
Structure of principal one-sided ideals
James East∗

Centre for Research in Mathematics and Data Science,
Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia.

J.East @ WesternSydney.edu.au

Abstract

We give a thorough structural analysis of the principal one-sided ideals of arbitrary semigroups, and
then apply this to full transformation semigroups and symmetric inverse monoids. One-sided ideals of
these semigroups naturally occur as semigroups of transformations with restricted range or kernel.
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1 Introduction

One- and two-sided ideals play an important role in the structure theory of semigroups. Principal ideals
in particular are directly involved in the definition of Green’s relations [18], and also feature in results on
sandwich semigroups and variants [2,6,7,19]. Moreover, many interesting semigroups are one-sided ideals in
other naturally occurring semigroups. For example, the semigroup T1 of all non-negative mappings of the real
numbers is a principal left ideal in the monoid S of all real functions, while the semigroup T2 of even functions
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(which satisfy the identity (−x)f = xf) is a principal right ideal of S. Indeed, if a denotes the function
R → R : x 7→ x2, then T1 = Sa and T2 = aS. The semigroups T1 and T2 are special cases of semigroups
of transformations with restricted range or kernel. Such semigroups have been studied extensively by many
authors, particularly from the Thai school of semigroup theory; see for example [12–14,28,29,32–35,39–50,52].

The main motivation of the current article is to provide a general framework within which to study
semigroups such as those above. Many of the results from the articles just cited follow from general results
proved below. The basic philosophy is to ask:

Given a semigroup S, and an element a of S, how does the structure of the principal one-sided ideals Sa
and aS relate to that of S?

Such questions have been considered extensively for two-sided ideals, and have led to some very interesting
studies. For example, the two-sided ideals of full transformation semigroups consist of all transformations
of bounded rank. Similar characterisations hold for other semigroups of (linear) transformations, endomor-
phisms and diagrams; for some studies, see for example [2–5,9,15–17,23,26]. In some ways, the structure of
a two-sided ideal I of a semigroup S is quite closely tied to that of S itself; for example, if S is regular, then
so too is I, and every one of Green’s relations on I is simply the restriction of the corresponding relation
on S [11]. In general, neither of these statements hold for one-sided ideals. As a visual demonstration of
this fact, let S be the full transformation semigroup of degree 5. The egg-box diagram of S is pictured in
Figure 2 (right), and some principal left and right ideals of S are pictured in Figures 3 and 4, respectively.
Although these are clearly more complicated than for S itself, certain patterns do seem to emerge. Some of
the general results we prove can be thought of as formal explanations of such patterns. Let us now summarise
the structure and main results of the paper.

Section 2 contains the preliminary definitions and background results we will need, including new results
in Section 2.5 on one-sided identity elements, and properties we call RI- and LI-domination.

Section 3 then gives a thorough treatment of an arbitrary principal left ideal Sa in a semigroup S. The
regular elements of Sa are characterised in Section 3.1, and Green’s relations in Section 3.2. A crucial role
in these sections is played by certain sets denoted P , P ′, P ′′ and P ′′′; for example, P and P ′ consist of all
elements x ∈ Sa for which x is L - or J -related (in S) to ax, respectively; when a is regular in S, we have
P ′′ = P ′′′ = Sa. In a sense, the main results of Sections 3.1 and 3.2 show that many structural questions
concerning Samay be reduced to the determination of these sets, a somewhat “lower-level” task; see especially
Theorems 3.2 and 3.8, and Corollary 3.9. Sections 3.3 and 3.4 identify a natural assumption on the element a
(called sandwich-regularity in [6]) under which a more detailed structural analysis may be carried out. In
this case, the set Reg(Sa) of all regular elements of Sa is a subsemigroup of Sa, indeed a right ideal, and
in fact Reg(Sa) is then precisely the set P mentioned above. When a is a sandwich-regular idempotent, the
structure of P = Reg(Sa) is closely related not only to that of S itself, but also to the regular monoid aSa.
There is a natural surmorphism (surjective homomorphism) P → aSa, which allows us to describe the
idempotents and idempotent-generated subsemigroup of Sa in terms of those of aSa (Theorem 3.13), and
describe the Green’s structure of P as a kind of “inflation” of that of aSa (Theorem 3.21; cf. Remark 3.22 and
Figure 1). The main results of Section 3.4 give lower bounds for the (idempotent) ranks of the regular and
idempotent-generated subsemigroups of Sa, and show that these are exact values when P is RI-dominated;
see especially Theorems 3.27 and 3.30. Finally, Section 3.5 shows how the whole theory simplifies under
an assumption stronger than sandwich-regularity, under which the regular monoid P = Reg(Sa) is in fact
inverse, and even equal to aSa itself (Theorem 3.33).

Section 4 gives the corresponding results for principal right ideals aS. These are direct duals of those of
Section 3, so only the main results are stated, and no proofs are given.

Section 5 then applies the results of Sections 3 and 4 to the principal one-sided ideals of the full trans-
formation semigroup TX , which is the semigroup of all self-maps of the set X. The flavour of the results
sometimes depend on whether the set X is finite of infinite. If a ∈ TX is a fixed transformation, and if we
write A and α for the image and kernel of a, then the principal one-sided ideals TXa and aTX are precisely
the well-studied semigroups

T (X,A) = {f ∈ TX : im(f) ⊆ A} and T (X,α) = {f ∈ TX : ker(f) ⊇ α}

discussed above; see Proposition 5.1. In Section 5.1, structural information concerning Green’s relations
and regular elements of T (X,A) and T (X,α) is deduced from the general theory, recovering some old
results and proving new ones; see Theorems 5.4 and 5.6. Section 5.2 thoroughly analyses the regular sub-
semigroups P = Reg(T (X,A)) and Q = Reg(T (X,α)), describing Green’s relations and the ideal structure
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(Theorems 5.9 and 5.10), calculating the sizes of P and Q (Propositions 5.15 and 5.16, and Corollaries 5.18
and 5.19), as well as their ranks (Theorems 5.24 and 5.27). Section 5.3 concerns the idempotent-generated
subsemigroups E(T (X,A)) and E(T (X,α)), characterising the elements of these subsemigroups (Theo-
rems 5.29 and 5.31), enumerating the idempotents (Proposition 5.32) and calculating ranks and idempotent
ranks (Theorem 5.33). Finally, egg-box diagrams are given in Section 5.4 (Figures 2–6) to illustrate many
of the results proved in Sections 5.1–5.3 in special cases.

Section 6 briefly discusses the situation for the principal one-sided ideals of the symmetric inverse mon-
oid IX . Here the strong results of Section 3.5 apply, and lead to quick proofs of old and new results concerning
the semigroups

{f ∈ TX : im(f) ⊆ A} and {f ∈ IX : dom(f) ⊆ A}.

The methods employed in this paper could be applied to a great many other semigroups of mappings,
such as partial transformations, linear transformations of vector spaces, or more generally endomorphisms
of independence algebras. It would also be interesting to investigate principal one-sided ideals of diagram
monoids such as the partition, Brauer and Temperley-Lieb monoids.

2 Preliminaries

In this section, we fix notation and give some background on semigroups; for more, see [1, 20, 22, 37]. For a
subset U of a semigroup S, we write 〈U〉 for the subsemigroup of S generated by U , which is the smallest
subsemigroup of S containing U , and consists of all products u1 · · ·uk for k ≥ 1 and u1, . . . , uk ∈ U .

2.1 Green’s relations and pre-orders

Let S be a semigroup. As usual, S1 denotes S if S is a monoid; otherwise, S1 denotes S ∪{1}, where 1 is an
adjoined identity element. Green’s pre-orders ≤L , ≤R , ≤J and ≤H are defined, for x, y ∈ S, by

x ≤L y ⇔ x ∈ S1y, x ≤R y ⇔ x ∈ yS1, x ≤J y ⇔ x ∈ S1yS1, ≤H = ≤L ∩ ≤R .

If K denotes any of L , R, J or H , then Green’s K relation is defined to be the equivalence ≤K ∩≥K .
Green’s D relation is defined to be the join (in the lattice of equivalence relations on S) of L and R: i.e.,
D = L ∨R is the smallest equivalence relation containing both L and R. It is well known that D = J if S
is finite, and that D = L ◦R = R◦L in any semigroup. Note that for any x, y, z ∈ S, x ≤L y ⇒ xz ≤L yz
and so also x L y ⇒ xz L yz; the latter says that L is a right congruence (i.e., an equivalence that is
invariant under right multiplication). Dual statements hold for ≤R and R.

If x ∈ S, and if K is any of L , R, J , H or D , we will write Kx = {y ∈ S : y K x} for the K -class
of x in S. Since D = L ◦R = R ◦L , as noted above, we have Dx =

⋃
y∈Lx Ry =

⋃
y∈Rx Ly for any x ∈ S.

If K is any of Green’s relations other than D , then the set S/K = {Kx : x ∈ S} of all K -classes of S has
a natural partial order induced from the pre-order ≤K on S, and we denote this partial order also by ≤K :
for x, y ∈ S, Kx ≤K Ky ⇔ x ≤K y. The ordering ≤J on J -classes is often denoted simply by ≤.

If T is a subsemigroup of S, then Green’s relations on T are not necessarily just the restrictions to T of
the corresponding relations on S; thus, we will sometimes write K S and K T for Green’s K relation on S
and T , respectively, with similar conventions for K S- and K T -classes, KS

x and KT
x .

We may picture elements of a D-class of a semigroup in a so-called egg-box diagram: R-related elements
are in the same row, L -related elements in the same column, and H -related elements in the same cell.
Group H -classes are usually shaded gray. When S is finite, we may draw all the D = J -classes in this
way, and indicate the ≤ ordering on these classes as a Hasse diagram. For some examples, see Figures 2–6.

2.2 Idempotents and regularity

An element x of a semigroup S is an idempotent if x = x2. We write

E(S) = {x ∈ S : x = x2}

for the set of all idempotents of S, and E(S) = 〈E(S)〉 for the subsemigroup of S generated by its idempotents.
Any finite semigroup contains an idempotent [22, Theorem 1.2.2], but this is not necessarily the case for
infinite semigroups.
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An element x of a semigroup S is regular if x = xyx for some y ∈ S; clearly idempotents are regular. For
x ∈ S, we denote by V (x) = {y ∈ S : x = xyx, y = yxy} the set of inverses of x. Note that if y ∈ S is such
that x = xyx, then z = yxy belongs to V (x), and then x R xz and x L zx, with xz, zx ∈ E(S). We write

Reg(S) = {x ∈ S : x = xyx (∃y ∈ S)}

for the set of all regular elements of the semigroup S; note that Reg(S) may be empty, but not for finite S
(since any finite semigroup contains an idempotent, as noted above). Any D-class D of a semigroup S
satisfies either D ⊆ Reg(S) or D ∩ Reg(S) = ∅: i.e., every element of D is regular, or else no element of D
is regular [1, Theorem 2.11]. Thus, if a D-class D contains an idempotent, then D is a regular D-class.

A semigroup S is inverse [27,36] if |V (x)| = 1 for all x ∈ S. Equivalently, S is inverse if S is regular and
its idempotents commute. Yet another equivalent condition is that every R-class and every L -class contains
a unique idempotent.

2.3 Rank and idempotent rank

The rank of a semigroup S is the cardinal

rank(S) = min
{
|U | : U ⊆ S, S = 〈U〉

}
.

The relative rank of S with respect to a subset A ⊆ S is the cardinal

rank(S :A) = min
{
|U | : U ⊆ S, S = 〈A ∪ U〉

}
.

If S is an idempotent-generated semigroup, then we may speak of the idempotent rank of S,

idrank(S) = min
{
|U | : U ⊆ E(S), S = 〈U〉

}
,

and the relative idempotent rank of S with respect to a subset A ⊆ S,

idrank(S :A) = min
{
|U | : U ⊆ E(S), S = 〈A ∪ U〉

}
.

We will need the following simple lemma concerning ideals; it is probably well known, but we give a simple
proof for completeness. Recall that a subset I of a semigroup S is an ideal if xy, yx ∈ I for all x ∈ I
and y ∈ S.

Lemma 2.1. Let T be a subsemigroup of a semigroup S for which S \ T is an ideal of S. Then

rank(S) = rank(S :T ) + rank(T ).

If in addition S and T are idempotent-generated, then

idrank(S) = idrank(S :T ) + idrank(T ).

Proof. We just prove the second part, as the proof of the first is similar. Suppose first that S = 〈X〉, where
X ⊆ E(S) and |X| = idrank(S). Put Y = X ∩ T and Z = X \ T . Because S \ T is an ideal of S, any
factorisation over X of an element of T can only involve factors from Y , so it follows that T = 〈Y 〉, and so
|Y | ≥ idrank(T ). Since also S = 〈X〉 = 〈Y ∪ Z〉 = 〈〈Y 〉 ∪X〉 = 〈T ∪ Z〉, we have |Z| ≥ idrank(S :T ). But
then idrank(S) = |X| = |Y |+ |Z| ≥ idrank(T ) + idrank(S :T ).

The converse may be quickly proved: if U ⊆ E(T ) and V ⊆ E(S) are such that T = 〈U〉, S = 〈T ∪ V 〉,
|U | = idrank(T ) and |V | = idrank(S :T ), then S = 〈T ∪ V 〉 = 〈〈U〉 ∪ V 〉 = 〈U ∪ V 〉, and it follows that
idrank(S) ≤ |U ∪ V | ≤ |U |+ |V | = idrank(T ) + idrank(S :T ).
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2.4 Left and right groups

Recall that a left zero band is a semigroup U with product uv = u for all u, v ∈ U . Recall that a left group
is a semigroup S isomorphic to a direct product U ×G, where U is a left zero band and G a group; in this
case, we say that S is a left group of degree |U | over G. It is easy to show that a semigroup is a left group
if and only if it is a union of groups and its idempotents form a left zero band. Right zero bands and right
groups are defined analogously. More information on left and right groups can be found in [1, Section 1.11].

Here we prove two basic results concerning left groups; there are obvious dual statements for right
groups, but we will omit these. The first follows from much stronger results of Ruškuc [38] (see also [6,
Proposition 4.11]), but we include a simple direct proof for convenience.

Lemma 2.2. If S is a left group of degree ρ over G, then rank(S) = max(ρ, rank(G)).

Proof. Without loss of generality, we may assume that S = U × G, where U is a left zero band of size ρ.
Since uv = u for all u, v ∈ U , clearly rank(U) = |U | = ρ. Since U and G are both homomorphic images of S,
we have rank(S) ≥ rank(U) = ρ and rank(S) ≥ rank(G), so that rank(S) ≥ max(ρ, rank(G)).

For the converse, write U = {ui : i ∈ I} where |I| = ρ, and let X = {xj : j ∈ J} be a generating set for G
with |J | = rank(G). For notational convenience, we will assume that |I| ≤ |J |; the other case is treated
in almost identical fashion. Without loss of generality, we may assume that I ⊆ J . For each j ∈ J \ I,
let uj be an arbitrary element of U . So also U = {uj : j ∈ J}. Now put Z = {(uj , xj) : j ∈ J}. Since
|Z| = |J | = ρ = max(ρ, rank(G)), the proof will be complete if we can show that S = 〈Z〉. To do so, let
u ∈ U and g ∈ G be arbitrary. Now, u = uj for some j ∈ J . Since G = 〈X〉, we have x−1j g = xj1 · · ·xjk for
some j1, . . . , jk ∈ J . But then (u, g) = (uj , xj)(uj1 , xj1) · · · (ujk , xjk) ∈ 〈Z〉, as required.

The next result is a little more general than we need, but there is no greater difficulty in proving the
stronger statement.

Lemma 2.3. Let U be a left zero band and M a monoid with identity e. Suppose T is a subsemigroup of
U ×M such that T contains U × {e}. Then T = U ×W for some submonoid W of M .

Proof. Put W = {x ∈M : (u, x) ∈ T (∃u ∈ U)}. Clearly W is a submonoid of M , and clearly T ⊆ U ×W .
Conversely, let (u,w) ∈ U ×W be arbitrary. By definition of W , there exists v ∈ U such that (v, w) ∈ T .
By assumption, (u, e) ∈ T . But then (u,w) = (u, e)(v, w) ∈ T , showing that U ×W ⊆ T .

2.5 One-sided identities and mid-identities

In our investigations of principal one-sided ideals, a crucial role will be played by one-sided identities and
mid-identities. Here we review the definitions, and prove some results that will highlight the importance of
these kinds of elements.

Recall that a right identity of a semigroup S is an element u ∈ S such that x = xu for all x ∈ S. Left
identities are defined analogously. We write RI(S) and LI(S) for the sets of all right and left identities of S,
respectively. Note that either or both of these sets might be empty, but if they are both non-empty, then S
is a monoid and RI(S) = LI(S) consists entirely of the (unique, two-sided) identity element of S.

Recall [51] that a mid-identity of a semigroup S is an element u ∈ S such that xy = xuy for all x, y ∈ S.
We write MI(S) for the set of all mid-identities of S. Again, MI(S) may be empty, but we note that MI(S)
always contains both RI(S) and LI(S). The next lemma contains some further basic results.

Lemma 2.4. Let S be a semigroup.

(i) If u ∈ MI(S) and if u = uv or u = vu for some v ∈ S, then u ∈ E(S).

(ii) If S is regular or if S has a left or right identity, then MI(S) ⊆ E(S).

(iii) If RI(S) 6= ∅, then MI(S) = RI(S).

(iv) If LI(S) 6= ∅, then MI(S) = LI(S).

Proof. (i). If u ∈ MI(S) and u = uv for some v ∈ S, then u = uv = uuv = uu. The u = vu case is similar.

(ii). This follows from (i), since if S is regular or if S has a left or right identity, then any mid-identity u
of S satisfies u = uv or u = vu for some v ∈ S.
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(iii) and (iv). We just prove (iii), as (iv) is dual. Suppose RI(S) 6= ∅, and let e ∈ RI(S). We have already
noted that RI(S) ⊆ MI(S). For the converse, suppose u ∈ MI(S), and let x ∈ S be arbitrary. Then since e
is a right identity and u a mid-identity, we have x = xe = xue = xu, so that u ∈ RI(S).

Remark 2.5. We need not have MI(S) ⊆ E(S) in general. For example, consider the semigroup S given by
the presentation 〈a : a3 = a2〉, so that S = {a, a2} with a 6= a2. Then MI(S) = S, while E(S) = {a2}.

Recall [31] that there is a natural partial order � on a regular semigroup S defined, for x, y ∈ S, by x � y
if and only if x = ey = yf for some idempotents e, f ∈ E(S). If e, f ∈ E(S), then it is easy to show that
e � f if and only if e = fef (which is itself equivalent to e = ef = fe).

Recall [6] that a regular semigroup S is MI-dominated if each idempotent of S is �-below a mid-identity.
The concept of MI-domination was used in [6] to describe the structure of sandwich semigroups, and it will
be used in the current article (in an equivalent form to be described shortly) to describe the structure of
principal one-sided ideals.

If S is a semigroup and e ∈ E(S) an idempotent of S, then eSe is a subsemigroup of S called the local
monoid of S with respect to e; as the name suggests, eSe is a monoid with identity e. MI-domination is
especially useful because of the next result, which is [6, Proposition 4.3], and which shows (among other
things) that MI-dominated semigroups are unions of local monoids corresponding to mid-identities, all of
which are naturally isomorphic.

Proposition 2.6. Let S be a regular semigroup, write M = MI(S), and suppose M 6= ∅.

(i) If e ∈M , then the map S → eSe : x 7→ exe is a surmorphism.

(ii) If e, f ∈ M , then the maps eSe → fSf : x 7→ fxf and fSf → eSe : x 7→ exe are mutually inverse
isomorphisms.

(iii) The set
⋃
e∈M eSe = MSM is a subsemigroup of S.

(iv) S is MI-dominated if and only if S =
⋃
e∈M eSe.

It turns out that the MI-domination property has an equivalent reformulation in terms of one-sided
identity elements if the semigroup has any of these. We say that a semigroup S is RI-dominated if every
element of S is ≤R-below a right identity of S. (Note that any element of any semigroup is trivially ≤L -below
any right identity the semigroup may contain.) LI-dominated semigroups are defined analogously.

Lemma 2.7. Let S be a regular semigroup.

(i) If RI(S) 6= ∅, then S is MI-dominated if and only if it is RI-dominated.

(ii) If LI(S) 6= ∅, then S is MI-dominated if and only if it is LI-dominated.

Proof. We just prove (i), as (ii) is dual. Suppose RI(S) 6= ∅. By Lemma 2.4(iii), we have MI(S) = RI(S).

(⇒). Suppose first that S is MI-dominated. Let x ∈ S be arbitrary; we must show that x is ≤R-below some
right identity. Since S is regular, x = ex for some e ∈ E(S). Since S is MI-dominated, e � u for some
u ∈ MI(S) = RI(S), and so e = ueu. But then x = ex = ueux ≤R u.

(⇐). Conversely, suppose S is RI-dominated. Let e ∈ E(S) be arbitrary; we must show that e is �-below
some mid-identity. Since S is RI-dominated, e ≤R u for some u ∈ RI(S) = MI(S). Since u is a right identity,
e = eu, while e ≤R u gives e = ux for some x ∈ S1. But then e = ux = uux = ue = ueu, so that e � u.

2.6 Transformation semigroups

Let X be an arbitrary set. A partial transformation of X is a function from a subset of X into X. The set
of all such partital transformations is denoted by PTX , and is a semigroup under composition, known as the
partial transformation semigroup over X. For f ∈ PTX , we write dom(f) and im(f) for the domain and
image (or range) of f , which are defined in the standard way; we also write

ker(f) = {(x, y) ∈ dom(f)× dom(f) : xf = yf} and rank(f) = |im(f)|
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for the kernel and rank of f . Note that dom(f) and im(f) are subsets of X, ker(f) is an equivalence on f ,
and rank(f) is a cardinal between 0 and |X|. As usual, if σ is an equivalence on a set Y , we write Y/σ for
the set of σ-classes of Y ; for brevity, we will write ‖σ‖ = |Y/σ| for the number of such σ-classes. Note that
for f ∈ PTX , we also have rank(f) = ‖ker(f)‖.

The full transformation semigroup and symmetric inverse monoid over X are, respectively, the subsemi-
groups TX and IX of PTX defined by

TX = {f ∈ PTX : dom(f) = X} and IX = {f ∈ PTX : f is injective}.

Green’s relations and pre-orders may easily be described on these monoids in terms of the parameters defined
above. The next result is easily established; see for example [7, Section 3.1]. If σ is an equivalence relation
on a set Y , and if Z ⊆ Y , we write σ|Z = σ ∩ (Z × Z) for the restriction of σ to Z.

Theorem 2.8. Let QX be any of the semigroups PTX , TX or IX . Then QX is a regular monoid. Further,
if f, g ∈ QX , then

(i) f ≤L g ⇔ im(f) ⊆ im(g),

(ii) f ≤R g ⇔ dom(f) ⊆ dom(g) and ker(f) ⊇ ker(g)|dom(f),

(iii) f ≤J g ⇔ rank(f) ≤ rank(g),

(iv) f L g ⇔ im(f) = im(g),

(v) f R g ⇔ ker(f) = ker(g),

(vi) f J g ⇔ f D g ⇔ rank(f) = rank(g).

Remark 2.9. There are simplifications of the ≤R relation in the case of TX and IX because of the form of
the elements of these monoids. In TX , f ≤R g ⇔ ker(f) ⊇ ker(g). In IX , f ≤R g ⇔ dom(f) ⊆ dom(g).

We also require some combinatorial data concerning Green’s classes. For cardinals µ, ν with ν ≤ µ, we
write

• µ! for the number of permutations of a set of size µ,

•
(
µ
ν

)
for the number of subsets of size ν of a set of size µ,

• S(µ, ν) for the number of equivalence classes with ν classes in a set of size µ.

Note that if µ is infinite, then µ! = 2µ,
(
µ
ν

)
= µν , S(µ, 1) = 1, and S(µ, ν) = 2µ if ν ≥ 2; see [25]. If µ

is finite, then µ!,
(
µ
ν

)
and S(µ, ν) have their usual meanings, as factorials, binomial coefficients and Stirling

numbers (of the second kind), respectively.
We write SX for the symmetric group over X, which consists of all permutations of X, and is the group

of units of PTX , TX and IX . If µ is a cardinal, then we may consider the semigroups PTµ, Sµ, etc., by
interpreting µ as an ordinal (and hence as a set).

If 0 ≤ µ ≤ |X| is an arbitrary cardinal, and if QX is any of PTX , TX or IX , we write

Dµ(QX) = {f ∈ QX : rank(f) = µ}.

The next result is easily established; see also [7, Corollary 2.4].

Proposition 2.10. Let X be a set, let QX be any of PTX , TX or IX , and let z = 1 if QX = TX or z = 0
otherwise. Then the D = J -classes of QX are the sets

Dµ(QX) = {f ∈ QX : rank(f) = µ} for z ≤ µ ≤ |X|.

These form a chain under the J -class ordering: Dµ(QX) ≤ Dν(QX) ⇔ µ ≤ ν. Further, if z ≤ µ ≤ |X| is
a cardinal, then

(i) |Dµ(QX)/L | =
(|X|
µ

)
,

(ii) |Dµ(PTX)/R| = S(|X|+ 1, µ+ 1), |Dµ(TX)/R| = S(|X|, µ), |Dµ(IX)/R| =
(|X|
µ

)
,
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(iii) |Dµ(PTX)/H | =
(|X|
µ

)
S(|X|+ 1, µ+ 1), |Dµ(TX)/H | =

(|X|
µ

)
S(|X|, µ), |Dµ(IX)/H | =

(|X|
µ

)2
,

(iv) any H -class of QX contained in Dµ(QX) has size µ!,

(v) any group H -class of QX contained in Dµ(QX) is isomorphic to Sµ.

We also need to know about the idempotent-generated subsemigroups E(TX) and E(PTX) in the finite
case. The next result is [21, Theorem I]; the case of infinite X is also given in [21, Theorem III]. We write
idX for the identity mapping on X.

Theorem 2.11. If X is a finite set with |X| ≥ 2, then E(TX) = {idX} ∪ (TX \ SX). Further,

rank(E(TX)) = idrank(E(TX)) =

{
3 if |X| = 2(|X|

2

)
+ 1 if |X| ≥ 3.

Finally, we recall some standard notation for partial transformations. If f ∈ PTX , we write f =
(
Fi
fi

)
i∈I

to indicate that

dom(f) =
⋃
i∈I

Fi, im(f) = {fi : i ∈ I}, xf = fi (∀x ∈ Fi), dom(f)/ ker(f) = {Fi : i ∈ I}.

Sometimes we will write f =
(
Fi
fi

)
, with the indexing set I being implied, rather than explicitly stated. If

f =
(
Fi
fi

)
belongs to TX , then X =

⋃
i∈I Fi, while if f belongs to IX , then |Fi| = 1 for all i.

3 Principal left ideals

A subset I of a semigroup S is a left ideal if it is closed under left multiplication by arbitrary elements of S:
i.e., for all x ∈ S and y ∈ I, we have xy ∈ I. The principal left ideal generated by an element a of the
semigroup S is the set

Sa = {xa : x ∈ S}.

(Principal) right ideals of S are defined dually. The purpose of this paper is to develop a structure theory of
principal left and right ideals; since these theories are dual, we give a detailed treatment of left ideals in the
current section, and then simply state the corresponding results concerning right ideals in Section 4.

Note that some authors would define the principal left ideal generated by a to be S1a = Sa ∪ {a}. In
many cases we have S1a = Sa, such as when S is a monoid (or just has a left identity element) or when a is
regular. In order to be as general as possible, the results that follow concern Sa, but results concerning S1a
may be easily be obtained by simply replacing S by S1, and considering S1a as a principal left ideal (in our
sense) of S1.

This section has five subsections. Subsection 3.1 characterises the regular elements of Sa, and gives a
sufficient condition for the set Reg(Sa) to be a subsemigroup (indeed, right ideal) of Sa. Subsection 3.2
describes Green’s relations on Sa, characterising these in terms of the corresponding relations on S and
certain subsets of Sa. Subsection 3.3 investigates the structure of the regular subsemigroup Reg(Sa) in the
case that a is a so-called sandwich-regular idempotent of S. It is shown that the structure of Reg(Sa) is closely
related to that of the (local) monoid aSa; crucial use is made of a natural surmorphism φ : Reg(Sa)→ aSa.
The idempotent-generated subsemigroup of Sa is also related to that of aSa. Subsection 3.4 explores the rank
(and idempotent rank, where appropriate) of the regular and idempotent-generated subsemigroups of Sa,
again relating these to corresponding (idempotent) ranks in aSa. Lower bounds for these (idempotent) ranks
are given, and shown to be exact values in the case of Reg(Sa) being RI-dominated. Finally, Subsection 3.5
identifies a property stronger than sandwich-regularity under which the whole theory simplifies greatly, as
we will show that Reg(Sa) = aSa is an inverse monoid.

3.1 Regular elements of Sa

For the duration of this subsection, we fix a semigroup S and an element a of S. Our main goal here is to
characterise the set

Reg(Sa) = {x ∈ Sa : x = xyx (∃y ∈ Sa)}
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of regular elements of the semigroup Sa. We will see later that under some mild regularity assumptions on a
and S (which hold if S is regular, for example), the set Reg(Sa) is in fact a subsemigroup of Sa.

A crucial role in all that follows is played by the set P defined by

P = {x ∈ Sa : x L ax}.

Since ax ≤L x for any x ∈ S, we could equivalently have defined P as {x ∈ Sa : x ≤L ax}. Note that
if x ∈ P , then x = wax for some w ∈ S1; in fact, we may assume that w ∈ S, since if w = 1, then
x = ax = aax.

Lemma 3.1. The set P is a right ideal of Sa.

Proof. Let x ∈ P and y ∈ Sa. Certainly xy ∈ Sa. But also x L ax implies xy L axy, since L is a right
congruence, so it follows that xy ∈ P , as required.

The next result characterises the set Reg(Sa) of all regular elements of Sa.

Theorem 3.2. Let S be a semigroup, let a ∈ S, and define P = {x ∈ S : x L ax}. Then

Reg(Sa) = Reg(S) ∩ P.

Proof. First suppose x ∈ Reg(Sa). So x ∈ Sa and x = xyx for some y ∈ Sa. Certainly then x ∈ Reg(S).
Also, since y ∈ Sa, we have y = za for some z ∈ S, in which case x = xyx = x(za)x = (xz)ax, so that
x L ax, which gives x ∈ P .

Conversely, suppose x ∈ Reg(S) ∩ P . Since x ∈ Reg(S), we have x = xyx for some y ∈ S. Since x ∈ P ,
we have x ∈ Sa and x = zax for some z ∈ S1. But then x = xyx = xy(zax) = x(yza)x; since yza ∈ Sa, it
follows that x ∈ Reg(Sa).

It follows from Theorem 3.2 that Reg(Sa) = P if S is regular, or even if every element of P is regular
(in S). The next result identifies a weaker property than regularity of S that ensures Reg(Sa) = P .

Corollary 3.3. If aSa ⊆ Reg(S), then P ⊆ Reg(S). Consequently, Reg(Sa) = P is a right ideal of Sa in
this case.

Proof. The second assertion follows from the first, because of Theorem 3.2 and Lemma 3.1. To prove the
first assertion, suppose aSa ⊆ Reg(S), and let x ∈ P . So x ∈ Sa and x = yax for some y ∈ S1. Since
ax ∈ aSa ⊆ Reg(S), we have ax = axzax for some z ∈ S. But then x = yax = y(axzax) = x(za)x, so that
x ∈ Reg(S), as required.

Remark 3.4. Note that the condition aSa ⊆ Reg(S) does not imply that a ∈ Reg(S) in general. For
example, if S is the semigroup defined by the presentation 〈a : a3 = a2〉, as in Remark 2.5, then we have
aSa = Reg(S) = {a2}. In [6], an element a of a semigroup S satisfying {a} ∪ aSa ⊆ Reg(S) was called
sandwich-regular ; this property will play an important role in subsequent discussions.

3.2 Green’s relations in Sa

We now consider Green’s relations on the principal left ideal Sa. Theorem 3.8 characterises these in terms
of Green’s relations on S and certain subsets of S, including P defined above. Corollary 3.9 shows how these
characterisations simplify in the case that a is a regular element of S.

We will continue to write Green’s relations on S as L , R, etc., and we will continue to write Kx for the
K -class of x ∈ S for any of Green’s relations K . However, in order to avoid confusion, we will write K a

for Green’s K -relation on Sa. If x ∈ Sa, we will write Ka
x = {y ∈ Sa : x K a y} for the K a-class of x

in Sa. It is clear that Ka
x ⊆ Kx ∩ Sa for any x ∈ Sa and for any K .

Our characterisation of Green’s relations on Sa (Theorem 3.8) uses the set P defined above, as well as
three more sets:

P ′ = {x ∈ Sa : x J ax}, P ′′ = {x ∈ S : x ∈ xSa}, P ′′′ = {x ∈ S : x ∈ S1xSa}.

Note that we could have equivalently defined P ′′ as {x ∈ S : x ∈ xS1a}; indeed, if x = xa, then x =
xaa ∈ xSa. Similarly, we could have defined P ′′′ as {x ∈ S : x ∈ S1xS1a}. Also observe that clearly
P ′′ ⊆ P ′′′ ⊆ Sa. If a is regular, then we may make a much stronger statement:
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Lemma 3.5. If a is a regular element of S, then P ′′ = P ′′′ = Sa.

Proof. In light of the above observation, it suffices to show that Sa ⊆ P ′′. Let b ∈ S be such that a = aba,
and suppose x ∈ S is arbitrary. Then xa = xaba ∈ (xa)Sa, so that xa ∈ P ′′, showing that Sa ⊆ P ′′.

Remark 3.6. If a is not regular, then it is possible for P ′′ and P ′′′ to be proper subsets of Sa. For example,
let S be defined by the presentation 〈a : a4 = a3〉. Then Sa = {a2, a3}, while P ′′ = P ′′′ = {a3}. We also
clearly have P ⊆ P ′. Although P and P ′ are not always equal, they are if S is left-stable (which is the case,
for example, if S is finite); cf. [10].

The next technical lemma will be used on a number of occasions in the proof of the theorem that follows.

Lemma 3.7. Let x ∈ S.

(i) If x ∈ P , and if y ∈ Sa satisfies y ≤R x, then y ∈ P . In particular, x ∈ P ⇒ Rx ∩ Sa ⊆ P .

(ii) If x ∈ P ′′, and if y ∈ Sa satisfies y ≤L x, then y ∈ P ′′. In particular, x ∈ P ′′ ⇒ Lx ∩ Sa ⊆ P ′′.

Proof. We just prove (i), as the proof of (ii) is almost identical. It clearly suffices to prove the first assertion,
so suppose x ∈ P , and let y ∈ Sa with y ≤R x. Then we have x = uax and y = xv for some u, v ∈ S1, and
so y = xv = uaxv = uay, which gives y L ay and y ∈ P .

Theorem 3.8. Let S be a semigroup, let a ∈ S, and define the sets

P = {x ∈ Sa : x L ax}, P ′ = {x ∈ Sa : x J ax}, P ′′ = {x ∈ S : x ∈ xSa}, P ′′′ = {x ∈ S : x ∈ S1xSa}.

Then for any x ∈ Sa,

(i) Lax =

{
Lx ∩ P if x ∈ P
{x} if x 6∈ P ,

(ii) Rax =

{
Rx ∩ P ′′ if x ∈ P ′′

{x} if x 6∈ P ′′,

(iii) Ha
x =

{
Hx if x ∈ P ∩ P ′′

{x} if x 6∈ P ∩ P ′′,

(iv) Da
x =


Dx ∩ P ∩ P ′′ if x ∈ P ∩ P ′′

Rax if x 6∈ P
Lax if x 6∈ P ′′,

(v) Jax =

{
Jx ∩ P ′ ∩ P ′′′ if x ∈ P ′ ∩ P ′′′

Da
x if x 6∈ P ′ ∩ P ′′′.

Proof. (i). Suppose |Lax| ≥ 2. Let y ∈ Lax \ {x}. Then x = uy and y = vx for some u, v ∈ Sa. Since
v ∈ Sa, we may write v = wa for some w ∈ S, and so x = uy = uvx = uwax, which gives x L ax. Since
also x ∈ Sa, we have x ∈ P . We have shown that |Lax| ≥ 2 ⇒ x ∈ P . The contrapositive of this says that
x 6∈ P ⇒ Lax = {x}.

Now suppose x ∈ P , so that x = wax for some w ∈ S. To complete the proof of (i), we must show that
Lax = Lx ∩ P . To show the forwards inclusion, suppose y ∈ Lax. Certainly y ∈ Lx ∩ P if y = x, so suppose
y 6= x. Then certainly y ∈ Lx, and also |Lay| = |Lax| ≥ 2, so the previous paragraph gives y ∈ P ; thus,
y ∈ Lx ∩ P . Conversely, suppose y ∈ Lx ∩ P , so that x = uy, y = vx and y = zay for some u, v ∈ S1 and
z ∈ S. Then x = uy = uzay and y = vx = vwax; since uza, vwa ∈ Sa, it follows that x L a y, and y ∈ Lax
as required.

(ii). Suppose |Rax| ≥ 2. Let y ∈ Rax \ {x}. Then x = yu and y = xv for some u, v ∈ Sa, and so
x = yu = xvu ∈ xSa (since u ∈ Sa), so that x ∈ P ′′. We have shown that |Rax| ≥ 2 ⇒ x ∈ P ′′. The
contrapositive of this says that x 6∈ P ′′ ⇒ Rax = {x}.

Now suppose x ∈ P ′′, so that x = xwa for some w ∈ S. To complete the proof of (ii), we must show
that Rax = Rx ∩ P ′′. To show the forwards inclusion, suppose y ∈ Rax. Certainly y ∈ Rx ∩ P ′′ if y = x,
so suppose y 6= x. Then |Ray| = |Rax| ≥ 2, so the previous paragraph gives y ∈ P ′′; thus, y ∈ Rx ∩ P ′′.
Conversely, suppose y ∈ Rx ∩ P ′′, so that x = yu, y = xv and y = yza for some u, v ∈ S1 and z ∈ S. Then
x = xwa = yuwa and y = yza = xvza; since uwa, vza ∈ Sa, it follows that x Ra y, and y ∈ Rax as required.

(iii). If x 6∈ P , then Ha
x ⊆ Lax = {x} by (i), and so Ha

x = {x}. Similarly, (ii) shows that Ha
x = {x} if x 6∈ P ′′.

Finally suppose x ∈ P ∩ P ′′. Then by (i) and (ii), Ha
x = Lax ∩Rax = (Lx ∩ P ) ∩ (Rx ∩ P ′′) = Hx ∩ (P ∩ P ′′),
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so it remains to show that Hx ⊆ P ∩ P ′′. With this in mind, let y ∈ Hx. Since y ≤L x and x ∈ Sa, it
follows that y ∈ Sa. But then y ∈ Hx ∩ Sa ⊆ Rx ∩ Sa ⊆ P , by Lemma 3.7(i). A similar calculation using
Lemma 3.7(ii) gives y ∈ P ′′.

(iv). If x 6∈ P , then Da
x =

⋃
y∈Lax R

a
y = Rax, since Lax = {x} by (i). A similar argument works for x 6∈ P ′′.

Finally, suppose x ∈ P ∩ P ′′. We must show that Da
x = Dx ∩ P ∩ P ′′. We begin with the forwards

inclusion. Clearly Da
x ⊆ Dx. Next, note that Rax = Rx ∩ P ′′ ⊆ Rx ∩ Sa ⊆ P , by part (ii) above and

Lemma 3.7(i). Together with part (i) above, it follows that

Da
x =

⋃
y∈Rax

Lay =
⋃
y∈Rax

(Lx ∩ P ) ⊆ P.

Similarly, Lax ⊆ P ′′ and so Da
x =

⋃
y∈Lax R

a
y =

⋃
y∈Lax(Rx ∩ P ′′) ⊆ P ′′. Thus, Da

x ⊆ Dx ∩ P ∩ P ′′.
To prove the backwards inclusion, suppose y ∈ Dx ∩ P ∩ P ′′. So y L z R x for some z ∈ S. First note

that z L y and y ∈ Sa together imply that z ∈ Sa. Since x ∈ P , Lemma 3.7(i) gives z ∈ Rx ∩ Sa ⊆ P . But
then z ∈ Ly ∩ P = Lay by part (i) above, since y ∈ P , and so z L a y. Since y ∈ P ′′, Lemma 3.7(ii) gives
z ∈ Ly ∩ Sa ⊆ P ′′. But then z ∈ Rx ∩ P ′′ = Rax by part (ii) above, since x ∈ P ′′, and so z Ra x. Thus,
y L a z Ra x, which gives y Da x, and y ∈ Da

x as required.

(v). We begin with the backwards inclusion. Since Da
x ⊆ Jax for any x ∈ Sa, it suffices to show that

Jx ∩P ′ ∩P ′′′ ⊆ Jax if x ∈ P ′ ∩P ′′′. To do so, suppose x ∈ P ′ ∩P ′′′, and let y ∈ Jx ∩P ′ ∩P ′′′. Since x, y ∈ P ′,
we have

x = uaxv and y = u′ayv′ for some u, u′, v, v′ ∈ S1.

In fact, we may assume that u, u′ ∈ S; for example, x = uaxv = ua(uaxv)v = uau(ax)v2 with uau ∈ S.
Since x, y ∈ P ′′′, we have

x = pxqa and y = p′yq′a for some p, p′ ∈ S1 and q, q′ ∈ S.

Since x J y, we have

x = syt and y = s′xt′ for some s, s′, t, t′ ∈ S1.

But then x = pxqa = p(syt)qa = ps(u′ayv′)tqa = (psu′a)y(v′tqa). Since u′, q ∈ S, it follows that
psu′a, v′tqa ∈ Sa. Similarly, y = (p′s′ua)x(vt′q′a), with p′s′ua, vt′q′a ∈ Sa. It follows that y J a x,
and so y ∈ Jax as required.

To prove the forwards inclusion, let y ∈ Jax . We must show that y belongs to Jx∩P ′∩P ′′′ if x ∈ P ′∩P ′′′,
or to Da

x otherwise. Since this is clearly true if y = x, we will assume that y 6= x. Since also y J a x, it
follows that one of (a)–(c) must hold, and also one of (d)–(f):

(a) x = yv for some v ∈ Sa,

(b) x = uy for some u ∈ Sa,

(c) x = uyv for some u, v ∈ Sa,

(d) y = xt for some t ∈ Sa,

(e) y = sx for some s ∈ Sa,

(f) y = sxt for some s, t ∈ Sa.

It may appear that we need to consider all nine combinations separately. However, we may reduce to just
three. Indeed, in cases (a), (b), (d) and (e), we respectively define u = 1, v = 1, s = 1 and t = 1. Then
in all combinations, we have x = uyv and y = sxt, with u, v, s, t ∈ Sa ∪ {1}, and with {u, v} 6= {1} and
{s, t} 6= {1}. Note that (a) and (d) both hold if and only if {u, s} = {1}, while (b) and (e) both hold if
and only if {v, t} = {1}. For any other combination, we have x = (usu)y(vtv) and y = (sus)x(tvt), with
usu, vtv, sus, tvt ∈ Sa, so that (c) and (f) both hold. Thus, the only combinations we need to consider are:

(a) and (d), (b) and (e), (c) and (f).

Suppose first that (a) and (d) both hold, noting then that x Ra y: i.e., y ∈ Rax. If x 6∈ P ′ ∩ P ′′′,
then we are done, since y ∈ Rax ⊆ Da

x. Now suppose x ∈ P ′ ∩ P ′′′. Since y ∈ Jax ⊆ Jx, we just need
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to show that y ∈ P ′ ∩ P ′′′ as well. Since x ∈ P ′, we have x = waxz for some w, z ∈ S1, and then
y = xt = (waxz)t = wa(yv)zt = w(ay)vzt, so that y J ay, and y ∈ P ′. Since t ∈ Sa, we also have
y = xt = yvt ∈ S1ySa, so that y ∈ P ′′′.

Next suppose (b) and (e) both hold, noting then that x L a y: i.e., y ∈ Lax. If x 6∈ P ′ ∩ P ′′′, then we
are done, since y ∈ Lax ⊆ Da

x. Now suppose x ∈ P ′ ∩ P ′′′. Again, we just need to show that y ∈ P ′ ∩ P ′′′.
Write u = pa where p ∈ S. Then y = sx = suy = sp(ay), so that y ∈ P ⊆ P ′. Also, since x ∈ P ′′′, we have
x = wxza for some w ∈ S1 and z ∈ S. But then y = sx = s(wxza) = sw(uy)za ∈ S1ySa, so that y ∈ P ′′′.

Finally, suppose (c) and (f) both hold. Since s, v ∈ Sa, we have s = pa and v = qa for some p, q ∈ S. Now,
x = uyv = u(sxt)v = u(pa)xtv = up(ax)tv, so that x ∈ P ′. Also, x = usxtv = usxt(qa) = (us)x(tq)a ∈ S1xSa,
so that x ∈ P ′′′. This shows that x ∈ P ′ ∩ P ′′′. A similar argument shows that y ∈ P ′ ∩ P ′′′. Since also
y ∈ Jax ⊆ Jx, it follows that y ∈ Jx ∩ P ′ ∩ P ′′′, completing the proof in this case.

By Lemma 3.5, P ′′ = P ′′′ = Sa if a is regular. Thus, several parts of Theorem 3.8 simplify in the case
of a being regular. Since all of our applications involve a (indeed, S) being regular, it will be convenient to
state this simplification explicitly:

Corollary 3.9. Let S be a semigroup, let a ∈ Reg(S), and define the sets

P = {x ∈ Sa : x L ax} and P ′ = {x ∈ Sa : x J ax}.

Then for any x ∈ Sa,

(i) Lax =

{
Lx ∩ P if x ∈ P
{x} if x 6∈ P ,

(ii) Rax = Rx ∩ Sa,

(iii) Ha
x =

{
Hx if x ∈ P
{x} if x 6∈ P ,

(iv) Da
x =

{
Dx ∩ P if x ∈ P
Rax if x 6∈ P ,

(v) Jax =

{
Jx ∩ P ′ if x ∈ P ′

Rax if x 6∈ P ′.

Proof. Given the comments before the statement, the only part that is slightly non-obvious is the x 6∈ P ′
case of (v). Here we have x 6∈ P ′ = P ′ ∩ Sa = P ′ ∩ P ′′′, so Theorem 3.8(v) gives Jax = Da

x. Since x 6∈ P ′,
certainly x 6∈ P , so Theorem 3.8(iv) gives Da

x = Rax.

3.3 Sandwich-regularity and the structure of Reg(Sa)

We have already seen that the structure of a principal left ideal Sa is easier to describe in the case that
the element a ∈ S is regular; cf. Theorem 3.8 and Corollary 3.9. In the remaining subsections, we will
concentrate exclusively on the case in which a is regular. In fact, we will identify a natural property, called
sandwich-regularity in [6], that allows for an even more detailed analysis. In all of our motivating examples, S
is itself regular, in which case every element of S is sandwich regular.

We begin with a simple lemma; it shows that if we wish to study Sa with a a regular element of S, then
we may assume without loss of generality that a is in fact an idempotent.

Lemma 3.10. If a is a regular element of S, then Sa = Se for some idempotent e of S.

Proof. Let b ∈ S be such that a = aba, and define the idempotent e = ba. Then Sa = Saba ⊆ Sba ⊆ Sa,
so that Sa = Sba = Se.

If a is an idempotent of S, then we may also consider the local monoid aSa = {axa : x ∈ S}, which is
the largest monoid contained in S that has a as its (two-sided) identity element. This monoid aSa will play
an important role in all that follows. The next result gathers some basic properties that we will need. We
will keep the notation of the previous section, in particular P = {x ∈ Sa : x L ax}.

12



Lemma 3.11. If a ∈ E(S), then

(i) aSa = aP ⊆ P = Pa,

(ii) the following are equivalent:

(a) aSa ⊆ Reg(S), (b) P ⊆ Reg(S), (c) Reg(Sa) = P , (d) aSa is a regular monoid.

Proof. (i). Since P ⊆ Sa, and since a is an idempotent, we clearly have P = Pa, and also aP ⊆ aSa. To
show that aSa ⊆ P and aSa ⊆ aP , let x ∈ aSa. Then x ∈ Sa and also x = ax (as a is an idempotent) so
certainly x L ax, which gives x ∈ P . But then also x = ax ∈ aP as well.

(ii). Corollary 3.3 gives (a) ⇒ (b), Theorem 3.2 gives (b) ⇒ (c), and (d) ⇒ (a) is clear, so it remains only
to show that (c) ⇒ (d). To do so, suppose (c) holds. Let x ∈ aSa. The proof will be complete if we can
show that x is regular in aSa. By part (i), just proved, x = ay for some y ∈ P . Since P = Reg(Sa) by
assumption, there exists z ∈ Sa such that y = yzy. Since y, z ∈ Sa, we have y = ya and z = za = za2, and
so x = ay = ayzy = a(ya)(za2)y = (ay)(aza)(ay) = x(aza)x, so that x is indeed regular in aSa.

The remainder of this section is devoted to the study of the structure of Reg(Sa) in the case that a ∈ E(S)
satisfies the conditions of Lemma 3.11(ii). In [6], a regular element a ∈ S (not necessarily an idempotent)
for which aSa ⊆ Reg(S) was called sandwich-regular, and we will continue to use that terminology here.

For the remainder of this subsection, we fix a sandwich-regular idempotent a ∈ E(S).

Thus, by Corollary 3.3, P = Reg(Sa) is a (regular) subsemigroup of Sa, indeed a right ideal. Thus, we may
study P as a semigroup in its own right. In what follows, we will see that the structure of P = Reg(Sa) is
closely related to that of the regular monoid aSa. In later sections, we will see that when S belongs to a
natural family of semigroups, such as full or partial transformation semigroups, the local monoid aSa will
be another member of this family.

Lemma 3.11(i) says that aSa is a subsemigroup of P . It turns out that aSa is also a natural homomorphic
image of P , as we will demonstrate in the next lemma. We will see later that P contains a number of
subsemigroups isomorphic to aSa; see Remark 3.24.

Lemma 3.12. If a is a sandwich-regular idempotent of S, then the map φ : P → aSa : x 7→ ax is a
surmorphism.

Proof. Since aSa = aP , by Lemma 3.11(i), φ is surjective. To show that φ is a homomorphism, suppose
x, y ∈ P . Since a is a right identity for Pa = P , x = xa, and so (xy)φ = a(xy) = a(xa)y = (xφ)(yφ).

The map
φ : P → aSa : x 7→ ax

from Lemma 3.12 will play a crucial role in all that follows; in particular, we will use φ to relate many
structural properties of P = Reg(Sa) to corresponding properties of aSa. As a first such application, we
show how (products of) idempotents in Sa are related to (products of) idempotents in aSa. Recall that
for any semigroup T , we write E(T ) = 〈E(T )〉 for the idempotent-generated subsemigroup of T . Since all
idempotents of Sa are regular, and since P = Reg(Sa), it is clear that E(Sa) = E(P ) and E(Sa) = E(P ).

Theorem 3.13. If a is a sandwich-regular idempotent of the semigroup S, then

(i) E(Sa) = E(aSa)φ−1, (ii) E(Sa) = E(aSa)φ−1.

Proof. Since any homomorphism maps (products of) idempotents to (products of) idempotents, it is enough
to prove the backwards containments in both parts. To do so, let x ∈ P ; since P is regular, there exists
e ∈ E(P ) = E(Sa) such that x = ex.

(i). If ax = xφ ∈ E(aSa), then ax = axax and so x = ex = eax = eaxax = exx = xx, so that x ∈ E(Sa).

(ii). If ax = xφ ∈ E(aSa), then x = ex = eax ∈ E(Sa), since e ∈ E(Sa) and ax ∈ E(aSa) ⊆ E(Sa).
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In the remainder of the current subsection, we investigate the connection, via φ, between Green’s relations
on P and aSa, leading to a detailed description of P as a kind of “inflation” of aSa; see Theorem 3.21 and
Remark 3.22.

Since P is a regular subsemigroup of Sa, the R-, L - and H -relations on P are simply the restrictions
to P of the corresponding relations on Sa; see for example, [37, Proposition A.1.16]. Since P consists of all
regular elements of Sa, [6, Lemma 2.8] says that this is also the case for the D-relation. Thus, if K is any
of Green’s relations other than J , we will continue to write K a for Green’s K relation on P ; we will also
continue to write Ka

x for the K a-class of x ∈ P for any such K . We will write J P for Green’s J -relation
on P , and denote J P -classes by JPx .

Together with Corollary 3.9, the previous paragraph may be summarised as follows:

Lemma 3.14. If a is a sandwich-regular idempotent of S, and if x ∈ P , then

(i) Lax = Lx ∩ P , (ii) Rax = Rx ∩ P , (iii) Da
x = Dx ∩ P , (iv) Ha

x = Hx.

Green’s J -relation on P is not as easy to describe. However, if Green’s J and D relations on S coincide,
then the same is true in P (though it need not be true in Sa itself; see for example Theorem 5.4):

Corollary 3.15. If J = D in S, then J P = Da in P .

Proof. Since the D relation is contained in the J relation in any semigroup, it suffices to show that
J P ⊆ Da. So suppose x, y ∈ P are such that (x, y) ∈J P . Since P is a subsemigroup of S, it follows that
(x, y) ∈J = D , and so y ∈ Dx. But also x, y ∈ P , and so y ∈ Dx ∩ P = Da

x, by Lemma 3.14(iii), whence
(x, y) ∈ Da, as required.

We will also need to refer to Green’s relations on the monoid aSa. Again, to avoid confusion, we will
use superscripts to identify these relations: the K relation on aSa will be denoted by aK a, and aK a-classes
in aSa will be denoted by aKa

x . Clearly aKa
x ⊆ Kx ∩ aSa for any x ∈ aSa and for any K .

Lemma 3.16. If a is a sandwich-regular idempotent of S, and if x ∈ aSa, then

(i) aLax = Lx ∩ aSa,

(ii) aRax = Rx ∩ aSa,

(iii) aDa
x = Dx ∩ aSa,

(iv) aJax = Jx ∩ aSa,

(v) aHa
x = Hx.

Proof. (i) and (ii). These also follow from [37, Proposition A.1.16] since aSa is a regular subsemigroup of S.

(iii). We noted before the lemma that aDa
x ⊆ Dx∩aSa. To demonstrate the reverse inclusion, let y ∈ Dx∩aSa.

So x L z R y for some z ∈ S. Then z = ux = yv for some u, v ∈ S1. From z = ux and x ∈ Sa, we obtain
z = za, and similarly z = az. It follows that z = aza ∈ aSa. But then z ∈ Lx ∩ aSa = aLax by (i), and
similarly z ∈ aRay. Thus, x aL a z aRa y, so that x aDa y, and y ∈ aDa

x as required.

(iv). To show the backwards inclusion (which is again all that is required), let y ∈ Jx ∩ aSa. Since y J x,
we have x = syt and y = uxv for some s, t, u, v ∈ S1. Since x, y ∈ aSa, we have x = axa and y = aya.
It then follows that x = axa = asyta = as(aya)ta = (asa)y(ata), and similarly y = (aua)x(ava). Since
asa, ata, aua, ava ∈ aS1a = aSa, it follows that x aJ a y, and y ∈ aJax .

(v). From (i) and (ii), we obtain aHa
x = aLax ∩ aRax = (Lx ∩ aSa) ∩ (Rx ∩ aSa) = Hx ∩ aSa, so it remains to

show that Hx ⊆ aSa. To do so, let y ∈ Hx. Since y L x and x ∈ Sa, it follows that y ∈ Sa, and so y = ya.
Similarly, y R x and x ∈ aS give y = ay. It follows that y = aya ∈ aSa. As noted above, this completes the
proof.

Remark 3.17. Even though the last parts of Lemmas 3.14 and 3.16 say that H a-classes of P and aH a-
classes of aSa are simply H -classes of S, we will continue to use superscripts to indicate whether a certain
set of elements is to be thought of as an H -class of S, an H a-class of P , or an aH a-class of aSa.

Corollary 3.18. If a is a sandwich-regular idempotent of S, then the group of units of aSa is aHa
a = Ha.

Proof. The group of units of any monoid is the H -class of the identity element. Thus, the group of units
of aSa is the aH a-class of a; by Lemma 3.16(v), this is aHa

a = Ha.
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We now wish to show how the internal structure of a Da-class Da
x of P is related to that of the cor-

responding aDa-class aDa
ax = Dax ∩ aSa of aSa. To do so, we introduce a number of new relations on P .

Associated to each of Green’s relations K , we define a relation K̂ a on P by

K̂ a =
{

(x, y) ∈ P × P : (ax, ay) ∈ aK a
}
.

So K̂ a is the pre-image under the map φ : P → aSa : x 7→ ax of the aK a-relation on aSa. Clearly K a ⊆ K̂ a

for any K . Theorem 3.21 (and Remark 3.22) gives the promised description of the Da-classes of P . We
begin with two technical lemmas.

Lemma 3.19. If x, y ∈ P , then

(i) x ≤L a y ⇔ ax ≤aL a ay. (ii) x ≤J P y ⇔ ax ≤aJ a ay.

Proof. We just prove (ii), as the proof of (i) is similar, but slightly easier.

(⇒). Suppose x ≤J P y. Then, since P is regular, x = uyv for some u, v ∈ P (not just in P 1). But then
ax = auyv = a(ua)(ya)v = (au)ay(av), with au, av ∈ aP = aSa, and so ax ≤aJ a ay.

(⇐). Suppose ax ≤aJ a ay. Then ax = u(ay)v for some u, v ∈ aSa. Since P is regular, there exists an
idempotent e ∈ E(P ) such that x = ex. But then x = ex = eax = e(uayv) = eua · y · v; since e, a ∈ P and
since u, v ∈ aSa ⊆ P (by Lemma 3.11(i)), we have eua, v ∈ P , so that x ≤J P y.

Lemma 3.20. We have

(i) L̂ a = L a,

(ii) Ra ⊆ R̂a ⊆ Da,

(iii) H a ⊆ Ĥ a ⊆ Da,

(iv) D̂a = Da ⊆ Ĵ a = J P .

Proof. (i). This follows quickly from Lemma 3.19(i).

(ii). Clearly Ra ⊆ R̂a. To show that R̂a ⊆ Da, let (x, y) ∈ R̂a. Since P is regular, we have x Ra e
and y Ra f for some e, f ∈ E(P ). We claim that e Da f , and since then x Da e Da f Da y, this will
complete the proof of (ii). To show that e Da f , we will show that e Ra ef L a f . Since ef ≤Ra e and
ef ≤L a f , it remains to show the reverse inequalities. Since Ra ⊆ R̂a, we have e R̂a x R̂a y R̂a f , so that
ae aRa af (in aSa). Since ae, af ∈ E(aSa), it follows that ae = (af)(ae) and af = (ae)(af). But then
e = ee = (ea)e = e(afae) = efe ≤Ra ef . Similarly, f = fef ≤L a ef .

(iii). We have H a = L a ∩Ra ⊆ L̂ a ∩ R̂a = Ĥ a and Ĥ a = L̂ a ∩ R̂a = L a ∩ R̂a ⊆ Da ∩Da = Da.

(iv). It is clear that Da ⊆ D̂a ⊆ Ĵ a, and we obtain J P = Ĵ a from Lemma 3.19(ii). It remains only to
observe that D̂a = L̂ a ∨ R̂a ⊆ Da ∨Da = Da.

The next result describes the structure of the Ĥ a-classes of P in terms of left groups (as defined in
Section 2.4); see also Remark 3.22. Since Ra ⊆ R̂a, any R̂a-class of P is a union of Ra-classes; thus, if
x ∈ P , we may consider the set R̂ax/Ra of all Ra-classes of P contained in R̂ax. Recall that if x ∈ P , then the
H a-class of x in P is Ha

x = Hx (by Lemma 3.14(iv)), and that the aH a-class of ax in aSa is aHa
ax = Hax

(by Lemma 3.16(v)). However, as in Remark 3.17, we will continue to refer to these classes as Ha
x and aHa

ax,
so that it is clear that we are thinking of them as H a- or aH a-classes of P or aSa, respectively.

Theorem 3.21. Let x ∈ P , and let r = |R̂ax/Ra| be the number of Ra-classes contained in R̂ax. Then

(i) the restriction to Ha
x of the map φ : P → aSa is a bijection φ|Ha

x
: Ha

x → aHa
ax,

(ii) Ha
x is a group if and only if aHa

ax is a group, in which case these groups are isomorphic,

(iii) if Ha
x is a group, then Ĥa

x is a left group of degree r over Ha
x ,

(iv) if Ha
x is a group, then E(Ĥa

x) is a left zero band of size r.
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Proof. (i). Since x ∈ P , we have x L ax, and so x = uax for some u ∈ S. By Green’s Lemma [22,
Lemma 2.2.1] in the semigroup S, it follows that the maps

θ1 : Hx → Hax : z 7→ az and θ2 : Hax → Hx : z 7→ uz

are mutually inverse bijections. But Hx = Ha
x and Hax = aHa

ax, by Lemmas 3.14(iv) and 3.16(v). Since θ1
has the same action as φ on Hx = Ha

x , it follows that φ|Ha
x

= θ1 is a bijection.

(ii). If Ha
x is a group, then without loss of generality, we may assume that x is an idempotent; but then

so too is ax = xφ, and so aHa
ax is a group. Conversely, if aHa

ax is a group, then we may assume ax is an
idempotent; but then so too is x, by Theorem 3.13(i), and so Ha

x is a group.
By (i), φ|Ha

x
: Ha

x → aHa
ax is a bijection. If Ha

x is a group, then φ|Ha
x
is also a homomorphism—as it is a

restriction of a homomorphism to a sub(semi)group—and hence an isomorphism.

(iii) and (iv). Suppose Ha
x is a group. Since Ĥa

x is a union of H a-classes, we may write Ĥa
x =

⊔
y∈Y H

a
y for

some subset Y ⊆ P . (Here, “t” means disjoint union.) By Lemma 3.20(i), we have Ĥa
x ⊆ L̂ax = Lax, and so

all of the elements of Y are L a-related. For any y ∈ Y , Ha
yφ ⊆ Ĥa

xφ = aHa
ax, and since aHa

ax is a group (and
since Ĥa

xφ = Ĥa
yφ = aHa

ay), part (ii) says that Ha
y is a group. Thus, Ĥa

x =
⊔
y∈Y H

a
y is a union of groups,

each isomorphic to Ha
x . Thus, if we can prove (iv), then (iii) will also follow. Since each Ha

y is a group, we
may assume without loss of generality, that each element of Y is an idempotent, so that Y = E(Ĥa

x). Now,
if y, z ∈ Y , then since y L a z, we have yz = y, from which it follows that Y = E(Ĥa

x) is a left zero band.
It remains only to show that |Y | = r. To do so, it suffices to show that R̂ax =

⊔
y∈Y R

a
y. First note that

since the elements of Y are all L a-related but are mutually H a-unrelated (as they are all idempotents),
it follows that they are mutually Ra-unrelated, and so the Ra-classes Ray (y ∈ Y ) are indeed pairwise
disjoint. Next, consider some y ∈ Y . Since y ∈ Ĥa

x ⊆ R̂ax, and since Ra ⊆ R̂a by Lemma 3.20(ii), we
have Ray ⊆ R̂ax. Since this is true for any y ∈ Y , it follows that

⊔
y∈Y R

a
y ⊆ R̂ax. To prove the reverse

containment, suppose z ∈ R̂ax. Since R̂a ⊆ Da by Lemma 3.20(ii), we have z Da x, and so Raz ∩ Lax is
non-empty. Let w ∈ Raz ∩ Lax be arbitrary. Since z ∈ R̂ax and since Ra ⊆ R̂a, we have w ∈ Raz ⊆ R̂ax. Since
also w ∈ Lax, it follows that w ∈ R̂ax ∩Lax = R̂ax ∩ L̂ax = Ĥa

x =
⊔
y∈Y H

a
y , and so w ∈ Ha

y ⊆ Ray for some y ∈ Y .
Since w ∈ Raz , it follows that z Ra w Ra y, whence z ∈ Ray ⊆

⊔
y∈Y R

a
y, as required.

Remark 3.22. By the preceding series of results, the structure of P = Reg(Sa), in terms of Green’s relations,
is a kind of “inflation” of the corresponding structure of the regular monoid aSa:

(i) The partially ordered sets (P/J P ,≤J P ) and (aSa/aJ a,≤aJ a) are order-isomorphic, via JPx 7→ aJaax.

(ii) The sets P/Da and aSa/aDa are in one-one correspondence, via Da
x 7→ aDa

ax.

(iii) Each K̂ a-class in P is a union of K a-classes.

(iv) The aRa-, aL a- and aH a-classes contained within a single aDa-class aDa
ax of aSa (x ∈ P ) are in one-one

correspondence with the R̂a-, L̂ a = L a- and Ĥ a-classes in the D̂a = Da-class Da
x of P .

(v) An Ĥ a-class Ĥa
x in P is a union of H a-classes, and these are either all non-groups (if Hax = aHa

ax

is a non-group aH a-class of aSa) or else all groups (if Hax is a group); in the latter case, Ĥa
x is a left

group.

Figure 1 illustrates the last two points in an egg-box diagram (as described in Section 2.1). The left egg-
box displays a D̂a = Da-class in P , and the right egg-box displays the corresponding aDa-class in aSa.
Group H a- and aH a-classes are shaded gray, and solid lines in the left egg-box denote boundaries between
R̂a-classes and L̂ a = L a-classes. See also Figures 3–6.

3.4 Rank and idempotent rank

This subsection mainly concerns the rank (and idempotent rank, where appropriate) of the regular and
idempotent-generated subsemigroups P = Reg(Sa) and E(Sa) in the case that a is a sandwich-regular
idempotent of the semigroup S. (The concepts of (relative) rank and (relative) idempotent rank were
defined in Section 2.3.) The main results are Theorems 3.27 and 3.30, which give lower bounds for these
(idempotent) ranks, and show that these bounds are exact values in the case that P is RI-dominated.
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Figure 1: A Da-class of P = Reg(Sa) (left) and its corresponding aDa-class of aSa (right). See Remark 3.22
for more information.

For the duration of this subsection, we fix a sandwich-regular idempotent a ∈ E(S).

We begin by giving numerous characterisations of the mid-identities of the regular semigroup P = Reg(Sa).
For x ∈ P , we write

VP (x) = {y ∈ P : x = xyx, y = yxy}
for the set of all inverses of x in P . (The notation is chosen in order to distinguish VP (x) from the set
V (x) = {y ∈ S : x = xyx, y = yxy} of all inverses of x in S.)

Proposition 3.23. If a is a sandwich-regular idempotent of a semigroup S, then

MI(Sa) = RI(Sa) = MI(P ) = RI(P ) = VP (a) = V (a) ∩ P = V (a) ∩ Sa = V (a)a = E(Ĥa
a ) = aφ−1.

Proof. As a is a right identity of both Sa and P , Lemma 2.4(iii) gives MI(Sa) = RI(Sa) and MI(P ) = RI(P ).
We complete the proof by demonstrating a series of set containments.

• Suppose u ∈ MI(Sa). Since Sa has a right identity, Lemma 2.4(ii) gives u ∈ E(Sa) ⊆ P . Clearly
xy = xuy for all x, y ∈ P (since the same is true of all x, y ∈ Sa, as u ∈ MI(Sa)), so u ∈ MI(P ). This
shows that MI(Sa) ⊆ MI(P ).

• Next suppose u ∈ RI(P ). Since a and u are both right identities, a = au = aua and u = ua = uau.
This shows that RI(P ) ⊆ VP (a).

• Since VP (a) ⊆ V (a) and VP (a) ⊆ P ⊆ Sa, we have VP (a) ⊆ V (a) ∩ P ⊆ V (a) ∩ Sa.

• Next suppose u ∈ V (a) ∩ Sa. Then u = ua ∈ V (a)a. This shows that V (a) ∩ Sa ⊆ V (a)a.

• Next suppose u ∈ V (a)a, so u = va for some v ∈ V (a). Then u = va = (vav)a = (va)(va) = u2, so u
is an idempotent. We also have

uφ = au = a(va) = a = aφ ⇒ aφ aH a uφ ⇒ a Ĥ a u ⇒ u ∈ Ĥa
a .

Thus, u ∈ E(Ĥa
a ). This shows that V (a)a ⊆ E(Ĥa

a ).

• Next suppose u ∈ E(Ĥa
a ). Then uφ ∈ aHa

a . Since u is an idempotent, so too is uφ, and so uφ = a (as a
is the unique idempotent of the group aHa

a ), whence u ∈ aφ−1. This shows that E(Ĥa
a ) ⊆ aφ−1.

• Finally, suppose u ∈ aφ−1, so that a = uφ = au. Then for any x ∈ Sa, x = xa = xau = xu, so that
u ∈ RI(Sa). This shows that aφ−1 ⊆ RI(Sa), and completes the proof.

Remark 3.24. Consider Proposition 2.6, as applied to the (regular) semigroup P . It refers to the local
monoids ePe, where e ∈ MI(P ). Since MI(P ) = RI(P ), by Proposition 3.23, each such local monoid is
in fact a principal right ideal: ePe = eP . Proposition 2.6(ii) says that each of these local monoids are
isomorphic to aPa = aP , and Lemma 3.11(i) says that aP = aSa. Thus, P generally contains several (local)
monoids isomorphic to aSa. Moreover, by Proposition 2.6(iv) and Lemma 2.7(i), we have P =

⋃
e∈RP(P ) eP

if and only if P is RI-dominated.
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Recall that we wish to prove results about the (idempotent) ranks of P and E(Sa); see Theorems 3.27
and 3.30. To prove these theorems, it will be convenient to first prove a more general result; see Propo-
sition 3.26. This result concerns submonoids of aSa satisfying certain conditions; these are automatically
satisfied by E(aSa), but not always by aSa itself. In the latter case, the group of units, aHa

a = Ha of aSa plays
a crucial role. For a monoid U , we write GU for the group of units of U . If U is a submonoid of a monoidM ,
then GU ⊆ U∩GM , but we need not have equality (consider the non-negative integers in the additive monoid
of all integers). The next two results concern submonoids U of aSa for which GU = U ∩GaSa = U ∩ aHa

a .

Lemma 3.25. Let a be a sandwich-regular idempotent of the semigroup S. Suppose U is a submonoid of aSa
for which GU = U ∩ aHa

a , and U \ GU is an ideal of U . Write ρ = |R̂aa/Ra|, W = Uφ−1 and T = GUφ
−1.

Then

(i) T is a left group of degree ρ over GU , (ii) W \ T is an ideal of W .

Proof. (i). Note first that T = GUφ
−1 = (U ∩ aHa

a )φ−1 = W ∩ Ĥa
a . Since U is a submonoid of aSa, we

have a ∈ U , and so W contains aφ−1; recall that aφ−1 = E(Ĥa
a ) by Proposition 3.23. For convenience, we

will write F = E(Ĥa
a ) for the rest of the proof. We have just shown that W (and hence T ) contains F . By

Lemma 2.3, since Ĥa
a
∼= F ×Ha

a , it follows that T = FK for some submonoid K of Ha
a . Since K ⊆ Ha

a , we
have K = aK, and so K = a(aK) = (Fφ)(Kφ) = (FK)φ = Tφ = GU .

(ii). Since T = W ∩ Ĥa
a , we may prove this part by showing that for all x, y ∈ W , xy ∈ Ĥa

a ⇒ x, y ∈ Ĥa
a .

With this in mind, suppose x, y ∈W are such that xy ∈ Ĥa
a . Then

xy ∈ Ĥa
a ⇒ xy Ĥ a a ⇒ (ax)(ay) = (xφ)(yφ) = (xy)φ aH a aφ = a ⇒ (ax)(ay) ∈ aHa

a ∩ U = GU .

Since U \ GU is an ideal of U , it follows that xφ = ax and yφ = ay both belong to GU ⊆ aHa
a . Thus,

xφ, yφ aH a a = aφ, and so x, y Ĥ a a: i.e., x, y ∈ Ĥa
a .

Proposition 3.26. Let a be a sandwich-regular idempotent of the semigroup S. Suppose U is a submonoid
of aSa for which GU = U ∩ aHa

a , and U \GU is an ideal of U . Write ρ = |R̂aa/Ra| and W = Uφ−1. Then

rank(W ) ≥ rank(U :GU ) + max(ρ, rank(GU )),

with equality if P is RI-dominated.

Proof. For convenience, write T = GUφ
−1 = W ∩ Ĥa

a . By Lemma 3.25(ii), W \ T is an ideal of W . Thus,
by Lemma 2.1,

rank(W ) = rank(W :T ) + rank(T ).

By Lemmas 2.2 and 3.25(i), we have rank(T ) = max(ρ, rank(GU )). Thus, it remains to show that

(i) rank(W :T ) ≥ rank(U :GU ), and

(ii) rank(W :T ) = rank(U :GU ) if P is RI-dominated.

(i). If X ⊆W is such that W = 〈T ∪X〉 and |X| = rank(W :T ), then U = Wφ = 〈Tφ∪Xφ〉 = 〈GU ∪Xφ〉,
and so rank(U :GU ) ≤ |Xφ| ≤ |X| = rank(W :T ).

(ii). Suppose now that P is RI-dominated. By (i), it remains to show that rank(W :T ) ≤ rank(U :GU ). To
do so, let Y ⊆ U be such that U = 〈GU ∪ Y 〉 and |Y | = rank(U :GU ). Let Z ⊆W be such that Zφ = Y and
|Z| = |Y |. For each y ∈ GU ∪ Y , let zy ∈ T ∪ Z be such that y = zyφ = azy. Now let w ∈ W be arbitrary.
Then aw = wφ ∈ U , and so aw = y1 · · · yk = (azy1) · · · (azyk) = a(zy1 · · · zyk) for some y1, . . . , yk ∈ GU ∪ Y .
Since P is RI-dominated, w ≤Ra e for some e ∈ RI(P ). Since e ∈ E(P ), it follows that w = ew, and so

w = ew = eaw = ea(zy1 · · · zyk) = e(zy1 · · · zyk).

But the zyi all belong to T ∪ Z, and by Proposition 3.23, e ∈ RI(P ) = E(Ĥa
a ) ⊆ W ∩ Ĥa

a = T , so it follows
that w ∈ 〈T ∪ Z〉. Thus, W = 〈T ∪ Z〉, and so rank(W :T ) ≤ |Z| = |Y | = rank(U :GU ), as required.

The hypotheses of Proposition 3.26 are clearly satisfied by U = aSa as long as aSa \ aHa
a is an ideal

of aSa, so we immediately obtain the following.
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Theorem 3.27. Let a be a sandwich-regular idempotent of the semigroup S, write ρ = |R̂aa/Ra|, and suppose
aSa \ aHa

a is an ideal of aSa. Then

rank(P ) ≥ rank(aSa : aHa
a ) + max(ρ, rank(aHa

a )),

with equality if P is RI-dominated.

Next, we wish to apply Proposition 3.26 to U = E(aSa), and also prove a corresponding statement
concerning idempotent ranks. To do so, we require the following two lemmas; the first is [6, Lemma 3.9], and
the second is part of [8, Lemma 2.1(iv)].

Lemma 3.28. If U is an idempotent-generated monoid with identity e, then

(i) GU = {e},

(ii) U \GU is an ideal of U ,

(iii) rank(U) = 1 + rank(U :GU ),

(iv) idrank(U) = 1 + idrank(U :GU ).

Lemma 3.29. If M is a monoid with identity e, then E(M) ∩GM = {e}.

Theorem 3.30. Let a be a sandwich-regular idempotent of the semigroup S, and write ρ = |R̂aa/Ra|. Then

rank(E(Sa)) ≥ rank(E(aSa)) + ρ− 1 and idrank(E(Sa)) ≥ idrank(E(aSa)) + ρ− 1,

with equality in both if P is RI-dominated.

Proof. Put U = E(aSa) and W = Uφ−1. Then W = E(Sa), by Theorem 3.13(ii). By Lemma 3.28(ii),
U \GU is an ideal of U . By Lemmas 3.28(i) and 3.29, we also have GU = {a} = E(aSa) ∩GaSa = U ∩ aHa

a .
Obviously U is a submonoid of aSa. So by Proposition 3.26, Lemma 3.28(iii), and the fact that rank(GU ) =
rank({a}) = 1, it follows that

rank(W ) ≥ rank(U :GU ) + max(ρ, rank(GU )) = rank(U)− 1 + ρ,

with equality throughout if P is RI-dominated.
For the statement concerning idempotent ranks, consider the proof of Proposition 3.26 in the case that

U = E(aSa). First, since GU = {a} by Lemma 3.28(i), we have T = aφ−1 = E(Ĥa
a ) by Proposition 3.23.

By Lemma 3.25(ii), W \ T is an ideal of W . Lemma 2.1 then gives

idrank(W ) = idrank(W :T ) + idrank(T ).

Since T is a left zero band of size ρ, we have idrank(T ) = ρ. As in the proof of Proposition 3.26, we may
show that:

(i) If X ⊆ E(W ) is such that W = 〈T ∪X〉 and |X| = idrank(W :T ), then U = 〈GU ∪Xφ〉.

(ii) If P is RI-dominated, and if Y ⊆ E(U) is such that U = 〈GU ∪ Y 〉 and |Y | = idrank(U :GU ), then
there exists Z ⊆W with |Z| = |Y |, Zφ = Y and W = 〈T ∪Z〉; since Y ⊆ E(U), Theorem 3.13(i) gives
Z ⊆ E(W ).

From (i), and using Lemma 3.28(iv), it follows that

idrank(W :T ) = |X| ≥ |Xφ| ≥ idrank(U :GU ) = idrank(U)− 1.

Similarly, (ii) and Lemma 3.28(iv) give idrank(W :T ) ≤ |Z| = |Y | = idrank(U :GU ) = idrank(U)− 1 if P is
RI-dominated.

Now that we have explored the structure of P = Reg(Sa) in more detail, we can prove a result concerning
the idempotent-generated subsemigroup E(Sa) of Sa in a particular special case that arises in all our motivat-
ing examples. By Lemma 3.29, ifM is a monoid with identity e, then E(M) ⊆ {e}∪(M \GM ). In particular,
E(aSa) ⊆ {a} ∪ (aSa \ aHa

a ); the next result describes the situation in which E(aSa) = {a} ∪ (aSa \ aHa
a ).

Proposition 3.31. Suppose a is a sandwich-regular idempotent of the semigroup S, and that E(aSa) =
{a} ∪ (aSa \ aHa

a ). Then E(Sa) = aφ−1 ∪ (P \ Ĥa
a ) = E(Ĥa

a ) ∪ (P \ Ĥa
a ).

Proof. By Theorem 3.13(ii), We have E(Sa) = E(aSa)φ−1 = aφ−1∪ (aSa\ aHa
a )φ−1 = aφ−1∪ (P \ Ĥa

a ).

Remark 3.32. Note that the set aφ−1 = E(Ĥa
a ) has many equivalent formulations; cf. Proposition 3.23.
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3.5 Inverse monoids

We continue to assume that a is a sandwich-regular idempotent of S. Recall that for x ∈ S, we write V (x) =
{y ∈ S : x = xyx, y = yxy} for the set of all inverses of x in S. Recall also that if x ∈ P = Reg(S), we write
VP (x) = {y ∈ P : x = xyx, y = yxy} for the set of all inverses of x in P ; of course VP (x) = V (x)∩P ⊆ V (x)
for any such x.

In [6], an element x ∈ S was called uniquely regular if |V (x)| = 1. Thus, a semigroup is inverse if every
element is uniquely regular. In [6], an element a ∈ S was called uniquely sandwich-regular if each element of
{a} ∪ aSa is uniquely regular. Every element of an inverse semigroup is uniquely sandwich regular.

Theorem 3.33. If a is a uniquely sandwich-regular idempotent of the semigroup S, then Reg(Sa) = P = aSa
is an inverse monoid.

Proof. By Lemma 3.11(ii), P = Reg(Sa). Let x ∈ P = Reg(Sa) be arbitrary, and let y ∈ VP (x). It is easy
to check that x and ax both belong to V (ay). But ay ∈ aP = aSa is uniquely regular, so it follows that
x = ax. Since x ∈ P was arbitrary, it follows that P = aP = aSa.

To show that P = aSa is inverse, let x ∈ P be arbitrary. We must show that |VP (x)| = 1. Since P is
regular, certainly |VP (x)| ≥ 1. Since VP (x) ⊆ V (x) and |V (x)| = 1 (by the uniquely sandwich-regularity
assumption), the proof is complete.

Remark 3.34. In the case that a is uniquely sandwich-regular, many of the results in the preceeding
subsections become trivial or even vacuous, as φ : P → aSa = P : x 7→ ax is just the identity map. For
example, the K̂ a relations are precisely the K a relations, and these are the same as the aK a relations. Also,
in Theorems 3.27 and 3.30, we have ρ = 1. Theorem 3.27 reduces to the statement

rank(aSa) = rank(aSa : aHa
a ) + rank(aHa

a ) if aSa \ aHa
a is an ideal of aSa,

which is just a special case of Lemma 2.1. Since E(Sa) = E(P ) = E(aSa), Theorem 3.30 becomes completely
vacuous.

4 Principal right ideals

In this section, we describe the corresponding results for a principal right ideal aS generated by an element a
of the semigroup S. These results a direct duals of those in Section 3, so we will not provide any proofs. We
will also only state the main results.

We begin with a description of the regular elements of aS. The next result is the dual of Theorem 3.2
and Corollary 3.3.

Theorem 4.1. Let S be a semigroup, let a ∈ S, and define Q = {x ∈ aS : x R xa}. Then

Reg(aS) = Reg(S) ∩Q.

If aSa ⊆ Reg(S), then Q ⊆ Reg(S). Consequently, Reg(aS) = Q is a left ideal of aS in this case.

We may also describe Green’s relations on aS (cf. Theorem 3.8). We denote the K relation on aS by aK ,
write aKx for the aK -class of x in aS, and so on.
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Theorem 4.2. Let S be a semigroup, let a ∈ S, and define the sets

Q = {x ∈ aS : x R xa}, Q′ = {x ∈ aS : x J xa}, Q′′ = {x ∈ S : x ∈ aSx}, Q′′′ = {x ∈ S : x ∈ aSxS1}.

Then for any x ∈ aS,

(i) aRx =

{
Rx ∩Q if x ∈ Q
{x} if x 6∈ Q,

(ii) aLx =

{
Lx ∩Q′′ if x ∈ Q′′

{x} if x 6∈ Q′′,

(iii) aHx =

{
Hx if x ∈ Q ∩Q′′

{x} if x 6∈ Q ∩Q′′,

(iv) aDx =


Dx ∩Q ∩Q′′ if x ∈ Q ∩Q′′
aLx if x 6∈ Q
aRx if x 6∈ Q′′,

(v) aJx =

{
Jx ∩Q′ ∩Q′′′ if x ∈ Q′ ∩Q′′′
aDx if x 6∈ Q′ ∩Q′′′.

As in Corollary 3.9, the situation is simpler if the element a is regular, as then Q′′ = Q′′′ = aS
(cf. Lemma 3.5).

Corollary 4.3. Let S be a semigroup, let a ∈ Reg(S), and define the sets

Q = {x ∈ aS : x R xa} and Q′ = {x ∈ aS : x J xa}.

Then for any x ∈ aS,

(i) aRx =

{
Rx ∩Q if x ∈ Q
{x} if x 6∈ Q,

(ii) aLx = Lx ∩ aS,

(iii) aHx =

{
Hx if x ∈ Q
{x} if x 6∈ Q,

(iv) aDx =

{
Dx ∩Q if x ∈ Q
aLx if x 6∈ Q,

(v) aJx =

{
Jx ∩Q′ if x ∈ Q′
aLx if x 6∈ Q′.

Again, if a is a regular element of S, then aS = eS for some idempotent e of S; thus, when studying aS
with a regular, we may assume that a is in fact an idempotent. As with Lemma 3.11, we have

aSa = Qa ⊆ Q = aQ and a is sandwich-regular ⇔ Q ⊆ Reg(S) ⇔ Reg(aS) = Q.

For the remainder of this subsection, we fix a sandwich-regular idempotent a ∈ E(S).

We again have a surmorphism
ψ : Q→ aSa : x 7→ xa,

which allows us to link the structure of Q = Reg(aS) with that of the regular monoid aSa. The idempotents
E(aS) and the idempotent-generated subsemigroup E(aS) of aS may quickly be described; cf. Theorem 3.13.

Theorem 4.4. If a is a sandwich-regular idempotent of the semigroup S, then

(i) E(aS) = E(aSa)ψ−1, (ii) E(aS) = E(aSa)ψ−1.

Green’s non-J relations on Q are also easily characterised. These are simply the restrictions to Q of
the corresponding relations on aS, and will also be denoted by aK , with the J -relation denoted by J Q;
cf. Lemma 3.14.

Lemma 4.5. If a is a sandwich-regular idempotent of S, and if x ∈ Q, then

(i) aLx = Lx ∩Q, (ii) aRx = Rx ∩Q, (iii) aDx = Dx ∩Q, (iv) aHx = Hx.

Corollary 4.6. If J = D in S, then J Q = aD in Q.

To describe the internal structure of a aD-class of Q = Reg(aS), we use the aK̂ relations for each of
Green’s relations K , defined by

aK̂ =
{

(x, y) ∈ Q×Q : (xa, ya) ∈ aK a
}
.

(Recall that aK a is the K -relation on the monoid aSa.) As in Lemma 3.20, we have the following:
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Lemma 4.7. We have

(i) aL ⊆ aL̂ ⊆ aD ,

(ii) aR̂ = aR,

(iii) aH ⊆ aĤ ⊆ aD ,

(iv) aD̂ = aD ⊆ aĴ = J Q.

We then obtain the following analogue of Theorem 3.21.

Theorem 4.8. Let x ∈ Q, and let l = |aL̂x/aL | be the number of aL -classes contained in aL̂x. Then

(i) the restriction to aHx of the map ψ : Q→ aSa is a bijection ψ|aHx : aHx → aHa
xa,

(ii) aHx is a group if and only if aHa
xa is a group, in which case these groups are isomorphic,

(iii) if aHx is a group, then aĤx is a right group of degree l over aHx,

(iv) if aHx is a group, then E(aĤx) is a right zero band of size l.

As in Remark 3.22, the Green’s structure of Q = Reg(aS) may be thought of as a kind of “inflation”
of that of aSa. We leave the reader to supply the details, and to draw a diagram akin to Figure 1 (in Q,
the “stretching” happens in the horizontal direction, rather than the vertical, as in P = Reg(Sa)); compare
Figures 4 and 6 to Figures 3 and 5.

RI-domination played an important role in the further study of P = Reg(Sa) in Section 3, but when
studying aS and Q = Reg(aS), it is LI -domination that plays the corresponding role. The next result, anal-
ogous to Proposition 3.23, gives several characterisations of the left identities (equivalently, mid-identities)
in aS and Q = Reg(aS).

Proposition 4.9. If a is a sandwich-regular idempotent of a semigroup S, then

MI(aS) = LI(aS) = MI(Q) = LI(Q) = VQ(a) = V (a) ∩Q = V (a) ∩ aS = aV (a) = E(aĤa) = aψ−1.

After proving an intermediate result analogous to Proposition 3.26, we obtain the following two results
concerning the rank (and idempotent rank if appropriate) of Q = Reg(aS) and E(aS).

Theorem 4.10. Let a be a sandwich-regular idempotent of the semigroup S, write λ = |aL̂a/aL |, and suppose
aSa \ aHa

a is an ideal of aSa. Then

rank(Q) ≥ rank(aSa : aHa
a ) + max(λ, rank(aHa

a )),

with equality if Q is LI-dominated.

Theorem 4.11. Let a be a sandwich-regular idempotent of the semigroup S, and write λ = |aL̂a/aL |. Then

rank(E(aS)) ≥ rank(E(aSa)) + λ− 1 and idrank(E(aS)) ≥ idrank(E(aSa)) + λ− 1,

with equality in both if Q is LI-dominated.

We also have the following; cf. Proposition 3.31.

Proposition 4.12. Suppose a is a sandwich-regular idempotent of the semigroup S, and that E(aSa) =
{a} ∪ (aSa \ aHa

a ). Then E(aS) = aψ−1 ∪ (Q \ aĤa) = E(aĤa) ∪ (Q \ aĤa).

As in Theorem 3.33, the whole theory simplifies significantly if a is uniquely sandwich-regular.

Theorem 4.13. If a is a uniquely sandwich-regular idempotent of the semigroup S, then Reg(aS) = aSa is
an inverse monoid.

Remark 4.14. Theorems 3.33 and 4.13 together say that when a is uniquely sandwich-regular, we have
Reg(Sa) = Reg(aS) = aSa.
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5 Full transformation semigroups

In this section, we apply the general theory developed above to the principal one-sided ideals of the full
transformation semigroups. We will see in Proposition 5.1 that these one-sided ideals are certain well-known
semigroups of restricted range or kernel. These semigroups of restricted transformations have been studied
by several authors [14, 28, 41, 43, 45]. For example, Green’s relations and the regular elements have been
described in [28,43]; these descriptions may be quickly deduced from the general results of Sections 3 and 4.
Some results concerning ranks of various semigroups we consider may be found in the literature; where
possible, these have been acknowledged in the text. Many other results presented in this section are new.

For the duration of this section, we fix a non-empty set X (which may be finite or infinite), and denote
by TX the full transformation semigroup over X, as defined in Section 2.6. We also fix a transformation
a ∈ TX , with the intention of studying the principal one-sided ideals

TXa = {fa : f ∈ TX} and aTX = {af : f ∈ TX}.

Since TX is regular, by Theorem 2.8, we may assume without loss of generality that a is an idempotent.
Using the notation described at the end of Section 2.6, we will write

a =
(
Ai
ai

)
i∈I
, A = im(a), α = ker(a).

So A = {ai : i ∈ I}, and α has equivalence classes {Ai : i ∈ I}; since a is an idempotent, we have ai ∈ Ai for
each i. Since TX is regular, a is sandwich-regular, meaning that the theory developed in Sections 3 and 4
apply to the principal one-sided ideals TXa and aTX . The next result follows quickly from parts (i) and (ii)
of Theorem 2.8.

Proposition 5.1. Let X be a non-empty set, let a ∈ TX , and write A = im(a) and α = ker(a). Then

TXa = {f ∈ TX : im(f) ⊆ A} and aTX = {f ∈ TX : ker(f) ⊇ α}.

The semigroups in Proposition 5.1 are commonly denoted in the literature by

T (X,A) = {f ∈ TX : im(f) ⊆ A} and T (X,α) = {f ∈ TX : ker(f) ⊇ α},

and we will continue to use this notation here. It is easy to see that

|T (X,A)| = |A||X| and |T (X,α)| = |X|‖α‖.

Most results of this section will be stated in terms of A or α without reference to the other, but we will
always have the transformation a (which links A and α) in mind.

5.1 Green’s relations and regular elements in T (X,A) and T (X,α)

Since TX is regular, Green’s relations and regular elements in its principal one-sided ideals are governed by
the sets P , P ′, Q and Q′, as defined in Sections 3 and 4. (Regularity of TX ensures that we do not need to
explicitly refer to the sets P ′′, P ′′′, Q′′ and Q′′′; see Lemma 3.5 and its dual.) To describe these sets, we first
recall some terminlogy. Let B be a subset of X, and σ an equivalence on X. We say that

• B saturates σ if every σ-class contains at least one element of B,

• σ separates B if every σ-class contains at most one element of B,

• B is a cross section of σ if every σ-class contains exactly one element of B.

Recall that ‖σ‖ denotes the number of σ-classes of X. If f ∈ TX , we write

σf−1 = {(x, y) ∈ X ×X : (xf, yf) ∈ σ}.

If f, g ∈ TX , then ker(fg) = ker(g)f−1.

23



Proposition 5.2. Let X be a non-empty set, let A be a non-empty subset of X, and let α be an equivalence
relation on X. Then

(i) Reg(T (X,A)) = P = {f ∈ T (X,A) : A saturates ker(f)} is a right ideal of T (X,A),

(ii) Reg(T (X,α)) = Q = {f ∈ T (X,α) : α separates im(f)} is a left ideal of T (X,α),

(iii) P ′ = {f ∈ T (X,A) : |Af | = rank(f)},

(iv) Q′ = {f ∈ T (X,α) : ‖αf−1‖ = rank(f)}.

Proof. (i) and (ii). We have Reg(T (X,A)) = Reg(TXa) = P and Reg(T (X,α)) = Reg(aTX) = Q from
Corollary 3.3 and Theorem 4.1, since TX is regular. Now consider some f ∈ TX , and write f =

(Fj
fj

)
. Then

by Theorem 2.8(iv),

f L af ⇔ im(f) = im(af) ⇔ fj ∈ im(af) (∀j) ⇔ Fj ∩A 6= ∅ (∀j) ⇔ A saturates ker(f).

Similarly, one may show that f R fa ⇔ α separates im(f).

(iii). If f ∈ T (X,A), then

f ∈ P ′ ⇔ f J af ⇔ rank(f) = rank(af) = |im(af)| = |im(a)f | = |Af |.

(iv). If f ∈ T (X,α), then

f ∈ Q′ ⇔ f J fa ⇔ rank(f) = rank(fa) = ‖ker(fa)‖ = ‖ker(a)f−1‖ = ‖αf−1‖.

Remark 5.3. Since Af = {fj : Fj ∩ A 6= ∅}, it is clear that A saturates ker(f) if and only if Af = im(f).
Thus, we have the alternative characterisation Reg(T (X,A)) = {f ∈ T (X,A) : im(f) = Af}. With this
in mind, we see that Proposition 5.2(i) is [43, Lemma 2.2 and Theorem 2.4]. Proposition 5.2(ii) is [28,
Theorem 2.3]; in [28], the term “partial cross-section” was used to describe a set separated by an equivalence
relation.

We now use Corollary 3.9, Proposition 5.2 and Theorem 2.8 to give descriptions of Green’s relations
on T (X,A) = TXa.

Theorem 5.4. Let X be a non-empty set, let A be a non-empty subset of X, and let f, g ∈ T (X,A). Then
in the semigroup T (X,A),

(i) f L g ⇔ f = g or [im(f) = im(g) and A saturates both ker(f) and ker(g)],

(ii) f R g ⇔ ker(f) = ker(g),

(iii) f H g ⇔ f = g or [im(f) = im(g) and A saturates ker(f) = ker(g)],

(iv) f D g ⇔ ker(f) = ker(g) or [rank(f) = rank(g) and A saturates both ker(f) and ker(g)],

(v) f J g ⇔ ker(f) = ker(g) or |Af | = rank(f) = rank(g) = |Ag|.

Further, D = J in T (X,A) if and only if A is finite or A = X.

Proof. Green’s K relation in T (X,A) is the K a relation in the principal one-sided ideal TXa of TX .

(i). Using Corollary 3.9(i), we have

f L g in T (X,A) ⇔ f L a g in TXa ⇔ [f = g 6∈ P ] or [f L g in TX and f, g ∈ P ].

Using Theorem 2.8(i) and Proposition 5.2(i), this is clearly equivalent to the stated conditions.

(ii)–(v). These are treated in similar fashion, using the relevant parts of Theorem 2.8, Corollary 3.9 and
Proposition 5.2.

For the final statement, we begin with the backwards implication. First, if A = X, then T (X,A) = TX , and
so D = J in T (X,A), by Theorem 2.8(vi). Next, suppose A is finite. Since D ⊆ J in any semigroup,
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we just need to prove that J ⊆ D . To do so, let (f, g) ∈ J . By part (v), we have ker(f) = ker(g) or
else |Af | = rank(f) = rank(g) = |Ag|. If the former holds, then (f, g) ∈ D , by part (iv), so suppose the
latter holds. Since f ∈ T (X,A) with A finite, it follows that rank(f) is finite; but then it is easy to see that
|Af | = rank(f) is equivalent to A saturating ker(f). A similar statement holds for g, and it then quickly
follows that (f, g) ∈ D , again by (iv).

For the converse, we prove the contrapositive. Suppose A is infinite and A 6= X. Write B = X \ A,
and fix some x ∈ A. Let f, g ∈ T (X,A) be such that: f maps A identically, and all of B onto x; g maps
A bijectively onto A \ {x}, and all of B onto x. Then rank(f) = rank(g) = |A|, and also Af = A and
Ag = A \ {x}, so that |Af | = |Ag| = |A|; it follows that (f, g) ∈ J (in T (X,A)), by part (v). However,
since ker(f) 6= ker(g), and since A does not saturate ker(g), part (iv) says that (f, g) 6∈ D (in T (X,A)).

Remark 5.5. Parts (i)–(v) of Theorem 5.4 may be found in [43, Theorems 3.2, 3.3, 3.6, 3.7 and 3.9]. The
implication [A is finite] ⇒ [D = J in T (X,A)] is [43, Theorem 3.12], but our full characterisation of when
D = J holds in T (X,A) appears to be new.

Here is the corresponding result concerning T (X,α) = aTX . We write ∆ for the trivial relation on X:
i.e., ∆ = {(x, x) : x ∈ X}.

Theorem 5.6. Let X be a non-empty set, let α be an equivalence on X, and let f, g ∈ T (X,α). Then in
the semigroup T (X,α),

(i) f L g ⇔ im(f) = im(g),

(ii) f R g ⇔ f = g or [ker(f) = ker(g) and α separates both im(f) and im(g)],

(iii) f H g ⇔ f = g or [ker(f) = ker(g) and α separates im(f) = im(g)],

(iv) f D g ⇔ im(f) = im(g) or [rank(f) = rank(g) and α separates both im(f) and im(g)],

(v) f J g ⇔ im(f) = im(g) or ‖αf−1‖ = rank(f) = rank(g) = ‖αg−1‖.

Further, D = J in T (X,α) if and only if ‖α‖ is finite or α = ∆.

Proof. Parts (i)–(v) are treated in similar fashion to Theorem 5.4, as is the backwards implication of the
final statement; the details are omitted. If ‖α‖ is infinite and α 6= ∆, then we construct a pair (f, g) ∈J \D
as follows. Let j ∈ I be such that |Aj | ≥ 2, let x ∈ Aj \ {aj} be arbitrary, and let k ∈ I \ {j}. Then we
define f = a =

(
Ai
ai

)
i∈I

and g =
(
Ai Ak
ai x

)
i∈I\{k}.

Remark 5.7. Parts (i)–(v) of Theorem 5.6 may be found in [28, Theorems 2.5, 2.6, 2.7 and 2.10]. The
implication [ ‖α‖ is finite] ⇒ [D = J in T (X,α)] is [28, Corollary 2.13], but our full characterisation of
when D = J holds in T (X,α) appears to be new.

5.2 The regular subsemigroups Reg(T (X,A)) and Reg(T (X,α))

We now concentrate on the regular subsemigroups P = Reg(T (X,A)) andQ = Reg(T (X,α)); as in Sections 3
and 4, the results on these involve the local monoid aTXa = {afa : f ∈ TX}. It is well known that aTXa is
isomorphic to TA. More specifically, we have the following (see for example [7, Section 3.3]):

Lemma 5.8. The map ξ : aTXa→ TA : f 7→ f |A is an isomorphism.

As a result of Lemma 5.8, instead of utilising the maps

φ : Reg(T (X,A)) = Reg(TXa)→ aTXa : f 7→ af and ψ : Reg(T (X,α)) = Reg(aTX)→ aTXa : f 7→ fa,

we may compose these with ξ, and work with the equivalent surmorphisms

Φ : Reg(T (X,A))→ TA : f 7→ (af)|A = f |A and Ψ : Reg(T (X,α))→ TA : f 7→ (fa)|A.

(Note that (af)|A = f |A for any f ∈ Reg(T (X,A)) follows from Proposition 5.2(i).)
Green’s relations on P = Reg(T (X,A)) and Q = Reg(T (X,α)) may easily be described, using Lem-

mas 3.14 and 4.5, and Corollaries 3.15 and 4.6 (and Theorem 2.8). The J -class ordering follows from
Lemma 3.19(ii) and its dual.
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Theorem 5.9. Let X be a non-empty set, let A be a non-empty subset of X, and let f, g ∈ P = Reg(T (X,A)).
Then in the semigroup P ,

(i) f L g ⇔ im(f) = im(g),

(ii) f R g ⇔ ker(f) = ker(g),

(iii) f H g ⇔ im(f) = im(g) and ker(f) = ker(g),

(iv) f D g ⇔ f J g ⇔ rank(f) = rank(g).

The D = J -classes of P are the sets

Dµ(P ) = {f ∈ P : rank(f) = µ} for each cardinal 1 ≤ µ ≤ |A|,

and they form a chain: Dµ(P ) ≤ Dν(P ) ⇔ µ ≤ ν.

Theorem 5.10. Let X be a non-empty set, let α be an equivalence relation on X, and let f, g ∈ Q =
Reg(T (X,α)). Then in the semigroup Q,

(i) f L g ⇔ im(f) = im(g),

(ii) f R g ⇔ ker(f) = ker(g),

(iii) f H g ⇔ im(f) = im(g) and ker(f) = ker(g),

(iv) f D g ⇔ f J g ⇔ rank(f) = rank(g).

The D = J -classes of Q are the sets

Dµ(Q) = {f ∈ Q : rank(f) = µ} for each cardinal 1 ≤ µ ≤ ‖α‖,

and they form a chain: Dµ(Q) ≤ Dν(Q) ⇔ µ ≤ ν.

Remark 5.11. Theorem 5.9 was originally proved in [41, Lemma 3]. The fact that D = J on Reg(T (X,α)),
which is part of Theorem 5.10, was proved in [28, Theorem 2.9]; Green’s R, L and H relations on
Reg(T (X,α)) were not described in [28].

The Green’s structure of P = Reg(T (X,A)) and Q = Reg(T (X,α)) may be thought of as an “inflation”
of aTXa ∼= TA, in the sense of Remark 3.22 and its dual; the only additional information required to fully
understand the nature of this expansion is the values of the parameters r and l from Theorems 3.21 and 4.8,
defined in terms of the relations R̂a and L̂ a, respectively. To keep notation the same as that of Sections 4
and 3, we denote Green’s relations on P and Q by K a and aK , respectively.

Lemma 5.12. Let f ∈ P = Reg(T (X,A)), and write µ = rank(f). Then

|R̂af/Ra| = µ|X\A|.

Proof. An Ra-class Rag (g ∈ P ) contained in R̂af is completely determined by the common kernel of each of
its elements: i.e., by ker(g). If g ∈ P , then

g ∈ R̂af ⇔
(
g|A, f |A

)
= (gΦ, fΦ) ∈ R in TA ⇔ ker

(
g|A
)

= ker
(
f |A
)
.

Thus, it suffices to calculate the number of equivalence relations ε on X such that ε = ker(g) for some g ∈ P
and ε|A = ker

(
f |A
)
. Now, ε|A = ker

(
f |A
)
is a fixed equivalence on A with µ classes; if we denote these classes

by {Bj : j ∈ J}, then the definition of ε may be completed by assigning each element of X \ A arbitrarily
to any of the Bj (each ε = ker(g)-class must contain at least one element of A, by Proposition 5.2(i)). Since
|J | = µ, the result quickly follows.

Lemma 5.13. Let f ∈ Q = Reg(T (X,α)), and put J = {i ∈ I : im(f) ∩Ai 6= ∅}. Then

|aL̂f/aL | =
∏
j∈J
|Aj |.

Proof. An aL -class aLg (g ∈ Q) contained in aL̂f is completely determined by the common image of each
of its elements: i.e., by im(g). If g ∈ Q, then

g ∈ aL̂f ⇔
(
(ga)|A, (fa)|A

)
= (gΨ, fΨ) ∈ L in TA ⇔ im

(
(ga)|A

)
= im

(
(fa)|A

)
.

Thus, it suffices to calculate the number of subsets B of X such that B = im(g) for some g ∈ Q and
{i ∈ I : Ai ∩ B 6= ∅} = J ; by Proposition 5.2(ii), the condition g ∈ Q forces |Aj ∩ B| = 1 for all j ∈ J .
Such a set B is determined by choosing an arbitrary element of Aj for each j ∈ J ; since these choices can
be made in

∏
j∈J |Aj | ways, the result follows.
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Remark 5.14. Lemmas 5.12 and 5.13 respectively give the values of the parameters r and l from Theo-
rems 3.21 and 4.8. Thus, the parameter r depends only on rank(f), meaning that the (vertical) “stretching”
described in Remark 3.22 is uniform within D-classes; this can be seen in Figure 5. In contrast to this, the
parameter l depends not only on rank(f), but also on the set J = {i ∈ I : im(f) ∩Ai 6= ∅}; as a result, the
(horizontal) stetching is not uniform in general, as can be seen in Figure 6.

We may use Lemmas 5.12 and 5.13 to calculate the sizes of the regular semigroups P = Reg(T (X,A))
and Q = Reg(T (X,α)). For an explanation of the notation, see Section 2.6.

Proposition 5.15. Let X be a non-empty set and A a non-empty subset of X. Then the size of the semigroup
P = Reg(T (X,A)) is given by

|P | =
|A|∑
µ=1

µ!µ|X\A|S(|A|, µ)

(
|A|
µ

)
.

Proof. Since the J = D-classes of P are Dµ(P ) for 1 ≤ µ ≤ |A|, by Theorem 5.9, we have

|P | =
|A|∑
µ=1

|Dµ(P )|.

Now fix some 1 ≤ µ ≤ |A|. Then |Dµ(P )| = λ · ρ · η, where λ = |Dµ(P )/L |, ρ = |Dµ(P )/R|, and η is the
size of any H -class contained in Dµ(P ). So the proof will be complete if we can show that

λ =

(
|A|
µ

)
, ρ = S(|A|, µ)µ|X\A|, η = µ!.

By Remark 3.22(iv) and Proposition 2.10(i), we have λ = |Dµ(P )/L | = |Dµ(TA)/L | =
(|A|
µ

)
. By Re-

mark 3.22(iv) and Proposition 2.10(ii), Dµ(P ) contains S(|A|, µ) R̂a-classes; by Lemma 5.12, each of these
R̂a-classes contains µ|X\A| R-classes; together, these imply that ρ = S(|A|, µ)µ|X\A|. Now let f ∈ Dµ(P ) be
arbitrary. By Lemma 3.14(iv), the H -class of f in P is precisely the H -class of f in TX , which has size µ!
by Proposition 2.10(iv): i.e., η = µ!.

Proposition 5.16. Let X be a non-empty set and α an equivalence relation on X with equivalence classes
{Ai : i ∈ I}. Then the size of the semigroup Q = Reg(T (X,α)) is given by

|Q| =
‖α‖∑
µ=1

µ!S(‖α‖, µ)
∑
J⊆I
|J|=µ

∏
j∈J
|Aj |.

Proof. This is proved in similar fashion to Proposition 5.15. We have |Q| =
∑‖α‖

µ=1 |Dµ(Q)|, and for fixed
1 ≤ µ ≤ ‖α‖, |Dµ(Q)| = λ · ρ · η, where λ = |Dµ(Q)/L |, ρ = |Dµ(Q)/R|, and η is the size of any H -class
contained in Dµ(Q). This time, we use Remark 3.22(iv), Proposition 2.10, and Lemmas 4.5 and 5.13 to show
that

λ =
∑
J⊆I
|J|=µ

∏
j∈J
|Aj |, ρ = S(‖α‖, µ), η = µ!.

(For the value of λ, note that the aL̂ -classes in Dµ(P ) are in one-one correspondence with the L -classes in
Dµ(TA), which are indexed by the subsets of A = im(a) of size µ, and hence by the subsets of I of size µ; the
number of aL -classes contained in an aL̂ -class induced by a given subset J ⊆ I is given in Lemma 5.13.)

Remark 5.17. If A = X or α = ∆, then P = T (X,A) = TX and Q = T (X,α) = TX , and Proposi-
tions 5.15 and 5.16 both reduce to the well-known formulae |TX | =

∑|X|
µ=1 µ!S(|X|, µ)

(|X|
µ

)
. (Of course we

also have |TX | = |X||X|.)

In the case of infiniteX, the expressions for |P | and |Q| in Propositions 5.15 and 5.16 simplify significantly:

Corollary 5.18. Let X be an infinite set and A a non-empty subset of X. Then the size of the semigroup
P = Reg(T (X,A)) is given by

|P | =

{
1 if |A| = 1

2|X| if |A| ≥ 2.
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Proof. The statement for |A| = 1 being clear, suppose |A| ≥ 2. Since |P | ≤ |TX | = 2|X|, it suffices to show
that |P | ≥ 2|X|. To do so, we show that the µ = 2 term of the sum in Proposition 5.15 is at least 2|X|. We
denote this term by ξ. First, if |A| < |X|, then |X \A| = |X|, and we have ξ ≥ 2|X\A| = 2|X|. On the other
hand, if |A| = |X|, then ξ ≥ S(|A|, 2) = S(|X|, 2) = 2|X|.

Corollary 5.19. Let X be an infinite set and α an equivalence relation on X with equivalence classes
{Ai : i ∈ I}. Then the size of the semigroup Q = Reg(T (X,α)) is given by

|Q| = 2‖α‖
∏
i∈I
|Ai|.

Proof. For simplicity, we will write π =
∏
i∈I |Ai| throughout the proof. If ‖α‖ = 1, then P = T (X,α)

consists of all constant mappings, of which there are |X|; but we also note that 2‖α‖π simplifies to |X| in
this case (here, X is the only equivalence class). For the rest of the proof, we assume that ‖α‖ ≥ 2. For
1 ≤ µ ≤ ‖α‖, we denote by ξµ the µth term of the sum in Proposition 5.16. We now consider separate cases
according to whether ‖α‖ is finite or infinite.

Suppose first that ‖α‖ is finite. Since X is infinite and |X| =
∑

i∈I |Ai|, at least one of the Ai is infinite,
and hence π =

∏
i∈I |Ai| is infinite. For any 1 ≤ µ ≤ ‖α‖,

ξµ = µ!S(‖α‖, µ)
∑
J⊆I
|J|=µ

∏
j∈J
|Aj | ≤ µ!S(‖α‖, µ)

∑
J⊆I

∏
i∈I
|Ai| = µ!S(‖α‖, µ)2|I|π = π,

with the last equality holding because µ!S(‖α‖, µ)2|I| is finite and π infinite. Since ‖α‖ is finite, it follows
that |Q| =

∑‖α‖
µ=1 ξµ ≤ ‖α‖π = π = 2‖α‖π. For the reverse inequality, we have

|Q| ≥ ξ‖α‖ = ‖α‖!S(‖α‖, ‖α‖)
∑
J⊆I
|J|=‖α‖

∏
j∈J
|Aj | = ‖α‖!

∏
i∈I
|Ai| = ‖α‖!π = π = 2‖α‖π,

again because ‖α‖! and 2‖α‖ are finite, and π infinite.
Now suppose ‖α‖ is infinite. For any 1 ≤ µ ≤ ‖α‖,

ξµ = µ!S(‖α‖, µ)
∑
J⊆I
|J|=µ

∏
j∈J
|Aj | ≤ ‖α‖!2‖α‖

∑
J⊆I

∏
i∈I
|Ai| = 2‖α‖ · 2‖α‖ · 2|I|π = 2‖α‖π.

Since there are fewer than 2‖α‖ terms in the sum in Proposition 5.16, it follows that |Q| ≤ 2‖α‖·2‖α‖π = 2‖α‖π.
But also

|Q| ≥ ξ‖α‖ = ‖α‖!S(‖α‖, ‖α‖)
∑
J⊆I
|J|=|I|

∏
j∈J
|Aj | ≥ ‖α‖!

∏
i∈I
|Ai| = 2‖α‖π,

completing the proof.

Remark 5.20. As observed in the above proof, we have |Q| = |X| if ‖α‖ = 1 and, more generally,
|Q| =

∏
i∈I |Ai| if ‖α‖ is finite. In fact, it then follows from |X| =

∑
i∈I |Ai| = maxi∈I |Ai| =

∏
i∈I |Ai|

that |Q| = |X| for finite ‖α‖. On the other hand, if ‖α‖ is infinite, then |Q| ≥ 2‖α‖ is always uncountable,
and can be as large as 2|X|.

Remark 5.21. If A = X or α = ∆, then Propositions 5.15 and 5.16 reduce to |TX | = 2|X| (for infinite X).

We may also calculate the ranks of P = Reg(T (X,A)) and Q = Reg(T (X,α)). For this, we first show
that the semigroups P and Q are RI- and LI-dominated, respectively, regardless of the values of |A| and ‖α‖.

Proposition 5.22. Let X be a non-empty set and A a non-empty subset of X. Then the semigroup
P = Reg(T (X,A)) is RI-dominated.

Proof. Let f =
(Fj
fj

)
∈ P be arbitrary. Since f ∈ P , Proposition 5.2(i) says that A ∩ Fj 6= ∅ for all j ∈ J .

For each j, let Ij = {i ∈ I : ai ∈ Fj}, and fix a partition Fj =
⊔
i∈Ij Fj,i so that ai ∈ Fj,i for each i ∈ Ij .

Put b =
(
Fj,i
ai

)
j∈J, i∈Ij

. Proposition 5.2(i) immediately gives b ∈ P , as A is a cross-section of ker(b). Since b
maps A identically, we have a = ab, and it follows that b is a right identity for P (since a is). Finally, it is
clear that f = bf , so that f ≤R b.
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Proposition 5.23. Let X be a non-empty set and α an equivalence relation on X. Then the semigroup
Q = Reg(T (X,α)) is LI-dominated.

Proof. Let f =
(Fj
fj

)
∈ Q be arbitrary. For each j ∈ J , we have fj ∈ Aij for some ij ∈ I. Since

f ∈ Q, Proposition 5.2(ii) says that the map j 7→ ij is injective. Write K = {ij : j ∈ J}, and define
b =

(Aij Al
fj al

)
j∈J, l∈I\K . Then again one may show that b ∈ Q is a left identity forQ and that f = fb ≤L b.

Theorem 5.24. Let X be a non-empty set and A a non-empty subset of X. Then the rank of the semigroup
P = Reg(T (X,A)) is given by

rank(P ) =


1 if |A| = 1

2|X| if |A| ≥ 2 and X is infinite
3 if 3 ≤ |A| = |X| is finite
1 + |A||X\A| otherwise.

Proof. If |A| = 1 then |P | = 1 and the result is clear, so we assume |A| ≥ 2 for the rest of the proof. If X
is infinite, then by Corollary 5.18, |P | = 2|X| is uncountable, and so rank(P ) = |P |, completing the proof in
this case.

For the rest of the proof we assume X is finite (and |A| ≥ 2). It follows that A is finite as well, and so
TA\SA is an ideal of TA. Given the isomorphism ξ : aTXa→ TA from Lemma 5.8, it follows that aTXa\GaTXa
is an ideal of aTXa. Combining this with Proposition 5.22, it follows that Theorem 3.27 applies, and it gives

rank(P ) = rank(TA :SA) + max
(
|A||X\A|, rank(SA)

)
. (5.25)

If A = X, then P = T (X,A) = TX , and so rank(P ) = rank(TX) in this case. It is well known that
rank(TX) = 2 if |X| = 2 and rank(TX) = 3 for finite |X| ≥ 3, agreeing with the claimed values for rank(P ).

Finally, suppose 2 ≤ |A| < |X|. Then rank(TA :SA) = 1; see for example [24, Proposition 1.2].
Also, rank(SA) ≤ 2 (it can only be 1 if |A| = 2). Since 2 ≤ |A| < |X|, we have |A||X\A| ≥ 2, and so
max

(
|A||X\A|, rank(SA)

)
= |A||X\A|. By (5.25), this completes the proof.

Remark 5.26. The finite case of Theorem 5.24 was proved in [45, Theorem 3.6]. Alternative proofs of
Theorems 5.24 and 5.27 may be found in [7].

Recall that ∆ denotes the trivial relation on X; we also write ∇ = X ×X for the universal relation.

Theorem 5.27. Let X be a non-empty set and α an equivalence relation on X with equivalence classes
{Ai : i ∈ I}. Then the rank of the semigroup Q = Reg(T (X,α)) is given by

rank(Q) =


|X| if α = ∇
2‖α‖

∏
i∈I |Ai| if ‖α‖ is infinite

3 if α = ∆ and |X| ≥ 3 is finite
1 +

∏
i∈I |Ai| otherwise.

Proof. If α = ∇ then Q is the right-zero band of all constant mappings, and hence rank(Q) = |Q| = |X|.
If ‖α‖ is infinite, then by Corollary 5.19, |Q| = 2‖α‖

∏
i∈I |Ai| is uncountable, so again rank(Q) = |Q|.

For the rest of the proof we assume that ‖α‖ is finite, and that α 6= ∇. It follows that rank(a) = ‖α‖ is
finite, so as in the proof of Theorem 5.24, it follows from Theorem 4.10, Lemma 5.13 and Proposition 5.23
that

rank(Q) = rank(TA :SA) + max (π, rank(SA)) , (5.28)

where again we have written π =
∏
i∈I |Ai|. If α = ∆ then π = 1, so it follows from (5.28) and Lemma 2.1

that
rank(Q) = rank(TA :SA) + rank(SA) = rank(TA).

Consulting Theorem 2.11, this agrees with the claimed value(s). If α 6= ∆, then π ≥ 2 ≥ rank(SA). Since
α 6= ∇, |A| = ‖α‖ ≥ 2, so rank(TA :SA) = 1, and it follows from (5.28) that rank(Q) = 1 + π.
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5.3 The idempotent-generated subsemigroups E(T (X,A)) and E(T (X,α))

In this section, we study the idempotent-generated subsemigroups of the principal one-sided ideals TXa =
T (X,A) and aTX = T (X,α). In the literature on the semigroups T (X,A) and T (X,α), these sub-
semigroups seem not to have been explicitly investigated. Theorems 3.13 and 4.4 (and the isomorphism
ξ : aTXa→ TA from Lemma 5.8) yield immediate descriptions of these subsemigroups in terms of the corre-
sponding idempotent-generated subsemigroup of TA, which itself was described in [21].

Theorem 5.29. Let X be a non-empty set, let A be a non-empty subset of X, and let α be an equivalence
relation on X. Then

(i) E(T (X,A)) = {f ∈ T (X,A) : f |A ∈ E(TA)},

(ii) E(T (X,α)) = {f ∈ T (X,α) : (fa)|A ∈ E(TA)}.

In the case that |A| or ‖α‖ is finite, Theorem 5.29 takes on a particularly elegant form (regardless of
whether X is itself finite or infinite). Before we state it, it will be convenient to describe the one-sided
identities of T (X,A) and T (X,α).

Lemma 5.30. Let X be a non-empty set, let A be a non-empty subset of X, and let α be an equivalence
relation on X. Then

(i) RI(T (X,A)) = {f ∈ T (X,A) : xf = x (∀x ∈ A)},

(ii) LI(T (X,α)) = {f ∈ T (X,α) : (xf, x) ∈ α (∀x ∈ X)}.

Proof. We just prove (i), as (ii) is similar. An element f ∈ T (X,A) is a right identity for T (X,A) if and
only if a = af (since a is a right identity); it is easy to see that this is equivalent to the stated condition.

Theorem 5.31. Let X be a non-empty set, let A be a non-empty finite subset of X, and let α be an
equivalence relation on X with finitely many equivalence classes. Then

(i) E(T (X,A)) =
{
f ∈ T (X,A) : xf = x (∀x ∈ A)

}
∪
{
f ∈ T (X,A) : rank(f) < |A|

}
,

(ii) E(T (X,α)) =
{
f ∈ T (X,α) : (x, xf) ∈ α (∀x ∈ X)

}
∪
{
f ∈ T (X,α) : rank(f) < ‖α‖

}
.

Proof. These follow quickly from Propositions 3.31 and 4.12, together with Theorem 2.11 and Lemma 5.30,
and the aφ−1 = RI(Sa) and aψ−1 = LI(aS) parts of Propositions 3.23 and 4.9.

Now that we have described the elements of E(T (X,A)) and E(T (X,α)), we wish to calculate the ranks
and idempotent ranks of these semigroups. First, we count the idempotents.

Proposition 5.32. Let X be a non-empty set, let A be a non-empty subset of X, and let α be an equivalence
relation on X with equivalence classes {Ai : i ∈ I}. Then

(i) |E(T (X,A))| =



1 if |A| = 1

2|X| if X is infinite and |A| ≥ 2

|A|∑
µ=1

µ|X|−µ
(
|A|
µ

)
otherwise,

(ii) |E(T (X,α))| =


2‖α‖

∏
i∈I
|Ai| if X is infinite

‖α‖∑
µ=1

µ‖α‖−µ
∑
J⊆I
|J|=µ

∏
j∈J
|Aj | if X is finite.

Proof. (i). Again the |A| = 1 case is trivial, so we assume |A| ≥ 2.
Suppose first that X is infinite. Since |E(T (X,A))| = |E(P )| ≤ |P | = 2|X|, by Corollary 5.18, it suffices

to show that |E(T (X,A))| ≥ 2|X|. Since |A| ≥ 2, we may fix distinct x, y ∈ A. Then for any partition
X \ {x, y} = B tC, the map

(
B∪{x} C∪{y}
x y

)
belongs to E(T (X,A)). Since there are 2|X| such partitions, the

result follows.
Now suppose X is finite. An idempotent f ∈ E(T (X,A)) may be specified by:
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• choosing µ = rank(f), which can be anything from 1 to |A|,

• choosing im(f), which must be a subset of A of size µ,

• choosing xf for each x ∈ X \ im(f) (note that f must map the elements of im(f) identically).

Since there are
(|A|
µ

)
choices for im(f), and µ|X\im(f)| = µ|X|−µ choices for the xf (x ∈ X \ im(f)), the stated

formula follows.

(ii). Again, for simplicity, we will write π =
∏
i∈I |Ai|. Suppose first that X is infinite. As in the previous

case, by Corollary 5.19, it suffices to show that |E(T (X,α))| ≥ 2‖α‖π. Since X is infinite, at least one of ‖α‖
or π must be infinite. It follows that 2‖α‖π = max(2‖α‖, π), so it suffices to show that

(a) |E(T (X,α))| ≥ π, and (b) |E(T (X,α))| ≥ 2‖α‖.

First, note that for any choice function I → X : i 7→ bi with bi ∈ Ai for each i, the map
(
Ai
bi

)
is an idempotent

of T (X,α); since there are π such choice functions, this gives (a). To prove (b), note first that if ‖α‖ is finite,
then π must be infinite (as noted above), and so (a) gives |E(T (X,α))| ≥ π ≥ 2‖α‖. Now suppose |I| = ‖α‖
is infinite. Fix some distinct j, k ∈ I. Then for any partition I \ {j, k} = M tN , the map(

Aj ∪
⋃
m∈M Am Ak ∪

⋃
n∈N An

aj ak

)
is an idempotent of T (X,α). Since there are 2|I| = 2‖α‖ such partitions, this completes the proof of (b). As
noted above, this completes the proof of (ii) in the case of infinite X.

Now suppose X is finite. An idempotent f ∈ E(T (X,α)) may be specified by:

• choosing µ = rank(f), which can be anything from 1 to ‖α‖,

• choosing im(f), which must be of the form {bj : j ∈ J} for some subset J ⊆ I of size µ, and where
bj ∈ Aj for each j,

• choosing Akf for each k ∈ I \ J (note that Ajf = bj for each j).

There are
∑

J⊆I,|J |=µ
∏
j∈J |Aj | ways to perform the second task, and µ‖α‖−µ to do the third.

Theorem 5.33. Let X be a non-empty set, let A be a non-empty subset of X, and let α be an equivalence
relation on X with equivalence classes {Ai : i ∈ I}. Then

(i) rank(E(T (X,A))) = idrank(E(T (X,A))) =



1 if |A| = 1

2|X| if X is infinite and |A| ≥ 2

2 + 2|X|−2 if |A| = 2 and X is finite(|A|
2

)
+ |A||X|−|A| otherwise,

(ii) rank(E(T (X,α))) = idrank(E(T (X,α))) =



|X| if ‖α‖ = 1

2‖α‖
∏
i∈I |Ai| if ‖α‖ is infinite

2 +
∏
i∈I |Ai| if ‖α‖ = 2 and X is finite(‖α‖

2

)
+
∏
i∈I |Ai| otherwise.

Proof. (i). Again, the |A| = 1 case is trivial, so we assume that |A| ≥ 2.
Next suppose A is infinite. Then so too is X, so Proposition 5.32(i) gives

2|X| = |E(T (X,A))| ≤ |E(T (X,A))| ≤ |TX | = 2|X|.

It follows that |E(T (X,A))| = 2|X| is uncountable, and so

rank(E(T (X,A))) = idrank(E(T (X,A))) = |E(T (X,A))| = 2|X|.
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Now suppose A is finite. By Proposition 5.22, P = Reg(T (X,A)) is RI-dominated; Theorem 3.30 and
Lemma 5.12 then give

rank(E(T (X,A))) = rank(E(TA))+|A||X|−|A|−1 and idrank(E(T (X,A))) = idrank(E(TA))+|A||X|−|A|−1.

Theorem 2.11 completes the proof.

(ii). If ‖α‖ = 1, then E(T (X,α)) = T (X,α) consists entirely of all the constant mappings, and the stated
formula again follows quickly. All other cases are treated in almost identical fashion to part, treating the
cases of ‖α‖ finite and infinite separately.

5.4 Egg-box diagrams

Figures 3–6 give egg-box diagrams of special cases of the semigroups T (X,A), T (X,α) and their regular
subsemigroups; for comparison, Figure 2 gives egg-box diagrams of TX itself for small |X|. These were
produced with the aid of the Semigroups package for GAP [30], and may be used to visualise some of the
results proved about these semigroups.

For example, one may compare Figure 3 with Corollary 3.9, which describes Green’s relations in a principal
left ideal (generated by a regular element). One may also see the “inflation” discussed in Remark 3.22 by
comparing Figures 2 and Figure 5; each semigroup in Figure 5 is an “inflation” of a semigroup in Figure 2.
Figures 4 and 6 may be used to visualise the situation for principal right ideals. The pdf may be zoomed
significantly to see more detail in any figure, if required.

Figure 2: Left to right: egg-box diagrams of TX , where |X| = 3, 4 and 5.

6 Symmetric inverse monoids

We conclude with a short section on symmetric inverse monoids. Fix a non-empty set X, and denote by IX
the symmetric inverse monoid over X, as defined in Section 2.6. We also fix an element a ∈ IX with the
intention of studying the principal one-sided ideals IXa and aIX of IX . Again, since IX is regular (indeed,
inverse), we may assume that a is an idempotent: i.e., a = idA for some A ⊆ X. It is then easy to see that

IXa = {f ∈ TX : im(f) ⊆ A} and aIX = {f ∈ IX : dom(f) ⊆ A}.
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Figure 3: Egg-box diagrams of T (X,A), where |X| = 5 and |A| = 3 (top) or |A| = 4 (bottom).

Clearly f 7→ f−1 determines an anti-isomorphism between IXa and aIX , so it suffices to consider just IXa,
as results for aIX are dual. In the literature, the semigroup IXa is generally denoted by I(X,A), and we
will continue to use this notation here.

Again, Green’s relations and regular elements of I(X,A) = IXa are determined by the sets

P = {f ∈ I(X,A) : f L af} and P ′ = {f ∈ I(X,A) : f J af}.

Since IX is inverse, every element of IX (including a) is uniquely sandwich-regular, and so Theorem 3.33
gives

P = Reg(I(X,A)) = aIXa = {f ∈ IX : dom(f), im(f) ⊆ A},

and it is easy to see that this (local) monoid is isomorphic to IA; cf. [14, Theorem 3.1]. Thus, any result
concerning Reg(I(X,A)) reduces to a corresponding result concerning the well-studied inverse monoid IA.
As for the set P ′, it is easy to see that for f ∈ I(X,A), we have

f J af ⇔ rank(f) = rank(af) ⇔ rank(f) = |A ∩ dom(f)|.

Theorem 6.1 (cf. Theorem 5.4). Let X be a non-empty set, let A a subset of X, and let f, g ∈ I(X,A).
Then in the semigroup I(X,A),

(i) f L g ⇔ f = g or [im(f) = im(g) and dom(f),dom(g) ⊆ A],

(ii) f R g ⇔ dom(f) = dom(g),

(iii) f H g ⇔ f = g or [im(f) = im(g) and dom(f) = dom(g) ⊆ A],

(iv) f D g ⇔ dom(f) = dom(g) or [rank(f) = rank(g) and dom(f),dom(g) ⊆ A],

(v) f J g ⇔ dom(f) = dom(g) or |A ∩ dom(f)| = rank(f) = rank(g) = |A ∩ dom(g)|.

Further, D = J in I(X,A) if and only if A is finite or A = X.
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Figure 4: Egg-box diagrams of T (X,α), where |X| = {1, 2, 3, 4, 5} and X/α = {{1}, {2, 3}, {4, 5}} (left) or
X/α = {{1}, {2}, {3, 4, 5}} (right).

Figure 5: Egg-box diagrams of Reg(T (X,A)), where |X| = 5 and |A| = 3 (left) or |A| = 4 (right).

Remark 6.2. Parts (i)–(v) were proved in [14, Theorems 3.3, 3.4, 3.6 and 3.7], but the final statement did
not appear in [14].

Since P = Reg(I(X,A)) is inverse, the idempotent-generated subsemigroup E(I(X,A)) = E(P ) is simply
the semilattice of idempotents E(P ), which is isomorphic to E(IA) = {idB : B ⊆ A}; this, in turn, is
isomorphic to the power set {B : B ⊆ A} under intersection. Its rank and idempotent rank are equal to
1 + |A| if A is finite, or to 2|A| if A is infinite.
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