all two-dimensional algebras (for the motivation and the importance
of the concept see [I8] and [20] with occasion of the study of so-called Terminal algebras).

Definition 8.1. An element e, of an algebra A is said to be a left quasiunit if

e,(uv) = (equ)v +u(egv) —uv for all u,v € A.

In terms of MSC of A it is nothing but to write

Ale, @ Alu®@ ) = A(A(eq @ u) @v) + A(u ® Aleg @ v)) — A(u @ v)

and therefore assuming that e, = < 0 >, U = ( * ) and v = ( j ) one gets the following system of
Yo Y

equations
sz + aufryo — a2 f3y0 — asPayo — azaryo — a3z — A wg) + ta (e — azBayo + aBayo — aaBsyo — 1 aayo —
aufrxo — arasro) + sy(as — azfayo — rouyo + aefaro — aufire — azfaro — araao)

+ty (o — auaBayo — auanyo + a2 Bamo — 204B210 — A3z0 — azTo + Q10sTo) = 0,
sz (B + a1 B3yo — 2asB1yo — B3Yo — B2Bsyo + B1Bayo — a1 frzo — B1PBsxo) + tx (B2 — aafiyo — asPayo + a2 B3y —
B3Bayo — a1 Baro — Bafrzo) + sy(Bs — aufryo — BsBayo — azfizo + azfizo — a1PBszo — Bafiwo)
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+ty(Ba — aaBayo — Biyo + cufrzo — aeBazo — asfzxg — Pofazg) = 0,
which is equivalent to

—zoad — Yoz + a1 — ToasP1 + yoaufi — Yoo B3 — yoasfs =0,

—Toa1y — Yofata + ao — Yooy — TouPB1 + YoausSa — yooufz =0,
—Toare + 2Bz + a3z — Yoaray — Toas 1 — TozPe — yoazBy =0,

—2o03 — Toazae — Youars + Tofacs + Toon g + g — 2w e — yoouBs =0,

—y053 + yoa1 B3 — 0183 — yoP23 — Toar1 B — 2yoasfB + B1 +yoPiBs =0,
—yoouff1 — wofaf1 — o1 P2 — Yooz P + B2 + yoaz2 B3 — yoB3Bs =0,
—zo02f1 + oz B1 — Yyoaf1 — woBaB1 — o1 B3 + B3 — yofsfs =0,

—yoB7 — 20B2B1 + Ba + zosPi — Toaa 2 — yoa P — Toa2 B3 = 0.

8.1. Char(F) # 2,3. For A; case we have the system of equations

—200d + Yoasar + a1 — Yo — 2yoca — ToPB1 — Toa2f1 + yoouSi =0,
yoag — T (g + Qg — Yooy — Yoa1 oy — ToagBy =0,
yoa§ + yoaa + s — Toars + Qs + o — Yoar g — xoaaPr +1 =0,
—35[:004% — zoao + 3xpaiay + a4 =0,

—3y0cs + dyoon — yo — 2yof1 — zoP1 — By + f1 =0,
To0d + Yoa1 — Yooty — a1 + 2yoaz + 2o B — yoausf1 =0,
T0F — oo — Yozon — a1 + Yooz + Lo + Toe S — yoauP1+1 =0,
—yooz% — zoao + Toaiae — s + yoaray + roaeSy = 0.

Combining the first, third, seventh and eighth equations of the system of equations above we get yg = 2. The
third and eighth equations imply zga; = —1 — 23, the second and eighth equations imply xoae + 2a4 = 0, the
first and sixth equations imply xo5; = 2(a; — 1).

Therefore, if 1 # 0 then we have

2(0(1 — 1) xrooq + 1 2001 (041 — 1) + ﬁl ToQ 2042(041 — 1)
$0277a2: = — ,a4:_ ——
B1 -2 25 2 254
fL'O 2(0(171)
and in this case e; = = /321 satisfies (8.1), i.e., ¢4 is a left quasiunit.
Yo
If B1 = 0 then for (8.1) to have a solution oy must be 1. In this case g = —1 — 2a9, ag = %
So only Aj(aq, —20‘1(0‘21;11”’81 , —20‘2%11_1),&), where 81 # 0, and A; (1, aq, M,O) have left quasiunits
2(0(1—1)

el + 2e9 and —(1 + 2a)e; + 2eq, respectively.
In As case the system (8.1) is written as follows

—zoat + a1 +yof1 =0,

Bayo — yo — xof1 =0,

—yoa1 —xof1 =0,

ToOl1 — 2$0ﬂ2 =+ 1 = 0,

—2yo0d + 3yocr + YoBeor — Yo — woPf1 + B1 — Yo =0,
—yoP1 — xoa1 B2 + B2 =0,

zood — ooy — a1 —yof1+1 =0,

zoP1 —yoB2 =0.

The second and eighth equations imply yo = 0, the first and seventh equations imply zo = =, where a; # 0,

oy’

therefore, 51 = 0 and 2 = «;. This means that in this case only As(a1,0, 1), where ay # 0, has left quasiunit,
which is 0%61'
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In As case the corresponding system is given as follows

—2yo —xof1 =0,

yo+1 =0,

Yo+ x0 —x0P2 +1 =0,

—3$0 = U,

=3B1Y0 — B2yo — Yo — xof1 + B =0,
—Ba2yo + 2yo + xoP1 + P2 =0,

Yo+ xofL+1 =0,

—yYo—2xo—1 =0,

which is inconsistent.
For A, case we have the system of equations

a1 — {E()Oz% =

—2yoa? + 3yoaq + YoS2c1 — Yo — Yoo
B2 — xoar1 B2

3:004% —roa1 —a1+1 =

3

)

0
0,
0
0.

The system above implies that in this case only the following algebras have left quasiunits

o Ay(1,2), the left quasiunits are e; + teq, where t € F,
o Ay(aq, B2), where ay # 0,1, B2 # 21 — 1, the left quasiunit is o%el’
o Ay(ay,f2), where oy # 0,1, f2 = 21 — 1, the left quasiunits are allel + tes, where t € F.

For A5 we have the following system of equations

a; —xzpad =0,

1- o =Y,

—2&600&% + xpa1 + 200 —1 =0,
xoa% —x90n —a1 +1 =0.

It is easy to see that the only As(1) has left quasiunits e; + tes, t € F.
For Ag the system is given as follows

—z00d + a1+ Yo =0,

—a1yo +yo — xf1 =0,

—yoo1 — 2oy =0,

3aixg —2x9+1 =0,

—3yoof +yoar + 1 =0,

zoai —xoon —ag —yobi+1 =0,

and again it is easy to see that only Ag(5,0) has left quasiunit given by 2e;.

For A7 the system consists of the equations —x¢f8; =0, yo+1=0, yo—xzg+1=0, =320 =0, 51 —3yob1 =
0, —yo 4+ xof1 + 1 =0 and it is inconsistent.

For Ag we have the system consisting of the equations a1 —zga? = 0, yoa1 —3yoa? = 0, zoaf —zoa1—a1+1 =
0 and only Ag (1), where ay # 0, % and Ag(%) have left quasiunits given by o%el and 3ej+tes, t € F, respectively.

For Ag the fifth equation of (81 is a contradiction.

For A the system consists of the equations yg + 1 = 0, —3zg = 0 and therefore Ay has a left quasiunit
—e9.

For Aj; the system consists of the equations —xg =0, yo+1 =10, 1 —3yg = 0, so Ay; has no left quasiunit.

For Ajs the fifth equation of (1)) is a contradiction.
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8.2. Char(F) = 2.. For A; 2 we have the system :

—Toad + Yoea + a1 — Yo — Tof1 — To2 1 + Yooua B =0,
yoa§ — Toarag + Q2 — Yoy — Yoy — To0ig By =0,
yoag + Yoa + Tpa — Ty g + Qg + Tpry — Yoarag — xpagPr +1 =0,
—Toah — Loz + Lo + ay =0,
(8.2) 5 B
—Yo] — Tof1 — Yoz 1 + B =0,
zoad + Yoar — Yoaaon — a1 + TP — Yoou =0,
Tood — Toa — Yoo — v + Yoz + o1 + Toao 1 — yoauBr +1 =0,
—Yoa3 — ToQa + Too ay — a2 + Yoo o + Toau B =0

From the first, seventh ,third and eighth equations we get yo = 0. Now, applying third and eighth equations
we have zoa; = —1 = ¢ = o% where a1 # 0 then one has 51 = 0. Using second and eighth equations we get
rors = 0 = a9 = 0. then

1
( 0(‘)1 > where a3 # 0, as =0, f1 =0.

For A > we have the system :

—zoaf + a1 + Yo =0,
B2yo — Yo — o1 =0,
—1o0ry — T =0,
zoar +1 =0,

8.3
8:3) Yoar + yoPear —yo — w01+ 51 —yofe2 =0,
—yof1 — zoa1 B2 + P2 =0,
zoaf — xoar — ay — Yof1 + 1 =0,
ToB1 — Yo B2 =0
From the second and eighth equations, the first and seventh equations, respectively we get yo = 0, 9 = —

a1

where a; # 0 then 81 = 0 therefore
1
061 where a1 # 0, 51 = 0.

For As(aq, B2) we have the system :

a1 + a1yo — oz%:z:o =0,
—yo — a1 + 1 =0,
—Yyo — B2x0 + x0 + 1 =0,
(8.4) o =0,
a1 B2y0 + a1yo — B2Yo — Yo =0,
B2 — Bayo — a1 5270 =0,
—ay + a1y — Yo + ajro —aqxe +1 =0,
—y0+041$0—$0+1 =0.

We have z¢ = 0 then yo = 1. Due to the fifth equation we get a1 =1 or B3 = 1, then Az 2(1, 82) and Ag2(aq,1)
have a left quasiunit given by ea.
For A4 o we have the system :

oy — :voa% =0,
Yoo + Yobaar — Yo — Yoz =0,
B2 — xoov1 B2 =0,
xoa%—xoal—al—l—l =0

(8.5)
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Applying the first and fourth equations we get xg = o% the second equation implies yo(a; + Poc; — 1 — o) =
0= yo(a1(1+ B2) — (1 + B2)) = yo(as — 1)(B2 + 1) = 0 therefore

1
< 1 > where a; # 0,1, B3 # 1,

0
1
< ) where a1 = 1,
Yo

1
a1 where a3 # 0, 1,8, = 1.
Yo

For As 2 we have the system :

o] — LL‘QO(% = O7
1 - =
(8.6) o0 ’
Toxy — 1 =Y,
xoa%—xoal—al—i—l =0
Then
1
where o7 = 1.
Yo
For Ag > we have the system :
—z004 + a1 + Yo =0,

—a1Yo + Yo — Lo =0,
—yoa1 — T =0,

8.7

(8.7) a1zo + 1 =0,
—yood + Yooy + P =0,
Toa} —xoon — a1 — Yo +1 =0,

Applying the second and third equations we have yo = 0 so using the fifth equation we get 1 = 0 and from the
first and sixth equations we have zg = a% where a7 # 0 Hence

1
( 061 ) where 51 =0, a3 # 0.

For A7)2
—3:004% + yoa1 + a1 =0,
Yo — xoon +1 =0,
e — 1 =0,
(8.8) Yo — To — Toaq +
—X0 =V,
Yoo — yooﬁ =Y,
xoa% —Yoa1 —xpp —a1 —yYo+1 =0,
0
1 where a7 =0, 1.
For Ag o we have the system :
o] — 3:004% =0,
(8.9) Yoo — Yoo =0,

road —x001 — 0 +1 =0,
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From the first and third equations we have zy = o% where ay # 0 by the second equation we get yoa1(1—a1) =0

then
1
< 0(‘)1 > where a1 # 0, 1.

< ! ) where o = 1.
Yo

For Ag o the fifth equation in the system (8II) not hold so there is no quasiunit in this case.

For Ajp2 we have the system :

y0+1 :Ov
—X0 =0

(1)

For Aq1,2, Aiz,2 the fifth equation in the system (81)) not hold so there is no quasiunit in these cases.

(8.10)

8.3. Char(F) = 3.. For A; 3 we have the system :

—T0f + Yooaa1 + a1 — Yo — 2yov2 — T — To2B1 + Yoaa S =0,
Yos — Toa g + g — Yo — Yo Qg — Toa P =0,
y0a§ + Yoo + Tpae — roian + o + Toag — Yooy — xoagfr +1 =0,
(8.11) ~%o0z + oy =0,
Yoor — Yo — 2yoP1 — o1 + B1 =0,
T + yoa1 — Yoooa — a1 + 2yoaz + Toa2f1 — Yoo P =0,
Lo — Toa — Yoo — Q1 + Yooz + ToP1 + ToazB — yoauf1+1 =0,
_yOO‘% — XoQg + Toa g — Qg + Yoi g + ToaaBi =0

From the first, seventh ,third and eighth equations we get yg = 2. Now, applying third and eighth equations;
the first and sixth equations respectively we have zga; = —1 — 22 and 2081 = 2(a; — 1). Using the fourth
equation we get roas — ay = 0.

If s = 0 then oy = 0, zg = —a% where a; # 0 (o cannot be zero in this case) and 8; = —2a; (g — 1) then

1

( _2‘3‘_1 ) where oy #0, ag = a4 =0, f1 = —2a1(a; — 1)

If ap # 0 then @ = 52 so
2oB1 = 2(a1 — 1) = g = 22218 and
Toli1 = -1 - 26!2 — 2&% + a% + o0y — aiﬁl — 0. Therefore

aa ag — ayfh 3 2 2
0‘22 where @) = ——, 205 + o5 + sy — a1 =0
(€5)]

For A 3 we have the system :

—z00d + a1 + Yo =0,
Ba2yo — Yo — o1 =0,
—yoa1 — Tof1 =0,
oo — 21032 + 1 =0,
—2yoad + yofoar — yo — xoB1 + B1 — yoB2 =0,
—Yof1 — xo1 B2 + B2 =0,
Toai — xoon —aq — yofi +1 =0,
ToB1 — Yol =0

(8.12)
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From the second and eighth equations, the first and seventh equations, respectively we get yo = 0, ¢ = 0%
where a; # 0 then 81 =0, 82 = «a; therefore

1
< 661 ) where a1 # 0, 51 =0, B2 = ay.

For Az 3 we have the system :

—2y0 — ToP1 =0,
Yo +1 =0,
Yo + 2o — 2P + 1 =0,
(8.13) —B2yo —yo —xof1 + 1 =0,
—B2y0 + 2yo + xof1 + P2 =0,
Yo+ xof1 + 1 =0,
—yo — 2o — 1 =0

Using the second, seventh and sixth equations we get a contradiction.

For A4 3 we have the system :

o] — IQO[% =0,
-2 2 _ _ -0
(8.14) Yooi + YoB2c1 — Yo — Yo 2 :
B2 — xou1 B2 =0,
zoaf —xoar — oy +1 =0

Applying the first and fourth equations we get zo = o% where oy # 0, the second equation implies yo(a? +
Baar —1—B2) =0 = yo((a? — 1) + Ba(a1 — 1)) = yo(a1 — 1)(c1 + 1 + B2) = 0 therefore

1
< 0(‘)1 ) where a1 # 0,1, B2 # —ag — 1,

1
< ) where a1 = 1,
Yo

1
( at ) where a1 # 0,1, B2 =0— a7 — 1.
Yo

For A3 we have the system :

o — xoa% =0,
- 1 =0
(8.15) o+ ’
roo] +xo1 —ag —1 =0,
3:004% —roap —ap+1 =0.
Then
1
where o7 = 1.
Yo
For Ag 3 we have the system :
—zpad + o1 + yofu =0,

—a1y0 + Yo — Tofh =0,
—yoa1 — oS =0,
—2x9+ 1 =0,
Yoo + B1 =0,
zo0f — 001 —a1 —yofi+1 =0,

(8.16)
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Applying the second and third equations we have yo = 0 so using the fifth equation we get 1 = 0 and from the

fourth equation we have xy = —1 then a; = —1 Hence
-1
0 where 51 =0, a; = —1.
For A7 3 we have the system :
—z051 =0,
Yo +1 = 07
(3.17) oomil =0
ﬂl - Oa

—yo+xB1+1 =0

Using the first, second and fifth equations we get a contradiction.

For Ag 3 we have the system :

ap — 3:004% =0,
(818) Yol == O,
Tt —x001 —p +1 =0,

From the first and third equations we have zy = o% where a1 # 0 by the second equation we get yp = 0 then

1
( 0(‘)1 > where a1 # 0.

For Ag 3 the fifth equation in the system (8I]) not hold so there is no quasiunit in this case.

For Ajp3 we have the system :

(8.19) yo+1 =0,

(%)

For Aq1,3, A12,3 the fifth equation in the system (8] not hold so there is no quasiunit in these cases.

We summarize the results in Table [ (See Section APPENDIX).

Remark 8.2. In APPENDIX the following must be taken into account:

e In Table[D only the algebra A4(1,1) has infinitely many left ideals;

o In Table[d only the algebras Ay 2(1,1) and Ay 3(1,1) have infinitely many left ideals;
o In Table[d only As(%,1) has infinitely many right ideals;

o In Table[f] only As2(1) and As3(—1,0) have infinitely many right ideals.
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SUBALGEBRAS, IDEMPOTENTS, IDEALS AND QUASI-UNITS OF TWO-DIMENSIONAL ALGEBRAS

Table 1: Nontrivial

9. APPENDIX

ideals, Char(F) #

2,3.

P =

(04451 — Qg (1 — al))2+(2a1a4 — Qg (20(2 =+ 1)) ((20&2 + 1) 51 — 201 (1 — Ocl)) .

Alg. No One Two
left ideal left ideal left ideals
as =0, ag #-1/2, 0 as =0, ag #—-1/2, 0
By # (1*a1)((22(¥11@12;r3a1@2) B = (1*(¥1)(2a1+a22+3(¥1(¥2) oy # 0, )
as+1) (202 +1) ar =1+ (202+1)
as =0, a1 #1, as #0, a1 = 12+ %7 By = a2(2a2¢(f)4 '
az =—1/2 By = mﬁl)mf:gfrwwl)7 o — _@ ’
P;é07 0447507 PZO7 0547507
o1 £ 1+ Qo i) | g g Gaat)? aaGapin)
an £ 0, o =1+ Lozt =1, as=—1/2, a1 =0, a1 =1,
Ay B # (2“2“)(2“52“274“4“1)7 ay =0, f1=2 ar = —1/2, B1 #2
04455070417514-%, ag =aoa =0 ag =a2 =0
ap = 2208e2tl) g, o c2lloan) A # 2a1(1 — an) fr=2a1(1 —an)
B1#£0, a1 =1 ar=1 =0
a # 1,
W mne
Bi+a1—1=0 B1=0
a1 #1, fe=a1, f1 #0
Ag 1—252—451750 1—2/32—4/31:0 -
Ay — ar £ 1 ar =1, B2 # a1
As — + -
041:07517507 04121751:0, 1
Ao a1 #0,3, Bl # @ £0,L, = “=3z f=0
Az B # 0, 61 =0, -
As — a1 75 0 a1 = 0
Ag - + -
Aio — + -
A1 + - -
A1z — + -

31
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TABLE 2. Nontrivial left ideals, Char(F) = 2, 3.
No One Two
Alg. . . .
left ideal left ideal left ideals
as =0, ag #0, as =0, as #0, as #0,
062(1—041)2—51750 052(1—051)2—51 =0 052251:0
Aio azay # 0 oy £ 0 o —0
0387+ a3(1—n)® + i #0 | 3B+ a3(1—a1)® +asf =0 P
aiBi #0, az =0 ar=0, a2 =0, B1 £0 b=
Az, (i + 81 —an) + 51 #0 (el + 631 —1)+ 51 =0 -
A3,2 051751 041:1752:1 061:1752751
A472 — 041751 a1:1, al—ﬂg#o
As 2 — + —
A672 a1 + ,B% 75 0, ap + B% =0,
A7,2 a1 75 07 — a1 0
Ag,z — a1 75 0 a1 = 0
Ag 2 - + —
A2 - + —
A2 + — _
Aij22 — + —
054:07 04275071 044—0 0427501
B # (1*?21)(2a1;ra2) By = (I—o) (20 tag) o # 0,
ag+1) (2a5+1)2 . ar =1+ (2a241)%
@i #0, ap =1+ Gzt _ 02C004] 7
ar =0, a1 #1, az =1 B = (2a2+1)(2a§+a2—aia1) pr = 20y
of ’ az = —(a4 + 1)
P;ﬁO Oé47£0 .P:O70447£07 o =0
o1y Gl ealgogtd | gy g1y Gopt? eatiensn | %70
044750,041:12-1-%, ar =1, ap =1, as=1, B #2
A3 B # (2a2+1)(2a22+a27a4a1), as =0, f1 =2
g
ag 0, ap #1+ 2a2+1) ar=az =0 ar=az =0
ap = gafiﬂ)v p1 # m(l al) pr # 201(1 — o) fr=2a1(1 — an)
B1#0, a1 =1 a1=1, =0
a;¢1752¢a17 ar #1, B2 # o, Ba=a1#1, 1 =0
Ay fitan—170 B tar—1=0
) Ba=a1#1, f1 #0
A3,3 1—252—51750 1—252—51:0 —
Asz a1 #1 a1 =1, fa#m
As 3 - + —
A6,3 o « :27 b Zé07 @ __17 512:_07 -1, /1 =0
17’507 1,5175(11 a1750, 1, ,31—041
A7 B1 #0, B1 =0, -
Ag,g (e73] 75 0 a1 = 0
Ag 3 + - -
Ato3 - + -
A3 - + -
A2z — + —
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TABLE 3. Nontrivial right ideals, Char(F) # 2, 3.

P = (a451 + al(ag + 1))2 + az(ag + 1)(—4a261 — 404% + 2a1) + a4(4a2a151 — 2201 + 4(a1 — l)a% + al).

Alg. No One Two
right ideal right ideal right ideals
g = 0, vy = O,
OLQ#O,—l OZQ#O,—l
B 7& a1 (2az+a;—3aiag) ﬁ _ a1(202t+on—3o ) Qy # 0,
1 4a3 1 4a3 ) = % + Oéz(f;2+1)’
ay = ag =0, ay=a; =az =0, o # o 4
a 7£ 0 ﬂl - _% Bl _ _%11((¥2+1)
(e %] 75 0,2 (0% 75 0,2 4
a1 # 3_27 %_’_ az(f(zw“l)7 aq # Z_i’ % + az(iiﬂ)’
P#0 P=0
Al Q4 75 2,2 Qg 7£ (()172 ag =01 =ag =0,
a1 =32 al:a_;’ Bi# -1
5 7& 042(062+206;£4044061+1)7 B = ag(a2+2a4a§4a4a1+l)
Zj i 2’_’_ az(((z-ﬁ-l)7 oy =0, ay =0,
a2 7£ 70‘47 a2 oc_l(;a —1) a2 ;]i’Qa —1)
B, + e (ert1) pr# —=F5— pr =5
p1 # 0, B2 # 0,
f2 =0 p1=0
o # 3, o =3,
Aa ﬂz # 0, , o # 1, B2 # 0,
S 52(22104:1 %’1) #0 [333& 0, 2 pr=0
By £0, BT — B2(200 —1)* =0
p1#0
Az B3 —2B2—4B1 #0 B3 —2B; —4B1 =0 -
Ay - B2 #0 Ba=0, a1 # 3
As — + —
Oélzl,ﬂlﬁo, 041:1,5120,
A6 a1 }é 1,0,
B2 —4a? + 403 40 0‘57“’2’ . o = =0
o =0, B £0 87 —4doy +4o7 =0
A7 BL# % Br=1 —
Ag — (651 75 1 a1 = 1
Aqo - + —
Ay + - -
Az - + -

33
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TABLE 4. Nontrivial right ideals, Char(F) = 2, 3.

Alg. No One Two
right ideal right ideal right ideals
o 70, oy =ay =0,
A f: =0, a1 #0, az #1 o= <a2+1)2<1231>2—ﬂ%a3 as #1
s #0 as=a; =0
o 7&_(&2“)2(1;21)27@&2 ag =0, a1 #0, as =1 02211 ;
Az 2 B1— P35 #0 B1— B3 =0 —
Az 2 B2 #0 — B2 =0
Ag2 - B2 #0 B2 =0
As 2 — + -
Ag 2 B1 #0, B1 =0, —
Az ay # 0, a; =0 —
Agyz - aq 7é 1 —
Ag 2 - + —
Ajo,2 — + -
Aq12 + - —
A2 2 — + -
064:0, 042750.,71 044:0, 042;50,71
81 a1(2<z‘22+a1) B1 = a1(2z2%+a1) oy # 017 i)
a; 0, as =az =0 a4:a1:a2:0,51:7i a1:§+T’
PZ0, as Z0, P =0, as Z0, az 7# aq
o3 ag(ag+1l) o3 ag(ag+1) B1 = —c1leatl)
(!1#(}—4, —1+T a1;éa—4,—l+T x4
a3 pws
(¥47’50720412072U a47£0,2a1:a—i, Qg =) = ay =0,
Avs B1 # az(a2+2a;1‘2:a4a1+1)_’ 81 = az(a2+20¢;‘2:a4a1+1) B1 # —1
ag # g, ag #0, a4 =0, ay =0,
a1:71+%, a2:¥1, a2:¥1,
By # —oaloztl) P # —a1(2a1 — 1) fr=—a1(2a1 — 1)
B1#0, B2 =0 B2 #0, 1 =0
oy # —1, B2 £0, a7 ol e =1,
Ao 5 82~ By(2a3 —1)2 #0 53 # 0, ) B2 # 0,
! ﬁl — [52(2042 — 1) =0 B1 =0
ay = —1, B2 7é 0, B1 75 0
Az B3 —2B2 —P1#0 B3 —2B2 —PB1=0 -
Auas — B2 # 0 B2 =0, oy #—1
As.3 - + =
Ags Otlzlz-,ﬁlj'fﬂ,s ay =1, f1 =0,
s ay #0,1, Bf —ai +a] #0 a; # 1,0, o= B =0
G =05 Z0 5 obtat=0 L=
A73 B1#1 p1=1 —
Agy3 — aq ;é 1 a1 = 1
Ag 3 - + =
Aio.3 - + =
A113 - + =
Ai23 — + —
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TABLE 5. Two-sided ideals, Char(F) # 2, 3.

Algebra No Ideal One Ideal Two Ideals
a4 # —ap — 20 or ay = —a1 — 200
Ay _
B # 200 + ap f1 =201 + s
a1 = 1 o = 1
B # 0, By — ﬂ’ —0
By =0 1 2
(651 75 l71, 1
A 5124-0421—1750 ar £ 11, a1f§2=§,
fa=1-aq f2=1-au, b=
061252:%, BE+ar—1=0
B #0
PoF#1l—
1
e v o -
As — + —
Ar + — —
Ag — + —
Ao - + -
Ay + — —
Az - + -

35
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TABLE 6. Two-sided ideals, Char(F) = 2, 3.

Algebra No Ideal One Ideal Two Ideals
Ao ay # oy or B # ao ay =1, f1 = -
l—a1+B2#0 l—a1+62=0

Az 2
' Ba=1—0 Ba=1-—a -
B2 #1—a
As o ap #lor By #0 - ap =1, fo=0
o Ay a1 #1, fo=1—-0y
é\ — hZl-m ar =1, Bo=0
g As 2 — + -
= Ag 2 + — _
© Az + — —
Ag2 — + -
Ag 2 - + -
A1p,2 — + —
At1,2 + — _
A122 — n _
oy # —a1 — 2a or ay = —a1 — 209
Ai3z _
B1 # 201 + o f1 =201 + ap
a; =1
Bi #0, PR
B2 =0 P
a1 # %, 1, 1
A2,3 ﬁ%+a1—17é0 o l’L ;11 52 29
fa=1—a 2
e ar =B = 3, %:1_%’
/II\ B #0 Bi+a1—1=0
= By #1— o
S =
5 Az 3 Bl#ﬁgl;éﬁlg_l Bi=-1, B2=1 -
Ag3 - = #ﬂi;fi :0141 B a=1, 8 =0
As3 - + -
As3 + — —
A3 + — —
Ag s — + -
Ag 3 + - -
A10,3 — n _
Aq13 — n _
Ao - + -
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TABLE 7. Left quasiunits, Char(F) # 2,3, Char(F) = 2 and Char(F) = 3.

Algebras Left quasiunits
Al (ah _2a1(a§511)+51 — 20(22%171) , 51)7 Bl 7& 0 %61 + 2e9

A, (1,a27 M,O)

—(1 4+ 2a9)e; + 2eq

1

Char (F) =3

o As(aq,0,01), a1 #0 el
\?\ Ay(1, Ba) e1+teg, t€F
= Ayg(ar, B2), a1 # 0,1, B2 # 201 — 1 a%el
g Ay(ar,20q0 — 1), a1 #0,1 aoe1ttey teF
8 As(1) e1+tea, teF
Ag (3,0) 2e1
Ag(a1)7 ay # 0, % O%el
Asg (%) 3e1 +teg, t€F
Ao —€2
Al,g(a170,044,0)7 (e%) 750 _(%1 1
Az 2(aq,0,P2), ag #0 (%16’1
Az 2(1, B2) €2
~ Aso(aq,1) €2
I A472(1752) e1+teg, t €F
= Ay, B2), a1 #0,1, Ba # 1 e
E A4,2(04171), a; #0,1 O%el +tey, tEF
3 As2(1) el +tey, teF
As,g(ah 0) ap #0 O%el
Az2(0), A72(1) €2
Ago(aq), a1 #0,1 (%16’1
Ag2(1) e1+teg, teF
Aj0,2 €2
Az (0417 al(lﬁjm) -3 al(lﬁ_{yl)Q — 751), pr#0 L%ey + 2ey

B1

A1,3 (17 2, %7 0)

(OLQ — 1)61 + 262

Az 3(01,0,a1), a; #0

1
[o5] 61

Ags(ar, =1 —aq),a1 #0,1

0%161 +tey, t€F

A4=3(a1752)3a1 7£ O, 1, 52 3& —1 - oy

1
[o5] 61

Ay 3(1, B2) el +tey, teF

A573(1) e1+tey, t€F
A673(—1,0) —e1
Ag"g(al), a1 7§ 0 %161

Ao

tey —ey, t€F
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