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Abstract

We examine the construction of Huang and Osajda that was used in
their proof of the biautomaticity of Artin groups of almost large type.
We describe a slightly simpler variant of that biautomatic structure,
with explicit descriptions of a few small examples, and we examine
some of the properties of the structure. We explain how the construc-
tion can be programmed within the GAP system.
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1 Introduction

The work reported in this article was motivated by a recent article of Huang
and Osajda [13] proving the biautomaticity of a class of Artin groups, namely
those of almost large type, which contains all Artin groups of large type.
Previously biautomaticity had been proved by Brady and McCammond for
many, but not all, Artin groups of large type, specifically for those of extra-
large type [18], all 3-generated examples, and all others for which the asso-
ciated Coxeter diagram can be oriented in such a way as to exclude certain
oriented subdiagrams [1]. Biautomaticity had also been proved for all Artin
groups of finite type by Charney [2, 3]; for these groups (which are Garside
groups), symmetric, geodesic biautomatic structures were found over the
Garside generators.
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We were particularly interested in the results of [13] since we already knew
that all Artin groups of almost large type (in fact all in the slightly larger
class of sufficiently large type) had shortlex automatic structures over their
standard generating sets [10, 11]; but these structures are not in general
biautomatic. Our methods were combinatorial, based on rewriting.

The methods used in [1] and [2, 3] to prove biautomaticity for those two types
of Artin groups are quite distinct from each other. Brady and McCammond’s
approach is geometric, relying on the construction of a piecewise Euclidean
non-positively curved 2-complex on which the Artin group acts discretely
and fixed point freely, followed by the application of results of Gersten and
Short [7, 8]. But Charney’s approach uses the Garside structure of Artin
groups of finite type.

Huang and Osajda’s article [13] proves biautomaticity of an Artin group of
almost large type via the construction of a systolic complex on which the
group acts simplicially, properly discontinuously and cocompactly; hence by
definition, the group is systolic. The biautomaticity of these Artin groups
then follows immediately from [14, Theorem E], that all systolic groups
are biautomatic. We observe that, in fact, the universal covers of the 2-
complexes of [1] are systolic, although the construction of those 2-complexes
does not seem to follow the same pattern as that of the systolic complexes
in [13]; hence in some sense the results of [13] generalise those of [1]. Our
aim in this work has been to examine the construction of [13] and see what
we can learn from it.

To a large extent our approach has been experimental, through computa-
tion and examination of examples. In particular, we have written programs
in GAP that construct the biautomatic structures arising from the systolic
complexes that are acted on by Artin groups of almost large type in which
all edge labels in the associated Coxeter diagram are either at most 4 or
equal to infinity.

In order to describe and analyse the construction of [13] we need a variety of
background material on automatic and biautomatic groups, on Artin groups,
and on systolic complexes, and we have tried to give sufficient detail to make
this article accessible to a range of readers.

After this introductory section, Section 2 introduces the concepts and no-
tations we shall use from group theory. In Section 2.1 we define automatic
and biautomatic structure for groups, and introduce Artin groups, while
Section 2.2 explains briefly how group actions may be used to build such
structures.

Section 3 introduces the concepts and notation of systolic complexes and

2



systolic groups, and is based on [14]. The basic concepts are introduced in
Section 3.1, then Section 3.2 explains the concepts of directed and allow-
able geodesics that are vital to the construction of biautomatic structures
in systolic groups. Section 4 is devoted to a description of the construc-
tion of biautomatic structures for systolic groups, again with reference to
[14]. Section 4.1 describes generating sets B and A over which biautomatic
structures will be defined; descriptions of those biautomatic structures, and
of the automata that define them, are given in the subsequent sections. In
fact we introduce two slightly different biautomatic structures, over the two
alphabets B and A. The language L′ over B is the structure of [14], but we
prefer in this article to work with the languages L and L0, over A, which
are closely related to L′.

Huang and Osajda’s construction of a systolic complex X for an Artin group
G of almost large type is described briefly at the beginning of Section 5. The
complex X is formed out of the Cayley graph G for G by replacing subgraphs
Gij , corresponding to 2-generator subgroups Gij of G, by systolic complexes
Xij, and the construction of those subcomplexes is described in Section 5.2.
We illustrate the construction of X by computing some examples in Sec-
tion 6. We describe the complexes for the right-angled Artin groups Z

2,
Z
2 ∗ Z and F2 × Z in Sections 6.1, 6.2, 6.3, and the 3-string braid group

G(A2) in Section 6.4.

Section 7 is devoted to the identification of some properties found in the
biautomatic structure of any Artin group of almost large type. Here, we
may assume that the Artin group is non-free; for a free group in its natu-
ral presentation, the associated systolic complex is simply the Cayley graph
over the standard generating set. Corollary 7.3 shows that, given a sensible
selection of the orbit representatives upon which the language L0 depends,
the generating set A (as well as the related set B) consists precisely of the
union of inverse closed Garside generating sets for the 2-generated Artin
subgroups Gij of G, together with a symbol representing the identity ele-
ment. Subsequent results examine properties of the language L0 over A.
It is clear from our examples that L0 is not, in general, geodesic over A.
But we prove in Proposition 7.4 that the A-length of a word in L0 is no
greater than its geodesic length over the standard Artin generating set X,
and no less than 1/max{2,M − 2} of that geodesic length, where M is the
maximum of all finite edge labels mij. We observe too, from our examples,
that the language L0 is not in general prefix closed, but from a result about
extensions of directed geodesics that we prove in Proposition 7.5 we can
deduce Corollary 7.6, which associates to each prefix of a word in L0 a word
in L0 differing from it by a bounded amount at its end.

Finally, Section 8 describes our development of algorithms that construct
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systolic complexes and then biautomatic structures for those systolic Artin
groups that we were able to handle.

2 Concepts and notation from group theory

2.1 Introducing biautomatic groups and Artin groups

All the groups considered in this article will be finitely presented. Let G =
〈X | R〉 be such a group. We define its Cayley graph G = G(G,X) to be the
graph with vertex set G and, for each x ∈ X, directed edges labelled x and
x−1 from g to gx and from gx to g, respectively. These two directed edges
have the same underlying undirected edge.

A finitely presented group G = 〈X | R〉 is automatic if there exists

(1) a regular set L of words over X providing a complete set of repre-
sentatives of the elements of G, and

(2) an associated integer k,

satisfying the following condition:

whenever words u, v in L represent elements g, h ∈ G satisfying
ga =G h with a ∈ X ∪X−1 ∪ {1}, and γ1(u), γ1(v) are the paths
in G(G,X) that are traced out by u, v from the identity vertex,
then γ1(u) and γ1(v) fellow travel at distance k.

By definition, a set of words is regular if it is the language of a finite state
automaton. We say that two paths in a graph fellow travel at distance k if,
for any i, the distance in the graph between the vertices at distance i from
the initial vertex of each path is at most k.

An automatic group G is biautomatic if there exist L, k as above satisfying
the following additional condition:

whenever words u, v ∈ L represent elements g and h ∈ G sat-
isfying ah =G g with a ∈ X ∪ X−1, and γ1(u) and γa(v) are
the paths in G(G,X) that are traced out by u from the identity
vertex and by v from a, then γ1(u) and γa(v) fellow travel at
distance k.

We refer to [4, 12] for more detail. But we note in particular that the prop-
erties of automaticity and biautomaticity are independent of the choice of
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finite generating set; that is, if a group G has an automatic or biautomatic
structure over some finite generating setX then it has a corresponding struc-
ture over any other finite generating set. We note also that any hyperbolic
group is biautomatic; over any generating set, the set of all geodesic words
is the language of a biautomatic structure [4, Theorem 3.4.5].

The language L of an automatic structure for a group G is called symmetric
if whenever w ∈ L then w−1 ∈ L; when L is symmetric then the structure
satisfies both fellow traveller conditions and so G is biautomatic. L is called
geodesic if every word in L is a minimal length representative of the group
element it represents. L is called prefix closed if whenever w ∈ L then every
prefix of w is also in L.

In this article we consider biautomatic structures for certain types of Artin
groups. The standard presentation for an Artin group over its standard
generating set X = {a1, . . . , an} is as

〈a1, . . . , an | mij
(ai, aj) = mji

(aj, ai) for each i 6= j〉,

where the integers mij are the entries in a Coxeter matrix (a symmetric n×n
matrix (mij) with entries in N∪ {∞}, where mii = 1, and mij ≥ 2, ∀i 6= j),
and where for generators a, a′ and m ∈ N we define m(a, a′) to be the word
that is a product of m alternating a’s and a′’s and starts with a. Adding the
relations a2i = 1 to those for the Artin group defines the associated Coxeter
group, which is more commonly presented as

〈a1, . . . , an | (aiaj)
mij = 1 for each i, j〉.

The standard presentation of an Artin group can be described using an
associated Coxeter diagram Γ, with n nodes, where nodes corresponding to
ai and aj are joined by an edge labelled by mij.

An Artin group G(Γ) is said to be of spherical or finite type if the associated
Coxeter group is finite, of dihedral type if the associated Coxeter group is
dihedral (or, equivalently, the standard generator set has two elements), and
of large type if mij ≥ 3 for all i 6= j. The group G(Γ) is defined in [13] to
have almost large type if (1) in any triangle of edges of Γ either at least one
edge is labelled ∞ or no edge has label 2, and (2) in any square of edges of
Γ either at least one edge is labelled ∞ or at most one edge has label 2. So,
in particular, all Artin groups of large type are of almost large type.

Artin groups of various types are proved automatic [2, 18, 1, 20, 9, 10, 11],
but before the results of [13] biautomatic structures were only known to exist
for right angled Artin groups [9], those of finite type, and many (but not all)
those of large type. Automatic structures for which the associated language
L is a set of shortlex geodesics over the standard generating set were already

5



known for all almost large Artin groups and, slightly more generally, for all
sufficiently large Artin groups [11]).

2.2 Using group actions to derive automatic structures

We recall a basic tenet of geometric group theory commonly referred to
as the Milnor-S̆varc lemma: if a group G = G(X) has a ‘nice’ (properly
discontinuous and compact) discrete, isometric action on a metric space X ,
then its Cayley graph G = G(G,X) is quasi-isometric to X . Specifically, for
any vertex x0 ∈ X , there is a quasi-isometry from G to X that maps the
identity vertex of G to x0, and each vertex g of G to the image gx0 in X of
x0 under the action of g.

This is at the basis of results such as those that follow, of Gersten and Short,
and of Niblo and Reeves.

Theorem 2.1 (Gersten&Short, 1990,1991 [7, 8]). The fundamental groups
of piecewise Euclidean 2-complexes of types A1 × A1, A2, B2 and G2 (cor-
responding to tesselations of the Euclidean plane by squares, equilateral tri-
angles, and triangles with angles (π/2, π/4, π/4), (π/2, π/3, π/6)) are biau-
tomatic.

This result is stated in terms of automatic rather than biautomatic struc-
tures in [8, Theorem1], but it is made clear in the introduction of that paper
that the construction gives biautomatic structures.

It follows from Gersten and Short’s results that a group acting discretely
and fixed point freely on a complex of any of the types listed must be
biautomatic.

Theorem 2.2 (Niblo&Reeves 1998, Theorem 5.3 of [16]). If X is a simply
connected and non-positively curved cube complex, and G acts effectively,
cellularly, properly discontinuously and cocompactly on X , then G is biau-
tomatic.

A cube complex is a metric polyhedral complex in which each cell is isometric
to a Euclidean cube and the glueing maps are isometries. It is proved in
[17] that any finite rank Coxeter group G acts properly discontinuously by
isometries on an appropriate cube complex; in the many cases where the
action is cocompact, the Coxeter group is proved biautomatic.

The results of [7, 8] are used in the proof of the following result.

Theorem 2.3 (Brady&McCammond, 2000 [1]). Various Artin groups of
large type, including all that are 3-generated, act appropriately on piecewise
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Euclidean non-positively curved (i.e. locally CAT(0)) 2-complexes of types
A2 or B2, and hence are biautomatic.

The 2-complexes constructed in the proof of this theorem are simplicial,
made by attaching angles and lengths to presentation complexes for non-
standard presentations for the Artin groups, in which all relators have length
3. It can be seen that their universal covers are systolic [14], as defined below.

3 Systolic complexes

3.1 Basic concepts

We need the definition of a systolic complex, and related notation, which we
shall use throughout this article. In this we generally follow [14]. Suppose
that X is a simplicial complex, and S = S(X ) its set of simplices (the
vertices of its ‘barycentric subdivision’). We denote by X1 the 1-skeleton of
X , that is, the graph on its vertices whose edges are the 1-cells. The set S
itself has the structure of a simplicial complex, whose simplices are sets of
simplices of X that can be ordered into an ascending chain of simplices that
are related by inclusion; in particular its set E(S) of 1-cells (edges) is the
set of pairs {ρ, σ} of distinct simplices of X for which either σ ⊂ ρ or ρ ⊂ σ.
We denote the 1-skeleton of S by S1.

We define a cycle in X to be a 1-dimensional subcomplex of X consisting of
the vertices and edges of a closed path in X1 in which all edges are distinct
and only the first and last vertices coincide; the length of the cycle is defined
to be the number of 1-cells in it. We call a cycle a full cycle if it is full as
a subcomplex, that is, if any simplex spanned by a subset of its vertices is
within the cycle. This means that no two non-adjacent vertices within the
cycle are joined by an edge (or rather, there are no chords between non-
adjacent vertices of the cycle). Note that, since a cycle is 1-dimensional, a
full cycle in a simply connected complex cannot have length 3. We define
the systole of X , sys(X ), to be the minimum length of a full cycle.

We write Xσ for the link in X of a simplex σ (the set of simplices τ such that
τ is disjoint from σ, and such that τ and σ span a simplex σ ∗ τ of X ), and
for any subcomplex Y of X containing σ, we write Res(σ,Y) for the residue
of σ in Y (the union of all closed simplices that contain σ; this is sometimes
called the closed star of σ in Y). We define the 1-ball B1(σ,Y) of σ in Y to
be the union of all closed simplices within Y that intersect σ non-trivially.

We say that X is κ-large if sys(X ) ≥ κ and also sys(Xσ) ≥ κ for every
simplex σ, locally κ-large if the residue of every simplex of X is κ-large,
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κ-systolic if it is connected, simply connected and locally κ-large. We call
a group κ-systolic if it acts properly discontinuously and cocompactly by
automorphisms on a κ-systolic complex. (Proper discontinuity means that
stablisers are finite.) We abbreviate 6-systolic as systolic. By [14] κ-systolic
complexes with κ ≥ 6 are κ-large (but this isn’t true for κ = 4, 5). And
(locally) κ-large implies (locally) m-large for κ ≥ m.

We note the following results from [14]

Theorem 3.1 (Januszkiewicz&Swiatkowski, Theorem A [14]). The 1-skeleton
of a 7-systolic complex is hyperbolic; any 7-systolic group is hyperbolic.

Theorem 3.2 (Januszkiewicz&Swiatkowski, Theorem E [14]). Any systolic
group is biautomatic.

In order to prove a groupG biautomatic, we need to define a regular language
L of words (over some selected generating set) that maps onto the group
and has appropriate fellow travelling properties. When G acts appropriately
on a systolic complex X , we fix a vertex (0-cell) x0 of X . Then for each
element g ∈ G we need to select a path (or paths) within the complex X
from x0 to gx0, and then associate with each such path a word over the
selected generated set that represents g. It turns out that directed geodesics
between pairs of vertices x0, gx0 have some very good properties; we use
the Milnor-S̆varc lemma to translate those properties into properties for the
words in our selected language.

3.2 Directed and allowable geodesics

Suppose that X is a locally 6-large (but not necessarily systolic) simplicial
complex. We call a sequence of simplices σ0, . . . , σn from S(X ) a directed
geodesic from σ0 to σn if

(1) for all i with 0 ≤ i ≤ n − 1, σi and σi+1 are disjoint and span a
simplex σi ∗ σi+1 of X , and

(2) for all i with 0 ≤ i ≤ n− 2, Res(σi,Xσi+1
) ∩B1(σi+2,Xσi+1

) = ∅.

We note that

Lemma 3.3. (1) Every subpath of a directed geodesic is a directed geodesic,

(2) If σ0, . . . , σn is a directed geodesic, and v is a vertex of the simplex
σn, then σ0, . . . , σn−1, v is a directed geodesic.

Proof. It follows straight from the definition that a sequence of simplices is
a directed geodesic if and only if the same is true of every subsequence of
length at most 3, and so (1) is immediate.
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(2) is immediate once we observe that if σn ∈ Xσn−1
and v is a vertex of σn,

then B1(v,Xσn−1
) ⊆ B1(σn,Xσn−1

).

Note that the reverse of a directed geodesic need not be a directed geodesic.

If X is systolic, then for any pair of vertices v,w of X , there is a unique
directed geodesic γ(v,w) = σ0, σ1, . . . , σn from v = σ0 to w = σn [14, Lemma
9.7], and it is geodesic, that is dX1

(v,w) = n [14, Corollary 9.8]. That
directed geodesic is the projection ray from v to w (as defined in [14]); it is
proved in [14, Lemma 9.3] that every projection ray in a systolic complex is
a directed geodesic, and in [14, Proposition 9.6] that every directed geodesic
σ0, . . . , σn is a projection ray on its final simplex σn.

Given vertices v,w, we call an allowable geodesic [14, Section 11] an in-
finite sequence of vertices u0, u1, . . . such that if σ0, σ1, . . . , σn is the di-
rected geodesic from v = σ0 to w = σn, then u0 = v, ui = w for i ≥ n,
and ui ∈ σi for 0 < i < n. Such a sequence u0, u1, . . . , un is a geodesic
path in the 1-skeleton of X [14, Fact 11.1]. It is proved in [14, Prop
11.2] that a pair of allowable geodesics joining (respectively) vertex v to
vertex w and vertex p to vertex q must fellow travel at distance at most
3max{distX1

(v, p),distX1
(w, q)} + 1.

From a directed geodesic γ = γ(v,w) as above, we can define an associated
polygonal path

γ̂ = γ̂(v,w) = σ0, σ0 ∗ σ1, σ1, σ1 ∗ σ2, σ2, · · · , σn−1, σn−1 ∗ σn, σn,

and note that any two adjacent simplices in a polygonal path are related by
(alternately) inclusion or reverse inclusion. So a polygonal path is a path
within the graph S1, whereas consecutive simplices on a directed geodesic
are at distance 2 as vertices of S1.

4 Biautomatic structures for G

4.1 Alternate generating sets B and A for G

Now suppose that G is a systolic group associated with the systolic complex
X . Let K be the set of orbits of the action of G on S(X ), and let V0 be a set
of representatives of the orbits. Choose v0 ∈ V0 to be a 0-cell. The 0-cell v0
is a natural choice for x0, which we use as we apply the Milnor-S̆varc lemma
to embed G in X as described in Section 2.2.

For σ ∈ S(X ), let σ̄ denote its representative in V0. For σ ∈ S(X ), define
Λσ := {g ∈ G : σ = gσ̄}, the ‘set of labels of σ’; note that, since we have
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v0 ∈ V0, we have Λv0 = Gv0 . Then for any pair (σ, τ) of simplices from S(X ),
define Λσ,τ := Λ−1

σ Λτ , the ‘set of labels of (σ, τ)’; note that if stabilisers are
all trivial, then the sets Λσ and Λσ,τ are all singletons. Note also that, for
any g ∈ G, Λgσ,gτ = Λσ,τ , that Gv0Λv0,σ = Λv0,σ, and that for all ρ, σ, τ ,
Λρ,σΛσ,τ = Λρ,τ We define an alphabet B, as in [14, Lemma 14.3], to be a
(finite) set of symbols representing the union of Gv0 and all the sets Λσ,τ for
which σ and τ are simplices related by inclusion or reverse inclusion. Note
that B includes a symbol representing the identity element 1.

We also define an alphabet A, a set of symbols representing the union of
Gv0 with all the sets Λρ,τ for which ρ, τ are disjoint simplices that together
span a simplex.

We will define biautomatic structures for G over each of the two alpha-
bets. The first, which we call L′, over the alphabet B, and associated with
polygonal paths, is the structure described in [14, Page 49]. We prefer the
second, L, over the alphabet A, and associated with directed geodesics. It is
closely associated with L′, but the words in it (over A) are generally shorter
than those in L′ (over B). When the subgroup Gv0 is trivial, we can sim-
plify L further by deleting the first symbol in every word; we shall call that
simplified language L0.

4.2 A structure over B

The following biautomatic structure over B is (essentially) described both in
[14, Pages 49-51] and in [19]. We have made some small adjustments after
noticing some differences between the two descriptions; we believe that there
is an error in the suggestion in [14] that any occurrences of the symbol 1
in a word should be deleted from it before it is included in the language;
for the language of words shortened in this way would not satisfy the fellow
traveller conditions.

Given g ∈ G, let γ = γ(v0, gv0) be the unique directed geodesic from v0
to gv0, and γ̂ = γ̂(v0, gv0) the corresponding polygonal path. Write γ =
σ0 = v0, . . . , σi, . . . , σn = gv0, γ̂ = σ′

0 = v0, . . . , σ
′
j, . . . , σ

′
2n = gv0 (so that

σ′
2i = σi). Following [14], we associate to γ̂ all sequences of elements gj ∈ G

(j = 0, . . . , 2n) with gj ∈ Λσ′

j
for each j ( so g0 ∈ Gv0) and g2n = g, and then

all words g0ν1 · · · ν2n over B, where νj ∈ Λσ′

j−1
,σ′

j
(j = 1, . . . , 2n) is defined

by νj := g−1

j−1
gj .

We see that the word g0ν1 · · · ν2n represents the element g, and that its
proper prefixes represent g0, g1, . . . , g2n−1. We define L′ to be the set of all
such words g0ν1 · · · ν2n. If all stabilisers are trivial then L′ contains a unique
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representative of each element of G, but otherwise some elements will admit
more than one representative.

That L′ defines a biautomatic structure for G is proved in [14]. Regularity
of L′ is verified by explicit construction of an automaton that recognises
L′. Fellow travelling of appropriate pairs of words in L′ is inherited via the
Milnor-S̆varc lemma from the fellow travelling of related pairs of allowable
geodesics.

4.3 A structure over A

We can form a biautomatic structure for G over the alphabet A, directly
from the directed geodesics, as follows.

Given g ∈ G, again let γ = γ(v0, gv0) = σ0 = v0, σ1, . . . , σn = gv0 be the
unique directed geodesic from v0 to gv0. Now, associate to γ all sequences of
elements hi (i = 0, . . . , n) with hi ∈ Λσi

for each i (so h0 ∈ Gv0), and hn = g,
and then all words h0µ1 · · ·µn over A, where µi ∈ Λσi−1,σi

(i = 1, . . . , n) is
defined by µi := h−1

i−1
hi; we define the language L over A to be the set of all

such words.

Again, we see that the word h0µ1 · · ·µn represents the element g, and that
its proper prefixes represent h0, h1, . . . , hn−1. Clearly, each of the generators
µj is equal in G to a word of length 2 over B, and so there is a natural map
from L to L′, in which generators of A are replaced by words of length 2
over B.

Because of the relationship between L′ and L, it is clear that L is also a
biautomatic structure.

In addition, we note that the word w = h0µ1 · · ·µn representing g has length
n + 1, while the directed geodesic γ(v0, gv0) has length n, the same as the
length of an allowable geodesic from v0 to gv0.

4.4 Constructing the automaton that recognises L′

The description of the automaton M′ that recognises L′ is taken from [14,
Page 50], with a small amount of adjustment.

We need the notation introduced in Section 4.1. Recall that K denotes the
set of orbits Gσ of the simplices σ in the set S = S(X ), under the action of
G. Recall also that S itself has the structure of a simplicial complex. We
denote by E(K) the set of orbits of G on the set E(S) of edges of S; its
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elements are sets G{ρ, σ} := {{gρ, gσ} : g ∈ G}, for which {ρ, σ} ∈ E(S)}.
Now, as above let ρ̄, σ̄ be the representatives in the set V0 of the orbits
Gρ,Gσ, and choose λρ ∈ Λρ, λσ ∈ Λσ; so ρ = λρρ̄, σ = λσσ̄. Then, although
it is not necessarily true that {ρ̄, σ̄} ∈ E(S), we have {λρρ̄, λσσ̄} ∈ E(S),
and it follows that {λ−1ρ̄, σ̄}, {ρ̄, λσ̄} ∈ E(S) for all λ ∈ Λρ,σ.

In the automaton M′, we have a unique start state, which we label v0, and
for each h ∈ Gv0 we have a state (v0, h). In addition, for each element
G{ρ, σ} of E(K), and each λ ∈ Λρ,σ, we define states (G(ρ, σ), λ). For ease
of notation, we refer to the state (G(ρ, σ), λ) as (ρ, σ, λ), but of course, for
any g ∈ G, the triple (gρ, gσ, λ) represents that same state. The accept
states are (v0, 1) and all states of the form (σ, v0, λ) = (gσ, gv0, λ). The
arrows are as follows:

(1) an arrow labelled h from v0 to (v0, h), for each h ∈ Gv0 = Λv0 ,

(2) for each σ ∈ S with v0 ⊂ σ, and each λ ∈ Λv0,σ, an arrow labelled λ
from (v0, h) to the state (v0, σ, λ),

(3) an arrow labelled µ from state (ρ, σ, λ) to state (σ, τ, µ), provided
that:

either (i) λ−1ρ̄ and µτ̄ are disjoint and span σ̄,

or (ii) σ̄ is a proper face of both λ−1ρ̄ and µτ̄ and
Res((λ−1ρ̄)σ̄,Xσ̄) ∩B1((µτ̄ )σ̄,Xσ̄) = ∅.

We note that all paths from the start state to accept states have odd length,
alternating after the start between states (ρ, σ, λ) with ρ contained in σ and
those with σ contained in ρ. We note that all paths of length 1 from the
start state lead to states of the form (v0, h), all paths of odd length greater
than 1 from the start state lead to states of the form (ρ, σ, λ) with ρ ⊃ σ,
and all paths of even length greater than 0 from the start state lead to states
of the form (ρ, σ, λ) with ρ ⊂ σ.

4.5 Constructing the automaton that recognises L

We modify the construction of M′ to construct an automaton M that recog-
nises L; we use just the start state of M′ and those states at odd distance
from it in M′. We label the unique start state v0, and have accepting states
(v0, h), for each h ∈ Gv0 , as before. Then for each element G{ρ, σ} of E(K)
with ρ ⊃ σ, and each λ ∈ Λρ,σ, we define a state (ρ, σ, λ). As above, if g ∈ G,
the triples (ρ, σ, λ) and (gρ, gσ, λ) represent the same state. As above, the
accepting states are (v0, 1) and all states of the form (σ, v0, λ) = (gσ, gv0, λ).
The arrows are as follows:

(1) an arrow labelled h from v0 to (v0, h), for each h ∈ Gv0 = Λv0 ,
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(2) for each ρ ∈ S with v0 ⊂ ρ, and λ ∈ Λv0,ρ, where σ ⊂ ρ and µ ∈ Λρ,σ,
an edge labelled λµ from (v0, h) to the state (ρ, σ, µ), provided that
λ−1v0 and µσ̄ are disjoint and span ρ̄,

(3) an arrow labelled µν from state (ρ, σ, λ) to state (τ, υ, ν), where σ ⊂ τ
and µ ∈ Λσ,τ , provided that:

(i) the simplices µ−1σ̄ and νῡ are disjoint and span τ̄ ;

(ii) the simplex σ̄ is a proper face of both λ−1ρ̄ and µτ̄ ; and

(iii) Res((λ−1ρ̄)σ̄,Xσ̄) ∩B1((µτ̄ )σ̄,Xσ̄) = ∅.

We observe that, if the vertex stabilisers are trivial then the first letter in
every element of L is simply the letter 1, representing the identity element.
In this case we might prefer to delete it; we shall denote by L0 the language
we get from L by this simple adjustment. Clearly the new language also
defines a biautomatic structure. It is elementary to modify the description
of L above, to find an automaton that recognises L0, as follows: we no
longer need the state labelled (v0, 1), or the type 1 transitions from v0 to
(v0, 1), the state v0 becomes an accepting state, and we replace the type 2
transitions by transitions on the same letter, and with the same target, but
with source v0 rather than (v0, 1).

5 Building systolic complexes and biautomatic struc-

tures for Artin groups

5.1 The basic construction

Let G be an Artin group of almost large type, defined in its natural presen-
tation over the standard generating set X. The systolic complex X of [13] is
built out of the Cayley graph G for G over X ; the vertex v0 is set to be the
vertex of G that corresponds to the identity element. For each (parabolic)
subgroup Gij = 〈xi, xj〉 of G with i 6= j (which is itself a 2-generated Artin
group) and mij 6= ∞, we build a systolic complex Xij out of the Cayley
graph Gij for Gij . This involves adjoining new vertices and edges and also
new higher dimensional simplices to Gij . So Gij embeds in Xij, and the
action of Gij on Xij is inherited from its action on Gij. We describe this
construction in more detail for the cases mij = 2, 3 in Sections 6.1 and 6.4
below.

For each vertex v of G, there is a subgraph of G isomorphic to Gij with base
point v. We construct the systolic complex X for G by replacing each of
these subgraphs for which mij < ∞ by the corresponding systolic complex
Xij. When we make this replacement we leave unchanged those vertices
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and edges that already belong to G. So, for each v and each such pair i, j,
we are adjoining a collection of new vertices, edges and higher dimensional
simplices to X . The action of G on G extends naturally to an action on X .

Since G acts fixed point freely on G, in this action of G on the systolic
complex X all simplex stablilisers are trivial. So the subgroup Gv0 is the
identity subgroup, and the sets Λσ and Λσ,ρ are all singletons; we shall
denote the unique element of Λσ by λσ, the unique element of Λσ,τ by λσ,τ .

5.2 The modification of Gij that produces Xij

The process that transforms the Cayley graph Gij for the 2-generator Artin
group Gij into a systolic complex Xij, when mij < ∞, is described in some
detail in [13, Section 3]. We note only a few points here that we need in
order to identify features of the biautomatic structures.

Under the action of Gij , the Cayley graph Gij contains vertices in a single
orbit, and there are two orbits on undirected edges. These correspond to
the directed edges labelled a±1

i and those labelled a±1

j .

A circuit of length 2mij labelled by the word that is the concatenation
of aiaj · · · and the inverse of ajaj · · · (both of length mij) starts at each
vertex; such a circuit is called a precell in [13]. We call the two vertices on
the boundary of a precell Π that are (respectively) the sources and targets
of two directed edges (labelled xi and xj) its initial and terminal vertices,
and we call the two portions of the boundary that consist of paths running
from the initial vertex to the terminal vertex its two half boundaries. We
note that if two precells have intersecting boundaries, then that intersection
consists either of a single vertex, which is the initial vertex of one and the
terminal vertex of the other, or of a path that is a proper prefix of a half
boundary of one and a proper suffix of a half boundary of the other.

The first step of the process that transforms Gij to Xij is the triangulation of
each such precell by the addition of mij−2 new vertices, 5mij−9 new edges,
and 4mij − 6 new 2-cells, as shown in Figure 1. In [13] the new vertices are
called interior vertices, and the vertices inherited from Gij real vertices; we
shall use the same convention here. In fact we shall call both vertices and
edges created during the triangulation of a precell Π interior vertices and
edges of Π.

But this process produces some bad links when mij > 2. At this stage, the
link of each of the interior vertices is a hexagon, but some of the real vertices
have links that are 4-cycles or 5-cycles, and so bad. Figure 2 shows what
happens at the junction of two precells when mij = 3.
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Figure 1: Triangulation of a precell
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Figure 2: Triangulating the Cayley graph produces bad links at some vertices

Those bad links are corrected by the addition of new edges, and then the
attachment of higher dimensional simplices as necessary, in order to ensure
that Xij continues to be flag (that is, any set of pairwise incident vertices
forms a simplex).

This whole process of addition of edges and higher dimensional simplices
that terminates in the systolic complex Xij is described in detail in [13, Sec-
tion 3.2]. The following is clear from that description; part (i) is stated at
the end of the second paragraph, and part (ii) is clear from the description
of the addition of edges in zigzag patterns.

Lemma 5.1. (i) Each edge of Xij \ Gij is either an interior edge of
a single precell, or it joins two interior vertices within two distinct
overlapping precells Π,Π′ whose boundaries intersect in a path π of
at least two edges, where π contains the initial vertex of one of Π,Π′,
and the terminal vertex of the other.

(ii) If Π,Π′ are overlapping precells, and u1, u2, u3 are interior vertices
with u1 ∈ Π, u2, u3 ∈ Π′, and such that {u1, u2} and {u1, u3} are
edges, then {u2, u3} is an edge within Π′.

Lemma 5.2. Suppose that G is non-free, and that v, v′ are real vertices of
X at distance n within the graph X1. Then v, v′ are at distance at most
nmax(2,M − 2) within G, where M := maxi,j({mij : mij 6= ∞}).

Proof. Let v, v1, . . . , vn = v′ be the sequence of vertices of X on a path of

15



length n in X1. It follows from the triangle inequality that it is sufficient
to prove the result when all vertices vi with 1 ≤ i < n (i.e those that are
strictly between v and v′) are interior.

If n = 1, then either v and v′ are joined by an edge in X1, or they are joined
by an internal edge in a precell of a subcomplex Xij with mij = 2. In either
case dG(v, v

′) ≤ 2, and the result holds.

If n > 1, then there are interior vertices between v and v′ on the path, and
the path must lie within an Xij subcomplex, for some i, j with finitemij > 2.
Let m := mij.

If n = 2, then the edges {v, v1} and {v1, v
′} are interior edges of a precell

Π of which v, v′ are boundary vertices. In that case dG(v, v
′) ≤ m and so,

since m ≤ max(4, 2(m − 2)), the result holds.

So now suppose that n > 2. Then each of the interior vertices vi is in a
unique precell Πi and, if Πi 6= Πi+1, then the boundaries of Πi and Πi+1

intersect in a path containing at least two edges.

Let ui, wi be the initial and terminal vertices, respectively, of the precell Πi.
Then v is on the boundary of Π1, so d(v, u1) + d(v,w1) = m and similarly
d(v′, un−1) + d(v′, wn−1) = m. Hence either d(v, u1) + d(v′, un−1) ≤ m or
d(v,w1)+ d(v′, wn−1) ≤ m (or both). In the first case, we define v′i := ui for
each i = 1, . . . , n−1, and in the second case v′i := wi for each i = 1, . . . , n−1.
So in either case we have dG(v

′
1, v) + dG(v

′
n−1, v

′) ≤ m. If v′i 6= v′i+1 then,
since Πi and Πi+1 overlap, sharing at least two edges of their boundaries,
we must have dG(v

′
i, v

′
i+1

) ≤ m− 2. We deduce that

dG(v, v
′) ≤ dG(v, v

′
1) +

n−2∑

i=1

dG(v
′
i, v

′
i+1) + dG(v

′
n−1, v

′)

≤ m+ (n − 2)(m − 2) ≤ nmax(2,m − 2).

as required.

6 Examples of Artin group complexes

6.1 The dihedral Artin group Z
2 = 〈a, b | ab = ba〉

Here the systolic complex X is formed from the tesselation of the plane
by the integer lattice, with each of the squares subdivided into two right-
angled triangles (2-cells) by a diagonal (an interior edge) running bottom left
to top right. The generator a translates one unit to the right, and b one unit
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Figure 3: Systolic complex for Z2

upwards. So the vertices are all (x, y) with x, y ∈ Z, the edges are all pairs
{(x, y), (x+1, y)}, {(x, y), (x, y+1)} and {(x, y), (x+1, y+1)} and the 2-cells
are all triples {(x, y), (x, y+1), (x+1, y+1)} and {(x, y), (x+1, y), (x+1, y+
1)}. There are six orbits of the action of G on X , and V0 := {v0, ξ, η, δ,u, l}
is a set of orbit representatives, where v0 = (0, 0) is the single vertex; ξ =
{(0, 0), (1, 0)}, η = {(0, 0), (0, 1)}, and δ = {(0, 0), (1, 1)} are edges parallel
to the x-axis, the y-axis and the diagonal; and u = {(0, 0), (0, 1), (1, 1)} and
l = {(0, 0), (1, 0), (1, 1)} are upper and lower triangular 2-cells, as indicated
in Figure 3.

We have B = A = {1, a, b, d,a,b,d}, where we use the symbol 1 to represent
the identity element, d to represent the product ab, and a,b,d to denote
the inverses of a, b, d respectively.

In order to construct L0 we need to identify the directed geodesics. We note
that the simplices in a directed geodesic σ0, . . . , σn can only be of dimensions
0 or 1.

The link of an edge (1-dimensional simplex) is a pair of vertices. So if σi+1

is an edge, then σi and σi+2 must both be vertices.

On the other hand, the link Xu of a vertex (0-dimensional simplex) u is the
set of vertices and edges of a hexagon.

If v, v′ are vertices of that hexagon, then each of Res(v,Xu) and B1(v
′,Xu)

consists of the three vertices and two edges on a path on the perimeter of
the hexagon. For edges e, e′, Res(e,Xu) consists of e and the two vertices
on e, whereas B1(e

′,Xu) consists of the four vertices and three edges on a
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Figure 5: Directed geodesics in complex of Z2

path on the perimeter of the hexagon, and contains the 1-balls of both of
the vertices on e′. It follows from the conditions on a directed geodesic that,
if σi+1 is a vertex, then either

(i) σi and σi+2 are both vertices, opposite each other within the hexagon,
or

(ii) σi and σi+2 are both edges, opposite each other within the hexagon,
or

(iii) σi is an edge and σi+2 is one of the two vertices on the edge opposite
σi within the hexagon.

Hence we see that the directed geodesics of the form γ(v0, gv0) are of three
different types, which can be described in terms of the diagram:

(1) sequences of consecutive vertices v0, v1, v2, . . . , vn on one of the six
rays through v0,

(2) sequences v0, σ1, v1, σ2, v2, . . . , σk, vk of alternately vertices and edges,
where the vertices are all on a line out of v0, the edges are bisected by
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that line, and the vertices and edges are listed in the order in which
they meet the line,

(3) sequences v0, σ1, v1, . . . , σk, vk, vk+1, . . . , vk+m, for which the sequence
v0, σ1, v1, . . . , σk, vk is a sequence of type 2, and vk, vk+1 . . . , vk+m is
the sequence of consecutive vertices on a ray that starts at vk, one
of the two rays through vk that are adjacent to the continuation of
the line from v0 to vk.

Considering these three types,we can describe all the words in the language
L0. Corresponding to directed geodesics of type 1, we have all words αn for
α ∈ A. Corresponding to directed geodesics of type 2, we have all words of
one of the forms

(ad)n, (bd)n, (ab)n, (da)n, (db)n, (ba)n.

Corresponding to directed geodesics of type 3, we have all words of one of
the forms

(ad)kam, (ad)kdm, (bd)kbm, (bd)kdm, (ab)kam, (ab)kbm,

(da)kam, (da)kdm, (db)kbm, (db)kdm, (ba)kam, (ba)kbm.

6.2 The right-angled Artin group Z
2 ∗ Z

Let G be the Artin group 〈a, b, c | ab = ba〉, isomorphic to Z
2 ∗ Z, and let

A = {1, a, b, c, d,a,b,c,d}, where d represents the product ab, and a,b,c,d
represent the inverses of a, b, c, d. Let Gab be the subgroup 〈a, b〉, let Xab be
the complex for Gab described in Section 6.1, and let L0

ab be the associated
language over {1, a, b, d,a,b,d}. The systolic complex X for G that is built
according to the construction of [13] can be considered as a ‘tree’ of copies
of Xab; at each vertex of any given copy of Xab are attached edges labelled
by c and its inverse c, whose targets are the basepoints (identity vertices)
of further copies of Xab, but at most one edge joins distinct copies of Xab.
Directed geodesics between two vertices of X are formed as concatenations
of directed geodesics between vertices in copies of Xab and paths along edges
labelled c or c. The biautomatic language L0 consists of all words of the
form w1 · · ·wk, with k ≥ 1, where for each j, either wj ∈ L0

ab or wj = cij ,
for ij 6= 0, alternately, and for j > 1, wj is non-empty.

6.3 The right-angled Artin group F2 × Z

Let G be the Artin group 〈a, b, c | ab = ba, ac = ca〉, isomorphic to F2 × Z,
and let A = {1, a, b, c, d, e,a,b,c,d,e}, where d, e represent the products
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ab and ac, and a,b,c,d,e represent the inverses of a, b, c, d, e. Let Gab, Gac

be the subgroups 〈a, b〉 and 〈a, c〉, let Xab, Xac be the complexes for Gab, Gac

described in Section 6.1, and let L0
ab, L

0
ac be the associated languages over

{1, a, b, d,a,b,d} and {1, a, c, e,a,c,e}. The systolic complex X for G that
is built according to the construction of [13] can be considered as a ‘tree’ of
copies of Xab and Xac; a copy of Xac is attached along each ‘ray’ of a-edges
within any given copy of Xab, and similarly a copy of Xab is attached along
each ‘ray’ of a-edges within any given copy of Xac, but copies of Xab and Xac

can only intersect is a single a-ray, and distinct copies of either Xab or Xac

must have trivial intersection.

Since every subsequence of a directed geodesic must be a directed geodesic,
we can see that a directed geodesic between two vertices of X must be a
sequence σ1 = σi0 , . . . , σi1 , . . . , σij , . . . , σik = σn, for which the subsequences
γj = σij−1

, . . . , σij are directed geodesics within subcomplexes Xab and Xac

alternately, and so in particular σi1 , . . . , σik−1
are all on intersection rays.

The final subsequence might be along an intersection ray, but none of the
others. And, apart from σ0 = σi0 and σn = σik , the simplices σij need not
necessarily be vertices.

To understand the precise form of such a sequence we need to consider what
must happen when a simplex σi is on a ray of a-edges, while σi−1, σi+1 are
not on the ray, but each is within (a distinct) one of the two subcomplexes
containing that ray.

When σi is a vertex v = gv0, then its link is the union of two intersecting
hexagons, as shown in Figure 6. In this example there are five orbits of
G on edges, and we denote by ξ = {v0, av0}, η = {v0, bv0}, θ = {v0, cv0}
δ = {v0, dv0}, ζ = {v0, ev0}, the representatives of those orbits that pass
through the vertex v0. The vertices gav0 and gav0 are on the intersection
ray, and the outer and inner hexagons are within the two subcomplexes that
intersect on that ray.

Suppose first that σi−1 is a vertex (not on the intersection ray). Within the
link, the residue of any one of those eight vertices has the same shape, is
a path of length 3 containing three vertices and two edges. This residue is
disjoint from the 1-ball of precisely two vertices but of no edges from the
opposite subcomplex.

So, for example, if σi−1 = gbv0 (and σi = gv0), then σi+1 = gcv0 or gev0;
in the corresponding word, this situation gives us λi = b and λi+1 = c or e,
but not λi+1 = c or e, so we see that words of the form brcs label directed
geodesics that are sequences of vertices, but those of the form brcs do not.

Now suppose that σi−1 is an edge. If σi−1 is one of the four edges in the
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Figure 6: Link of a vertex on an intersection ray

orbit of ξ, then its residue within the link consists of just two vertices, and is
disjoint from the 1-ball of two edges and of four vertices within the opposite
subcomplex; for example, if σi−1 = gdξ , then σi+1 could be any one of gcξ,
geξ, gcv0, gev0, gev0, or gcv0.

But if σi−1 is one of the remaining eight edges, then its residue within the
link is disjoint from the 1-ball of two edges and two vertices in the opposite
subcomplex; for example, if σi−1 = gbδ, then σi+1 could be any one of gaζ,
geθ, gcv0 or gev0.

When σi is an edge of the intersection ray, then its link is a set of four
vertices, and σi−1 and σi+1 can be any vertices within that link in distinct
subcomplexes.

From the above analysis, we see from the description in Section 6.1 that
each of the subsequences γj can be either (1) a sequence of vertices, or (2)
a sequence of edges and vertices alternately, or (3) a sequence of type (2)
followed by one of type (1). γj+1, . . . , γk must all be of type (1). It is possible
that γj might end with an edge, which would then be the first simplex in
γj+1. Otherwise there are some restrictions on which subwords λijλij+1 we
might see at points within words in L0 that correspond to the junction point
of two concatenated directed geodesics.

6.4 The dihedral Artin group G(A2) = 〈a, b | aba = bab〉

The systolic complex constructed as in [13] for the 2-generator Artin group
of type A2 is already significantly more complicated than the complex for
Z
2. Each of the precells in the Cayley graph is triangulated by the addition
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of one vertex, six edges and six 2-cells. Each new vertex then has a link that
is a 6-cycle, but the process also creates 4-cycles in the links of some of the
original vertices as was shown in Figure 2.

Those bad links are corrected by the addition of edges, and then the attach-
ment of 2-cells and 3-cells, so that the complex continues to be flag. The
process terminates with a 3-dimensional systolic complex, which has three
orbits of vertices, ten orbits of edges, twelve orbits of 2-cells and four orbits
of 3-cells.

We have B = A = {1, a, b, c, d, e,a,b,c,d,e}, where c, d and e represent the
group elements ab, ba and aba, respectively and, as before, a represents the
inverse of a, etc. The minimised deterministic finite state automaton with
accepted language L0 has 51 states, and we are unable to provide a useful
description of L0. Instead, we shall just give some examples of words in the
language. In the following description, when we refer to the ‘precell based
at g’ for an element g ∈ G, we mean the precell of which the initial vertex
is the real vertex labelled g.

We have an,an, bn,bn ∈ L0 for all n ≥ 0, and these label corresponding
directed geodesics through real vertices of the complex. But the accepted
word for the group element ab is 1c. A directed geodesic with that label
goes from v0 to a 2-cell that contains the interior vertices of the precells
based at 1, a and b, and from there to the real vertex labelled ab. Similarly,
the accepted word for ba is 1d. The word for a−1b−1 is d1, and labels a
corresponding directed geodesic in the reverse direction. Similarly, c1 ∈ L0.

The accepted word for aba is 1e, with corresponding directed geodesic start-
ing from v0 and passing through the interior vertex of the precell based at 1.
In fact (1e)n ∈ L0 for all n ≥ 0. The word for (aba)−n is (e1)n, and labels
the corresponding directed geodesic in the opposite direction.

The word in L0 for ab−1 is cd. It seems easiest to describe a corresponding
directed geodesic with this label as one that starts at the real vertex labelled
c, proceeds to the interior edge (1-cell) that joins the interior vertex of the
precell based at 1 to the real vertex labelled e, and from there to the real
vertex labelled d. Similarly, the word in L0 for a−1b labels a directed geodesic
from the real vertex labelled a to the real vertex labelled b, passing through
an interior edge within the precell based at 1.

The word in L0 for a2b is 1ac, with directed geodesic going from 1 to the
interior edge joining the real vertex labelled a and the interior vertex for the
precell based at 1, and from there to the interior vertex of the precell based
at a, and finally to the real vertex labelled a2b. A directed geodesic labelled
1ae has the same first two edges but the final edge leads to the real vertex
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labelled (ab)2 =G a2ba =G ae.

These examples suggest that it might be easier to understand the nature
of the directed geodesics rather than the words that label them, which is
not surprising given that the labelling words depend on a choice of orbit
representatives of the simplices, whereas the directed geodesics themselves
have no such dependency.

7 Properties of the Artin group structures

From now on we suppose that G is a systolic Artin group, and X the asso-
ciated systolic complex. We will always assume that v0 is the vertex of X
that is equal to the basepoint of the embedded Cayley graph G, and labelled
by the identity element of G. Since all simplex stabilisers are trivial, each
of the sets Λσ is a singleton set; we denote by λσ its single element.

It is clear that the structure of L0 must depend on our choice of the set V0

of orbit representatives, since this determines the labels. But we can make
a choice of V0 that imposes a sensible structure, as we see below.

Suppose first that we have a 2-generator Artin group. Let Π0 be the unique
precell that has v0 as its initial vertex. We say that V0 is based on Π0 if

(1) V0 contains v0 and the two real edges through v0 on the boundary of
Π0;

(2) V0 contains all the interior vertices and edges of Π0;

(3) any simplex in V0 contains at least one vertex within Π0.

The following lemma is straightforward to prove, and is used in the proof of
the proposition that follows.

Lemma 7.1. Suppose that v0 is the identity vertex, and V0 is based on Π0.
Then

(i) the label λv of a real vertex of X is the same as its label as a vertex
of G;

(ii) the label λv of an interior vertex of X is the same as the label of the
initial vertex of the unique precell containing v; that is, λv = g where
v is an interior vertex of gΠ0.

Proposition 7.2. Let G be the 2-generator Artin group

〈a, b | m(a, b) = m(b, a)〉.

If V0 is based on Π0, then each of the sets A and B consists of (a set rep-
resenting) the complete set of Garside generators of G, together with their
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inverses and the identity element.

Proof. We represent the set of Garside generators of G as the set of all
alternating products of a, b of length less than m, together with the unique
alternating product of length m that begins with a, which we denote by ∆
(see, e.g [3]). If g is a Garside generator, then so are g−1∆ and ∆g−1.

We start by observing a correspondence between the vertices other than
v0 on the boundary of Π0 and the Garside generators; for each real vertex
v 6= v0 on the boundary of Π0 the label λv of v (which maps v0 to v) is a
Garside generator, and for each Garside generator g, gv0 is on the boundary
of Π0. The generator ∆ is the label of the terminal vertex of Π0.

Let a := a−1 and b := b−1. We see that a, b,a,b must all be in A, by
considering the directed godesics of length 1 from v0 to each of av0, bv0,
av0, bv0, and by considering the related polygonal path, we see that each
of a, b,a,b must also be in B.

We observe that a directed geodesic of length m−1 joins v0 to ∆v0, through
the m− 2 interior vertices of Π0. Since all interior vertices and edges of Π0

are in V0, we see that the directed geodesic corresponds to the word 1 · · · 1∆
of length m− 1 over A in L0, and then that the polygonal path defined by
that directed geodesic corresponds to the word 11 · · · 11∆ of length 2m− 1
over B in L′. Similarly the word ∆−11 · · · 1 of length m − 1 over A in L0

and the word ∆−111 · · · 11 of length 2m− 1 over B in L′ label the directed
geodesic and polygonal path from v0 to ∆−1v0. So we see that 1,∆,∆−1

are all in both A and B.

Now let v,w be vertices, one on each of the two half boundaries of Π0, at
distances i, i − 1 from v0, for some 1 < i < m. Then λv, λw are Garside
generators, and in fact λw is the maximal proper suffix of λv. A path of
length 2 joins v to w in X1, through an interior vertex u of Π0; both w, u, v
and v, u,w are directed geodesics, and their images under λ−1

w and λ−1
v are

directed geodesics from v0 to λ−1
w v and λ−1

v w respectively, labelled by words
λ−1
w λv and λ−1

v λw in L0. We deduce that λv, λ
−1
v (and also λw, λ

−1
w ) are in

A, and similarly in B.

Conversely we need to verify that whenever σ, ρ are consecutive simplices
in a directed geodesic or polygonal path then λ−1

σ λρ is equal to either 1, a
Garside generator, or the inverse of such. We have σ = λσσ̄ and ρ = λρρ̄.
Then it follows from condition (2) above on V0 that each of σ̄, ρ̄ must contain
a vertex of Π0. It follows that σ contains a vertex v with λv = λσ, and ρ a
vertex w with λw = λρ. Now, since σ, ρ are consecutive vertices in either a
directed geodesic or a polygonal path, v,w are vertices within a simplex of
X (within σ∗ρ in the first case, and one of σ, ρ in the second). If v = w, then
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λσ = λv = λρ. Otherwise, {v,w} is an edge of X1. If both v and w are real,
then they are adjacent vertices of G, and so λ−1

σ λρ = λ−1
v λw ∈ {a, b,a,b}.

If v is real and w is interior, then v must be a vertex on the boundary of the
unique precell λwΠ0 that contains w, and then λv = λwg, so λ−1

σ λρ = g−1

where either g = 1 or g is a Garside generator. If v is interior and w real,
the same argument gives λ−1

σ λρ = g, with g = 1 or g a Garside generator.

Finally, if v and w are both interior, then the unique precells λvΠ0 and
λwΠ0 that contain them are either equal, in which case λv = λw, or they
have boundaries that intersect in a path of length at least 2 that connects the
initial vertex of one of the two precells (labelled by λv or λw) to the terminal
vertex of the other (labelled by λw∆ or λv∆). The element g labelling such
a path must be a Garside generator, and we have either λw∆ = λvg or
λv∆ = λwg, from which we see that λ−1

σ λρ = λ−1
v λw is equal either to

∆g−1, which is also a Garside generator, or to its inverse.

We easily deduce the following corollary from Proposition 7.2.

Corollary 7.3. Let G be an Artin group of almost large type, and X the
systolic complex for G constructed as in [13]. Select a vertex v0 of X , and
suppose that, for each i, j, Πij

0
is a precell within Xij with initial vertex v0.

Suppose that V0 is chosen such that orbit representatives for each parabolic
subgroup Gij of G are based on Πij

0
. Then each of the sets A and B consists

of (a set representing) the union of complete sets of Garside generators for
the subgroups Gij , together with their inverses and the identity element.

We now consider properties of the language L0 over A.

We can find upper and lower bounds on the lengths of words in L0. The
upper bounds are general for a systolic group with trivial vertex stablisers,
but the lower bound is specific to systolic Artin groups.

Proposition 7.4. Let G = 〈X〉 be systolic, and g ∈ G, and let L be the
language of a biautomatic structure over A.

(i) If w′ ∈ L represents g, then |w′|A ≤ |g|X + 1.

(ii) If G has trivial vertex stabilisers and w ∈ L0 represents g, then
|w|A ≤ |g|X .

(iii) If G is a non-free Artin group of almost large type and w ∈ L0 repre-
sents g, then |g|X ≤ max{2,M − 2}|w|A, where M is the maximum
of those mij that are finite.

Proof. For (i) and (ii), we note that if σ0, . . . , σn is the directed geodesic
that corresponds to w′ ∈ L, then |w′| = n + 1. But now if γ = v0, . . . , vn
is a corresponding allowable geodesic (so that vi ∈ σi), then it follows from
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[14, Fact 11.1] that γ is a geodesic in the 1-skeleton of X . So, since the
Cayley graph G embeds naturally within X1, we have n ≤ |g|X , and hence
(i) follows. Now if w ∈ L0 representing g, then the word 1w represents g in
L, and so (ii) is an immediate consequence of (i). Finally, (iii) follows by
Lemma 5.2

Proposition 7.5. If σ0, . . . , σn is a directed geodesic, then there is a directed
geodesic σ0, . . . , σn−1, vn, for which vn is a vertex. Furthermore, if vn is an
interior vertex, then there is a directed geodesic

σ0, . . . , σn−1, vn, vn+1, . . . , vn+k,

with vn+k real and k ≤ M − 2, where M is the maximum of those mij that
are finite.

Proof. The existence of a vertex vn such that σ0, . . . , σn−1, vn is a directed
geodesic follows directly from Lemma 3.3 (2); then σn−1 is within the link
Xvn of vn. If vn is not real, then it is an interior vertex within a precell Π
of some Xij subcomplex. By Lemma 5.1 the link of vn is also within that
subcomplex: it intersects the precell in a hexagon, as shown in Figure 7.
Let u,w, vn, v

′, v′′ be the vertices marked in that figure.

Let π be the intersection of Res(σn−1,Xvn) with that hexagon. We claim
that π is either a closed path of two consecutive edges and their vertices, or
is a single closed edge. That is clear if σn−1 is within Π, in which case σn−1

is either a vertex of edge of the hexagon. Otherwise, σn−1 contains a vertex
u′ outside Π that is joined by an edge to vn. Then, by Lemma 5.1, u′ must
be an interior vertex in a precell Π′ that intersects Π along a path on one of
its half boundaries. Then every vertex of π is joined to u′ by an edge, and
so in this case our claim follows by Lemma 5.1.

Now, except when π consists of the two closed edges through either v′ or
v′′, at least one of the four real vertices of the hexagon is distance at least
two from π, and so its 1-ball is disjoint from π. In that case, we can choose
vn+1 to be such a vertex, and σ0, . . . , σn−1, vn, vn+1 is a directed geodesic
with vn+1 real.

Otherwise, without loss of generality, π consists of the two closed edges
through v′. Then the 1-ball about v′′ is disjoint from π, and we can choose
vn+1 to be v′′. Now σ0, . . . , σn−1, vn, vn+1 is a directed geodesic, but vn+1

is interior. But now, by the same argument as above, we can extend the
directed geodesic with vertices vn+2, . . . , vn+k = w as successive vertices on
the path within the triangulated precell from v′′ to w.

We note that, since the reverse of a directed geodesic is not in general a
directed geodesic, we should not expect L0 to be symmetric. And although
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Figure 7: Extending a directed geodesic past vn

every prefix of a directed geodesic is also a directed geodesic, its final simplex
is not in general a vertex, and so we do not expect (or observe, in our
examples) prefix closure. However, we have the following result.

Corollary 7.6. Suppose that w ∈ L0, and that w1 is an prefix of w, and
let w2 be the maximal prefix of w1 (formed by deleting its last letter). Then
there exists a word w′ ∈ L0, that has w2 as a prefix, with |w′| − |w2| ≤
maxi,j({mij − 1 : mij 6= ∞}).

Proof. We let σ0, . . . , σn be the directed geodesic corresponding to w′, and
choose w′ ∈ L0 to correspond to the directed geodesic σ0, . . . , σn−1, vn, . . . , vn+k

that is constructed in Proposition 7.5.

8 Computer code

We have written computer code that constructs the biautomatic structures
described in [13] for certain Artin groups G of almost large type. Currently
our programs can handle such groups provided that all of the entriesmij , i 6=
j in the associated Coxeter matrix lie in {2, 3, 4,∞}. This code is written in
GAP [6] and makes use of the KBMAG [15] package for computing shortlex
automatic structures and performing operations on finite state automata.

The biautomatic structures that we construct are over the generating set A
that was described in Section 4.1 above for general systolic groups. With
this code we can explictly construct the word acceptor and right and left
multiplier automata and verify computationally that they do indeed define
a biautomatic stucture. We can also reduce words over the standard gener-
ating set X = {a1, . . . , an} of G to their equivalent normal form words over
A.

As we saw in Corollary 7.3, with appropriate choice of the set V0 of orbit rep-
resenatives, the setA is equal to (symbols representing) the set {1}∪Y ∪Y −1,
where Y is the union ofX and, for each i, j with 1 ≤ i < j ≤ n, the sets corre-
sponding to {aiaj}, {aiaj, ajai, aiajai}, and {aiaj , ajai, aiajai, ajaiaj , aiajaiaj},
when mij = 2, 3 and 4, respectively. In fact we only construct the left and
right multiplier automata for the generators in {1} ∪ X ∪ X−1, but this
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is sufficient to verify the correctness of the structures, and the multipliers
for the additional generators could be constructed as composite automata
(defined in [5, Section 5]) if required.

The code works as follows. The authors proved in [10] and [11] that G is
shortlex automatic over X, and we start by using KBMAG to construct this
shortlex automatic structure. Then we enumerate words in the accepted
language up to some chosen length l (it turns out that l = 7 is sufficient
in general, or l = 4 if there there are no i, j with mij = 4). So we have
effectively constructed the ball of radius l about the base point in the Cayley
graph G of G over X. Using this, we construct the simplices in part of the
systolic complex X , where v0 is the base point of G.

Now, provided that l is large enough, this part of the complex contains
enough information to enable us to construct the automaton, as described
in Section 4.5; since vertex stabilisers are trivial, we construct the automaton
M0 that accepts L0. To do this, we first have to choose orbit representatives
V0 for the action of G on X , which must satisfy the hypotheses of Corollary
7.3. In general, the representatives are chosen to be close in X to v0.

The automaton M0 is in general non-deterministic, but we can use the
automata manipulation functions in KBMAG to construct a deterministic
automaton with a minimal number of states that accepts the same language.

We next describe how we construct the multiplier automata. In general,
let W be a finite subset of a group G, and let u and v be words over some
generating set X of G. For 0 ≤ i ≤ ℓ(u), let u(i) denote the prefix of u of
length i, and put u(i) = u for i ≥ ℓ(u). Then, for a ∈ G, we write u ∼W,a v
if u(i)−1av(i) ∈ W for all i ≥ 0.

For the language L of an automatic structure of G over X, there is a finite
set WR ⊂ G such that, for all a ∈ X ∪ X−1, the language {(u, v) : u, v ∈
L, ua =G v, u ∼WR,1 v} is regular and has both of its components projecting
onto L. These are the languages of the right multipliers in the automatic
structure. An automaton accepting this language is described in [4, Section
6.3].

If in addition L is the language of a biautomatic structure for G, then
there is a finite set WL ⊂ G such that, for all a ∈ X ∪X−1, the language
{(u, v) : u, v ∈ L, u =G av, u ∼WL,a v} is regular and has both of its
components projecting onto L. These are the languages of the left multipliers
in the biautomatic structure.

If we are given the word acceptor of an automatic structure and a candi-
date for the set WR, then we can construct the associated right multiplier
automata and then use the axiom checking process described in [4, Section
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5.1] to verify that this really is an automatic structure and hence that WR

has the required properties. If the axiom checking process fails, then we can
attempt to find specific instances of failure and thereby add further words
to WR, after which we try again. This is essentially the same method that
is described in more detail in [5] for constructing shortlex automatic struc-
tures. As mentioned earlier, in our code we just construct the automata for
generators in {1} ∪X ∪X−1, which is sufficient for the axiom checking.

Furthermore, if we are given a candidate for WL, then we can construct the
associated left multipliers. We can use these to check the condition

∀u ∈ L ∃v ∈ L (u =G av, u ∼WL,a v)

for each a ∈ X. If the condition holds, then we have verified that the
structure is indeed biautomatic. If not, then we can find specific words
u ∈ L for which the condition fails, compute words v ∈ L with u =G av,
and then add new elements to WL to make the condition u ∼WL,a v hold for
these words.

Note that to do all of this in our specific situation for Artin groups (in which
the accepted language of the word acceptor is L0), we need to be able to
test words over A for equality in G (i.e. to solve the word problem in G),
but we can use the shortlex automatic structure to do that. We also need
to be able to reduce words to normal form; that is, given a word u find a
word v with v ∈ L0 such that u =G v. A method for doing this that uses
the set WR is described in the proof of Theorem 4.1 of [5].

In practice it turned out that WR = A was adequate for the construction of
the right multipliers for the generators in {1} ∪X ∪X−1, and also for word
reduction. But the set WL needs to be significantly larger, and we were able
to construct that using the error correcting process described above.

The principal reason that we have not attempted to handle Artin groups
with mij > 4 is that the complex X becomes increasingly more difficult to
describe explicitly with increasing mij. We found that, for mij = 2, 3 and
4, the highest dimension of a simplex in the complex is mij and it seems
plausible that the same is true for higher mij .
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