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ABSTRACT. We show that any local derivation on the solvable Leibniz algebras with
model or abelian nilradicals, whose the dimension of complementary space is maxi-
mal is a derivation. We show that solvable Leibniz algebras with abelian nilradicals,
which have 1-dimension complementary space, admit local derivations which are not
derivations. Moreover, similar problem concerning 2-local derivations of such algebras
are investigated and an example of solvable Leibniz algebra given such that any 2-
local derivation on it is a derivation, but which admit local derivations which are not
derivations.
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1. INTRODUCTION

In recent years non-associative analogues of classical constructions become of interest
in connection with their applications in many branches of mathematics and physics. The
notions of local and 2-local derivations are also become popular for some non-associative
algebras such as Lie and Leibniz algebras.

The notions of local derivations were introduced in 1990 by R.V.Kadison [II] and
D.R.Larson, A.R.Sourour [I2]. Later in 1997, P.Semrl introduced the notion of 2-local
derivations and 2-local automorphisms on algebras [10]. The main problems concerning
these notions are to find conditions under which all local (2-local) derivations become
(global)derivations and to present examples of algebras with local (2-local) derivations
that are not derivations.

Investigation of local derivations on Lie algebras was initiated in papers in [5] and [9] .
Sh.A.Ayupov and K.K.Kudaybergenov have proved that every local derivation on semi-
simple Lie algebras is a derivation and gave examples of nilpotent finite-dimensional
Lie algebras with local derivations which are not derivations. In [2] local derivations
of solvable Lie algebras are investigated and it is shown that in the class of solvable
Lie algebras there exist algebras which admit local derivations which are not ordinary
derivation and also algebras for which every local derivation is a derivation. Moreover,
it is proved that every local derivation on a finite-dimensional solvable Lie algebra with
model nilradical and maximal dimension of complementary space is a derivation. In [6]
local derivations and automorphism of complex finite-dimensional simple Leibniz alge-
bras are investigated. They proved that all local derivations on a finite-dimensional
complex simple Leibniz algebra are automatically derivations and it is shown that fili-
form Leibniz algebras admit local derivations which are not derivations.

Several papers have been devoted to similar notions and corresponding problems
for 2-local derivations and automorphisms of finite-dimensional Lie and Leibniz alge-

bras [3,[6,7,9]. Namely, in [7] it is proved that every 2-local derivation on a semi-simple
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Lie algebra is a derivation and that each finite-dimensional nilpotent Lie algebra, with
dimension larger than two admits 2-local derivation which is not a derivation. Con-
cerning 2-local automorphism, Z.Chen and D.Wang in [9] prove that if £, is a simple
Lie algebra of type A;, D; or Ey, (k = 6,7,8) over an algebraically closed field of char-
acteristic zero, then every 2-local automorphism of £, is an automorphism. Finally,
in [3] Sh.A.Ayupov and K.K.Kudaybergenov generalized this result of [9] and proved
that every 2-local automorphism of a finite-dimensional semi-simple Lie algebra over an
algebraically closed field of characteristic zero is an automorphism. Moreover, they also
showed that every nilpotent Lie algebra with finite dimension larger than two admits
2-local automorphisms which is not an automorphism.

In [§], [15] Sh.A.Ayupov and B.B.Yusupov investigated 2-local derivations on infinite-
dimensional Lie algebras over a field of characteristic zero. They proved that all 2-local
derivations on the Witt algebra as well as on the positive Witt algebra are (global)
derivations, and give an example of infinite-dimensional Lie algebra with a 2-local
derivation which is not a derivation.

In the present paper we study local and 2-local derivations of solvable Leibniz alge-
bras. We show that any local derivation on solvable Leibniz algebras with model or
abelian nilradicals, whose the dimension of complementary space is maximal is a deriva-
tion, but solvable Leibniz algebras with abelian nilradical, whose have 1-dimension com-
plementary space admit local derivations which are not derivations. Moreover, similar
problems concerning 2-local derivations of such algebras are investigated.

2. PRELIMINARIES
In this section we give some necessary definitions and preliminary results.

Definition 2.1. A vector space with bilinear bracket (L, [-, -]) is called a Leibniz algebra
if for any x,y, z € L the so-called Leibniz identity

[ZL’, [yaz]] = H[L’,y],Z] - [[ZL’,Z],y},
holds.

Here, we adopt the right Leibniz identity; since the bracket is not skew-symmetric,
there exists the version corresponding to the left Leibniz identity,

[[{E, y]> Z} = [ZE, [ya Z]] - [y> [:L’, ZH :
Let £ be a Leibniz algebra. For a Leibniz algebra £ consider the following central
lower and derived sequences:

=L, LM =R LY k>,
LU= gl = [5[8175[8}]’ s> 1.

Definition 2.2. A Leibniz algebra L is called nilpotent (respectively, solvable), if there
exists p € N (¢ € N) such that £ = 0 (respectively, £4 = 0).The minimal number p
(respectively, ¢) with such property is said to be the index of nilpotency (respectively,
of solvability) of the algebra L.

Note that any Leibniz algebra £ contains a unique maximal solvable (resp. nilpotent)
ideal, called the radical (resp. nilradical) of the algebra.
A derivation on a Leibniz algebra L is a linear map D : £ — £ which satisfies the
Leibniz rule:
D(z,y)) = [D(@),y] + [0, D(y)] forany @,y € L. (2.1)
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The set of all derivations of a Leibniz algebra L is a Lie algebra with respect to
commutation operation and it is denoted by Der(L).

For any element x € L, the operator of right multiplication ad, : £ — L, defined as
ad,(z) = [z, 2] is a derivation, and derivations of this form are called inner derivation.
The set of all inner derivations of £, denoted by ad(L), is an ideal in Der(L).

For a finite-dimensional nilpotent Leibniz algebra N and for the matrix of the linear
operator ad, denote by C(z) the descending sequence of its Jordan blocks’ dimensions.
Consider the lexicographical order on the set C(N) = {C(z) | x € N}.

Definition 2.3. The sequence

< max C (:L'))
xEN\N?
is said to be the characteristic sequence of the nilpotent Leibniz algebra N.

Definition 2.4. A linear operator A is called a local derivation, if for any = € L, there
exists a derivation D, : £ — L (depending on z) such that A(zx) = D,(z). The set of
all local derivations on £ we denote by LocDer(L).

Definition 2.5. A map V : £ — L (not necessary linear) is called a 2-local derivation,
if for any x,y € L, there exists a derivation D, , € Der(L) such that

V(l’) = Dw,y(x)v V(y) = Dm,y(y)'

2.1. Solvable Leibniz algebras with abelian nilradical. Let a, be the n-
dimensional abelian algebra and let R be a solvable algebra with nilradical a,. Take
a basis {f1, fa,- -, fn, T1, T2, ... 2} of R, such that {fi, fo,..., fn} is a basis of a,.
In [I] such solvable algebras in case of k = n are classified and it is proved that any
2n-dimensional solvable Leibniz algebra with nilradical a,, is isomorphic the direct sum
of two dimensional algebras, i.e., isomorphic to the algebra

Lo fi ozl =fi v fil =aif;, 1<j<n,

where a; € {—1,0} and ¢ is the number of zero parameters «;.
Moreover, in the following theorem the classification of (n + 1)-dimensional solvable
Leibniz algebras with n-dimensional abelian nilradical is given.

Theorem 2.6. [I/ Let R be a (n + 1)-dimensional solvable Leibniz algebra with n-
dimensional abelian nilradical. If R has a basis { f1, fa, - .., fu, x} such that the operator
ady|q, has Jordan block form, then it is isomorphic to one of the following two non-
1somorphic algebras:

[fisx] = fi+ fiyr, 1<i<n-—1,
R { fi,x] = fi+ fix1, 1<i<n—1, R, [frs @] = fu,
) el = fa ) [ fil=—fi— fin, 1<i<n-—1,
[, fu] = = fu-

In the following propositions, we present the general form of a derivation of the
algebras L;, R; and R,.

Proposition 2.7. [1] Any derivation D of the algebra L; has the following form:
D(f;) = a;f;, D(zj) = a;bf;, 1<j<mn,

where oj € {—1,0} and t is the number of zero parameters ;.



4 AYUPOV SH.A., KHUDOYBERDIYEV A.KH., YUSUPOV B.B.

Proposition 2.8. Any derivation D of the algebras Ry and Ry has the following form.:

Der(Ry) : D(fi) = Z Qj—iv1fj + o fi

j=it1

D( ) Z Oé] Z+1f]+alfz> 1§’l§n,
Der(Ry) : ol
D(x) ;ﬁgfj-

2.2. Solvable Leibniz algebras model nilradical. Let N be a nilpotent Leibniz
algebra with the characteristic sequence (my, ..., m), and multiplication table

Ny el el] = efH, 1<t<s, 1<i<m—1.

S

The algebra N,,, . usually is said to be model Leibniz algebra.

Theorem 2.9. [T]] An solvable Leibniz algebra R with nilradical N, . m., such that
DimR — DimN,,, .. m, =S, is isomorphic to the algebra:

([l el] = el,y, 1<t<s,1<i<m—1,
le}, x1] = i€}, 1<i<my,
R(Npy.mars) 1 % lebm] = (i —1)ef, 2<t<s,2<i<my,
[el, 2] = €, 2<t<s,1<i<my,
L [Ilveﬂ - 6%7
where {x1,...xs} is a basis of complementary vector space.

Proposition 2.10. [1j] Any derivation D of the algebra Der(R(Npy,...m.,S)) has the
following form:

D(e;) = ione] + anejyy, 1<i<m -1,
D(e},,) = miase},,,
D(e}) = ((i = D)on + By)ef + agely, 2<t<s, 1<i<m—1,
D(ey, t) :((mt_l)al‘l’ﬁt)efnt, 2<t<s,
D(z1) = —age].

Remark 2.11. Any derivation on the solvable Leibniz algebra R(Ny,, . . m.,s) is an inner
derivation.

3. LOCAL DERIVATION OF SOLVABLE LEIBNIZ ALGEBRAS

3.1. Local derivation of solvable Leibniz algebras with nilradicals R(N,,, ., $).
Now we shall give the main result concerning local derivations of solvable Leibniz alge-

bra R(th_..,msa S).

Theorem 3.1. Any local derivation on the solvable Leibniz algebra R(Np, .. . m.,S) 1S a
derivation.

Proof. Let A be a local derivation on R(Ny,, . m,,s), then we have

OIS MED 3 WEIRCE SR S

Jj=1 p=1 j=1 p=1 j=1
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Let D be a derivation on R(N,,

m1....ms, S), then by Proposition 2I0, we obtain

D(e}) = icye} + Biefiy, 1<i<mg —1,
D(ey,,) = miaum, ey,
D(ey) = ore] + bees, 2<t<s,
D(€l) = ((i — 1)Nip + pin)el +5z‘,t€f+1, 2<t<s, 2<i<my—1,
D(etnt):(( )€Zt+771t) mt? 2§t§s7
D(x,) = —76}.
Considering the equalities
A(IJ) = ij($])> 1<y <s,
Alel) = Du(el), 1<t<s 1<i<my,
we have
chxﬁZZd,’ff—z'aie%mieiﬂ, 1<i<m—1
=1 p=15=1
S S 17
Z Crlnl,]IJ + Z Z dmlij i mlamle}nl,
7=1 =1j=1
S s mp
LT+ ﬁ’zj’»eg’ = o} + b€l 2<t<s
j=1 p=1j=1
s s Mp
Yk + 3 S ditel = ((i = D) Ay + pag)el + Sigelyy, 2<t<s, 2<i<my
j=1 p=1j=1
S s Mmp
> Cfnwirg +> > Zi,,]ef = ((my — 1)§mp7t + Nyt )et €y 2 <t < s,
i=1 p=1j=
S s Mmp
doayri 4 30 >0 el = ey,
Jj=1 p=1j=1
s s Mp
> anzi+ Y0 Y b et =0, 2<i<n
\ Jj=1 p=1j=1

Form the previous restrictions, we get that

A( ) - dl 161 +dzz+lez+1’ I<i<m — 1?

— it t
= dyy, 1y €mys 2<t<s,

~—

t
677%

A(eml) = diﬂllyml my

Aley) = dt1t1 1+ dl 2‘32> 2<t<s,
(ef) = dyjel + ety 25t <s,
(
(

> BB

1 1

Consider
t,t t

Ale] +€h) = dyter + dyges + diliel + dibeb.

)

On the other hand,

A(6i + 63) = Del-i-et (61 + 6tl)

Detyet (e1) + D, 1+

(e =

= Qelget 61 + /Bel+et 62 + Meltet 61 + ﬁ61+e§€2

Comparing the coefficients at the basis elements e} and e}, we get Betqet =

t,t . . .
el ret = dy’p, which implies

2<t<s.
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Similarly, considering A(e} + e}) for 3 <i < my — 1, we have
Aley +¢;) = di 161 d} %eé dl 161 + dz z+1ez+1
=Dy 1(61 +e))=D el+tel 1(e7) + D1y e (ei)
= 1+61€1 + 5e1+e1€2 + Zael+ele + /Bel-l—elez—i-lu
which implies
dy} =idyy, di,=dyy, 3<i<mg—1.
From the equalities,
Aler +ey) = dyyer + dise; + dyse; + dyzes
= De}+e;(€1 +e) =D 1+e2(€1) + D (65)

_ 1 1
= errere] + Berierey + 20,1, €5 + ﬁe}+e;63,

and
Aler + ey,,) = dyyer +dyyey + ) o, e,
Aley + einl) = Deijer, (61 + eml) Deryen, (61) + Del+em1 (61 ) =
= Qelqel, 61 + ﬁ61+61 62 + MGl el | 61 )
we get that

dys = 2dyy, dy) . =midyy

mi,mi
Now for 2 <t <s 2§z’§m — 1, we consider
3 t
to, ot 1 bt t bttt tt t L1 1 11 1
Ae; +ey+ep) =d; i€t dz H—lez—i-l + dyyer + dyseg +dyjey + dyyes.
On the other hand,
to ot 1y t ot N (s t
Ale; +e1+ep) = De§+e§+e}(ei +et+e)=((i - 1)ae§+e§+e} + 77e§+et1+e},t)€z‘+
¢ t t
F Betret 4l €1 T Met et 4ol 1€1 T Bt yet 1e1€at
1 1
T Qetiet el €1+ Betpet el €
Comparing the coefficients at the basis elements e!, €} and e}, we get
, £t
elt+el+el — dl 1s (Z 1)a freltel + Net et +elt = dz v TNetqel el t = dl 1s
which implies
tt o 1, ,
Similarly, from

¢ ¢ 1 it tt ¢ tt ¢ 1,1 1 1,1 1
A(emt+€1+€1) dmtmt my d11€1 d12€2 d11€1 d12€2

=D b, el +el( me T eg + 61) = ((my — o, by, el tel Lt T, +e§+e},t)6fm+

t t 1
+ 77@5,% +e’i+e%,t61 + Beﬁnt+e§+e%e2 + aeﬁnt—i-e’i—i-e%el + Bemteﬁ—l—e’i—l—e% €9,
we get that
£t
dmt,mt — (mt_1>d _'_dll’ 2 StSS
Now, we consider
1 1,1 1,1
A1+ e3) = byyeq + dysey + dyses.
On the other hand,

1 1 1 1 1
A(zy +e5) = Dx1+e§ (1 +€3) = _ﬁxﬁ-e%el + 20‘:61—1-6%62 + 5:(:1-%-6%63'
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Comparing the coefficients at the basis elements e} and ef, we get 3, tel = d%:;n
—Burye) = 1 1, which implies
1,1 1,1
b1 1= d2,3 = _d1,2~
Thus, we obtain that the local derivation A has the following form:
Ale}) = idpyef + dysefy, L<i<m -1,
1,1
A(e mydy e,

) =
Alef) = ((i - 1)dl,l dt’t) +dy ;6§+1’ 2<t<s, 1<i<m—1,
Alel,) = ((mt — 1)dyy + dy <t <s,

Azy) = _dl 261

Proposition .10/ implies that A is a derivation. Hence, every local derivation on
R(Npy ...y, S) is a derivation.

) mt?

O

3.2. Local derivation of solvable Leibniz algebras with abelian nilradical. Now
we shall give the main result concerning local derivations on solvable Leibniz algebras
with abelian nilradicals.

Theorem 3.2. Any local derivation on the algebra L; is a derivation.
Proof. For any local derivation A on the algebra £;, we put the derivation D, such that:
D(f;) =a;fj, D(zj) =ajbif;, 1<j<n,
Then, we get
A(fj) = Dy (f;) = ajfj,  Alx;) = Da(x;) = a;b; fj.
Hence, A is a derivation. OJ

In the following theorem, we show that (n + 1)-dimensional solvable Leibniz algebras
with n-dimensional abelian nilradical have a local derivation which is not a derivation.

Theorem 3.3. (n + 1)-dimensional solvable Leibniz algebras Ry and Ry (see Theorem
[2.8), admit a local derivation which is not a derivation.

Proof. Let us consider the linear operator A on R; and Rs, such that

A (Z giei + £n+1x> = 2£1€n—1 + £2€n-
i=1

By Proposition 2.8] it is not difficult to see that A is not a derivation. We show that,
A is a local derivation on R; and Rs.
Consider the derivations D; and D5 on the algebras R; and R, defined as:

D, (Z §iei + §n+11'> = &16p—1 + &6y,
i=1
D, <Z iei + fn+1$> = &16,.

i=1

Now, for any £ = > &e;+&, 12, we shall find a derivation D, such that A(£) = D(¢).
i=1
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If & =0, then
A(§) = 0= Ds(¢).

If & # 0, then setting D = 2D, 4+ tD,, where t = we obtain that

5 )
A(E) = 28161 + &aen = 261601 + (28 +t61)en = 2(&1en—1 + §26p) + 10 =
=2D1(&) +tDy(§) = D(¢).

Hence, A is a local derivation. 0]

4. 2-LOCAL DERIVATION OF SOLVABLE LEIBNIZ ALGEBRAS

.....

t=14=1

Lemma 4.1. Let V be a 2-local derivation of R(Np,
VvV =0.

masS), such that V(q) = 0. Then

.....

Proof. Take an element a,¢ € R, such that

Vig) = lage. q], V() = [age, &
Then

0=VI(q) = [q,aqe] = ZZ Z’chx“LZZd

t=1 i=1 i=1 t=1 i=1

s me—1

_chzel+Zch i—1)e; +ZZCM—1 )e; +sz16z+1>

t=2 =1 t=2 =1 t=1 =1
which implies, c, =d! —Ofor all 1 <z <n
Thus, a,¢ = Z 161+Zd161+22dtf

t=2 t=21=2

Consequently, for any element € € R(Npy....m.,S), we have

.....

= oo 35wt St St 3550

t=1 i=1 =2 t=2 =2

Theorem 4.2. Any 2-local derivation of the solvable Leibniz algebra R(N,y,,
a derivation.

Proof. Let V be a 2-local derivation of R(Ny,, . m.,s). Take a derivation Dg , such that

.....

V(q) = Dey(q).

Set Vi =V — D¢ ,. Then V; is a 2-local derivation, such that V;(q) = 0.
By Lemma [T we get that Vi = 0. Hence, V = D¢, i.e., V is a derivation. O
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4.2. 2-local derivation of solvable Leibniz algebras with alebian nilradical.
Now we shall give the result concerning of 2-local derivations of solvable Leibniz algebras
with abelian nilradical.

Theorem 4.3. The algebra L; admits a 2-local derivation which is not a derivation.

Proof. Let us define a homogeneous non additive function f on C? as follows

2
Z_la 1f227é07
= 22
flen, ) {o, if 2 = 0,

where (21, z9) € C2,
Define the operator V on L;, such that

V(&) = f(&, &) 1 (4.1)

n n
for any element § = 3 & fi + > §nyii,
i=1 i=1
The operator V is not a derivation, since it is not linear.
Let us show that, V is a 2-local derivation. For this purpose, define a derivation D

on L; by

D(§) = (a&1 + b&ni1) f1-
For each pair of elements £ and 1, we choose a and b, such that V(§) = D(§) and
V(n) = D(n). Let us rewrite the above equalities as system of linear equations with
respect to unknowns a, b as follows

{gla + gn-i-lb = f(gla €n+1)> (42)

Mma + Nur1b = f(01, Nnt)-
Case 1. &1,01 — &1 = 0. In this case, since the right-hand side of the system
(A2) is homogeneous, it has infinitely many solutions.

Case 2. {111 — & # 0. In this case, the system (£2]) has a unique solution.
0]

Proposition 4.4. Any 2-local derivation of the algebra Ry is a derivation.
Proof. Let V be a 2-local derivation on Ry, such that V(f;) = 0. Then for any element
€= > &fi +&x € Ry, there exists a derivation Dy, ¢(€), such that

V(f1) = Dpe(f1), V() = Dy e(§).

Hence,
0= V(fl) = Dfl,g(fl) = Zaifia
i=1

which implies, a; = 0 for 1 <7 < n.

Consequently, from the description of the derivation R;, we conclude that Dy, = 0.
Thus, we obtain that if V(f;) =0, then V = 0.

Let now V be an arbitrary 2-local derivation of R;. Take a derivation Dy, ¢, such
that

V(fi) = Dpe(f1) and V(§) = Dy, ().
Set Vi =V — Dy, ¢. Then V; is a 2-local derivation, such that V;(f;) = 0. Hence
Vi(§) =0 for all £ € Ry, which implies V = Dy, ¢. Therefore, V is a derivation. O
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Theorem 4.5. Solvable Leibniz algebra Ry admits a 2-local derivation which is not a
derivation.

Proof. The proof is similar to the proof of Theorem [4.3] O
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