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LOCALLY FINITE p-GROUPS WITH A LEFT 3-ENGEL

ELEMENT WHOSE NORMAL CLOSURE IS NOT NILPOTENT

ANASTASIA HADJIEVANGELOU, MARIALAURA NOCE,
AND GUNNAR TRAUSTASON

Abstract. For any odd prime p, we give an example of a locally finite
p-group G containing a left 3-Engel element x where 〈x〉G is not nilpotent.

1. Introduction

Let G be a group. An element a ∈ G is a left Engel element in G, if for each
x ∈ G there exists a non-negative integer n(x) such that

[x,n(x) a] = [[[x, a], a], . . . , a]
︸ ︷︷ ︸

n(x)

= 1.

If n(x) is bounded above by n then we say that a is a left n-Engel element in
G. It is straightforward to see that any element of the Hirsch-Plotkin radical
HP (G) of G is a left Engel element and the converse is known to be true for
some classes of groups, including solvable groups and finite groups (more gener-
ally groups satisfying the maximal condition on subgroups) [4,1]. The converse
is however not true in general and this is the case even for bounded left Engel
elements. In fact whereas one sees readily that a left 2-Engel element is always
in the Hirsch-Plotkin radical this is still an open question for left 3-Engel ele-
ments. Recently there has been a breakthrough and in [7] it is shown that any
left 3-Engel element of odd order is contained in HP (G). From [12] one also
knows that in order to generalise this to left 3-Engel elements of any finite order
it suffices to deal with elements of order 2.

It was observed by William Burnside [3] that every element in a group of expo-
nent 3 is a left 2-Engel element and so the fact that every left 2-Engel element lies
in the Hirsch-Plotkin radical can be seen as the underlying reason why groups of
exponent 3 are locally finite. For groups of 2-power exponent there is a close link
with left Engel elements. If G is a group of exponent 2n then it is not difficult
to see that any element a in G of order 2 is a left (n+1)-Engel element of G (see
the introduction of [13] for details). For sufficiently large n we know that the
variety of groups of exponent 2n is not locally finite [6,8]. As a result one can see
(for example in [13]) that it follows that for sufficiently large n we do not have
in general that a left n-Engel element is contained in the Hirsch-Plotkin radical.
Using the fact that groups of exponent 4 are locally finite [11], one can also see
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that if all left 4-Engel elements of a group G of exponent 8 are in HP (G) then
G is locally finite.

Swapping the role of a and x in the definition of a left Engel element we get
the notion of a right Engel element. Thus an element a ∈ G is a right Engel
element, if for each x ∈ G there exists a non-negative integer n(x) such that

[a,n(x) x] = 1.

If n(x) is bounded above by n, we say that a is a right n-Engel element. By a
classical result of Heineken [5] one knows that if a is a right n-Engel element in
G then a−1 is a left (n+ 1)-Engel element.

In [9] M. Newell proved that if a is a right 3-Engel element in G then a ∈ HP (G)
and in fact he proved the stronger result that 〈a〉G is nilpotent of class at most
3. The natural question arises whether the analogous result holds for left 3-
Engel elements. In [10] it has been shown that this is not the case by giving an
example of a locally finite 2-group with a left 3-Engel element a such that 〈a〉G

is not nilpotent. In this paper we extend this result to include any odd prime.
The odd case turns out to be more involved and the construction in many ways
quite different from the p = 2 case.

The structure of the paper is as follows. In Section 2 we describe the pair
(G,x) that will provide our example and we show directly that x is a left 3-
Engel element in G. In order to show that 〈x〉G is not nilpotent we need more
work. In Sections 3 and 4 we construct a pair (L, z) where L is a Lie algebra
over Fp, the field of p elements, and where Id(z) is not nilpotent. The pair (L, z)
can be seen as the Lie algebra version of our group construction and in Section
5 we build a group H within End(L) containing 1 + ad(z) where (1 + ad(z))H

is not nilpotent and where (H, 1 + ad(z)) is a homomorphic image of (G,x).

2. The group G

Let x, a2, a2, . . . be group variables. We recall that a simple commutator in
x, a1, a2, . . . is a group word defined recursively as follows: x, a1, a2, . . . are sim-
ple commutators and if u, v are simple commutators then [u, v] is a simple com-
mutator. We say that a simple commutator s has multi-weight (m, e1, e2, . . .) in
x, a1, a2, . . ., if x occurs m times and ai occurs ei times in s. The weight of s is
then m+ e1 + e2 + · · · . The following definition will also play a crucial role.

Definition. Let s be a simple commutator of multi-weight (m, e1, e2, . . .) in
x, a1, a2, . . .. The type of s is t(s) = e1 + e2 + . . . − 2m.

Remark. If u, v are simple commutators in x, a1, a2, . . . then t([u, v]) = t(u) +
t(v). In particular t([u, aj ]) = t(u) + 1 and t([u, x]) = t(u)− 2.

For a fixed odd prime p, let G = 〈x, a1, a2, . . . 〉 be the largest group satisfying
the following relations:

(1) 〈ai〉
G is abelian for all i ≥ 1;



LEFT 3-ENGEL ELEMENTS IN LOCALLY FINITE p-GROUPS 3

(2) 〈x〉G is metabelian;
(3) xp = ap1 = ap2 = · · · = 1;
(4) if s 6= x is a simple commutator in x, a1, a2, . . ., where t(s) ≥ 2 or

t(s) ≤ −2, then s = 1.

Remark. Notice that G is a locally finite p-group. Also, from (4) it follows
immediately that if s is a simple commutator in x, a1, a2, . . ., then [s, x] = 1
whenever t(s) 6= 1. This is something we will make use of later.

Let s be a left-normed commuator of weight 3m + 1 in x, a1, a2, . . ., starting
in x. The reader can convince himself/herself that from (4) it follows that such
a commutator will be trivial if it is not of the form [x, aj1 , aj2 , aj3 , x, aj4 , aj5 , . . .
, x, aj2m , aj2m+1 ]. We will establish later that there are such non-trivial commu-

tators for any m that implies that 〈x〉G is not nilpotent. However the structure
of G is not transparent enough at this stage for us to see this directly. Instead
will will use Lie ring methods to lift up this property from an analogous Lie ring
setting that we will deal with in the next two sections. On the other hand we
can establish directly that x is a left 3-Engel element and this we will do now
for the rest of this section. We start with a useful lemma.

Lemma 2.1. Let g ∈ G. We can write g = αβγδ where α, β, γ, δ are products
of simple commutators in x, a1, a2, . . . of types 1, 2,−1, 0.

Proof. We prove first by induction on k ≥ 1 that we can write g = αkβkγkδkǫ(k+
1), where αk, βk, γk, δk are products of simple commutators in x, a1, a2, . . . of
types 1, 2,−1, 0 and ǫ(k + 1) is a product of commutators of weight k + 1 or
higher. For the induction basis observe that we can write g = x1x2 · · · xm where
xj ∈ {x, a1, a2, . . .} and modulo commutators of weight 2 or higher we can
rearrange the product so that g = α1β1ǫ(2) and where α1 is a product of elements
from {a1, a2, . . .}, β1 is a power of x and ǫ(2) is a product of simple commutators
of weight 2 or higher (here γ1 = δ1 = 1). For the induction step suppose that
k ≥ 2 and that the inductive claim holds for smaller values of k. Thus we know
that we can write g = αk−1βk−1γk−1δk−1ǫ(k) where αk−1, βk−1, γk−1, δk−1 are
products of simple commutators in x, a1, a2, . . . of types 1, 2,−1, 0 and where
ǫ(k) is a product of simple commutators of weight k or higher. Working modulo
commutators of weight k + 1 and higher, we can now collect the commutators
of weight k so that they appear with the commutator of smaller weight that are
of the same type. This gives us the expression g = αkβkγkδkǫ(k + 1) that we
wanted. This finishes the proof of the inductive hypothesis. Notice now that we
are working with simple commutators in x1, x2, . . . , xm and as H = 〈x1, . . . , xm〉
is nilpotent we have that for a large enough k we have ǫ(k + 1) = 1. �

Let g ∈ G. We want to show that [g, x, x, x] = 1. Let g = αβγδ be an expression
for g as in Lemma 2.1. As we remarked above, all simple commutators of type
different from 1 commute with x. This means that β, γ, δ commute with x and
without loss of generality we can assume that

g = b1 · · · bm

where b1, . . . , bm are simple commutators in x, a1, a2, . . . of type 1.
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Let H = 〈x, b1, . . . , bm〉. Observe that relations (1) and (2) imply that 〈bi〉
H

is abelian and 〈x〉H is metabelian. Notice also that relations (1) and (3) imply
that bp1 = · · · = bpm = 1. Finally, suppose that we have a simple commutator c
in x, b1, . . . , bm of multi-weight (l, f1, f2, . . . , fm) in x, b1, . . . , bm then the type
of c as a simple commutator in x, a1, a2, . . . is −2l + f1t(b1) + · · · + fmt(bm) =
−2l + f1 + · · · + fm that is equal to the type of c as a simple commutator
in x, b1, . . . , bm. Hence relations (4) hold for H with x, a1, a2, . . . replaced by
x, b1, . . . , bm. It follows from this that there is a homomorphism α : G → H
that maps x, a1, . . . , am to x, b1, . . . , bm and ak to 1 for k ≥ m + 1. In partic-
ular [b1 · · · bm, x, x, x] = 1 would follow from [a1 · · · am, x, x, x] = 1. Thus the
problem of showing that x is a left 3-Engel element reduces to showing that
[a1 · · · ar, x, x, x] = 1 for all integers r ≥ 1. Before turning to this we need to
introduce some more standard notation.

Definition. Let y, c1, c2, ..., cm be group elements. For any non-trivial subset
I = {i1, . . . , ik} of {1, 2, . . . ,m}, where i1 < . . . < ik we denote by [y, cI ] the
commutator [y, ci1 , . . . , cik ].

Proposition 2.2. We have [a1 · · · ar, x, x, x] = 1 for all integers r ≥ 1.

Proof. We prove this by induction on r. For the induction basis simply observe
that t([a1, x, x, x]) = −5 and thus [a1, x, x, x] = 1 by relations (4). Now suppose
r ≥ 2 and that the result holds for all smaller values for r. First we see from
standard commutator properties that

[a1 · · · ar, x] =




∏

I⊆{2,...,r}

[a1, x, aI ]



 ·




∏

I⊆{3,...,r}

[a2, x, aI ]



 . . . [ar, x].

Notice that relations (1) imply that the order of factors within each sub-product
above does not matter. The RHS has s = 2r − 1 factors. Suppose these are
b1, . . . , bs and thus [a1 · · · ar, x] = b1 · · · bs. We want to show that [b1 · · · bs, x, x] =
1 or equivalently that [x, b1 · · · bs] commutes with x. Expanding again we see
that

[x, b1 · · · bs] =
∏

∅6=I⊆{1,...,s}

[x, bI ].

Notice that each factor is in (〈x〉G)′ and as 〈x〉G is metabelian the order of the
factors does not matter. Notice also that every non-trivial factor is of the form
[x, [x, aI1 ]

−1, . . . , [x, aIl ]
−1] where, because of relations (1), the sets I1, . . . , Il are

pairwise disjoint. We also have that min(I1) < min(I2) < . . . < min(Il). Let A
be the product of such factors where not all a1, a2, . . . , ar are included and let
B be the product of those factors where each a1, a2, . . . , ar occurs once. Then

[x, b1 · · · bs] = AB.

It is not difficult to see by standard arguments that the induction hypothesis
implies that A commutes with x. We are thus left with showing that B commutes
with x. Now let

[x, [x, aI1 ], . . . , [x, aIm ]](−1)m

be one of the factors of B. This will commute with x if the type is not 1.
As I1 ∪ · · · ∪ Im = {1, 2, . . . , r} we have that the t([x, [x, aI1 ], . . . , [x, aIm ]]) =
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r− 2(m+ 1) that is equal to 1 if and only if r = 2m+ 3. We are thus left with
showing that e(m) commutes with x where

e(m) =
∏

(I1,I2,...,Im)

[x, [x, aI1 ], . . . , [x, aIm ]].

Here the product is taken over all partitions of {1, 2, . . . , 2m+3} into a disjoint
union of m non-empty subsets where

1 = min(I1) < min(I2) < . . . < min(Im).

As 〈x〉G is metabelian the value of a factor does not change if we permute the
terms [x, aI2 ], . . . , [x, aIm ]. Notice also that for [x, [x, aI1 ]] to be non-trivial we
need |I1| = 3. If some Ij has size less than 2 where 2 ≤ j ≤ m then (because
we can permute the terms [x, aI2 ], . . . , [x, aIm ] with out changing the value) we
see that the factor is trivial as [x, [x, aI1 ], [x, aIj ]] has type less than −1. For a
factor of e(m) to be non-trivial we thus need all of I2, I3, . . . , Im to have size 2
or 3. Suppose s are of size 2 and t of size 3. Then the we get the equations

s+ t = m− 1

2s+ 3t = 2m.

That has the solution t = 2 and s = m − 3 (in particular m ≥ 3). This shows
that

e(m) =
∏

(I1,I2,...,Im)

[x, [x, aI1 ], . . . , [x, aIm ]]

where the product is taken over all partitions of {1, 2, . . . , 2m+3} where |I1| =
|I2| = |I3| = 3 and |I4| = . . . = |Im| = 2 and 1 ∈ I1.

Consider any factor of this product. As [x, aI4 ], . . . , [x, aIm ] commute with x, we
have

[e(m), x] =
∏

(I1,I2,...,Im)

[x, [x, aI1 ], [x, aI2 ], [x, aI3 ], x, [x, aI4 ], . . . , [x, aIm ]].

It follows from this that in order to show that [e(m), x] = 1 for all m ≥ 1, it
suffices to show that [e(3), x] = 1.

To see this take any 2 ≤ i < j < k < r ≤ 9. We have

1 = [x, a1, [x, ai, aj , ak, ar]] =
∏

(I1,I2)

[x, aI1 , x, aI2 ].

where the product is taken over all partitions of {1, i, j, k, r} where |I1| = 3,
|I2| = 2 and 1 ∈ I1. From this it follows that

e(3) =
∏

(I1,I2,I3)

[x, [x, aI1 ], [x, aI2 ], [x, aI3 ]]

is trivial and thus in particular [e(3), x] = 1. This finishes the proof. �

As a consequence we have the following theorem.

Theorem 2.3. The element x is a left 3-Engel element in G.
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3. The Lie algebra L

In this section we will construct a pair (L, z) that will provide us with the Lie
algebra analogue of (G,x). Most of this section will be about describing the Lie
algebra L and getting some close transparent information about Id(z), the ideal
in L generated by z. This will then be used in Section 4 to prove that Id(z) is
not nilpotent. Throughout the paper p is a fixed odd prime and F = Fp is the
field of p elements.

We will start with a result that is probably well known although we do not
have a reference. For that reason and for the convenience of the reader we will
include a proof. We first need some notation. Let z, c1, c2, . . . be some Lie alge-
bra variables. For any non-trivial multi-set {ci1 , ci2 , . . . , cik} with i1 ≤ i2 · · · ≤ ik
we denote by [z, cI ] the left normed Lie commutator [z, ci1 , . . . , cik ].

Proposition 3.1. Let E be the largest Lie algebra over F generated z, c1, c2, . . .
where c1, c2, . . . commute. Then Id(z) is freely generated by 〈[z, cI ], I ⊂fm N

m〉,
where I runs through all finite multi-subsets of Nm. Here N

m is the multi-set
variant of the set of natural numbers namely {1, 1, . . . , 2, 2, . . . , . . .}.

Proof. Let A be the enveloping algebra of E, that is the largest associative
algebra generated by z, c1, c2, . . . where c1, c2, . . . commute. Thus E is the Lie
sub-algebra generated by z, c1, c2, . . . where the Lie product of u, v ∈ A is [u, v] =
uv−vu. In order to prove the proposition it suffices to show that the associative
sub-algebra C generated by the set {[z, cI ], I ⊂fm N

m} is freely generated as
an associative algebra by these elements. To see this, pick a variable yI for each
finite multi sub-set of Nm and consider the free associative algebra B, freely
generated by these. Order the generators of A with c1 < c2 < · · · < z and use
these to define a lexicographical order on words in these. We also order the
generators yI by

yI < yJ if and only if zci1 · · · cir < zcj1 · · · cjs

where I = {i1, . . . , ir}, J = {j1, . . . , js}, i1 ≤ · · · ≤ ir and j1 ≤ · · · ≤ js. We
are here using the lexicographical order above for the displayed inequalities.
Notice that if we expand [z, cI ] then the leading term with respect to that
lexicographical order is zci1 · · · cir . We will denote the latter by zcI . We then
use this order do define a lexiographical order on words in the yI ’s. Now consider
the algebra homomorphism from B to A that maps yI to [z, cI ]. In order to
show that C is freely generated by the [z, cI ]’s it suffices to show that this
homomorphism is injective. Thus let y be a non-zero element in B say

y = αyI1 · · · yIr + · · ·+ βyJ1 · · · yJs

where αyI1 · · · yIr is the leading term of y with respect to the lexicographical
ordering on B described above. From the definition of this lexicographical order,
we see that

ȳ = αzcI1 · · · zcIr + · · ·+ βzcJ1 · · · zcJs
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has leading term αzcI1 · · · zcIr with respect to the lexicographical order on A.
But notice that this is also the leading term of the image of y under the homo-
morphism, namely

ỹ = α[z, cI1 ] · · · [z, cIr ] + · · ·+ β[z, cJ1 ] · · · [z, cJs ].

This shows that the image of y is non-zero and thus the homomorphism is
injective. This finishes the proof. �

Thus IdE(z) is a free Lie algebra, freely generated by the [z, cI ]’s. For the
following we will use a slightly different total order on this set of free generators.
If I and J are both non-empty, then [z, cI ] < [z, cJ ] as above. However if one
of the multi-sets is empty we define the order differently so that z is the largest
element. That is [z, cI ] < z whenever I is non-empty. Now consider the largest
metabelian quotient, M(z), of Id(z). This is the free metabelian Lie algebra
over F with free generators the [z, cI ]’s. Now it is well known (see for example
[2]), that M(z) has a basis consisting of the left-normed Lie commutators

[[z, cI1 ], [z, cI2 ], . . . , [z, cIm ]]

where m ≥ 1 and [z, cI1 ] > [z, cI2 ] ≤ · · · ≤ [z, cIm ].

We are now getting ready to describe our Lie algebra L. First we consider
the largest Lie algebra F = 〈z, c1, c2, . . . 〉 over Fp, such that

(1) Id(ci) is abelian for i = 1, 2, . . . ;
(2) Id(z) is metabelian.

From the analysis above, the following is a basis for IdF (z)

(*) [[z, cI1 ], [z, cI2 ], . . . , [z, cIm ]]

where m ≥ 1, I1, . . . , Im are pairwise disjoint and [z, cI1 ] > [z, cI2 ] ≤ · · · ≤
[z, cIm ]. We define a type of a Lie commutator in a similar way as we did for
group commutators in Section 1. This term will play an important role in this
section.

Definition. Let s be a simple commutator of multi-weight (m, e1, . . . , er) in
z, c1, . . . , cr. The type of s is t(s) = e1 + · · ·+ er − 2m.

Remark. If c and d are simple commutators then t([c, d]) = t(c) + t(d). In
particular t([c, x]) = t(c)− 2 and t([c, a1]) = t(c) + 1.

We will now construct a Lie algebra L that will be a quotient of F by a certain
multi-homogeneous ideal J . Note that since F is multi-graded, L will also be
multi-graded. Our multi-homogeneous ideal will be the smallest ideal of F con-
taining the following elements from our basis for IdF (z) described above. Let
c = [[z, cI1 ], [z, cI2 ], . . . , [z, cIm ]] be one of these basis elements.

(3) c is in J if c 6= z is a commutator of type either less than -1 or more
than 1;

(4) c is in J if one of I1, I3, . . . , Im has size greater than 2.



8 A. HADJIEVANGELOU, M. NOCE, AND G. TRAUSTASON

In this and following section we will determine the structure of J and prove that
IdL(z) is not nilpotent.

3.1. Some detailed analysis about which basis elements are in J. One
can see directly that a number of the commutators in (∗) will be in J as a conse-
quence of conditions (3) and (4). In this section, we will now look more closely at
these commutators and see that a number of elements are in J as a less direct
consequence. Consider one of the basis elements, [[z, cI1 ], [z, cI2 ], . . . , [z, cIm ]],
from (∗) above. Note that, in particular, by condition (3) we have that [z, cI ] is
in J when |I| ≥ 4. In the following we will denote with α the number of Ii of
size 1 and β those of size 2, for i ≥ 3.

Remark. Notice that, since Id(z) is metabelian, it does not matter how we
order I3, . . . , Im as they can be permuted without changing the value of the Lie
commutator. In fact, the only constraint is that the smallest i in I1 ∪ · · · ∪ Im
should be in I2, since [z, cI1 ] > [z, cI2 ] ≤ · · · ≤ [z, cIm ].

Commutators of type -1 where |I1| + |I2| = 3. In this case we have
t([z, cI1 ], [z, cI2 ]) = −1 and |I3| + · · · + |Im| = 2m − 4. Notice that none of
I3, . . . , Im is empty or of size 1 since otherwise the commutator would be in J
by condition (3). Then all commutators are in J except possibly those where

|I1|+ |I2| = 3, |I3| = · · · = |Im| = 2, |I1| ≤ 2.

Commutators of type -1 where |I1| + |I2| = 4. Here t([z, cI1 ], [z, cI2 ]) = 0
and |I3| + · · · + |Im| = 2m − 5. As before, none of I3, . . . , Im is empty since
otherwise the commutator would be in J by condition (3). Furthermore none of
the sets is of size greater than 2 by condition (4). We thus obtain the following
system of equations

{

+ β = m− 2

+ 2β = 2m− 5

whose solution is α = 1 and β = m − 3. Therefore all commutators are in J
except possibly those where

|I1|+ |I2| = 4, |I3| = 1, |I4| = · · · = |Im| = 2, |I1| ≤ 2.

Commutators of type -1 where |I1|+|I2| = 5. We have t([z, cI1 ], [z, cI2 ]) = 1
and |I3| + · · · + |Im| = 2m − 6. First, we consider the case when I3 is empty.
In this case t([z, cI1 ], [z, cI2 ], [z, cI3 ]) = −1 and none of I4, . . . , Im are of size 1.
Thus they are all of size 2, and all commutators are in J except possibly the
cases

|I1| = 2, |I2| = 3, |I3| = 0, |I4|+ · · ·+ |Im| = 2.

Now it remains to deal with the case for which none of I3, . . . , Im is empty.
Using α and β as before, we have

{

+ β = m− 2

+ 2β = 2m− 6
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whose solution is α = 2 and β = m− 4. Thus all commutators are in J except
possibly the cases where

|I1| = 2, |I2| = 3, |I3| = |I4| = 1, |I5| = · · · = |Im| = 2.

Commutators of type 0 where |I1|+ |I2| = 3. In this case none of I3, . . . , Im
are empty or of size 1, as otherwise the commutator is in J by condition (3).
Also, none are of size 3 by condition (4). Therefore, they must all be of size 2,
which implies that the type is -1, that is a contradiction since we supposed that
the type is 0.

Commutators of type 0 where |I1|+|I2| = 4. We have that none of I3, . . . , Im
is empty. Using α and β as before, we have

{

+ β = m− 2

+ 2β = 2m− 4

whose solution is α = 0 and β = m− 2. Thus all commutators are in J except
possibly those where

|I1|+ |I2| = 4, |I3| = · · · = |Im| = 2, |I1| ≤ 2.

Commutators of type 0 where |I1| + |I2| = 5. First, notice that none of
I3, . . . , Im is empty. Indeed, if I3 is empty then t([z, cI1 ], [z, cI2 ], [z, cI3 ]) = −1
and the commutator has type at most −1 if it is non-trivial. We then get a
contradiction since we are considering the case when the type is 0. Thus none
of I3, . . . , Im is empty. Therefore we have

{

+ β = m− 2

+ 2β = 2m− 5

whose solution is α = 1 and β = m − 3. Therefore all commutators are in J
except possibly those where

|I1| = 2, |I2| = 3, |I3| = 1, |I4| = · · · = |Im| = 2.

Commutators of type 1. Since |I3|+ . . . |Im| ≤ 2m−4, we need |I1|+ |I2| = 5.
Then all commutators are in J except possibly those where

|I1| = 2, |I2| = 3, |I3| = · · · = |Im| = 2.

In view of the analysis above we come up with the following decomposition of
IdF (z) as a direct sum of sub spaces.

IdF (z) = 〈X \ Z〉 ⊕ 〈Z〉
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where Z is the list of basis elements with the following partitions (I1, . . . , Im)

[z, cI ], for |I| ≤ 3

|I1|+ |I2| = 3, |I1| ≤ 2, |I3| = · · · = |Im| = 2 (ζ1)

|I1|+ |I2| = 4, |I1| ≤ 2, |I3| = 1, |I4| = · · · = |Im| = 2 (ζ2)

|I1| = 2, |I2| = 3, |I3| = 0, |I4| = · · · = |Im| = 2 (ζ3)

|I1| = 2, |I2| = 3, |I3| = |I4| = 1, |I5| = · · · = |Im| = 2 (ζ4)

|I1| = 2, |I2| = 3, |I3| = 1, |I4| = · · · = |Im| = 2 (ξ1)

|I1|+ |I2| = 4, |I1| ≤ 2, |I3| = · · · = |Im| = 2 (ξ2)

|I1| = 2, |I2| = 3, |I3| = · · · = |Im| = 2. (τ1)

We have seen above that 〈X \ Z〉 ⊆ J . Now J is the smallest subspace of F
containing X \ Z that is invariant under taking Lie commutators with the cj ’s
and z. In the following we go systematically through all possible scenarios where
we need to add new elements to 〈X \Z〉 in order to get a subspace Z0+ 〈X \Z〉,
where Z0 ≤ Z, that is invariant under Lie commutators with the cj ’s. All the
new elements will be relations amongst the ζ’s, ξ’s, and τ ’s. We will distinguish
several cases considering the cardinality of the sets I1, . . . , Im. We will then
later ensure furthermore that we obtain a subspace that is also invariant under
taking Lie commutators with z.

3.2. Relations among ζ1, ζ2, ζ3, ζ4.

We now begin systematically adding elements to 〈X \ Z〉 to ensure that the
resulting subspace is invariant under taking Lie commutator with ck. For this
we only need to consider elements of types −2,−1 and 0. We start with a basis
element u from X \ Z that is of type −2. We write [u, ck] as a linear combina-
tion of basis elements in X. If all the components are in X \ Z, then nothing
needs to be added. We thus only need to consider the cases when some of the
components are among ζ1, ζ2, ζ3 or ζ4. This means reducing the size of one of
I1, . . . , Im for some of ζ1, . . . , ζ4 by one, to get a basis element u of type −2 and
then expand [u, ck] to get a linear combination of ζ1, . . . , ζ4 modulo J . This may
then give us a new relator to add to 〈X \Z〉. Below we exhaust all possibilities.

Case A1: |I1| = 2, |I2| = 3, |I3| = 0, |I4| = 1, |I5| = · · · = |Im| = 2.

Without loss of generality, we can assume that I1 ∪ I2 ∪ · · · ∪ Im ∪ {k} =
{1, . . . , 2m − 1}. Recall that for the basis elements for IdF (z) we should have
1 ∈ I2. For this reason we need to deal separately with the cases k ≥ 2 and k = 1.

Consider first the case when k ≥ 2. Suppose I4 = {i}. Here as elsewhere
in this section we will be calculating modulo J . We have

0 = [[z, cI1 ], [z, cI2 ], z, [z, ci], [z, cI5 ], . . . , [z, cIm ], ck]

= ζ4(I1, I2, {k}, {i}, I5 , . . . , Im) + ζ3(I1, I2,∅, {i, k}, I5, . . . , Im).
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Therefore

(R1) ζ4(I1, I2, {k}, {i}, I5 , . . . , Im) = −ζ3(I1, I2,∅, {i, k}, I5, . . . , Im).

This means that we need to add the relator ζ4(I1, I2, {k}, {i}, I5 , . . . , Im) +
ζ3(I1, I2,∅, {i, k}, I5, . . . , Im) to 〈X \ Z〉.

The reader can convince himself that the case k = 1 does not give us a new
relation.

Case A2: |I1| = 1, |I2| = 3, |I3| = 0, |I4| = · · · = |Im| = 2.

First consider the case when k ≥ 2 and suppose that I1 = {i}. We have

0 = [[z, ci], [z, cI2 ], z, [z, cI4 ], . . . , [z, cIm ], ck]

= [[z, c{i,k}], [z, cI2 ], z, [z, cI4 ], . . . , [z, cIm ]]

+ [[z, ci], [z, cI2 ], [z, ck ], [z, cI4 ], . . . , [z, cIm ]]

= ζ3({i, k}, I2,∅, I4, . . . , Im) + ζ2({i}, I2, {k}, I4, . . . , Im).

Therefore,

(R2) ζ2({i}, I2, {k}, I4, . . . , Im) = −ζ3({i, k}, I2,∅, I4, . . . , Im).

Again one sees that for k = 1, one does not get a new relation.

Case A3: |I1| = |I2| = 2, |I3| = 0, |I4| = · · · = |Im| = 2.

Consider the case when k ≥ 2. We have

0 = [[z, cI1 ], [z, cI2 ], z, [z, cI4 ], . . . , [z, cIm ], ck]

= [[z, cI1 ], [z, cI2∪{k}], z, [z, cI4 ], . . . , [z, cIm ]]

+ [[z, cI1 ], [z, cI2 ], [z, ck], [z, cI4 ], . . . , [z, cIm ]]

= ζ3(I1, I2 ∪ {k},∅, I4, . . . , Im) + ζ2(I1, I2, {k}, I4, . . . , Im).

Therefore, we get

(R3) ζ2(I1, I2, {k}, I4, . . . , Im) = −ζ3(I1, I2 ∪ {k},∅, I4, . . . , Im).

We will handle k = 1 later.

Case A4: |I1| = 2, |I2| = 1, |I3| = 1, |I4| = · · · = |Im| = 2.

Let I3 = {i}. For the case k ≥ 2 we get

0 = [[z, cI1 ], [z, c{1,k}], [z, ci], [z, cI4 ], . . . , [z, cIm ]]

+ [[z, cI1 ], [z, c1], [z, c{i,k}], [z, cI4 ], . . . , [z, cIm ]]

= ζ2(I1, {1, k}, {i}, I4 , . . . , Im) + ζ1(I1, {1}, {i, k}, I4 , . . . , Im)

= −ζ3(I1, {1, i, k},∅, I4 , . . . , Im) + ζ1(I1, {1}, {i, k}, I4 , . . . , Im),

where the last equality follows from R3. Therefore,

(R4) ζ1(I1, {1}, {i, k}, I4 , . . . , Im) = ζ3(I1, {1, i, k},∅, I4 , . . . , Im).
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We will deal with the case k = 1 later.

Case A5: |I1| = 1, |I2| = 2, |I3| = 1, |I4| = · · · = |Im| = 2.

Consider first the case k ≥ 2. Let I1 = {i}, I3 = {j} and k ≥ 2. We have

0 = [[z, c{i,k}], [z, cI2 ], [z, cj ], [z, cI4 ], . . . , [z, cIm ]]

+ [[z, ci], [z, cI2∪{k}], [z, cj ], [z, cI4 ], . . . , [z, cIm ]]

+ [[z, ci], [z, cI2 ], [z, c{j,k}], [z, cI4 ], . . . , [z, cIm ]]

= ζ2({i, k}, I2, {j}, I4, . . . , Im) + ζ2({i}, I2 ∪ {k}, {j}, I4 , . . . , Im)

+ ζ1({i}, I2, {j, k}, I4 , . . . , Im)

= −ζ3({i, k}, I2 ∪ {j},∅, I4, . . . , Im)− ζ3({i, j}, I2 ∪ {k},∅, I4, . . . , Im)

+ ζ1({i}, I2, {j, k}, I4 , . . . , Im),

where the last equality follows from R2 and R3. Therefore,

ζ1({i}, I2, {j, k}, I4, . . . , Im) = ζ3({i, k}, I2 ∪ {j},∅, I4, . . . , Im)(R5)

+ ζ3({i, j}, I2 ∪ {k},∅, I4, . . . , Im).

We deal with the case k = 1 later.

Case A6: |I1| = 0, |I2| = 3, |I3| = 1, |I4| = · · · = |Im| = 2.

We first look at the case k ≥ 2. Let |I3| = {i}. We have

0 = [[z, ck], [z, cI2 ], [z, ci], [z, cI4 ], . . . , [z, cIm ]]

+ [z, [z, cI2 ], [z, c{i,k}], [z, cI4 ], . . . , [z, cIm ]]

= ζ2({k}, I2, {i}, I4, . . . , Im) + ζ1(∅, I2, {i, k}, I4, . . . , Im)

= −ζ3({k, i}, I2,∅, I4, . . . , Im) + ζ1(∅, I2, {i, k}, I4, . . . , Im).

Therefore,

(R6) ζ1(∅, I2, {i, k}, I4, . . . , Im) = ζ3({i, k}, I2,∅, I4, . . . , Im).

Again the case k = 1 does not add anything new.

Notice that it follows from the relations above that modulo J we can write the
basis elements of types ζ1, ζ2 and ζ4 as a linear combination of basis elements of
type ζ3. Notice also that from (R6) and the fact that IdF (z) is metabelian, it
follows that

ζ3(I1, I2,∅, I4, I5, . . . , Im) = ζ1(∅, I2, I1, I4, I5, . . . , Im)

= ζ1(∅, I2, I4, I1, I5, . . . , Im)

= ζ3(I4, I2,∅, I1, I5, . . . , Im).

Therefore we get

ζ3(I1, I2,∅, I4, I5, . . . , Im) =ζ3(I4, I2,∅, I1, I5, . . . , Im).(R7)
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Case A7: |I1| = |I2| = 1, |I3| = · · · = |Im| = 2.

Let I1 = {i}, I3 = {j, r} and consider the case where k ≥ 2. We have

0 = [[z, c{i,k}], [z, c1], [z, c{j,r}], [z, cI4 ], . . . , [z, cIm ]]

+ [[z, ci], [z, c{1,k}], [z, c{j,r}], [z, cI4 ], . . . , [z, cIm ]]

= ζ1({i, k}, {1}, {j, r}, I4 , . . . , Im) + ζ1({i}, {1, k}, {j, r}, I4 , . . . , Im

= ζ3({i, k}, {1, j, r},∅, I4 , . . . , Im) + ζ3({i, j}, {1, k, r},∅, I4 , . . . , Im)

+ ζ3({i, r}, {1, j, k},∅, I4 , . . . , Im), (using R4 and R5).

Therefore,

ζ3({i, k}, {1, j, r},∅, I4 , . . . , Im) =− ζ3({i, j}, {1, k, r},∅, I4 , . . . , Im)(R8)

− ζ3({i, r}, {1, j, k},∅, I4 , . . . , Im).

For k = 1 one can check that there is not a new relation.

Case A8: |I1| = 0, |I2| = 2, |I3| = · · · = |Im| = 2.

Let I2 = {1, i}, I3 = {j, r} and k ≥ 2. We have

0 = [z, [z, c{1,i,k}], [z, cI3 ], . . . , [z, cm]] + [[z, ck], [z, c{1,i}], [z, cI3 ], . . . , [z, cIm ]]

= ζ1(∅, {1, i, k}, I3 , . . . , Im) + ζ1({k}, {1, i}, I3 , . . . , Im)

= ζ3({j, r}, {1, i, k},∅, I4 , . . . , Im) + ζ3({k, j}, {1, i, r},∅, I4 , . . . , Im)

+ ζ3({k, r}, {1, i, j},∅, I4 , . . . , Im).

Modulo relation R8, we get

(R9) ζ3({j, r}, {1, i, k},∅, I4 , . . . , Im) = ζ3({i, k}, {1, j, r},∅, I4 , . . . , Im).

The reader can check that here fas well as for A3, A4 and A5 with k = 1 one does
not obtain any new relations. The same is true for the following remaining cases.

Case A9. |I1| = |I2| = 2, |I3| = |I4| = 1, |I5| = · · · = |Im| = 2.
Case A10: |I1| = 2, |I2| = 3, |I3| = |I4| = |I5| = 1, |I6| = · · · = |Im| = 2.
Case A11: |I1| = 1, |I2| = 3, |I3| = |I4| = 1, |I5| = · · · = |Im| = 2.
Case A12: |I1| = 2, |I2| = 0, |I3| = · · · = |Im| = 2.

To summarize we get the following set of equivalent relations for elements of
type −1 modulo J .
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ζ4(I1, I2, {i}, {j}, I5 , . . . , Im) = −ζ3(I1, I2,∅, {i, j}, I5 , . . . , Im) (E1)

ζ2(I1, I2, {i}, I4, . . . , Im) = −ζ3(I1, I2 ∪ {i},∅, I4, . . . , Im) (|I1| = |I2| = 2) (E2)

ζ2({i}, I2, {j}, I4, . . . , Im) = −ζ3({i, j}, I2,∅, I4, . . . , Im) (E3)

ζ1(∅, I2, I3, I4, . . . , Im) = ζ3(I3, I2,∅, I4, . . . , Im) (E4)

ζ1(I1, {1}, {i, j}, I4 , . . . , Im) = ζ3(I1, {1, i, j},∅, I4 , . . . , Im) (E5)

ζ1({i}, I2, {j, k}, I4, . . . , Im) = ζ3({i, j}, I2 ∪ {k},∅, I4, . . . , Im)

+ ζ3({i, k}, I2 ∪ {j},∅, I4, . . . , Im) (E6)

ζ3(I1, I2,∅, I4, I5, . . . , Im) = ζ3(I4, I2,∅, I1, I5, . . . , Im) (E7)

ζ3(I1, I2 ∪ {1},∅, I4, . . . , Im) = ζ3(I2, I1 ∪ {1},∅, I4, . . . , Im) (E8)

ζ3({i, k}, {1, j, r},∅, I4 , . . . , Im) + ζ3({i, j}, {1, k, r},∅, I4 , . . . , Im)

+ ζ3({i, r}, {1, j, k},∅, I4 , . . . , Im) = 0. (E9)

Notice that relations E1-E6 tell us that, modulo J , all the basis elements of type
−1 in X can be written as linear combinations of elements of type ζ3. Then E7
and E8 imply that

ζ3(I1, I2, I4, . . . , Im) = ζ3(I1, I2 ∪ {1},∅, I4, . . . , Im)

is symmetric in I1, I2, I4, . . . , Im. Apart from this we have one extra relation E9.

3.3. Relations among ξ1, ξ2.

We continue the analysis and deal here with [u, ck] were u is of type −1. On
readily sees that if u ∈ X \Z, then [u, ck] ∈ 〈X \Z〉 and no new relators needed.
We therefore only need to consider u where u is one of the extra relators that
we obtained in Section 3.2.

B1. Consequences of E1. For k ≥ 2 we have

[ζ4(I1, I2, {i}, {j}, I5 , . . . , Im), ck] = −[ζ3(I1, I2,∅, {i, j}, I5 , . . . , Im), ck]

which implies that

ξ2(I1, I2, {j}, {i, k}, I5 , . . . , Im) =− ξ2(I1, I2, {i}, {j, k}, I5 , . . . , Im)

− ξ2(I1, I2, {k}, {i, j}, I5 , . . . , Im).

Therefore,

ξ2(I1, I2, {j}, {i, k}, I5 , . . . , Im) =− ξ2(I1, I2, {i}, {j, k}, I5 , . . . , Im)(F1)

− ξ2(I1, I2, {k}, {i, j}, I5 , . . . , Im).

For k = 1 one does not get a new relation.

B2. Consequences of E8. For the case k ≥ 2 we get

[ζ3(I1, I2 ∪ {1},∅, I4, . . . , Im), ck] = [ζ3(I2, I1, {1},∅, I4, . . . , Im), ck].

Therefore,

(F2) ξ2(I1, I2 ∪ {1}, {k}, I4 , . . . , Im) = ξ2(I2, I1 ∪ {1}, {k}, I4, . . . , Im).
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Again for k = 1 we do not get any new relation.

B3. Consequences of E7. For the case k ≥ 2 we get

[ζ3(I1, I2,∅, I4, I5, . . . , Im), ck] = [ζ3(I4, I2,∅, I1, I5, . . . , Im), ck].

Therefore,

(F3) ξ2(I1, I2, {k}, I4, I5, . . . , Im) = ξ2(I4, I2, {k}, I1, I5, . . . , Im).

For k = 1 we do not get anything new.

B4. Consequences of E9. Commuting E9 with as, for the case s ≥ 2 we get

ξ2({i, k}, {1, j, r}, {s}, I4 , . . . , Im) =− ξ2({i, j}, {1, k, r}, {s}, I4 , . . . , Im)(F4)

− ξ2({i, r}, {1, j, k}, {s}, I4 , . . . , Im).

For k = 1 we get nothing new.

B5. Consequences of E4. For the case k ≥ 2 we get

[ζ1(∅, I2, I3, I4, . . . , Im), ck] = [ζ3(I3, I2, {k}, I4, . . . , Im), ck].

As a consequence we obtain that

ξ2({k}, I2, I3, I4, . . . , Im) = ξ2(I3, I2, {k}, I4, . . . , Im).

Therefore,

(F5) ξ1({i}, I2, {j, k}, I4, . . . , Im) = ξ2({j, k}, I2, {i}, I4, . . . , Im).

Again there is no relation for k = 1.

B6. Consequences of E5. For the case k ≥ 2 we have

[ζ1(I1, {1}, {i, j}, I4 , . . . , Im), ck] = [ζ3(I1, {1, i, j},∅, I4 , . . . , Im), ck].

Then

ξ1(I1, {1, k}, {i, j}, I4 , . . . , Im) = ξ2(I1, {1, i, j}, {k}, I4 , . . . , Im).

Therefore,

(F6) ξ1(I1, {1, k}, {i, j}, I4 , . . . , Im) = ξ2(I1, {1, i, j}, {k}, I4 , . . . , Im).

For k = 1 we do not get anything new and the same is true when consider
consequences of E2,E3 and E6. From this analysis we get the following set of
equivalent relations.

ξ1({i}, I2, {j, k}, I4, . . . , Im) = ξ2({j, k}, I2 , {i}, I4, . . . , Im) (G1)

ξ1(I1, {1, k}, {i, j}, I4 , . . . , Im) = ξ2(I1, {1, i, j}, {k}, I4 , . . . , Im) (G2)

ξ2(I1, I2 ∪ {1}, {k}, I4 , . . . , Im) = ξ2(I2, I1 ∪ {1}, {k}, I4, . . . , Im) (G3)

ξ2(I1, I2, {k}, I4, I5, . . . , Im) = ξ2(I4, I2, {k}, I1, I5, . . . , Im) (G4)

ξ2({i, k}, {1, j, r}, {s}, I4 , . . . , Im) + ξ2({i, j}, {1, k, r}, {s}, I4 , . . . , Im)

+ ξ2({i, r}, {1, j, k}, {s}, I4 , . . . , Im) = 0 (G5)

ξ2(I1, {1, i, k}, {j}, I4 , . . . , Im) + ξ2(I1, {1, k, j}, {i}, I4 , . . . , Im)

+ ξ2(I1, {1, i, j}, {k}, I4 , . . . , Im) = 0. (G6)
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3.4. Relations in τ1.

Here we deal with [u, ck] where u is of type 0. Again we only get a new re-
lation when u is one of the relators we obtained in Section 3.3.

C1. Consequences of G3. For k ≥ 2 we have

[ξ2(I1, I2 ∪ {1}, {i}, I4, . . . , Im), ck] = [ξ2(I2, I1 ∪ {1}, {i}, I4 , . . . , Im), ck].

which gives

τ1(I1, I2 ∪ {1}, {i, k}, I4 , . . . , Im) = τ1(I2, I1 ∪ {1}, {i, k}, I4 , . . . , Im).

Therefore, we get

(H1) τ1(I1, I2 ∪ {1}, I3, . . . , Im) = τ1(I2, I1 ∪ {1}, I3, . . . , Im).

For k = 1 we get nothing new.

C2. Consequences of G4. For k ≥ 2 we have

(H2) τ1(I1, I2, I3, I4, . . . , Im) = τ1(I4, I2, I3, I1, . . . , Im).

For k = 1 we get nothing new.

C3. Consequences of G5. For k ≥ 2 we have

τ1({i, k}, {1, j, r}, I3 , . . . , Im) =− τ1({i, j}, {1, k, r}, I3 , . . . , Im)(H3)

− τ1({i, r}, {1, k, j}, I3 , . . . , Im).

Again for k = 1 we get nothing new and the same is true for the consequence
of G1, G2 and G6. Thus the only extra relators we get are H1, H2 and H3.
We will now see that if we add to 〈X \ Z〉 the subspace generated by the extra
relators we have obtained in Sections 3.2, 3.3 and 3.4, then we get an ideal in
F .

Lemma 3.2. The subspace generated by X \Z and the relators given in E1-E9,
G1-G6 and H1-H3 is an ideal in F and thus equal to J .

Proof. Let V be this subspace. We found the relations E1-E9, G1-G6 and H1-H3
by systematically ensuring that we obtained a subspace that is invariant under
taking Lie commutators with the cj ’s. Notice that if we take a basis element
u = [[c, ci1 ], [z, ci2 ], . . . , [z, cIm ]] from X where [u, z] 6∈ V then we must have
|I1|, |I3|, |I4|, . . . , |Im| ≤ 2 and |I2| ≤ 3. Thus u has type at most 1. On the
other hand if the type of u is less than 1, then [u, z] has type less than −1 and
is thus in V . This means that we only need to consider u ∈ V that is linear
combination of elements of type τ1. In other words we have to commute each
relation H1, H2, H3 with z and check that the resulting element is in V . If we
commute relation H1 with z, we get

[τ1(I1, I2 ∪ {1}, I3, . . . , Im), z] = [τ1(I2, I1 ∪ {1}, I3, . . . , Im), z]

which implies that

ζ3(I1, I2 ∪ {1},∅, I4, . . . , Im) = ζ3(I2, I1 ∪ {1},∅, I4, . . . , Im),
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which is relation E8 from Section 3.2. Using similar arguments we commute
relation H2 with z, in which case we have

[τ1(I1, I2, I3, I4, . . . , Im), z] = [τ1(I4, I2, I3, I1, . . . , Im), z]

which implies

ζ3(I1, I2,∅, I4, I5, . . . , Im) = ζ3(I4, I2,∅, I1, I5, . . . , Im)

which is relation E7 from Section 3.2. Lastly, commuting relation H3 with z
gives

[τ1({i, k}, {1, j, r}, I3 , . . . , Im), z] = −[τ1({i, j}, {1, k, r}, I3 , . . . , Im), z]

−[τ1({i, r}, {1, k, j}, I3 , . . . , Im), z]

which implies

ζ3({i, k}, {1, j, r},∅, I4 , . . . , Im) = −ζ3({i, j}, {1, k, r},∅, I4 , . . . , Im)

−ζ3({i, r}, {1, j, k},∅, I4 , . . . , Im)

which is relation E9. This completes the proof.
�

4. The ideal IdL(z)

Let W = W (m, 1, 2m+1. . . , 1) be the subspace of F generated by all

E(I1, . . . , Im) = [[z, cI1 ], [z, c{1}∪I2 ], [z, cI3 ], . . . , [z, cIm ]]

with I1 ∪ · · · ∪ Im = {2, . . . , 2m + 1} and |I1| = · · · = |Im| = 2. We know that
these elements are linearly independent and we have also seen that

N = N(m, 1, 2m+1. . . , 1) = W (m, 1, 2m+1. . . , 1) ∩ J

is generated by two sets of relations

E(Iσ(1), . . . , Iσ(m))− E(I1, . . . , Im), where σ ∈ Sym{1, . . . ,m}(R1)

E({i1, i2}, {j1, j2}, I3, . . . , Im) =− E({i1, j1}, {i2, j2}, I3, . . . , Im)
(R2)

− E({i1, j2}, {i2, j1}, I3, . . . , Im).

Our aim is to show that W
N

6= 0, for all m ≥ 1. Then it will follow that L = F
J

has multihomogenous elements of arbitrary weight m in z that are non-zero. As
a consequence, we see that IdL(z) is not nilpotent.

From now on, we work modulo (R1) and thus the order of I1, . . . , Im does not
matter for the value of E(I1, . . . , Im). From now on we write E({I1, . . . , Im})
for E(I1, . . . , Im) modulo (R1). In this way we get an element for each partition
{I1, . . . , Im} and these are a basis for W modulo (R1).

Definition. We say that a basis element E({I1, . . . , Im}) has norm k if there
are exactly k of the Ij’s, where Ij ⊆ {2, . . . ,m + 1}. Notice that we then also
have exactly k of the Ij’s, where Ij ⊆ {m+ 2, . . . , 2m+ 1}.

Suppose that k ≥ 1. We can assume I1, I3, . . . , I2k−1 ⊆ {2, . . . ,m + 1} and
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I2, I4, . . . , I2k ⊆ {m + 2, . . . , 2m + 1}. If I1 = {i1, i2} and I2 = {j1, j2}, then
modulo (R2) we have

E({{i1, i2}, {j1, j2}, I3, . . . , Im}) =− E({{i1, j1}, {i2, j2}, I3, . . . , Im})

− E({{i1, j2}, {i2, j1}, I3, . . . , Im}).

Notice that the terms on the right hand side have norm k − 1. We will refer to
this as a 1-step decomposition of E through the pair (I1, I2) and we denote it
D{(I1,I2)}(E({I1, . . . , Im})). Suppose now k ≥ 2. We can continue and apply the
1-step decomposition to the two terms through the pair (I3, I4) to get a 2-step
decomposition of E(I1, . . . , Im) through {(I1, I2), (I3, I4)} that we denote

D{(I1,I2),(I3,I4)}(E({I1, . . . , Im})).

We can continue in this manner through the pairs (I1, I2), . . . , (I2k−1, I2k) to get
a decomposition into 2k terms of norm 0, denoted

D{(I1,I2),...,(I2k−1,I2k)}(E({I1, . . . , Im})).

Remark. To say that an element E({I1, I2, . . . , Im}) has norm 0 is to say that
{I1, . . . , Im} = {(2, σ(m + 2)), (3, σ(m + 3)), . . . , (m + 1, σ(2m + 1))} for some
permutation of σ of m + 2, . . . , 2m + 1. We have seen that, modulo (R1) and
(R2), W is generated by basis elements of norm 0. Let W0 be the subspace of
W generated by these. Thus W/W ∩ J ∼= (W0 + J)/J ∼= W0/W0 ∩ J .

Notice that the decomposition D{(I1,I2),...,(I2k−1,I2k)}(E({I1, . . . , Im})), does not

depend on the order of the pairs in {(I1, I2), . . . , (I2k−1, I2k)}, but it may depend
on what pairings are chosen. For each E({I1, . . . , Im}) of norm k ≥ 2, pick one of
the decompositions according to some pairing and denote this E0({I1, . . . , Im}).
Thus for every element E({I1, . . . , Im}) of norm k ≥ 2, there is a defining rela-
tion

E({I1, . . . , Im}) = E0({I1, . . . , Im})

modulo (R2), where E0({I1, . . . , Im}) is a linear combination of terms of norm
0. Using these defining relations, all relations in (R2) become relations in W0,
the subspace of W generated by E({I1, . . . , Im}) of norm 0. We next want to
understand what these relations in W0 are. Let (R2)2 be the collections of all
relations in (R2) where none of the I5, . . . , Im is contained in {2, . . . ,m+ 1} or
{m+ 2, . . . , 2m+ 1}. Next lemma simplifies our task.

Lemma 4.1. Let E = E({I1, . . . , Im}) be a basis element of norm k where
I1, I3, . . . , I2k−1 ⊆ {2, . . . ,m + 1} and I2, I4, . . . , I2k ⊆ {m + 2, . . . , 2m + 1}
modulo (R2)2. We have

D{(I1,I2),...,(I2k−1,I2k)}(E) = D{(I1,Iσ(2)),...,(I2k−1,Iσ(2k))}(E)

for any σ ∈ Sym{2, 4, . . . , 2k}.

Proof. We prove the result by induction on k. If k = 1 then it is clear, since in
this case σ is the identity. For k = 2 this is a direct consequence of (R2)2. Now
suppose that k ≥ 3 and that the result is true for smaller values of k. Without
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loss of generality, we can suppose σ(2) = 4. Using the induction hypothesis
twice we have

D{(I1,I4),(I3,Iσ(4)),(I5,Iσ(6)),...,(I2k−1,Iσ(2k))}(E)

= D{(I1,I4),(I3,I2),(I5,I6),...,(I2k−1,I2k)}(E)

= D{(I1,I2),(I3,I4),(I5,I6),...,(I2k−1,I2k)}(E),

as required. �

Now take any relation in (R2). Without loss of generality, we can assume
(after reordering I1, . . . , Im) that half of the elements of I5 ∪ · · · ∪ Im are in
{2, . . . ,m+1} and half in {m+2, . . . , 2m+1}. We are using here the fact that
the size of (I1 ∪ I2) ∩ {2, . . . ,m+ 1} is between 0 and 4). We thus have now a
relation of the form:

E({{i1, i2}, {j1, j2}, I3, . . . , Im}) =− E({{i1, j1}, {i2, j2}, I3, . . . , Im})(1)

− E({{i1, j2}, {i2, j1}, I3, . . . , Im}).

Suppose exactly k of I5, . . . , Im are subsets of {2, . . . ,m + 1}. Without loss of
generality we can suppose that

I5, I7, . . . , I2k+3 ⊆ {2, . . . ,m+ 1} and I6, I8, . . . , I2k+4 ⊆ {m+ 2, . . . , 2m+ 1}.

By Lemma 4.1, we know that modulo (R2)2, relation (1) is equivalent to a sum
of relations of the type

E({{i1, i2}, {j1, j2}, I3, I4, J5, . . . , Jm}) = −E({{i1, j1}, {i2, j1}, I3, I4, J5, . . . , Jm})

−E({{i1, j2}, {i2, j1}, I3, I4, J5, . . . , Jm}).(2)

where no J5, . . . , Jm is a subset of {2, . . . ,m+1} or {m+2, . . . , 2m+1}. Notice
that all the relations (2) are in (R2)2.

The conclusion is that all the relations in W0 we are looking for, will be conse-
quence of (R2)2. Let J5, . . . , Jm be fixed and consider the collection of all the
relations in (R2)2 where I5 = J5 . . . Im = Jm.

Let Ē({I1, I2, I3, I4}) = E({I1, I2, I3, I4, J5, . . . , Jm}). Suppose {2, . . . ,m+ 1} \
(J5 ∪ · · · ∪ Jm)= {i1, i2, i3, i4, j1, j2, j3, j4}, where i1, i2, i3, i4 ∈ {2, . . . ,m + 1}
and j1, j2, j3, j4 ∈ {m + 2, . . . , 2m + 1}. We now go systematically through all
possible types of (R2)2 relations.

Case 1: I3 = {i3, j3}, I4 = {i4, j4}. We have

Ē({{i1, i2}, {j1, j2}, {i3, j3}, {i4, j4}}) = −Ē({{i1, j1}, {i2, j2}, {i3, j3}, {i4, j4}})

−Ē({{i1, j2}, {i2, j1}, {i3, j3}, {i4, j4}}).

These are defining relations.
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Case 2: I3 = {i3, i4}, I4 = {j3, j4}. We have

Ē({{i1, i2}, {j1, j2}, {i3, i4}, {j3, j4}}) = −Ē({{i1, j1}, {i2, j2}, {i3, i4}, {j3, j4}})

−Ē({{i1, j2}, {i2, j1}, {i3, i4}, {j3, j4}})

= Ē({{i1, j1}, {i2, j2}, {i3, j3}, {i4, j4}})

+Ē({{i1, j1}, {i2, j2}, {i3, j4}, {i4, j3}})

+Ē({{i1, j2}, {i2, j1}, {i3, j3}, {i4, j4}})

+Ē({{i1, j2}, {i2, j1}, {i3, j4}, {i4, j3}}).

If we instead pair {i1, i2} and {j3, j4} we get

Ē({{i1, i2}, {j1, j2}, {i3, i4}, {j3, j4}}) = −Ē({{i1, j3}, {j1, j2}, {i3, i4}, {i2, j4}})

−Ē({{i1, j4}, {j1, j2}, {i3, i4}, {i2, j4}})

= Ē({{i1, j3}, {i2, j4}, {i3, j1}, {i4, j2}})

+Ē({{i1, j3}, {i2, j4}, {i3, j2}, {i4, j1}})

Ē({{i1, j4}, {i2, j3}, {i3, j1}, {i4, j2}})

+Ē({{i1, j4}, {i2, j3}, {i3, j2}, {i4, j1}}).

From these two pairings we get

∑

σ∈Sym{1,2},τ∈Sym{3,4}

Ē({{i1, jσ(1)}, {i2, jσ(2)}, {i3, jτ(3)}, {i4, jτ(4)}})

=

∑

σ∈Sym{1,2},τ∈Sym{3,4}

Ē({{i1, jτ(3)}, {i2, jτ(4)}, {i3, jσ(1)}, {i4, jσ(2)}}).

Case 3: I3 = {j2, j3}, I4 = {i4, j4}. We have

0 = Ē({{i1, i2}, {i3, j1}, {j2, j3}, {i4, j4}}) + Ē({{i1, i3}, {i2, j1}, {j2, j3}, {i4, j4}})

+Ē({{i2, i3}, {i1, j1}, {j2, j3}, {i4, j4}})

= −Ē({{i1, j2}, {i2, j1}, {i3, j3}, {i4, j4}})− Ē({{i1, j3}, {i2, j2}, {i3, j1}, {i4, j4}})

−Ē({{i1, j2}, {i2, j1}, {i3, j3}, {i4, j4}})− Ē({{i1, j3}, {i2, j1}, {i3, j2}, {i4, j4}})

−Ē({{i1, j1}, {i2, j2}, {i3, j3}, {i4, j4}})− Ē({{i1, j2}, {i2, j3}, {i3, j2}, {i4, j4}}).

This gives us the relation

∑

σ∈Sym{1,2,3}

Ē({{i1, jσ(1)}, {i2, jσ(2)}, {i3, jσ(3)}, {i4, j4}}) = 0.

By symmetry the case of having I3 = {i2, i3}, I4 = {i4, j4} works in a similar
manner.

Case 4: I3 = {j1, j2}, I4 = {j3, j4}. We have

0 = Ē({{i1, i2}, {i3, i4}, {j1, j2}, {j3, j4}}) + Ē({{i1, i3}, {i2, i4}, {j1, j2}, {j3, j4}})

+Ē({{i1, i4}, {i2, i3}, {j1, j2}, {j3, j4}}).
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Modulo Case 2, the choice of pairings does not matter, therefore we get

0 = −Ē({{i1, j1}, {i2, j2}, {i3, i4}, {j3, j4}}) − Ē({{i1, j2}, {i3, j1}, {i3, i4}, {j3, j4}})

−Ē({{i1, j1}, {i3, j2}, {i2, i4}, {j3, j4}}) − Ē({{i1, j2}, {i3, j1}, {i2, i4}, {j3, j4}})

−Ē({{i1, j1}, {i4, j2}, {i2, i3}, {j3, j4}}) − Ē({{i1, j2}, {i4, j1}, {i2, i3}, {j3, j4}}).

Cancelling the signs gives

∑

σ∈Sym{2,3,4}

Ē({{i1, j1}, {i2, jσ(2)}, {i3, jσ(3)}, {i4, jσ(4)}})

+
∑

σ∈Sym{1,3,4}

Ē({{i1, j2}, {i2, jσ(1)}, {i3, jσ(3)}, {i4, jσ(4)}}) = 0,

which follows from Case 3. We have seen that W/W ∩J ∼= W0/W0∩J , as vector
spaces, and W0 ∩ J is generated by relations

(3)

∑

σ∈Sym{1,2,3}

E({{i1, jσ(1)}, {i2, jσ(2)}, {i3, jσ(3)}, {i4, j4}, . . . , {im, jm}}) = 0;

and

∑

σ∈Sym{1,2},τ∈Sym{3,4}

E({{i1, jσ(1)}, {i2, jσ(2)}, {i3, jτ(3)}, {i4, jτ(4)}, {i5, j5}, . . . , {im, jm}})

(4)

=
∑

σ∈Sym{1,2},τ∈Sym{3,4}

Ē({{i1, jτ(3)}, {i2, jτ(4)}, {i3, jσ(1)}, {i4, jσ(2)}, {i5, j5}, . . . , {im, jm}});

where {i1, . . . , im} = {2, 3, . . . ,m+1} and {j1, . . . , jm} = {m+2, . . . , 2m+1}.
We show that W0∩J is a proper subspace of W0 by showing that all the relators
in (3) and (4) lie in a subspace of co-dimension 1 in W0.

Let M0 be the subspace of W0 generated by all

E({{2, σ(j1)}, . . . , {m+ 1, σ(jm)}}) + E({{2, j1}, . . . , {m+ 1, jm}})

with {j1, . . . , jm} = {m + 2, . . . , 2m + 1} and where σ is a transposition in
Sym({m+2, . . . , 2m+1}). Thus moduloM0 we have E({{2, σ(m+2)}, . . . , {m+
1, σ(2m+1)}}) = sign(σ)E({{2,m+2}, . . . , {m+1, 2m+1}}). Notice that M0

is of codimension 1 in W0 and contains W0 ∩ J . For (3) this is because S3 has
equally many even and odd permutations and for (4) we can transform the LHS
to the RHS using even permutations. Thus W0/W0 ∩ J 6= 0 that implies that
W/W ∩ J 6= 0.

As a consequence we get the following main result of this section.

Theorem 4.2. The ideal generated by z in L is non-nilpotent.
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5. The normal subgroup 〈x〉G

In Section 2 we considered the largest locally finite p-group G = 〈x, a1, a2, . . . 〉
satisfying the following relations:

(1) 〈ai〉
G is abelian for all i ≥ 1;

(2) 〈x〉G is metabelian;
(3) xp = ap1 = ap2 = · · · = 1;
(4) if s 6= x is a simple commutator in x, a1, a2, . . ., where t(s) ≥ 2 or

t(s) ≤ −2, then s = 1.

Now we use the Lie algebra L constructed in the Section 3 to get a group
H = 〈1 + ad(z), 1 + ad(c1), 1 + ad(c2), . . . 〉. In this section we will show that
H is a homomorphic image of G by proving that the relations (1)-(4) hold in
H where x, a1, a2, . . . are replaced by 1 + ad(z), 1 + ad(c1), 1 + ad(c2), . . . . We
will also use the work in Section 2 and Section 3 to show that 〈1 + ad(z)〉H is
non-nilpotent from which follows that 〈x〉G is non-nilpotent.

Lemma 5.1. We have ad(z)2 = 0 and ad(z) ad(w) ad(z) = 0 for any simple Lie
product w in z, c1, c2, . . . .

Proof. Let u be a simple Lie product in z, c1, c2, . . . . Notice first that if u is
non-trivial then the type of [u, z, z] is less than or equal to −3 and therefore
[u, z, z] = 0. Turning to the second claim we know that [u, z] = 0 if u is of type
different from 1. We can therefore assume that u is of type 1. Then if w is
non-zero, we have that [u, z, w, z] is of type at most −2 and [u, z, w, z] = 0. �

Lemma 5.2. Let wH be a simple group commutator in 1+ad(z), 1+ad(c1), 1+
ad(c2), . . . and let wL be the corresponding Lie commutator in z, c1, c2, . . . .
Then

wH = 1 + ad(wL).

Proof. We show this by using induction on the weight of wH . If the weight is
1 then this is obvious. Now suppose the weight is k ≥ 2 and the result holds
whenever the weight is smaller. We have wH = [uH , vH ], where uH , vH are
simple commutators of smaller weight in 1 + ad(z), 1 + ad(c1), 1 + ad(c2), . . . .
Let uL, vL be the corresponding simple commutators in z, c1, c2, . . . . Using the
induction hypothesis we have

wH =[uH , vH ] = (1 + ad(uL))
−1(1 + ad(vL))

−1(1 + ad(uL))(1 + ad(vL))

=(1− ad(uL))(1− ad(vL))(1 + ad(uL))(1 + ad(vL)) (using Lemma 5.1)

=1 + ad(uL) ad(vL)− ad(vL) ad(uL)

=1 + ad([uL, vL])

=1 + ad(wL).

�

Now we show that H satisfies the relations (1)-(4) for G where x, a1, a2, . . .
are replaced by 1+ad(z), 1+ad(c1), 1+ad(c2), . . . . More precisely, we have the
following.
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Proposition 5.3. Let H be as before. Then

(1) 〈1 + ad(ci)〉
H is abelian for all i ≥ 1;

(2) 〈1 + ad(z)〉H is metabelian;
(3) (1 + ad(z))p = (1 + ad(c1))

p = (1 + ad(c2))
p = · · · = 1;

(4) if s 6= 1 + ad(z) is a simple commutator in 1 + ad(z), 1 + ad(c1), 1 +
ad(c2), . . ., where t(s) ≥ 2 or t(s) ≤ −2, then s = 1.

Proof. (1) Let wH be a simple group commutator in 1 + ad(z), 1 + ad(c1), 1 +
ad(c2), . . . with a repeated occurrence of 1+ad(ci). Then wH = 1+ad(wL) and
as Id(ci) is abelian, ad(wL) = 0 and thus wH = 1. This implies that 〈1+ad(ci)〉

H

is abelian for all i ≥ 1.
(2) Let uH , vH be simple commutators in 1 + ad(z), 1 + ad(c1), 1 + ad(c2), . . .
where both have at least two occurrences of 1 + ad(z). Then

[uH , vH ] = 1 + ad([uL, vL])

and since Id(z) is metabelian, then [uL, vL] = 0 and [uH , vH ] = 1. It follows
then that 〈1 + ad(z)〉H is metabelian.
(3) Clearly (1 + ad(z))p = 1 + p ad(z) = 1 and (1 + ad(ci))

p = 1 + p ad(ci) = 1.
(4) Let wH 6= 1 + ad(z) be a simple commutator in 1 + ad(z), 1 + ad(c1), 1 +
ad(c2), . . . , where t(wH) ≥ 2 or t(wH) 6 −2. Then, wH = 1 + ad(wL), where
wL is a Lie commutator in z, c1, c2, . . . , where t(wL) ≥ 2 or t(wL) 6 −2. Here
wL = 0 and so wH = 1. This completes the proof. �

Theorem 5.4. The normal closure of 1 + ad(z) is not nilpotent.

Proof. Consider

[[1 + ad(z), 1 + ad(c1), 1 + ad(c2), 1 + ad(c3)], [1 + ad(z), 1 + ad(c4), 1 + ad(c5)],

. . . , [1 + ad(z), 1 + ad(c2m), 1 + ad(c2m+1)]]

= 1 + ad([[z, c1, c2, c3], [z, c4, c5], . . . , [z, c2m, c2m+1]]).

Notice that

1 + ad([[z, c1, c2, c3], [z, c4, c5], . . . , [z, c2m, c2m+1]]) 6= 1,

since, for example [[z, c1, c2, c3], [z, c4, c5], . . . , [z, c2m, c2m+1], z]) 6= 0. Thus, we
have shown that there is a simple commutator of arbitrary weightm in (1+ad(z))
that is non-trivial. This finishes the proof. �
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