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AN EXTENSION OF THE GLAUBERMAN ZJ-THEOREM

M.YASİR KIZMAZ

ABSTRACT. Let p be an odd prime and let Jo(X), Jr(X) and Je(X) denote the three different versions

of Thompson subgroups for a p-group X . In this article, we first prove an extension of Glauberman’s

replacement theorem ([2, Theorem 4.1]). Secondly, we prove the following: Let G be a p-stable

group and P ∈ Sylp(G). Suppose that CG(Op(G)) ≤ Op(G). If D is a strongly closed subgroup in

P, then Z(Jo(D)), Ω(Z(Jr(D))) and Ω(Z(Je(D))) are normal subgroups of G. Thirdly, we show the

following: Let G be a Qd(p)-free group and P ∈ Sylp(G). If D is a strongly closed subgroup in

P, then the normalizers of the subgroups Z(Jo(D)), Ω(Z(Jr(D))) and Ω(Z(Je(D))) control strong

G-fusion in P. We also prove a similar result for a p-stable and p-constrained group. Lastly, we give

a p-nilpotency criteria, which is an extension of Glauberman-Thompson p-nilpotency theorem.

1. INTRODUCTION

Throughout the article, all groups considered are finite. Let P be a p-group. For each abelian

subgroup A of P, let m(A) be the rank of A, and let dr(P) be the maximum of the numbers m(A).
Similarly, do(P) is defined to be the maximum of orders of abelian subgroups of P and de(P) is

defined to be the maximum of orders of elementary abelian subgroups of P. Define

Ar(P) = {A ≤ P | A is abelian and m(A) = dr(P)},

Ao(P) = {A ≤ P | A is abelian and |A|= do(P)}

and

Ae(P) = {A ≤ P | A is elementary abelian and |A|= de(P)}.

Now we are ready to define three different versions of Thompson subgroup: Jr(P), Jo(P) and Je(P)
are subgroups of P generated by all members of Ar(P),Ao(P) and Ae(P), respectively.

Thompson proved his normal complement theorem according to Jr(P) in [12], which states that

“if NG(Jr(P)) and CG(Z(P)) are both p-nilpotent and p is odd then G is p-nilpotent”. Later Thomp-

son introduced “a replacement theorem” and a subgroup similar to Jo(P) in [13]. Due to the com-

patibility of the replacement theorem with Jo(P), Glauberman worked with Jo(P), indeed, he ex-

tended the replacement theorem of Thompson for odd primes (see [2, Theorem 4.1]). We should

note that Glauberman’s replacement theorem is one of the important ingredients of the proof of his

ZJ-theorem.
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Theorem (Glauberman). Let p be an odd prime, G be a p-stable group, and P∈ Sylp(G). Suppose

that CG(Op(G))≤ Op(G). Then Z(Jo(P)) is a characteristic subgroup of G.

There are many important consequences of his theorem. One of the striking ones is that NG(Z(Jo(P)))
controls strong G-fusion in P when G does not involve a subquotient isomorphic to Qd(p) (see

[2, Theorem B]). Another consequence of his theorem is an improvement of Thompson normal

complement theorem. This result says that if NG(Z(Jo(P)) is p-nilpotent and p is odd then G is

p-nilpotent.

There is still active research on properties of Thompson’s subgroups. A current article [11] is

describing algorithms for determining Je(P) and Jo(P). We also refer to [11] and [10] for more

extensive discussions about literature and replacement theorems, which we do not state here. It

deserves to be mentioned separately that Glauberman obtained remarkably more general versions

of the Thompson replacement theorem in his later works (see [4] and [5]). We should also note that

even if [11, Theorem 1] is attributed to Thompson replacement theorem [12] in [11], it seems that

the correct reference is Isaacs replacement theorem (see [9]).

In [1], the ZJ-theorem is given according to Je(P) (see [1, Theorem 1.21, Definition 1.16]).

Although it might be natural to think that Glauberman ZJ-theorem is also correct for “Je(P) and

Jr(P)”, there is no reference verifying that. We should also mention that Isaacs proved the Thomp-

son normal complement theorem according to Je(P) in his book (see [8, Chapter 7]). However, the

ZJ-theorem is not contained in his book.

One of the purposes of this article is to generalize Glauberman replacement theorem (see [2,

Theorem 4.1]), which was used by Glauberman in the proof of his ZJ-theorem. We also note that

our replacement theorem is an extension of Isaacs replacement theorem (see [9]) when we consider

odd primes. The following is the first main theorem of our article:

Theorem A. Let G be a p-group for an odd prime p and A ≤ G be abelian. Suppose that B ≤ G

is of class at most 2 such that B′ ≤ A, A ≤ NG(B) and B � NG(A). Then there exists an abelian

subgroup A∗ of G such that

(a) |A|= |A∗|,
(b) A∩B < A∗∩B,
(c) A∗ ≤ NG(A)∩AG,
(d) the exponent of A∗ divides the exponent of A. Moreover, rank(A)≤ rank(A∗).

One of the main differences from [2, Theorem 4.1] is that we are not taking A to be of maximal

order. By removing the order condition, we obtain more flexibility to apply the replacement theo-

rem. Since our replacement theorem is easily applicable to all versions of Thompson subgroups and

there is a gap in the literature whether ZJ-theorem holds for other versions of Thompson subgroups,

we shall prove our extensions of ZJ-theorem for all different versions of Thompson subgroups.

Definition. [3, pg 22] A group G is called p-stable if it satisfies the following condition: Whenever

P is a p-subgroup of G, g∈NG(P) and [P,g,g] = 1 then the coset gCG(P) lies in Op(NG(P)/CG(P)).
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Let K be a p-group. We write Ω(K) to denote the subgroup 〈{x ∈ K | xp = 1}〉 of K. Note

that Qd(p) is defined to be a semidirect product of Zp ×Zp with SL(2, p) by the natural action of

SL(2, p) on Zp ×Zp. Here is the second main theorem of the article;

Theorem B. Let p be an odd prime, G be a p-stable group, and P ∈ Sylp(G). Suppose that

CG(Op(G)) ≤ Op(G). If D is a strongly closed subgroup in P then Z(Jo(D)), Ω(Z(Jr(D))) and

Ω(Z(Je(D))) are normal subgroups of G.

We prove Theorem B mainly by following the original proof given by Glauberman and with the

help of Theorem A. When we take D = P, we obtain that Z(Jo(P)),Ω(Z(Jr(P))) and Ω(Z(Je(P)))
are characteristic subgroups of G under the hypothesis of Theorem B. Both Z(Jr(P)) and Z(Je(P))
need an extra operation “Ω” and it does not seem quite possible to remove “Ω” by the method used

here.

Corollary C. Let p be an odd prime, G be a p-stable group, and P ∈ Sylp(G). Suppose that

CG(Op(G))≤ Op(G) and D is a strongly closed subgroup in P. If the exponent of Ω(D) is p, then

Z(Jo(Ω(D))), Z(Jr(Ω(D))) and Z(Je(Ω(D))) are normal subgroups of G.

Proof. Suppose that the exponent of Ω(D) is p. Let U ≤ Ω(D) and Ug ≤ P for some g ∈ G.

Then we see that Ug ≤ D as D is strongly closed in P. Since the exponent of U is p, we get that

Ug ≤ Ω(D). Thus Ω(D) is strongly closed in P, and so Z(Jo(Ω(D)))⊳G by Theorem B. On the

other hand, Jo(Ω(D)) = Je(Ω(D)) = Jr(Ω(D)) since the exponent of Ω(D) is p. Then the result

follows. �

Note that the condition on the exponent of Ω(D) is naturally satisfied if Ω(D) is a regular p-group

and it is well known that p-groups of class at most p−1 are regular. Thus, we may apply Corollary

C when |Ω(D)| ≤ pp, in particular. One of the advantages of working with Ω(D) is that Jx(Ω(D))
could be determined more easily compared to Jx(D) for most of the p-groups for x ∈ {o,r,e}.

Definition. [6, pg 268] A group G is called p-constrained if CG(U) ≤ Op′,p(G) for a Sylow p-

subgroup U of Op′,p(G).

Theorem D. Let p be an odd prime, G be a p-stable group, and P ∈ Sylp(G). Assume that NG(U)
is p-constrained for each nontrivial subgroup U of P. If D is a strongly closed subgroup in P then

the normalizers of the subgroups Z(Jo(D)), Ω(Z(Jr(D))) and Ω(Z(Je(D))) control strong G-fusion

in P.

Remark 1.1. In [7], it is proven that if G is p-stable and p > 3 then G is p-constrained by using

classification of finite simple groups (see Proposition 2.3 in [7]). Thus, the assumption “NG(U) is

p-constrained for each nontrivial subgroup U of P” is automatically satisfied when p > 3 and G is

a p-stable group.

Theorem E. Let p be an odd prime, G be a Qd(p)-free group, and P ∈ Sylp(G). If D is a

strongly closed subgroup in P then the normalizers of the subgroups Z(Jo(D)), Ω(Z(Jr(D))) and

Ω(Z(Je(D))) control strong G-fusion in P.
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Remark 1.2. In Theorem E, if we take D = P, then the proof of this special case follows by

Theorem B and [3, Theorem 6.6]. However, the general case requires some extra work. Indeed, we

shall prove Theorem E by constructing an appropriate section conjugacy functor depending on D,

and applying [3, Theorem 6.6].

The following is an easy corollary of Theorem E.

Corollary F. Let p be an odd prime, G be a Qd(p)-free group, and P ∈ Sylp(G). If the exponent

of Ω(D) is p, then the normalizers of the subgroups Z(Jo(Ω(D))),Z(Jr(Ω(D))) and Z(Je(Ω(D)))
control strong G-fusion in P.

Proof. As in the proof of Corollary C, we see that Ω(D) is strongly closed in P since the exponent

of Ω(D) is p. Thus, Jo(Ω(D)) = Jr(Ω(D)) = Je(Ω(D)) and the result follows by Theorem E. �

Lastly we state an extension of Glauberman-Thompson p-nilpotency theorem.

Theorem G. Let p be an odd prime, G be a group and P ∈ Sylp(G). If D is a strongly closed

subgroup in P then G is p-nilpotent if one of the normalizer of subgroups Z(Jo(D)), Ω(Z(Jr(D)))
and Ω(Z(Je(D))) is p-nilpotent.

2. THE PROOF OF THEOREM A

We first state the following lemma, which is extracted from the proof of Glauberman replacement

theorem.

Lemma 2.1 (Glauberman). Let p be an odd prime and G be a p-group. Suppose that G = BA

where B is a normal subgroup of G such that B′ ≤ Z(G) and A is an abelian subgroup of G such

that [B,A,A,A] = 1. Then [b,A] is an abelian subgroup of G for each b ∈ B.

Proof. Let x,y ∈ A. Our aim is to show that [b,x] and [b,y] commute. Set u = [b,y]. If we apply

Hall-Witt identity to the triple (b,x−1,u), we obtain that

[b,x,u]x
−1

[x−1,u−1,b]u[u,b−1,x−1]b = 1.

Note that the above commutators of weight 3 lie in the center of G since B′ ≤ Z(G). Thus we

may remove conjugations in the above equation. Moreover, [u,b−1,x−1] = 1 as [u,b−1] ∈ B′. Thus

we obtain that [b,x,u][x−1,u−1,b] = 1, and so

[b,x,u] = [x−1,u−1,b]−1.

Since [x−1,u−1,b] = [[x−1,u−1],b] ∈ Z(P), we see that

[x−1,u−1,b]−1 = [[x−1,u−1],b]−1 = [[x−1,u−1]−1,b] = [[u−1,x−1],b]

by [6, Lemma 2.2.5(ii)]. As a consequence, we get that [b,x,u] = [[u−1,x−1],b]. By inserting

u = [b,y], we obtain

[[b,x], [b,y]] = [[[b,y]−1,x−1],b].
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Now set G=P/B′. Then clearly B is abelian. It follows that [B,A,A]≤ Z(P) since [B,A,A,A]= 1

and B is abelian. Then we have

[[b,y]−1,x−1]≡ [[b,y]−1,x]−1 ≡ [[b,y],x] mod B′

by applying [6, Lemma 2.2.5(ii)] to G. Since x and y commute and [b,A] ⊆ B is abelian, we see

that

[b,y,x]≡ [b,x,y] mod B′

by [6, Lemma 2.2.5(i)].

Finally we obtain

[[b,x], [b,y]] = [[[b,y]−1,x−1],b] = [[[b,y],x],b] = [[b,x,y],b].

By symmetry, we also have that [[b,y], [b,x]] = [[b,x,y],b]. Then it follows that [[b,y], [b,x]] =
[[b,y], [b,x]]−1, and so [[b,x], [b,y]] = 1 since G is of odd order.

�

Lemma 2.2. Let A be an abelian p-group and E be the largest elementary abelian subgroup of A.

Then rank(E) = rank(A).

Proof. Consider the homomorphism φ : A → A by φ(a) = ap for each a ∈ A. Notice that φ(A) =
Φ(A) and E = Ker(φ), and so |A/Φ(A)|= |E|. Since both E and A/Φ(A) are elementary abelian

groups of same order, we get rank(E) = rank(A/Φ(A)). On the other hand, rank(A/Φ(A)) =
rank(A) and the result follows. �

Proof of Theorem A. We proceed by induction on the order of G. We can certainly assume that

G = AB. Since A is not normal in G, there exists a maximal subgroup M of G such that A ≤ M.

Clearly A normalizes M ∩B as both M and B are normal in G. Suppose that M ∩B does not

normalize A. By induction applied to M, there exists a subgroup A∗ of M such that A∗ satisfies the

conclusion of the theorem. Then A∗ also satisfies (a), (c) and (d) in G. Moreover, A∩ (M∩B) =
A∩B < A∗∩B, and so G also satisfies the theorem. Hence, we can assume that M ∩B ≤ NG(A).
Notice that M = M∩AB = A(M∩B), and so M = NG(A).

Clearly M∩B is a maximal subgroup of B. Then A acts trivially on B/(M∩B), and so [B,A]≤
M = NG(A). Thus, we see that [B,A,A]≤ A which yields [B,A,A,A] = 1. Moreover, we have that

B′ ≤ Z(G) since B′ ≤ A and B′ ≤ Z(B). It follows that [b,A] is abelian for any b ∈ B by Lemma 2.1.

Let b ∈ B \M. Then A 6= Ab ⊳M. Set H = AAb and Z = A∩Ab. Then clearly H is a group and

Z ≤ Z(H). On the other hand, H is of class at most 2 since H/Z is abelian. Note that the identity

(xy)n = xnyn[x,y]
n(n−1)

2 holds for all x,y ∈ H as H is of odd order. It follows that the exponent of H

is the same as the exponent of A.

Now we shall show that H ∩B is abelian. First we claim that H ∩B = (A∩B)[A,b]. Clearly, we

have [A,b] ⊆ H ∩B since H = AAb. It follows that (A∩B)[A,b] ⊆ H ∩B as A∩B ≤ H ∩B. Next

we obtain the reverse inequality. Let x ∈ H ∩B. Then x = acb for a,c ∈ A such that acb ∈ B. Since

B⊳G, we see that [c,b] ∈ B, and so ac ∈ B as ac[c,b] = acb ∈ B. It follows that ac ∈ A∩B and

x = ac[c,b] ∈ (A∩B)[A,b], which proves the equality. Since B′ ≤ A, we see that A∩B⊳B. Then
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A∩B = Ab ∩B and hence A∩B = Z ∩B. In particular, we see that A∩B ≤ Z ≤ Z(H). It follows

that H ∩B = (A∩B)[A,b] is abelian since [A,b] is an abelian subgroup of H and (A∩B)≤ Z(H).
Now set A∗ = (H∩B)Z. Note that A∗ is abelian as H∩B is abelian and Z ≤ Z(H). Now we shall

show that A∗ is the desired subgroup. Clearly, the exponent of A∗ divides the exponent of H, which

shows the first part of (d). Note that A < H and H = H ∩AB = A(H ∩B), and so H ∩B > A∩B. It

follows that A∗∩B ≥ H ∩B > A∩B, which shows (b). On the other hand,

A∗ ≤ H = AAb ≤ M∩AG = NG(A)∩AG,

which shows (c). It remains to prove (a) and the second part of (d). Since A∗ = (H∩B)Z, we have

|A∗|=
|H ∩B||Z|

|Z∩B|
=

|H ∩B||Z|

|A∩B|
.

On the other hand, H = AAb = A(H ∩B). Hence we have

|AAb|

|Ab|
=

|A|

|A∩Ab|
=

|A|

|Z|
=

|H ∩B|

|A∩B|
.

Thus, we see that |A|= |A∗| as desired.

Now let E be the largest elementary abelian subgroup of A. We shall observe that E and A

enjoy some similar properties. Note that E ⊳M = NG(A) since E is a characteristic subgroup of

A. Hence, EEb is a group. Now set H1 = EEb, Z1 = E ∩Eb and E∗ = (H1 ∩B)Z1. First observe

that Z1 ≤ Z(H1), and so H1 is of class at most 2. It follows that the exponent of E∗ is p since

H1 is of odd order. Thus, E∗ is elementary abelian as E∗ ≤ A∗ and A∗ is abelian. Note also that

E∩B = E∩(A∩B), and so E∩B is characteristic in A∩B. Then we see that E∩B⊳B as A∩B⊳B.

This also yields that E ∩B = (E ∩B)b = Eb ∩B, and hence E ∩B = Z1 ∩B. Lastly, observe that

H1 = EEb = EEb ∩EB = E(H1 ∩B). Now we can show that |E|= |E∗| by using the same method

used for showing that |A|= |A∗|. Then we see that rank(A) = rank(E) = rank(E∗)≤ rank(A∗) by

Lemma 2.2.

�

3. THE PROOF OF THEOREM B

Lemma 3.1. Let P be a p-group and R be a subgroup of P. Then if there exists A ∈ Ax(P) such

that A ≤ R then Jx(R)≤ Jx(P) for x ∈ {o,r,e}. Moreover, Jx(P) = Jx(R) if and only if Jx(P)⊆ R for

x ∈ {o,r,e}.

The above lemma is an easy observation and we shall use it without any further reference.

Lemma 3.2. [6, Theorem 8.1.3] Let G be a p-stable group such that CG(Op(G)) ≤ Op(G). If

P ∈ Sylp(G) and A is an abelian normal subgroup of P then A ≤ Op(G).

Proof. Since Op(G) normalizes A, we see that [Op(G),A,A] = 1. Write C = CG(Op(G)). Then

we have AC/C ≤ Op(G/C). Note that Op(G/C) = Op(G)/C since C ≤ Op(G). It follows that

A ≤ Op(G). �
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Definition 3.3. Let G be a group, P ∈ Sylp(G) and D be a nonempty subset of P. We say that D is

a strongly closed subset in P (with respect to G) if for all U ⊆ D and g ∈ G such that Ug ⊆ P, we

have Ug ⊆ D.

Lemma 3.4. Let G be a group and P ∈ Sylp(G). Suppose that D is a strongly closed subset in

P. If N ⊳G and D∩N is nonempty then D∩N is also a strongly closed subset in P. Moreover,

G = NG(D∩N)N.

Proof. Let Q = P∩N and write D∗ = D∩N. Then we see that Q ∈ Sylp(N). Let U ⊆ D∗ and g ∈ G

such that Ug ⊆ P. It follows that Ug ⊆ D as U ⊆ D and D is strongly closed in G. Since N ⊳G, we

see that Ug ≤ N which yields that Ug ⊆ N ∩D = D∗ which shows the first part.

We already know that G = NG(Q)N by Frattini argument. Thus, it is enough to show that

NG(Q) ≤ NG(D
∗). Let x ∈ NG(Q). Then D∗x

⊆ Q ≤ P. Since D∗ is strongly closed in P, we

see that D∗x = D∗. It follows that x ∈ NG(D
∗), as desired. �

Lemma 3.5. Let P be a p-group, p be odd, and let B,N EP. Suppose that B is of class at most

2 and B′ ≤ A for all A ∈ Ax(N). Then there exists A ∈ Ax(N) such that B normalizes A while

x ∈ {o,r,e}.

Proof. First suppose that x = e. Now choose A ∈ Ae(N) such that A∩B is maximum possible. If

B does not normalize A then there exists an abelian subgroup A∗ ≤ P such that |A∗| = |A|, A∗ ≤
AP∩NP(A), A∗∩B> A∩B and the exponent of A∗ divides that of A by Theorem A. We first observe

that A∗ is an elementary abelian subgroup as the exponent of A is p. Since A ≤ N ⊳P, we see that

A∗ ≤ AP ≤ N. Hence, A∗ ∈Ae(N) which contradicts to the maximality of A∩B. Thus B normalizes

A as desired.

Now suppose that x = r and let A ∈ Ar(N). Then we apply Theorem A in a similar way and

find A∗ ≤ N with rank(A∗) ≥ rank(A). Since the rank of A is maximal possible in N, we see that

A∗ ∈ Ar(N). The rest of the argument follows similarly. The case x = o also follows in a similar

fashion. �

Theorem 3.6. Let p be an odd prime, G be a p-stable group, and P ∈ Sylp(G). Let D be a strongly

closed subset in P and B be a normal p-subgroup of G. Write K = 〈D〉, Zo = Z(Jo(K)), Zr =
Ω(Z(Jr(K))) and Ze = Ω(Z(Je(K))). If all members of Ax(K) are included in the set D then Zx ∩
B⊳G while x ∈ {o,r,e}.

Proof. Write J(X) = Je(X) for any p-subgroup X and set Z = Ze. We can clearly assume that

B 6= 1. Let G be a counter example, and choose B to be the smallest possible normal p-subgroup

contradicting to the theorem. Notice that K EP as D is a normal subset of P, and so Z EP. In

particular, B normalizes Z.

Set B1 = (Z∩B)G. Clearly B1 ≤ B. Suppose that B1 < B. By our choice of B, we get Z∩B1⊳G.

Since Z ∩B ≤ B1, we have Z ∩B ≤ Z ∩B1 ≤ Z ∩B, and hence Z ∩B = Z ∩B1. This contradiction

shows that B = B1 = (Z∩B)G.

Clearly B′ < B, and hence Z ∩B′⊳G by our choice of B. Since Z and B normalize each other,

[Z∩B,B]≤ Z ∩B′. Since B and Z ∩B′ are both normal subgroups of G, we obtain [(Z ∩B)g,B]≤
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Z∩B′ for all g ∈ G. This yields [(Z∩B)G,B] = [B,B] = B′ ≤ Z∩B′. In particular, we have B′ ≤ Z,

and so [Z∩B,B′] = 1. It follows that [B,B′] = 1 as B = (Z∩B)G. As a consequence, we see that B

is of class at most 2. Notice that Z ≤ A for all A ∈ Ae(K) due to the fact that AZ is an elementary

abelian subgroup of K. Thus we see that, in particular, B′ ≤ A for all A ∈ Ae(K).
Let N be the largest normal subgroup of G that normalizes Z ∩B. Set D∗ = D∩N, which is

nonempty by our hypothesis, and write K∗ = 〈D∗〉. We see that G = NG(D
∗)N by Lemma 3.4,

and so G = NG(K
∗)N. It follows that G = NG(J(K

∗))N since J(K∗) is a characteristic subgroup of

K∗. Suppose that J(K) ≤ K∗. Then we see that J(K) = J(K∗), and hence Z ∩B is normalized by

NG(J(K
∗)). It follows that Z∩B⊳G. Thus we may assume that J(K)* K∗.

There exists A ∈ Ae(K) such that B normalizes A by Lemma 3.5. Hence, [B,A,A] = 1 since

[B,A]≤ A. Since G is p-stable and B⊳G, we have that AC/C ≤ Op(G/C) where C =CG(B). Note

that C normalizes Z∩B, and so C ≤ N by the choice of N. It follows that AN/N ≤ Op(G/N). Now

we claim that Op(G/N) = 1. Let L⊳G such that L/N = Op(G/N). Then L = (L∩P)N, and hence

L normalizes Z ∩B as both N and L∩P normalize Z ∩B. The maximality of N forces that N = L,

which yields that A ≤ N. Note that A ⊆ D by hypothesis, and so A ⊆ N ∩D = D∗ ⊆ K∗.

We see that Z ≤ A ≤ J(K∗), and so we have J(K∗) ≤ J(K). It follows that Z ∩ B ≤ Z ≤
Ω(Z(J(K∗))). Set X = Ω(Z(J(K∗))). Then we see that G = NNG(X) since G = NNG(K

∗) and

X is characteristic in K∗. Since N normalizes Z∩B, each distinct conjugate of Z ∩B comes via an

element of NG(X). Thus, B = (Z∩B)G = (Z∩B)NG(X) ≤ X .

Since J(K)* K∗, some members of Ae(K) do not lie in K∗. Among such members choose A1 ∈
Ae(K) such that A1 ∩B is maximum possible. Note that B does not normalize A1, since otherwise

this forces A1 ≤ K∗ as in previous paragraphs. Then there exists A∗ ≤ P such that |A∗| = |A|,
A∗∩B > A1 ∩B, A∗ ≤ AP

1 ∩NP(A1) and the exponent of A∗ divides the exponent of A1 by Theorem

A. Since A1 is elementary abelian, we see that A∗ is also elementary abelian. Moreover, A∗ ≤ K as

AP
1 ≤ K ⊳P. It follows that A∗ ∈ Ae(K), and so A∗ ≤ K∗ due to the choice of A1. We see that XA∗

is a group and A∗ ∈ Ae(K
∗), and hence B ≤ X ≤ A∗. It follows that B ≤ A∗ ≤ NP(A1), which is the

final contradiction. Thus, our proof is complete for Ze. Almost the same proof works for Zr and Zo

without any difficulty. �

When we work with Jo(K), we do not need to use Ω operation due to the fact that Z(Jo(K))≤ A

for all A ∈ Ao(K). However, this does not need to be satisfied for Z(Je(K)) and Z(Jr(K)). In these

cases, however, the rank conditions force that Ω(Z(Jx(K))) ≤ A for all A ∈ Ax(K) for x ∈ {e,r}.

This difference causes the use of Ω operation necessary for Z(Je(K)) and Z(Jr(K)).

Proof of Theorem B. As in our hypothesis, let G be a p-stable group that CG(Op(G)) ≤ Op(G)
and D be a strongly closed subgroup in P. Since all these subgroups Z(Jo(D)), Ω(Z(Jr(D))) and

Ω(Z(Je(D))) are abelian normal subgroups of G, we see that they must lie in Op(G) by Lemma

3.2. Note that D is also a strongly closed subset in P and satisfies the hypothesis of Theorem 3.6.

Then the results follow from Theorem 3.6. �

In this section, we see another application of Theorem 3.6 by proving the following theorem,

which we shall need in the next section.
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Theorem 3.7. Let p be an odd prime, G be a p-stable and p-constrained group, and P ∈ Sylp(G).
Let D be a strongly closed subset in P. Write K = 〈D〉, Zo = Z(Jo(K)), Zr =Ω(Z(Jr(K))) and Ze =
Ω(Z(Je(K))). If all members of Ax(K) are included in the set D, then the normalizer of Zx(K)
controls strong G-fusion in P while x ∈ {o,r,e}.

We need the following lemma in the proof of Theorem 3.7.

Lemma 3.8. [2, Lemma 7.2] If G is a p-stable group, then G/Op′(G) is also p-stable.

Since the p-stability definition we used here is not same with that of [2] and [2, Lemma 7.2] has

also extra assumption that Op(G) 6= 1, it is appropriate to give a proof of this lemma here.

Proof. Write N =Op′(G) and G=G/N. Let V be p-subgroup of G. Then there exists a p-subgroup

U of G such that U =V .

Let x ∈ NG(U) such that [U ,x,x] = 1. Clearly, we can write x = x1x2 such that x1 is a p-

element, x2 is a p′-element and [x1,x2] = 1 for some x1,x2 ∈ G. It follows that [U ,xi,xi] = 1

for i = 1,2. Then we see that x2 ∈ CG(U) by [8, Lemma 4.29]. Thus, it is enough to show that

x1 ∈ Op(NG(U)/CG(U)) to finish the proof.

Since x1 is a p-element of G, x1 = sn where n ∈ N and s is a p-element of G, which yields that

x1 = s. Then we see that [UN,s,s] ∈ N and s ∈ NG(UN) by the previous paragraph. Note that

U ∈ Sylp(UN) and |Sylp(UN)| is a p′-number. Consider the action of 〈s〉 on Sylp(UN). Then we

observe that s normalizes Un for some n ∈ N. Thus, we get that [Un,s,s]≤Un ∩N = 1. Note that

U =Un, and so we take Un =U without loss of generality.

Let K ≤ NG(U) such that K/CG(U) = Op(NG(U)/CG(U)). Thus we observe that s ∈ K as G

is p-stable. Note that NG(U) = NG(U) and CG(U) = CG(U) by [8, Lemma 7.7]. Hence, we see

that x1 = s ∈ K and K/CG(U) ≤ Op(NG(U)/CG(U)) = Op(NG(U)/CG(U)), which completes the

proof. �

Proof of Theorem 3.7. Write G = G/Op′(G). Then G is p-stable by Lemma 3.8. Since G is p-

constrained, we have CG(Op(G)) ≤ Op(G) by [6, Theorem 1.1(ii)]. Note that Zx ≤ Op(G) by

Lemma 3.2 for x ∈ {o,e,r}. We see that G satisfies the hypotheses of Theorem 3.6 as P is isomor-

phic to P and D is the desired strongly closed set in P. It follows that Zx(K)⊳G by Theorem 3.6,

and so we get G = Op′(G)NG(Zx(K)) for x ∈ {o,e,r}. Hence, NG(Zx(K)) controls strong G-fusion

in P by [2, Lemma 7.1] for x ∈ {o,e,r}. �

4. THE PROOFS OF THEOREMS D, E AND G

Lemma 4.1. Let P ∈ Sylp(G) and D be a strongly closed subset in P. Let H ≤ G, N⊳G and g ∈ G

such that Pg ∩H ∈ Sylp(H). Then

(a) Dg ∩H is strongly closed in Pg ∩H with respect to H if Dg ∩H is nonempty.

(b) DN/N is strongly closed in PN/N with respect to G/N.
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Proof. (a) Let U ⊆ Dg ∩H and h ∈ H such that Uh ⊆ Pg ∩H. Since U ⊆ Dg and Uh ⊆ Pg, we see

that Uh ⊆ Dg as Dg is strongly closed in Pg with respect to G. Thus, Uh ⊆ Dg ∩H as Uh ⊆ H.

(b) Let U/N ⊆ DN/N and suppose that (U/N)y ⊆ PN/N for some y ∈ G. By an easy argument,

we can find V ⊆ D such that U/N =VN/N.

Then we see that VN ⊆ DN and (VN)y =V yN ⊆ PN. We need to show that V yN ⊆ DN. Notice

that 〈V y〉= 〈V 〉y is a p-subgroup of PN. Since P∈ Sylp(PN), there exists x ∈PN such that V y ⊆ Px.

Since Dx is strongly closed in Px and V x ⊆ Dx, we see that V y ⊆ Dx. Thus, V yN ⊆ DxN. Write

x = mn for m ∈ P and n ∈ N. Note that Dx = Dmn = Dn as D is a normal set in P. It follows that

DxN = DnN = DN. Consequently, V yN ⊆ DN as desired. �

Let Lp(G) be the set of all p-subgroups of G. A map W : Lp(G)→Lp(G) is called a conjugacy

functor if the followings hold for each U ∈ Lp(G):

(i) W (U)≤U ,

(ii) W (U) 6= 1 unless U = 1, and

(iii) W (U)g =W (Ug) for all g ∈ G.

A section of G is a quotient group H/K where KEH ≤ G. Let L ∗
p (G) be the set of all sections

of G that are p-groups. A map W : L ∗
p (G)→ L ∗

p (G) is called a section conjugacy functor if the

followings hold for each H/K ∈ L ∗
p (G):

(i) W (H/K)≤ H/K,

(ii) W (H/K) 6= 1 unless H/K = 1, and

(iii) W (H/K)g =W (Hg/Kg) for all g ∈ G.

(iv) Suppose that N ⊳H, N ≤ K and K/N is a p′-group. Let P/N be a Sylow p-subgroup of

H/N and set W (P/N) = L/N. Then W (H/K) = LK/K.

For more information about section conjugacy functors and their properties, we refer to [3].

Note that a sufficient condition for (iii) and (iv) is the following: whenever Q,R ∈ L ∗
p (G) and

φ : Q → R is an isomorphism, φ(W (Q)) = W (R). Thus, the operations like ZJx,ΩZJx and Jx are

section conjugacy functors for x ∈ {o,r,e}.

Lemma 4.2. Let P ∈ Sylp(G) and D be a strongly closed subset in P. Let W : Lp(G)→ Lp(G) be

a conjugacy functor. For each p-subgroup U of P define

WD(U) =

{

W (〈U ∩D〉) i f 〈U ∩D〉 6= 1

W (U) i f 〈U ∩D〉= 1

and for all V ∈ Lp(G) and x ∈ G such that V x ≤ P define WD(V ) = (WD(V
x))x−1

. Then the map

WD : Lp(G)→ Lp(G) is a conjugacy functor. Moreover for each y ∈ G, WD =WDy .

Proof. Since W is a conjugacy functor, it is easy to see that WD(U) ≤ U and WD(U) 6= 1 unless

U = 1 for each U ∈ Lp(G) by our settings.

Now we need to show that WD(U)g =WD(U
g) for all g ∈ G and U ∈ Lp(G), and indeed WD is

well defined. First suppose that U,Ug ≤P for some g∈G. We first show that WD(U)g =WD(U
g)for
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this special case. Note that (U ∩D)g ⊆Ug ≤ P, and so (U ∩D)g ⊆Ug ∩D as D is strongly closed

in P. On the other hand, (Ug∩D)g−1
⊆U ≤ P, and so (Ug∩D)g−1

⊆U ∩D as D is strongly closed

in P. By showing the reverse inequality, we obtain that (U ∩D)g = Ug ∩D. Now if 〈U ∩D〉 = 1

then 〈Ug ∩D〉 = 1 and WD(U)g = W (U)g = W (Ug) = WD(U
g). The second equality holds as W

is a conjugacy functor. On the other hand, we get WD(U)g = W (〈U ∩D〉)g = W (〈U ∩D〉g) =
W (〈Ug∩D〉) =WD(U

g) when 〈U ∩D〉 6= 1.
Now let V ∈ Lp(G) and x,y ∈ G such that V x,V y ≤ P. Then by setting U = V x and g = x−1y,

we have Ug = V y and WD(U)g = WD(U
g) by the previous paragraph. It follows that WD(V

y) =

WD(V
x)x−1y. Then WD(V

y)y−1
= WD(V

x)x−1
, and so WD is well defined. Now let z ∈ G. Then

WD(V
z) =WD(V

x)x−1z = (WD(V
x)x−1

)z =WD(V )z, which completes the proof of first part.

Lastly, since Dy is strongly closed in Py, WDy is a conjugacy functor for y ∈ G by the first part. It

is routine to check that they are indeed the same function. �

Remark 4.3. Although a strongly closed set is nonempty according to Definition 3.3, if we take

D = /0 in the previous lemma, we get W/0(U) = W (U). Thus, we set W/0 = W for any conjugacy

functor W .

Lemma 4.4. Let P ∈ Sylp(G) and D be a strongly closed subset in P. Let K EH ≤ G, N ⊳G and

g ∈ G such that Pg∩H ∈ Sylp(H). Let W : L ∗
p (G)→L ∗

p (G) be a section conjugacy functor. Then

the followings hold:

(a) WDg∩H : Lp(H)→ Lp(H) is a conjugacy functor.

(b) WDN/N : Lp(G/N)→ Lp(G/N) is a conjugacy functor.

(c) W(Dg∩H)K/K : Lp(H/K)→ Lp(H/K) is a conjugacy functor.

Proof. (a) By taking the restrictions of W to the section H/1, we obtain a conjugacy functor

W : Lp(H)→ Lp(H). By Lemma 4.1 (a), Dg ∩H is strongly closed in H ∩Pg with respect to H

if Dg ∩H is nonempty. Then the result follows from Lemma 4.2 and Remark 4.3. Similarly, (b)
follows by Lemma 4.1 (b) and Lemma 4.2. Part (c) also follows in a similar fashion. �

Remark 4.5. It should be noted that we only need W be to be a conjugacy functor to establish

Lemma 4.4 (a). Now assume the hypotheses and notation of Lemma 4.4. Let U ∈ Lp(H). Then it

is easy to see that WDg(U)=WDg∩H(U) by their definitions, and so WD(U)=WDg∩H(U) by Lemma

4.2. Thus, the map WDg∩H is equal to the restriction of WD to Lp(H).

Lemma 4.6. Assume the hypothesis and notation of Lemma 4.4. We define W ∗
D : L ∗

p (G)→ L ∗
p (G)

by setting W ∗
D(H/K) =W(Dg∩H)K/K(H/K) for each H/K ∈ L ∗

p (G). Then

W ∗
D(H/K) =

{

W (〈Dg∩H〉K/K) i f Dg ∩H * K.

W (H/K) i f Dg ∩H ⊆ K.

Moreover, W ∗
D is a section conjugacy functor.
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Proof. Firs suppose that Dg∩H ⊆K. Then H/K∩(Dg∩H)K/K =K/K, and so W(Dg∩H)K/K(H/K)=

W (H/K). If Dg∩H * K then H/K∩ (Dg∩H)K/K 6= K/K, and so W(Dg∩H)K/K(H/K) =W (〈Dg∩
H〉K/K) by its definition, which shows the first part.

Note that W ∗
D(H/K) ≤ H/K and W ∗

D(H/K) 6= 1 unless H/K = 1 by Lemma 4.4(c). Now, we

need to show that (iii) and (iv) in the definition of a section conjugacy functor hold.

Pick x ∈ G. Since (Dg ∩H)K/K is a strongly subset in (Pg ∩H)K/K, (Dg ∩H)xKx/Kx is a

strongly closed subset in (Pg ∩H)xKx/Kx. Moreover, Dg ∩H ⊆ K if and only if Dgx ∩Hx ⊆ Kx.

Thus, if W ∗
D(H/K) =W (H/K), then W ∗

D(H
x/Kx) =W (Hx/Kx). It follows that

W ∗
D(H

x/Kx) =W (Hx/Kx) =W (H/K)x =W ∗
D(H/K)x.

The second equality holds as W is a section conjugacy functor.

Now if W ∗
D(H/K) =W (〈Dg∩H〉K/K) then

W ∗
D(H

x/Kx)) =W (〈Dgx ∩Hx〉Kx/Kx) =W ((〈Dg∩H〉K/K)x) =W ∗
D(H/K)x.

The last equality holds as W is a section conjugacy functor. Thus we see that (iii) is satisfied.

Now let N ⊳H such that N ≤ K and K/N is a p′-group. Let X/N be a Sylow p-subgroup of

H/N. We need to show that if W ∗
D(X/N) = L/N then W ∗

D(H/K) = LK/K. Now pick h ∈ H such

that (X/N)h ⊇ (Dg ∩H)N/N. By part (iii), we have W ∗
D(X/N)h = Lh/Nh = Lh/N. If we could

show that W ∗
D(H/K) = LhK/K, we can conclude that

W ∗
D(H/K) =W ∗

D(H/K)h−1

= (LhK/K)h−1

= LK/L

by part (iii). Thus, we see that it is enough to show the claim for (X/N)h, and so we may simply

assume that (Dg ∩H)N/N ⊆ X/N.

Clearly 〈Dg ∩ H〉 is a p-group. Since K/N is a p′-group, we see that Dg ∩ H ⊆ K if and

only if Dg ∩H ⊆ N. Thus, if W ∗
D(H/K) = W (H/K) then W ∗

D(X/N) = W (X/N). It follows that

W ∗
D(H/K) = LK/K as W is a section conjugacy functor.

Assume that Dg ∩ H * K. Then W ∗
D(H/K) = W (〈Dg ∩ H〉K/K) and W ∗

D(X/N) = W (〈Dg ∩
H〉N/N)=L/N. Now write H∗= 〈Dg∩H〉K and P∗= 〈Dg∩H〉N. Observe that P∗/N ∈ Sylp(H

∗/N)
and recall K/N is a p′-group. Since W is a section conjugacy functor and W (P∗/N) = L/N, we get

W (H∗/K) = LK/K. Then the result follows. �

Proof of Theorem D. Let p be an odd prime, G be a p-stable group and P ∈ Sylp(G). Suppose that

D is a strongly closed subgroup in P. Let H be a p-constrained subgroup of G and g ∈ G such that

Pg ∩H ∈ Sylp(H). Since each p-subgroup of H is also a p-subgroup of G, we see that H is also a

p-stable group.

Now let W ∈ {ZJo,ΩZJe,ΩZJr}. It follows that WDg∩H is a conjugacy functor by Lemma 4.4(a).

Note that WDg∩H(P
g∩H) ∈ {W (Dg∩H),W (Pg∩H)}, and so NH(WDg∩H(P

g∩H)) controls strong

H-fusion in Pg∩H by Theorem 3.7 in both cases. Note also that WDg∩H(P
g∩H) =WD(P

g∩H) by

Remark 4.5.

Now assume that NG(U) is p-constrained for each nontrivial subgroup U of P. Fix U ≤ P and

let S ∈ Sylp(NG(U)). Then by the arguments in the first paragraph, we see that the normalizer
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of WD(S) in NG(U) controls strong NG(U)-fusion in S, and so we obtain that NG(WD(P)) control

strong G-fusion in P by [3, Theorem 5.5(i)]. It follows that the normalizers the of the subgroups

Z(Jo(D)), Ω(Z(Jr(D))) and Ω(Z(Je(D))) control strong G-fusion in P.

�

Lemma 4.7. Let p be an odd prime, G be a group, and P ∈ Sylp(G). Suppose that D is a strongly

closed subgroup in P. Let G∗ be a section of G such that G∗ is p-stable and CG∗(Op(G
∗))≤Op(G

∗).
If S ∈ Sylp(G

∗), then W ∗
D(S)⊳G∗ for each W ∈ {ZJo,ΩZJe,ΩZJr}.

Proof. Note that D is also a strongly closed set in P. We assume the notation of Lemma 4.6.

Let W ∈ {ZJo,ΩZJe,ΩZJr}. Then clearly W is a section conjugacy functor. It follows that W ∗
D :

L ∗
p (G)→ L ∗

p (G) is a section conjugacy functor by Lemma 4.6. Let G∗ = X/K be a section of G

such that

CG∗(Op(G
∗))≤ Op(G

∗).

Let H/K ∈ Sylp(G
∗). Then we see that W ∗

D(H/K) = W (H/K) if Dg ∩H ⊆ K. In this case,

W (H/K) = Z(Jo(H/K)), Ω(Z(Je(H/K))) or Ω(Z(Jr(H/K))) which are normal subgroups of G∗

by Theorem B. If Dg∩H *K then (Dg∩H)K/K is a strongly closed subgroup in H/K with respect

to G∗. Write D∗ = (Dg ∩H)K/K , then

W ∗
D(H/K) =W (D∗) = Z(Jo(D

∗)), Ω(Z(Je(D
∗))), or Ω(Z(Jr(D

∗)))

which are normal subgroups of G∗ by Theorem B. Thus we see that W ∗
D(H/K)EG∗ for all cases.

�

Now we are ready to prove Theorems E and G.

Proof of Theorem E . Let p be an odd prime, G be a Qd(p)-free group, and P ∈ Sylp(G) as

in our hypothesis. Since G does not involve a section isomorphic to Qd(p), every section of

G is p-stable by [3, Proposition 14.7]. Now let W ∈ {ZJo,ΩZJe,ΩZJr}. Then we have that

W ∗
D : L

∗
p (G) → L

∗
p (G) is a section conjugacy functor by Lemma 4.6. Let G∗ be a section of

G such that CG∗(Op(G
∗))≤ Op(G

∗) and let S ∈ Sylp(G
∗). Then we see that W ∗

D(S)⊳G∗ by Lemma

4.7. It follows that NG(W
∗
D(P)) controls strong G-fusion in P by [3, Theorem 6.6]. We see that

W ∗
D(P) = Z(Jo(D)), Ω(Z(Je(D))), or Ω(Z(Jr(D))) according to choice of W , which completes the

proof. �

Proof of Theorem G. Let W ∈ {ZJo,ΩZJe,ΩZJr}. Then W ∗
D : L

∗
p (G)→ L

∗
p (G) is a section con-

jugacy functor by Lemma 4.6. Let G∗ be a section of G such that CG∗(Op(G
∗)) ≤ Op(G

∗) and

G∗/(Op(G
∗) is p-nilpotent. Suppose also that S∗ ∈ Sylp(G

∗) is a maximal subgroup of G∗. Let

H be the normal Hall p′-subgroup of G∗/Op(G
∗). Write S = S∗/Op(G

∗). Then S is also maximal

in G∗/(Op(G
∗) and S acts on H via coprime automorphisms. If 1 < U ≤ H is S-invariant then

SU = G∗/(Op(G
∗) by the maximality of S. Since SH = G∗/(Op(G

∗) and S∩H = 1, we see that

U = H. Thus, there is no proper nontrivial S-invariant subgroup of H. On the other hand, we may

choose an S-invariant Sylow subgroup of H by [8, Theorem 3.23(a)]. This forces H to be a q-group

for some prime q, and so H ′ < H. It follows that H is abelian due to the fact that H ′ is S-invariant.
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Let H∗ be a Hall p′-subgroup of G∗. Then we see that H∗Op(G
∗)/(Op(G

∗) ∼= H∗. Thus, we

observe that Hall p′-subgroups of G∗ are also abelian. Since p is odd, we see that a Sylow 2-

subgroup of G∗ is abelian. This yields that G∗ does not involve a section isomorphic to SL(2, p),
and so every section of G∗ is p-stable by [3, Proposition 14.7]. Then we obtain that W ∗

D(S
∗)⊳G∗

by Lemma 4.7. It follows that G is p-nilpotent by [3, Theorem 8.7]. �
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