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ADDITIVE ACTIONS ON COMPLETE TORIC SURFACES

SERGEY DZHUNUSOV

Abstract. By an additive action on an algebraic variety X we mean a regular effective
action Gn

a × X → X with an open orbit of the commutative unipotent group Gn

a . In
this paper, we give a classification of additive actions on complete toric surfaces.

1. Introduction

Let X be an irreducible algebraic variety of dimension n over an algebraically closed
field K of characteristic zero and Ga = (K,+) be the additive group of the ground field.
Consider the commutative unipotent group Gn

a = Ga× . . .×Ga (n times). By an additive
action on X we mean an effective regular action Gn

a×X → X with an open orbit. In other
words, an additive action on a complete variety X allows to consider X as a completion
of the affine space An that is equivariant with respect to the group of parallel translations
on An.

The study of additive actions began with the work of Hassett and Tschinkel [17].
They introduced a correspondence between additive actions on the projective space Pn

and local (n + 1)-dimensional commutative associative algebras with unit; see also [18,
Proposition 5.1] for a more general correspondence. Hassett-Tshinkel’s correspondence
makes it possible to classify additive actions on Pn for n ≤ 5; these are precisely the cases
when the number of additive actions is finite.

The study of additive actions was originally motivated by problems of arithmetic ge-
ometry. Chambert-Loir and Tschinkel [7, 8] gave asymptotic formulas for the number of
rational points of bounded height on smooth (partial) equivariant compactifications of
the vector group.

There is a number of results on additive actions on flag varieties [1,13–15], singular del
Pezzo surfaces [12], Hirzebruch surfaces [17] and weighted projective planes [2].

This work concerns the case of toric varieties. The problem of classification of additive
actions on toric varieties is raised in [6, Section 6].

It is proved in [11] that Ga-actions on a toric variety XΣ normalized by the acting
torus T are in bijection with some elements e ∈ M , where M is the character lattice of
torus T . These vectors are called Demazure roots of the corresponding fan Σ. Cox [9]
observed that normalized Ga-actions on a toric variety can be interpreted as certain
Ga-subgroups of automorphisms of the Cox ring R(X) of the variety X . In turn, such
subgroups correspond to homogeneous locally nilpotent derivations of the Cox ring.

In [5] all toric varieties admitting an additive action are described. It turns out that if
a complete toric variety X admits an additive action, then it admits an additive action
normalized by the acting torus. Moreover, any two normalized additive actions on X are
isomorphic.
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This work solves the problem of classification of additive actions for a complete toric
surface. It was known in particular cases of the projective plane [17, Proposition 3.2],
Hirzebruch surfaces [17, Proposition 5.5] and some weighted projective planes [2, Propo-
sition 7] that these surfaces admit exactly two non-isomorphic additive actions, the nor-
malized and the non-normalized ones. In Theorem 3, we prove that any complete toric
surface admits at most two non-isomorphic additive actions and characterize the fans of
surfaces that admit precisely two additive actions.

After presenting some preliminaries on toric varieties and Cox ring (Section 2) and
Ga-actions and Demazure roots (Section 3), we describe the results of [5] (Section 4).
In Section 5, we prove some facts about Demazure roots of a toric variety admitting an
additive action. In Section 6, we formulate and prove the main theorem of this work. In
Section 7, we give several explicit examples of additive actions on toric surfaces in Cox
ring coordinates and discuss the further research.

The author is grateful to his supervisor Ivan Arzhantsev for posing the problem and
permanent support and to Yulia Zaitseva for useful discussions and comments.

2. Toric varieties and Cox rings

In this section we introduce basic notation of toric geometry, see [10, 16] for details.

Definition 1. A toric variety is a normal variety X containing a torus T ≃ (K∗)n as a
Zariski open subset such that the action of T on itself extends to an action of T on X .

Let M be the character lattice of T and N be the lattice of one-parameter subgroups
of T . Let 〈· , ·〉 : N × M → Z be the natural pairing between the lattice N and the
lattice M. It extends to the pairing 〈· , ·〉Q : NQ ×MQ → Q between the vector spaces
NQ = N ⊗Q and MQ =M ⊗Q.

Definition 2. A fan Σ in the vector space NQ is a finite collection of strongly convex
polyhedral cones σ such that:

(1) For all cones σ ∈ Σ, each face of σ is also in Σ.
(2) For all cones σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of the cones σ1 and σ2.

There is one-to-one correspondence between normal toric varieties X and fans Σ in the
vector space NQ, see [10, Section 3.1] for details.

Here we recall basic notions of the Cox construction, see [3, Chapter 1] for more details.
Let X be a normal variety. Suppose that the variety X has free finitely generated divisor
class group Cl(X) and there are only constant invertible regular functions on X . Denote
the group of Weil divisors on X by WDiv(X) and consider a subgroup K ⊆ WDiv(X)
which maps onto Cl(X) isomorphically. The Cox ring of the variety X is defined as

R(X) =
⊕

D∈K

H0(X,D) =
⊕

D∈K

{f ∈ K(X)× | div(f) +D > 0} ∪ {0}

and multiplication on homogeneous components coincides with multiplication in the field
of rational functions K(X) and extends to the Cox ring R(X) by linearity. It is easy to
see that up to isomorphism the graded ring R(X) does not depend on the choice of the
subgroup K.

Suppose that the Cox ring R(X) is finitely generated. Then X := SpecR(X) is a
normal affine variety with an action of the torus HX := SpecK[Cl(X)]. There is an open

HX-invariant subset X̂ ⊆ X such that the complement X\X̂ is of codimension at least
2



two in X , there exists a good quotient pX : X̂ → X̂//HX , and the quotient space X̂//HX

is isomorphic to X , see [3, Construction 1.6.3.1]. Thus, we have the following diagram

X̂
i

−−−→ X = SpecR(X)y//HX

X

It is proved in [9] that if X is toric, then R(X) is a polynomial algebra K[x1, . . . , xm],
where the variables xi correspond to T -invariant prime divisors Di on X or, equivalently,
to the rays ρi of the corresponding fan Σ. The Cl(X)-grading on R(X) is given by

deg(xi) = [Di]. In this case, X is isomorphic to Km, and X \ X̂ is a union of some
coordinate subspaces in Km of codimension at least two. Denote by T the torus (K∗)m

acting on the variety X . Each w ∈ M gives a character χw : T → K∗, and hence
χw is a rational function on X . By [10, Theorem 4.1.3], the function χw defines the
principal divisor div(χw) = −

∑
ρ〈w, uρ〉Dρ. Let us consider the map M −→ Zm defined

by w 7→ (〈w, uρ1〉, . . . , 〈w, uρm〉), where ρ1, . . . , ρm are one-dimensional cones of Σ. We
identify the group Zm with the character lattice of the torus (K∗)m. Thus, every element
w ∈M corresponds to the character χw of the torus T. Moreover, for any w,w′ ∈M the
equality w = w′ holds if and only if χw = χw′

.

3. Demazure roots and locally nilpotent derivations

Let XΣ be a toric variety of dimension n and Σ be the fan of the variety XΣ. Let
Σ(1) = {ρ1, . . . , ρm} in N be the set of rays of the fan Σ and pi be the primitive lattice
vector on the ray ρi.

For any ray ρi ∈ Σ(1) we consider the set Ri of all vectors e ∈M such that

(1) 〈pi, e〉 = −1 and 〈pj, e〉 ≥ 0 for j 6= i, 1 ≤ j ≤ n;
(2) if σ is a cone of Σ and 〈v, e〉 = 0 for all v ∈ σ, then the cone generated by σ and

ρi is in Σ as well.

Elements of the set R =
m⋃
i=1

Ri are called Demazure roots of the fan Σ (see [11, Sec-

tion 3.1] or [19, Section 3.4]). Let us divide the roots R into two classes:

S = R ∩ −R , U = R \S.

Roots in S and U are called semisimple and unipotent respectively.
A derivation ∂ of an algebra A is said to be locally nilpotent (LND) if for every f ∈ A

there exists k ∈ N such that ∂k(f) = 0. For any LND ∂ on A the map ϕ∂ : Ga ×A→ A,
ϕ∂(s, f) = exp(s∂)(f), defines a structure of a rational Ga-algebra on A. A derivation ∂
on a graded ring A =

⊕
ω∈K

Aω is said to be homogeneous if it respects the K-grading. If

f, h ∈ A\ ker ∂ are homogeneous, then ∂(fh) = f∂(h) + ∂(f)h is homogeneous too and
deg ∂(f)− deg f = deg ∂(h)− deg h. So any homogeneous derivation ∂ has a well-defined
degree given as deg ∂ = deg ∂(f)− deg f for any homogeneous f ∈ A\ ker ∂.

Every locally nilpotent derivation of degree zero on the Cox ring R(XΣ) induces a
regular action Ga × XΣ → XΣ. In fact, any regular Ga-action on XΣ arises this way,
see [9, Section 4] and [3, Theorem 4.2.3.2]. If a Ga-action on a variety XΣ is normalized by
the acting torus T , then the lifted Ga-action on XΣ = Km is normalized by the diagonal
torus T = (K∗)m. Conversely, any Ga-action on Km normalized by the torus (K×)m

and commuting with the subtorus HXΣ
induces a Ga-action on XΣ. This shows that

Ga-actions on XΣ normalized by T are in bijection with locally nilpotent derivations of
3



the Cox ring K[x1, . . . , xm] that are homogeneous with respect to the standard grading
by the lattice Zm and have degree zero with respect to the Cl(XΣ)-grading.

For any element e ∈ Ri we consider a locally nilpotent derivation
∏
j 6=i

x
〈pj ,e〉
j

∂
∂xi

on

the algebra R(XΣ). This derivation has degree zero with respect to the grading by the
group Cl(XΣ). This way one obtains a bijection between the Demazure roots in R and
locally nilpotent derivations of degree zero on the ring R(XΣ), which in turn are in
bijection with Ga-actions on XΣ normalized by the acting torus.

Lemma 1. Let De be a homogeneous LND that corresponds to the Demazure root e ∈M
and t be an element of maximal torus T. Then,

tDet
−1 = χe(t)De.

Proof. By definition, the derivation De is equal to
∏
j 6=i

x
〈pj ,e〉
j

∂
∂xi

. Let us consider the image

tDet
−1(xi) of an element xi. It is equal to t

−1
i

∏
j 6=i

t
〈pj ,e〉
j

∏
j 6=i

x
〈pj ,e〉
j . Thus, we get

tDet
−1 = t−1

i

∏

j 6=i

t
〈pj ,e〉
j De =

m∏

j=1

t
〈pj ,e〉
j De = χe(t)De.

�

4. Complete toric varieties admitting an additive action

In this section, we shortly present the results of [5]. Let XΣ be a toric variety of
dimension n admitting an additive action and Σ be the fan of the variety XΣ. Denote
primitive vectors on the rays of the fan Σ by pi, where 1 ≤ i ≤ m.

Definition 3. A set e1, . . . , en of Demazure roots of a fan Σ of dimension n is called a
complete collection if 〈pi, ej〉 = −δij for all 1 ≤ i, j ≤ n for some ordering of p1, . . . , pm.

An additive action on a toric variety XΣ is said to be normalized if the image of the
group Gn

a in Aut(XΣ) is normalized by the acting torus.

Theorem 1. [5, Theorem 1] Let XΣ be a toric variety. Then normalized additive actions
on XΣ normalized are in bijection with complete collections of Demazure roots of the fan
Σ.

Corollary 1. A toric variety XΣ admits a normalized additive action if and only if there
is a complete collection of Demazure roots of the fan Σ.

Theorem 2. [5, Theorem 3] Let XΣ be a complete toric variety with an acting torus T .
The following conditions are equivalent.

(1) There exists an additive action on XΣ.
(2) There exists a normalized additive action on XΣ.

Here we prove a proposition that will be used below.

Definition 4. The negative octant of the rational vector space V with respect to a basis

f1, . . . , fn is the cone

{
n∑

i=1

λifi | λi ≤ 0

}
⊂ V .

Proposition 1. Let XΣ be a complete toric variety. The following statements are equiv-
alent.

(1) There is a complete collection of Demazure roots of the fan Σ.
4



(2) We can order rays of the fan Σ in such a way that the primitive vectors on the
first n rays form a basis of the lattice N and the remaining rays lie in the negative
octant with respect to this basis.

(3) There exists an additive action on XΣ.

Proof. Let us prove implication (1) ⇒ (2). Assume that the vectors p1, . . . , pn are linearly
dependent, i.e. there exists a non-trivial linear relation α1p1 + . . .+ αnpn = 0. Then we
get −αi = 〈α1p1 + . . .+ αnpn, ei〉 = 0 for all 1 ≤ i ≤ n, a contradiction. Consider an
arbitrary vector v =

∑n
i=1 νipi of the lattice N . By definition of a complete collection, we

get 〈v, ei〉 = −νi ∈ Z. Therefore, the vectors p1, . . . , pn form the basis of the lattice N .
All other vectors pj, j > m, are equal to −

∑n
l=1 αjlpl for some integer αjl. By definition

of a Demazure root, we obtain

0 ≤ 〈pj, ei〉 =
∑

αjlδli = αji.

The converse implication is straightforward.
Equivalence (1) ⇔ (3) follows from Theorems 1 and 2. �

5. Demazure roots of a variety admitting an additive action

Let XΣ be a complete toric variety of dimension n admitting an additive action and
Σ be the fan of the variety XΣ. Denote primitive vectors on the rays of the fan Σ by pi,
where 1 ≤ i ≤ m.

From Proposition 1 it follows that we can order pi in such a way that the first n
vectors form a basis of the lattice N and the remaining vectors pj (n < j ≤ m) are equal
to
∑n

i=1−αjipi for some non-negative integers αji.
Let us denote the dual basis of the basis p1, . . . , pn by p∗1, . . . , p

∗
n.

Lemma 2. Consider 1 ≤ i ≤ n. The set Ri is a subset of the set −p∗i +
n∑

l=1,l 6=i

Z≥0p
∗
j and

the vector −p∗i is a Demazure root from the set Ri.

Proof. Let e =
n∑

i=1

εip
∗
i be a Demazure root from Ri. By the definition, the Demazure

roots from Ri are defined by the following equations:

εi = −1
εl ≥ 0, l ≤ n, l 6= i

αji −
n∑

l=1
l 6=i

εlαjl ≥ 0, n < j ≤ m
(1)

It is clear that all possible solutions lie in the set −p∗i +
n∑

l=1
l 6=i

Z≥0p
∗
l , and the vector −p∗i

satisfies them. �

Consider the set Reg(S) = {u ∈ N : 〈u, e〉 6= 0 for all e ∈ S}. Any element u from
Reg(S) divides the set of semisimple roots S into two classes as follows:

S
+
u = {e ∈ S : 〈u, e〉 > 0}, S

−
u = {e ∈ S : 〈u, e〉 < 0}.

At this point, any element of Su
+ is called positive and any element of S−

u is called
negative.

Proposition 2. Let XΣ be a complete toric variety admitting an additive action, and
R =

⋃m
i=1Ri be the set of its Demazure roots. Then

5



(1) any element e ∈ Rj , j > n, is equal to p∗ij for some 1 ≤ ij ≤ n;

(2) all unipotent Demazure roots lie in the set
⋃n

i=1Ri;
(3) there exists a vector u ∈ Reg(S) such that S+

u ⊂
⋃n

i=1Ri.

Proof. We start with the first statement. Consider a root e =
n∑

i=1

εip
∗
i ∈ Rj , where j > n.

By definition of Demazure roots, we have −〈pj, e〉 =
n∑

i=1

αjiεi = 1 and εi ≥ 0 for all

1 ≤ i ≤ n. Consider the set Ij = {i : αji > 0}. Then there exists s ∈ Ij such that εs = 1
and for all l ∈ Ij \ {s} the equality εl = 0 holds. Since XΣ is complete, there is no
half-space with all vectors pi inside. Hence, for all l ∈ {1, . . . , n} \ Ij there exists r > n

such that αrl > 0. Since 〈pr, e〉 = −
n∑

i=1

αriεi ≥ 0, we have εl = 0. This implies e = p∗s.

The first statement is proved.
Let us prove the second statement. As above, consider the root e = p∗ij ∈ Rj , j > n.

From the first statement of Proposition 2 and Lemma 2 it follows that the element −e is
a root and lies in Rij for some ij . This means that the root e is semisimple. Hence, all
unipotent roots lie in the set

⋃n
i=1Ri.

To prove (3), we should find a vector u from the set Reg(S) such that the set
⋃m

j=n+1Rj contains only negative roots. Consider the vector u0 = −
n∑

i=1

pi. For every

root e ∈
⋃m

j=n+1Rj , we get the inequality 〈u0, e〉 = −1 < 0. We can add a small

rational vector ∆u = 1
Q
∆u′ ∈ NQ, where ∆u′ ∈ N and Q is a positive integer such

that the inequality 〈u0 + ∆u, e〉Q < 0 holds for all roots e ∈
⋃m

i=n+1Ri. So, we have
Q(u0 +∆u) ∈ Reg(S), and we obtain the required vector u := Q(u0 +∆u). �

6. Main results

✲

✻

p1

p2

✏✏✏✏✏✮
✂
✂
✂
✂
✂
✂✂✌

AI

AII

We consider a complete toric surface XΣ with the fan Σ admitting
an additive action. Denote primitive vectors of the rays of the fan Σ
by p1, . . . , pm. We assume that p1, p2 is the standard basis of NQ.

Definition 5. Let us call a fan Σ wide if it satisfies one of the
following equivalent conditions:

(1) There exist 2 < i1, i2 ≤ m such that ai11 > ai12 and
ai21 < ai22;

(2) R1 = {−p∗1} and R2 = {−p∗2}.

Proof of Equivalence. From the definition of Demazure roots it fol-
lows that

R1 =

{
(−1, k) : 0 ≤ k ≤ min

j>2

(
αj1

αj2

)}
, R2 =

{
(k,−1) : 0 ≤ k ≤ min

j>2

(
αj2

αj1

)}
.

From this it follows that |R1| =

⌊
min
j>2

(
αj1

αj2

)⌋
+ 1, |R2| =

⌊
min
j>2

(
αj2

αj1

)⌋
+ 1. This

implies the equivalence. �

Let us consider two areas in NQ:

AI = {(x, y) ∈MQ : x ≤ 0, y ≤ 0, x < y},

AII = {(x, y) ∈MQ : x ≤ 0, y ≤ 0, x > y}.
6



The first condition from the definition of a wide fan means that there is a ray of Σ in the
area AI and there is a ray in the area AII .

Now we are ready to formulate the main theorem.

Theorem 3. Let XΣ be a complete toric surface admitting an additive action. Then
there is only one additive action on XΣ if and only if the fan Σ is wide; otherwise there
exist two non-isomorphic additive actions, one is normalized and the other is not.

Proof of Theorem 3. We are going to classify additive actions on XΣ by describing two-
dimensional subgroups of a maximal unipotent subgroup U of the automorphism group
Aut(XΣ) up to conjugation in Aut(XΣ).

Fix a vector u ∈ Reg(S) that satisfies assertion (3) of Proposition 2. Hereafter we write
S+ instead of S+

u . Denote the set S+ ∪U by R+. From Proposition 2 it follows that R+

lies in the set
⋃n

i=1Ri. All the one-parameter subgroups of roots from R
+ generate the

maximal unipotent subgroup U in the group Aut(XΣ), see [9, Proposition 4.3]. Denote
the set R+ ∩Ri by R

+
i .

Lemma 3. There exists i ∈ {1, 2} such that |R+
i | = 1. Moreover, maxi=1,2 |R

+
i | =

maxi=1,2 |Ri|.

Proof. From the definition of Demazure roots it follows that

R1 =

{
(−1, k) : 0 ≤ k ≤ min

j>2

(
αj1

αj2

)}
, R2 =

{
(k,−1) : 0 ≤ k ≤ min

j>2

(
αj2

αj1

)}
.

We have |R1| > 1, |R2| > 1 simultaneously if and only if

R1 = {(−1, 0), (−1, 1)}

R2 = {(0,−1), (1,−1)}.

Since the roots (−1, 1), (1,−1) are opposite to each other, only one of them can lie in R
+.

Only the roots (−1, 1), (1,−1) can lie in the set (R1 ∩ −R2) ∪ (R2 ∩ −R1). Thus, we
have |R+

1 | = 1, R+
2 = R2 or |R+

2 | = 1, R+
1 = R1. �

Without loss of generality, it can be assumed that |R+
1 | = 1. Denote the cardinality

of the set R
+
2 by d + 1. By Definition 5 the fan is wide if and only if d is equal to 0.

In there term we have R
+
1 = {(−1, 0)} and R

+
2 = {(k,−1) : 0 ≤ k ≤ d}. Denote LND

that corresponds to the root (−1, 0) ∈ R
+
1 by δ, and LNDs that correspond to roots

(k,−1) ∈ R
+
2 , 0 ≤ k ≤ d by ∂k.

Lemma 4. The following equations hold:

[δ, ∂k] = k∂k−1, [∂k, ∂k′] = 0.

Proof. In this proof we use notation introduced in Section 2. The correspondence between
Demazure roots and LNDs implies:

δ =

m∏

j=3

x
αj1

j

∂

∂x1
, ∂k = xk1

m∏

j=3

x
αj2−kαj1

j

∂

∂x2

It can be easily checked that the derivations ∂k commute with each other. Moreover, direct
computations show that the commutator [δ, ∂k] is equal to the derivation k∂k−1. �

Let us find all commutative subgroups in the group U that correspond to additive
actions. Such groups are in bijection with some pairs (D1, D2) of commuting LNDs.
Note that not every pair of commuting LNDs corresponds to an additive action.

7



Lemma 5. In the above terms there is an invertible linear operator φ on the vector space
〈D1, D2〉 that sends the derivations D1, D2 to




φ(D1) = δ +

d∑
k=0

µk∂k

φ(D2) = ∂0

, µk ∈ K (2)

Proof. Every pair of derivations has the form D1 = λ(1)δ +
∑
µ
(1)
k ∂k and D2 = λ(2)δ +∑

µ
(2)
k ∂k. If λ

(1) = λ(2) = 0 then dimension of the orbit in the total space XΣ is less than 2

and the orbit can not become open after the factorization X̂Σ → XΣ. Thus, without loss
of generality we can assume that λ(1) 6= 0. We can convert derivations D1, D2 to the form

δ +
∑
µ
(1)
k ∂k,

∑
µ
(2)
k ∂k. From Lemma 4 it follows that the derivations D1, D2 commute

if and only if µ
(2)
k = 0 for k > 0. Thus, we can convert derivations D1, D2 to the form

δ +
∑
µ
(1)
k ∂k, µ

(2)
0 ∂0, with µ

(2)
0 6= 0. We can assume that µ

(2)
0 = 1. �

Lemma 6. Every pair of derivations of form (2) corresponds to an additive action.

Proof. Let us consider the G2
a-action corresponding to the LNDs D1, D2. We prove that

the group G2
a × HXΣ

acts in the total space Km with an open orbit. By construction,
the group G2

a changes exactly two of the coordinates x1, . . . , xm, while the weights of the
remaining m−2 coordinates with respect to the Cl(X)-grading form a basis of the lattice
of characters of the torus HX . From this it follows that there exists a point p ∈ Km with
trivial stabilizer. Due to dim(G2

a × HXΣ
) = m we get that the orbit of the point p is

open. �

Hereafter, we suppose thatD1, D2 have form (2). From Lemma 5 it follows that if d = 0,
then derivations D1, D2 can be converted to δ, ∂0 respectively. Such LNDs correspond to
a normalized additive action and every additive action is isomorphic to this action.

Hereafter, we assume that d 6= 0.

Lemma 7. There exists an automorphism ψ ∈ Aut(R(XΣ)) that conjugates D1, D2 to
the form {

ψ(D1) = δ + µd∂d

ψ(D2) = ∂0
(3)

Proof. We are going to find numbers ηk ∈ K such that the automorphism ψ = exp(δ +
d∑

k=1

ηk∂k) is the desired one.

The automorphism ψ conjugates LNDs D1, D2 to the form

exp(δ +
∑

k

ηk∂k)D1 exp(−δ −
∑

k

ηk∂k) =

= Ad

(
exp

(
δ +

∑

k

ηk∂k

))
D1 = exp

(
ad

(
δ +

∑

k

ηk∂k

))
D1 =

= D1 +
∞∑

l=1

ad

(
δ +

∑
k

ηk∂k

)l

l!
D1 = δ +

d∑

k=0

(
µk +

d−k∑

l=1

(k + l)!

k!
(−µk+l + ηk+l)

)
∂k;

exp(δ +
∑

k

ηk∂k)D2 exp(−δ −
∑

k

ηk∂k) = D2.

8



Here, we get the system of linear equations

µk +

d−k∑

l=1

(k + l)!

k!
(−µk+l + ηk+l) = 0, 0 ≤ k ≤ d− 1,

in variables η1, . . . , ηd. This system has a unique solution as an upper triangular system
and it is the solution we are looking for. �

Hereafter, we suppose that D1, D2 have form (3). Thus, we have a family of additive
actions parameterized by the number µd:

x1→exp(s1D1 + s2D2)x1=x1 + s1
m∏
j=3

x
αj1

j

x2→exp(s1D1 + s2D2)x2=x2 + (s2 +
µds

d
1

d!
)

m∏
j=3

x
αj2

j +
d∑

k=1

µds
d−k
1

k!
xk1

m∏
j=3

x
αj2−kαj1

j

(4)

Note that every action corresponding to the pair of LNDs of form (3) acts on xj , 3 ≤ j ≤ m
identically.

Lemma 8. All additive actions with µd 6= 0 are non-normalized and isomorphic to each
other.

Proof. We conjugate the pair of LNDs that have form (3) by an element t of the maximal
torus T = (K∗)m. Using Lemma 1 we obtain

tD1t
−1 = χ(−1,0)(t)δ + µdχ

(d,−1)(t)∂d

tD2t
−1 = χ(0,−1)(t)∂0

Since χ(−1,0) 6= χ(d,−1) we can conjugate an additive action with µd 6= 0 to the additive
action with µd = 1. �

From the last lemma it follows that there are two classes of additive actions. The first
one (µd = 0) is a normalized additive action:

x1→ x1 + s1
m∏
j=3

x
αj1

j

x2→x2 + s2
m∏
j=3

x
αj2

j .
(5)

The second is a non-normalized additive action:

x1→x1 + s1
m∏
j=3

x
αj1

j

x2→x2 + (s2 +
sd
1

d!
)

m∏
j=3

x
αj2

j +
d∑

k=1

sd−k
1

k!
xk1

m∏
j=3

x
αj2−kαj1

j .
(6)

Lemma 9. Actions (5) and (6) are not isomorphic.

Proof. Let us consider the homogeneous component of K[X ] containing x2:

C = 〈x2〉 ⊕ span{xk1

m∏

j=3

x
αj2−kαj1

j : 0 ≤ k ≤ d}.

We consider the space V = {s1D1 + s2D2 : s1, s2 ∈ K} and its subspace

AnnV f = {v ∈ V : vf = 0}, f ∈ C.
9



Let f = λx2 +
d∑

k=0

λkx
k
1

m∏
j=3

x
αj2−kαj1

j be an arbitrary non-zero element of C.

In the case of normalized action (s1D1 + s2D2)f is equal to

s2λ

m∏

j=3

x
αj2

j + s1

d∑

k=1

λkkx
k−1
1

m∏

j=3

x
αj2−(k−1)αj1

j .

Elements of AnnV f are defined by the following equations:

λs2 + λ1s1 = 0
λks1 = 0, 2 ≤ k ≤ d

(7)

The collection of subspaces AnnV f , where f ∈ C \ {0}, contains a family of
lines {s1D1 + s2D2 : λ1s1 + λs2 = 0}, (λ : λ1) ∈ P2.

In the case of non-normalized action (s1D1 + s2D2)f is equal to

s2λ
m∏

j=3

x
αj2

j + s1λx
d
1

m∏

j=3

x
αj2−dαj1

j + s1

d∑

k=1

λkkx
k−1
1

m∏

j=3

x
αj2−(k−1)αj1

j .

Elements of AnnV f are defined by the following equations:

λs2 + λ1s1 = 0
λks1 = 0, 2 ≤ k ≤ d
λs1 = 0

(8)

The subspace AnnV f for f ∈ C \ {0} can be either KD2 or 0.
Hence, actions (5) and (6) are not isomorphic. �

Remark 1. The idea of this proof is taken from the proof [2, Theorem 1].

In the case of a wide fan Theorem 3 follows from Lemmas 5 and 6. In the case of a
non-wide fan we obtain the assertion from Lemmas 6-9. Theorem 3 is proved. �

7. Examples and problems

In this section, we describe some examples illustrating Theorem 3.

Example 1. Let us consider the surface P1 × P1. Its fan is wide and there is only one
additive action up to isomorphism.

✲

✻

✛

❄

p1

p2

p3

p4

R1 = {(−1, 0)}
R2 = {(0,−1)}
R3 = {(1, 0)}
R4 = {(0, 1)}

R
+ = {(−1, 0), (0,−1)}

Normalized action:
x1→x1 + s1x3
x2→x2 + s2x4
x3→ x3
x4→ x4
(s1, s2) ∈ G2

a

10



Example 2. Let us consider the surface corresponding to the following fan with
p3 = −p1 − 2p2, p4 = −2p1 − p2. Its fan is wide and there is only one additive action
up to isomorphism.

✲

✻

✁
✁

✁
✁

✁
✁

✁
✁☛

✟✟✟✟✟✟✟✟✙

p1

p2

p3

p4

R1 = {(−1, 0)}
R2 = {(0,−1)}

R3 = ∅

R4 = ∅

R+ = {(−1, 0), (0,−1)}

Normalized action:
x1→x1 + s1x3x

2
4

x2→x2 + s2x
2
3x4

x3→ x3
x4→ x4
(s1, s2) ∈ G2

a

Example 3. Let us consider the projective plane P2. It corresponds to the following fan
with p3 = −p1 − p2. This fan is not wide. Therefore there are two additive actions up to
isomorphism.

✲

✻

�
�

�
�✠

p1

p2

p3

R1 = {(−1, 0), (−1, 1)}
R2 = {(0,−1), (1,−1)}
R3 = {(1, 0), (0, 1)}

R
+ = {(−1, 0), (0,−1), (1,−1)}

Normalized action:
x1 → x1 + s1x3
x2 → x2 + s2x3
x3 → x3
(s1, s2) ∈ G2

a

Non-normalized action:
x1→ x1 + s1x3

x2→x2 +
2s2+s2

1

2
x3 + s1x1

x3→ x3
(s1, s2) ∈ G2

a

Example 4. Let us consider Hirzebruch surface F1. It corresponds to the following fan
with p3 = −p1 − p2, p4 = −p2. This fan is not wide. Therefore there are two additive
actions up to isomorphism.

✲

✻

❄

�
�

�
�✠

p1

p2

p4
p3

R1 = {(−1, 0)}
R2 = {(0,−1), (1,−1)}

R3 = {(1, 0)}
R4 = ∅

R+ = {(−1, 0), (0,−1), (1,−1)}

Normalized action:
x1→ x1 + s1x3
x2→x2 + s2x3x4
x3→ x3
x4→ x4
(s1, s2) ∈ G2

a

Non-normalized action:

x1→ x1 + s1x3

x2→x2 +
2s2+s2

1

2
x3x4 + s1x1x4

x3→ x3
x4→ x4

(s1, s2) ∈ G2
a

For a geometric realization of these two actions, see [17, Propostion 5.5].

Finally, let us outline some problems for further research.

Problem 1. Classify additive actions on complete non-toric normal surfaces.
11



Examples of additive actions on singular del Pezzo surfaces can be found in [12].

The case of 3-dimensional toric varieties seems to be more complicated: by Hassett-
Tschinkel correspondence, we have four non-isomorphic additive actions on P3, see [17,
Proposition 3.3]. Nevertheless, the following problem seems to be reasonable.

Problem 2. Classify additive actions on complete three-dimensional toric varieties. In
particular, characterize complete toric 3-folds that admit a unique additive action. Is it
true that the number of additive actions on a complete toric 3-fold is finite?
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